
 
Copyright Warning & Restrictions 

 
 

The copyright law of the United States (Title 17, United 
States Code) governs the making of photocopies or other 

reproductions of copyrighted material. 
 

Under certain conditions specified in the law, libraries and 
archives are authorized to furnish a photocopy or other 

reproduction. One of these specified conditions is that the 
photocopy or reproduction is not to be “used for any 

purpose other than private study, scholarship, or research.” 
If a, user makes a request for, or later uses, a photocopy or 
reproduction for purposes in excess of “fair use” that user 

may be liable for copyright infringement, 
 

This institution reserves the right to refuse to accept a 
copying order if, in its judgment, fulfillment of the order 

would involve violation of copyright law. 
 

Please Note:  The author retains the copyright while the 
New Jersey Institute of Technology reserves the right to 

distribute this thesis or dissertation 
 
 

Printing note: If you do not wish to print this page, then select  
“Pages from: first page # to: last page #”  on the print dialog screen 

 



 

 

 
 

 
 
 
 
 
 
 
 
 
The Van Houten library has removed some of the 
personal information and all signatures from the 
approval page and biographical sketches of theses 
and dissertations in order to protect the identity of 
NJIT graduates and faculty.  
 



ABSTRACT

DEVELOPMENT AND TESTING OF A SIMULATED CLOSED LOOP DRUG
DELIVERY SYSTEM FOR CHF PATIENTS UNDER MILRINONE

ADMINISTRATION

by
Runa Shah

The purpose of this thesis project is the development and testing of a simulated closed

loop drug delivery (CLDD) system that consists of a pharmacokinetic, physiological, and

feedback-controlling model. The focus of this study is on the control of milrinone

infusion to maintain cardiac output at desired setpoint range for patients suffering from

congestive heart failure (CHF). The simulated CLDD system is written in VisSim

dynamic simulation language for an IBM-compatible PC.

Milrinone pharmacokinetics are represented by a three compartment model. The

physiological model consists of the cardiovascular system model linked to the

pharmacodynamic submodel of milrinone. The feedback-controlling model consists of a

cascade controlling mechanism incorporating a PID controller.

Validation of system dynamics was performed by comparison of simulated results

of the loop model (pharmacokinetic and physiological model) to available experimental

data. Pharmacokinetic and hemodynamic responses showed that the behavior of the

simulated open loop model was similar to that of CHF patients under milrinone

administration.

The addition of the feedback-controlling model to the open loop model resulted in

the development of the CLDD system. Performance of the cascade controller was

optimized with tuning of PID controller. A two-hour control performance was monitored

as the CLDD system underwent the following situations: (1) target CO was modified



(transient response), (2) perturbation was incorporated as circulatory vessel resistances

were changed, and (3) randomization of system parameter was achieved by varying the

elimination rate constant. Onset delay, time taken for controller to bring CO within set

boundaries, and percentage overshoot of cardiac output from target were the underlining

results analyzed in understanding the performance of the controller.

Aside from some minor refinements, the overall performance of the controller

showed it to be robust in responding to the changes in the system by adjusting milrinone

infusion so that cardiac output could track to the setpoint. The simulated CLDD system

as a whole was observed to correctly represent clinical automated drug delivery. The

results of the simulated controller also lead into the possibility of developing an

automated control milrinone infusion system for maintaining cardiac output for CHF

patients.
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CHAPTER 1

INTRODUCTON AND BACKGROUND

As the society moves into the next millennium, the use of computers in daily activities

has advanced. Many responsibilities formerly performed by humans are now in the

command of computers. The use of computers reduces problems caused by human error.

The focus of this thesis is the administration of drugs by the use of computers in the field

of medicine.

1.1 Introduction

Traditionally delivery of drugs has been empirically regulated by the clinicians based on

the known physiological effects and observed efficacy and toxicity. Now with the

advances in closed loop technology, the computer control can be used to administer drug

in order to maintain a physiological response. The use of closed loop systems provides

two main advantages: (1) clinical personnel are relieved of some of the mundane and

repetitive monitoring and infusion adjustment tasks that are done automatically by the

closed loop system and (2) this system provides tighter regulation of a physiological

variable at a desired level than can be accomplished with manual methods.[1] Since this

task is now the responsibility of the computer, the clinician can better concentrate on

other duties. This can be considered as a third non-direct advantage for the use of closed

loop drug delivery (CLDD) systems.

This research concentrates on the design and evaluation of a simulated closed

loop drug delivery system for the infusion of milrinone. Milrinone is a second generation

drug used to increase cardiac contractility in congestive heart failure patients in order to
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increase cardiac output during surgery. The physiological response that is monitored is

cardiac output. The primary focus is the design of a CLDD system for congestive heart

failure patients. Thus a closed loop feedback system is designed to control the infusion

of milrinone in order to maintain the cardiac output at a desired target for patients

suffering from congestive heart failure.

The following sections document available research studies done on drug delivery

control system, proposes a closed loop system for monitoring and administering drug,

and presents results of computer simulation of the closed loop response. It also explains

VisSim, the simulation language used in this research. Additional discussion focuses on

the appropriateness of the use of milrinone for congestive heart failure patients.

1.2 Control Systems

Much of the work with closed loop system control has focused on arterial pressure

control in cardiac surgery patients. Systems using a variety of drugs for both

hypertension and hypotension have been reported to rapidly and faithfully control arterial

pressure under research conditions. Martin [2] designed a multiple-model adaptive

Figure 1.1 Diagram representation of desired blood pressure response using MMAC
control



3

Figure 1.2 Block diagram of control scheme given a known plant

controller (MMAC) for the control of blood pressure using sodium nitroprusside (SNP).

MMAC is a control strategy that can identify and then adapt to changing characteristics.

Lainiotis [2] introduced the concept of multiple model adaptive control. MMAC uses a

finite range of models, assumed in this case to be reasonable representations of possible

patients, from which to identify the patient. An automated drug infusion system for

blood pressure should have certain performance characteristics. These include, a 20

percent settling time of less than 10 min, a maximum overshoot of less than 10 mmHg,

and a steady-state error within ±5 mmHg, Figure 1.1. Along with these performance

characteristics, the controller also has clinical constraints, as well. The first of the

clinical constraints is the maximum allowable infusion rate. The basic controller is

shown in figure 1.2. The concept of the controller is that a given a transfer function or

known plant, the desired closed-loop responses can be achieved via pole-placement and

state-variable feedback. The series compensator in Figure 1.2 was obtained using this

method. The proportional plus integral (PI) unit was used to achieve a steady state error

of ±5 mmHg with no dc offset. To remove the effects of infusion delay a predictor model
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was used. A low-pass filter was included to minimize the effects of noise. To help

maximize patient safety, two nonlinear units were built into the system. The first, F1, is

used to turn off the infusion of SNP if patient's blood pressure drops too low. The other

nonlinearity, F2, limits the actual infusion rate according to the maximum allowable

infusion rate. Numerous tests, including variation of the gains, time constants, and

infusion delays were performed to demonstrate the robustness of the controller. The

results showed that the controller controlled wide ranges of patient characteristics. In all

cases, the desired performance characteristics or better (20 percent settling time < 10 min,

overshoot < 10 mmHg, and steady-state error within ± 5 mmHg) were achieved. In 35

cases, the average settling time was 2.6 min and the average overshoot was 2.4 mmHg.

Furthermore, steady-state error of blood pressure was within the boundaries specified.

Patient safety was also maintained in all cases. In conclusion, the controller satisfied the

desired performance characteristics while maintaining patient safety. [2]

Additional studies on closed loop drug delivery focus on the simultaneous control

of blood pressure and cardiac output. Yu [3] has applied the MMAC concept to design a

controller to simultaneously regulate MAP and cardiac output in congestive heart failure

(CHF) subjects by adjusting the infusion rates of sodium nitroprusside (SNP), a

vasodilator, and dopamine, a positive isotropic agent, respectively. Instead of the

conventional PI and PID controllers utilized in previous single-input, single-output

MMAC designs, a model predictive controller (MPC) was used for each model subspace.

The MPC is comparatively simpler to tune than the PI and PD controllers in a

multivariable environment. The controller was evaluated on laboratory animals that were

either surgically or pharmacologically altered to exhibit symptoms of CHF. Although the



5

design called for the regulation of both outputs, a tighter regulation of MAP was sought

(±10 mmHg). The transient response should have a settling time of less than 10 min for

MAP and 20-25 min for CO. A total of 16 runs were performed for each test. Before the

start of each run, baseline values for each output were obtained. Each trial started with a

step command for both outputs and continued for 80 minutes. The initial step always

asked for an increase in CO while MAP could either be increased or decreased.

Controller performance to the initial step commands is summarized in Table 1.1. The

response time is the time needed for the output to come within 5 mmHg of the steady

state setpoints for MAP and the time taken to climb within 5 ml/min/kg of the steady

state setpoint flow for CO. The response time of the outputs were within the settling

times specified in the design. The mean MAP undershoots less than 10 mmHg.

Table 1.1 Summarizes the performance of the MMAC design using MPC controller in
maintaining MAP and CO, n = # of patients
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Large overshoots were sometimes observed with step command increases in CO, but

there was no design constraint on this value. As shown in the table the magnitude of the

step up in pressure is significantly smaller than that of the step down because

considerable increase in pressure could augment the load on the heart. The results

outlined in Table 1.1 show that the controller is robust in regulating both physiological

outputs at the desired levels.

Another point of interest in CLDD systems are the studies done to compare closed

loop control with nurse or anesthesiologist control. Most of the studies report superior

performance by closed loop control systems. [4] Stern performed a study that compared

the human performance with that of a controller in the control of arterial pressure by

adjusting the infusion of SNP. The automated system used a computer-controlled

Watson-Marlow infusion pump to infuse SNP, while the anesthesiologist administered

the drug through an IVAC 530 infusion pump. The anesthesiologist had more than ten

years experience, which included the management of patients during open-heart surgery.

The protocol consisted of requiring the computer and the physician to perform identical

control tasks. Only those control tasks that were part of the comparison were included in

the analysis. A comparison pair consisted of one automated control and one manual

control performed under identical conditions in the same animal. The target MAP was

generally achieved within the required 5 min by both controllers. The mean steady-state

error was below 5 mmHg, standard deviation of the steady-state pressure was less than 2

and 3 mmHg for the computer and physician, respectively. The mean SNP infusion rate

for the two controllers was below the recommended maximum infusion rate of 3mg/kg/h.

The controller proved to perform as well, if not better, than the physician. Note that the
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control task performed by the anesthesiologist in this work is by no means typical of the

clinical use of SNP. The anesthesiologist devoted his full concentration to controlling

blood pressure as accurately as possible, knowing that his performance was monitored.

In clinical situations, many other tasks would also compete for the physician's attention,

leading to a likely degradation of his performance as a controller of blood pressure. Some

of the anesthesiologist's functions are as follows: (1) control ventilation, (2) monitor vital

signs such as ECG, pulse, and temperature, (3) continue administering anesthetics and

drugs to maintain homeostasis, (4) give blood or other blood products, (5) titrate

anesthetics to the level of surgical stimulation, (6) reverse muscle relaxation in the end of

surgery, (7) and finally extubate the patient. Thus the performance on the closed loop

control would be superior. Sheppard and Kouchoukos reported that closed loop

regulation of arterial pressure has contributed to a 50% reduction in the length of stay in

the postcardiac surgery ICU with some associated cost savings.[1]

1.3 Simulation Studies on Control Systems

Development of a clinically useful closed loop drug delivery system is both time

consuming and expensive. Thus making simulation studies an attractive alternative in the

development of a closed loop drug delivery system. Through the use of simulation

studies both time and cost can be reduced. This approach allows for the evaluation of the

controller's performance over a complete spectrum of patient population. Another

advantage of simulation studies is repeatability. Woodruff [5] designed a simulator for

closed loop cardiovascular therapy. The simulator contains mathematical models that

relate the infusion rates of specific drugs to dynamic changes in physiological
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parameters. The simulator consists of four different types of models, a nonlinear

pulsatile-flow cardiovascular model, a physiological regulatory model of baroreceptors, a

pharmacokinetic model, and a pharmacodynamic model for each drug. Its control

mechanism is multiple model based. The nonlinear, pulsatile-flow model of the

cardiovascular system consists of five compartments, left ventricle, systemic arteries,

capillaries, systemic veins, and a low-pressure compartment. The regulatory model

attempts to maintain a homeostatic pressure by adjusting arterial resistance, venous tone,

ventricle contractility, and HR. The pharmacokinetic and pharmacodynamic models

were developed from experimental tests of the drug. To validate that this simulator was

an appropriate representation of clinical situations that patients undergo, a series of

verification studies were performed. These studies included comparisons of simulator

results to published data (both animal and clinical). The multiple-model simulator was

further validated with a series of dynamic simulation studies. The study included

evaluating the ability of anesthesiologists, ranging from first year resident to full

professor, to manually control the drug using the simulator. All participants in the study

concluded that the simulator responded similarly to drug administration, as a patient

would have. Additional study on the simulator included using it to compare the relative

abilities of the closed-loop drug delivery device and clinicians to induce and maintain

deliberate hypotension. The results were that there was no statistical difference between

the experienced clinician and the closed-loop device in inducing and maintaining

deliberate hypotension. This simulator has been used in the design and validation of both

MMAC and multiple-input-multiple-output control advance moving-average controller

(CAMAC). It is the use of simulation studies that allows for the development of the
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closed loop system. The simulation language used in the design and testing of the CLDD

system in this paper is VisSim.

1.4 VisSim Simulation Language

VisSim or visual simulation is appropriate software for this research. 	 VisSim is a

simulation package for developing continuous, discrete, multi-rate and hybrid system

models and running dynamic simulations on IBM PCs and compatibles. VisSim

incorporates a graphics user interface that is used to create diagrams of the systems being

simulated. Each model consists of a collection of components or blocks connected by

flexwires. These blocks can perform many kinds of activities such as evaluating a

mathematical function, generating a random value, performing an arithmetic or logical

test, and producing different forms of animation. There are two types of blocks within

VisSim: (1) standard blocks, and (2) compound blocks. Standard blocks include (1)

Arithmetic blocks, (2) Integration blocks, (3) Time Delay blocks, (4) Boolean blocks, (5)

Linear System blocks, etc. A compound block, on the other hand, is a combination of

one or more standard blocks. The purpose of a compound block is to make the block

diagram more organized, less confusing, and more presentable. Other simulation studies

involving CLDD systems have used Mathlab, C, or C++, but this research looks into the

power of VisSim to regulate cardiac output via the infusion of milrinone for CHF

patients.
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1.5 Congestive Heart Failure

Congestive heart failure (CHF) is a condition characterized by the loss of contractile

force by the cardiac muscle fibers leading to an inability of the heart to maintain cardiac

output sufficiently in order to meet the requirements of the metabolizing tissues. [6]

Therefore there is a transudation of fluid into the tissues giving rise to congestion and

oedema at various sites. It is the weakening of the heart muscle that prevents the heart

from pumping blood effectively. Depending on the degree failure, the patient has limited

exercise tolerance, fatigue or effort dyspnoea. CHF usually occurs as a late manifest of

most forms of heart disease. Other causes include low flow, ishemia, defective valve,

pulmonary embolism, infection, anemia, arrhythmia, hypertension, and physical, dietary,

environmental and emotional excesses. Because the heart is not strong enough to pump

blood sufficiently, agents with positive inotropic activity are indicated in the treatment of

CHF.

The main final pathway for control of cardiac output is via a group of receptors

linked to a G protein-adenylate cyclase (RGC) complex at the sarcolemma. This

complex has two distinct effects: it directly opens slow calcium channels in the plasma

membrane, and it activates the production of the intracellular second messenger, cyclic

adenosine monophosphate (cAMP), from adenosine triphosphate (ATP). The results of

these effects include (1) more force development and (2) increased velocity of

shortening.[7] In the chronically failing heart there are possible defects in some of the

receptors. High energy phosphates are also reduced, therefore increasing the dependence

on inotropic support from the neurohumoral system to maintain cardiac output.

Phosphodiesterase (PDE) inhibitors offer a rational therapy for CHF patients and thus
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promote an increase in cAMP and so increase cardiac output.[8] The PDE inhibitors are

a class of bipyridine compounds that increase the inward calcium flux during the action

potential (mode of action opposite to that of the calcium blockers), effect the intracellular

movements of calcium, and have been shown to inhibit phosphodiesterase.

Phosphodiesterase is the intracellular regulator of cAMP and cGMP by degrading these

second messengers to 5 'AMP 5 'GM?, respectively. Milrinone is a PDE III inhibitor

that produces positive inotropic and vasodilator effects.

1.6 Milrinone

Milrinone and amrinone are the two selective PDE inhibitors approved for clinical use in

the United States The chemical structures of the two PDE inhibitors are shown in Figure

1.3. Both bipyridine compounds inhibit phosphodiesterase enzyme resulting in an

increase of cAMP and increased Ca to the myocardium. Milrinone is the derivative of

amrinone, with approximately 10 to 75 times greater positive inotropic potency, and

separate direct vasodilatory properties. Also, milrinone produces the same hemodynamic

changes without causing the noncardiac adverse effects, such as thrombocytopenic

effects, fever and gastrointestinal effects as observed with amrinone. [6] Additional

studies conclude similar findings. Hasegawa [9] made the following conclusions from

his study of the drug: (i) Patients receiving milrinone have tolerated the drug well.

(ii) Milrinone therapy has not been complicated by the noncardiac side effects. (iii) In

fact, one patient who had developed fever and thrombocytopenia while taking amrinone

tolerated milrinone therapy without recurrence of these complications.
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Figure 1.3 Chemical structure of (a) amrinone and (b) milrinone, the 2-methyl, 5-
carbonitrile derivative

In addition to these advantages this drug increases myocardial contractility in

CIE patients without increasing myocardial oxygen consumption. [10] Aside from

milrinone's comparative studies with amrinone, milrinone has also been evaluated with

other inotropic and vasodilator agents including dobutamine, nitroprusside, and

captopril.[6] When dobutamine infusion was compared with milrinone, both drugs

produced similar sustained improvement in cardiac index. But dobutamine infusion

resulted in an increase in heart rate to a greater extent than did milrinone, thereby

increasing myocardial oxygen demand that was not evident with milrinone. When

compared with nitroprusside, milrinone increased cardiac output to much greater extent

than did nitroprusside infusions. In a comparative study with captopril, it was observed

that milrinone increases cardiac index to a greater extent than captopril. Young [6]

concluded that milrinone shows evidence of producing more sustained and significant

improvements in hemodynamic measurements. Therefore, milrinone is the selected drug

used in this research.



CHAPTER 2

CLOSED LOOP MODEL

VisSim simulation study of the CLDD system consists of three main interfacing models,

milrinone pharmacokinetic (PK) model, physiological model, and feedback-controlling

model. The purpose of this research includes the development of the PK model for

milrinone and feedback-controlling model as well as testing of the CLDD system

(consisting of all three models).

2.1 Physiological Model

The physiological model, designed in previous research, is the mathematical

representation of the physiological response of the body to the drug infusion. The

physiological model consists of the cardiovascular system model linked to the

pharmacodynamic submodel of milrinone. [11]

The cardiovascular system [12] is composed of twenty compartments which

includes the left and right ventricles, the systemic and pulmonary circulation as shown in

Figure 2.1. In this model the arterial system is represented by one or more interconnected

elastic reservoirs, the Windkessel approach. A Windkessel compartment is described by

a single ordinary differential equation. A two-element Windkessel model, which consists

of a resistance (R) and compliance (C) represents each compartment. The relationship

between the blood flow and blood pressure in a compartment is represented by Equation

2.1.

13



Figure 2.1 Schematic diagram of the cardiovascular system used in this work
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where:

F i = blood flow out of compartment i

Pi = blood pressure in compartment i

Pi+1 = blood pressure in compartment i+1

Ri+ 1 = vessel resistance of compartment i+1

The pressure P in a compartment is related to the compartment's volume V by a

compliance term. Equation 2.2

Finally the change of volume (dV/dt) is represented as the difference of the inflow (Fi n)

and outflow (Fay.) by Equation 2.3. According to the law of conservation of mass, this

equation describes the variation of blood flow.

The model also accounts for autoregulation of blood flow and baroreceptor reflex

regulation of arterial pressure. Autoregulation is the changing of local resistance to blood

flow through metabolic and myogenic mechanisms, which causes a match between

oxygen supply and demand for any tissue or organ. To maintain the equilibrium between

supply and demand of oxygen, blood flow is adjusted. Baroreceptors are located at the

carotid sinuses and aortic arch. Of the two locations, the carotid receptors are more



16

sensitive to pressure than are the aortic arch receptors. Therefore the carotid sinus

receptors are considered in the physiological model. Baroreceptors act through neural

pathways to alter heart rate, contractility and peripheral resistance to return sudden

changes in blood pressure to normal "set point".[12] Congestive heart failure was

simulated by reducing ventricular maximum systolic elastance to 40% of normal.[11] An

in depth study of this model can be found in Gu.

The pharmacodynamic (PD) model for milrinone was represented by changes in

vascular resistance, cardiac contractility, and heart rate. The experimental data and

corresponding equations used in the PD submodel were obtained from

www.amwtech.com/cardiac. Approximate drug concentration-heart rate relationships

were obtained through the use of linear relationships.[11]

The physiological model, linking of the cardiovascular model to milrinone PD

model, is used to predict hemodynamic responses and ischemic potential of milrinone

therapy in simulated patients with CHF. The input of the physiological model is the

milrinone plasma concentration (ng/ml) and the output that is the focus is the cardiac

output (CO).

2.2 Pharmacokinetic Model

The PK or pharmacokinetic model describes the uptake, distribution, and elimination of

the drug (in this case milrinone) as defined by Hull [13]. Pharmacokinetics is what the

body does to the drug. The essentials of pharmacokinetic theory include compartmental

approaches, which consists of the use of compartments.
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Figure 2.2 Pharmacokinetic compartment models for milrinone.(a) 2-compartment (b) 3-
compartment.

A compartment is defined as an apparent volume of distribution that behaves as a single

physical and mathematical entity. When placed in the compartment, any quantity of drug

is assumed to be completely and instantaneously distributed throughout the apparent

space.[13] Milrinone has been described both as a two compartment PK model and as a

three compartment PK model. (Figure 2.2) Butterworth [14] and Bailey [15]

independently performed a study that compared two compartment analysis to a three

compartment analysis for PK model of milrinone. Both studies worked with cardiac

patients. The two studies concluded that a three-compartment model was found to be a

better description of the data for majority of patients than the two-compartment model.

Therefore a three compartment PK model for milrinone is used here. The first or central

compartment represents the blood, and is used to provide drug concentration in the

plasma. The remaining two compartments represent the shallow peripheral compartment

(1) and deep peripheral compartment (2).[13] The two compartments are basically

storage areas of fat, tissue, etc. The three compartment model is written in terms of rate

constants (Figure 2.2b), which represent the rate of drug distribution from one
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compartment to the other. The rate constants were calculated from the known volumes

where:

Cln = clearance of compartment n

Vn = volume of compartment n

knm = the rate of drug elimination from compartment n to compartment m

The concept of clearance is a measure of the eliminational efficiency, and is defined as

the rate of drug flow per unit concentration. Hull [13] explains the relationship between

volume and clearance using a bucket of water analogue. Hulls analogue is as follows.

Clearance of water from the bucket is a way of describing the size of the outflow pipe;

the wider the pipe, the greater the clearance. Clearance from this system can be defined

as the flow rate per unit water level. Since any volume in the bucket can be re-stated as

the product of cross-sectional area and difference in water level, the flow rate term can be

restated as the product of the cross-sectional area and the rate of decline of water level at

some stated time. Rewriting the expression for clearance (C1), Equation 2.9 is obtained.

Cl = Area ( Rate of fall/Water level ) 	 (2.9)
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The rate constant k of any exponential change can be defined as the ratio of rate

of change at any time to the magnitude of the variable at that time; in this case the rate of

fall divided by the water level. Furthermore, one observes that the cross-sectional area of

the bucket represents the apparent volume of distribution Vd. Therefore Equation 2.10 is

obtained.

With the rate constants being known, a differential equation approach was used to

describe the three compartment PK model. [16] This notation describes the rate of change

of drug concentration following drug administration.

where:

xn(t) = concentration of drug in compartment n at time t

dxn(t)/dt = rate of change of drug in compartment n at time t

kab = rate constant for drug transfer from compartment a to compartment b

k10 = elimination rate constant from compartment 1

Kt) = the dosage of drug into compartment 1 at time t
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Each of the three differential equations simply sets out a pattern of drug flows; inputs are

positive and outflows are negative. The rate of drug movement in or out of the

compartment 1 is simply the resultant of the two processes. Observing Equation 2.11:

concentration x i in central compartment is emptying into compartments 1 and 2

according to the rate constants k 12 and k13, respectively. While concentration x 2 and x3

are emptying back into the central compartment according to rate constants k21 and k31

respectively. Finally the third term is simply the elimination route, with drug leaving the

model according to the concentration of the drug in compartment 1, xi, and rate constant

k10 . Equation 2.12 and 2.13 sees the same process of inflow minus outflow.

Transferring these equations into VisSim block diagram was very simple. The

availability of the integrator block allowed the writing of the differential equations. The

integrator block performs numerical integration on the input signal using the integration

algorithm. The equations were completed in VisSim format by the use of arithmetic

blocks. The block diagram of the PK model can be seen in Figure 2.3. This figure shows

three summation blocks. The first summation block produces dxn(t)/dt, which is the

resultant of the two process, inflow and outflow of drug. This is then fed into the

integrator block, thus producing x„, drug concentration in compartment n. The input into

the PK model is the milrinone dose and the output that is of concern is the drug

concentration (ng/ml) in the first or central compartment, xi.



Figure 2.3 VisSim block diagram of three compartment pharmacokinetic model for
milrinone

21
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2.3 Feedback Controlling Model

The third model of the closed loop system is the feedback-controlling model. This is the

brain of the CLDD system that decides on the milrinone dose so that desired set points

are met for the cardiac output The feedback-controlling model consists mainly of a

cascade controller. The cascade controller contains two controllers, the output of the first

controller is input into the second controller before it is feed back into the rest of the

system. The first controller is a PID controller. The second controller contains

commands and conditions of how PID output is feed back into the milrinone PK model.

The rest of the feedback-controlling model contains additional commands of when the

PID controller is implemented. The importance of the second controller will be made

obvious in later chapters.

PID, short for Proportional-Integral-Derivative, controllers are known as the

"bread and butter of control engineering", the most common control algorithm.[17] PID

controllers are used in all kinds of control systems. This controller has several important

functions, (1) provides feedback, (2) has the ability to eliminate steady-state offsets

through the integral action, (3) anticipate the future through the derivative action, (4) and

can cope with actuator saturation. There have been many systems designed to control

physiological variables automatically, but the majority use some form of PID control.[4]

PID controllers often work well and are simple to implement. In fact Hao Ying, Ph.D. of

the University of Texas-Medical Branch and control professor states that PID is very

appropriate controller for closed loop drug delivery because (1) 90% of controllers used

are PID or some form, (2) PID controllers are very simple to use, and (3), it is effective.

Dr. Ying's [18] study with fuzzy control of mean arterial pressure in postsurgical patients
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with sodium nitroprusside infusion uses a nonlinear PI controller. Fuzzy controllers are

linguistic if-then-rule based and can be designed using control operators' knowledge and

experienced about processes. A fuzzy controller can thus be regarded as an expert

system employing fuzzy logic for its reasoning. Fuzzy controllers, being generally

nonlinear, provide an alternative means to solve time-delay, nonlinear and time-variant

control problems whether mathematical models of processes involved are available.

Biological systems such as the human body involve time-delay, nonlinearity and time-

variance. Results of Dr. Ying's research with this controller revealed that the

performance of the fuzzy control SNP delivery was clinically acceptable and it will

perform well for most patients. Therefore making the selection and use of PID control

algorithm appropriate for this research.

The textbook version of the PID algorithm [17] has the following form:

where u is the control variable (milrinone dose) and e is the control error (e r — y),

which is the difference between set point r (target cardiac output) and measured value y

(true cardiac output). The dosage is the sum of the three terms: the P-term (which is

proportional to the error), the I-term (which is proportional to the integral of the error),

and the D-term (which is proportional to the derivative of the error). K is the gain or

proportional gain of the controller, Ti the integration time, and Td the derivative time.

The proportional action is simply proportional to the control error, e. The main function
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Figure 2.4 VisSim block diagram of PID controller

of the integral action is to make sure that the process output agrees with the set point in

steady state. The purpose of the derivative action is to improve the closed loop stability

Transferring the textbook version of the PID algorithm to VisSim block diagram

was very simple. In the VisSim toolbox folder there are available block diagrams of

several controllers, one of them being PID control. The VisSim block diagram of the

PID controller is obtained by use of integrator blocks and simple arithmetic blocks as

shown in Figure 2.4. From the figure, target cardiac output and the cardiac output are the

setpoint and feedback inputs into the PID controller, respectively. The difference of

these two signals, the error, becomes part of the proportional, integral, and, derivative

term. The PID output is the summation of the proportional of the error, integral of the

error, and derivative of the error terms as seen in the block diagram. The PID controller

is used to control both steady state accuracy (using the integral and proportional terms)

and transient response (using the derivative and proportional terms). The limitations of
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this controller are (1) time constant > 0 and (2) simulation stepsize must be greater than

the time constant for stability.

In addition to the PID controller, the feedback-controlling model also contains

block diagram that controls when PID is implemented into the rest of the system. To

understand how this is done, lets first discuss at the compound block called

hysteresis. [1 9]

The hysteresis block provides ON/OFF output depending on some input signal

and its set limits. In other words the hysteresis block is a switch for the PID controller.

The input signal, upper limit, and lower limit are set to the error of the cardiac output, 5%

of target cardiac output, and 2.5% of target cardiac output respectfully. Given these set

limits, the function of the block is as follows. Block output is ON (1) when the error is

above the upper limit. The compound block continues to output ON until the error

reaches the lower limit from above. Once lower limit is exceeded from above the output

is switched to OFF(0). The output is OFF until the upper limit is exceeded from below.

The detailed block diagram of the hysteresis compound block is shown in the appendix,

Figure Al.

The input into hysteresis is the error, the output is either 1 (ON) or 0 (OFF). This

output is feed into two distinct merge blocks. The VisSim merge block is an equivalent

of the if-then-else algorithm of text based languages.

The merge block examines x1 , Boolean signal, to determine the output signal y. If the

Boolean signal is true (|x1| >= 1) than y x 2 , but if the Boolean signal if false (kJ] <1),
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Figure 2.5 VisSim block diagram of the feedback-controlling model. The blue VisSim
blocks represent compound blocks. A compound block is a combination of one or more
standard VisSim blocks.
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than y = x3 as seen in equation 2.15. The first merge block decides whether to enable or

disable the PID controller. Looking at Figure 2.5 that shows VisSim block diagram of

the feedback-controlling model, the following can be observed. The first merge block

either assigns the cardiac output or target cardiac output value to the temp CO variable

block depending on the hysteresis block output. The temp CO value is feedback into the

PID controller. The PID controller is enabled when temp CO cardiac output. But the

controller is disabled when temp CO = target cardiac output because zero error is forced

on the PID controller therefore providing zero output. The second merge block functions

as follows. Again the hysteresis output is the Boolean signal. Here a new variable block

is introduced, temp dose. Temp dose is assigned the new MD output if a value of 1 is

feed into Boolean signal; temp dose is assigned the previous HD output if Boolean

output is 0. The delay block is attached to the output of second merge block because

temp dose is continually assigned a new value each simulation step size. VisSim updates

or increments variables by use of delay blocks. The two merge blocks work together

either to enable the HD controller therefore assigning temp dose the new PID output

value (incrementing dose), or to disable the PID controller therefore assigning temp dose

the previous PID output value. The value of temp dose is then feed into the second

controller.

The second controller plays a very vital role in performance of the cascade

controller as a whole. A detailed description of the second controller is as follows. The

value of temp dose that is fed into this controller can take one of the two available paths

before entering the PK model as milrinone dose. The first path interprets this input as a

bolus dose. The second path interprets the value of temp dose as an infusion rate. Given
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the case that a bolus is implemented, than it can either be a large bolus or a small bolus.

The large bolus has upper limit of 50 µg/kg given the condition that the error is above

10% of target cardiac output (Error > 10% target CO). Target cardiac output is given as a

50% increase in baseline CO, therefore target CO is 4587 ml/min. The small bolus has

an upper limit of 10 µg/kg given that the error falls above 5% of target CO and below

10% of target CO (5% target CO < Error < 10% target CO). The second path which

interprets the value of temp dose an infusion rate, has an upper limit of 4 µg/kg/min given

that the error is below 5% of target CO (Error < 5% target CO).

The VisSim block diagram of the second controller can be seen on Figure 2.6.

When the error is above 5% of target CO than a pulse is generated holding the magnitude

for 30 seconds. The magnitude of the pulse is dependent on the criteria outlined above.

If after 30 second from the start of the pulse, the error continues to be above 5% target

CO, than another pulse is called (the magnitude is updated). If anytime during a pulse the

error drops below the 5% target CO, than after 30 seconds from beginning of the pulse an

infusion rate starts. The incrementing of the infusion rate stops either when the error has

gone below 2.5% of target CO or if it has risen above 5% target CO (pulse generated

again). These distinct paths and limitations makes it easy to see how PID output is

controlled and adjusted before administration as a drug dose.

Another interesting observation with the PID controller is that it outputs negative

numbers as well. This occurs when an overshoot is observed in the CO response. This is

not practical for drug delivery systems. Therefore the dose is given a lower limit of zero

for both bolus and infusion rate administrations to block the negative PID output. It is

this second controller that prevents dramatic output responses from occurring due to
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overdosing. The importance of the second controller will be made obvious as a

comparison is done between cascade controller output and PD output in the chapter 4.

2.4 Interfacing Three Models

All three models now discussed, the focus of the section is how their input and output

interface to give the closed loop drug delivery system. Since the focus here is on CHF

patients, the cardiac output is expected to be much below target with no drug present in

the body. Therefore as the simulation starts, the cardiac output is below the upper limit

set for the hysteresis, thus allowing the cascade-controlling system to administer

milrinone to the body. PID controller is enabled and its output (via the temp dose

variable block) is fed into the second controller thus providing the drug dose. Milrinone

dose is both the output of the feedback controlling model and the input into the PK

model. Once milrinone dose is feed into the PK model, the milrinone plasma

concentration is obtained. This PK output is input into the physiological model. The

physiological model takes this drug concentration and calculates the response, the output.

The response that is of concern, the cardiac output, is needed for the input (error cardiac

output) back into the feedback controlling model, and thus making the closed loop drug

delivery controlling system. (Figure 2.7)
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Figure 2.7 Block diagram representation of the closed loop drug delivery system. All
three models are accounted for: milrinone PK model, physiological model, and feedback
controlling model



CHAPTER 3

UNDERSTANDING DYNAMICS

This chapter concentrates on understanding and comparing the pharmacokinetic and

hemodynamic responses of a single intravenous (IV) bolus administration of milrinone of

a simulated CHF patient to a simulated normal patient. On the same note the results

obtained from the simulated models are compared to studies done on human patients to

confirm that the simulated models behave as the patient would under milrinone

administration. The physiological model of the normal patient was obtained from the

research done by Gu [12]. To do this study the feedback controlling model was disabled,

leaving the milrinone PK model attached to the physiological model. Therefore these

two interfacing parts can be referred to as an open loop dynamic model. (Figure 3.1)

Figure 3.1 Block diagram of open loop dynamic model used to test the dynamics of the
system

In understanding the dynamics of the system, CHF patient model responses are

compared to normal patient model responses. Prior to simulating these results, it is

essential to develop a pharmacokinetic model for a, normal patient. There is a small

amount of research available focusing on the pharmacokinetic behavior of milrinone on

31
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normal patients. Of the research available, a two compartment PK model for milrinone is

used to fit the pharmacokinetic data for the normal human patients.

Therefore when comparing the dynamics of a CHF patient model to a normal

patient model, our results would not be valid because a three compartment PK model is

used in one case (CHF patient) while a two compartment PK model is used in the other

(normal patient). Two compartment and three compartment PK models do not provide

the same dynamic output. This can be seen in the two-three compartment comparisons

for CHF patient model for a 50 and 75 µg/kg doses.(Table 3.1)

Table 3.1 Comparison of a two and three compartment milrinone pharmacokinetic model
for CHF patient model using a 50 and 75 µg/kg bolus dose administration

The solution here is to switch to a two compartment PK model for CHF patient model

thereby allowing a valid comparison to the normal patient model dynamics. Only in this

chapter is milrinone pharmacokinetics defined by a two compartment model. This is done

primarily due to the lack of available research on milrinone pharmacokinetics for normal

patients. The rest of the work uses the three compartment milrinone PK model for CHF

patients as discussed in chapter 2.
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A two compartment PK model for CHF patient model was obtained using

Butterworth's [14] research done on the pharmacokinetic evaluation of milrinone in CHF

patients. The rate constants were calculated from known volumes and clearances as

discussed in Sec 2.2. A two compartment milrinone PK model for simulated normal

patient was obtained through research done by Stroshane.[20] Stroshane provided the

true coefficients (A,B) and exponents (a, j3) for various doses. The rate constants were

calculated using a pharmacokinetic conversion file available through pkpd.icon.palo-

alto.med.va.gov.[21] The relationship between the model parameters that make it

possible to calculate the rate constants is outlined in the following equations. [13]

The mean of the resulting rate constants was used to obtain the two compartment

milrinone PK model for healthy patients as shown in the appendix, Figure A2

After baseline hemodynamics were obtained (CO and MAP), the IV bolus doses

were administered to the patient models. Four different IV bolus doses were given to

both simulated models (CHF and normal) and responses were recorded. A 25 µg/kg,

50 µg/kg, 75 µg/kg, and 100 µg/kg IV bolus doses were administered to both models.

Milrinone plasma concentration, cardiac output (CO) and mean arterial pressure (MAP)

were recorded over a period of five and half hours after drug administration. There was a
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delay of 60 seconds before the drug was administered and the bolus was given over a

period of 60 seconds as seen in Figure 3.2.

Figure 3.2 Bolus administration of milrinone that is used for the dynamic study

3.1 Phamacokinetic Analysis

The pharmacokinetics of milrinone was studied following a single IV bolus

administration. Figure 3.3 and Figure 3.4 is a display of plasma milrinone concentration

after the IV bolus administration as a function of time. Figure 3.3 is of the normal

patient model. Figure 3.4 is of the CHF patient model. Bolus administration of

milrinone rapidly increases milrinone plasma concentration. Maximum milrinone

concentrations differed significantly among the four bolus doses for both normal and

CHF patient models. Maximum milrinone concentrations for normal patient model are

170, 340, 511, and 675 ng/ml for the 25, 50, 75, and 100 µg/kg doses, respectively.

Maximum milrinone concentrations for CHF patient model are 171, 343, 514, and 686

ng/ml for the 25, 50, 75, and 100 µg/kg doses, respectfully. These results correlate with

previous studies on human patients. Benolti [22] reports peak plasma concentrations of

88 to 454 ng/ml for IV bolus doses of 12.5 to 75 µg/ kg for CHF patients and Stroshane
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[20] reports 63-640 ng/ml after bolus doses of 10 to 125 µg/kg in healthy volunteers.

Peak plasma concentrations increased with the magnitude of the loading dose and

occurred at the end of the dose in both models. Peak plasma concentrations were

observed at around 117 seconds. Given a delay of 60 seconds before drug administration

and an IV bolus over a 60 second period, 117 seconds is the end of the dose. However

plasma concentrations dissipate rapidly after the loading dose for both patient models.

Milrinone is reported to have clinical efficacy at a threshold concentration of

100ng/ml.[14,23] Clinical efficacy for normal patient model was 6.3, 14.6, 21.9, and

66,8 min and CHF patient model was 7.5, 19.8, 40.7, and 72.7 min for the 25, 50, 75,

and 100 µg/kg dose, respectively. CHF patient results show a slower rate of milrinone

elimination in plasma; therefore the drug maintains efficacy for a longer period of

time.[6] Efficacy data suggests that the 75 µg/kg dose is most effective because there is a

two-fold difference in efficacy time between normal patient and CHF patient model.

Elimination half-life is the time required by the body, tissue, or organ to

metabolize or inactivate half of the amount of the substance taken in. [24] Elimination

half lives often fail to adequately describe the rate of drug disposition of

multicompartment models at clinically relevant drug concentrations.[14] Hughes coined

the term "context-sensitive half time" as a measure of the time needed for the

concentration of the central compartment to decrease in drug concentration by half after

one or more infusions of the drug. Young [6] and Shafer [25] further demonstrated the

usefulness of "context-sensitive" drug disposition and expanded the measure to included

times to concentration reductions greater than 50%. The context-sensitive elimination

times for milrinone are of a greater use to the clinician than the terminal elimination half-
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life. [14] Therefore, milrinone context-sensitive elimination times are calculated for both

patient models. The milrinone two compartment PK model for the normal and CHF

patient models gave context-sensitive elimination times that agreed with previous

research done on human patients. A 1 minute bolus infusion gave mean context-sensitive

elimination times of 6.7, 22.0, and 74.5 min for 50%, 80%, and 90% drug elimination,

respectively, for simulated normal patient. A 1 minute bolus infusion gave mean context-

sensitive elimination times of 8.9, 37.8, and 114.9 min for 50%, 80%, and 90% drug

elimination, respectively, for simulated CHF patient. The CHF statistics agreed with

Butterworth's [14] pharmacokinetic analysis, elimination times of 6.7, 41, and 107 min

for 50%, 80%, and 90% drug elimination were observed. Due to the lack of available

literature on milrinone administration on healthy volunteers, context-sensitive elimination

times were not compared to previous research. But the results confirm that milrinone is

eliminated at a quicker rate in healthy subjects than in CHF subjects. These results

correlate with studies done on the elimination half-life of milrinone in healthy and CHF

patients. Following IV administration of milrinone to 21 healthy subjects, a mean

elimination half-life of 0.8 hours was recorded.[20] In another study that concentrated on

CHF patients, the elimination half-life of milrinone after IV bolus doses of 12.5 to 75

µg/kg was 2.3 hours.[6] These studies emphasize that milrinone is maintained in the

blood for a longer duration of time in patients suffering from a failing heart rather than in

healthy, normal volunteers

Another measurement that was recorded was the percentage of plasma milrinone

elimination five and half hours after drug administration. The overall results again

confirmed that milrinone plasma elimination occurred at a slower rate for CHF patient.
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Table 3.2 Pharmacokinetic response of intravenous bolus administration of milrinone for
simulated normal and CHF patient

than for normal patient. The overall % elimination of milrinone five and half hours after

bolus administration was 99.8% and 98.4% for normal and CHF patient models,

respectively. Milrinone pharmacokinetic analysis is summarized in Table 3.2. But the

100 µg/kg statistics for normal patient do not behave as the other doses. Graphical

representation (Figure 3.3) as well as analysis (Table 3.2) shows that after 50%

elimination it takes longer for the 100 µg/kg dose to be eliminated from the body when

compared to CHF results.

3.2 Hemodynamic Analysis

Cardiac output and mean arterial pressure were monitored five and half hour after drug

administration. Figure 3.5, Figure 3.6, Figure 3.7, and Figure 3.8 are plots of CO and

MAP as a function of time for the different IV bolus for simulated normal and CHF

patients.

Intravenous administration of milrinone has shown to improve cardiac output for

both normal and CHF patients.[6] This is also evident in this simulated study. For both
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cases there is a dose dependant hemodynamic response as outlined by Young. [6] As the

dose is increased, the maximum cardiac output relative to baseline is increased.

Maximum cardiac output increases to 16.4%, 25.5%, 31.4%, and 34.7% relative to

normal patient model baseline for the 25, 50, 75, and 100 µg/kg doses, respectively.

Maximum cardiac output increases to 31.1%, 58.2%, 79.5%, and 91.6% relative to CHF

patient model baseline for the 25, 50, 75, 100 µg/kg doses. This simulated hemodynamic

data agrees with Young's dose dependant hemodynamic response relationship.

Another thing to note is that maximum cardiac output increases to a higher

percentage relative to baseline for the CHF patient model more so than in the normal

patient model for all four doses. In all four doses the CHF maximum percentage change

of CO relative to baseline is about double of the change in the normal patient model. In

fact, studies done using animal models of experimental heart failure show that there is a

greater cardiac output increase relative to baseline in dogs with induced heart failure than

in normal healthy dogs when similar doses of milrinone were administered. Maximum

percentage change of CO relative to baseline for induced heart failure patient is about

twice that of the normal patient.[6] Both simulated and experimental data show

milrinone to be more effective, in terms of increasing CO relative to baseline, for CHF

comparison to normal patients. The correlation of these simulated results to the available

experimental results, again confirm that both models respond to milrinone administration

in the same manner as reported by previous research.

Effect of milrinone administration on MAP as a function of time for normal and

simulated patients is shown in Figure 3.7 and Figure 3.8, respectively. A drop or
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decrease in MAP is shown for both patient models in the graphical representation. But

data analysis gives an increase in MAP relative to baseline for CHF patient model for the

25 and 50 µg/kg doses, while a decline is observed in the two larger doses. The

percentage change in MAP relative to baseline for the first 3 minutes for simulated CHF

patients is +11.6, +2.4, -11.6, -19.8 for the 25, 50, 75, and 100 µg/kg doses, respectively.

The same statistics for the normal patient model are —14.9, -26.2, -36.0, and —44.2. The

effect of milrinone on MAP (first 3 min recording) for normal patients appears to have

more of a pattern than that of the CHF patient dynamics. MAP is further decreased as

dose is increased for simulated normal patient, but MAP is increased and then decreased

for simulated CHF patients. Benotti [6] administered milrinone intravenously, 12.5,

25.5, 50.0, and 75 µg/kg bolus doses, to nine CHF patients, maximum MAP percentage

change from baseline was +4, +8, -5, and —6. Here again there is a rise in MAP followed

by a decline as dose is increased for CHF dynamics. Therefore the simulated dynamic

results for MAP behave the same when compared to studies done on human patients with

CHF. As for the results for the normal patient model, milrinone is expected to decrease

MAP. The decrease in MAP is more prominent in the larger doses, 75 and 100 µg/kg.

Under clinical conditions it is normal or "safe' to decrease MAP to 70mmHg. Any dose

that drops MAP below this threshold, should not be administered. For CHF model, the

100µg/kg dose exceeds this limit, for normal model both the 75 and the 100 µg/kg dose

exceed the limit. In fact, investigators suggest that there is a plateau response to

intravenous bolus milrinone administration and that doses above 50 and 75 µg/kg tend to

increase cardiac rate or produce significant decline in arterial pressure. [6]
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Another interesting observation made from the plots of MAP vs. time is the behavior of it

after the initial decline (or increase). Both model plots show that after the initial change

MAP quickly begins to stabilize and there is no oscillation evident. In fact at a certain

point in time there is no distinction between the MAP relative to baseline for all four

doses. Specifically, the plot for the normal patient shows a quick decline in pressure

followed by steadying of MAP to baseline. The amount of time it takes MAP to stabilize

for simulated normal patient is 16.9, 29.4, 59.4, and 204.8 min for the 25, 50, 75, and 100

µg/kg dose, respectively. Stabilization time for the 100 µg/kg dose is more than the other

three times together. In fact as the dose is increased the time of stabilization becomes

twice of the previous dose. The MAP for CHF model also behaves in similar manner, but

here MAP stabilizes while slowly decreasing to baseline. The amount of time for

stabilization is 6.5, 10.4, 16.3 and 20.8 min for the 25, 50, 75, and 100µg/kg dose,

respectively. Here there is not a drastic jump between time of stabilization of the doses.

Instead, MAP of later three doses appears the same relative to baseline in about 20

minutes. The 25 µg/kg dose seems to be too small of a bolus administration to have a

distinct effect on MAP. In Butterworth's [14] pharmacokinetic study of milrinone, he

Table 3.3 Hemodynamic response of intravenous bolus administration of milrinone for
simulated normal and CHF patient

Patient Dose( El g/kg) %CO
Increase(max)

%CO from
Baseline at 5.5hrs

% MAP from
Baseline

stable MAP
time (min)

Normal 25 16.4_ 0.1 (-)14.9 16.9
CHF 31.1 0.4 (+) 11.6 6.5-
Normal 50 25.5 0.5 (-)26.2 29.4'
CHF 58.2 0.8 (+)2.4 10.4
Normal 75  31.4 0.1 (-)36.04 59.4
CHF 79.5 1.2 (-)11.6 16.3
Normal 100 34.7 3.6 (-)44.2 204.8
CHF 91.6 1.7 (-)19.8 20.8
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concluded that there are no other significant changes in MAP relative to baseline at any

time in any of the doses studies after several minutes of drug administration.

Likewise, there were no significant differences between the dose groups at any time after

the initial change. The correlation between Butterworth's observation to the simulated

results further make the CHF physiological model an appropriate mathematical

representation of the human response. The simulation results show that hemodynamic

changes are expected to return to baseline at the end of six hours. These results are

summarized in Table 3.3.

These simulated results have characterized the magnitude and time course of the

optimal first dose response to a bolus milrinone in patients with congestive heart failure.

There is a clear dose-dependent response relation, with each successive dose producing

incremental plasma milrinone concentration and hemodynamic effect. Among the four

doses, the 100 µg/kg dose resulted in an unwanted decline in MAP without any wanted

response, therefore this would not be an appropriate loading dose. The 25 µg/kg dose

was to small of a dose to maintain responses for an adequate amount of time. What is left

is the 50 and 75 µg/kg doses. Among these two doses both result positive hemodynamic

response without dropping MAP below 70mmHg. Given a target CO as an increase of

50% of baseline (target CO=4587 ml/min), the 50 µg/kg dose is more appropriate for our

purposes. This dose achieves target CO without unnecessary overshoot. Therefore,

bolus administration for the CLDD model will be limited to 50 µg/kg. Also researchers

performing IV dose range studies have concluded that a 50 µg/kg bolus dose of milrinone

is effective for CHF condition. They further conclude that this dose achieves adequate

hemodynamic efficacy with minimal side effects.



CHAPTER 4

OPTIMIZATION OF PID CONTROLLER

As stated in section 3.3, PID controller is short for proportional, integral, and derivative

controller. These three parameter gains (P, I, and D) dictate the performance of the

controller. Each term opts to maintain minimum error so that the control of CO is stable.

Therefore selection or optimization of the P, I, and D parameter gains is necessary for

stable performance of the controller. This chapter concentrates on selecting the

parameter gain that optimizes the controller. Each parameter gain is changed

individually, keeping the other two constant at values of 0.001, 0.0001, and 0.0001 for

the P, I, and D gains, respectively. The error, cardiac output, and milrinone dose are

monitored for a two-hour control period. The error is given as the difference between the

target cardiac output and the true or observed cardiac output. The aim is to minimize

error thus giving a more stable CO response. Comparisons of the results provide the

information necessary in the selection of the optimal parameter gain in each case. This is

referred to as tuning of the PID controller.

An important reminder is that ND parameters are selected while observing the

outputs due to the cascade controller as a whole. Therefore what is observed is not the

direct results of the PID tuning mechanism, but the responses after the second controller

has adjusted the PID output. The second controller acts to stabilize the output of the PID

controller, preventing overshoot or undershoot of response. What happens is that PID

controller outputs a number to be translated into milrinone dose by the second controller.

Then that dose is fed into the milrinone PK model, therefore providing the responses of

CO due to the drug administration.
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4.1 ND Output

The importance of this section is to show why there is a need for a second controller that

adjusts the HD output before it can be implemented as the next dose. This section also

shows how changing individual parameter gains influences the PID output to a greater

extent than the output of the two controllers together. The proportional parameter gain is

increased by a factor of ten, P = 0.00001, 0.0001, 0.001, 0.01, 0.1 ,and l. For each

modification, the PID output is recorded while the controller administers milrinone for a

two hour period. The objective is to observe the changes to the PID controller, thus the

PID output as the P gain is increased and to confirm that the second controller is an

essential part of the controlling mechanism.

Figure 4.1 shows the PR) output as a function of time for each proportional gain

modification. The variation of the HD output as the P gain is increased is obvious in the

plots. The PID output for the plots with P = 0.00001 and P = 0.0001 have very slight

noticeable changes, both output range from —4 to +10. As P in increased further to

0.001, the change of the output becomes more obvious. The PID output is still within the

previous range but the controlling mechanism of the PID controller appears to change as

seen by the initial response to the error. Instead of the constant response of 8.4 for the

first 23 minutes (as seen in the two previous simulations), here ones observes a rapid

increase to 7.6 followed by a decline to 0.3 in 10 minutes. For the remainder of time the

controller's output behavior is similar to the previous runs (P 0.00001, 0.0001) in the

magnitude of the response, but differ in time of the response as seen in Figure 4.1.

Further increases in the P gain shows to have drastic changes on the HD output. A

tenfold change in the P gain produces a tenfold change in the ND output.
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The MD output ranges from -5 to + 20, -50 to + 200, and -500 to + 2000 for the

proportional gain of 0.01, 0.1, and 1, respectively. One can easily see how the parameter

gains affect the performance of the HD controller and thus understand the importance of

tuning the controller. Given the situation where this RD controller would be

implemented (drug delivery) there must a control on the output, especially since PID

outputs negative values, as well. A negative output is not practical for drug delivery

purposes. Also the large overshoots in PID output will have potential harmful effects in

the clinical situation. In the case of simulation studies, as is done in this thesis, the

system will crash. Therefore a second controller is necessary to administer the milrinone

as bolus and infusion rate without possibility of overdosing. In the same note this

controller minimizes the degree of change of the cascade controller output, milrinone

dose, as the PID parameter gains are modified. Nevertheless the optimization of the HD

controller is performed for each parameter gain. Six different simulation runs were

performed for each parameter gain while keeping the remaining two parameter gains

constant. A seventh additional run was performed for the derivative gain because of the

lack of change in CO response as the gain was modified. The mean of the errors is

shown for all simulation runs in Table 4.1. The three minimum error results for each

parameter were observed in detail in deciding the final parameter gains.

Table 4.1 Lists the mean of the error as parameter gains are changed
P-Gain Mean 1-Gain Mean D-Gain Mean

0.00001 139.4639 0.00001 150.0731 0.00001 151.5218
0.0001 136.7297 0.0001 151.4502 0.0001 151.4502
0.001 131.0645 0.001 158.9349 0.001 151.6583

0.01 112.3074 0.01 157.3521 0.01 151.3409
0.1 127.7208 0.1 157.3519 0.1 151.9548

1 117.3849 1 157.3518 1 151.3915
10 165.4081
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4.2 Proportional Gain

From the results given in Table 4.1, P values of 0.01, 0.1, and 1 are observed to have the

minimum mean error from the six simulation trials. To better understand and therefore

select the optimal proportional gain, plots of CO and milrinone dosage as a function of

time were used. Figure 4.2 and Figure 4.3 describe system output responses when P is

changed for milrinone dose and CO, respectively.

Looking at the two plots simultaneously, the following observations can be made.

Milrinone administration differs for each choice of the P gain. Initially a bolus of

50 µg/kg is administered in all three cases. But after that initial bolus, drug administration

changes. For P= 0.01 and 0.1 an infusion rate follows the bolus dose. The infusion rate is

continued until CO has exceeded its overshot boundary. This is evident in the CO plot.

There is an immediate rise in CO due to the initial bolus, but CO begins to decline after

the bolus. The effect of the infusion rate is seen as the CO begins to rise again even when

it is above target. This is not seen for P = 1, because drug administration is stopped after

the initial bolus, only to begin when CO has fallen below the given boundaries. The

effect of this second bolus is observed as the CO quickly begins to rise afterwards. In

this case an infusion rate follows the second bolus which maintains the CO above target.

The behavior of the controller due to the different P gain is hereafter similar in that each

P gain causes an administration of a bolus followed by an infusion rate, but is different

because the drug is administered at a different time. Thus causing the maximums for the

CO to occur at different times within the two hour control period. But towards the last

thirty minutes of the control period, the P = 0.01 gain shows a stabilization of the CO.

For this P gain, the controller better understands what it is monitoring, because it appears
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to have learned with time how to adjust its output while maintaining CO at the desired set

points. The controller has learned that in decreasing the bolus and following it with an

infusion rate, CO can be maintained within limits. Thus P 0.01 is the choice for

optimal proportional gain.

4.3 Integral Gain

The integral parameter gain was narrowed to I = 0.00001, 0.0001, and .01. These choices

for the integral gain gave the minimum mean error of the six simulation trials. In

deciding upon the optimal integral parameter gain, the CO and the dose are plotted for the

two-hours control period.(Figure 4.4, Figure 4.5) Analysis of these plots helps to better

understand the controlling mechanism of the system and therefore selection of the

optimal I gain can be done.

Unlike the case for the P parameter gain, there is more variation in the dosage

scheme between the three different I gains which then produces different curves of CO in

the two-control period. For I = 0.00001, the controller maintains CO by administering

milrinone mainly as an infusion rate. Instead of constantly stopping and starting drug

administration, here one observes milrinone being given as a small infusion rate. This

also prevents the CO from oscillating between maximums and minimums, instead the CO

is more stable. The initial overshoot of CO is greater than the other two simulations, but

the undershoot is also less and there are a lot less maximums and minimums observed in

the two-hour control period. The only setback is that CO reaches target 15 minutes after

control has begun.
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The behavior of I = 0.0001 simulation is similar to I = 0.00001 in that drug is

administered mainly as an infusion rate, only two bolus doses are observed. But the

difference is in the magnitude of the infusion rate. For I = 0.0001, drug is given at a

higher infusion rate when compared to I = 0.00001. This also produces more frequent

stops and starts of milrinone administration. The effect of this can be seen as the CO

moves between maximums and minimums. There are six maximums for CO observed

within the two-hour control period.

The controller's behavior is observed to change to administrations of bolus

followed by infusion rates for I gain at 0.1. The initial bolus is at a greater magnitude,

501.1.g/kg and it is immediately followed by an infusion rate. This prevents CO from

getting below target after the initial overshoot. The administration of drug is mainly

characterized by a bolus followed by an infusion rate. Again there are frequent stops and

starts of drug administration causing oscillations in the CO. There are seven maximums

observed for CO within the control period.

Although stabilization of CO is more evident for I = 0.00001 parameter gain

selection, this gain can not be considered in practical terms. The feedback controlling

models should bring CO to target within five minutes of control time. I = 0.0001 and I =

0.1 satisfies this criteria. But between the two choices, I = 0.0001 parameter gain

maintains CO while producing less maximums and minimums for CO. Therefore I =

0.0001 is selected as the optimal integral parameter gain for the control model.
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4.4 Derivative Gain

The three derivative gains with the minimum mean error were D = 0.001, 0.01, and 1. As

was the case in the P and I gain, the dosage and CO plots were analyzed in deciding upon

the optimal derivative gain. Figure 4.6 and Figure 4.7 are plots of dosage and CO as a

function of time for the two-hour control period. For all three cases, similar magnitudes

of milrinone doses are administered. Milrinone is given as an infusion rate rather than a

bolus dose. There are slight differences observed in milrinone administration for the

three cases in the control period. These differences do not appear to have a major

influence in the CO response. CO is observed to respond in the same manner to the three

doses from D gain of 0.0001, 0.01, I. There are six maximums observed for CO in all

three cases. The magnitude of the maximums for CO is observed to be similar as well.

The CO minimums or the undershoot of CO also occur at the same magnitude as well.

After the first hour of control there is difference evident in time that the controller begins

and stops to administer milrinone for the three simulations. The effect of this is also

observed in the CO response because it increases and decreases at different times. For

D=1, drug is given about one and half to two minutes before the simulations using D gain

of 0.001 and .01. This also delays the rise of CO for these simulations with respect to the

simulation using D = 1.

But when the control mechanism of the three different D gains are compared so

that a selection can be made, one concludes that the modification of the D gain does not

produce vital changes within the milrinone dose output. Table 4.1 listing the mean error

of the CO using seven different modifications to the derivative gain also confirms this

observation. The CO errors for the seven simulations are very close.
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In other words, the D gain does not influence the performance of the controller. The

controller's behavior is outlined more so by the proportional and integral gain. This is an

indication that a PI controller would be appropriate for milrinone delivery purposes. But

the decision is to keep the PID controller. Even though the derivative of the error factor

does not contribute to the performance of the controller, it does not deteriorate the

performance either. To confirm this conclusion, the CLDD system was simulated using a

PI controller while keeping the P and I parameter gains the same. Figure 4.8 and Figure

4.9 plot the dose and CO during the two hour PI control period. Both plots are observed

to behave similar to plots of dose and CO from Figure 4.6 and Figure 4.7, respectively.

But the decision is to keep the first controller as a MD controller, using D = 0.01 for

optimal derivative gain.

The performance of the controller was observed to be optimal using parameter

gains of 0.01, 0.0001, and 0.01 for the proportional, integral, and derivative gains,

respectively. Further testing of the CLDD system will be simulated using these PID

parameter gains.
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CHAPTER 5

TESTING OF THE CLOSED LOOP DRUG DELIVERY SYSTEM

Chapter 3 concentrates on validating the performance of the milrinone PK model and

physiological model together. Four different bolus doses were administered to the CHF

patient model, recording the pharmacokinetic and hemodynamic responses. The results

validate that the behavior is similar to available human studies performed using milrinone

administration. With the validation of the PK and physiological model, as well as, the

optimization of the PID controller, the next step is to test the performance of the

controller under varying situations.

The controller must be able to respond to changes within the system by adjusting

the milrinone dose of the drug. In the previous simulations, CHF model parameters were

kept constant. This is not practical in real situations. In fact a patient's characteristics

can change during the course of drug administration. Also certain patient characteristics

can vary as much as 36 fold from one patient to the next. [261 Therefore the controller

must be able to handle a wide variety of patient types; adjusting the milrinone dose to

meet these changes does this.

The robustness of the cascade controller used in this research was tested under three

different situations. The first test observed the transient response of the cascade

controlling mechanism as the target or setpoint CO was changed. In the second test, the

controller responses were observed as perturbation was achieved by changing the vessel

resistance parameters in the circulatory system in the physiological model. The third test

incorporated randomization into the model, using the elimination rate constant, k 10 , as the

randomizing factor in the system. All three tests were performed to better understand
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controller performance in a more realistic situation. Not only does one patient

characteristics differ from the next, but also the characteristics within the same patient

can change during the course of drug administration. Prior to simulating these test

results, it is essential to simulate the controller responses using the three PID parameter

gains that were chosen to optimize the performance of the cascade controller.

5.1 Controller Output with Optimized PID Gains

The values for the P, I, and D parameter gains that were observed to optimize the

performance of the cascade controller are 0.01, 0.0001, and 0.01, respectively.

Simulation of a two hour control period was performed using these gains. Figure 5.1 and

Figure 5.2 are plots of milrinone dose and cardiac output as a function of time. There is

an initial bolus observed immediately followed by an infusion rate. The effect of this

dose is observed in the CO response: an overshoot is seen initially, then a decline is

evident, finally before decreasing to setpoint, CO makes a U-turn and begins to increase

again. Drug is administered in similar manner within the two-hour period because there

is a bolus followed by an infusion rate given each time drug administration begins.

During the second half of the control period, the controller responds by decreasing the

magnitude of the bolus dose, while increasing the duration of the infusion rate. This

achieves more stability in maintaining CO as observed in Figure 5.2. The CO plot begins

to smooth out during the second half of the control period. In comparison to the

individual simulations for each optimized parameter gain (found in chapter 4), there are

fewer maximums and minimums observed in the CO plot using all three optimized gains,

Figure 5.2.
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Table 5.1 Summarizes controller performance using  PID optimized parameter gains

In analyzing the performance of the controller, onset delay, time CO error reached 2.5%

target CO, and overshoot from target CO was monitored each time drug administration

was begun during the two hour control period. Table 5.1 summarizes these results each

time drug administration was started, T_CO is target cardiac output. Onset delay is the

"deadtime" between drug infusion and system response.[4] Figure 5.1 shows four

distinct times milrinone was given. The longest onset delay for that two-hour period is 12

seconds. The overall results from Table 5.1 shows an increase in onset delay as control

time progresses. With time the controller understands how to maintain CO and thus better

to stabilize it by decreasing the amount drug given at one time (bolus) and increasing the

duration of drug administration (infusion rate). It is this decrease in drug magnitude that

causes an increase in onset delay with time because there is less drug available in

compartment 1 at one time therefore delaying system response.

The desired range that the controller is trying to maintain the CO error is within

±2.5% of target CO. Each time drug administration was begun during the two-hour

period, the time it took CO error to reach 2.5% of target CO was recorded. The results

were 22, 20, 22, and 37 sec. for the four times drug administration was given. It takes an

average of 25 sec for the controller to bring the error to the desired range. This shows a
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very responsive controller system, because it takes less than half a minute to bring the

output to the desired error range.

In addition the percentage of overshoot from target CO was recording each time

the drug was begun during the two-hour period. The results are 7.15, 5.01, 5.01, and

4.64% overshoot. The controller responds with an overall overshoot of less than 10%

target CO. Throughout the controller period it is observed that the percentage overshoot

decreases with time, as well. This shows that the controller has learned how to maintain

and better stabilize CO error each time it begins to administer drug as is shown in Figure

5.2. The results from this simulation trial, summarized in Table 5.1, will be used as

reference in analyzing and understanding the performance of the controller during the

three simulation tests.

5.2 Transient Response

The transient response of the controller is observed as the setpoint or target for cardiac

output is changed during the simulation. This section will demonstrate the ability of the

cascade controller to change milrinone dose such that the cardiac output tracks to the new

setpoint. The transient response is observed using step setpoint and ramp setpoint

changes.

The simulation testing for step setpoint changes begins using the original target

CO (50% increase in baseline CO) as the setpoint. Then the target CO or setpoint is

changed in a stepwise manner as shown in Figure 5.4. The setpoint is increased three

times after original setpoint. Each setpoint is held for 30 minutes. The setpoint was

incremented by 55, 65, and 85% of baseline each step increase.
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Therefore there is a 3.33, 6.45, 12.12% increase in setpoint from the previous setpoint

each step increment. Figure 5.3 and Figure 5.4 are plots of the milrinone dose and

cardiac output in the control period. The onset delay for the 55, 65, and 85% of baseline

CO is 5, 15, and 15 sec, respectively. The "deadtime" of the control system increases

between with the first two step changes, but remains the same with the final step change.

Overall the onset delay is less than half a minute, which shows the cascade controlling

mechanism to react quickly to changes in the model. Also the CO error reaches desired

range within 60, 139, and 315 sec after the target CO has been changed. As the

difference between the new setpoint and previous setpoint increases, time to reach 2.5 %

of target CO increase as well. But the percentage of overshoot from target CO decreases

with the three step changes. The overshoot is observed to be 5.00, 3.67, and 2.10% of

target CO for the step changes of 55, 65, and 85% of baseline CO. Although the time it

takes CO error to reach desired range increases with time, the percent overshoot

decreases with time. From the these results it is observed that as the magnitude of the

step change from the previous step change increases; it takes longer for the controller to

reach desired range, but the controller is less likely to overdose as well. The controller

becomes less quick to react to the changes because (1) it takes longer for CO error to

reach 2.5% of target CO, and (2) the overshoot decreases as well. To better understand

these results, a second transient step simulation was performed.

The second transient step simulation involved changing the target CO from

original target (50% of baseline) to 85% baseline CO in one step increment. The purpose

of this simulation was to better investigate if indeed the controller's response deteriorated

as the difference between previous and new target CO increased. Figure 5.5 and Figure
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5.6 are plots of milrinone dose and CO as a function of time. The control was simulated

for one hour; the step change was done half-hour after control was begun. The onset

delay, time for CO error to be within 2.5% of target CO, and the percent overshoot are 1

sec, 61 sec, and 1.47% respectively. These observations counteract the previous

conclusion that as the change between previous and new target CO increases, the

feedback-controlling model becomes less responsive. An onset delay of 1 sec shows that

the physiological model responds quickly to controller input of drug. From Figure 5.5 a

large (50µg/kg) bolus administration is observed to track CO to the new setpoint. Give

the magnitude of a bolus administration, there is more drug available within that 30 sec

period for the physiological system to respond. In the case where target CO was

incremented from 50 to 85% of baseline in three step increments, an increase in onset

delay is observed as step changes occur because controller administers smaller bolus

doses (less drug available within the 30 sec bolus administration period). This causes a

delay in system response relative to the case where setpoint is incremented from 50 to

85% of baseline in one step increment. The controller chooses between a bolus and an

infusion rate, and furthermore the magnitude of the bolus after the error has been

analyzed; this is explained in detail in section 2.3. Therefore it is observed that the choice

of the magnitude of the bolus dose affects the onset delay.

Also CO error reaches 2.5 % target CO in about one minute. Unlike the previous

three-step increment to 85% baseline CO, it takes 1/5 of time for CO error to reach

desired range in this one step increment. This also is attributed to the magnitude of the

bolus dose administration. The larger bolus brings CO error within desired boundaries

quickly relative to the small bolus administration. The percentage overshoot of CO from
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target is also less, it is observed to be 1.47%. In Figure 5.6 the controller shows to

quickly maintain CO to the new setpoint by adjusting milrinone dose without causing

excessive overshoot.

In both transient step changes from 50 to 85% of baseline CO (3-step increment, 1

step increment), the controller is observed to adjust to new target by responding with a

change in milrinone dose. Depending on how much of a transient step change has

occurred, the controller responds accordingly. On an average the controller begins to

administer drug 22 sec after the change for setpoint has been made. Also when

comparing the onset delay of the transient response to the onset delay with no change to

the system, Table 5.l, the controller maintains transient step control. In addition, the

percentage overshoot is observed to decrease each time transient step change occurred

within the two-hour control period for the three transient step simulation test.

Transient control showed the controller to be robust in maintaining CO at the new

setpoint when incrementing in stepwise manner. An additional transient control

simulation was performed where the target was ramped from ro to a constant value over a

period of 7 min, ro is given 50% of baseline and the constant value is given as 85% of

baseline. VisSim ramp block was used to increment the setpoint using a slope of 2.5.

The ramp block creates a unit ramp signal based on simulation time. The ramp block is

expressed as y = slope*(t-tdelay). The setpoint was limited to constant value by the use of

VisSim limit block. The VisSim block diagram representation can be seen is Figure 5.7.

Figure 5.8 and Figure 5.9 are plots of milrinone dose and cardiac output during the one

hour control period. The setpoint is ramped after 30 min of control as seen in Figure 5.9.

An onset delay of 4 sec is recorded prior to the initial response of the system.
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Figure 5.7 VisSim block diagram representation of ramped target CO transient response

To maintain CO to the changing setpoint the controller continuously administers small

bolus followed by an infusion rate as shown in Figure 5.8. The drug administration is not

stopped as target is ramped. The administration of the small bolus dose and infusion

rates is evident in Figure 5.9, because there are peaks observed in CO as it is increased

with the ramped target CO. The controller begins to administer milrinone 46 sec after the

initial target CO change. In comparison to the step change, 22 sec, it takes longer for the

controller to respond to the ramped change. Also, from Figure 5.9, it is observed that CO

does not overshoot. But after the seven minutes of ramped signal, when target CO has

reached the constant value, it takes 116 sec for CO error to be within the 2.5% target CO

range. The results of the step and ramped transient control are summarized in Table 5.2.

From both the plots and the result table the controller proves to respond to changes in the

CO target by adjusting the infusion of milrinone. The CO is observed to be maintained

within set boundaries without an oscillatory behavior. Therefore this test shows the

controller to be robust in monitoring and controlling CO by milrinone infusion.
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Table 5.2 Summarizes the transient response of the cascade controller as target CO
(T 	 is changed

5.3 Perturbation

This second simulation test observes the effects caused as perturbation or a disturbance is

achieved by changing the resistance parameters in the circulatory system in the

physiological model. The resistances of the following are changed: systemic capillaries,

venules, vena cava, pulmonary capillaries, and pulmonary venules. All resistance

parameters are changed by the same factor. A two-hour simulation test was performed to

test the effect of resistance disturbance. Changes to the simulation were as follows. In

the first half-hour the system ran with no change (disturbance). In the second half-hour

all resistance parameters were reduced to half of the original values. In the third half

hour parameters were set back to their original values. In the final half hour the

resistance parameters were increased to twice the original value. Figure 5.10 and Figure
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5.11 are plots of milrinone dose and cardiac output during the changes of the resistance

parameters.

The first half-hour the system was simulated using the original values for the

resistances in the circulatory system, hence there was no change in the system. Change

or perturbation was introduced to the system the second half-hour, the resistances were

reduced by half. With a reduction in the resistance of the circulatory system, the blood is

able to circulate through the body easier using the same or weaker contractile force from

the heart. There is less strain on the heart because it does not have to work as hard.

Producing an increase in cardiac output and therefore there is less, if any, need for drug

administration. This is evident between 30 and 60 minutes of control as shown in Figures

5.10 and 5.11. When reduction in circulatory resistance is made CO immediately rises

above target CO. Since CO is above target CO, cascade controller stops milrinone

administration. Figure 5.11 There is no drug administration during this half hour

therefore obtaining values for onset delay and time CO error reached set range were not

applicable during this period. An overshoot of 14.23% percent was observed. This

overshoot is not a direct cause of the controller response after the disturbance because no

drug was given at this period. Instead it is caused by the drug that was available in the

body before the disturbance and more importantly the CO increase that occurred due to

the lowering of circulatory resistances. .

At the start of the second hour resistances are set back to their original values.

This returns CO below target. Controller begins milrinone administration in response to

the change. The onset delay and the time taken for CO error to reach 2.5% of target CO

are 15, and 50 sec.
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The onset delay agrees with previous simulation test results in Table 5.1. The time for

error to reach the 2.5% boundary again shows the controller to quickly adjust drug

infusion to changes in the system.

The fourth and final half-hour, perturbation is again achieved by increasing

circulatory resistances by twice the original value. With an increase of these resistances,

blood is expected to circulate using a stronger contractile force from the heart. Cardiac

output decreases. More strain on the heart exists causing an increase in demand of drug

administration as seen in Figures 5.10 and 5.11. The results of the perturbation test

simulations are seen in Table 5.3. An increase in the resistance immediately drops CO

below target, the controller responds by adjusting milrinone dose. The onset delay of the

system after the disturbance has been introduced is 13 sec. The controller begins drug

administration with an initial bolus dose of 50 µg/kg. This bolus dose brings the CO

error within 5 to 10% of target CO. The controller continues to administer drug at

maximum small bolus doses (10 µg/kg). Milrinone is administered as continuous bolus

doses, in fact it appears to be a better representation of an infusion rate. The magnitude

of the small bolus dose appears to be insufficient in bringing error CO within 2.5% of

target CO during the half-hour, although the controller is maintaining CO in a stable,

smooth curve. The controller is administering drug at the maximum magnitude

(10 µg/kg) but it appears that this dose (given when 5% target CO < CO error < 10%

target CO) fails to bring CO error within 2.5% of target CO. Indeed as the resistances are

doubled, the performance of the controller drastically degrades because the controller

fails to bring CO within set boundaries, if not target CO. The controller is working at its
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Tables 5.3 Summarizes controller performance as circulatory vessel resistances
(perturbation) are changed 	 CO

full potential as is seen in Figure 5.10. Given that the CO error falls between 5 and 10%

of target CO the controller can administer small bolus dose with maximum magnitude of

10 µg/kg. From the milrinone plot it us observed that the controller continuously

administers maximum bolus doses so that CO reaches the desired setpoint. Although the

controller is successful in both increasing and stabilizes CO, the CO increase does not

reach the desired target range. This reduction in the performance of the controller is due

to the magnitude of the limit for the small bolus dose rather than the cascade controlling

mechanism itself. The cascade controller is successful in responding to the disturbance

by increasing the administration of drug as well as maintaining a stabile or smooth CO

response. It is the limit of 10 µg/kg bolus dose that prevents the CO from rising to target

in reasonable amount of time (5 minutes). In addition the limit set for the infusion rate

might also prevent CO from rising to target CO in necessary time.
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5.4 Randomization

Randomization is the third change in the system that is done in understanding the

performance of the controller in realistic situations. The third test is performed by

randomizing the elimination rate constant, k 10, as a two hour control period is simulated.

This simulation test can represent the situation where a patient characteristics change

during the administration of the drug. Four simulation runs are performed. The rate of

drug elimination is changed every one minute and five minutes under set standard

deviation (25% and 50% of original value) and mean (original value).

Randomization of k10 is achieved with the use of VisSim gaussian random

generator block. The gaussian block creates a normally distributed random signal. The

original vale of k10 was chosen as the mean and the value was randomized using standard

deviation (1) 25% and (2) 50% of the original value. Each value was held for one minute

and five minutes before a next guess was made. Minimum of one-minute samples was

chosen because anything smaller would cause the value to change too quickly for any

effect to be noticed. In the case where the values are randomized and held for less than a

minute, the change would be too quick to effect the system. Because the value of k10

would change to rapidly for the system to notice the change and thus be effected by the

change. Since k10 would oscillate some standard deviation from the original value, the

change would be so quick that the system would be effected by the mean of the changed

values: that value being approximately the original k 10. The k10 guess was sampled and

held with the use of VisSim sampleHold block. The VisSim pulseTrain block was input
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Figure 5.12 VisSim block diagram of randomizing elimination rate constant,k10

into the sampleHold block that determines how long the signal is held. The pulseTrain

block produces a sequence of unit amplitude pulses separated by zeros. [271 The signal,

the other input into sampleHold block, is the random guess for k10. The VisSim block

diagram representation can be seen in Figure 5.12.

Four randomization tests were simulated; (1) standard deviation (STD) = 25% of

original value of k 10, 1 minute hold, (2) standard deviation (STD) 25% of original value

of k 10, 5 minute hold, (3) standard deviation — 50% of original value of k 10,1 minute hold,

and (4) standard deviation = 50% of original value of k 10, 5 minute hold. The onset

delay, time CO error reached 2.5% of target CO, and percentage overshoot of CO from

target were recorded each time the controller began milrinone administration during the

Figure 5.13 plots the randomization of k10 using a standard deviation of 25% of original
value and guess is held for one minute before next guess is made
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two hour control period for each simulation trial. The plot that shows how k1 0 is

randomized using a 25% of original value as STD and holding the guess for 1 minute is

shown Figure 5.13. This plot shows how indeed randomly the next guess for k 10 is made,

there is no set pattern. In other words there is no mechanism for the controller to prepare

for the next guess, therefore the controller has to continually adjust to the change. This is

a good representation of how patient response to drug can vary within the drug

administration. Figure 5.14 and 5.15 are plots of milrinone dose and CO in the

controlling period as k 10 is randomized. Table 5.4 summarizes the observations from this

simulation. The onset delay each time drug was given is within 2-12 sec range that was

observed when simulating the system under no changes using optimized gains, Table 5.1.

The average time it takes for the CO error to reach within the 2.5% target CO range is 22

minutes. The average for this simulation, 22 sec, not only agrees with the reference

average value of 25 sec, but is less as well. Also the percentage overshoot is observed to

decrease each time drug administration is begun during the control period. It is observed

to be 7.15, 5.16, 5.18, 5.07, and 5.03% for the six distinct times milrinone was given.

There is an overall decrease in CO overshoot.

Table 5.4 Summarizes controller performance as k10 is held for 1 min with a standard
deviation of 25%  of original value. T CO is target CO
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Figure 5.16 Plots the randomization of k10 using a standard deviation of 25% of original
value and guess is held five minute before next guess is made

The pattern agrees with percentage overshoot observation outlined in Table 5.1. The

elimination rate constant is again randomized with a STD of 25% of original value but

here the guess is held for five minutes before the next guess is made, Figure 5.16. The

plots for milrinone dose and CO during the control period for this simulation test as

shown in Figure 5.17 and 5.18, respectively. Table 5.5 outlines the analysis made from

these plots. The onset delay ranges from 2-15 sec. The average time taken for CO error

to reach 2.5% of target CO is 24 min. The percentage overshoot of CO from target for

the six distinct times of drug administration is 7.15, 5.01, 5.03, none, 5.14, and 4.02%.

The results for the onset delay, time taken to reach desired setpoint, and percentage

overshoot corresponds to results observed in Table 5.1. The randomization of k10 using

a STD of 25% of original value for both the one and five minute value hold shows that

the controller's performance does not deteriorate as randomization is incorporated into

the system.
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Table 5.5 Summarizes controller performance as k10 is held for 5 min with a standard
deviation of 25% of original value. T CO is target CO

A third simulation test was performed using a STD of 50% of the original value

and the guess was held for one minute. Figure 5.19 is a plot of k10 as it is randomized

during the simulation. The plots of milrinone dose and CO during the control period are

shown in figure 5.20 and 5.21, respectively. Table 5.6 is a summary of the observations

from the simulation. The onset delay ranges from 2-16 sec for the five times milrinone

administration was given. It takes an average 28.4 sec for the CO error to reach the

desired setpoint. The percentage overshoot is observed as 6.82, 5.08, 5.03, 5.01, and

4.64% for the five times drug is begun.

Figure 5.19 Plots the randomization of k10 using a standard deviation of 50% of original
value and guess is held one minute before next guess is made
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Table 5.6 Summarizes controller performance as k10 is held for 1 min with a standard50%

Analysis of these results again confirm that randomization does not degrade the

performance of the controller. Comparison of these results to results obtained when

simulating model without incorporating a change, Table 5.1, proves this.

The final simulation was performed again using a STD of 50% of original value

while the guess was held for five minutes before next guess was made, Figure 5.22.

Figure 5.23 and 5.24 are plot of milrinone dose and CO during the control period as the

elimination rate constant is randomized. Table 5.7 summarizes the results of the

simulation trail. Unlike the previous simulations, milrinone administration was begun

two times in the two hours. The onset delay for the both administrations was 2 sec.

Figure 5.22 Plots the randomization of k10 using a standard deviation of 50% of original
value and guess is held five minute before next guess is made
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It took an average of 16.5 sec for CO error to reach set boundary. Milrinone

administration results in a CO overshoot of 7.21 and 1.91%. The CO plot, Figure 5.24, is

a visible representation of the how the controller maintains a smooth and stable CO

response toward the second half of the control period. The onset delay results again

confirm with Table 5.1 listing onset delay time between 2 and 12 sec. The average time

taken for CO error to be within range is less than 25 sec reference value. And finally the

percentage overshoot behaves similar to previous results; it is observed to decrease with

time.

Table 5.7 Summarizes controller performance as klo is held for 5 min with a standard
deviation of 50% of original value. T CO is target CO

The findings from the randomization simulation studies performed using the rate

constant k10 as the randomizing factor prove that the controller can maintain CO

response to set boundaries by adjusting drug infusion when a parameter in the system is

continuously varied during the control period. The results for each simulation were

compared to simulation results obtained in sec 5.1, the case where system was simulated

when no change had occurred. The behavior of randomization of the elimination rate

constant models the patient varying pharmacokinetic response of eliminating the drug

from the blood. These simulations monitor the cascade controller performance given a

simulated condition of how a patient response or characteristics can vary within the drug
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administration. All simulation results confirm that the controller can adjust milrinone

infusion to maintain CO response within setpoint limits as a parameter is varied with

time. In fact, in the four simulation studies, the controller was observed to bring CO

error to setpoint range in less than half a minute. This result shows a very responsive and

quick controlling mechanism. In addition there was a decreasing pattern observed for the

percentage overshoot of CO in all simulations. Here it is observed that the controller

goes through a learning process in the controlling period because it can better maintain a

smooth and stable CO response with time.

The three simulation tests, transient response, perturbation, and randomization,

helped to better understand the performance of the cascade controlling mechanism using

to monitor cardiac output of congestive heart failure patients by milrinone infusion. On

the same note, the results convey the robustness of the controller as well as the necessary

refinements.



CHAPTER 6

CONCLUSION AND RECOMMENDATIONS

The objective in this thesis was the design and testing of a simulated closed loop drug

delivery system. The focus was the administration of milrinone used to maintain cardiac

output for congestive heart failure patients. The CLDD system consists of a

pharmacokinetic model, physiological model, and feedback-controlling model.

Prior to simulating the controller's performance in maintaining CO, system

dynamics were observed. An analysis of system dynamics was observed to see if an open

loop CHF patient model responded to milrinone administration in the same manner as

available experimental data. The open loop dynamic model (milrinone PK, and

physiological model) was simulated as four different bolus doses were given. In addition

to comparing CHF open loop dynamic model results to available experimental data, an

open loop dynamic model was simulated for a normal patient as well. Simulation results

of "context- sensitive" elimination times, efficacy time, CO response, and MAP response

confirm that the behavior of the open loop dynamic model is similar to experimental

research available for CHF patients under milrinone administration. Therefore the open

loop dynamic model of the CHF patient is an accurate representation of clinical situation.

This open loop model can be further used to understand the responses of varying dose

regimens of milrinone. In addition to understanding the appropriate bolus administration

in achieving a certain response, research can be done on effects of different infusion rates

of milrinone as well. In fact this model can be used to describe the best combination of

bolus and infusion rate of milrinone in obtaining a desired response. The focus in the

dynamic study was on milrinone plasma concentration, CO response, and MAP response.
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The focus can also be extended to include the effect of milrinone on heart rate, systolic

arterial pressure, diastolic arterial pressure, contractile force, etc. With additional

responses monitored, one gets a better picture of the effects of milrinone administration

on the CHF patient. Since the simulated observations from milrinone plasma

concentration, CO response, and MAP response agree with previous clinical studies,

there is more room available for further simulated analysis of milrinone administration

for CHF patients.

After the validation of the open loop dynamic model, optimization of PID

parameter gains was performed. The optimized gains were chosen as 0.01, 0.0001, and

0.01 for the P, I, D gain, respectively. The variation of the parameter gains did not show

drastic differences in maintaining CO because the second controller adjusted the Pm

output and fed it into the PK model as a milrinone dose. Instead there were obvious

changes observed in the PID controller output, rather than the cascade controller output.

But the analysis was done to obtain minimum CO error as PID parameters were

modified. Therefore the means of choosing the optimized PID parameter gains were

sufficient.

Dynamic analysis and optimization of the PID controller led into the testing of the

simulated CLDD system. The CLDD system underwent three tests, observing the

controller performance in maintaining CO for each test. The results were compared to

the simulation test of the CLDD system using optimized parameter gains; these results

are referred to as the reference simulation test.

The most successful of the three tests was the randomization of the elimination

rate constant during the two hour controlled drug administration. Success was measured
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primary by how long it took controller to bring CO error to within 2.5% of target CO and

what the percentage overshoot of CO was each time drug administration was begun

during the control period. During randomization of k10, the controller brought the CO

error within set boundaries in less than half a minute and a decreasing pattern was evident

for the percent overshoot. Both of these observations confirm with the results of the

reference simulation. Therefore the controller maintained its performance as a drug

elimination rate was varied throughout the control. Its controlling mechanism did not

deteriorate due to the incorporation of a randomizing factor. To further validate these

findings, additional rate constants can be randomized as responses are recorded. Also

randomization should be further implemented into parameters of the physiological model.

This simulation test looked into the controller's response as a pharmacokinetic parameter

was continuously modified. The results confirm the cascade controller's ability to

continuously adjust to the changing PK model and therefore an expansion can be made to

the parameters that can be randomized, leading into further understanding of the

controller and of the CLDD system as a whole.

The observations of the remaining two tests show the controller to be robust in

maintaining CO by adjusting milrinone infusion. The results of the transient response and

perturbation tests are in common in the sense that the controller's performance degrades

at certain times within the controller period. The controller's performance is not

deteriorated by the fact that it can not adjust to the change in the system. But the

performance is deteriorated by how quickly the controller can bring CO error within the

set range. From the plots in sec 5.2 and 5.3 it is observed that although the controller

fails to bring CO to set boundaries, it is administering drug at the maximum magnitude
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(controller is working at its full potential). This shows that the controller is aware of the

difference between the target CO and the true CO, and thus is continuously

administrating milrinone at the maximum magnitude specified by the second controller

given how far the error is from target. Therefore it is realized that the deterioration of

controlling mechanism is not to blame on the cascade controller, but its decay lies in the

magnitude limits set for the drug administration. Specifically, the limit of the small bolus

doses (10 µg/kg) given when CO error is between 5- 10% of target CO contributes to the

performance degradation. A solution would be to increase the magnitude of the small

bolus, but this would also introduce an increase in CO overshoot when the error lies in

the lower portion of the range. A better solution would be to increase the available paths

that the PID output can take before being fed into the PK model as milrinone dose. In

other words refinement of the second controller is necessary. Presently, the second

controller takes the PID output and implements it either as a larger bolus with a limit of

50 µg/kg, a small bolus with a limit of 50 µg/kg, or an infusion rate with a limit of

4 µg/kg/min. The distinction between what path the PID output will take depends on how

far the CO error is from the target CO. Further system dynamic study is necessary in

understanding exactly what magnitudes of bolus and infusion rate administration are

necessary to bring the CO to the required setpoint range. Then the second controller can

better understand what magnitude of drug administration is necessary in quickly

maintaining CO response to the target. Therefore there would be more appropriate paths

for the PID output to take before fed in as a milrinone dose. This refinement in the

system will also improve the overall response of the controller, not just when it fails to

bring CO to the setpoint in the necessary amount of time (5 minutes). Aside from this
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weakness in the CLDD system, the controller performance matched the performance of

the reference simulation test.

The CLDD system model was tested under three varying conditions. The overall

performance of the controller maintains the output response to the setpoint by adjusting

the infusion of the drug. But along the way limitations of the system were observed and

thus refinement was necessary. In this thesis, as is the case in many other theses, what is

important is not that the student's research has brought about a sufficient solution to what

he/she has tried to develop or understand, but that the student grasps an understanding of

the limitations and thus realizes the necessary refinement to his/her thesis. In doing so

the end result is not only developing the simulated CLDD system, but also understanding

how it can be improved to better meet the performance requirements. Therefore this

thesis involves the development, testing, and room for improvement of a simulated closed

loop drug delivery system used to control the infusion of milrinone for congestive heart

failure patients. In addition it leads to the possibility of the development of an automated

milrinone infusion system used to maintain CO for patients suffering from CHF.



APPENDIX

Figure Al VisSim block diagram of hysteresis compound block
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Table A2 Intravenous milrinone pharmacokinetic data for healthy Patients
Patient Dosage(mg/kg) k10 k12 k21

1 10 0.065 0.0944 0.0491
2 10 - 	 0.068 0.1512 0.1025
3 10 0.041 0.0681 0.0535
1 30 0.077. 0.0939 0.0471
2 30 0.059 0.0807 0.0508
3 30 0.053' 0.0833 0.0471
1 45 0.068 0.0721 0.0353
2 45 0.056 0.0554 0,036
3 45 0.057 0.067 0.0426
1 60 0.067 0.0821 0.039
2 60 0.063 0.0806 0.0425
3 60 0.071 0.0749 0.0417
1 75 0.03. 0.0171 0.019
2 75 0.073 0.0888 0.0406
3 75 0.057 0.0669 0.0366
1 100 0.032 0.012 0.0086
2 100 0.047 0.0452 0.0269
3 100 0.029 0.0145 0.0171
1 125 0.047 0.073 0.0467
2 125 0.034 0.0144 0.0121
3 125 0.024 0.0115 0.023

MEAN 0.053238095 0.064147619 0.038942857
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