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ABSTRACT

SPACE/TIME/FREQUENCY METHODS IN ADAPTIVE RADAR

by
Christopher D. Peckham

Radar systems may be processed with various space, time and frequency techniques.

Advanced radar systems are required to detect targets in the presence of jamming

and clutter. This work studies the application of two types of radar systems.

It is well known that targets moving along-track within a Synthetic Aperture

Radar field of view are imaged as defocused objects. The SAR stripmap mode is

tuned to stationary ground targets and the mismatch between the SAR processing

parameters and the target motion parameters causes the energy to spill over to

adjacent image pixels, thus hindering target feature extraction and reducing the

probability of detection. The problem can be remedied by generating the image

using a filter matched to the actual target motion parameters, effectively focusing

the SAR image on the target. For a fixed rate of motion the target velocity can

be estimated from the slope of the Doppler frequency characteristic. The problem

is similar to the classical problem of estimating the instantaneous frequency of a

linear FM signal (chirp). The Wigner-Ville distribution, the Gabor expansion, the

Short-Time Fourier transform and the Continuous Wavelet Transform are compared

with respect to their performance in noisy SAR data to estimate the instantaneous

Doppler frequency of range compressed SAR data. It is shown that these methods

exhibit sharp signal-to-noise threshold effects.

The space-time radar problem is well suited to the application of techniques

that take advantage of the low-rank property of the space-time covariance matrix.

It is shown that reduced-rank methods outperform full-rank space-time adaptive



processing when the space-time covariance matrix is estimated from a dataset with

limited support. The utility of reduced-rank methods is demonstrated by theoretical

analysis, simulations and analysis of real data. It is shown that reduced-rank

processing has two effects on the performance: increased statistical stability which

tends to improve performance, and introduction of a bias which lowers the signal-

to-noise ratio. A method for evaluating the theoretical conditioned SNR for fixed

reduced-rank transforms is also presented.
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CHAPTER 1

INTRODUCTION

Various space, time, and frequency techniques may be used to process signals origi-

nating from radar systems. These techniques are utilized in advanced radar systems

that are capable of detecting targets in environments containing jamming and clutter.

Clutter and jamming affect radar systems in various ways. Ground clutter observed

by an airborne platform may be extended in both angle and range. Platform motion

causes the ground clutter to be spread in Doppler frequency. Jamming signals are

localized in angle and spread over all Doppler frequency. To perform interference

cancellation, multidimensional filtering over the spatial and temporal domains is

required. Uncertain knowledge of the clutter and jamming environment requires the

use of systems that perform data-adaptive processing.

Time-frequency distributions are mappings of information contained in a time

series into functions of time and frequency. TFDs have been proven to be powerful

tools for signal analysis and processing. In Synthetic Aperture Radar (SAR) systems,

the SAR returns may be processed with different time-frequency distributions to

analyze specific characteristics of targets within the radar return. The doppler

frequency in SAR is not a fixed quantity but it is linear in time. TFDs may be

used where localization of this information is needed. SAR systems may be used in

applications requiring high resolution imaging.

Space-time adaptive processing (STAP) refers to the simultaneous processing

of the spatial samples from an array antenna and the temporal samples provided

by the echos from multiple pulses of a radar coherent processing interval (CPI). In

STAP, signals are varying in space and doppler but the doppler is fixed over the

processing interval. In the case of STAP, reduced rank techniques may be applied
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that take advantage of the low-rank property of the space-time covariance matrix.

STAP is applicable for target tracking and detection.

1.1 SAR Processing using Time-frequency Distributions

Synthetic Aperture Radar (SAR) systems operating in stripmap mode are designed

to produce two-dimensional, high resolution images of the earth's surface. This high

resolution is obtained by utilizing the relative motion between the radar and the

observed scene. The knowledge of the platform motion allows the synthesis of a long

antenna, along the flight direction, and the resulting high spatial resolution. The

echoes corresponding to successive transmitted pulses exhibit a phase shift varying

with the time as a function of the relative motion between the radar and each

backscattering element. Due to the motion of the radar platform, each point on

the ground reflects an echo having a Doppler shift proportional to the radar velocity

vector along the line of sight. Points at different distances are separated in time, by

transmitting a chirp signal and then applying a range compression. Points at the

same distance, but observed from different angles, exhibit different Doppler shifts.

Targets moving along-track (in parallel with the SAR platform) appear as a

defocused object superimposed on the ground map. The defocused image is caused

by the mismatch between the SAR processing parameters and the signals returned

from the moving target. To achieve high resolution in the azimuth dimension, the

SAR collects and integrates samples of signals received from the same range. For

a fixed rate of relative motion, and for a target at a specified range and azimuth

location, the phase of the SAR return is a quadratic function of time. The phase

rate of change (the Doppler frequency) is then a linear function of time, and the

Doppler rate is constant. SAR processing is tuned to the Doppler rate calculated

for geostationary imaging. The blurring of a moving target can then be corrected

by carrying out the SAR processing using the actual Doppler rate associated with
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the target. In this work we study a number of techniques for extracting the target

motion parameters from the SAR data. Those parameters may then be subsequently

used to adjust the processing to focus on the moving object.

The signal received from a target moving over a stationary background can be

modeled as samples of a chirp signal embedded in noise. Therefore the problem of

estimating the motion parameters is equivalent to the estimation of a chirp signal

in a noisy environment. Time-frequency Distributions (TFD) are mappings of infor-

mation contained in a time series into functions of time and frequency. TFD's have

been proven powerful tools for analyzing signals with time varying properties [1] [2].

In particular, TFD's can be applied to the estimation of the parameters of the linear

FM signal (chirp). Various authors have used TFD for estimating the instantaneous-

frequency (IF) of a signal in noisy environments.

Boashash et. al. compare the performance of a number of algorithms used to

determine the IF [3]. White estimated the IF of a noisy signal using TFD techniques

[4]. Lovell compares the performance of TFD's in the Cohen's class with other IF

estimation techniques such as the zero crossing estimator and an estimator based on

linear regression in the signal phase [5]. Boashash showed [6] that the Cross Wigner-

Ville distribution (XWVD) method provides the best performance in terms of the

SNR threshold which meets the Cramér-Rao bound. Harris and Salem compared

the Wigner-Ville distribution (WVD) to various FM discriminators [7]. The Wigner-

Ville distribution has also been applied to the analysis of SAR data for the purpose

of extracting the motion parameters of a moving target [8, 9, 10]. The Short-Time

Fourier transform (SIFT) and the Gabor expansion are of special interest being

linear and thus not exhibiting cross-terms when multiple time-varying signals are

analyzed. Auslander et. al. compared the performance of the Gabor expansion and

Short-Time Fourier transform in the presence of noise [11]. Morlet's wavelet [12, 13]

is based on a Gaussian and is an extension of Gabor's basic idea for a more efficient
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representation of seismic data [13]. This wavelet has also been used to process SAR

signals [14].

1.2 Space-time Adaptive Processing

Space-time adaptive processing (STAP) radar performance has been for some time a

topic of considerable interest to the radar community. The need for adaptive methods

arises in practice when statistical properties of the interference are not known and

need to be inferred from the observed data. STAP is a system that linearly combines

the spatial samples from the elements of an antenna array and the temporal samples

that are provided by the successive pulses of a multiple-pulse waveform. An array

beamformer and target Doppler filter are combined to create a STAP weight vector.

In the ideal case, STAP provides a coherent gain on target while suppressing clutter

and jamming by forming angle and Doppler response nulls. The weight vector is

dynamically determined based on the data received by the system. Since a weight

vector is optimized for a specific angle and Doppler, STAP systems may compute

multiple weight vectors to cover the target angles and Doppler frequencies of interest.

A primary difficulty in STAP is the dimension of the adaptive weight vector that

can become large. As this dimension becomes larger, the required sample support

for STAP detection also needs to increase. In optimum filter theory, the interference

covariance is assumed known. This is not directly applicable to practical problems,

but it is the start from which adaptive filtering theory is developed. The optimal

Neyman-Pearson detector for a known signal vector in colored Gaussian noise with

a known covariance matrix is linear, i.e., it is constructed from a linear combination

of the inputs to the space-time array. In practice, the interference+noise covariance

matrix is typically not known. A well-known solution to that is the sample matrix

inversion (SMI) method, that substitutes an estimate for the true noise covariance

matrix expression in the linear detector [15]. It is also well-known that if the sample
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support consists of a population of independent, identically distributed vectors with

a multivariate Gaussian distribution, the number of samples required to achieve

performance within 3 dB of the optimal, is approximately K 2N, where N is the

dimension of the vectors. The main drawback of the SMI detector is that its sample

support K is proportional to the array degrees of freedom N. Recent publications

have shown the advantages of various forms of reduced-rank processing over the

full-rank SMI [16, 17, 18].

A taxonomy of reduced-rank methods is shown in Figure 1.1. Two main archi-

tectures are noted: the reduced-rank minimum variance beamformer (RR-MVB),

and the reduced-rank generalized sidelobe canceler (RR-GSC). A third method,

loaded SMI (indicated by a dashed line), refers to adding a constant term to the

diagonal of the covariance matrix to improve its numerical conditioning. LSMI

behaves as a reduced-rank method [19, 20]. The RR-MVB architecture is shown

in Figure 1.2. Given a rank reducing transformation T, adaptation can take place

in the subspace spanned by the principal components of the transform (interference

subspace methods) [18], or in the complementary subspace (noise subspace methods)

[16, 17]. The transforms are either fixed (such as discrete Fourier transform - DFT,

or discrete cosine transform - DCT) or data dependent (Karhunen-Loeve transform

- KLT). The RR-GSC architecture is shown in Figure 1.3. The rank-reducing trans-

formation is applied in the branch used for estimating the interference component.

Another class of RR-GSC methods are based on the cross-spectral metric (CSM)

[21, 22].

It is interesting to note that reduced-rank methods are generally evaluated

according to the error they produce with respect to full-rank adaptive processing.

When the true covariance matrix is known, reduced-rank processing is suboptimal.

However, our interest in those methods stems from the fact that in limited

dataset regimens reduced-rank methods actually outperform full-rank adaptive



Figure 1.2 Reduced-rank MVB

6

Figure 1.3 Reduced-rank GSC
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processing. This is explained by the presence, in addition to thermal noise effects,

of errors resulting from the estimation process. Reduced-rank processing suppresses

estimation errors at the cost of a bias in the SNR. The net effect, however, is a

significant performance improvement for cases when the interference may be modeled

as low-rank. Reduced-rank methods are clearly important for STAP radar, where a

large number of degrees of freedom may be available. For a uniform array and for

fixed PRF, the space-time clutter covariance matrix is essentially low-rank due to

the inherent oversampling nature of the STAP architecture. Hence, the space-time

radar problem is well suited to the application of techniques that take advantage of

the low-rank property.

This work is organized as follows: Chapter 2 introduces time-frequency

analysis, including the Fourier transform, the short-time Fourier transform, the

Gabor expansion, the Wigner-Ville transform, and the Continuous Wavelet transform.

These time-frequency analysis techniques are then applied to the problem of

estimating SAR target parameters. The space-time adaptive processing signal

environment is introduced in Chapter 3. Reduced rank processing of STAP systems

is presented in Chapter 4 with numerical results of simulated and real data presented

and compared in Chapter 5. Finally, conclusions are presented in Chapter 6.



CHAPTER 2

TIME-FREQUENCY TECHNIQUES USED TO ESTIMATE SAR
TARGET PARAMETERS

Signals may be characterized over a time-frequency plane by the use of time-frequency

signal representations. The temporal localization of a signal's spectral components

may be found through the time-frequency signal representations combination of time-

domain and frequency-domain analyses.

A signal received in a SAR system from a target moving over a stationary

background may be modeled as samples of a chirp signal embedded in noise. The

problem of estimating the motion parameters of this moving target is equivalent to

the estimation of a chirp signal in a noisy environment. Time-frequency distributions

are mappings of information contained in a time series into functions of time and

frequency and have been proven as useful tools for analyzing signals with time-

varying properties. TFDs can be applied to the estimation of the parameters of

a linear FM signal and therefore applied to the previously mentioned problem of

estimating motion parameter estimation.

In this chapter, synthetic aperture radar and the time-frequency signal repre-

sentations that are used in the analysis are introduced. Several introductory papers

on time-frequency analysis are available for reference including Cohen [1], Hlawatcsh

and Boudreaux-Bartels [23], and Boashash [24]. This chapter also contains the appli-

cation of four specific TF analysis techniques: the Short-Time Fourier transform, the

Gabor expansion, the Continuous Wavelet transform and the Wigner-Ville distri-

bution, to the estimation of the relative along-track velocity between the SAR

platform and a moving target.

8
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2.1 An Overview of Synthetic Aperture Radar

Synthetic aperture radar (SAR) is an airborne/spaceborne radar mapping technique

that generates high resolution maps of surface terrain and target areas. The

first demonstration of SAR mapping was performed in 1953 by a group from the

University of Illinois when they mapped a section of Key West, Florida. A few

of the many overview references on the subject of SAR are Brown [25], Kirk [26],

and Munson [27]. Fine azimuth resolution may be obtained by using a small radar

antenna, storing returns received over time, and integrating the returns so as to

synthesize the equivalent of a long antenna array. SAR may be used to obtain fine

resolution in both the slant and cross ranges. Slant range refers to the range in the

radar's line of sight. Resolution in this range is typically obtained by coding the

transmitted pulse with an FM chirp. Cross range is the resolution transverse to the

radar's line of sight and resolution in this range is obtained by coherently integrating

echo energy reflected from the area illuminated by the radar. Synthetic aperture

refers to the distance that the radar travels during the time that reflectivity data is

collected from a point to be resolved which remains illuminated by the radar beam.

The length of the synthetic aperture of a side-looking SAR is the ground-track

distance over which coherent integration occurs. In SAR, ideal processing produces

constant cross-range resolution verses range. A side-looking SAR configuration is

shown in Figure 2.1.

Echo energy from each range-resolved scatterer in the mapping area is made to

arrive in phase at the output of the radar processor to produce the narrow beamwidth

associated with the synthetically generated long aperture. This is achieved by

correcting for all moving of the radar platform that deviates from straight line motion.

Focused SAR, instead of unfocused SAR, has the quadratic phase error of the radar

return corrected after the signal integration.
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Figure 2.1 Side-Looking SAR

Fundamental characteristics of side-looking SAR may be explained in terms of

equirange and equi-Doppler lines on the earth's surface to be mapped by the moving

radar platform. Equirange lines on the earth's surface are the intersections with

the earth's surface of successive concentric spheres centers at the radar where points

on these spheres are equidistant from the radar. Equi-Doppler lines on the earth's

surface are produced by intersections with the earth's surface of coaxial cones, that

are concentric about the radar's flight line as the axis and the radar position as the

apex of the cones. Points on the cones appear at constant velocity relative to the

radar.

The radar is able to view the portion of the range-Doppler coordinate system

which is illuminated by the real antenna beam. The echo power distribution as a

function of range delay and Doppler is the SAR image for that area.



11

Figure 2.2 SAR cross-range Doppler

2.2 Doppler

To explain the SAR concept from the point of view of differential Doppler signals,

the signals produced by scatters separated in cross range relative to the radar are

examined as shown in Figure 2.2 at the instant the platform is directly beamed

on boresite to the center of two point targets. These targets are both at range

R which is located in cross range —y and +y from the radar. The instantaneous

velocity of the radar past the two targets, for small real beams, will produce an echo

signal containing a pair of instantaneous Doppler offset frequencies

This is for a radar center frequency f, with w being the instantaneous

angular velocity of the aircraft relative to the centroid of the two targets.

The cross-range resolution, with a uniform gain over an angle region of the real

beam[28], is



Figure 2.3 Real Aperture Line Antenna

For coherent integration over a beamsegment W of constant gain,

Resolution is of interest for total beam integration of a uniformly weighted antenna.

For total beam integration during the beam dwell time of a real antenna with an

equivalent rectangular beamwidth

A line antenna of length / is shown in Figure 2.3. This line represents an

antenna that continuously integrates incident radiated energy as if it were an infinite

number of array elements spaced infinitesimally close to another. Radiation from

the boresight direction to the line antenna will arrive at the same time, if the source

is from an infinite range. This will be taken as zero phase. For radiation from off-

boresight angles, the arrival phase is a function of the distance along the antenna.

12
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Through the expression for the one-way antenna response, it can be shown that

the expression for the equivalent rectangular beamwidth becomes Ψe  = λ/l which

results in the expression for the cross-range resolution reducing to

The resolution provided by the total beam integration for a uniformly weighted

antenna is the same as that provided by integration over the antenna's equivalent

rectangular beamwidth.

The expression for cross-range SAR resolution is based on the response

produced by coherent integration during the real beam dwell time of the reflected

signals from point targets. Coherent integration of the signal received along the

resulting synthetic aperture produce the fine cross-range resolution associated with

a large aperture. From the Doppler standpoint, coherent integration of the Doppler

shifted signal from each of the pair of point targets seen by the SAR produced

fine Doppler resolution which is directly related to cross-range resolution. Azimuth

compression is achieved by performing coherent integration. This may be done by

correlating the azimuthal signal data collected along known range verses azimuth

trajectories to a suitable azimuthal reference.

2.2.1 Data Collection

As the SAR platform using chirp-pulse compression travels above and alongside

of the area to be mapped, chirp pulses are transmitted at some pulse repetition

frequency (PRF). The process of collecting SAR data obtained from a chirp-pulse

compress radar is shown in Figure 2.4(a). The time interval between pulses is made

sufficiently long to prevent ambiguous range responses over the effective illuminated

range. A slightly different area is illuminated by each transmitted pulse. Each time

a pulse is transmitted, the echo signal is sampled at some range sample spacing over

some portion of the illuminated range extent and referred to as range swath.
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The collected data comprise a set of reflectivity measurements in two dimensions.

The dimensions of the data format is referred to as slant range and cross range.

A data record will extend in slant range over the range swath and continuously

in cross range along the flight path over which the data are collected as shown in

Figure 2.4(b). Before processing, the data set does not resemble a map or image and

echos from individual point targets are dispersed in both range and azimuth. Data

collected from the slant-range and cross-range space are processed to achieve range

and azimuth compression.

2.3 Why are Time-frequency Representations Needed ?

A one-to-one relation exists between a signal in the time domain, s(t), and the

spectrum in the frequency domain, S(f). This relation is shown using the Fourier

transform. For a one-dimensional signal, s(t), the Fourier transform is given by

The inverse Fourier transform is

is shown in Figure 2.5.

While the Fourier transform allows a signal to be transformed back and forth

between the time and frequency domains, it does not allow for a combination of the

two domains. The time localization of the spectral components is contained in the

phase of the spectrum but it may not be easy to interpret.
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Figure 2.4 SAR data collection
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Figure 2.5 Magnitude of the Fourier transform of a sine wave with a frequency of
20 Hz

A complex-valued frequency-shift-keyed signal, as in Figure 2.6, is an example

of a signal which displays time localization of spectral components. This figure shows

only a single frequency is present at any instance of time. This frequency may be

obtained as the derivative of the instantaneous phase, arg{s(t)}, which is defined as

the instantaneous frequency (IF) [29],

The group delay (GD) is defined as

where arg{S(ƒ)} is the phase spectrum.
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Figure 2.6 Time-frequency description of a frequency-shift keyed signal, x(t) =
e327rf“, tk < t < tk+1 -Within each time interval [t k , tk+1 ], only a single
frequency ƒk is present

The time localization of the spectral components are described by the instan-

taneous frequency and the group delay for a group of signals. The instantaneous

frequency represents the frequency as a function of time, ƒ ƒs (t) and assumes

there exists a single frequency component at each time t. This assumption does

not apply in the case of the signal s(t) ej2rf i t e327f2t, containing two frequency

components (ƒ1 and f2 ) at all times. For the group delay, the assumption is that a

given frequency is concentrated around a single instance of time.

If the signal can be described by a surƒace spanning the time-frequency plane

instead of a curve on this plane, the restrictions associated with the instantaneous

frequency and the group delay can be minimized. This concept of a surface spanning

the plane corresponds to a joint function Ts(t, ƒ) of time and frequency and is know

as the time-frequency representation of the signal.
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2.3.1 Short-Time Fourier Transform

The short-time Fourier transform (STFT) has played a large role in the history of

digital signal processing [30, 31, 32]. It is defined as

where s(t) is the signal being analyzed and g (t) is a time-shifted windowing function.

The squared magnitude of the STFT is known as the spectrogram. A simple inter-

pretation of the STFT is a "sliding-window Fourier transform". The analysis of the

frequency content of s at time to may be found by sliding the window function, g (t)

across the signal until it is centered at t o and then taking the Fourier transform of

the signal-window product. Each constant-time slice, $(t, ƒ), of the STFT represents

the frequency content of the signal around time t o . Many functions have been

used successfully as STFT windowing functions: Gaussian, Hamming, Hanning, and

square/rectangular functions. The computation of the time slice at time to is shown

in Figure 2.7. The spectrogram of s(t) = sin(2π ƒt) using a hamming window is

shown in Figure 2.8.

The STFT can also be expressed in the terms of the Fourier transform of the

signal and windowing functions in the form

The STFT of the multicomponent signal

computed using a hamming window is shown in Figure 2.9. As is shown, the three

signal components are centered at the points (T 1 , ƒƒ1), (T2 , ƒ2), and (T3 , ƒ3).
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Figure 2.7 Computation of the short-time Fourier transform (STFT). To estimate
the frequency content of the signal s around time to , the low-pass
window g is centered at to and the Fourier transform of s(τ)g*(τ - to )
is calculated

2.3.1.1 Time-frequency Resolution: The performance of the STFT is affected

by the choice of the window and the signal concentration. The fundamental tradeoff

between time and frequency resolution may be understood by reviewing Equations

2.8 and 2.9.

Each constant-time slice of the STFT indicates the frequency content of the

portion of the signal that lies within the window function at the selected time. A

narrow window g may be used to increase the time resolution of the STFT. However,

as g narrows in time, the corresponding frequency window G widens, reducing the

frequency resolution. This demonstrates that it is impossible to have 'perfect' time

and frequency resolution simultaneously and is referred to as the time-frequency

uncertainty principle[33].

This principle also illustrates that it may be useful to use different windowing

functions for different applications. Narrow time windows are typically used when



Figure 2.8 SIFT of a sine wave
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Figure 2.9 Spectrogram of a multicomponent signal (Equation 2.10) using a
hamming window

the time signal is changing rapidly. Conversely, when the signal is more slowly

varying and accurate frequency content estimates are required, wide windows may

be employed.

The effect of window length on the performance of the STFT is shown in Figure

2.10. The signal in Equation 2.10 is analyzed as in Figure 2.9 but with a narrower

window in Figure 2.10a and a wider window in Figure 2.10c.

The Short-Time Fourier transform of the analytic function z(t) is defined [34]:

Gabor defined the analytic signal as a means of obtaining a unique complex

signal from a real-valued signal, s(t). The analytic signal is defined as [33],



Figure 2.10 Tradeoffs of various STFT windows
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where 9/ is the Hilbert transform. For signal analysis, it is convenient to work with a

complex signal. When a complex signal is needed when only a real signal is available,

the analytic signal may be used.

2.3.1.2 Discrete Form of the STFT: For practical application of the STFT, a

discrete form of Equation 2.8 is needed. Samples of the STFT at equidistant time-

frequency grid points (nT, lc F) where T > 0 and F > 0 are the sampling periods for

the time and frequency variables are taken, resulting in

The time function in Equation 2.13, s(t), may also be sampled. The discrete

version of the STFT is then,

where g (m) is a sampled window function of finite length M.

2.3.2 Gabor Expansion

The signal s(t) may also be represented as a superposition of time-frequency-shifted

versions of an elementary signal γ(t),

In this form, s(t) has been expanded into the basis functions

When γ(t) is centered around t 0 and ƒ 0, the basis signal is centered around the

time-frequency point (t', ƒ`). Therefore, the function Tx (t', ƒ') in Equation 2.15 will

show how the 'neighborhood' around the time-frequency point (t', ƒ ' ) contributes to

s(t). The coefficient function Tx (t' , ƒ') may be chosen as the STFT,

provided that the window ,
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s(t) may be represented as a combination of Equation 2.16 and Equation 2.15,

This equation may be viewed as an expansion of s(t) into time-frequency shifted

versions gm? , (t) of an elementary function g (t) ,

where g(t) is the dual frame generating function [12]. The coefficients c„ are given

by

and represent the sampled complex spectrogram of s(t). The squared magnitude of

the complex spectrogram is the waveform's physical spectrum. This discrete time

signal expansion is known as the Gabor expansion[33, 351. The functions g(t)

are known as the Gabor logons and the coefficients c„ are known as the Gabor

coefficients. Gabor originally used time-frequency-shifted Gaussian functions as the

logons due to their concentration in time and frequency[33].

The basis signals gmn(t) may be constructed so that they are localized and

concentrated with respect to both time and frequency. If they are, the expansion

coefficients c„, indicate the signal's time-frequency content around the time-

frequency location (nT , m F) . Since the logon basis signals g(t) are all derived

from the elementary function g (t) through simple time-frequency shifts, they can be

easily generated.

is shown in Figure 2.11 and the

Gabor transform of a multicomponent signal, as represented by Equation 2.10, is

shown in Figure 2.12. The frequency resolution is dependent on the particular basis

signals that are used in the transform.
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Figure 2.11 Gabor Transform of a sine wave
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Figure 2.12 Gabor transform of a multicomponent signal

In the context of the Gabor expansion, there are two important issues relating

to the Gabor basis, gmn(t ): completeness and linear independence [12, 36]. The

completeness of the Gabor basis guarantees that any finite-energy signal may be

represented by a linear combination of a set of Gabor basis functions given in the

Gabor expansion (2.18). A necessary condition for completeness of the Gabor basis

is TF < 1; this condition is a bound on the density of the "time-frequency sampling

grid". In the case of "critical sampling" , where TF = 1, the number of Gabor

coefficients equals the number of signal samples (assuming a band-limited signal

sampled with minimum sampling rate) meaning the Gabor coefficients Gx (n,m) do

not contain any redundancy. Redundancy in the coefficients may be introduced by

oversampling (TF < 1) to some degree. This is recommended so that the coefficients

have some numerical stability, at the cost of the Gabor basis signals not being linearly

independent.
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2.3.3 Continuous Wavelet Transform

In the case of the STFT, once a window is chosen for the analysis, the time-frequency

resolution is fixed over the entire time-frequency plane. If the resolution is allowed

to vary within the time-frequency plan, a multi-resolution analysis will result. The

Continuous Wavelet Transform (CWT) is a transform where all impulse responses

of a filter bank are defined as scaled versions of the same prototype h(t)

where a is a scale factor (the constant

The CWT is defined as

is used for energy normalization).

Since the basic wavelet, h(t) is used for all filter impulse responses, wavelet analysis

is self-similar at all scales.

To relate this transform to the STFT, the basic wavelet h(t) could be chosen

as a modulated window [37]

The frequency response of wavelet analysis filters in Equation 2.21 satisfy the

equation

h(t) may be any band-pass function that meet certain criteria [12].

2.3.3.1 	 Scale and Resolution: The local frequency f aƒ0  is associated with

the scaling of the Wavelet Transform. This local frequency, that depends on the

basic wavelet is related to time-scalings. It is not linked as it was in the case of

the STFT to frequency modulation. The filter bank responses are dilated as scale

increases. Therefore, large scale corresponds to contracted signals while small scale

corresponds to dilated signals.
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When a function ƒ(t) is scaled:

then it is contracted if a> 1 and expanded if a < 1, The CWT may be written as

or, by a change of variable, as

Equation 2.25 shows that as the scale increases, the filter impulse response h( t-=2--a,

becomes spread out in time therefore, only responds to long-time behavior. Equation

2.26 indicates that as the scale grows, an increasingly contracted version of the signal

is seen through a constant length filter. The scale factor a has the same interpretation

of the scale in maps; Large scales mean global views and small scales mean detailed

views.

Figure 2.13 shows a representation of the tile concentration of the STFT and

WT. The related concept of resolution is linked to the signal's frequency content.

For example, low-pass filtering a signal keeps its scale, but reduces its resolution.

Scale changes of continuous time signals do not alter their resolution since the scale

change can be reversed.

2.3.3.2 Wavelet Analysis: The CWT may also be introduced as defining

wavelets as basis functions. The basis function has already been shown as an inner

product of the form

which measures the similarity between the signal and the basis functions
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Figure 2.13 Time-Frequency resolution of the STFT and WT of a given basis
function

called wavelets. The wavelet analysis results in a set of wavelet coefficients which

indicate how close the signal is to a particular basis function. Any general signal may

be represented as a decomposition into wavelets. The analysis is done by computing

the inner products, and the synthesis consists of summing all of the orthogonal

projections of the signal onto the wavelets,

where c is a constant that depends on h(t). Equation 2.29 is more complicated

unless the assumptions that the signal and wavelets are either real-valued or complex

analytic so that only positive dilations a> 0 need to be taken into account.

ha,τ(t) are not orthogonal since they are defined for continuously varying a and

T, and are therefore very redundant. However, the reconstruction formula (Equation

2.29) is satisfied whenever h(t) is of finite energy and band pass limited. If h(t) is

assumed sufficiently regular, then the reconstruction condition is f h(t)d(t) = 0. The
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reconstruction only takes place in the sense of the signal's energy. The convergence

of Equation 2.29 is related to the numerical robustness of the reconstruction [12].

2.3.3.3 	 Scalograms: The spectrogram was defined in section 2.3.1 as the square

modulus of the STFT, and is a common tool in signal analysis. The spectrogram

provides a distribution of the energy of the signal in the time-frequency plane. A

similar distribution can be defined in the case of the wavelet transform. Since the

CWT behaves like an orthonormal basis decomposition, it can be shown that it is

isometric [37]. Therefore,

where Ex 	f x(t) 2 dt is the energy of the signal x(t). In this manner, the

scalogram is defined as the squared modulus of the CWT.

The scalogram of s(t) 	 sin(2πƒt) is shown in Figure 2.14 and the scalogram

of the multicomponent signal of Equation 2.10 is shown in Figure 2.15.

In Figure 2.16, some differences between the scalogram and spectrogram are

illustrated. In Figure 2.16(a), a Dirac pulse is analyzed around t to , the CWT

shows that the signal's behavior is localized around to for small scales. In the case of

STFT shown in Figure 2.16(b), the corresponding region is as large as the extent of

the analysis window over all frequencies. Since the time-scale analysis of the CWT

is logarithmic in frequency, the area of influence in the case of the CWT for a pure

frequency ƒo in the signals increases with fo , as shown in Figure 2.16(c). Figure

2.16(d) displays how the area remains constant in the case of a spectrogram.

2.3.3.4 	 Discrete Form: The basis functions (wavelets) act as an orthonormal

basis for wavelet analysis. If the basis function, h(t), is chosen correctly, then a

discrete form of wavelet analysis may be used. The theory of wavelet frames {12]

provides a framework that allows for choices in sample redundancy and sampling



Figure 2.14 Scalogram of a sine wave
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Figure 2.15 Scalogram of a multicomponent signal

density. Discrete wavelet transforms are essentially subband coders and subband

coders have been used in speech and image compression, wavelets may be used in

these applications easily. The field of discrete time wavelets (filterbanks, multireso-

lution pyramids[38], and subband coding[39]) are beyond the scope of this work.

2.3.4 Wigner-Ville Distribution

The STFT and Gabor Transform are both linear time-frequency representations.

They are defined as linear representations because they satisfy the superposition or

linearity principle,

In any application involving multicomponent signals, linearity is a desirable property.

As has been shown in Figure 2.10, the STFT has a poor tradeoff between local-

ization and time-frequency resolution. These limitations have caused researchers to

look for other time-frequency representations. Several of the resulting time-frequency



Figure 2.16 Regions of influence comparison of CWT and STFT
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representations are bilinear (quadratic) in the signal transformation. The Wigner-

Ville distribution (WVD) was the first proposed bilinear Time-Frequency Distri-

bution (TFD) [2]. The WVD of a signal s(t) is given by:

The WVD of s(t) = sin(2πƒt) is shown in Figure 2.17. As shown in this

example, the frequency response of the sample signal is not smooth.

It may be shown that the various transforms are related to one another. The

STFT can be expressed in terms of the WVD with the expression [23]

where Wg is the WVD of the STFT analysis window. The Gabor expansion and the

WVD are related through the physical spectrum [40] given by

The scalogram may be written using Cohen's class for bilinear time-frequency

energy distributions [41, 42] as

where W, is the WVD of the analyzed signal, z(t) and Wh is the WVD of the basic

as time and frequency.

2.3.4.1 Cross-components: The WVD possesses a number of important mathe-

matical properties that are detailed in [2, 43]. The WVD has limitations when using

it as a practical time-frequency analysis technique due to the presence of nonlinear
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Figure 2.17 WVD transform of a sine wave
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artifacts called cross-components. The cross-Wigner distribution of two signals, s 1

and 32 is

The Wigner-Ville distribution of a two-component signal,

The Wigner distribution of the sum of two signals is not the sum of the Wigner

distributions of each signal. For Ws ,, the first two terms are the auto-components

of the Wigner distribution of s 1 and s2 . The last term is the cross-component and is

made up of two overlapping components, W and W s2 ,. The cross-component is

located midway between the two auto-components on the time-frequency plane and

oscillates with a spatial frequency that is inversely proportional to their separation

[23].

In a multicomponent signal, one cross-component will appear between each

pair of auto-components. The number of cross-components increases quadratically

as the number of components in the signal increases. A n-component signal has

cross-components. These make the WVD of multicomponent signals difficult to

interpret and enhance noise.

In Figure 2.18, the WVD of the signal of Equation 2.10 is shown with the three

cross-components.

2.3.4.2 	 Discrete form of the Wigner Distribution: The discrete Wigner

distribution (DWD) with a discrete frequency variable is defined for a discrete time

signal by
• 	 I
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Figure 2.18 Example of WVD cross terms

where the time signal is of length 11r', band-limited tc

and n, k, and m are the discrete variables corresponding to the continuous variables

t, f, and T.

The discrete-time values may be converted to the corresponding continuous-

time values using the transformations:

where ƒ, is the sampling frequency which must be at least 2ƒ, to satisfy the Nyquist

criterion where ƒm is the maximum frequency of the signal. Notice that Equation

2.37 may be viewed as a slightly modified Discrete Fourier transform.
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2.4 Time-Frequency Analysis of Linear FM

This section describes the estimation of the instantaneous frequency using the four

previously introduced TF analysis techniques; the Short-Time Fourier transform, the

Gabor expansion, the Continuous Wavelet transform and the Wigner-Ville distri-

bution. Analytic expressions for the output of each method to a given linear FM

signal are developed and it is shown how the chirp rate can be extracted using each

technique. The performance in the presence of additive white Gaussian noise is

compared with the Cramér-Rao bound analytically for the WVD and by simulations

for all four techniques.

2.4.1 The Wigner-Ville Distribution

the WVD is given by

using Equation 2.32 explicitly. For the discrete finite time duration waveform z(n)
..a n2T2eJ2 	 , the WVD is given by

The magnitude squared of the WVD is then given by

converges to the well known limiting form Equation 2.39.

Figure 2.19(a) shows the WVD of a linear FM signal with a chirp rate of 0.00117

Hz/sec. The window size of the WVD is 64 points. A 3-D mesh plot of this signal is

shown in Figure 2.19(b). The chirp may be seen clearly in these figures.



(a) Contour plot of the WVD of a linear FM signal
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Figure 2.19 WVD of a linear FM signal
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2.4.2 The Short Time Fourier Transform

The Short Time Fourier transform of a continuous chirp signal

has been calculated as [44]:

where

The spectrogram, or the magnitude squared of the STFT, of a chirp is then

given by:

It should be noted that Equation 2.42 is centered along the line w = τ repre-

senting the linear time dependency of the instantaneous frequency of the chirp signal.

Figure 2.20(a) shows the spectrogram of a linear FM signal with a chirp rate

of 0.00117 Hz/sec. The hamming window size of the STFT is 64 points. A 3-D mesh

plot of this signal is shown in. Figure 2.20(b). As in the case of the WVD, the chirp

may be seen clearly in these figures.

2.4.3 The Gabor Expression

Using Equation 2.19 the Gabor expansion of the linear FM waveform

results in the sampled spectrum



41

(a) Contour plot of the STFT of a linear FM signal

(b) 3-D mesh plot of the STFT of a linear FM signal

Figure 2.20 STFT of a linear FM signal
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It is very clear from Equations 2.39 and 2.44 that the spectrum of z(t) is

concentrated along the line 2πƒ = pit and equivalently mF=µnT. The concen-

tration represents the instantaneous frequency. The sampled spectrum given by

Equation 2.44 can also be computed from the weighted WVD using Equation 2.33:

The Gabor expansion of a linear FM signal with a chirp rate of 0.00117 Hz/sec

is shown in Figure 2.21(a). The time-frequency plane is represented by a rectangular

grid of size 32x16 with the signal oversampled by a factor of 4. The 3-D mesh plot of

this signal is shown in Figure 2.21(b). The chirp is clearly displayed in these figures

by the Gabor expansion. The artifact to the right of the time scale is a result of the

parameters used in the transform.

2.4.4 The Continuous Wavelet Transform

Using Equations 2.34 and 2.39, the scalogram of the linear FM waveform

is shown to be

As in the case of the other TF techniques, the instantaneous frequency of the linear

FM waveform is represented in this equation.

The scalogram of a linear FM signal with a chirp rate of 0.00117 Hz/sec is

shown in Figure 2.22(a). The scalogram was analyzed with a window of 32 points at.

the coarsest scale. The 3-D mesh plot of this signal is shown in Figure 2.22(4 As

in the other cases, the chirp may be seen in these figures.
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(a) Contour plot of the Gabor expansion of a linear FM signal

(b) 3-D mesh plot of the Gabor expansion of a linear FM signal

Figure 2.21 Gabor expansion of a linear FM signal



) Contour plot of the scalogram of a linear FM signal
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(b) 3-D mesh plot of the scalogram of a linear FM signal

Figure 2.22 Scalogram of a linear FM signal
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2.5 Time-Frequency Analysis in Noise

The discrete chirp signal in the presence of additive noise is given by:

is the chirp phase, and v(n) are independent samples of a

complex white Gaussian noise process with zero mean and variance a 2 . The input

SNR is given by SNR = A²/σ² . From (2.40), the WVD kernel can be written as:

In the expression above, the noise component is

The resultant noise power in the kernel is

given by:

There are only N/2 independent samples in the kernel (since it is conjugate

symmetric), so the variance of the noise at the output of the WVD is scaled

by a factor of N/2 rather than N. Therefore, the SNR of the WVD output is:

Equation 2.49 can be used to compute

a bound on the chirp estimation error. The performance of the WVD is compared

against the Cramér-Rao bound (CRB) on the IF estimation variance for a a complex

single tone in additive white Gaussian noise. The CRB is achieved by the Discrete

Fourier transform (DFT) of the single tone signal and is given by [45]:
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where for the DFT, the output SNR is N times the input SNR:

The bound on the performance of the WVD is found by substituting the SNR from

Equation 2.49 in Equation 2.50. Furthermore, when compared to the DFT. the

WVD has its frequency scaled by a factor of 2 (see the term

2.40). This leads to a reduction by a factor of 4 in the variance of the frequency

estimate. Therefore, the variance of the WVD for a chirp signal is:

At high input SNR (A 2 	a ² ), this equation reduces to:

which is the same as Equation 2.50. Since this equation is the variance of the

maximum-likelihood estimate of the frequency of a stationary sinusoid in white

Gaussian noise [45], it can be said that the WVD is an optimal estimator of the

IF for chirp signals at high SNR.

2.6 Application of TF Analysis to IF Estimation

The estimate of the instantaneous frequency is provided by the peak of the WVD

as a function of time [6]. For the WVD the peak is found from Equation 2.41 and

occurs when:

It is evident from this relation that there is a linear relationship between the time

and frequency coordinates (n and m, respectively). The slope of this line is given

by:
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Consequently, when the slope S, is measured from the WVD, the chirp rate can be

found from the relation:

As can be seen from Equations 2.42 and 2.44, both the STFT and the Gabor

expansion reach maxima along the line w Using the frequency and time

and the slope S, measured from the

STFT and Gabor expansion respectively, the chirp rate p, can be calculated using

Equation 2.55.

The instantaneous frequency of a simulated linear-FM signal (chirp) was

estimated by each of the TF analysis techniques considered. For each method, the

input signal was a linear FM signal of 256 points sampled at 1000 Hz. The chirp rate

was 8.84 Hz/sec. The SNR of the input signal was varied from 15 dB to —15 dB in

1 dB steps and 250 trials were averaged for each SNR level. The data was analyzed

as follows: for the WVD a K=64 point square window, for the STFT a 64 point

hamming window, for the Gabor expansion, a 32.x16 TF grid that was oversampled

by 4, and the scalogram (CWT) was analyzed with a window of 32 points at the

coarsest scale. For each transform, and in order to minimize frequency quantization

errors, the peak response at each time sample was found from an interpolation along

the frequency axis. After the peaks for each time sample were determined the chirp

rate was found from the least-squares linear fit through these maxima. The error

between this line and the actual IF of the input was found and is plotted for each

TF analysis technique in Figure 2.23. The CRB for N 64 is plotted on the figure

also. It can be seen that the WVD approaches this bound at high SNR. The STFT

is closer to the bound than the Gabor expansion and the scalogram. All methods

exhibit a threshold. This figure confirms the optimality of the WVD [7] and the

relative advantages of the STFT over the Gabor expansion [11].
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Figure 2.23 Input SNR vs 1/mse of CRB, WVD, STFT, Gabor expansion, and
CWT

2.7 Estimation of Target Parameters

In this section we apply the TF analysis techniques to the SAR data for the purpose

of extracting the target motion parameters. The SAR data was provided by the

Naval Air Warfare Center, Warminster PA and was collected using their P-3 SAR

system at X-band. The data consisted of a boat target of opportunity moving in

parallel with the SAR platform within an open ocean background. The data was

processed using each of the TFD techniques and the boat speed was estimated for

each case. However, the absolute accuracy of the estimates could not be assessed

since the true boat velocity was not available. The SAR data has been analyzed

after range compression, but prior to azimuth compression. The SAR signal phase

returned from a single point target is given by the functional relation:
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where:

Doppler phase shift due to relative motion between platform and target

2π/λis the wavenumber

range to target

= SAR platform velocity

= target along-track (azimuth) velocity

If the derivative of Ψ(t) is taken with respect to t we obtain a relation between the

rate of change of the phase (angular frequency) and the SAR-target relative velocity.

If the SAR pulse repetition interval is T, , then t	 nTr . From Equation 2.57, it

can be seen that the relation between frequency and time is linear. The slope of the

frequency curve is given by:

The relative velocity v, vp, v t, can then be found from the relation:

S, is determined from the outputs of each of the transforms. Finally, the relation

between the slope of the time-frequency characteristic at the output of each TF

analysis technique and the relative velocity is given by:

The relative velocity of the boat was estimated from the SAR data using each

transform and Equation 2.61. The SNR was coarsely estimated from the SAR data
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to be 15.4 dB. In the case of the WVD, the window was set to K=64 points. The

target's relative velocity was estimated to be 7.1 meters/sec. The contour plot for

the output of the WVD is shown in Figure 2.24. In the case of the STFT, a 64 point

hamming window was utilized. The target's relative velocity was estimated to be

7.2 meters/sec. The contour plot for the output in the case of the STFT is shown

in Figure 2.25. For the case of the Gabor expansion, the target's relative velocity

was estimated to be 6.5 meters/sec using a 32x16 TF grid oversampled by 4. The

contour plot for the output in the case of the Gabor expansion is shown in Figure 2.26.

Finally, for the case of the scalogram (CWT), the target's relative was estimated to

be 7.4 meters/sec. The contour plot for the scalogram is shown in Figure 2.27. As

can be seen from the estimated relative velocities, the numerical results from the

four techniques are very similar, however, the representation of the data is not. In

our scenario, the contour plot of the WVD provides the representation with the most

sharply defined chirp characteristic. This is partially due to the particular window

size that was used in the transforms and the specific transformed signal. The chirp

characteristics of the moving target for the STFT, the Gabor expansion, and the

scalogram are not as obvious but are also apparent. In our simulations, a gaussian

function was used with the CWT. If a chirp had been used in some form with the

CWT as a basis function, the results for the CWT may have improved.

2.7.1 Another Chirp in the Signal

A second chirp was added to the SAR signal containing the moving target at a

signal level that was 5 dB higher that the original signal. This level was calculated

by comparing the energy contained in the added signal and the original SAR image.

After transforming the combination of this new signal into a TF representation, a

mask was created that nulled the areas of the transform domain above a certain

level for each particular transform. The relative velocity of the remaining chirp was
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(a) Contour plot

Figure 2.24 SAR image processed using the WVD



(a) Contour plot
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Figure 2.25 SAR image processed using the SIFT



(a) Contour plot
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Figure 2.26 SAR image processed using the Gabor expansion



(a) Contour plot

Figure 2.27 SAR image processed using the scalogram
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calculated in each case. In this scenario, the remaining signal was related to the

moving target, or the original boat target. The masking technique is dependent

on the various levels of the chirp signals and will not work in all scenarios. The

transform window sizes are the same as in the examples of the previous section.

For the case of the WVD, the original target's relative velocity was not

estimated due to the cross-terms found in the WVD. A contour plot for the output

of the WVD is shown in Figure 2.28 and the cross-terms are clearly visible and do

not allow the technique used to estimate the target parameters. For the case of

the STFT, the target's relative velocity was estimated to be 7.2 meters/sec. The

contour plot for the output in the case of the STFT is shown in Figure 2.29. In

the case of the Gabor expansion, the target's relative velocity was estimated to be

6.5 meters/sec. The contour plot for the output in the case of the Gabor expansion

is shown in Figure 2.30. Finally, for the case of the scalogram (CWT), the target's

relative was estimated to be 5.2 meters/sec. The contour plot for the scalogram is

shown in Figure 2.31.

As can be seen from the resulting estimated relative velocities, the numerical

results from the successful techniques are similar to the examples previously

discussed. This scenario demonstrates the property of linear transformation for

the various time-frequency transformations used in this work.

In the SAR processing, various time-frequency analysis techniques have been

used to analyze the track and determine the velocity of a moving target. Each of the

techniques examined exhibited a sharp threshold effect in the input SNR required

to estimate the instantaneous frequency (IF) of a simulated linear FM signal. The

optimality of the Wigner-Ville distribution for the determination of the IF of a signal

was verified by comparing the results of the simulation to the Cramer-Rao bound on

the estimation of the IF. If the TF representation contains signal elements that do

not allow certain types of processing, a 'mask' may successfully used to block certain



Figure 2.28 SAR with 2 moving targets processed using WVD

signal elements from the TF plane and allow the desired processing. With each TF

processing technique, the relative velocity mismatch introduced by the motion of a

single moving target (a boat) was less than 6% of the SAR platform velocity.



(a) Moving target with synthetic target added
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(b) Synthetic target removed

Figure 2.29 SAR with 2 moving targets processed using STFT



(a) Moving target with synthetic target added
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(b) ynthetic target removed.

Figure 2.30 SAR with 2 moving targets processed using Gabor transform
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Figure 2.31 SAR with 2 moving targets processed using CWT



CHAPTER 3

SPACE-TIME ADAPTIVE PROCESSING SIGNAL ENVIRONMENT

This chapter serves as a brief review of related work. It also presents the definitions

and mathematical model of the signals used throughout the remainder of the

chapters. The Sample Matrix Inversion (SMI), Generalized sidelobe canceler (GSC),

Eigencanceler, and fixed transforms are all introduced. Target cancellation occurs

when the target signal is present during training, when the estimation of the noise

covariance matrix occurs and also when there are calibration errors. Concepts

related to this topic are also introduced.

3.1 Signal Model

Consider a space-time array with v antennas uniformly spaced and a transmission

of a coherent burst of K, pulses at a constant pulse repetition frequency (PRF). The

time over which n returns are collected is referred to as the coherent pulse interval

(CPI) (Figure 3.1). Data is collected from a 3D data cube which consists of the

antenna elements, pulses of the CPI, and range returns as shown in Figure 3.2. The

determination as to whether a target is present at a range of interest is the goal of the

signal processing. To that end, an N v x n snapshot consisting of the 2D data slice

at the range of interest, is processed to yield a decision statistic, which subsequently

is compared to a threshold. Processing is carried out in the N dimensional signal

space resulting from stacking the snapshot column-wise. Radar detection is a binary

hypothesis problem, where hypothesis H o corresponds to target absence and H 1

corresponds to target presence. Under hypothesis Ho , the N x 1 received vector x

consists only of clutter c and noise v contributions:

60
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Figure 3.1 Space-time adaptive array architecture

where x is assumed a zero-mean, circularly symmetric Gaussian random vector with

covariance matrix R. The clutter and noise are assumed to be independent.

Under hypothesis H 1 , x is given by

where a is complex scalar representing the target signal amplitude and phase, and s

is the target vector. The target power is denoted

The colored noise (the aggregate of noise+interference+clutter) covariance

where the superscript denotes transpose and

complex conjugate, is usually not known, hence an estimate is used instead. The

estimate is derived from range cells in the vicinity of the tested range cell and is

termed secondary data . The secondary data consists of clutter returns and, possibly,

other interferences, such as jammers. The presence of narrowband jammers does

not alter the signal model as presented, thus attention is restricted only to clutter
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Figure 3.2 Space-time adaptive array datacube

signals. The assumption is that the secondary data xk , k =1,... , K, has the same

statistical properties as the tested cell under hypothesis model H.

The vector xk is made up of N samples of the complex envelope of the received

signal form a specific range gate k for k = 1, — , K. Considering returns from all

possible K range gates, the vector x k makes up one 'slice' in the v x ,c x K data

cube shown in Figure 3.2.

The basic airborne radar geometry is shown in Figure 3.3. Here, the

assumptions are that the spatial channels are co-linear, identical, omni-directional

and equally spaced with spacing d A/2. The components of x k due to a clutter

point source is written as

where u is the point source spatial frequency and ,u, is the normalized Doppler

frequencies. These are given by



63

Figure 3.3 Airborne radar basic geometry

where d is the spacing between the antenna elements, is the point source azimuth

angle, 9 is the point source elevation angle, and V is relative speed of the point source

as seen by the airborne radar.

The desired signal component of vector x k , under the same conditions, may be

written

where 	 is the Kronecker product, s, is a v x 1 normalized spatial steering vector,

and s t is a n x 1 normalized temporal steering vector. The two vectors s s and st are

given by

where u t and µt are the target's presumed spatial and normalized Doppler frequencies.
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Since the colored noise true covariance matrix is usually not known a priori, a

maximum likelihood estimate is obtained from a secondary data set from neighboring

range cells around the cell under test. This estimate is referred to as the sample

covariance matrix and is given as:

This sample covariance matrix needs to be continually updated since the base

environment may be considered stationary for only short periods of time.

The correlation matrix R can be decomposed into eigenvalues and eigenvectors

using the spectral theorem,

where A l and q 1 are the lth eigenvalue and eigenvector, respectively. Eigenvalues are

sorted from largest to smallest: A i > A2 > • > AL-1 > AL. The inverse of the

correlation matrix can be expresses in terms of the eigen-decomposition,

The eigenvectors are orthonormal,

and form a complete set that spans an L-dimensional space:

The signal free covariance matrix is comprised of the interference and the noise

contributions. If the covariance matrix is characterized by r < L large eigenvalues

then the r associated eigenvectors span the interference subspace. The matrix repre-

sentation of the interference subspace is obtained by using the first r eigenvectors

corresponding to the largest . eigenvalues. The matrix representation of the noise
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subspace is formed using the remaining L r eigenvector. The two matrices are

formed as follows:

The interference eigenvalues are used to form an r x r matrix, Air , and the noise

eigenvalues are used to form an (L r) x (L — r) matrix, A , as follows:

Using Qr, Q A r , and 'A, the desired signal free R may be expressed

Equation 3.8 is an estimate of the true covariance matrix R. For low rank

interference, R can be decomposed into interference and white noise contributions

as follows

where the diagonal of the r x r matrix

consists of the r principal (largest) eigenvalues of R, the columns of C2r are the

corresponding eigenvectors, o -2 is the variance of the white noise, and the columns of

are the remaining eigenvectors of R. The actual value of r is scenario dependent,

but it is upper bounded by r < v — 1, for equidistant sampling in space and

time and for a perfectly calibrated array [17]. The spectral decomposition of R

in Equation 3.16 suggests a decomposition for the estimate R similar to Equation

3.15. The noise eigenvalues of the true covariance matrix in Equation 3.16 are all

the same and given by the noise power a. However, the noise eigenvalues obtained

by decomposing the covariance matrix estimate R in Equation 3.15 are going to be

spread over a range of power which depending on the sample support size used to
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estimate the covariance matrix. Noise exists at all frequencies and hence, an infinite

number of degrees of freedom is needed to fully estimate the noise subspace. As the

sample support size K increases, R approaches the true covariance matrix R and

the noise eigenvalues in A all converge towards the noise power a -2 .

3.2 Beamforming Techniques

A brief review of previous and related work in the field of adaptive processing of

radar will now be presented.

3.2.1 Non-Adaptive Beamformer

The non-adaptive beamformer uses the weight vector

where s is the presumed steering vector for the target. For a given angle and velocity,

s has the form of Equation 3.6 or Equation 3.7. Amplitude tapering windowing

functions maybe used on the steering vector to lower the sidelobes. When this is done,

the width of the mainlobe is increased. The non-adaptive beamformer maximizes

the beamformer's output signal-to-noise ratio in the absence of interferences.

3.2.2 Optimum Signal Processing

Brennan and Reed[46] with Mallet [151147], developed the theory for optimum

adaptive arrays which maximizes the probability of detection. It was shown that the

optimal detector for a signal in Gaussian noise is achieved by using a Wiener filter

when the covariance matrix of the signal is known a priori. The weights of this filter

are given by
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where k is a gain constant and R is the colored noise true covariance matrix. The

Wiener filter can be interpreted as a cascade of a whitening filter for the inter-

ference, followed by a matched filter. This solution requires the knowledge of the

true covariance matrix R.

3.2.3 Sample Matrix Inversion

In practice, the true covariance matrix of the interference R is unknown a priori and

needs to be estimated from a limited set of the secondary data (noise and interference)

as given in Equation 3.8.

Substituting R for the true covariance matrix, R, in Equation 3.18 yields the

following solution

The covariance matrix used for this solution has been estimated from a finite number

of secondary samples. Therefore, this solution for the weights is not optimal.

The conditioned signal-to-colored noise ratio (CSNR) is defined as the ratio of

the actual signal-to-colored noise ratio (SNR) to the optimal SNR. The optimal SNR

results when the covariance is known. Colored noise refers to the white noise and

interference. If K 2N snapshots are used to estimate R in Equation 3.8, Reed

et al.[15] showed that this solution in Equation 3.19 achieves a CSNR at the output

of the array with a mean of 0.5. A 3 dB loss with respect to the optimal SNR is a

CSNR with a mean of 0.5. The CSNR is a random variable bounded between 0 and

1 because the covariance matrix is estimated using Equation 3.8 and the resulting

signal-to-noise ratio is a random variable.

3.2.4 Generalized Sidelobe Canceller (GSC)

The Generalized sidelobe canceller (GSC) is a general form of a linearly constrained

adaptive beamforming algorithm[48]. It adapts to minimize mean square error (MSE)
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Figure 3.4 Full-rank GSC processor

in a system while implementing a look direction constant gain constraint[49]. The

GSC is implemented by partitioning the received signal with filters w, and W, as

shown in Figure 3.4. This Kxl beamforming filter takes the form

where 1 is a vector whose elements are all 1. The desired signal is blocked from the

adaptive processor by W 3 , the N x K signal blocking matrix, with N < K. The full

row rank matrix W, is made up of rows ai where ai1 = 0 for i = 1, 2, • • • , K.

The K x 1 dimensional received signal vector at time k is represented by x(k).

The input K x K covariance matrix is denoted by

dimensional noise subspace is given by,

The scalar beamformed output is
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The scalar beamformed noise estimator is

where w is the N dimensional weight vector. The array output is

3.2.5 Eigencanceler

The sample covariance matrix may be decomposed into two orthogonal subspaces

denoting the interference subspace, Qr , and the noise subspace, Q. This is shown

in Equation 3.15. The eigencanceler selects its weight vector to lie in the noise

subspace as this space is orthogonal to the interference subspace. It is shown in [17]

that the weight vector is written as

where k is a complex constant and I is the identity matrix of dimension N.

Using the Eigencanceler to select the weight vector produces higher values of the

signal-to-noise ratio compared to the SMI. The Eigencanceler requires only K 2r

samples to obtain the sample covariance matrix and achieve a signal-to-noise ratio

within 3 dB of the optimal.

3.2.6 Fixed Transforms

A technique based on a fixed transformation is also used with maximum-likelihood

adaptive nulling[15]. The basis of this technique is 'Two-Step Nulling' by Marshall

[50]. In this technique, the steering vector and sample covariance matrix are trans-

formed to a new domain using a fixed transform T,
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where x is the data vector, s is the steering vector, and R is the covariance matrix.

To use the technique with a fixed transform such as the discrete Fourier

transform (from Equation 2.4) or the discrete Cosine transform (Appendix A), the

K terms in the transform are selected based on the amount of 'energy' associated

with each index. This is done by computing a 2-dimensional stacked transform

(Appendix B) ST and calculating the N terms

The columns of ST terms associated with the largest K results of this calculations

are defined as T². Finally, the transform matrix T is defined as

The inclusion of s within the transform matrix constrains the system so that

3.3 Target Cancellation

Target cancellation occurs when the target signal is present during training, when the

estimation of the noise covariance matrix occurs and also when there are calibration

errors. In the case of the steering vector being mismatched to the signal vector, the

array cancels the target as it is interpreted as an interference. If the true covariance

matrix is know, the signal cancellation may be isolated from the noise covariance

matrix estimation effects. This case may be shown to be true when the weight

vector is applied to the data it was derived from.

The correlation matrix of a N element spatial processor with a single interferer

and a single target is
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are the desired signal, interference, and noise power and s d and si

are the desired signal and interference vector, respectively. The normalized presumed

steering vector is in the form

where Om is the normalized spatial frequency, related to the presumed target angle,

Om , by Yam d sin Om /A where A is the wavelength of the transmitted signal and d is

the distance between antenna elements. The normalized desired signal vector is in

the form

and

where c is a complex random variable with Gaussian distributed magnitude and

phase. The calibration error is modeled by the vector c. The magnitude and phase

have small variances in the case of good calibration. The mean of the amplitude is

VIIN and the mean of the phase errors is zero. The pointing error is the difference

between the true angle and the presumed angle, 0m Od. With no calibration or

pointing errors, the desired signal vector will equal the presumed steering vector.

The interference signal goes through the same channels as the desired signal, so the

normalized interference vector may be written as

where rzki is the normalized spatial frequency of the interference. The array gain,

defined as the ratio of the SNIR at the output of the beamformer to the SIR at the

input may be used to compare the performance of adaptive beamformers. The array

gain, as a function of the weight vector, is
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(Equation 3.34) as a function of the pointing error related to the SNR and the

standard deviation of the phase errors. Details of the analysis for the SMI and

eigencanceler may be found in [51, 52]. For the spatial case when the interference

vector is orthogonal to the target, si i s d = 0 and only the pointing error is considered,

the array gain for the SMI is given by

degrades as SNR increases. For the eigencanceler, the array

gain is

From Equations 3.35 and 3.36 it can be seen that Gsmi < G eig with equality for

-y, 0 and 7i = 1. Therefore, the eigencanceler is less affected by pointing errors

that the SMI method.

The array gain (Equation 3.34) may be expressed for the reduced rank methods

based on fixed transforms (Equation 3.26).

the weight vector in the transform domain.



CHAPTER 4

REDUCED-RANK PROCESSING

The signal model presented in the previous chapter suggests that STAP could benefit

from the application of reduced-rank (RR) methods. Such methods incur a loss in

the SNR, but their main advantage lies in their statistical stability. In this chapter,

the term SNR is defined as the signal-to-noise and interference ratio. First considered

are RR methods with known covariance matrix, subsequently RR performance with

unknown covariance is analyzed. The analysis is carried out in the frameworks of the

minimum variance beamformer (MVB) and the generalized sidelobe canceller (GSC)

processors. Calibration errors are known to affect the performance of adaptive arrays.

A method of studying these errors is also presented.

4.1 Reduced-Rank Processing with Known Covariance

A diagram of the reduced-rank MVB is shown in Figure 4.1. The full-rank MVB

weight vector is obtained as a solution to the optimization problem:

are snapshots of the secondary data, and s is the steering

vector. With RR-MVB, the vector xk is pre-processed by a full column rank N x r

matrix transformation T. The RR data is then the r x 1 vector zk THxk , the RR

covariance matrix is THRT, and the RR steering vector is t THs. The RR-MVB

weight vector is given by

where k is a scalar chosen to satisfy the unit gain constraint in the direction of

the desired signal. Notice that the value of k does not affect the output signal-to-

interference plus noise ratio (SINR). The output SINR may be written as

73
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Figure 4.1 Reduced-rank MVB

inserting the expression for the RR-MVB weight vector, the

output SINR is given by

where for notational convenience it is assumed that the target power is unity, σs² = 1.

The reduced-rank GSC is shown in Figure 4.2. From the figure it is observed

that the output can be expressed

where w c , the weight vector of the nonadaptive portion, is just the steering vector

w, = S, Wa is the adaptive weight, the matrix U is a full column rank transformation,

and A is a transformation that blocks the look direction, As =0. Assuming that A

has full column rank, and that s is the only vector in the null space of A, the

dimensions of A are (N — 1) x N. Consequently, the rank reducing matrix U is

(N — 1) x r. Multiple linear constraints can be incorporated in A resulting in a null

space of dimension equal to the number of constraints. The equivalent GSC weight

vector can be written as

The vector w a, is found as the solution to the unconstrained optimization

problem



Figure 4.2 Reduced-rank GSC

This minimization results in

Using Equations 4.4 and 4.7, the overall GSC weight vector is then given by

where IN is the N-dimensional identity matrix. The output SINR (when target

Various choices of the rank reducing transformation U are now considered:

1. One such 	 choice

where Qr consists of the r largest eigenvectors of R. Assuming that the

(N — 1) x N signal blocking matrix A has full column rank, the elements of

U can be obtained from the solution of a least-squares problem. It is easy to

show that with this choice of U:

75
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2. To avoid the complication, of a least-squares problem, let the matrix U be

restricted to consist of r of the (N — 1) eigenvectors of R a 	ARA, where

A natural choice would be to

let the rank reducing transformation consist of the r principal eigenvectors of

3. For a known covariance matrix R, an optimal approach that maximizes the

output SINR for a given rank r, is suggested in [21, 22]: construct U from the

r eigenvectors of Ra that maximize the quantity

where qi, λi are respectively eigenvectors and eigenvalues of Ra. In the

references, this method is referred as the cross-spectral metric (CSM) method.

4. Principal components decomposition, such as considered above, is data

dependent. Fixed, reduced-rank transformations can be constructed by

selecting the principal components of the discrete Fourier transform (DFT)

or the discrete cosine transform (DCT). The cross spectral metric can also be

used in conjunction with these fixed transforms [21, 22].

Next, rank-reducing transformations are evaluated in the MVB framework.

Consider the SINR at the MVB output, as given by Equation 4.3. When the transfor-

mation T is unitary, it has no effect on the output SINR, and

any N x r rank reducing transformation

Specific examples are considered below.

1. Consider how Case .1 of the GSC translates to the MVB framework. By substi-

tuting Equation 4.10 in 4.8, we obtain the equivalent MVB weight vector
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This relation establishes an equivalence between the reduced-rank GSC and the

eigencanceler [17]. The eigencanceler is a method that produces the minimum

norm weight vector meeting the set of linear constraints, and subject to the

additional constraint of orthogonality to the interference subspace (formed by

the principal eigenvectors of the space-time covariance matrix). Since QVQ' =

the eigencanceler is equivalent to the application of a rank reducing

transformation T Q,,, where the columns of Q„ span the noise subspace of

the covariance R. Indeed, Equation 4.13 is obtained by using T Qv and

substituting Equation 3.16 in Equation 4.2. The eigencanceler is useful when

there is a sizable projection Q's. The output SINR is given by

where

2. The N x r matrix is given by T	 i.e., it consists of the r principal

components of the signal-plus-interference subspace [18]. In this case T consists

of the principal components of the Karhunen-Loeve transform. The output

Note that if the look direction is in the

noise subspace of the transform T, i.e., THs there is no solution that

directly solves Equation 4.2. This problem is circumvented in [50] by the

augmentation of T with the vector s, {T, s] -4 T.

3. The columns of T may be designed using the cross-spectral metric approach.
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4. Similar to Case of the GSC, the rank reducing transformation T may be

constructed from the principal components of a fixed transform such as the

DFT or the DOT.

To reiterate, when the true covariance matrix R is known, reduced-rank

processing is suboptimal. The strength of reduced-rank methods is revealed for

unknown covariance. This case is considered in the next section.

4.2 Reduced-Rank Processing with Unknown Covariance

In practice, the space-time covariance matrix is not known and it needs to be

estimated from the secondary data. This is an application for which reduced rank

methods can take advantage of their improved statistical stability. Let the number

of snapshots from the secondary dataset (sample support) be equal to K. Then

the estimated covariance matrix is given by

the performance of reduced-rank processors is analyzed as a function of the sample

support K.

A widely accepted measure of performance for radar systems is the proba-

bility of detection. In adaptive radar, detection probability is a function of the

weight vector. Likewise, the weight vector is derived from estimates of the covariance

matrix of the secondary data, and as such, its elements are random variables. This

makes the detection probability dependent on the outcome of the sample covariance

matrix. Insight can be gained by expressing detection probability as a function of

the conditioned SNR (CSNR). The CSNR is defined as the effective SINR obtained

by the application of a particular method, normalized by the optimal SINR (known

covariance matrix, full-rank case):
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The conditioned SNR is a random variable, always bounded 0 < p < 1. For a target

signal amplitude of a and an array weight vector of w, the effective SINR at the

The optimal SINR is given by

It follows that for a particular method, the CSNR can be

computed from
9

Several specific methods are considered below. With SMI, the full-rank MVB weight

vector is given by w R- ls. The density of the CSNR for the SMI method with

Gaussian data has been derived in [15], and is given by the beta distribution with

parameters K and N,

Ls the standard gamma function. When a rank r, r <

transformation T is applied to the data, the CSNR can be written:

To allow for adaptation away from the interference subspace, the rank of the trans-

formation T needs to be r > p 1, where p is the rank of the interference subspace.

The distribution of p for various reduced-rank methods will now be determined.

Two classes of transformations are distinguished: (1) the class of fixed transfor-

mations, and (2) the class of data dependent transformations. The former applies

when T is formed from data independent transformations such as the DFT or the

DCT. To the latter class belong data dependent transformations T such as formed

by the eigenvectors of the estimated covariance R. The CSNR for each of these

classes is subsequently analyzed.
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4.2.1 Analysis of Fixed Transforms

For fixed T, Equation 4.19 can be rewritten:

where pr is the reduced-rank CSNR,

and Pb is the bias in the optimal SINR introduced by the transformation T,

Equations 4.20-4.22 clearly demonstrate the effect of reduced rank transformation

on the SMI-MVB method. The linear transformation T preserves the Gaussian

distribution of the data, hence the reduced-rank CSNR, Pr, has a beta distribution

with parameters K and r (i.e., the density in Equation 4.18 with N replaced by

r). Improved statistical stability is evident in the higher CSNR values associated

with Pr. For example, for the full-rank SMI, E [p] = 0.5 for a number of snapshots

K = 2N — 3 [15], while for the reduced-rank SMI, E [Pr] = 0.5 for K = 2r — 3, i.e.,

fewer samples are required for the same performance level. The higher CSNR values

due to improved statistical stability, are somewhat offset by the bias term ph , which is

the loss in the optimal SINR due to the rank reduction for known covariance matrix.

This loss is the quantity µ/µmax analyzed in the previous section. The density of p

is thin 171v11 in terms of the density of Pr by the expression:

It is interesting to note that the linearly constrained (Frost-type) SNR

maximization problem also has a rank reduction property and the corresponding

CSNR has the same distribution as Equation 4.18 with N replaced by N n 1,

where n is the number of linear constraints on the weight vector [54].
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The performance of the GSC processor with a fixed rank-reducing transfor-

mation is analyzed in [55].

4.2.2 Analysis of Data Dependent Transforms

The case when T is data dependent cannot be directly derived from the SMI distri-

bution. In this case T is a random matrix and its effect on the CSNR needs to be

evaluated statistically. The weight vector may be constrained to lie either in the

noise subspace or the interference subspace.

The method resulting from the noise subspace constraint is referred to as inverse

PCI in [16] and as eigencanceler in [17]. The weight vector is given by

The CSNR density function for the eigencanceler was derived in [56]. The derivation

is based on the asymptotic expansion of the distribution of the principal components

of the covariance matrix. Therein it is shown that, unlike the SMI density in Equation

4.18, for the eigencanceler the density depends on the covariance matrix. It is noted

in reference [56], the expression in Equation 4.25 below was developed under the

assumption that the projection of the steering vector s on the true interference

subspace is negligible compared to its projection on the true noise subspace, i.e.,

pb 1. Retracing some of the steps in [56], it is not difficult to show that when this

assumption is not imposed, the CSNR can be expressed in the form p = pbpr (as in

and the density of pr given by

INR this expression simplifies to
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The density of the CSNR f  (p) can then be computed as in Equation 4.23. The

density of PCPs CSNR is similar in form to that of the SMI method, with the

difference that in Equation 4.18 the signal dimensionality N is replaced by the

The relation between Equations 4.26 and 4.27 is explored in Appendix C.

In the introduction it was mentioned that LSMI is essentially a reduced-rank

technique. Indeed, a CSNR distribution similar to Equation 4.27 is found in [20].

To complete the analysis of data dependent transforms, we now consider the

case of the weight vector constrained to the interference subspace. We will refer to

this method as principal components SMI (PC-SMI). Ignoring a constant gain, the

PC-SMI weight vector is given by

where A., is a diagonal matrix of the r principal eigenvalues of R, and the columns

of Qr are the associated eigenvectors. Consistent with the earlier discussion on

the topic, r is chosen larger than the actual interference subspace rank p. Direct

analysis of PC-SMI's performance is very difficult since the CSNR is a function of

both random eigenvalues and random eigenvectors. However, an approximation can

be obtained based on the following argument. Let

are respectively the eigenvectors and eigenvalues of the

rank p interference, r = p + 1, and 4r, -Ar are the index r (in descending order)

eigenvector and eigenvalue. Then the PC-SMI weight vector can be expressed
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For large interference eigenvalues, the elements of A. 27 1 are negligible, and Equation

4.29 can be approximated with

Since the vector Elr is the noise subspace with respect to the rank p interference, this

PC-SMI is equivalent to a noise subspace canceler. Thus under the assumption that

the interference eigenvalues are very large, the density of pr is given by Equation

4.26. The overall CSNR is p pbpr . For PC-SMI, pb sliqr ces is the projection of

the steering vector s onto the eigenvector q r . For the eigencanceler

are the same, it would seem that the eigencanceler would always be preferable.

This conclusion however is based on the assumption that the elements of .4 1 are

negligible. In general, PC-SMI is recommended when the steering vector lies mostly

in the interference subspace, and conversely, when the steering vector is mainly in

the noise subspace, the eigencanceler method should be applied.



CHAPTER 5

NUMERICAL RESULTS

Numerical results presented in this chapter were derived from computer simulations

as well as from processing real data collected by the DARPA sponsored Mountain-Top

program. Simulated data is used to compare the various techniques that have been

presented in earlier chapters. The Mountain-Top data is used to demonstrate the

performance of the various techniques on real-world data. Analysis of the Mountain-

Top data reveals target cancellation due to mismatch between the true received signal

vector and the steering vector used in weight calculation as well as the training area

used for the calculation of the covariance matrix.

5.1 Simulated  Data

The simulation model used an V = 8 element array with n = 4 taps at each element.

The clutter was located in the angular sector of 0 to 30 degrees. The input clutter-to-

noise ratio (CNR) was 10 dB at each antenna. In Figures 5.1(a), 5.2(a), and 5.5(a),

two jammers were located at 15 and 20 degrees with a jammer-to-noise ratio (JNR) of

10 dB at each antenna. The interference subspace rank is bound by r < 1/ -1- K- 1 = 11.

The bound would be achieved for interference that covers the full space-Doppler

domain. For the sample covariance matrix used in the simulation, the clutter does

not cover the whole space-Doppler domain and the interference rank was found to be

6. The steering vector was set at 50 degrees, and at a normalized Doppler frequency

of 0.4. The effect of the assumed rank p of the interference subspace on the average

CSNR is shown in Figure 5.1(a). For each method, the CSNR was computed from

Equation 4.17.

The eigencanceler's weight vector used in Equation 4.17 is given by Equation

4.24. For the DCT and DFT reduced-rank transformations, T was constructed from
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the steering vector s, and the vectors corresponding to the p principal components

of each transformation. The CSNR was computed from Equation 4.19. In case of

the CSM method, the matrix U was constructed as in Equation 4.12 substituting

estimated values for unknown quantities. The CSM weight vector was subsequently

evaluated from Equation 4.8. The curves shown represent averages of 5000 runs.

CSM provides slightly better performance when the rank is underestimated. The

DCT-based method seems to be the least affected by overestimating the rank of the

interference subspace.

The effect of the assumed rank p of the interference subspace on the average

CSNR is shown in Figure 5.1. For each method, the CSNR was computed from

Equation 4.17. In the case of the the particular scenario considered without jammers

(Figure 5.1(a)), all methods peak near an interference subspace rank of p = 4, the true

rank of the interference subspace. In the scenario considered with jammers (Figure

5.1(b)), the eigencanceler and CSM methods peak near an interference subspace rank

of p = 6, the true rank of the interference subspace. The DCT method peaks near an

interference subspace rank of p 8 while the DFT method peaks near an interference

subspace rank of p = 7. The different rank values required by each method for best

performance, are indicative of different capabilities to concentrate the power in a few

principal values.

Several other methods are compared in Figure 5.2(a): PC-SMI, reduced-rank

GSC, DFT-based CSM, and DCT-based CSM [21, 22]. The PC-SMI weight vector

was computed from Equation 4.28. The reduced-rank GSC weight vector was

evaluated using Equation 4.8, where the matrix U consisted of the p principal eigen-

vectors of Ra, = ARAH. The CSM methods shown in the figure are not discussed

in this work; details on those methods can be found in [21, 22]. At their respective

optimal rank orders, the CSNR peak values for the eigencanceler, CSM, PC-SMI

and reduced-rank GSC are in close agreement.



(a) CSNit vs Hank order - without jammers

(b) CSNR vs Rank order - with jammers

Figure 5.1 CSNR vs Rank order
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(a) CSNR vs Rank order for other techniques - without
jammers
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(b) CSNR vs Rank order for other techniques - with
jammers

Figure 5.2 CSNR vs Rank order for other techniques
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Figure 5.3 CSNR vs Rank order with large clutter field

In Figures 5.3 and 5.4 the clutter was located in the angular sector of 0 to 180

degrees. The CNR per channel was 10 dB. The construction of P and U for the

various techniques was performed as in Figures 5.1(a) and 5.2(a). As shown in the

figures, the peak for the eigencanceler, CSM, reduced-rank GSC, and PC-SMI occur

at a rank of p = 8. As expected, the more extended clutter leads to a larger number

of principal values. As in the other simulations, the eigencanceler, CSM, PC-SMI,

and reduced-rank GSC are in close agreement, The DCT and DFT reduced-rank

transformations do not perform as well in this scenario. This is due to the lower

capability of these techniques to concentrate the clutter power in a limited number

of principal values.

In Figure 5.5, the distribution of p based on 20,000 runs is shown for several

reduced-rank methods, as well as for full-rank SMI. The reduced-rank methods

were: eigencanceler, DCT, DFT, and CSM based on the eigen-decomposition and

implemented as a GSC. In the case without the jammer, the number of principal

components used to generate the results shown in Figure 5.5(a) was p 4 for all
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Figure 5.4 CSNR vs Rank order for other techniques with large clutter field

methods. With the jammers included, the number of principal components used to

generate the results shown in Figure 5.5(b) was p = 6 for the eigencanceler and CSM,

p = 7 for the DFT, and p = 8 for the DCT. In both cases, the highest CSNR's are

exhibited by the CSM and eigencanceler methods, with reduced-rank MVB based on

the DCT and DFT providing slightly lower performance. All reduced-rank methods

clearly outperform the full-rank SMI.

As shown in section 4.2.1, the DCT and the DFT reduced-rank CSNR, Pr, have

a beta distribution. The simulated CSNR of the DCT and the DFT reduced rank

cases may be compared to the theoretical CSNR using Equation 4.20. In Figure 5.6,

the simulated and theoretical CSNR results for both the DCT and DFT are shown.

There is good agreement between the theoretical results and the simulations

Figure 5.7 shows the average probability of detection. To compute the proba-

bility of detection, we make the assumption that the target amplitude a in Equation

3.2 is a zero-mean, circularly symmetric complex Gaussian random variable with



Figure 5.5 Probability density of the CSNR
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Figure 5.6 Theoretical and simulated CSNR for the DCT and DFT

Setting the weight vector gain in Equation 4.17 such that -sArils
2

= 1, we have

F = 1/pa, where a = sHR -l s. The probability of false alarm conditioned on the

CSNR p is given by

where yq-, is the detection threshold. The average probability of false alarm is given

where ƒ, (p) is the density of CSNR, which depends on the STAP method applied.

Under H 1 , y (k) has an exponential distribution with parameter

, It follows that the conditional probability of detection is given



Figure 5.7 Probability of detection for reduced-rank methods

The average probability of detection is then expressed

In the simulations, we found the threshold yT  (p) such that P1 (p) = 10 and

averaged the thresholds over 200 runs to obtain an average threshold value. This

value was then used to compute Pd (p) as a function of the SNR. For each SNR and

each method, 200 values of Pd (p) are averaged to serve as a point on the curves in

Figure 5.7. The figure illustrates the same trends as Figure 5.5(a); best detection

performance is provided by the eigencanceler and CSM, followed by DCT and DFT

(indistinguishable), and finally the full-rank SMI.

The effect of the CNR on performance is illustrated in Figure 5.8. The CSNR is

plotted as a function of the input CNR. The CSNR is computed for a rank-reducing

transformation with r 4. As the CNR increases, the interference power spills

over more than 3-4 principal values. Thus the rank reducing transformations are

inadequate in capturing the interference power and performance is degraded.
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Figure 5.8 CSNR vs CNR

The signal cancellation effects on the various STAP techniques under investi-

gation are shown in Figures 5.9 and 5.10. In these figures, the SNR axis is based on

Figure 5.9 shows the effects of SNR and the pointing

error on the array gain using Equation 3.34. There are no phase and amplitude errors

so ci = \/1/N. The target is at bore sight (9d = 0°) and the interference angle is 15°.

As shown in the figures, when the SNR is small the pointing errors have the least

effect on the array gain. As the SNR increases, the performance degrades for a small

pointing error as the SMI's mainlobe narrows. The •eigencanceler's performance is

acceptable up to an SNR of 15 dB but decreases as the SNR approaches the INR.

This is due to the shift of the first eigenvector towards the desired signal as the SNR

approaches the INR. The CSM performs better than the SMI at low SNR however it

is not as acceptable as the eigencanceler. The input signal in this case was one signal

and one interferer. The Eigencanceler and CSM perform well with one transform

term. However, due to the way that the fixed transforms perform, their performance



94

is unacceptable with one term. The DCT and DFT techniques were performed with

p = 5. In this case, the DCT's performance is similar to the SMI. The DFT is also

similar to the SMI with the exception of several spikes at low SNR as the pointing

error is increased. These are due to the way that the DFT processes the input signal.

Additional terms in the DFT processing will reduce these effects.

Figure 5.10 show the effects of the phase and pointing errors. There are no

amplitude errors and the phase errors are modeled as a zero-mean Gaussian random

variable. The phase errors were evaluated using 50 Monte Carlo runs. The SMI

exhibits a larger degradation in the array gain than the eigencanceler in the case

of both pointing and phase errors. The eigencanceler exhibits almost no loss of

performance for phase errors up to 8° while the SMI gain is decreased to 1/2 for

phase errors with a standard deviation of 5°. The CSM shows good performance

for phase errors up to 6°. The DCT gain is decreased to 1/2 for phase errors with

a standard deviation of 8'. The DFT's performance is similar to that of the SMI.

As illustrated before, the eigencanceler's pointing error is less than that of the other

techniques.

5.2 Mountain-Top Data

The performance of the various reduced-rank methods are compared to one

another when applied to the Mountain-Top dataset . This data was collected

from commanding sites (mountain tops) and radar motion is emulated using a

technique developed at Lincoln Laboratories [58]. The sensor consists of 14 elements

and the data is organized in coherent pulse intervals (CPI) of 16 pulses. For the

dataset analyzed here, the clutter was located around 245 degrees azimuth and

the target was at 275 degrees and at a Doppler frequency of 156 Hz. A synthetic

target was introduced in the data at 275 degrees and 156 Hz. Note that the clutter

and target have the same Doppler frequency, hence separation is possible only in
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the spatial domain. The target is not detectable without processing. The data

analyzed was post-Doppler processing. A 16 x 14 matrix was formed for each

range cell, where the temporal information is in the matrix columns, and the spatial

information is contained in the rows. The received signals were processed using

fixed Doppler filters. The filter containing the target and clutter was selected for

follow-up processing and spatial processing was applied to 14 x 1 data vectors.

The spatial steering vector was formed using the known target angle. The data

was plotted relative to sky noise. Weight vectors were computed from a 60 data point

training set. In the first scenario, shown in Figure 5.11, the training range cells were

from 145 km to 152 km (outside the target region). The SMI, eigencanceler, CSM,

DCT, and DFT methods detect the target and suppress the clutter. Each method

provides cancellation of the training region due to the covariance matrix being formed

from data in this region. Each of the reduced-rank methods were evaluated utilizing

four principal values (plus the steering vector in the case of the DCT and the DFT).

For comparison purposes, the curve representing the unadapted data is also shown

in Figure 5.12. The unadapted weight vector was taken equal to the steering vector

(w = s). The target is clearly not detectable without adaptive processing.

Figure 5.13 shows the second scenario where the training is applied around the

target region from 150 km to 158 km with the target region (5 range cells) omitted

from the training set. The eigencanceler's performance is very similar to the first

training area. The performance of the SMI is decreased by 4 dB due to the residual

cancellation that the SMI is sensitive. While this scenario does give good results,

omitting the target region is not a practical approach of training since the weight

vector would need to be recalculated for each target under test. Each of the reduced-

rank methods were evaluated utilizing four principal values (plus the steering vector

in the case of the DCT and the DFT). The target is clearly indicated by all methods.
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The third scenario, shown in Figure 5.14 includes all of the data vectors in the

target region from 150 km to 158 km, including the target area, in the training. The

presence of the target region causes an increase in the desired signal component in

the estimated correlation matrix. This, put together with calibration errors, causes

a deep signal cancellation by the SMI method. The eigencanceler, CSM, DCT, and

DFT are only slightly affected by the presence of the signal in the training set.

Figure 5.15 displays the echo magnitude at the target range cell and for the

beamforming at various angles. The figure was generated by scanning the steering

angle over the angular sector indicated by the abscissa. The gain of each technique

is measured with respect to the output when the beamformer points in the actual

target direction (at 275 degrees). This plot emulates the radar's search mode. In

the case presented, the eigencanceler and the CSM patterns are very similar to one

another. Near the target angle, the DFT and the SMI are also at a maximum. The

DCT pattern is at a maximum close to the target angle, but not directly on the

steering angle. This is due to the number of DCT terms used and the training data

utilized in the formation of the covariance matrix in this simulation.

Typically, the cell under test as well as cells in its vicinity are not included

in the estimate of the covariance matrix. This implies a cumbersome procedure as

different covariance matrices need to be associated with different range cells. Robust

methods such that the same covariance matrix can be used for all range cells are of

practical interest. The reason is that if the target signal is included in the covariance,

target cancellation may occur to the extent that the presumed steering vector is

different from the true target vector. Differences between the steering vector and

the true target vector may occur due to either pointing or calibration errors. Here,

assume that the steering vector s is precisely the target vector. Let the covariance

matrix without the target contribution be R, and with the target be R I . Then

R1  = PssH+ R, where P is the power of the target. It is easy to show that the



(a) Training outside the target region. SMI, EIG,
and CSM techniques
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(b) Training outside the target region. SMI, DOT,
and DFT techniques

Figure 5.11 Post-Doppler range plots using 60 training points with training outside

the target region
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Figure 5.12 Post-Doppler range plots using 60 training points with training outside
the target region. SMI, EIG, and non-adaptive techniques

SMI weight vector will remain unchanged (up to a gain factor). Hence, inclusion of

the target in this case has no impact on the array performance. Conversely, when

the steering and the target vectors differ, presence of the target will cause a shift

in the weight vector. In this case, the target is interpreted as an interference and

the array acts to reject it. Since in practice it is difficult to ensure that the target

and steering vector are equal (no pointing error and perfect calibration), to preclude

target cancellation, covariance matrix estimation is done without the range cells in

the vicinity of the one tested. Reduced rank methods constrain the weight vector

to the noise subspace. These methods tend to be less susceptible to the presence

of the target in the training data, since a few target cells may cause no change in

the interference/noise subspace partition [59]. Indeed, the covariance matrix may be

expressed



(a) Training around the target region, target not
included. SMI, EIG, and CSM techniques
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(b) Training around the target region, target not
included. SMI, DCT, and DFT techniques

Figure 5.13 Post-Doppler range plots using 60 training points with training around
the target region with the target not included



(a) Training around the target region, target
included. SMI, EIG, and CSM techniques
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(b) Training around the target region, target
included. SMI, DCT, and DFT techniques

Figure 5.14 Post-Doppler range plots using 60 training points with training around
the target region with the target included
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Figure 5.15 Angle scan with the target not included in the training

where M is the number of range cells for which there is a target return and a m

are the target complex amplitudes. As the size of the training region (i.e. K) is

increased, and since the number of range cells containing the target is kept fixed, the

signal power decreases with respect to the interference. Thus at large K, the effect

of the target presence in the training data should be negligible. A measure of target

cancellation at the array output is provided by the ratio r of the target power at the

array output when training is done over a subset of cells including the target cell

to the target power when training is done over all of the range cells. The quantity

1 — r measures the target cancellation relative to training over the full range interval.

This quantity was computed from the Mountain-Top data, and is plotted in Figure

5.16 . The eigencanceler, DCT, and DFT methods exhibit lower signal cancellation

than the SMI and CSM.



Figure 5.16 Signal cancellation based on the number of training points



CHAPTER 6

CONCLUSIONS

This work has brought together various methods used to study synthetic aperture

radar (SAR) and space-time adaptive processing (STAP) radar systems. As stated

previously, radar systems may be processed with various space, time and frequency

techniques. Advanced radar systems are required to detect targets in the presence

of jamming and clutter and this interference is seen by the radar systems in various

ways. To perform interference cancellation, multidimensional filtering over the

spatial and temporal domains is required. Uncertain knowledge of the clutter and

jamming environment requires systems that perform data-adaptive processing.

For SAR, a technique for extracting the target motion parameters from the

data was introduced. The technique was based on processing the signal with various

time-frequency distributions. The parameters may then be subsequently used in

a SAR system to adjust the processing to focus on the moving object within the

field. The signal received from a target moving over a stationary background can be

modeled as samples of a chirp signal embedded in noise.

STAP radar performance was studied with the focus on the problem that,

in STAP, the dimension of the adaptive weight vector can become large. As this

dimension becomes larger, the required sample support for STAP detection also needs

to increase. Publications have shown the advantages of various forms of reduced-rank

processing over the full-rank SMI. Given a rank reducing transformation, adaptation

can take place in the subspace spanned by the principal components of the transform

(interference subspace methods) or in the complementary subspace (noise subspace

methods). The transforms are either fixed (such as discrete Fourier transform - DFT,

or discrete cosine transform - DCT) or data dependent such as the eigencanceler or

the cross-spectral metric (CSM). Reduced-rank methods are important for STAP
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radar, where a large number of degrees of freedom may be available. For a uniform

array and for fixed PRF, the space-time clutter covariance matrix is essentially low-

rank due to the inherent oversampling nature of the STAP architecture. As has

been demonstrated, the space-time radar problem is well suited to the application of

techniques that take advantage of the low-rank property.

An overview of the various time-frequency techniques studied were given in

Chapter 2. The response of each technique used was shown when analyzing a sine

wave and a multicomponent signal. Basic properties associated with each technique

were also introduced. The time-frequency techniques were used to estimate SAR

target parameters. This work was based on the concept that a signal received in a

SAR system from a target moving over a stationary background may be modeled as

samples of a chirp signal embedded in noise and the problem of estimating the motion

parameters of this moving target is equivalent to the estimation of a chirp signal in a

noisy environment. The application of four specific TF analysis techniques: the short-

time Fourier transform, the Gabor expansion the Continuous Wavelet transform and

the Wigner-Ville distribution, to the estimation of the relative along-track velocity

between the SAR platform and a moving target were presented. It was shown that

various TF analysis techniques may be used to analyze thè track of a moving target

with SAR. Each of the TF analysis techniques examined display a sharp threshold

effect when used to obtain the instantaneous frequency of a signal. The optimality

of the WVD for the determination of the IF was verified and compared to the

results obtained for the cases of the STFT the Gabor expansion and the CWT.

In the simulations performed, the STFT was closer to the Cramér-Rao bound than

the Gabor expansion and the CWT. In all cases, the relative velocity mismatch

introduced by the boat motion was less than 6% of the SAR platform velocity.

Chapter 3 introduced the space-time adaptive processing signal environment.

The definitions and mathematical model of the signals used for the STAP work was
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also presented. The Sample Matrix Inversion (SMI), Generalized sidelobe canceler

(GSC), Eigencanceler, and fixed transforms techniques are all introduced. Target

cancellation and closed form expressions for the SMI and eigencanceler are presented.

An expression for fixed transforms is also shown.

Reduced-rank methods for STAP based on the signal model were presented in

Chapter 4. Reduced-rank methods with known and unknown covariance matrices

were analyzed. The analysis is carried out in the framework of the minimum variance

beamformer and the generalized sidelobe canceller. A method was developed to

evaluate the theoretical performance of reduced-rank techniques when the rank-

reduction is carried out by a fixed transform. The PC-SMI technique was recom-

mended when the steering vector lies mostly in the interference subspace, and

conversely, when the steering vector is mainly in the noise subspace, the eigen-

canceler method should be applied.

The application of several reduced-rank methods to the STAP problem

was studied by analysis, simulations, and analysis of real data (in Chapter 5).

The motivation for the application of reduced-rank methods is that the STAP

problem is inherently low-rank. Restriction of the number of degrees of freedom

through the application of reduced-rank methods has the advantage of providing

robust covariance matrix estimates resulting in improved performance over SMI.

A taxonomy of reduced-rank methods was presented and specific methods were

analyzed. The CSNR was defined as a figure of merit for the array performance

when the interference covariance matrix is estimated from a training set. Various

adaptive methods are compared according to their CSNR performance. A general

expression for the CSNR density function was developed for reduced-rank methods

utilizing fixed transforms. When compared to the CSNR of SMI, reduced-rank

methods exhibit fewer degrees of freedom and a bias term. While best performance

is obtained using transforms based on the eigendecomposition (data dependent),
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the loss incurred by the application of fixed transforms (such as the discrete cosine

transform) is relatively small. The main advantage of fixed transforms is the avail-

ability of efficient computational procedures for their implementation. The effects

of calibration errors and covariance training ranges were also presented. It was

illustrated that adaptive radar is susceptible to signal cancellation when the target

it included in the training data. It was shown that signal cancellation with the

SMI, CSM, DCT and DFT is sensitive to the SNR and magnitude of the pointing

errors. The eigencanceler is much more robust than the SMI with respect to signal

cancellation.



APPENDIX A

DISCRETE COSINE TRANSFORM

In discrete Wiener filtering, the filter is represented by G, an M x M matrix. The

estimate of the data vector 3C 1S

where z = x N and N is the noise vector. The use of orthogonal transforms yield

a G that contains a large number of elements that can be set to zero as they are

relatively small in magnitude.

The Karhunen-Loeve transform (KLT) is optimal in respect to variance distri-

bution [60] and estimation using the mean-square error [61]. There is no general

algorithm that enables the fast computation of the KLT [60]. The KLT is a

performance basis to which many orthogonal transforms are compared, including

the Walsh-Hadamard transform (WHT), discrete Fourier transform (DFT), and

the Haar transform (HT). The discrete cosine transform (DCT) is an orthogonal

transform that closely compares to the KLT [62].

The DCT of a data sequence xm , m = 0, 1, • • • , (M — 1) is defined as

where Gk is the kth DCT coefficient.

The inverse discrete cosine transform (IDCT) is defined as
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APPENDIX B

COLUMN STACKED FIXED TRANSFORMS

As introduced in section 3.1, processing in the STAP model is carried out in the N

dimensional signal space resulting from stacking the snapshot column-wise. When

a fixed transform is used, a matrix form for the transform would be beneficial for

processing the signal.

A one-dimensional discrete N point Fourier transform may be written as

A two-dimensional DFT that results from stacking the transform as done when

creating the vector for STAP processing, is created using the form,

This may be represented in matrix form as
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This matrix is formed using the following relationships:

In the case of the discrete cosine transform, the base equation is

and the tranform matrix is formed as was done

in the case of the DFT.
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APPENDIX C

p COMPARISON

In this appendix are considered Equation 4.26 and 4.27 derived respectively in [56]

and [57]. While there are no similarities in the derivations, it will be shown here that

Equation 4.26 can be obtained as an approximation of Equation 4.27. To that end

first apply the approximation [63, p.33 (11)]

The CSNR values considered are smaller than, but close to, 1. Let p = 1 — h. Then,

for h —+ 0 and	 oo:

as well as

Applying Equations C.1 and C.2 in Equation 4.27, and Equation C.3 in Equation

4,26, we get the two expressions to be equal.
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