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ABSTRACT

DATA HIDING IN MULTIMEDIA - THEORY AND APPLICATIONS

by
Mahalingam Ramkumar

Multimedia data hiding or steganography is a means of communication using

subliminal channels. The resource for the subliminal communication scheme is

the distortion of the original content that can be tolerated. This thesis addresses

two main issues of steganographic communication schemes:

1. How does one maximize the distortion introduced without affecting fidelity of

the content?

2. How does one efficiently utilize the resource (the distortion introduced) for

communicating as many bits of information as possible? In other words, what

is a good signaling strategy for the subliminal communication scheme?

Close to optimal solutions for both issues are analyzed. Many techniques for the issue

for maximizing the resource, viz. the distortion introduced imperceptibly in images

and video frames, are proposed. Different signaling strategies for steganographic

communication are explored, and a novel signaling technique employing a floating

signal constellation is proposed. Algorithms for optimal choices of the parameters of

the signaling technique are presented.

Other application specific issues like the type of robustness needed are taken

into consideration along with the established theoretical background to design

optimal data hiding schemes. In particular, two very important applications of

data hiding are addressed - data hiding for multimedia content delivery, and data

hiding for watermarking (for proving ownership). A robust watermarking protocol

for unambiguous resolution of ownership is proposed.
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CHAPTER 1

INTRODUCTION

Data hiding or steganography is the art of hiding a message signal in a host signal,

without any perceptual distortion of the host signal N. Though steganography is

often confused with the relatively well-known cryptography, the two are but loosely

related. Cryptography is about hiding the contents of a message [2]. Steganography,

on the other hand, is about concealing the very fact that a message is hidden.

Steganography may be considered as communication through subliminal channels,

or secret communication [3, 4]. This thesis explores the theory and applications of

multimedia steganography.

The proliferation of digital multimedia as opposed to conventional analog forms,

is primarily a result of

• the ease with which digital data can be exchanged over the Internet, and

• the emergence of efficient multimedia data compression techniques.

The first reason is also a major cause for concern. Unlimited perfect copies of

the original content can be made, and distributed easily. It was this concern of

protecting intellectual property rights of multimedia data in digital form, that

primarily triggered researchers to find ways to watermark multimedia data. Water-

marking the content is done by embedding some data in the host signal (original

content). The embedded data may be an imperceptible signature, which, the owner

of the multimedia content should be able to extract when a dispute regarding

ownership occurs.

The pioneers of digital steganography [5], perhaps had no idea of the extent of

potential applications for multimedia data hiding. Data hiding can help authenticate

1
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electronic correspondence. It can facilitate adding a 'signature' to electronic mails

which could make an e-mail as valid a document as an agreement signed on stamp

paper! This could facilitate carrying out accountable business deals could over the

Internet.

Data hiding in multimedia [5, 6, 7, 8] could help in providing proof of origin

and distribution of content. Multimedia content providers would be able to commu-

nicate with the compliant multimedia players through the subliminal, stegano-

graphic channel. This communication may control or restrict access of multimedia

content, and carry out e-commerce for pay-per-use implementations. The concept

of compliant multimedia players may extend to operating systems which would

recognize protected multimedia files. So one may not be able to print a document or

make additional copies unless authorized by the hidden data in the document. All

material available on paper, may eventually be in electronic form. Downloading or

distributing the documents could be controlled by the hidden data.

A typical application of data hiding for multimedia content delivery may take

the form depicted in Figure 1.1. The content providers supply the raw multimedia

data (say a full length movie) along with some hidden agents or control data. The

job of the distributors would be to package the content in some suitable format

(like MPEG) understandable by the players, and distribution of the multimedia

either through DVDs/CDs, live digital broadcasts or by even hosting web sites for

downloads. The compliant multimedia players, will typically be connected to the

Internet.

In conventional multimedia distribution, the content provider looses all control

over how the multimedia, is used / abused the moment it leaves his/her hands. The

key idea behind data hiding is to re-establish control whenever the content is used.

The content provider, by hiding some agents in his raw data, hopes to control access

to his/her multimedia content. This can be done with the co-operation of the players,
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Figure 1.1 A multimedia content delivery scheme

and an established protocol for communication between the content providers and the

compliant multimedia players.

For most data hiding applications to become a reality, some important steps

have to be taken:

• Establishing protocols for authentication of content that is acceptable in a court

of law. The protocols may be different for different types of multimedia data.

• Establishing protocols for communication over the subliminal channel (between

the content providers and the compliant multimedia players).

1.1 The . Steganographic Channel

Figure (1.2) depicts a block diagram of a general data hiding channel. A is the

original multimedia data which is also referred to as the cover or stego object. The



Figure 1.2 Block diagram of multimedia steganography

stego object serves as the carrier for the hidden message M. The message M is

converted to a signature S which is in a form suitable for being embedded in A:

In Eq. (1.1), S is the signature generator block in Figure (1.2), and the key K may

be private or public or a combination of both. Most often the embedding operation

E, takes the form of super positioning of S with A to obtain A. However, other

forms of embedding is also possible.

The imperceptibly modified multimedia data A, is transmitted through a channel C,

and emerges at the other end as A C(A.). Now, the buried message signal M is

retrieved in the receiver by a detector 7) as

In some cases, (for e.g, watermarking applications), the detector 7.") may require the

original A for extracting the hidden message or signature;
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The channel apart from other things, may include a lossy compressor at one end

and decompresser at the other end. While this is the main cause of concern for most

data hiding applications, the same is not true for watermarking applications. For

watermarking applications, the channel may include agents with deliberate intentions

of removing the watermark.

This thesis is a study of theory and applications of data hiding in still images

and video. However, most of the suggested techniques are also applicable for data

hiding in digital audio.

1.2 Organization of the Thesis

This thesis is organized as follows. Chapter 2 is a brief review of existing literature

devoted to watermarking and data hiding.

In Chapter 3, the image / video steganographic channel is modeled as a commu-

nication channel [9, 10, 11, 12]. However, the embedding operation E in Figure 1.2

is assumed to be linear addition (in recent data hiding literature, linear data hiding

methods are referred to as Type I methods). The data hiding channel is charac-

terized as a channel with 2 sources of noise - noise due to the stego image/ frame

and noise due the data compressor in the channel (the former is also referred to

as image noise, self-noise or host-signal noise, and the latter as processing noise or

channel noise. It is seen that the performance of the data hiding channel can be

improved significantly by decomposing the data hiding channel into multiple parallel

channels. The decomposition is usually performed by some unitary transform. The

purpose of the decomposition, is primarily to efficiently redistribute the two sources

of noise amongst different channels. Estimates of the noise sources in each sub-

channel from several test images and video sequences, for widely used compressors

like JPEG, SPIHT [13] and MPEG [14] are obtained. This is in turn used obtain

information theoretic estimates of the capacity of the linear data hiding channel for
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different decompositions. It is argued why the choice of the decomposition should

be motivated by the required robustness of the data hiding application.

Chapter 4 investigates other options for the embedding operation E in Figure

1.2. It is shown how non-linear embedding techniques can suppress the self-noise

to a large extent [15, 16, 17, 18], even though the original content is not available

at the receiver. The problem of data hiding is viewed as a sophisticated signaling

method employing a floating signal constellation. Therefore, the origin of the signal

constellation has to be estimated by the receiver. The signaling method is split into

two steps. The first step estimates the origin of the floating constellation. The

second step is the definition of the constellation itself. The step that estimates the

origin is termed as the self-noise suppression (SNS) technique. Optimal methods to

achieve SNS are proposed and their performance evaluated under an additive noise

scenario, both by means of simulations and rigorous analysis. Some of the widely

reported non-linear data hiding methods, based on quantization (referred to as Type

II methods in recent literature), are shown to be special cases of the proposed floating

signal constellation. Investigation of optimal choice of the parameters of the floating

signal constellation, show that an extension of Type II methods is needed. The

extension (Type III), takes the form of thresholding the distortion introduced by

Type II methods. Type III is then shown to be a generalization of both Type I and

Type II methods. Type I methods are a special case of Type III methods which

are optimal only when the SNR tends to zero. Similarly, Type II methods (another

special case of Type III) are optimal when the SNR approaches infinity.

Chapter 5 investigates options for the choice of the signal constellation for data

hiding. An FFT based signaling method [19] with properties that make it especially

useful for multimedia steganography is proposed. In the proposed technique, the

signal constellation is defined by cyclic all-pass filters generated from random keys.



7

The intricate relationship between data hiding and data compression is explored

in Chapter 6. It is seen that efficient data hiding techniques should utilize "holes" in

compression techniques [20, 21]. Further, it is necessary for data hiding techniques to

be robust to all known compression methods, and perhaps compression techniques

which may evolve in the future. To achieve this it may be necessary to utilize

"holes" common to all compression schemes. Such a "hole" is identified methods

to exploit that "hole" are proposed. The chapter concludes with an optimal data

hiding method based on the principles outlined in Chapters 4, 5 and 6. In addition

other concerns like security, and computational complexity are taken into account

for making appropriate trade-offs.

Chapter 7 addresses the problem of unambiguous resolution of ownership

with digital watermarks. A protocol for watermarking which virtually guarantees

immunity to counterfeit claims [22, 23, 24], is proposed. The techniques proposed in

Chapter 6 for utilizing "holes" in compression methods addressed how data hiding

can effectively survive compression. However, data hiding methods for watermarking

have to be robust to intentional attacks too. Chapter 7 addresses this issue, and

proposes a technique for robust watermarking.

Conclusions, and suggestions for future research are offered in Chapter 8.



CHAPTER 2

A BRIEF REVIEW OF DATA HIDING

Applications of the field of steganography date back to earlier than 1000 BC [1].

However the revival of its applications started with increasing concerns of protecting

intellectual property rights of digital multimedia. Steganographic applications can

be broadly classified into two categories [25] -

• steganography with active wardens, and

• steganography with passive wardens.

The data hiding parallels to the two categories are respectively data hiding schemes

in which intentional tampering is not an issue (for example, captioning) and

schemes which need resistance to intentional tampering (for example, watermarking).

Depending on the desired properties of the data hiding scheme, we classify data

hiding applications into the following three categories:

• Watermarking for protecting IPR

• Watermarking for Tamper detection

• Data Hiding for multimedia delivery

—Captioning

—Customized media delivery

—E-Commerce

—Access control

—Access monitoring

—Intelligent agents (executable codes for interactive communication)

8
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2.1 Watermarking

Watermarking schemes can be broadly classified into two categories. Methods that

need the original (unwatermarked) image for extraction of the watermark (or non

oblivious methods), and methods for which the original is not necessary (oblivious or

blind detection). Apparently, the former methods are bound to be more efficient as

they have to resist only the noise due to processing (intentional and unintentional).

The latter however should also overcome the host signal noise.

A watermark, added to an image or video frame should in general satisfy the

following properties:

• Robustness. The watermark should resist both intentional and non-

intentional tampering. Examples of non-intentional tampering are some

common signal processing operations like lossy compression, histogram equal-

ization, edge enhancement, low-pass filtering, gamma correction, scaling,

rotation, D/A and A/D conversions, color adjustment etc.. Intentional

tampering is done with the sole purpose of removing the watermark while

simultaneously trying to protect the quality of the image. Many schemes /

software packages for intentional tampering have been proposed, like StirMark,

UnZign, and Richard Barnett's attack software.

• Invisibility. The watermark should be perceptually transparent. This implies

that the watermark energy should be very small (there exists a possibility of

having visible watermarks, but we shall not discuss them in this thesis due to

their limited application).

• Security. The watermark should be non-removable even if the embedding

algorithm is known.
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• Unambiguous. Most importantly, the watermark should be able to resolve

rightful ownership unambiguously. This may place some restrictions on the

methods that can be used for watermarking.

The properties a watermark should satisfy for being acceptable in a court of

law (to be able to establish the identity of the creator unambiguously) has itself

been an active area of research [22] - [28]. Watermarking may also be used for

uniquely identifying each copy distributed by the owner. For example, in the above

case the creator A may sell many copies of his image I. While all the copies

will have the same watermark to establish ownership, they might have additional

buried information pertaining to the buyer of the particular copy (it may just be a

serial number). This would help in incriminating the particular buyer responsible

for creating unauthorized copies. If a particular buyer makes illegal copies of the

image for distribution, then the copy can be traced to the buyer responsible for its

circulation. But the accused buyer can still claim that the copies were circulated

by the owner of the original image to frame the buyer. To avoid this situation, a

cooperative buyer-seller protocol may be needed [29].

2.1.1 Watermarking for Tamper Detection

Multimedia stored in digital format can be easily modified, or forged with a wide

variety of available software. Data hiding for tamper-proofing can go a long way in

verifying the authenticity of the data. Tampering may be intentional or uninten-

tional. Applications for tamper - proofing may prove important for courtroom

evidence and journalistic photography.

In [30, 31], spatial domain watermarks were used. In Ref. [32] the watermark

is added in the wavelet domain. This method, in addition to identifying the spatial

location of the change, also indicates the type of tampering undergone.
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In Ref. [33], a method suited for hardware implementation for watermarking

the images by cameras is proposed. In this method, the watermark is placed takes

the form of a spread spectrum sequence, added to 32 x 32 or 64 x 64 blocks. The

watermark is capable of identifying the particular blocks that have been tampered

with.

2.1.2 Attacks Against Watermarks

Attacks against watermarks can broadly be classified into two categories viz.,

counterfeit attacks and signal processing attacks. The former schemes, exploit inade-

quacies of the watermarking protocols to unambiguously resolve rightful ownership.

They are described in greater detail in Chapter 8.

The latter are aimed at removing the signature carefully designed strategies.

Some examples are StirMark, UnZign, Richard Barnett's attack software etc. The

StirMark attack, for instance, simulates image distortions that commonly occur when

a picture is printed, photocopied and rescanned. This also introduces imperceptible

geometrical changes which results in a loss of synchronization between the watermark

detector and the image. In Ref. [34, 35], Cox et. at. discuss the effectiveness of

different attacks like affine transformations, noise reduction, compression, exploiting

the watermark detector / inserter device to obtain better estimates of the watermark.

In Ref. [36] the authors compare the effectiveness of different attacks like the

jitter attack, StirMark, and mosaic attacks. The jitter attack is meant for water-

marking schemes that modify the least significant bits of audio / image data. In

the mosaic attack, a watermarked image is chopped into a large number of small

sub-images which are embedded in a suitable sequence in a web browser such that

the final presentation image is very similar to the original watermarked image.

Of all the watermark attack software, StirMark is probably the most effective,

and proven to effectively attack most know watermarking schemes. In Ref. [37]



12

Petitcolas et. al. suggest that StirMark should be used as a benchmark for evaluating

the effectiveness of watermarking schemes.

2.2 Data Hiding for Multimedia Delivery

There are numerous emerging applications in this category. What is common to

all of them is that, unlike watermarking applications, 'unambiguous resolution of

owner's identity' is not an issue. In addition, all these applications may depend on

the existence of a common protocol for communication between the content provider

and the player (or application software for viewing the image or playing the video /

audio clip).

The required robustness, secrecy, and number of bits to be encoded also varies

from application to application. For example, captioning applications may not need

very good robustness. Commercial applications may need robustness only to the

standard compression scenarios that the data is most likely to undergo. In most

cases intentional tampering may not be an issue. Intentional tampering can cause

more loss than gain to the end user. Captioning and hiding executables may need a

large number of bits, which might, however, not be problem in video applications.

2.3 Data Hiding Techniques

2.3.1 Spatial Domain Methods

Early work in data hiding consisted mainly of modifying the least significant bits

(LSB) of images to hide data. In Ref. [38] the hidden signal was restricted to

modifying the two least significant bits. In Ref. [391 the author suggests adding small

geometric patterns - tags - to digitized images at brightness levels that are imper-

ceptible. Bender et. al. [40] proposed the "Patchwork" algorithm. The algorithm

selects random pairs of pixels. It enhances the value of high valued pixel and reduces

the value of low valued pixel. The contrast change in the pair is used to encode one
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bit. This method however is not effective for images which do not have uniformly

distributed pixel values.

Pitas et. al. [41, 42] introduce a method which in principle is very similar to

Patchwork. But they extend the pairs of points to blocks, which results in better

resistance to JPEG compression. Delp et. al. [31, 43], use a two dimensional

watermark (which is actually obtained by reshaping one dimensional M-Sequences

as a matrix.)

In Ref. [44] a more robust watermarking scheme is proposed. The robustness

is achieved by forcing the signature to be low pass, so that the signature is relatively

tolerant to compression. The extracted bits are mapped to a visualizer to display a

meaningful watermark.

2.3.2 DCT and Wavelet based Data Hiding

Perhaps [45] is the first work utilizing DCT decomposition for data embedding. In

this method the watermark does not tile the image completely - only some randomly

selected regions are altered to embed the watermark. In this scheme, a "relationship"

is encoded in blocks by swapping selected coefficients.

Cox et. al. [46] were the first to introduce the idea of embedding the watermark

in the perceptually significant coefficients of an image. In their scheme, the watermark

altered 1000 most significant DCT coefficients (2-D DCT of the entire image). A

Gaussian sequence is used as the signature. Detection of the signature is accom-

plished by correlating the Gaussian sequence with the 1000 (modified) DCT coeffi-

cients after subtraction of the corresponding DCT coefficients of the cover image.

In Ref. [47], a block based DCT is used instead of taking the DCT of the

whole image. In Ref. [48, 49], 8 x 8 block DCT is used. However not all blocks

are altered. Only blocks with high activity are altered. The watermark modifies the

mid-frequency DCT coefficients.
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Swanson et. al. [50, 51] propose an efficient watermarking scheme based

on spatial masking [52] of the watermarking sequence to ensure invisibility of the

watermark. The spatial mask is used to calculate the maximum allowable change for

each DCT coefficient in each block.

In Ref. [53], Zeng et. al. raise the issue of the inability of non oblivious

watermarking schemes to resolve rightful ownership. They therefore introduce a

oblivious detection scheme, in which the watermark signal is added to the 8 x 8

block DCT coefficients. The watermark is detected by correlating the signature with

the DCT coefficients.

Fridrich proposes a hybrid watermarking scheme [54]. This hybrid scheme uses

a full size 2-D DCT decomposition, and modifies the low-frequency coefficients to

introduce the low-frequency watermark. In addition, a spread spectrum signal is

added to the mid-frequency DCT coefficients.

Wavelet based data embedding schemes have been as widely reported as DCT

based schemes. In Ref. [55] the wavelet decomposition of a signature matrix is added

to the wavelet decomposition of the cover image. However, the signature coefficients

are scaled by a factor depending on the contrast sensitivity of spatial frequencies

[56].

In Ref. [57], the cover image is decomposed in a pyramidal fashion. The

watermark is added such that it can be detected hierarchically. If the image distortion

is not serious, only a few bands of the decomposition are needed to detect the

watermark.

Wang et. al [58] introduce a blind watermarking (oblivious detection) scheme,

in which embedding scheme searches for perceptually significant wavelet coeffi-

cients onto which the watermark coefficients are added. In Ref. [59], two water-

marking schemes modeled after the EZW [60] compression scheme are presented and
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compared. While one algorithm uses the "insignificant coefficients" , the other uses

"significant" coefficients.

2.3.3 RST Invariance

In Ref. [61] the authors introduce a rotation, scale and translation (RST) invariant

watermarking scheme. The RST invariance is achieved as follows. Translation

invariance is achieved by taking the DFT of the image and using only the DFT

magnitude. The DFT magnitude is then mapped to log-polar coordinates. Trans-

lation invariance in the log polar domain corresponds to scaling and rotational

invariance in the spatial domain. Thus taking the 2-D DFT of the log-polar mapping

and retaining only the magnitude, results in an RST invariant domain. The signature

is added to the RST invariant domain and then mapped back to the log-polar domain

(using the original unmodified phase). The log polar mapping is now mapped back

to the 2-D DFT magnitude coefficients of the image. Again the original phase of

the image is retained and a inverse 2-D DFT performed to obtain the watermarked

image.

2.3.4 Other Methods

Ruanaidh et. al. [62] propose a watermarking scheme, where only the phase of the

DFT coefficients (2-D DFT) of the image are modified to embed the signature. The

watermark is embedded in the phase of significant DFT coefficients. The authors

claim that information in DFT phase is superior for the same reason that angle

modulation is expected have better noise immunity than amplitude modulation in

communications theory. In Ref. [63] Fridrich et. al introduce a decomposition based

on random keys. In this scheme, a set of random smooth patterns are generated

from a key. These patterns are then subject to Gram-Schmidt orthogonalization

process to obtain a set of smooth orthogonal patterns which are used to embed the

watermark in the image.
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In Ref. [64], the difference between a pixel and the average value of its four

adjacent pixels is modified to embed a bit. Note that this is equivalent to low pass

filtering and modifying the high pass coefficients to embed a bit. The main advantage

of this method is that this scheme will be relatively unaffected by histogram equal-

ization.

In Ref. [65], Puate et. at combine watermarking scheme with fractal or IFS

compression scheme. The signature is added by restricting the choice of 'domain

blocks' depending on the bit to be enclosed. The robustness of the embedding

increases as the "range' block sizes increase. However this will result in poorer

quality of compression, and the resulting image may not be of acceptable quality.

In Ref. [66, 67] Voyatzis and Pitas apply nonlinear dynamical principles to

watermarking images. The watermark extracted is usually a logo with very few gray

levels. The logo is mapped to N x N lattice which is less than the size of the image.

The lattice is mixed with the image. Extraction of the watermark is performed by

repeated application of an auto-morphism to extract the logo.

2.4 Video Steganography

While data hiding in video, can be done by considering each frame as an image,

efficient watermarking schemes should take into account the differences between the

nature of images and video frames. As video data is much more redundant than

image data, they are susceptible to a wider variety of attacks like frame averaging,

frame dropping etc.. To account for the peculiar nature of the possible attacks on

video frames, Swanson et. al. [68] present a watermarking scheme, in which the

watermark is embedded in objects (8 x 8 blocks of frames). In smooth regions of the

image use a constant watermark while the motion regions use dynamic watermarks.

In Ref. [69, 70] Hartung et. al. propose schemes to encode raw and compressed

(MPEG compressed) video. For watermarking in the raw domain they use a spread
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spectrum sequence as the watermark. For watermarking in the MPEG compressed

domain, the MPEG bit-stream is separated into header, side information, motion

vectors and DCT encoded signal blocks. The Huffman coded DCT coefficients are

decoded, and then inverse quantization is applied. The DC coefficients are modified

to add the watermark and reinserted into the MPEG bit-stream.



CHAPTER 3

LINEAR DATA HIDING

3.1 Introduction

Most of the state-of-the-art techniques for data-hiding in images utilize some decom-

position for embedding the message bits. Among different orthonormal decompo-

sition techniques, it was probably the inspiration from image compression appli-

cations that caused DCT and subband (wavelet) transforms to be more popular

than the others. Another reason for the choice of DCT and wavelet based techniques

is perhaps to 'match' the data hiding [71] technique with the processing the image

is most likely to undergo. Currently, the most common image compression tools are

the DCT based JPEG, and the wavelet based SPIHT / EZW [13] coding techniques.

Adding the signature or the message signal intelligently (for example taking the

JPEG quantization tables into account) in the DCT domain can insure robustness

to JPEG. Similarly, one could design wavelet based methods robust to EZW / SPIHT

compression. It is no surprise that most wavelet based methods are very robust to

EZW or SPIHT compression [58], but are not very robust to JPEG. Similarly, DCT

based methods are robust to JPEG, but not to EZW / SPIHT. Of course, one

cannot expect robustness of these methods to other forms of compression / signal

processing. Though it is true that most images are very likely to go through Wavelet

/ DCT based compression, the situation is different for video frames. For most video

frames the major source of 'information' is the motion vectors. So it is difficult to

intelligently devise DCT Wavelet based methods for data hiding in video frames.

It is of great interest therefore, to devise robust data hiding methods given that

no knowledge of the compression technique to be employed, is available. Now the

question to be answered is, what is underlying decomposition that should be used?

In this chapter, we attempt to answer that question. We provide an information

18
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theoretic approach to estimate the achievable capacities for different orthonormal

decompositions like DCT, subband, DFT, Hadamard and Hartley transforms.

Several authors, [72, 73, 74] have proposed information theoretic approaches to

characterize or evaluate the performance of the data hiding channel. In [72], Smith

et al. model the image as a Gaussian noise source of variance given by the average

noise (image) power. The data hiding capacity is then calculated as the capacity of

the Gaussian channel. In [73] Servetto et al. obtain the capacity of the data hiding

channel where the source of noise is intentional jamming. However, it is assumed

that the original image is available at the receiver. The work of Hernandez et al [74]

is a more thorough model, which analyses the performance of a proposed method for

data hiding. In this model, L orthogonal sequences are used for the signature. The

image is broken down into channels corresponding to its projections onto each of the

orthogonal signatures. The capacity of the channels are analyzed for unprocessed

images and images after linear filtering operations.

3.2 Problem Statement

Let I be the original (cover) image, to which a message S (a representation for

embedded information bits) is added, such that I = I + S. The modified image I , is

visually indistinguishable from I and may typically be subjected to lossy compression,

like JPEG, I = C(1), where C(.) denotes the compression / decompression operation.

The embedded bits in image I are to be extracted from I. We would like to know the

maximum number of bits that can be hidden and recovered from the image with an

arbitrarily low probability of error, namely, the capacity of the data-hiding channel,

for a given compression scenario.

A block diagram of the data-hiding channel is shown in Figure 3.1. S is the

message (signature) to be transmitted through the channel. The channel has two

sources of noise; I, the noise due to the (original) cover image, and P, the noise
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Figure 3.1 The data hiding channel

component due to processing (compression decompression). S is the "corrupted"

message. Note that for the non oblivious methods, there is only one source of noise

- due to processing. The image noise can be subtracted from the received image I.

One can expect such methods to have higher capacity than the oblivious detection

methods.

Figure 3.2 displays the block diagram of a typical data-hiding method. The

forward transform block decomposes the image I into its coefficients of L bands. A

component of the signature / message signal is added to each band. The inverse

transform block reconstructs the modified image I.

Figure 3.2 Generalized schematic of data hiding / retrieval

The image I then undergoes some processing (lossy compression) to yield the

image I. The hidden message signal signature is to extracted from I. The image I is

decomposed into L bands by the same forward transform block and each component

of the signature is extracted separately. In this chapter, we assume the system of

Figure 3.2 and estimate the capacity of data-hiding channel for different decompo-

sitions (different forward and inverse transform blocks).
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3.3 Capacity of Additive Noise Channels

Prior to considering the data-hiding channel of Figure 3.1, we consider the simpler

channel displayed in Figure 3.3(a). X ~ [ƒx(x), (4] is the message signal to be

is the additive noise in the channel, and

is the received signal at the output of the channel.

Figure 3.3 (a) A simple additive noise channel. (b) The channel of (a) modified to
obtain equivalent additive Gaussian noise.

We also assume that X and Z are independent, implying that

Therefore, the channel capacity is given by [75]

where IM(X, Y), is the mutual information between X and Y. For a given noise

statistics fz (z) and input variance a , one can maximize the entropy of the output

by choosing a suitable distribution fx (x) for the input message X. For a given

variance ay', the maximum entropy value of

when Y has a normal distribution. For instance, the maximum entropy value is

achievable if both pdfs f z (z) and f x (x) are normally distributed. However, for an

arbitrary distribution fz (z), and a fixed a , the maximum achievable entropy value

is not immediately obvious. To calculate that, we pass the noise Z through an

ideal information processor, (see Figure 3.3(b)) which does not alter the amount of
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information in Z, but changes its statistics to a Gaussian distribution for its output

Z9 . (The information processor can be considered as an ideal data compressor,

where 'compression' is measured in terms of signal energy. The information processor

translates the data to a form which has minimum energy while maintaining the

information content or entropy). Since the output of the information processor has

the same entropy as the input, the variance of the output, o- g , can be obtained by

solving

It is well known that the Gaussian distribution has the highest entropy for a given

variance [75]. Alternately, the Gaussian distribution has the least variance for a given

entropy. Thus it is always true that σzg² < al. We call σzg² the entropy equivalent

Gaussian variance. The maximum value of h(Y) is therefore obtained as

In order to calculate the channel capacity, we can now replace fz (z) by N[0, (9-!g].

Note that if processing noise is Gaussian and independent of the image noise,

the two channel noise sources in Figure 3.1 can be replaced by a single Gaussian

noise source of variance σig² op, igwhere σig² is the equivalent Gaussian variance for

the image noise I, and op is the variance of the processing noise. If σs² is the message

signal energy, the capacity of the data-hiding channel can be expressed as

As a first approach to calculate the capacity of the data-hiding channel, the

image noise I (the original image pixels) is assumed to be uniformly distributed

random variables i taking values between 0 and 255 with variance 4. Let u be the
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variance of the noise (per pixel) introduced due to processing, (e.g. compression).

As we shall see later, the processing noise is an estimate of the variance of an

equivalent additive noise which substitutes the actual non-linear processing noise

sources (mainly quantization for the case of lossy compression). Since we do not

know anything about the distribution of the equivalent processing noise, we assume

the worst - Gaussian distribution. Finally, let o be the average energy per pixel

allowed for the message signal. If MN is the number of pixels in an image, then the

energy (or variance if zero-mean) of the message signal is calculated as

where, Si is the message signal added to the ith pixel. The (differential) entropies,

h(g), of a Gaussian random variable g, with variance of c)-92 , and h(u), that of a

uniformly distributed random variable u with variance σu² are expressed as [75]

From Eq. (3.8), the entropy equivalent Gaussian noise (or the Gaussian random

variable that has the same entropy as the uniform random variable u of variance σi²,

has a variance given by

Although we would expect the variance of u, the pixel values, to be given by

(or σi = 73.6), statistics from many test images (see Section 3.4 for the details of

the test images used) show that σi = 55. Therefore, we assume that u has a uniform

distribution with σi = 55. From Eq. (3.8) it is calculated that

If we allow a degradation of the image after the addition of a message to a PSNR of 40

dB, then the message energy is calculated to be as = 6.5. Furthermore, if the image

goes through JPEG compression at 50% quality, then it is measured for test images

that the processing noise has a standard deviation of σp~ 6.7 (the actual procedure
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for estimating processing noise is described in Section 3.4.2). This would yield a

capacity Ch value of 0.0022 bits/pixel (140 bits for a 256 x 256 image). Even if the

message-embedded image undergoes some other processing which results in a barely

recognizable image corresponding to up 20, the capacity Ch would still be 0.0019

bits per pixel (about 124 bits for a 256 x 256 image). Therefore, one can see that

hiding the message in the image domain can be very robust. However, in most cases,

we do not require such robustness. Since most data-hiding applications aim to protect

and ascertain copyright or control access, it is unlikely in such a scenario that anyone

would want to claim ownership or control access of an image of no commercial value

(an image which has been significantly degraded in perceptual quality). Typically,

it is sufficient if the message survives well-known image compression/ decompression

operations with acceptable quality.

Given that we are satisfied with less robustness than the above mentioned

method offers, could we do better than this? In our first approach, what we have

done is very similar to the method reported in [72] (the only difference being that

we have also introduced processing noise in the channel). By assuming a Gaussian

channel, we assume that the image pixels have a flat spectrum. However, it is well

known that the spatial frequency characteristics of a typical image is far from flat

(white). Most of the image energy is concentrated in the low-frequency bands. It

is therefore intuitive that a decomposition of the image into its different frequency

bands might help. We expect the low frequency bands of the decomposition to

very noisy due to the high energy content of the image. On the other hand, high

frequency components would be very vulnerable to processing, as most compressors

would discard them at low bit-rates. At mid-frequency bands, however, we could

strike a compromise. A typical distribution of image and processing noise in various

bands of a decomposition is shown in Figure 3.4.
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Figure 3.4 A typical distribution of image and processing noise among different
bands

In Figure 3.5, the channel of Figure 3.1 is decomposed into its multiple sub-

channels. The decomposition is performed by the Forward and Inverse Transform

blocks of Figure 3.2. The decomposition of an image into its L sub-bands results in L

parallel sub-channels with two noise sources in each sub-channel. Let

be the variances of the coefficients for each sub-band (or the variances of the image

noise in each sub-channel) of the decomposition. Similarly, let their corresponding

equivalent Gaussian variances be σigi² . If are a is the variance of the processing noise

(Gaussian) in the j" sub-channel, then, the total capacity of the L parallel sub-

channels is given by

for an image of size MN pixels. In Eq. (3.9), vj is the visual threshold of band

j. In other words, is the maximum message signal energy permitted in band j

based on its perceptual quality effects. Note that if the channel was a purely energy

constrained channel (or if the constraint is on the total signature energy with no
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Figure 3.5 Decomposition of the data hiding channel into parallel channels

regard to how the signature energy is distributed among different bands), then the

best solution would be to use the water-filling approach [75] to calculate the channel

capacity. However in this case, the maximum signal energy permitted in a channel

is constrained by the visual threshold of the band. Ideally, we would like to utilize

all channels to the fullest extent possible.

In the following sections, we evaluate the capacity of the data-hiding channel

for DCT, DFT, Hadamard, and uniform subband decomposition based embedding

methods. We use well-known compression methods like JPEG and SPIHT to model

the processing (compression) noise in each sub-band of the decomposition.

3.4 Modeling Channel Noise

In order to model the channel noise (the two noise sources I and P in Figure 3.1),

we measure their statistics from 15 monochrome test images of size 256 x 256, and

their JPEG and SPIHT compressed versions at various quality factors / bit rates.

3.4.1 Modeling Image Noise

The cover images are decomposed into L sub-bands using an orthonormal transform.

Let fIj(ij) be the distribution of the jth sub-band with variance at. (The image



27

noise I is split into its components in L sub-channels, which are modeled as random

variables f r, (ii) with variances σij² , j = 1 • • • L.)

Having obtained the variances of the image noise in each sub-channel, the next

step is to obtain their entropy equivalent Gaussian variances. This is achieved by

plotting a histogram of the coefficients for each band, and calculating the entropy.

If Lx is the width of the n bins of the histogram gj (m), m = 1— • n, and p is the

total number of coefficients in band j, the entropy 94 and the equivalent Gaussian

variance cr σ²i igiof the sub-band are obtained as

Thus, the image noise in sub-channel (band) j can be substituted by a Gaussian

noise of variance. In our simulations, the image noise is estimated for each imageσ²igj

individually for five different transforms.

3.4.2 Modeling Processing Noise

At the outset, one should note that processing noise is introduced due to quantization

of transform domain parameters. While one could accurately estimate the type

of quantization noise that is introduced by JPEG on the DCT coefficients of the

image (assuming that the quantization table is known), the same cannot be done,

for instance, for the Hadamard transform coefficients of the image. The quantization

of one DCT coefficient would affect many Hadamard coefficients. More importantly,

for the reasons explained earlier, viz. we wish to make the model of the processing

noise more general. The only reason we restrict ourselves to JPEG and SPIHT for

processing noise sources is their widespread availability. We define processing noise as

the equivalent additive noise which accounts for the reduction in correlation between

the transform coefficients of the original image and the transform coefficients of the

image obtained after lossy compression. Note that while this estimate provides us

with the variance of the equivalent additive noise, it does not tell us anything about
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the nature of the noise (like its distribution). We therefore assume the worst -

Gaussian distribution for the processing noise.

Let the processing noise in each sub-channel be σ²pj , j = 1 • • • L. The steps to

obtain the processing noise variance are:

• Apply lossy compression / decompression (JPEG / SPIRT at various quality

factors / bit rates) to n i test images.

• Decompose the n i test images using some transform.

• Obtain m7, ni samples for each sub-band. Let

coefficients of band j.

• Decompose the ni reconstructed images using the same transform.

• Let ilk k 	 1, ... ,.A2111L:l . be the corresponding coefficients of the images

subjected to lossy compression

• Define the intra-band correlation as

where ni is a vector of random variables, uncorrelated with

• a 2 = 1 2 is the variance of the equivalent additive noise due to compressionan .

• Since (ij , n3 ) = 0, Eq. (3.10) can be simplified to obtain

It can be easily seen that the processing noise in each sub-band can not be

obtained as iak — .?k Consider a scenario, where DCT is used for the decomposition,

and low quality JPEG for processing. Let us assume that a high frequency sub-band
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is completely removed due to compression (ij, = 0 V k for some j). This implies that

all information buried in that sub-channel (sub-band) is lost. In other words, the

processing noise in that sub-channel has infinite variance (and not) the variance of

j. This is because no correlation exists between ilk and irk . Note that in Eq. (3.11)

when Pi -4 0, app oo.

Also, note that while the image noise is estimated individually for each image,

the processing noise is not. There are two reasons for this:

• As the equivalent image noise is estimated by correlation, the result is likely

to be more accurate if more samples are used. If we calculate processing noise

for each image separately, (for 256 x 256 images using some 64 band decompo-

sition), we have only 1024 coefficients in each band. However, using 15 images

yields 1024 x 15 coefficients per band.

• The second reason is that this method of estimating the processing noise would

yield unrealistic (very low) estimates of processing noise for low entropy images.

The original and compressed versions of low entropy images are bound to be

very 'close', leading to high correlation in most bands. This would cause an

overestimate of capacity for smooth images. To mitigate this effect we average

processing noise over many images.

3.5 Visual Threshold

The value of the visual threshold for sub-channel j, vi in Eq. (3.9) however, is highly

subjective. Since the amount of message signal energy permitted in any sub-band

is determined by the visual threshold, different models for visual thresholds would

yield different estimates of achievable capacity. The visual threshold depends not

only on the band, but also on the magnitude of the particular coefficient. Within

the same band, a coefficient with high magnitude can be altered to a larger extent
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than a coefficient with small magnitude. Additionally, the visual threshold may also

depend on the magnitudes of coefficients of other bands corresponding to the same

block / spatial location,

However, what we desire is an estimate of the average energy of the message

signal that can be added to a particular band. Since it is well known that the human

visual system is more sensitive to the lower frequencies than the higher frequencies,

the signal-to-noise-ratio (message signal to image noise) should be smaller for lower

frequency sub-bands. In general lower frequency sub-bands have higher variances.

Hence, a reasonable model for the visual threshold v 3 could be

where 0 < a < 1, and K << iid j, is a constant. When a = 0, the message signal

energy is distributed equally among all sub-bands regardless of their variances. On

the other hand, when a = 1 the message signal energy is distributed in the ratio of

the band variances.

From Eqs. (3.9) and (3.12), for the case of no processing noise, if we assume

that all sub-channels have the same pdf type (such that Kaii = Kiaigi ), the channel

capacity can be calculated as

In the above equation, the approximation is justified because

that for the case of a = 1, the decomposition does not have any effect on the capacity.

However, for a < 1, Ch can be increased by choosing a suitable transform, as shown

in the next section. Thus, the increase in capacity is due to the fact that one can add

relatively more message signal energy to bands of lower variances (or high frequency

bands).

However, in Eq. (3.12) there seems to be no rationale for fixing the value of

a apart from actual simulations. We therefore adopt a different model for visual
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threshold. To derive the model, we argue that JPEG, at a reasonably good quality

factor is well tuned visually in distributing the quantization errors amongst the bands,

at least with respect to preserving the visual fidelity of the compressed image. More

advanced methods like SPIHT tend to optimize the mean square error rather than

visual fidelity (in general, the visual quality of a JPEG compressed image at a certain

PSNR is much better than that of a SPIHT compressed image at the same PSNR).

Let ijk be the coefficients of the original images, and ijk the coefficients of the same

images that have gone through JPEG-75 (quality factor 75) compression and decom-

pression. Let σ²qj be the variance of the quantization error, e qj = ij , for sub-band

j. If quantization error (due to JPEG-75) of variance o in sub-band j, results in

an image that is visually satisfactory, we can argue that addition of message signal

with energy σ²qj in sub-band j, would still render the image I with an acceptable

visual quality. However, in order to maintain the PSNR of I in the range of 40-50

dB (so that the I is visually indistinguishable from I), we choose the sub-band visual

thresholds as

where K2 < 1. (The average PSNR of JPEG-75 images is only about 35 dB. Hence

a choice of K2 = 1 would yield images I of PSNR 35 dB. This might not be an

acceptable quality. For our simulations we use K2 = 0.25.)

3.6 Channel Capacity vs Choice of Transform

It should be noted that both Eqs. (3.9) and (3.13), are subject to the following

constraints

where a? is the variance of images, σ²jg is the entropy equivalent Gaussian variance for

a?, and I is the average entropy of image pixels. The first equation states that unitary
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transforms (the transforms used for the embedding decompositions) preserve energy.

The second and third equations state that the transforms also preserve entropy. With

the above constraints, it can be shown that the minimum channel capacity (for the

case of no processing noise or Eq. (3.13)) is achieved for σigj = cidj, or when no

decomposition (spatial embedding) is used.

Note that a transform with good energy compaction or higher Transform

Coding Gain (GTC) [761 would result in more imbalance of the coefficient variances.

in Eq. (3.13), and therefore increase the

capacity (when the processing noise is small). Therefore, good energy compaction

transforms like DCT and subband transforms are good embedding decompositions

for low processing noise scenarios.

However, the relationship between processing noise and the choice of transform

is not immediately obvious. For example if we use JPEG at low quality factor

for compression and DCT as the embedding decomposition, it is very easy to see

that the processing noise will approach infinity for many high frequency bands

as they are bound to be completely eliminated. On the other hand, the high

frequency coefficients of say Hadamard transform will have components in many

DCT coefficients. So it is not very likely that any Hadamard transform band is

completely eliminated. In fact, even if the processing the image undergoes is SPIHT,

it is still more likely to affect the high frequency DCT coefficients more than the

high frequency Hadamard transform coefficients. Any efficient compression method

would affect the low variance (high frequency) bands of the transforms suitable for

compression (or high GTC transforms).

To illustrate this point Figure 3.6 shows the distribution of the processing

noise for DCT and Hadamard transform bands for processing noise due to SPIHT

at 1 bpp and 0.35 bpp. While the processing noise for the two decompositions are

comparable for SPIRT at 1 bpp, it is seen that processing noise increases drastically
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Figure 3.6 Comparison of standard deviations of processing noise for DCT and
Hadamard decompositions. The source of processing noise is SPIHT compression at

bpp and 0.35 bpp.

for high frequency DCT bands for SPIHT at 0.35 bpp. The high frequency bands of

Hadamard transform, however, are relatively immune to processing noise. Similarly

low quality JPEG affects the high frequency bands of subband decomposition (using

8-tap Daubechies filter) to a much larger extent than the high frequency Hadamard

bands. We already know that low frequency bands are not efficient channels due

to the presence of high image noise. If the high frequency bands are also affected

by processing, it leaves a small number useful of mid-frequency bands. Transforms

with lower GTC have many more of this useful 'mid-frequency' bands than the high

GTC transforms, at higher processing noise scenarios. Therefore, decompositions

unsuitable for compression would in general be more immune to processing noise

than decompositions with high GTC. Also, recall that in Section 3.3 embedding in

the image domain (or using identity transform for the transform blocks in Figure 3.2),

was found to be very robust to processing noise. The identity transform, which has

the lowest GTC has the highest robustness to processing noise. It is relevant to point
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out here that the term 'robustness', is a measure of the change in overall capacity

with a change in the processing noise (or processing scenario). More robust the

decomposition, less is the reduction in capacity for a scenario of increased processing

noise (or lower quality compression). One should note that the robustness of the

low frequency bands of say the DCT decomposition will be much higher than the

robustness of the single band coefficients (pixels) in the image domain. However

the low frequency bands of the DCT have very little capacity due to high image

noise. The reduced 'robustness' of DCT is due to the drastic reduction in the overall

capacity due to the drastic increase of processing noise in the high frequency bands.

The next question that arises is the choice of the number of bands for the

decomposition. From Eq. (3.13) we see that a decomposition will not hurt. At

worst, it may cause no improvement. Therefore decomposing each sub-channel of

say a 16 band decomposition further into four sub-channels can only improve the

capacity of data hiding, at least when processing noise is low.

3.7 Results

The estimated capacities for different 64 band decompositions (for 256 x 256 images,

or 65536 pixels) like DFT, DCT, subband, Hartley and Hadamard transformations,

are shown in Figure 3.7. The capacities were estimated for 5 different transforms

for 8 different processing scenarios and averaged over 15 images. Figures 3.8 and

3.9 show the individual capacities of 4 different images (Baboon, Barbara and Lena,

Bridge) .

Figure 3.10 shows the average channel capacities of each video frame of 3 video

sequences (Table Tennis, Football and Garden) averaged over 90 frames per sequence.

The source of processing for the video sequences is MPEG-2 compression (30 frames/

sec, 15 frames in GOP and I/P frame distance of 3), at various bit-rates. In Figure



35 

3.10, the left column is the estimates of capacity of I-Frames and the right column 

for P IB-Frames. 
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Figure 3. 7·A verage capacity estimates for 15 256 x 256 images. The indices for JPEG 
compression correspond to different JPEG quality factors. (1 - lossless cofupression, 
2 - 75%, 3 - 50%, 4 - 35%, 5 - 25%) The indices for SPIRT compression correspond 
to different bit rates (1 - lossless , 2 - 1 bpp, 3 - 0.75 bpp, 4 - 0.5 bpp, 5 - 0.35 bpp). 

For the subband decomposition we use the 8-tap Daubechies filter (though 

it would be better idea to use the linear phase 9-7 filters used more commonly 

for subband or wavelet image compression, the biorthogonality of the filters would 

complicate the analysis). More specifically, we use uniform subband decomposition. 

For the DFT decomposition we use only the magnitude of the DFT coefficients. The 
/ 

phase is ignored. (In other words, the message signal added would change only 

the magnitude of the DFT coefficients. The phase is left intact. As no message 

signal information is available in the phase, the phase is ignored during detection 

of the message signal). The 2-D DFT of a 8 x 8 real matrix has 4 real, and 60 

complex (out of which only 30 are unique) coefficients. Note that this causes a 

reduction in the number of available channels from 64 to 34, as only 34 magnitude 

coefficients are unique (the magnitudes of 30 complex and 4 real coefficients). In 
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Figure 3.8 Capacity estimates for 256 x 256 Baboon and Barbara images. The 
indices for JPEG compression correspond to different JPEG quality factors. (1-
lossless compression, 2 - 75%, 3 - 50%, 4 - 35%, 5 - 25%) The indices for SPIRT 
compression. correspond to different bit rates (1 - lossless , 2 - 1 bpp, 3 - 0.75 bpp, 4 
- 0.5 bpp, 5 - 0.35 bpp). 
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Figure 3.10 Channel capacities of different decompositions for Football and 
Tabletennis Sequences. The processing scenarios 1-5 correspond to lossless 
compression, and compression ratios of 10, 25, 50 and 100 (MPEG-2) respectively. 

addition, this also reduces the message energy available to each channel by a factor 

of ( approximately) half - only half the message signal energy distributed among the 

60 complex coefficients is available for detection. Half the message signal energy is 

added just for the purpose of maintaining the symmetry properties of the DFT of a 

real signal. But by sacrificing some channels, (or by reducing the degrees of freedom), 

we obtain smaller noise variances in each channel. As an example, consider N iid 

random variables (N degrees of freedom) with variance a 2
. If we construct N/2 

random variables from the N original variables by averaging every two of them, the 

variance of the resultant N /2 random variables will be iid with variances equal to 

a 2 /2. Therefore, we reduce the variance of noise in the channels by reducing the 

degrees of freedom (from N to N /2) . 

From the plots in Figures 3.7- 3.10, we see that capacities for all decompositions 

fall with increased processing noise as expected. DCT and subband decompositions 

are better than Hartley and Hadamard decompositions for detection of the message 
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when processing noise is low. It is also seen that decompositions unfavorable for

compression (DFT, Hartley and Hadamard) are more immune to processing noise

than decompositions suitable for compression (DCT, subband).

What is surprising, is that magnitude DFT decomposition offers more capacity

than better energy compaction transforms even when there is no processing noise.

In this case a reduction in the entropy of the image noise is achieved by ignoring the

phase of the DFT coefficients. The reduction in entropy is precisely the information

content in the DFT phase. Apparently, this reduction in entropy more than offsets

the reduced signal energy available for detection (again, only half the signal energy

is available for detection as the added signal power is divided between 64 coefficients

while only 34 of them are available for detection). Yet magnitude DFT performs

better than other transforms because DFT phase contains disproportionately more

information than the DFT magnitude!. Note that in Figures 9 and 10 the the capacity

of magnitude DFT decomposition for Baboon and Bridge images is much higher than

that of the high GTC transforms even for no processing noise scenario. On the other

hand the capacity of magnitude DFT is comparable to or even less than high GTC

transforms for smoother images like Lena and Barbara. This can be due to the

following reasons:

• High GTC transforms suitable for most images are not very well suited for

these high activity images.

• The disparity between information content in the phase and magnitude is even

more pronounced for these high-activity images.

In addition, being a relatively low GTC transform, DFT is also robust to

processing noise like Hadamard and Hartley transforms.

Another surprising result, is that we find embedding in DCT domain is slightly

more resistant to Subband compression methods than JPEG. Similarly embedding
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in the Subband domain is slightly more resistant to JPEG than SPIHT. This

may appear to contradict the idea of "matching" embedding transforms with the

compression method. But one should note that the matching is useful only if we

design the methods 'intelligently'. So designing a DCT based data hiding method

with no idea of say, the quantization matrix used, may not be more robust to JPEG

than a wavelet based data hiding method.

As an indicator of the performance of these decompositions for other possible

compression methods, we look at the capacities of the decompositions when an image

has to survive JPEG or SPIHT. We group the four different processing scenarios of

JPEG and SPIHT into four pairs - (JPEG-75, SPIHT 1 bpp), (JPEG-50, SPIHT 0.75

bpp), (JPEG-35, SPIHT 0.5 bpp) and (JPEG-25, SPIHT 0.35 bpp). For example,

to calculate the capacity when the message signal has to survive JPEG-50 or SPIHT

0.75 bpp we choose the worst processing noise in each sub-band (from the estimates

of processing noise for SPIHT 0.75 bpp and JPEG-50). The capacities so obtained

are plotted in Figure 3.11. Note that the estimates of the capacity still follow the

same trend.

We can define a figure of merit, for each of the L + 2 for magnitude DFT)

sub-channels for the various decompositions. The figure of merit is given as the ratio

of the capacity of each sub-channel to the logarithm of the power of the message signal

in that sub-channel. The approximate (rounded) values of the figure of merit for the

channels of different decompositions (when the message has to survive SPIHT 0.5

bpp or JPEG-35), are listed in Table 3.1 for various 64-band decompositions. These

figures indicate the relative performance of each sub-channel, and would therefore

be useful in designing hidden communication methods to make optimal trade-offs

between the visual quality of the image and the number of bits that can be embedded.

As the figure of merit is normalized with respect to the message signal energy in each

band, it is independent of the model used for the visual threshold. The high figures
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Figure 3.11 Average capacity estimates for 15 images when the message signal has
to survive SPIHT or JPEG. The compression indices 1 - 5 correspond to 1 - lossless
compression, 2 - (JPEG - 75, SPIHT 1 bpp), 3 - (JPEG - 50, SPIHT 0.75 bpp), 4 -
(JPEG - 35, SPIHT 0.5 bpp), 5 - (JPEG - 25, SPIHT 0.35 bpp).

of merit for the channels of the magnitude DFT decomposition show that it would

perform better than other decompositions for any message signal energy assignment

method (model for visual threshold).

Figure 3.12 shows the average capacities for 15 images for 256 band decompo-

sitions. As expected, we see an increase in the estimate of the capacity. The increase

is more substantial for low processing noise scenarios.

Finally, note that we evaluate processing noise by measuring the correlation

between the image components before and after compression. By this, we implicitly

assume that the message signal (signature) is affected to the same extent as the image

coefficients themselves by the compressor / decompresser. In a practical method, this

may not be true. In fact, as pointed out in Chapter 1, an ideal compression method

would completely suppress any extra information added to the image coefficients

(no data hiding would be possible with an ideal compression method). But practical

compression methods can probably be tricked into believing that the embedded infor-
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Table 3.1 Figure of merit of the bands of different decompositions when the image
has to survive SPIHT 0.5 bpp. (a) magnitude DFT, (b) DCT, (c) uniform subband
and (d) Hadamard.

Figure 3.12 Average capacity estimates for 15 256 x 256 images for 256 band decom-
position. The indices for JPEG compression correspond to different JPEG quality
factors. (1 - lossless compression, 2 - 75%, 3 - 50%, 4 - 35%, 5 - 25%) The indices
for SPIHT compression correspond to different bit rates (1 - lossless , 2 - 1 bpp, 3 -
0.75 bpp, 4 - 0.5 bpp, 5 - 0.35 bpp).
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oration is an integral part of the image if the embedded message signals are chosen

intelligently. However, choosing the signature S intelligently may imply reduced

degrees of freedom for its choice, translating into reduced capacity.

3.8 The Ideal Decomposition

For a moment, if we ignore the magnitude DFT decomposition, the performance of

a decomposition depends roughly on its position in the GTC Scale. In Figure 3.13,

a few transforms are marked in the GTC Scale. To the extreme left is the identity

transform which has no energy compaction. In the extreme right is the KLT [76].

Transforms to the right would yield high capacities for low processing noise scenarios.

As the processing noise increases, we should move towards the left to choose a

transform. The question is, given a processing noise scenario, what would be the

ideal decomposition?

Figure 3.13 The GTC scale

For example, if a 	 0.5 in Eq. (3.12), the capacity of each sub-channel of a

decomposition is given by

seen, that t (and hence Chj ) is maximized when i(72 	 a Pj
 . The ideal decompositionig 

would be the one which results in image noise variances close to the processing noise

variances in the maximum number of sub-bands. Typically for high GTC decompo-

sitions, (Figure 3.14 (a)) >> as in the low frequency bands and ap >> ai in the
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Figure 3.14 The ideal decomposition

high frequency bands. For lower GTC transforms, the discrepancy is reduced (Figure

3.14 (b)). On the other hand, for identity transform σi >> Grp in the single band

(Figure3.14 (c)). Therefore, for the ideal decomposition, the image and processing

noise variances should be distributed as shown in Figure 3.14 (d). For the ideal

decomposition, the image and processing noise variances should be distributed as

shown in Figure 3.14. It should also be noted, that a decomposition so obtained

would perform as expected only if we are able to assume the same model for the

relationship between the coefficient variance and the visual threshold. Therefore,

the search for such a decomposition may not be simple.

3.9 Factors Influencing Choice of Transform

The superiority of the magnitude DFT decomposition, among the decompositions

compared, lies in an advantageous trade-off, where we reduce the degrees of freedom

to reduce the entropy of the image. Simulations show that the magnitude DFT

decomposition yields uniformly superior performance (over other decompositions)

for both low and high processing noise scenarios.
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The final choice of the decomposition should depend on the end application.

While some data hiding applications, like watermarking, may need robustness to

intentional tampering, some applications like captioning may not. The performance

of magnitude DFT decomposition is superior to others because of its low information

content. For the very same reason the magnitude of DFT coefficients can be altered

significantly without affecting the visual quality of the image. This makes the DFT

coefficients very vulnerable to intentional tampering. Thus, the magnitude DFT

decomposition may not be suitable choice for watermarking applications. However,

standard image compression methods do not seem to affect the magnitude DFT

coefficients drastically. This 'hole' in standard compression methods can be put

to use advantageously. So for applications where intentional tampering is not an

issue, magnitude DFT may be a good choice for both low and high processing noise

scenarios.

For robustness to 'commercial quality' compression methods (better than

JPEG-50 or SPIHT 1 bpp), high GTC transforms like DCT and Wavelets (subband)

perform better than low GTC transforms. Further, being transforms especially

used for image compression applications, they would leave very little room for

intentional tampering without significant degradation of the image. This property

would make them very suitable for watermarking applications. For other data hiding

methods, with perhaps reduced resistance to intentional tampering but increased

resistance to processing noise (lower quality compression), transforms like Hadamard

or Hartley transform would probably be more useful. For example, an average video

frame is likely to suffer more processing noise than an average still image. So low

GTC transforms may be good choices for data hiding in video frames. Further,

though lower GTC transforms are bound to have reduced resistance to intentional

tampering (compared to DCT .or wavelets) if the transform employed is known, the

case is different if the transform used is not known. There exists a high degree
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of freedom for the choice of the low GTC embedding transforms. This enhanced

degree of freedom for the choice of the embedding transform could result in very

high robustness to intentional tampering. In the next section we outline a method

for obtaining low GTC subband transforms, from random seeds.

3.10 Fast Transforms Generated from Random Seeds

In this section we outline 3 ways of generating low GTC subband transforms from

random seeds:

• perturbation of high GTC subband filters

• random search

• generating cyclic subband filters in the DFT domain

The first and second methods generate non-cyclic subband filters of finite support,

while the third method generates cyclic subband filters. The differences between

subband filters with finite support and cyclic subband filters, and fast implementation

of these transforms using FFT, are outlined in Appendix A.

3.10.1 Perturbation of High GTC Subband Filters

It is well known [77] that a degree k, 2-band paraunitary system E(z) can be obtained

from k + 1 unit norm vectors, v i • • • Vk and u of size 2 x 1, as

where

where I is an identity matrix of size 2 x 2 and
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In other words, for every choice of the unit norm vectors v 1 • • • vk and u, there exists

a unique paraunitary system.

To generate paraunitary systems from random seeds, we could start with the

unit norm vectors v 1 • • • vk and u corresponding to some high GTC known filter

(say 20 tap Daubechies filter) and perturb those vectors randomly to obtain their

corresponding lower GTC filters.

3.10.2 Random Search

In this method, the key from which the filters are generated has two parts. The first

part of the key is used as a seed to generate a random sequence of seeds. Each seed in

turn is used to generate the unit norm vectors randomly. From the generated vectors

the characteristics of the corresponding filter is obtained. The search is stopped when

a 'satisfactory' filter is obtained. The second part of the key now becomes the index

number of the random seed that generates a satisfactory filter. This method however,

may not be acceptable for watermarking applications (we shall see in Chapter 7 that

watermarking protocols should have very limited degree of freedom for choosing the

signature or the decomposition).

3.10.3 Cyclic Subband Filters in the DFT Domain

The characteristics of cyclic subband filters [79] is outlined in Appendix A. If h 	 H,

and h E RN, then h satisfies the conditions for a 2 - band cyclic subband filter if

A relatively low GTC cyclic subband filter can be generated in the DFT domain by

fixing the magnitude response 11/(0 for 	 0, . , 2 — 1 and choosing the phase

LH(l) for l = 0, . 	 — 1 randomly.



CHAPTER 4

SIGNALING FOR MULTIMEDIA STEGANOGRAPHY

Conventional communication methods employ a wide variety of signaling techniques

which essentially map a bit sequence to a real valued sequence. The real valued

sequence is in turn transmitted over a channel. However, communication techniques

for the purpose of multimedia steganography or data hiding have to transmit the

real valued sequence corresponding to the signal constellation superimposed on the

original content (without affecting the fidelity of the original content noticeably). In

Chapter 3 we explored the possibility of super-positioning the signature sequence

onto the content. However, there exists other options for embedding the signature

in the content.

In this chapter, we explore practical solutions for signaling methods for

multimedia steganography. Data hiding is seen as a sophisticated signaling technique

using a floating signal constellation. We propose such a signaling method and present

both theoretical and simulated evaluations of its performance in an additive noise

scenario. The problem of optimal choice for the parameters of the proposed technique

is also explored, and solutions are presented.

4.1 Problem Statement

The process of data hiding (Figure 4.1) in images consists of an embedder E, and

a detector D. If I is the original or cover image, and b is a sequence of bits to be

embedded in the image, the stego image I (the image with the embedded data) is

obtained as

47
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Figure 4.1 (a) Non oblivious data hiding and (b) oblivious data hiding. (c) Decom-
position of embedder E and detector D into (8, e) and (7), S-1 ) respectively.

where k is a key. We expect the image I to undergo some modification (like

lossy compression) before it reaches the receiver (detector D), where the hidden

bit sequence is extracted. Let N be the received image.

Depending on whether the method is non oblivious or oblivious, the detector

takes the form

In most data hiding methods, the bit sequence to be embedded, viz. b, is converted

to a form suitable for embedding in the cover image. Let s 8(b). In other words,

the signaling method for the steganographic communication, viz. 8, converts the

bit sequence b to a signature sequence s. Most often, the signature sequence s is

embedded in some transform domain. Let T represent a unitary transformation

employed, and C = T(I). For an M x N image I, C is M x N dimensional. The

overall embedding and detection operations now take the following form:

From a signal processing perspective, data hiding methods can be classified into two

categories, depending on the type of embedding and detecting operators. In the first
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category [9, 12] lies methods where the E adds the signature sequence linearly to

C, as in Chapter 3, and 7) detects s from C by correlative processing. For linear

methods, if the original image is not available at the receiver, (or if C is not known),

then the original image itself (or its transform coefficients C) is noise, for the purpose

of detection of the hidden bit sequence b. Alternately, linear data hiding methods

employ "conventional" signaling techniques for data hiding. In the second category E

and D are non- linear. One of the important characteristics of the non-linear methods

is their ability to suppress the noise due to the original image (or self-noise), even

though the original image is not available at the receiver.

For linear data hiding methods (or Type I methods), the purpose of the decom-

position is to obtain a favorable distribution of the image and processing noise in the

different bands. However we shall see that even with ideal redistribution of the two

noise sources, linear or Type I data hiding can never be optimal.

4.2 Non-linear Data Hiding

The non-linear methods are capable of utilizing the robust low frequency bands

even though the original image is not available at the detector. In one of our prior

arts [15] the signature is introduced in 8 low frequency DCT coefficients (of each

8 x 8 block). The vector x of the low-frequency DCT coefficients is scrambled by

means of an (invertible) cyclic all-pass filter .T with pseudo random coefficients. Let

y = .F(x). The signature is added and detected in the scrambled 'domain' y. To

embed the bit we modify the signs of many small amplitude coefficients of y so that

the resulting sequence has more positive than negative coefficients. Coefficients with

large amplitudes in the scrambled domain y are untouched. Altering (by flipping

signs) only the small magnitude coefficients guarantees that the distortion introduced

is tolerable. The modified sequence Sr is unscrambled to obtain the modified (DCT)

coefficients X	 T-3-(ST). For detecting the buried bit, the received vector *X is
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scrambled by the filter .F to obtain Sr. The excess number of positive coefficients

is counted. Note that by treating both high and low magnitude coefficients of Sr

with equal weight (only the sign of the coefficient is considered), suppression of

image noise is achieved. Unlike linear detection methods using correlative processing

(which would attach more significance to the high amplitude coefficients), in this

case, large magnitude coefficients affect the result of the detection process in the

same way as the small magnitude coefficients.

In the data hiding scheme by Wang et. al. [58], the significant wavelet coeffi-

cients are altered. The coefficients are modified so that they quantize to an even or

odd value depending on the bit to be embedded. In [53] Wu et. al. introduce a

similar scheme based on JPEG quantizers. The signature is introduced in the DCT

domain. Chen et. al [80] provide a more formal treatment of data hiding techniques,

that use the quantization index to embed bits (methods which force the quantized

indices to take a desired value depending on the information signal to be embedded).

In fact the earliest data hiding methods [38, 39], which modified only 1 or 2 LSBs

of images were also non-linear. For example, a method which modifies only 2 LSBs

may be considered as a form of quantization index modulation where the step size

of quantizer used is 4. In recent data hiding literature, the data hiding methods

[53, 58, 80] employing quantization are referred to as Type II methods. In the next

section we provide a generalization of Type II methods. The generalization is based

on the observation that quantization achieves self-noise suppression because of its

periodic nature. This implies that other periodic functions are also (probably better)

candidates for this purpose.

4.3 Data Hiding as a Signaling Technique

Consider a (metric) space I of vectors C (each point in the metric space may

correspond to the transform coefficients of some image). Let C represent the
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transform coefficients corresponding to the original (cover) image. To embed a bit

sequence b of length nb , we should be able to define a constellation with a minimum

of 274 points in I. The problem now is the choice of a signaling set or a signal

constellation, such that any point in I can be relocated to a point in the constel-

lation corresponding to the arbitrary bit sequence to be hidden, without perceptual

distortion. The new point to which the image (or C) is moved is then the stego

image, (or its transform coefficients C). If the space I is tiled by the constellation,

reasonably low amounts of distortion can be achieved. On the other hand, we also

need the hidden bits to survive some distortion that the stego image is expected

to undergo before it reaches the detector. Therefore we need the points of the

constellation to be "well separated" .

4.3.1 Signaling for Data Hiding

Given a sequence of bits b of length K, and coefficients C E RAIN (transform coeffi-

cients of M x N images), where typically K << M x N, we need to map the bit

sequence to a new "state" O. Let v = T(N), be the effect of the additive noise N in

the channel on the transform coefficients O. Or, C + v. However, we would like

to minimize the channel noise v. We know that most of the noise would be concen-

trated in the high frequency components of the image (a compression method like

JPEG quantizes the high frequency coefficients very coarsely). Therefore a significant

portion of the noise can be eliminated if the data is embedded in the transform

domain, and high frequency coefficients are ignored (not used for data hiding). We

could use a subset (low-to-medium frequencies) c E RD of the coefficients C E R I"

for data hiding.

We can now consider any image as a point in D dimensional metric space (of

D-dimensional vectors c). Therefore, the over-all embedding and detection sequences
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Figure 4.3 Periodic functions for SNS

now take the form

The over all signaling method has now been split into two parts - a part (E and D)

which depends on c, and the part S and S -1 which are independent of c. Moreover,

s represents a point in a signal constellation with known origin. We shall see that e
and 1, can be implemented as simple periodic functions, and of course, a wealth of

knowledge exists for the choice of the conventional signaling part S.
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Figure 4.4 (a) Linear non oblivious data hiding. (b) Equivalent additive noise
channel. (c) Non-linear oblivious detection data hiding. (d) Equivalent additive
noise channel.

4.3.2 Self-Noise Suppression

Figure 4.2 is an illustration of the function of e and D. In the figure, for purposes

of illustration we have D = 2 (typically, for images D may be of the order of tens of

thousands). A bit sequence b is mapped by S to a point s in the bold rectangular

region near the origin. The filled box represents the position of s in D-dimensional

space. The filled circles represent the position of c 1 and c2 (transform coefficients

of 2 images). e maps c 1 to the point E l and c2 to e2. 7), on the other hand, would

map both e l and e2 to S. We call the pair (e , 13) as the self-noise suppression

(SNS) method. As explained earlier, for linear oblivious data hiding techniques, for

the purpose of detection of the hidden bits in an image, the image itself is noise.

The SNS operators "suppress" the original image component in e and extract the

components which is needed for obtaining b. The SNS method, which obtains

the origin of the signal constellation, is characterized by step sizes Ai , i = 1 • • • D

corresponding to each of the D dimensions. The SNS method uses periodic functions

in each of the D dimensions to translate the point s in the constellation with known

reference (the origin), to points like e l or e2 depending on the position of the original

coefficients (c 1 or c2) such that the distortion introduced (d(c1, 61) or d(c 2 , e2)) is

minimal.
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4.3.3 Correlation and Equivalent Noise

Before we explore specific SNS techniques, consider the linear non oblivious data

be additive noise in the channel.

further assume that tk = t V k. This is equivalent to the scenario in Figure 4.4 (b),

of transmitting s over a channel with additive noise variance σ²v

In such a scenario, the expected value of the normalized inner product of s and

s± (for sufficiently large D) can be written as

If the pdf fv(v) is even, then it can be easily seen that

Now consider the Type II data hiding scenario in Figure 4.4 (c). To differentiate

between the the recovered signature sequences s in Type I and Type II methods, we

use different subscripts - + and E. Let pE be the normalized inner-product of s and

§E. We could represent Figure 4.4 (c) by Figure 4.4 (d) where, similar to Eq. (4.7),

Even though the additive noise in the channel is the same as the previous (linear

non oblivious technique of (a)) case, typically,

consider o- 	the variance of the equivalent additive noise. The difference 02  —

o-,2 may then be considered as the penalty paid for having to "guess" the origin of

the signal constellation. We shall see later that for the proposed SNS technique,

analytical evaluation of pE is possible (similar to Eq. (4.6)). From the value of pE ,

the equivalent additive noise variance (σ²ve) can be evaluated.
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4.3.4 Periodic Functions for SNS

As mentioned in the previous section, what we need is a periodic function for tiling

the space of c with a constellation defined by a conventional signaling scheme (with

known origin). Classic Type II methods, which embed a zero or one by forcing

the quantization index to be odd or even, in effect, use a periodic function of square

waves (0/E M) in Figure 4.3. The figure also shows other possible periodic functions.

Dither Modulation (DM), proposed by Chen et. al in [80], may can be considered

as using the saw-tooth periodic function in Figure 4.3. In Ref. [81], we introduced a

continuous periodic function (CP) for self-noise suppression. Another possibility is

a Sine / Cosine periodic function (CsP).

4.3.4.1 Dither Modulation In this method

where, Q represents a uniform quantizer with step size A.

Figure 4.5 illustrates the simulated performance of this SNS technique for

uniformly distributed and binary sequences s(k). The simulations were obtained

for Gaussian sequences c = 200) of length 4096 for A = 30. The normalized

correlation p was obtained by averaging over many realizations of additive Gaussian

noise v.

Note that embedding any signature sequence s (even a sequence of zeroes!)

results in a mean square distortion of 	 The SNR in the x-axis therefore represents

the ratio of the power of the distortion introduced to embed the signature, viz,

to the variance of the additive noise	 - SNR	 10 log10 	It is clear from Figure

4.5 that the best performance is obtained for binary ±Δ/4 sequences. This is due to

the fact that as long as —A/4 < s(k) < A/4, corresponding points in neighboring

quantization cells are maximally separated.
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Figure 4.5 Performance of dither modulation for uniformly distributed and binary
signature sequences

4.3.4.2 Continuous Periodic SNS The algorithm for D(c) of the CP-SNS is as

follows:

In the above equation x = (Condition) ? x1 : x2 stands for "If Condition is

true x = x1 , else, x x2", in the spirit of the C language. The operation rem(.)

stands for "reminder".

Let p D(c). To introduce the signature s, we need to modify c to obtain

such that s = D(c). To achieve this, the distortion e(k) introduced in coefficient

The algorithm for

embedding the sequence s in c is as follows
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Figure 4.6 Comparison of DM (QIM), CP-SNS and cosine periodic SNS techniques

Figure 4.6 compares the performance of the CP-SNS technique with that of the

dither modulation (DM) technique for s(k) = ±-t. The better performance of the

proposed technique (CP) is not surprising, considering the periodic function used by

CP is continuous, as opposed to the DM method. For instance, for the DM method

(employing signature sequences ±-t) noise greater than It can change an originally

signal to due to the discontinuity. Figure 4.6 also illustrates the performance of

another continuous periodic function - a cosine function (CsP) which performs even

better than CP (especially for high SNRs). For the cosine periodic SNS technique,

the detector can be represented as
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However, due to reasons of analytical tractability, we restrict ourselves to CP-SNS.

Additionally, note that at low SNRs, the difference between CsP and CP-SNS is

negligible. Typically, data hiding applications operate at low SNR levels (the ratio

of permitted distortion to additive noise in the channel).

4.3.5 Analysis of CP-SNS

We shall now analytically evaluate the equivalent noise for the CP-SNS scheme,

when the additive noise in the channel is v (Figure 4.4 (c)). Let

The expected value of the normalized correlation between s and §, similar

to Eq. (4.6), can be obtained as

The main difference between Eqs. (4.6) and (4.11) is that in the latter, the integrals

are split into segments of length I= to account for the periodicity. For Gaussian

f„ (v), each term (both of the numerator and denominator) of the above integral can

be solved and expressed in terms of the Gaussian error function,

The variance of the equivalent additive noise σ²ve can then be obtained as

Note that even though the signature (±-4/ binary sequence) energy is "-62- in Eq.

(4.12) we use the energy of the distortion introduced for embedding the signature ,viz.
.

2- instead. Its bears repeating, that the "signal" for data hiding is the distortion

introduced in the content. In the rest of this chapter, the term SNR represents the

ratio of the energy of the "signal" (which is the distortion introduced), to the energy

of noise in the channel.

Figure 4.7 is a plot of the normalized correlation vs the standard deviation of

additive Gaussian noise for various values of the quantizer step size A, obtained from
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Figure 4.7 Effect of additive Gaussian noise. The lines represent values obtained
from simulations. The *s represent the values calculated from Eq. (4.11).

simulations. The stars (*) represent the corresponding values calculated by solving

Eq. (4.11). The excellent agreement between simulation and the values obtained

from analysis confirm the validity of Eq. (4.11). Figure 4.8 is a plot of

various values of A. Note that the equivalent noise variance o  can be considerably

greater than a2 , the variance of the additive noise in the channel.

As mentioned earlier, the choice of A dictates the distortion introduced by the

embedding function D. The distortion introduced for embedding a ±e sequence, is

uniformly distributed between ± t. Therefore, as mentioned earlier, the a variance of

the distortion introduced is . If the permitted distortion has a variance 'y2 , then we

need to choose A V(127 2) This implies that A is chosen without any consideration

of the expected noise variance o -2 ! Obviously, this can not be an optimal solution.

This problem can be overcome by introducing thresholding in the SKIS method.
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Figure 4.8 Plot of cr,,2e vs cr, for A = 20, 25, 30, and 35

4.4 CP-SNS with Thresholding

Let γ² be the variance of permitted distortion due to data embedding. Let

The question we are faced with now is that given 7 and some additive noise a2 , what

is the optimal choice of A for the SNS method?

We define a modified embedding function Si with the same detecting function

D. Let p = D(c). In the modified embedding method, the distortion

introduced in coefficient c(k), is hard limited to

The algorithm for embedding the sequence s in c is therefore



61

Figure 4.9 (a) The rectangular function. (b) and (c) Probability distributions of
fE(e) - distortion introduced by the modified embedding function, and fst (s t ) - noise
introduced due to modified embedding function.

The distortion e introduced by the modified embedding function et has a proba-

bility distribution and variance given by

Therefore, we can choose Δ > Δ 0 , and , ß< Δo, such that the distortion

Note that, with the modified embedding function, if c = & t (c, s), then D(c) 	 s.

The difference st s D(c) has a probability distribution and variance given by

Alternately, we could assume that a distortion of variance A2 /12 (corresponding to

s) was introduced in c by the embedding scheme, along with a noise of variance °It ,

given by Eq. (4.15)..

Once again, the equivalent additive noise due to thresholding can be obtained

by a measure of correlation. Let
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Figure 4.10 Plot of standard deviation of thresholding noise (cyst ) vs standard
deviation of equivalent noise due to thresholding, (σste)

The equivalent additive noise, is therefore

The plot of o-  vs o-„e for different values of A is shown in Figure 4.10.

4.4.1 Combined Effect of Channel Noise and Thresholding Noise

Let the additive noise in the channel is Gaussian with variance σv². The thresholding

noise has a probability distribution given by Eq. (4.15). The probability distribution

of the total noise, z = 	 st , viz fz(z) is obtained as

If My) is Gaussian,
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The normalized correlation pnt , and hence the equivalent additive noise can then be

obtained by solving

Once again, the solution for the above integral can be obtained in terms of the

Gaussian error function, and the equivalent noise variance σ²nt is obtained from

Figure 4.11 is a plot of the normalized correlation A ra versus the SNIP, for values

of k 0/A0 ranging from 1 to 1.6. The k = 1 case corresponds to no thresholding

(or o = A = 0). For all four plots, o = 30. This implies that the distortion

introduced to embed the signature is the same for all the four cases. The plots have

been obtained from simulations. The *'s represent the corresponding values obtained

from calculating the normalized correlation from Eq. (4.19).

Note that as the channel noise increases, we need to increase the size of A

for the optimal SNS scheme. This can be explained as follows. Let the value of

an arbitrary coefficient of E be, say, 350. Further, it is known that the coefficient

could not have undergone drastic modification in the channel (for example, we know

that the content could have only undergone lossy compression of reasonably good

quality). We can now say with a high degree of certainty that the corresponding

coefficient in the original content had a value between 350 — 6 and 350 ± .5 (6 = 30,

for example). For Type I methods, the self-noise of the image is directly related

to the variance of the image coefficients. It should be appreciated however, that

`noise' is actually a measure of the lack of information. In other words, the entropy

of the self-noise is equal to the ,entropy of the original coefficient, given the received

coefficient. Mathematically, 71, the entropy of the self-noise, is given by
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Figure 4.11 Plot of correlation vs STAR for k 1, 1.2, 1.4 and 1.6

bits, where h(.) denotes the entropy [75]. Self noise suppression schemes utilize the

fact that the self-noise entropy 9-1 is substantially smaller than h(c). Type II methods

therefore employ some sort of prediction of c from the received signal E. The period A

can be considered as a degree of confidence or tightness of the prediction. Obviously,

if the channel noise is low A can be small. On the other hand, if channel noise is high

we need to choose larger values of A. However, in traditional Type II SNS methods,

the choice of A was decided solely by the permitted distortion. The introduction of

thresholding to Type II, goes a long way in overcoming that limitation.

We shall refer to the modified SNS scheme (SNS with thresholding) as a Type

III method. It is interesting to note that as A —4 , Type III becomes Type II. What

is more interesting is that as A --+ co (and ,8 is finite), Type III systems become

Type I! As A approaches oo every coefficient of c will be "perturbed" by +/9. This

is exactly the same as adding a binary ( ±8) sequence to c!
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Also note that from the trend in Figure 4.11 neither Type I nor Type II can

perform as well as Type III methods. For high SNRs the "optimal" Type III method

is "close" to Type II. However, as the SNR reduces, the "optimal" Type III method

approaches Type I. The steps to obtain the optimal parameters for the Type III

CP-SNS, for a given permitted distortion 7 2 and additive noise variance σ²v, can be

summarized as follows:

• Obtain A6 = 12 ,y2 .

• Let k > 1 such that A = kΔ0 .

• Evaluate 0 under the constraint of Eq. (4.14).

• Choose k to maximize pnt (Eq. (4.19)).

for different signal to

Figure 4.12 is a comparison of the performance of

non oblivious methods (where the content is available at the detector), and optimal

CP-SNS (obtained by choosing k from Table 4.1). Obviously CP-SNS cannot perform

better than non oblivious methods. Figure 4.12 (a) depicts the maximum value of

PE = (Pnt)max, and Pi_ (for non oblivious methods) for different SNR's. Figure Figure

4.12. Figure 4.12 (b) is a ,comparison of σve and σv As mentioned earlier, σ ve — av
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Figure 4.12 Performance of optimal CP-SNS. (a) Plot of normalized correlation vs.
SNR for non oblivious (p+ ) and optimal CP-SNS (pE). (b) Eqivalent noise for optimal
CP-SNS (σve) and non oblivious method (o-1,). (c) The ratio(d) Achievable
capacity in bits/ coefficient for non oblivious and optimal CP-SNS methods.

can be considered as a "penalty" paid for estimating the origin of the constellation.

Figure 4.12 (c) is the plot of the ratio for various SNRs. The capacity C of the

proposed method is obtained by using the Gaussian capacity equation [75]

Figure Figure 4.12 (d) is a comparison of the achievable capacities C (for the optimal

CP-SNS method), and the Co for non oblivious methods, given by

4.4.2 Sub-optimality of Type III Methods

Even though the Type III CP-SNS method can outperform Type I (oblivious) and

Type II methods by a considerable margin, they are still not the best possible
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solution. To see why, consider the power constrained communication scheme modeled

as

are i.i.d. Further c, w, and v are independent. In the above model w is power

constrained (variance 72 ), and v is the noise in the channel. E is the signal received

at the receiver. If the receiver does not have access to c, this problem is exactly

similar to the oblivious data hiding, where c is the content, v is the additive noise

in the channel, and w = e — c. It is obvious, that if c is available at the receiver,

one could theoretically achieve a capacity of Co bits per coefficient given by Eq.

(4.23). Costa [82], however, argued that one could achieve capacity C0 even if c is

not available at the decoder. Unfortunately, this would require the use of codebooks

On the other hand, the maximum codebook size used for Type III methods (used

by the signaling scheme (S, S-1 )) is 2Nc where C is given by Eq. (4.22). To get

a clearer picture of the difference in complexity between the two approaches, let us

consider a specific case of data hiding in 256x 256 images. Some reasonable choices

of N = 8192 (8192 transform coefficients used for data embedding), 17 2 12000

(variance of the low frequency coefficients used for data hiding), 72 = 32 (distortion

of the host signal), and a,2 = 320 imply L 4000 . In other words, the Type III

method can approach capacity C (Eq. (4.22)) with codebooks of size 2 Nc , which is

2D-402 c times less than methods which can approach capacity C o . The reduction in

complexity (and achievable capacity), for the proposed method is a result of splitting

E and D in Figure 4.1 (b) into independent (SNS and conventional signaling) parts.

However, this does not rule out the possibility, that there may exist other suboptimal
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signaling complexity. On the other hand, other periodic functions for (e, D) may

perform better than the triangular function CP-SNS proposed and analyzed in this

chapter. As such, we can see from Figure 4.12 (c), 1.5 — 1.8 implies that CP-

SNS is only about 3.5 to 5.1 dB behind "ideal" methods. With better choices for the

periodic function used (the best choice may also be different for different SNRs), the

practical Type III methods may approach the performance of ideal methods closer.

Once the optimal values of A and /3 have been chosen, for a given additive noise

variance σ²v and given distortion tolerance 7 2 , the next step is to choose the optimal

"conventional" signaling method for the equivalent noise σ²ve (or correlation pnt ). In

the next chapter, we explore options for the choice of the conventional signaling

method.



CHAPTER 5

FFT-BASED SIGNALING

5.1 Conventional Signaling

The conventional signaling part, viz. the pair (8,S-1 ), addresses the problem of

mapping a K length bit sequence b to a possibly real valued sequence s of length N,

where N >> K. As a simple approach we have

where s i = sign(b(i))0, i 1 • • • K, and 0 is random vector (obtained from a random

seed or the private key 1C), of length On the other hand, we could generate

2K sequences s i , i = 1 • 2K of length N, such that the sequences s k are maximally

separable. Geometrically, the sequences s k can be represented by a set of 2 K points

in a N-dimensional hypersphere. In other words, the minimum distance between

any two of 2 K points should be as high as possible, under the given constraint of

the hypersphere radius. The binary sequence [b 1 b2 bK] can be interpreted as a

decimal number between 0 to 2K — 1. To transmit a particular sequence of bits,

whose decimal equivalent is say d, we choose s = sd .

Detection of the hidden bit sequence, or equivalently the number d can be

accomplished as d = arg 	 si)

While it is assured that the latter scheme, will approach the channel capacity

closer than the former, in practice, implementation of the second scheme may be

prohibitively expensive, especially for large K and/or N. A reasonable compromise

might be to choose an alphabet size between 2 of the former (bit-by-bit signaling)

technique , and 2K of the latter. For example, if the alphabet size is chosen as 2*,

then a single member of the alphabet is detected from each of the k sequences of

length 1.

69
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An FFT-based signaling method proposed in the next section offers an efficient

way to increase the alphabet size used for signaling, while keeping the computa-

tional complexity at manageable levels. Furthermore, the maximally separable signal

constellation itself is generated from random seeds.

5.2 FFT Based Signaling

In the FFT-based signaling technique, the maximally separable sequences are

constrained to be orthogonal. Let s k E 2Pk -1 . Maximally separable

signature sequences s ik , l = 1 • • • 2Pk , corresponding to pk bits, are obtained as Lk

orthogonal sequences and their negatives. Random signature spaces are generated

from a seed. This is achieved by constraining the signatures to be cyclic all-pass

sequences.

5.2.1 Cyclic All-Pass Sequences

Let h E RN and H=F(h) where, Y(.) stands for the Discrete Fourier Transform

(DFT). Further, let h be such that

Hence

Taking the IDFT of both sides of Eq. (5.3) we get

is the circular autocorrelation of the vector h, it follows that all

circular shifts of h are mutually orthogonal [79]. As the phases O n , n = 0, 1, . , N-1

of the elements of H can be arbitrary, we have infinitely many choices for the vector

h with mutually orthogonal circular shifts. For real h we have 2 — 1 phase values
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which can be arbitrarily chosen. Thus a pseudo-random all pass sequence of length

N can be generated from a pseudo-random (uniformly distributed between 7 and

—7r) sequence of length — 1. If

is a cyclic all-pass sequence.

Alternately, a pseudo-random binary sequence is generated from a seed. Then,

the unique all-pass sequence "closest" (in the mean-square sense) to the binary

sequence is obtained (this guarantees that the signature energy will not concentrated

in few coefficients).

Let f = [f (0) f (1) • • • f (N 1)] be a random binary sequence. We need to

find the all-pass sequence that is closest to f. In other words, we need to find the

subject to the constraint that h is a cyclic all-pass sequence. Since the DFT of a

(cyclic) all-pass sequence can be written as

for n = 0 • • • N — 1. It can be easily shown (see Appendix) that the error E is given

by

The error is minimized if we choose øk θk for k = 0, 1, • • • , N — 1. In other words,

we choose H to have the same phase as F, while the magnitude of all coefficients of

H are set to unity.
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5.2.2 Signal Constellation

The procedure employed for generating the maximally separable sequences is as

follows.

1. From a random seed, generate a binary (±1) sequence e k of length L =

2. Obtain the length-Lk DFT Ek of the binary sequence.

3. Obtain Sk from Ek such that |Sk(l)| = 1, l = 1 • Lk and

1 • • • Lk.

4. Take the length-Lk IDFT of Sk to obtain sk . sk is a cyclic all-pass function.

All Lk = 2P-1 cyclic shifts of s k are orthogonal.

5. s k and the other Lk - 1 cyclic shifts of sk, and their negatives are the 2Pk

maximally separable sequences.

Note that the inner product of the sequence s k of length Lk with each of the 2Lk = 2Pk

maximally separable sequences can be obtained by one length-Lk cyclic correlation

efficiently implemented using the FFT. The index of the maximum absolute value

of the cyclic correlation coefficients gives then detected sequence of p bits. Let

where C(x, q) stands for cyclic shift of the vector x by q (counter-clockwise) positions,

and a is a scaling factor that depends on L of the SNS technique. For detection,

where .7" denotes the DFT, and,
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An easier way of generating cyclic all-pass sequences s k would be to generate them in

the DFT domain by choosing unit magnitudes for DFT coefficients, but choosing the

phases randomly. However, we need binary sequences of length t for the optimality

of the self-noise suppression method employed to find the origin of the floating signal

constellation. Steps 1-4 ensure that the generated signature sequences sk is an all-

pass sequence closest in the mean- square sense to the binary random sequence e k .

The choice of the length Lk of each segment (which in-turn decides the alphabet

size) will depend mainly on the correlation ion, for the particular choice of A and O.

Typically, lower the value of pnt higher will be the value of Lk. Obviously, other

factors like computational complexity may also influence the choice of Lk.

As the segment lengths are restricted to be powers of 2 for efficient implemen-

tation of the FFT, smooth trade-offs between bit-rate and the probability of error can

only be achieved by redundant signaling. In the next section we propose a suitable

and practical redundant signaling technique for improving the over-all efficiency of

the signaling method.

5.2.3 Redundant Signaling

For the proposed FFT-based signaling technique, we propose a combination of Reed-

Solomon coding [83] and introduction of parity for error correction. A sequence of

d-bit symbols D 1 to D, is encoded using Reed-Solomon encoding over G F(2d), with

block size of 2d — 1 (if n < 2d — 1, the "shortened" code can be easily implemented

by zero-padding D 1 • • • D„ to length 2d — 1, and considering the non-existent symbols

as "erasures" at the decoder). The RS encoded sequence of d-bit symbols is then

"appended" with q-parity bits to produce a p-bit symbol sequence, where p = d+ q.

Signaling with parity can be done efficiently for the FFT-based technique. To

introduce one parity bit (or reduce the valid points in the constellation by a factor

of 2) we choose only odd values D between 0 and 2P-1 and only even values between
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2P-1 and 2P. This would correspond to choosing the largest from the even- indexed

coefficients of r k in Eq. (5.9). If Lk = 2P -1 is the length of r k , the even indexed

coefficients re, of rk can be obtained as (proof in Appendix)

point IDFT (the factor 0.5 is irrelevant as our

intention is only to pick the coefficient with the highest magnitude). For introducing

q parity bits, (in the segment Lk representing p bits, where p = q d) valid points

in the constellation are given by

In this case, only coefficients of r k , with indices which are multiples of 2q are needed.

Signaling with parity is especially useful for very low SNR data hiding (if pn, in Eq.

(4.19) is very small - which results in large p or Lk).

For example, let c c R8192. For a low-noise scenario we may use segment

lengths of Lk = 64 for each p = 7 bit symbol (Lk 2P-1). Under such a scenario,

we may use for example a block of RS code (127,111) over gF(27 = 128), which

can correct up to 8 errors in each block of length 127 (number of source bits =

1 block x 111 symbols per block x 7 bits per symbol = 777). However, if the SNR

is low, and we use say segment sizes of Lk = 1024 (p = 11). If we do not employ

parity bits, we need to use an RS code, say (2047, 2045). The maximum block size

possible is however, 8192/1024 = 8. We need a shortened code. We may start with

a source of 6 11-bit symbols (66 bits), zero-padded to length 2045, and then perform

(2047,2045) RS encoding, which can correct 1 error out of the 8 transmitted symbols.
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Obviously this is computationally expensive. An alternative is to use Lk 512 and

p = 10, and also have say q = 5 parity bits. We may now start with 14 5-bit source

symbols (70 bits), and zero-pad it to a length 29 symbol block. This is followed by

a computationally simple RS encoding (31,29). The first 16 5-bit symbols obtained

after RS encoding are then made into 10-bit symbols by introducing 5 parity bits

(which is done efficiently in the FFT-based method). For detection, the parity bits

are stripped first to obtain a 16 symbol sequence of 5 bit symbols. This may be

zero-padded to length 31 and RS decoded.

For data hiding applications where computational complexity of detection is

not a serious limitation, or if channel noise is low (implying small p) , signaling with

parity would be sub-optimal. However, if p is large, and q = 0 (or d = p) , then RS

encoding / decoding may become prohibitively expensive.



CHAPTER 6

OPTIMAL DESIGN OF DATA HIDING METHODS

In this chapter, we explore the intricacies of the duality of data hiding and data

compression to help develop optimal data hiding techniques for images, that can

reasonably resist lossy compression. The problem of efficient data hiding is split into

two sub-problems First is to maximize the resource - which is the permitted distortion

of images. The second is the efficient use of the resource by means of sophisticated

signaling techniques presented in the earlier chapters.

6.1 Introduction

Growing concerns over protection of intellectual property rights of digital multimedia,

has resulted in an explosive growth of the field of data hiding, or multimedia

steganography. Applications of data hiding can be classified in many ways. One

classification of data hiding may be based on the key required to extract the hidden

data. For example "hidden" captions in multimedia data may be accessed through

a public key (though there is no reason to "hide" something that can be read by

anybody, using data hiding for embedding captions assures that the caption stays

with the data irrespective of format conversions). On the other hand private key

steganography is the basis for applications like invisible watermarking and secret

communications. Another classification may be based on the robustness requirements

of the data hiding application. For instance, applications like watermarking typically

require robustness to intentional tampering. On the other hand, some applications

may need robustness only to unintentional attacks (attacks not especially directed

at removing the hidden data) like lossy compression. Yet another classification

may be depending on the restrictions to be placed on data-hiding. For example,

invisible watermarking is expected to resolve rightful ownership of the multimedia
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content, unambiguously, in a court of law. For this purpose many restrictions may

have to be imposed [26, 23, 22, 29] on data hiding for watermarking. On the other

hand virtually no restrictions are placed on applications like secret communications,

(communication between two private parties through a subliminal channel facilitated

by data hiding).

We focus on data hiding applications and methods for images and video.

We also restrict ourselves to applications that only require robustness to lossy

compression. In the next section, we suggest possible applications [21] where only

robustness to lossy compression is an issue, especially for secure multimedia delivery.

We then investigate the inverse relationship between efficiency of lossy compression

and efficiency of data hiding. In fact, data hiding would be impossible if lossy

compressors were ideal. Therefore efficient data hiding should utilize holes in the

compression methods. We explain and illustrate why, while it is very easy to develop

efficient data hiding techniques if the type of compression the multimedia data is

likely to undergo is known in advance, it may be very difficult to design techniques

robust to any type of compression [21]. In Section 6.4 we point out a hole common

to all known compression schemes, and suggest methods to utilize that hole for

efficient data hiding.

6.2 Data Hiding For Secure Multimedia Delivery

Data Hiding is expected to be a boon for multimedia content providers. Content

providers can expect to communicate with compliant multimedia players through

the subliminal channel provided by data hiding. This communication could control

access, provide customized delivery, and provide solutions for pay-per-view imple-

mentations [7]. A compliant multimedia player would honor an agreed upon protocol

for extracting (and abiding by) the hidden control information.
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Figure 6.1 Block diagram of a multimedia distribution system. Though the generic
multimedia players may support only a limited number of compression formats, all
the players follow the same protocol for extracting the hidden control information.
Player 3 supports 3 different formats while Player 5 supports only the proprietary
compression format.

Figure 6.1 is a block diagram of a possible multimedia delivery system. Content

providers (the creators of multimedia content) can hide pertinent control information

for the multimedia players and make it available for distribution. The distributors

may compress the content using some standard or proprietary compression method

before it reaches the end users (or their multimedia players). The content may be

distributed by several distributors in different formats, understandable by different

players. However, as long as all such players follow an established protocol for

extracting the hidden information, and the hidden data is able to survive all

lossy compression schemes the distributors may employ, the content providers

can indirectly control compliant players through the hidden information. Hiding

the information in the raw multimedia data ensures that the hidden data stays

embedded forever in the content.
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Unless the hidden data is extracted with a "reasonable degree of certainty" ,

the compliant multimedia players may refuse to play the content. Thus intentional

tampering for the purpose of removing the hidden information only serves to make

that particular copy of the content unusable. On the other hand, the motivation to

make it robust to all compression methods is to facilitate more efficient distribution

of the content. Failure of the hidden data to survive a "good" compression method,

makes that compression method unusable for distributing that content.

6.3 Compression and Data Hiding

Multimedia compression tries to convey the information of a multimedia content as

efficiently as possible - with the fewest number of bits. Data hiding on the other hand

tries to sneak in additional bits of information into the content. As the "additional

information" does nothing to improve the quality of the content, an ideal compressor

would completely suppress the hidden information.

Let Z represent the space of M x N images of b bits per pixel (2MNb possible

images). Alternately, every point in I is an M x N image. As the image is represented

by fewer bits in the compressed domain, many original image points are mapped by

the compressor to one image point after (lossy) compression and decompression. As

an example, in Figure 6.2, all points in the range R are mapped to a single point D.

Consider an image A (represented by +) in the region R. Let us say we want

to hide one bit of information in the image A that would survive compression. The

space I is completely tiled by two regions that represent 0 or 1. For example, if the

image A is located in a region representing 0, it could be left intact if the bit to be

hidden is 0. To hide a bit 1 however, A has to be moved to a point B (represented

by *) which simultaneously belongs to region 1 and lies outside the range R, so that

after compression (and decompression), the image is mapped to a different point B1.
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Figure 6.2 A lossy compression - decompression sequence maps all points in the
range R to a single point in the domain D

To hide nb bits in an image which can survive compression, the image has to be

distorted such that after decompression the image is mapped to any of 2nb possible

points. In other words, the space of images has to be tiled by 2nb regions.

Now it is easy to see that no data hiding would be possible with an ideal

compressor. If S t is the visual distortion permitted (St may not be a measure of the

mean square error), then there exists a finite number of points to which the original

image may be "moved". However, an ideal compressor with the same threshold

(5c = (St would map all such points to a single point in the space of decompressed

images! So unless we employ different standards (a measure of (5) for the quality

of the image after data hiding and that for the decompressed image, (or unless

> (St), no data hiding would be possible with ideal compressors. However, practical

compression techniques are not ideal. Therefore, efficient design of data hiding should

utilize the holes in compression techniques.

When the compression method the image is likely to undergo is known in

advance, it is easier to design efficient data hiding methods. For example, let us

assume that it is known in advance that the images will only undergo DCT based
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Figure 6.3 Data hiding capacities (number of DCT coefficients that quantize to a
non-zero value with quantization matrix Q) of 11 256 x 256 test images

Table 6.1 The DCT quantization matrix Q
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JPEG compression with the default quantization matrix. Let us also assume that

image is not expected to undergo compression more severe than quality factor 50%.

The best data hiding method, for such a situation would be the following [20]:

• Obtain the 8 x 8 2-D DCT of the image blocks of an M x N image.

• Let (2(m, n), m 1 • • • 8, n = 1 • • • 8 be the quantization matrix for JPEG at

50 % quality. The matrix is tabulated in Table 6.1.

• Fix a particular scan order for the -11E4+ x 11. image blocks.

• Fix a scan order for the 8 x 8 coefficients of each block.

• Let K be the total number of coefficients (among the M x N DCT coefficients)

that quantize to a non-zero value when the quantization matrix Q is used. We

shall hide one bit in each of those non-zero coefficients. (A significant amount

of compression is achieved by JPEG compression due to efficient run-length

coding of the coefficients that quantize to zero. So changing coefficients that

quantize to zero would affect the compression ratio of the image with embedded

data). Let c be the vector of the non-zero coefficients.

• Let b, be a bit sequence of length K to be hidden in the image.

• For i 1 • • • K, if b, (i) = 0 then force the coefficient c(i) to quantize to an odd

number. Otherwise force it to quantize to an even number. If the values are

forced to the mid points of the quantizers, then the hidden data would survive

JPEG compression of any quality as long as it is better than 50 % (if they are

not forced to the midpoints of the quantizer steps, the hidden data will survive

JPEG-50 but may not survive any higher quality compression, like JPEG-75!).

• For extracting the hidden information, the DCT of the image blocks (of the

received image) are obtained. The DCT coefficients are quantized using the
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Figure 6.4 Known compression scheme

quantization matrix Q. All coefficients quantizing to zero are ignored. All

other coefficients are arranged in the prescribed order. If the quantized result

is odd, the hidden bit is a zero. Otherwise the hidden bit is a 1.

Figure 6.3 depicts the achievable data hiding capacities for 11 standard test images

using this simple data hiding technique. However, the hidden data is very unlikely

to survive other forms of lossy compression, or even if DCT based JPEG is used with

a different quantization matrix.

Consider the space I of original images. When the compression method is

known, (as in the previous section), we make use of the fact that points (or "states")

R1 to R, are mapped to the same points R 1 to Rri, in the space of decompressed

images. Therefore, the number of valid "states" of the compression method that

lie within an envelope of "unnoticeable visual distortion" is a direct measure of the

number of bits that can be hidden in an image (in the example above, it is the

number of valid JPEG-50 compressed images within the envelope of "unnoticeable

visual distortion").

The problem becomes more complicated if the hidden data has to survive

multiple compression methods. To see how the requirement of robustness to

different compression schemes (simultaneously) can drastically reduce the data

hiding capacity, consider 3 compression schemes C 1 , C2 , and C3. In Figure 6.5 the
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Figure 6.5 Data hiding with robustness to different compression schemes

`+'s denote points in 2" which are permissible C 1 -compressed (and decompressed)

images. Similarly filled 'o's and '*'s stand for C2 and C3 compressed images. Let A

be the original image R an envelope of the possible points A could be moved to,

without noticeable visual distortion. If the data hiding scheme has to survive only

one of the 3 compression schemes, one can see that there are roughly 9 points to

which the image can be moved in each case. However, if the hidden data has to

survive any compression scheme, then the number of possible states (2P, where p is

the number of bits that can be hidden) is limited to the number of non-intersecting

regions (marked by dotted circles) where at least one of the valid points of different

compression schemes can be found.

However if the exact effect of compression is not known (the valid states are

not know a priori), the job of designing efficient data hiding methods warrants a

totally different approach. As one has no idea of the "valid" compression points (or
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valid compressed images for that particular compression method), the centers of the

non-intersecting regions have to be considerably well separated to ensure that at least

one valid compression point of all compression methods lies in each hyper-sphere.

However, the following questions arise:

• Large distance between the centers of the hyper-spheres implies that it may be

necessary to introduce a significant amount of distortion to move the image to

a desired "state" . Is it possible to do that without affecting the visual fidelity

of the image?

• Assuming that it is possible to to introduce a significant amount of distortion

without affecting the visual fidelity to move the image A to a new point A,
why should a good compressor map two visually identical images A and A to
different points in the compressed domain?

The answer to the second question is the following.

• All known compression methods try to minimize the mean square error

between the original and the compressed image. In fact, the new generation of

compression methods (like EZW, SPIHT and IFS (fractal) image compression)

even more so than the DCT based JPEG. This is a hole common to all

compression methods and can be used effectively for data hiding, if satis-

factory answers to the first question exist.

In the next section we explore solutions to the first question.

6.4 Utilizing the Hole in Compression Techniques

As stated in the previous section, if the images can be modified considerably in the

mean square sense without affecting the visual fidelity of the image, then one could

achieve large separation between "states" corresponding to different bit sequences,

and thus achieve robust data hiding.
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One solution to this problem (of trying to introduce as much distortion as

possible without affecting the visual fidelity) is to use good models of "visual

thresholds" (for example, see Ref. [52, 84]) to embed the hidden bits. Many data

hiding methods [85] that utilize these models have been proposed. However, a main

draw back of these methods is that well defined visual threshold models (say in the

DCT or wavelet domain) also suggest the compression techniques means to improve

their performance. Thus when one uses these models to add significant amount of

signature energy to certain coefficients of the image, a better compression technique

which may evolve in the future may also make use of these visual thresholds to

perhaps quantize those coefficients more coarsely. In other words utilizing these

visual threshold models indirectly amounts to utilizing holes that can be easily

"plugged" in the future. One of the main advantages of data hiding is that the

hidden data stays with the content forever. As compression techniques improve in

the future, content distribution becomes more efficient. But if the hidden data is not

able to survive those compression methods, the content loses its value. Therefore,

more useful data hiding techniques should utilize holes which are very difficult to

plug.

Figure 6.6 depicts the original 256 x 256 Goldhill image, its histogram reshaped

version, and image after StirMark [37] (StirMark is a watermark attack software that

introduces imperceptible geometric distortions in the image). Though the second and

third images are very close to the original in visual fidelity, their PSNRs are 20 and 19

dB respectively! It is clear that significant amounts of distortion (in the MSE sense)

can be tolerated as long as the introduced distortion only modifies the histogram or

introduces small geometric distortions, or perhaps, both. So if we are able to embed

the hidden data by introducing geometric distortions / histogram modification, a

large separation between different "states" can be obtained.
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Original Image After Histogram Modification After StirMark 

Figure 6.6 Left : origi~al Goldhill image. Center: Goldhill image obtained by 
modifying the histogram. Though both images look similar, and are of good visual 
quality, the difference between the two images in terms of PSNR is 20 dB. Right: 
Image obtained after StirMark.The difference between the two images in terms of 
PSNR is 19 dB. 

However, things may not be as simple as it seems at first gla nce. Let H(I) be 

a function of the histogram of the pixels of an image I. If we try to embed data 

by specifying 11,(1) [86], the hidden data will not be robust to compression. Even 

small modifications in the MSE (like what may typically be int roduced by lossy 

com pression) can change the histogram significantly. Sirriila~ ly, if 9 (I) is a function of 

some geometric features of the image I, and d(., .) is some metric, d(Q(I), g(I1 )) may 

be large even if d(I, 11 ) is small. Just as introduction of small geo metric distortions 

can cause a significant change in the MSE, introduction of small distortions in the 

MSE may cause significant changes to Q (.). This is the reason that the watermarking 

technique proposed by Rongen et.· al [87] is robust to StirMark, but not very robust 

to JPEG compression. To achieve robustness to compression, t he well separated 

"states" (corresponding to the bit sequence to be embedded) have t o be specified first. 

Then geometric distortions and / or histogram modifications have to be introduced 

to move the image close to the specified state. However, there may not be a simple or 

even methodical way to do this. But if such a method can be found and implemented 



Figure 6.7 Left: original Boats image. Center: Boats image obtained by retaining 
the DFT phases of the original image and choosing random magnitudes (PSNR 
14.1 dB). ' Right: image obtained by retaining DFT magnitudes of the original and 
choosing random DFT phases (PSNR 15.6 dB). 

with reasonable degree of computational complexity, l it promises to be an excellent 

solution to the problem of robust data hiding. 

A practical solution to introduce a large amount of distortion in the image 

without affecting its visual fidelity, is to modify the DFT magnitudes. Figure 6.7 

(left) shows the original 256 x 256 Boats image. The second image (center, 14.1 dB 

PSNR) was derived by retaining the DFT phases of th~ original image and choosing 

random magnitudes. In spite of the very low PSNR of the image, we see that a 

significant amount of "information" about the original image is preserved. The third 

image (right, 15.6 dB PSNR) was derived by retaining the magnitudes of the DFT 

coefficients of the original image but choosing the DFT phases randomly. Even 

though the PSNR of the third image is 1.5 dB better than that of the second, the 

resulting image conveys almost no information about the original. This illustrates 

the well known fact that the human visual system (HVS) is much more sensitive to 

DFT phase than DFT magnitudes [88]. 

1 Computational complexity of the data embedding algorithm is not a serious limitation 
for the applications proposed in Section 6.2. Data embedding is done only once. 
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Thus if the data embedding is done in the magnitude DFT domain (the "states"

are specified by their magnitude DFT coefficients - embedding the data changes the

magnitudes of the DFT coefficients of the original image, but leaves the phase intact)

a significant amount of distortion (in the MSE sense) can be introduced without

affecting the visual fidelity of the image. In addition, unlike the use of well defined

visual threshold models, this is not a hole that is capable of being easily "plugged" in

the future (compression techniques that utilize the DFT and quantize the magnitudes

coarsely and the phases finely have been proposed earlier, but have not been effective

[89, 90]).

Introducing the distortion to the magnitude DFT coefficients (for embedding

information bits) can be achieved as follows. Let I be the original M x N image.

Let

where <=-1, - stands for 2-D DFT pairs. I has 4 real coefficients and MN — 4 complex

coefficients however, have unique magnitudes.

be a vector of the unique magnitudes of the complex DFT coefficients

of I. Every image can be represented as a point in D 0-dimensional space. The

D0 magnitude DFT coefficients serve as the carriers for the subliminal communi-

cation. However, as high frequency DFT coefficients may not be able to survive

lossy compression, we shall use only a subset c E RD of C for data hiding.

6.5 The Data Hiding Scheme

Figures 6.8 and 6.9 show the block diagrams of data embedding and the data

detection schemes. The figures are self explanatory, except for the additional "Key

Based Transform" blocks. A truly secure data hiding scheme, should be difficult to

crack even if every step of the algorithm for data hiding is public. In this case, the
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Figure 6.8 Block diagram of data embedding

Figure 6.9 Block diagram of data detection
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only 'secret' should be the key k (though it is possible to have A as part of the key,

as its choice is demanded by design criteria, one would not have very much freedom

in choosing A). So if the transform employed (DFT) and the value of A is public,

then the signature can be easily 'read', especially if binary signatures are used. While

erasing hidden data may not be a very serious issue for multimedia delivery, modifying

it may have disastrous consequences. The security can be vastly improved by using

a key based transform before data embedding (and therefore before detecting). In

the proposed scheme, we use a simple key based transform based on cyclic all-pass

filters.

Let h <  H where h E RN is cyclic all-pass (or

cyclic shifts of h are orthogonal, they form a basis for RN. The basis functions are

generated from the key as in Eq. (5.5). A transform employing the h and all its

cyclic shifts as its basis can be easily implemented by cyclic correlation. If x E RN is

a vector of coefficients, the corresponding transform coefficients X can be obtained

as

and the inverse transform can be obtained as

Figure 6.10 shows the performance of the data hiding scheme for several test

images undergoing JPEG (at various quality factors), and SPIHT compression (at

different bit-rates). From applying JPEG at quality factors of 75, 65, 55 and 50

respectively, it was found that the resulting images on an average were compressed

to 1.35, 1.25, 1.15 1.10 and 1.0 bpp respectively. So in the figure, the X-axis for both

plots (JPEG and SPIHT) is an indication of the bit-rate of the compression method

employed.
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Figure 6.10 Plots of achieved data hiding capacities for JPEG (Left) and SPIHT
(Right) compression for 5 256 x 256 test images (Lena, Barbara, Boats, Goldhill and
Girl). JPEG compression scenarios 1 - 5 correspond to quality factors 75, 65, 55,
50 and 40 respectively. SPIHT compression scenarios 1 - 5 correspond to 1.35, 1.25,
1.15, 1.10 and 1.0 bpp respectively.

For all cases, we used 8192 low frequency magnitude DFT coefficients. By

subjecting various images to bitrate-N compression (N = 1- • • 5, the x-axis) schemes,

the average noise variances o were estimated. The permitted distortion y, was

chosen depending on the overall "activity" of the image. The measure of activity

used was the MSE of the image after SPIHT compression at 1-bpp. The estimates

of 7 and a, was used to obtain optimal values of 0 and for each scenario.



CHAPTER 7

PROTOCOLS FOR PROVING OWNERSHIP OF MULTIMEDIA

In this chapter, we explore the problem of proving ownership or origin of multimedia

content like image or video or audio signals through watermarking. The need for

watermarking arises out of the unsuitability of present copyright laws for claiming

ownership of digital content. Watermarking schemes, however, are threatened by

counterfeit attacks, which primarily use the freedom available in choice of signature

or choice of the watermarking method. A restrictive protocol for watermarking could

go a long way in rendering counterfeit attacks extremely difficult. We suggest a

comprehensive protocol that makes it possible for the true owner to claim ownership

unambiguously, while making it practically impossible for a pirate to do so. A robust

watermarking method, compliant to the protocol, is also proposed.

7.1 Introduction

Digital watermarking is a means of protecting multimedia data from intellectual

piracy. It is achieved by imperceptibly modifying the original data to insert a

"signature" . The signature is extracted when necessary to show proof of ownership.

In this chapter, for purposes of illustration, we assume the original content to be

a digital image. However the proposed protocol is equally applicable for video and

audio signals.

Let I be the original (cover) image. A watermark embedding function E inserts

a watermark S in the image I to generate the watermarked image I E(I,S). The

existence of the watermark S in an image I is checked by a detector function D.

Watermark detectors can be broadly classified into two categories. Non oblivious

detectors need the original image I to check for the presence of the signature S in

I. On the other hand, oblivious detection methods do not require the original image.
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as the detection statistic. The detection statistic is an indication of the degree of

certainty with which the signature S is detected in the image I.

Establishing ownership of creations like books or blueprints, have traditionally

been done by obtaining copyright on that content, perhaps from the copyright

office. However, the nature of digital content makes traditional copyright mechanisms

unsuitable for establishing ownership. Figure 7.1 depicts two typical scenarios, where

existing copyright mechanisms may be unsuitable for securing copyright of say, digital

images. In scenario I, A and B represent two distinct but identical photographs

created by Alice and Bob respectively (both photographs may have been shot from

the same place at different instances of time). Alice is responsible for circulating

copies of her art as A l . Meanwhile, Bob circulates his creation as B2. Both Alice

and Bob register their contents A and B with the Copyright Office 1 . If both A

and B (and hence A 1 s and B2s) look identical, Bob can claim that A and all A 1 s

are violations of his copyright while Alice can claim that B and B2 are violations of

her copyright. Obviously, this is not a desirable situation. In a second scenario, the

photograph was created by Alice who is not interested in obtaining a copyright. Bob

may have received a copy of A (which Alice may have made freely available on her

web-site), for which he promptly obtains a copyright, and then circulates it as A2.

While it may still be acceptable for Bob to claim ownership of all A2 s (circulated by

Bob) it is definitely unethical to let the copyright law enable Bob to claim ownership

of the original A created by Alice. The key issue here (which cannot be determined

by traditional copyright mechanisms) is to determine copies which originate from a

particular source. Watermarking the source can effectively address this problem.

I to register a work of visual art a completed application form, a non-refundable filing
fee of $30 and a non-returnable deposit of the material to be registered are to be mailed
to the Copyright Office. See http: //www.loc .gov/copyright/reg.html for more details
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Figure 7.1 Scenarios where existing copyright laws may be inadequate for resolving
ownership. Top - scenario I: A and B are two similar photographs created by different
individuals. Bottom - scenario II : creator of A does not want to obtain copyright.

7.2 Counterfeit Attacks on Watermarks

One of the primary problems to be addressed by watermarking methods is their

ability to make a counter-claim practically impossible. A counter-claim arises from

situations where a pirate can use the inadequacies of watermarking protocols to

"demonstrate" the presence of a his / her "watermark" (fake watermark or signature)

in the actual original content. Time stamping [91, 2] has been proposed as an

enhancement to the security provided by watermarking to overcome the problems

associated with counter-claims in watermarks. In addition to watermarking, the

creator can obtain a time stamp from a time stamping service (TSS). If the time

stamp is obtained before the content is released to the public, (before the pirate can

obtain a time stamp on the content) nobody else can claim legitimate ownership

of the content. However, time-stamping have the disadvantage of requiring ongoing

involvement of a third party. Moreover, there are some situations for which it does

not provide acceptable solutions:

• Time-stamping, does not protect people who do not want to obtain time stamp

and/or watermark their content, like Alice in Scenario II. If Bob is able to show

a counterfeit signature in A created by Alice, and if Alice has not obtained a
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time-stamp, then Bob will be able to claim ownership of content created by

Alice. Clearly, time stamping does not help in situations like this.

• Time stamping simply is not a solution for time sensitive applications. The

creator may not want to wait till he/she obtains a time stamp from the TSS.

Obviously, time stamping cannot be used for securing live broadcasts as well.

However, we shall demonstrate, that with a suitable protocol, which would lay some

(very reasonable) restrictions on watermarking algorithms, the above mentioned

problems can be effectively addressed.

7.2.1 Freedom in Choice

Let Alice be the creator of the original image I. She embeds her signature SA in

I to obtain the watermarked image IA= EA(I,SA). The presence of her signature

SA in A or any image IA derived from .1A (IA = N) can be demonstrated

with a reasonably good degree of certainty, by obtaining a sufficiently high detection

statistic

In the above equation < I > denotes that I may or may not be used by the detector.

The job of Bob, an aspiring pirate, is to demonstrate the presence of his (arbitrary)

signature SB in Alice's original image I. In other words

where h may be Bob's fake original image. Note that Bob is at liberty to choose his

own watermarking scheme (EB,DB). If Bob has freedom in choosing his signature

SB, he could fix some (4, DB), and "construct" a signature SB that yields a high

detection statistic sd,. Note that even though Bob does not possess a copy of I

(which is never released to the public by Alice), he does have Li, which is "very
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close" to I. If Bob does not have freedom in choosing his signature (say, if the

signature is assigned to him by a Watermarking Authority), he could still try to

tweak the watermarking scheme (EB ,DB ) to obtain a high detection statistic. It is

obvious therefore, that a good protocol for watermarking should lay some restrictions

both on the choice of signature and choice of the embedding and detecting functions

(or the watermarking algorithm).

7.2.2 Detection Statistic

The detection statistic sd , is a measure of degree of certainty with which the signature

is detected. Typically, the signature S takes the form of a Gaussian or binary pseudo

random sequence s (say of length N) generated from a key 1C. The watermark

embedding and detection operations can therefore be written as

In other words, the detection statistic is a measure of (normalized) inner product of

the embedded and the detected signature sequence.

The normalized inner product of randomly generated signature sequences will

also be random. More specifically, for large N, the distribution of the inner product

will be Gaussian. Let x i and yj , i = 1, . , N be i.i.d. of variance

= x iyi . The inner-product p can be represented as

xis and yes are independent, the variance of

for large N, by central limit theorem (CLT) [78] the inner-product

If the creator (or pirate) has absolutely no freedom in choosing the signature,

and if the detection statistic sd obtained is say 6 times the standard deviation (if

sd ,=- 6*T ), then we could say that the signature is detected with a probability of

In other words, on an

average, only 1 out of 1 x 10 9 signatures chosen randomly can yield such a high

correlation.
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Any judge would be more than willing to rule in favor of detection of the

signature, say if the probability of him/her making a wrong decision is one in a

million. In this case, sd = 5*- is more than acceptable. However, if the pirate can

find a loop hole in the watermarking protocol that enables him / her to search for

a suitable signature, then he / she has to search for one million signatures (on an

average) before he / she can obtain one that yields satisfactory detection statistic.

One way to overcome this problem is to insist that the detection statistic be

of the order of say 9)7 . This would imply that the pirate has to search for about

1 x 10 19 signatures before he can obtain one which yields satisfactory correlation. If

a pirate can search for say 1 x 10 8 signatures in a second then he/she would still need

over 300 years to come up with a satisfactory signature! However, this restriction

may make it considerably simpler for the pirate to remove the watermark by carefully

planned attacks. After such attacks, the real owner may not be able to extract the

signature with such a high degree of confidence (obtain high detection statistic).

7.2.3 Fake Originals

Even if the watermarking scheme and the choice of signature is fixed, it may still be

possible for a pirate to engineer a counterfeit attack, if the detection scheme is non

oblivious. This would permit the pirate to create a fake original (cover) image, for

which there are no restrictions! This problem can be solved to a certain extent if the

detection method is oblivious. But some geometric attacks on images like StirMark
2 may be extremely difficult to overcome unless it is permitted to use the original

image to undo the geometric distortions. Under this condition, the pirate may gain

some freedom in choosing an algorithm for undoing the geometric distortions. A good

watermarking protocol should also therefore, fix the algorithm to be used. However,

the pirate still has freedom in choosing the fake original which will be used by the fixed

2Free software available for download from http://www cl . c	 ac .uk
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algorithm for undoing geometric distortions. In other words, the pirate (Bob) can

engineer a (fake) original which when used in conjunction with the fixed algorithm,

can "undo the distortion" in Alice's original image I (Bob would claim that the

fake original he has created to be the original, and Alice's image I, to be an image

derived from his original) to show the presence of his watermark. Again, to engineer

the attack, he has the image I which is "very close" to I.

7.3 Watermarking Algorithms

To gain a better idea of the effect of counterfeit attacks on watermarking algorithms,

we need to take a closer look at the model of the watermarking scheme used. Usually,

the watermark is inserted in some transform domain. Let C TM. More generally,

only a subset of c ERN of C may be modified to embed the watermark. Let C cUë,

where c n c = (D. The overall embedding and detecting operation may be expressed

as

The watermarking algorithms that fit into the general model of Eq. (7.5) can further

be classified into 3 types, Types I, II and III as in Chapter 4, depending on the

embedding and detecting operators (e, 7)). For Type I methods, (E, D), take the form

of linear addition. Mathematically, a c+s. Type I methods can further be classified

as non oblivious methods, where D(E) E — c (for example, the method in [46]),

and oblivious methods (for example, . [28]), where D(c) E (no operation). Type II

and Type III methods on the other hand utilize periodic functions for embedding /

detecting. We also saw that optimal methods should be Type III, using continuous

periodic functions. The embedder E, characterized by a period A and threshold ,(3 is
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The algorithm for D(e) is as follows:

For high SNR's the optimal method will be a Type III which is close to Type II (0

close to A). On the other hand, for low SNRs the optimal Type III method will be

closer to Type I (large A and small /3). As we expect the watermarks to undergo

significant attacks, we would like to design the watermarking scheme for low SNRs.

As an example, if one-eighth of the coefficients of some unitary transform of the

image are used for watermarking, and if the permitted distortion of the image after

addition of the watermark is restricted to have a peak SNR of 42 dB, then 7 2 ti 33,

implying A 0 20. The expected attacks (an is typically expected to be much larger

than 72 . So a reasonable choice may be k = 5 (or A = 100) and /3 = 12. As the

decoder does not need to know the value of the value of ,8 may be chosen depending

on the nature of the image. Small values of /3 may be chosen for very smooth images,

and larger values for highly textured images. A better approach might be to choose

a high value of ,8 and obtain the watermarked image Ii. The distortion introduced

due to watermarking, viz. I1- I may then be thresholded using a reasonable visual

threshold model to obtain the final watermarked image I.
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7.4 Aids to Overcoming Attacks on Watermarks

"Conventional" watermarking methods rely on the assumption that if the image

is altered significantly in the mean-square error (MSE) sense, then the quality of

the resultant image would be so poor that it would not warrant a ownership claim.

Therefore, most attacks on "conventional" watermarks would rely on changing the

image significantly in the MSE sense, without visually distorting the image. There

are many ways to accomplish this - for example, scaling of pixel intensities, modifying

the histogram, introducing small geometric distortions etc.. Similar attacks are also

possible if the content is an audio signal instead of a image or video frame.

Figure 6.6 (left) shows the original Goldhill image. Figure 6.6 (center) shows the

modified Goldhill image obtained by reshaping the histogram. Though both images

are very similar and are of good visual quality, the difference in terms of PSNR

between the two images is 20 dB! Figure 6.6 (right) shows the Goldhill image after

application of StirMark which introduces imperceptible geometric distortions to the

image. Application of StirMark on 15 256 x 256 test images yielded resulting images,

of reasonably good perceptive quality, though the difference in PSNR between the

original and the modified image was around 19 to 20 dB on an average.

One way to survive geometric attacks like StirMark would be to cause the

watermarking method to introduce geometric distortions 3 [87]. Let G(I) be a

function of some geometric features of the image I. The watermark is can be

introduced by specifying G(i). However, we cannot expect such methods to be

robust to compression. Just as small geometric distortions can modify the MSE

significantly, small changes in MSE (such as those that might be introduced due to

lossy compression) can change G(I) significantly. In this light it is not surprising

Slow energy signatures introduced in the MSE sense show very good robustness to
distortions of much higher energies due to spreading gain. Similarly, small modifications
introduced to the geometric features can withstand much larger attacks on geometric
features.



102

that the watermarking method proposed by Rongen et. al [87] is robust to StirMark,

but not robust to compression. Similarly methods that specify the histogram [86]

too, are not very resistant to compression.

One could still use conventional watermarking methods effectively if the

primary ways by which the fake original can be moved away from the original in

the MSE sense can be identified, and suitable algorithms to undo the changes can

be employed. For example, against attacks that modify the histogram, we could

permit reshaping the histogram of the image in question to match the histogram of

the original image before detecting the signature. Similarly a good algorithm for

detecting salient points of the original image and those of the image in question may

be used to re-warp the image so that the salient points match, before the signature

is detected. Similar algorithms could also be used to overcome pixel scaling attacks.

However, only "permitted" algorithms may be used for reshaping the histogram /

identifying the salient points to re-warp the image, or for resealing the pixel values.

As mentioned earlier, permitting freedom in choice of these algorithms would provide

the pirate with additional degrees of freedom to engineer counterfeit attacks.

7.4.1 Strictly Oblivious Watermarking

Most so-called oblivious watermarking methods proposed in literature, are not

strictly oblivious. For strictly oblivious watermarking, the watermark detector

may not even know the size of the original. The received image may have been

resized, rotated, cropped, undergone some histogram modification, and probably

some geometric distortion such as those introduced by StirMark. It seems highly

unlikely that a watermarking scheme would evolve, that can detect the watermark

in the face of all possible attacks. For example, the the method proposed in Ref

[61] can reasonably survive rotation, scaling and translation (RST) attacks. This is

achieved by adding the watermark in a (significantly reduced degrees of freedom)
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RST invariant domain. However it cannot survive rotation, scaling, translation and

cropping. To do that one might have to repeat the watermarks in many blocks of the

image, thus reducing the degrees of freedom for the watermark even further. Even

if such a method evolves in the future, it may not be able to survive other forms

of attacks. Reduced degrees of freedom implies lower separation between possible

watermarks, and also, in general, lower robustness to attacks. So such schemes may

not be able to unambiguously establish ownership in a court of law. In other words,

a strictly oblivious watermarking method, capable of resolving ownership may never

be practical. In this light, insisting that the creator preserve an unwatermarked copy

of his creation, does not seem restrictive. It may be the only option.

7.5 Restrictions on Choice of Signature

The type of restrictions for choice of signature, proposed in watermarking literature,

can be classified into 3 types -

1. issued by a Watermarking Authority (Scheme I).

2. derived from a meaningful string [28] (Scheme II).

3. derived from the cover image [26] (Scheme III).

Scheme I has a major disadvantage of needing a Watermarking Authority in

possession of all "secrets". The disadvantage of the Scheme II is the following;

if the method of obtaining the signature from the meaningful string is fixed (as it

should be - otherwise the whole purpose is defeated), then it may be possible for

pirates to "guess" the meaningful string used by Alice, thus reducing security). In

addition, both Schemes I and II suffer from the fake original problems illustrated in

Section 7.2.3.

In Ref. [26], Craver et. al suggested a novel idea (Scheme III) to solve the fake

original problem, which also eliminates the need for an agency to issue signatures.
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They suggested that the signature be obtained from the original image itself. The

original image is hashed by a fixed hash function. The output is used as a seed for a

fixed random sequence generator to generate the signature. Tying up the signature to

the original image in an inextricable way goes a long way in restricting the freedom

available for the pirate to engineer counterfeit attacks. The signature is obtained as

where I-1 is a fixed hash function and g is a fixed random sequence

generator (RSG). More importantly, H(I) 1-1(j). The watermarking scheme is non

oblivious, described by Eq. (7.8).

However, Scheme III too is not entirely foolproof. At least, to be foolproof Alice

should obtain very high detection statistics in Bob's image, which may not be possible

in some cases. The attack for this method rests on the fact that Bob can still search

for a combination of a fake original and its corresponding signature. Bob, who has in

his possession I (or equivalently 6), could change I significantly, in the mean-square-

error sense while maintaining the "visual similarity" between the original I and the

resulting (modified) image /m .

Let /d be the difference image

Even though the algorithms for undoing geometric distortions / histogram modifi-

cations / pixel rescaling would not permit Bob to move very far away from I , he

should be able to introduce distortions such that the total power of 'd (cd ) is much

larger than that of the signature SA (SA) added by Alice. Mathematically,

Therefore
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The next step for Bob is to derive his "original" (fake original) image from I,. Before

we see how he can do that, note that the hash function ?-1 maps different images to

(possibly) different seeds. For example if all the images in the world were of size

256 x 256 and restricted to 8 bits per pixel, there are still 2^(256x256x8) possible images.

Though would map the space of images to a (comparatively) very restricted 'space'

of seeds, the space of seeds should still be large enough to ensure that the probability

that different signatures are correlated is very small. Two 'obviously' different images

having the same signature is not likely to create a problem. The problem only arises

when images are 'similar'. So it is important that the (fixed) hash function generates

different seeds especially when the images are 'similar'. So the hash function would

be required to "respond" to the LSBs of image more than to the MSBs. This works

to Bob's advantage.

Bob could probably generate enough (different) signature sequences from the

image in, (or cm ) just by tweaking 1-2 LSBs of the image pixels. But when he

does that the resulting image is still very close to I,. So he would correlate every

signature sequence obtained from modified versions of I, with the fixed Cd. Whenever

a particular "tweaking" of the bits results in a signature sequence with satisfactory

correlation with c d , he stops. He calls the resultant image if .47, as his (fake)

"original" image. If SB (or sb) is the signature generated from If , and s b has a

reasonable correlation with c — cf , then it can also be expected to have high corre-

lation with c — cf . So Bob can demonstrate the presence of his signature in I! Note

that making If — I large swamps out the difference between I and I.

After a series of carefully planned attacks on Alice's watermark in I m , Alice,

may not be able to detect her signature in If with a high degree of certainty. Lets

assume that Alice, using a sophisticated watermarking method manages to detect her

signature in if with P, ti 3 x 10-7, (or 5.1T/). To obtain a comparable detection

statistic of his signature in I, Bob has to search roughly 3.3 x 10 6 sequences on an
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average, before obtaining a suitable signature. This is certainly computationally

feasible.

7.6 Improving Scheme III

Ideally, we would like to reduce the detection threshold, to enable the content creators

to claim ownership even under substantial attacks by a pirate. As mentioned earlier,

if counterfeit claims do not exist, any judge would decide in favor of detection of the

watermark, even if the probability of error is 1 in 10000. The problem with Scheme

III is that the complexity of the attack would also be of the same order of the accepted

threshold for signature detection. With the following small modification to Scheme

III we shall see that we can substantially increase the complexity of engineering a

counterfeit attack:

• The watermark should be detected without subtracting the original image. But

the original image is still necessary because the seed is obtained from the

original image as in Scheme III.

• The signature should yield a high detection statistic with the image in which

the signature is to be detected, and low detection statistic with the original

image. Alternately, if sdo is the detection statistic obtained from the original,

and sd1 is the detection statistic obtained from the image in which the presence

of the watermark is to be shown, the final detection statistic is sd = sd1 — bs do ,

where b is a constant, the optimal value of which shall be determined shortly.

To engineer a signature, Bob again starts with / 7„, and if , obtained as earlier, and I

which is a good approximation of Alice's original I. Let si be the detection statistic

obtained as the inner-product of randomly generated signature sequences with the

coefficients D(c) of the image I (we shall assume that that S, 1) are Type III

CP-SNS, with Δ~ 100 and ,8 12). Let s i be the statistics of the inner-product of
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randomly generated signature sequences with the coefficients D(c) corresponding to

the true original I. Again, as I and I are very close, s i s i . In order to show

his signature in the image I with the same degree of certainty as in Method III

(Pe < 10-7), the signature should be chosen such that s 2 > 5 However, inv N

addition, the same signature should also yield a low detection statistic with Bob's

(fake) "original" image if . Let s if be the statistic obtained as the inner-product

of randomly generated signature sequences with the coefficients 731 (c f). Obviously,

the detection statistics s i and sif are not independent. As I and If are still more

"similar" than "not similar", we would expect a random sequence that yields a high

statistic si to also yield a high statistic s if . This makes it extremely difficult for Bob

to engineer a signature. Define

Bob has to search for a signature sequence z,

Let w = x — by. It can be easily shown that the pdf of w i , i = 1, ... N is

The detection statistic sd that Bob has to obtain is the inner product

of independent Gaussian sequences, z and w, which will have a variance of

In order to simplify his search, Bob will try to increase

o by reducing po as much as possible (or moving c f as far away as possible from c

in the MSE sense). However, the algorithms suggested as part of the watermarking

protocol to undo all Bob's efforts to move I f very far from I (or I) in the MSE sense,

will make it difficult for Bob to obtain low values of po .

To get a better idea of the Po values obtainable, let us assume that Bob still

manages to move If significantly (without introducing pure geometric distortions /

histogram modification), such that the PSNR of the resultant image is 25 dB. We
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have c the coefficients of the original image, and c f , those of the modified image

, and cf c n. To reduce po Bob tries to maximize n. If we assume that c

corresponds to one eighth of the low frequency coefficients of the image, then the

standard deviation of c will be more than 100. The maximum standard deviation

of n is possibly around 15. Even with these very conservative estimates (typically

standard deviation of c > 100 and standard deviation of n < 15), and with a choice

of A = 100, simulations indicate that it may be extremely difficult for Bob to obtain

po = xTy values less than 0.65.

We shall now investigate the optimal choice of b to make things more difficult for

Bob, the pirate. While Bob tries to maximize the variance of

(or the Watermarking Authority) will try to minimize au,. It can be easily seen, that

the choice of b po minimizes au,. Under this condition, o = 1 —	 Therefore,

to search for a signature which yields sd > 5 Bob has to search

signatures on an average. Even if (miraculously) Bob manages to obtain po = 0.55,

he still has to search about 2.6 x 10 12 signatures. For po = 0.6, 0.65, 0.7, 0.75 and

0.8, Bob has to perform 3.6x 10 14 , 4.1 x 10 17 , 1.8 x 10 22 , 6.6 x 1029 and 2.7 x 10 43

signatures respectively.

To summarize, the detection statistic sd should be obtained as follows. If c

corresponds to the original content, and e the coefficients of the content in which the

signature is to be detected,

2. obtain the signature sequence s r from the original I using the hash functionl-t

and the RSG g, as sr = g(9-1(.1)). Let s = Isil

The detection statistic sd is now
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Figure 7.2 Watermark embedding and detection protocol

7.7 Protocol for Robust Watermarking

We suggest the following list of restrictions to be placed on watermarking methods, in

order to make them resolve rightful ownership unambiguously. The overall protocol

for watermark embedding and detection are shown in Figure 7.2. All the unshaded

blocks in the figure are fixed (or regulated from time to time by the Watermarking

Authority). Only the watermark embedding function and detecting function will

depend on the particular watermarking algorithm.

1. A prescribed algorithm for equalizing histogram. The signature is added to the

original content after equalizing its histogram. The histogram of the content

in question is equalized (using the same equalizer) before performing detection

of the signature.

2. A prescribed algorithm for determining significant points and re-warping the

image if necessary. For audio signals, the watermarked audio signal is resampled

to ensure that salient points in the original (unwatermarked) and the audio

segment in question, match.

3. A prescribed algorithm for determining scale factors of pixel values / audio

samples and re-scaling, and equalizing histogram prior to watermark detection.

4. Fixed hash function Ii to be used. The hash function could be made compu-

tationally intensive to further discourage engineering of signatures. The hash
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function operates on the (histogram equalized) original content to produce the

seed 1-1(I).

5. The seed 7-1(/) is input to a fixed random sequence generator g to generate the

signature sequence s 1 .

6. Sk = g (71(4 N, d) is the complete set of sequences that could be generated by

g. For a fixed I (or original content), the only parameters that can be changed

are N - the length of the sequence, and d - the type of the random sequence

desired. For instance, d could take two options - Gaussian and Uniform.

Another useful option for d might be a random permutation of integers 1, ... N

(this may be used for reordering coefficients if the algorithm calls for it). No

restriction is placed on the length N.

7. Any decomposition of the original content can be used. If decompositions are

generated from random sequences only one from the set of possible sequences

SdN- can be used. If the watermarking algorithm calls for a random sequence

(say for re-ordering of coefficients), at any stage of the watermark embedding

/ extraction process, only random sequences Sg, are permitted.

8. Signature to be extracted from the content in question without subtracting the

original (or cover) content.

9. The detection statistic should be the weighted difference between the statistics

obtained from the content in question (i d) and the statistics obtained from the

original (sdo ), as explained in the previous section.

The proposal does not limit itself only to methods in which the signature is detected

by correlative processing. For example, in [16] some low frequency DCT coeffi-

cients are scrambled by a random cyclic all-pass filter. The detection statistic is

obtained by counting the difference between positive and negative coefficients. The
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Figure 7.3 Block diagram of the watermark embedding and detection

only restriction the proposal places on the method above is how the seed is obtained

and the corresponding random sequence to be used to generate the all-pass filter

coefficients. To our knowledge any existing oblivious detection watermarking method

(with the exception of methods [86, 87] that introduce geometric distortions or modify

the histogram to introduce the watermark) can be modified to meet the requirements

of the proposed protocol.
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7.8 An Example Watermarking Scheme

This section outlines a possible watermarking scheme (except for the choice of the

decomposition employed, and the choice of coefficients to be modified for inserting the

watermark, the proposed method is equally applicable for audio signals). The main

purpose of this section, is to illustrate with an example, the influences of the proposed

protocol in choosing parameters for the watermarking scheme. However, the section

also briefly addresses other issues for increasing the security and robustness of the

watermarking scheme. The block diagram of the scheme (embedding and detecting)

is shown in Figure 7.3. This block diagram may be considered as closer look at the

shaded blocks in Figure 7.2.

In Figure 7.3 I represents the cover image after equalizing the histogram by

the fixed equalizer. Perhaps, high GTC (Transform Coding Gain) [76] transforms

like DCT or wavelet transforms are the best suited for watermarking applications.

As high GTC transforms provide the most compact representation of the image,

attacking DCT / wavelet coefficients for the purpose of watermark removal will most

likely destroy the image. From the complete set of DCT / wavelet coefficients we

choose a low to medium frequency subset for watermarking purposes. The selected

coefficients undergo a key based transform (employing all-pass filters, similar to the

data hiding scheme suggested in Chapter 6) to obtain the coefficients c to be used

for embedding the signature. The signature sequence s to be embedded in e may be

obtained as a pseudo-random binary sequence using the prescribed random sequence

generator (RSG) trigerred by the key K (which in turn is derived from hashing the

original image). The coefficients obtained after embedding, viz. e then undergo the

inverse Key-based transform to obtain the modified DCT / wavelet coefficients, which

together with the unmodified coefficients are inverted to obtain the watermarked

image or the stego-image.
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For detection, the received image undergoes fixed algorithms for aligning

geometric features and rescaling of pixel values / histogram equalization, resulting

in image I. The transformation T is performed on the received noisy image I to

get the corresponding coefficients E. The detector function D extracts the noisy

signature sequence 'S", which along with the signature sequence s (obtained from I)

and p = D(c) is input to the comparator block. The comparator implements Eq

(7.14) to obtain the detection statistic sd.

Note that any permitted watermarking algorithm should have very little

freedom in choosing arbitrarily defined parameters. For example in this case, the

protocol may impose a condition that all watermarking algorithms should use the

same A (which should be chosen after a lot of thought). A less restrictive (and

probably more reasonable) rule could be that the value A be at least 5 significant

digits - while the first digit may be chosen based on the design criteria, the following

digits should be derived from the key IC using the RSG.



CHAPTER 8

CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

This thesis is a comprehensive study of the issues involved in multimedia steganography,

and more specifically for image and video steganography.

The thesis views the problem of data hiding as a communication system where

the resource is the distortion that can be introduced without changing the original

content perceivably. The distortion introduced should be used efficiently to commu-

nicate information bits by using an appropriate signaling technique.

The thesis first examines linear data hiding methods, which are also referred

to as Type I methods. A comprehensive analysis of Type I methods is addressed in

Chapter 3. We then take a novel approach to the problem of signaling for multimedia

steganography and introduce the concept of floating signal constellations. It is seen

that the new signaling method is a generalization of the so called Type II methods,

based on quantization, widely used by many researchers. We further extend the Type

II methods by introducing thresholding in Type II signaling methods. The extended

Type II (or Type III) methods is then shown to be a generalization of both Type I

and Type II methods. It is also seen that neither a (oblivious) Type I or a Type II

method can be optimal. For low SNR communication channels, the optimal Type

III is close to Type I. On the other hand, for high SNR channels, the optimal Type

III is closer to Type IL

The fundamental difference between the classic Type II methods and the gener-

alization proposed in this thesis is a result of the realization that it is the periodic

nature of quantization that is useful for the signaling method, to achieve self-noise

suppression. The generalization permits use of other periodic functions. We proposed

two such periodic functions - a continuous triangular function (CM-SNS) and a

sinusoid (CsM). Though the superiority of the two over quantization was clearly

shown, the problem of finding the best periodic function is still open. The best
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periodic function would obviously depend on the nature of the additive noise in the

channel. For both Type II and Type III methods, binary sequences seem to be the

best choices for signaling. However, as pointed out in Chapter 5, the optimality

of the conventional signaling scheme that follows SNS may demand use of non-

binary signatures. In this case a joint optimization of the SNS and and conventional

signaling method is called for. This is perhaps another area for future research. The

thesis also points out that Type III methods are still sub-optimal. It is well estab-

lished that oblivious methods can approach the capacity of non oblivious methods.

However, to achieve that we might need to use very large codebooks, which may not

be practical. Other (probably sub-optimal) alternatives which may perform better

than Type III methods is a direction for future research. An interesting problem

may be to obtain the capacity bound for Type III methods.

The thesis then addressed the problem of maximizing the resource - the

distortion that can be introduced in the content. However, the problem has been

addressed only for images. We suggested a practical option of introducing the

distortion in the magnitude DFT domain. However, it appears that much more

robust data hiding can be achieved if practical solutions to the inverse problem of

moving an image to a specified state or introducing a distortion that is close to a

desired distortion, by introducing imperceptible geometric distortions or histogram

modification, or both, can be found.

The thesis finally addressed the problem of watermarking images for unambiguous

resolution of ownership. The thesis proposes a protocol to be followed for water-

marking, which can drastically increase the complexity of engineering an effective

counterfeit attack.



APPENDIX A

IMPLEMENTATION OF CYCLIC 2-BAND FILTERBANKS

Let h E RN and h H, where H denotes a discrete Fourier transform (DFT) pair.

Let

As h is orthogonal to alternate cyclic shifts,

where (, ) stands for the Hadamard product (multiplication of corresponding

elements) of two vectors. It can be easily shown that the lth elements of H e and Ho

are given by

Substituting Eqn. (A.4) into Eqn. (A.3) and simplifying,

Equation (A.5) is a necessary and sufficient condition for the vector h to be

orthogonal to all its alternate circular shifts. Note that in addition to the freedom in

selecting the DFT magnitudes of H, there is complete freedom in the choice of their

phases (except, of course if h has to be real, only —1 phase values are independent).

Now orthonormal basis vectors can be obtained from h. We now want to obtain
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complementary basis vectors, to complete the basis for R N . Let g be a vector

which is also orthogonal to its alternate shifts. Then

Since we desire g and its alternate cyclic shifts to complement the basis vectors

derived from h, g should further satisfy

where, ge (n) and go (n) are respectively the even and odd indexed elements of g.

Taking the DFT of Eqn. (A.7),

Using Eqn. (A.4), and similar relations for Ge(l) and G0 (1), Eqn. (A.8) can be

rewritten as

Equation (A.9) is satisfied if we choose

where 0 is an arbitrary phase angle. Choosing 0 = 0, we get

A.1 Forward Transform

Define

and
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In view of Eqn. (A.15), we can obtain the transform coefficients xh (m) and xg(m) by

sub-sampling the IDFTs of Yh and Y9. Alternatively, from Eqs (A.12) and (A.13)

we have

Therefore,

where

Similarly,

where

Thus xh (m) and xg (m) can be determined by computing the -point IDFTs of

Zh and Zg , instead of computing the N-point IDFTs of Yh and Y9 and sub-sampling

them.

The implementation of the forward transform of x thus consists of the following

steps

1. Obtain the DFT X of x.
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2. Compute the Hadamard products

3. Split the N-vector Yh into two N/2-vectors and add them to obtain the N/2-vector

Zh. Form the N/2-vector Z 9 from the N-vector Yg in a similar fashion.

4. Obtain xh and xg as the IDFTs of Zh and Zg respectively.

A.2 inverse Transform

Let Xh and X9 denote the periodic extensions of the N/2-point DFTs of x h and xg

respectively, i.e.,

It can be shown that (see Appendix B)

The implementation of the inverse transform therefore, consists of the following steps:

1. Obtain the N length DFTs of xh and xg .

2. Make periodic extensions of these DFTs to length N to obtain Xh, and Xg .

3. Compute the Hadamard products Xh.H and X g.G.

4. Compute the IDFT of X h .H + Xg .G to obtain x.



APPENDIX B

MATHEMATICAL PROOFS

B.1 Proof of Ea (5.7)

Using the identity

Eq (B.1) reduces to

B.2 Proof of Eq (5.10)
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B.3 Proof of Eq. (A.22)

Consider the first term, Ti (n) of (B.6),
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Substituting for xh(m) from Eq. (B.9) into Eq. (B.8), we obtain

Substituting for He (/) from Eq. (A.4) into Eq. (B.10),



Similarly it can be easily shown that

Similar expressions can be derived for T2 (n) to obtain

for even and odd n respectively.

In view of Eqs. (A.10) and (A.5)),

Combining Eq. (A.14), viz.,
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with the equations for T1 (n) and T2 (n), and using Eqs. (B.13) and (B.14),
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