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ABSTRACT

GENERAL PARALLEL-LEG MECHANISM: POSITION ANALYSIS

by
Hans Buus Gangwar

This thesis proposes to analytically express the positions of the legs (each leg has a length

and two spin orientations) for a parallel leg mechanism in terms of a single variable. The

only limitations imposed are the leg bases are all on the same reference plane and the tool

orientation is normal to the mobile upper plate. This is done for a parallel leg

mechanism having any number of legs. The variable chosen is the first leg's vertex

position on the upper plate.

The state space is the space the configuration can occupy. By looking at a planar

slice of the state space for a specified tool axis position and orientation on the upper

plate, the different possible leg positions can be constructed The three dimensional

space can then be generated by overlaying a progressive set of planes.
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CHAPTER 1

INTRODUCTION

1.1 Advantages and Disadvantages of a Parallel-Leg Mechanism

There are three main advantages of a parallel-leg mechanism over a conventional serial

link configuration: identical components, even distribution of weight, and absence of

error buildup.

By the inherent nature of a parallel-leg configuration, the links and their ball joint

connections do not vary from leg to leg. This component universality thereby reduces the

costs of production and part replacement. A serial-link mechanism does not have this

intrinsic repetition of parts, thus raising the maintenance and production costs.

Second, in a parallel-leg mechanism, the weight of the tool plate is distributed

among the six legs. Thus, the legs do not need to be massive, nor do the servo-motors

controlling the movement need to exert a large amount of torque. Whereas in a serial-

link mechanism, the weight is additive, for the base link has to support all the other links

in addition to the tool plate. As a consequence of better weight distribution, parallel-leg

mechanisms exhibit better rigidity and higher acceleration.

Lastly, with the parallel-leg mechanism, the error in link orientation is isolated to

the specific links (it is not felt between links), so the total error is not additive, and

usually ends up being a little greater than the largest error [Belli, 1988]. However, with a

serial arrangement, the error is cumulative.

Thus a parallel-leg mechanism is superior to a serial-link mechanism in

performance, cost of manufacturing, and cost of maintenance.

1
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The disadvantages are subtle. First, analysis of the movement for a serial

mechanism is fundamentally simpler. Only forces and moments between links cumulate,

and the effects of those are easily analyzed, especially with the effects being felt at the

link connections. Thus the motion can be isolated along orthogonal axes. With a parallel

mechanism, however, link movement is coupled — when one link moves, the relative

orientation of the others also changes. Second, tool path generation in the operation of

the mechanism is straightforward with a serial mechanism. Path generation is an

everyday requirement for machinists with NC machines. Every different machine job

needs a different program. Because the motion of a parallel-leg mechanism is complex,

planning a trajectory is time intensive, difficult, and many times not optimal.

1.2 Background

Parallel-leg mechanism designs were first introduced back in the 1800's. It was not until

1947 that one was actually built by Gough. His Universal Tire Testing Rig was the first

practical application of a parallel-leg mechanism. Gough's mechanism allowed the

measuring of wear by pressing a rotating tire at different angles against a rough surface

[Gough & Whitewall, 1956].

Parallel-leg mechanisms are popularly known as Stewart platforms, after

Stewart's six degree of freedom flight simulator shown in Figure 1 [Stewart, 1965].

However, it was not until 25 years after the Stewart platforms first appearance that

theoretical research in robotics began to focus on parallel-leg mechanisms. The first

analytical efforts were made by Behi, Griffs and Duffy, and Fichter.
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Figure 1 Stewart Platform 

Fichter determined the leg lengths, velocities, and singular positions of the 

configuration for a Stewart's platform. His parameters were the position, velocity, and 

orientation of the upper plate [Fichter, 1986]. 

Behi [1988] also studied a Stewart's platform. He analyzed the platform for both 

reverse and forward displacements. In reverse displacement analysis, the orientation and 

center position of the upper plate are given, for which the leg lengths are solved. In 

forward displacement analysis, the leg lengths are given, for which the orientation and 

center position of the upper plate are solved. Then he looked as well at the workspace of 

the mechanism - the three dimensional space in which the mechanism operates. 
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GrifIs and Duffy [1989] analyzed a modified Stewart platform with six legs 

attached at three separate ball joints at both the base and upper plates (shown in Figure 

2). Eight reflected solution pairs for the leg lengths were arrived at, given the orientation 

and center position of the upper plate. 

Figure 2 Griffs and Duffy's Modified Stewart Platform 

The most intensive study was done by Innocenti and Parenti-Castelli [1990], 

whom analyzed the mechanism shown in Figure 3. They solved for the orientation and 

mobile upper plate position in terms of the leg parameters. Their approach was first 

closure of the loop equation for the legs, then construction of the orientation and center 

position vectors for the upper plate by means of the three top vertices. Using complex 

numbers, their result was a 16th order polynomial in terms of one variable. 
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Figure 3 Innocenti and Parenti-Castelli' s Parallel-Leg Mechanism 

1.3 Motivation and Objective 

In machining, it is important to be able to move a parallel leg mechanism through a 

prescribed path. Since most tools are symmetric, the mobile upper plate can be rotated 

about the tool axis without changing the tool orientation. Thus a single degree of 

freedom exists for the upper plate, a rotation about the tool axis. Having an equation 

expressing the leg variables in terms of a single point on the upper plate (in addition to 

the tool axis position and orientation) would enable the generation of the leg positions for 

different rotations of the upper plate. From inputting the different points on the tracer 

line of the tool axis position, this process can be repeated to generate a set of such 

solutions. In addition the tool orientation need not be held constant over tracer path. 

The objective is then to determine all possible configurations for a specified tool 

position and orientation. 
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1.4 Design Parameters 

Each leg is given an axial length x, an angular orientation 11 about the YB-axis, and a 

second angular orientation \jJ about the ZL axis as shown in Figure 4. There are six legs, 

so there are 6 * 3 variables. Given the tool axis orientation and position, a point in the 

upper plate can lie on a circle of solutions. Therefore the objective of this thesis is to 

express the other variables in terms of the first leg's upper vertex position on the mobile 

plate, d t . This is done in order to provide the equations to map out the solution space 

over the range of the single independent variable. 

y 
L 

Z 
B 

X 
B 

Figure 4 Leg Coordinates 
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The tool axis orientation n is assumed to be normal to the upper plate surface at 

the tool axis position P. The distance between P and leg vertex di is Vi (see Figure 5) 

Figure 5 Upper Plate Parameters 
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The last parameters needed are the base positions of each leg. The assumption 

made is that each leg i is on a circle of radius ri at an angle 8j (Figure 6 illustrates the 

base coordinates for the case of six legs). 

Figure 6 Base Coordinates for Six Legs 



CHAPTER 2

POSITION ANALYSIS

2.1 Approach

A parallel leg mechanism's position depends on the tool axis position P and orientation n

on the upper plate. The main quantity of interest controlling the position of the upper

plate is the legs' lengths. Since the legs are attached to the upper plate at the vertices, in

order to express the legs' lengths in terms of P and n, first the equation describing the

position of the vertices is needed. To accomplish this, a general equation will be

developed in Section 2.2 for any arbitrary leg. This equation will be called the Single

Leg Equation. Once the Single Leg Equation is known, the leg variables (length x and

angular orientations Ti and w) can be expressed in terms of the vertex distance d. This

will be done in Section 2.3. The equations derived in Sections 2.2 and 2.3 are for an

arbitrary leg and corresponding vertex. Since the vertices are not independent, but

related by the geometry of the upper plate and by specifying the tool axis position and

orientation, there is only a single degree of freedom (once one vertex is specified, the

plate is fully constrained). As such the other vertices after the first can be expressed in

terms of the first. All that is needed is the distance V i between vertex di and tool axis

position P, and the angle γi between the axis position and the vertices di and (11. Section

2.4 derives the equation relating the vertices. From this set of equations, all leg lengths

are expressible as a function of the first vertex d1.

9
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2.2 Single Leg Equation 

The purpose of this section is to express the distance from a vertex to the ground in terms 

of the leg variables. This expression is called the Single Leg Equation, and can be used 

to relate any vertex position in terms of its leg's variables x, 11, and \V. 

i r. 
. ~ 

x 
'y 

X 
B. 

Figure 7 Coordinate Frames 

A leg is broken into the three different coordinate frames shown in Figure 7: its 

reference base frame {B} on the base plate, its leg direction frame {L} whose origin 

coincides with {B} but whose x-axis points in the direction of the leg, and its upper 

connection frame {U} which lies on the connection of the leg to the upper plate. By 

formulating dual number transformations from the ground {G} to {B}, from {B} to {L}, 
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and from {L} to {U}, the vertex d becomes simply the transformation T from the ground 

{G} to the upper connection (vertex) {U}. The appendix describes the dual number 

transforms in detail. 

Bir,S) expresses the coordinates of the reference base of leg i in terms of the 

ground. Two coordinate transforms are needed. First rotate about Zg by e to arrive at the 

new x' - and y' - axes. Then translate along the new x' -axis by r to arrive at the Xn- and 

YB- axes. Since the purpose is to express a coordinate point (XB,YB,ZB) as (xg,y g,Zg), the 

order of matrix operation for B;(r,S) is backwards. 

B = Z(6,O)X(O,r). 

eos(e) -since) 0 1 0 0 

B(r ,8) := sin(8) eos(S) 0 ·0 1 -8 'r 

0 0 1 0 E'r 1 

Now each leg j is presumed to be connected at {Bj} by a ball joint. Looking at 

the leg j, a second coordinate system can be established at {B;}, where the xL-axis points 

in the leg direction. Since we are only looking at the joint right now to see the directional 

orientation of the leg, the translation r = O. To arrive at the new coordinate system, first 

rotate {B;} about the YR-axis by TU until the leg is in the x"y" (or X" YR) plane, then 

rotate about the z" axis by \IIi to align XL with the leg. So undoing this operation to arrive 

at the coordinate transformation, 

L = Y(l1,O)Z(\JI,O) 

cos(l1 ) 0 sine 11) cos( 'V) -sine \jI) ° 
L(l1,'I') := 0 1 0 . sine 'V) cos( '1') 0 

-sine 11) 0 cos( 11) 0 0 1 
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Next, each leg has a length xi, so to move from the coordinate system at {L} to 

the coordinate system at {U} (upper part or distal end of the leg), a simple translation 

occurs along the xL-axis. 

1 0 0 

U(x) .- 0 1 -E ·x 

0 s·x 1 

Combining the equations, the position of the top of each leg can be expressed in 

terms of the ground coordinate. T = B * L * U 

cos(e) -sine e) 0 1 0 0 cos( 11) 0 sine 11) cos( 'V) 

T= since) cos(e) 0 0 1 -B ·r 0 1 0 . sine 'V) 

0 0 1 0 &·r 1 -sine 11) 0 cos( 11) 0 

Evaluating the matrix symbolically 

[

COS (e) . cos ( 11 ) . cos ( 'V) - sine e ) . sine 'V) - sine e) . e . f' sine 11 ) . cos ( 'V ) 

T(r ,e ,11 ,\j1 ,x)<O> -+ since) -cos( 11 )'cos( 'V) + cos(O )-sin( '1') + cos(O)·g 'r-sin( 11 )-cos( 'V) 

e 'f' sine 'V) - sine 11 ) -cos ( 'V) 

-sine 'V) 0 1 

cos( 'V) 0 0 

0 1 0 

~oos(e )'oos( t\ ) 'sin(IV) - sin(9 )'ooS(IV) + sinCe )'6 ' r'sin( t\ )' sin( IV) + e .'x·cos(9)·sin( t\) + t;2·x·sin(9)·r·oos( t\) 
<1> 

T(r ,9 , t\ ,IV ,x) .... -sin(9)'oos( t\ )'sin( IJI) + oos(9)'oos( IJI) - cos(9)·£ 'r-sin( t\ )'sin( IJI) + £ ·x·sin(9)·sin( Tl) - s2'x'cos(9)'r-cos( Tl) 

£·r·oos(lJI) + sin(T)) ·sin(lJI) + oos(T))'£'x 

E 'x'cos(e)'COS(Tl) 'sin( IJI) + E 'x' sin(e) 'cos(lJI) - E
2

'x'sin( e)'f'sin(Tl )'sin(lJI) + cos(e) 'sin( 11) + sin(e)'E Toos(11) 

T(r ,6,'1 ,IV ,x(2 ) ~ E 'x'sin(6) 'cos(T) ' sine 'V) - E ·x·cos(6)·cos(w) + E2'X'Cos(6)Tsin(T)' sine 'V) + sin(6) ' sin(T) - cos(e)·& TCOS(T) 

-E2'XTCOS(\fI) - fi'x'sin(TJ)'sin(\fI) + cos(TJ) 

Using the property s2 = 0, the result is 

[

COS ( e ) -cos ( 11 ) . cos ( \jI) - sine e ) , sine \jI) - sine e) -e . r' sine 11 ) . cos ( \jI ) 

T (r ,e ,11 ,\jI ,x) < 0> -+ sine e ) -cos ( 11 ) . cos ( 'V) + cos (0)' sine 'V) + cos ( 0 ) . e . r' sine 11 ) . cos ( 'V ) 

e ·r·sin( \If) - sin('q) 'cos( \jI) 

0 0 

1 -B'X 

B'X 1 



Separating the primary component Tp and dual component Td

Now, to deal with the coupling of leg ends, we can look at the origins, which have

to coincide. Letting (14) = the reference coordinates for the upper (distal) end of leg i,

the matrix T can be decomposed as follows.

T= [R]{14} +ε[DR]{14).

The dual component Td of matrix T represents the total translation [D] multiplied

by the total rotation [R] (which makes sense by considering the matrix operation in dual

numbers... [D1] c X [D2] c = 0; so only the {[R1][D2] + [R2][D1]) 6 dual term remains;

or in three terms, {[R3][R2][D1] + [R3][D2][R1] + [D3][R2][R1]}ε).

So [D] = [DR] [R]T .

(Note: [R] -1 [R]T because [R] is obtained from the rotation matrices X, Y, Z

whose inverses are their transposes; since [R] is composed directly from these matrices,

its inverse is its transpose — decompose then take its inverse step by step to see). (Fischer

1999, p. 83)

13



where [D] is the matrix result of the cross of d by the unit vectors of frame {U}

As a check, the 1-1 element should be zero

As a check, the 2-2 element should be zero

Now, the 2-1 element = dz

And, the 3-1 element =

14



Lastly, the 1-3 element = dy 

rOsine e) + x'cos( e) -sine \V) + x-sin( e) 'cos( 11 ) 'cos( \V )=d 
Y 

or combining the results for dx, dy, and dz. 
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r'cos(e) - x'sin(e)'sin('I') + x'cos(e)'COS(11)'COS(W) I 
d(r ,e, 11 ,'I' ,x):= r 'sin(e) + x·cos(e) 'sin( 'If) + x' sin(e)·cos( Tl )'COS( '1') 

-X'sin(Tl)'COS(W) ISingle Leg Equatio~ 

This equation is applicable to any leg, whatever the top constraint is, 

2.3 Leg Variable Dependence 

The Single Leg Equation can solved for x, 11, & \jJ in terms of dx, dy, and dz. Now, the 

subscript i is introduced, for clarity of differentiation between legs, 

di x , 

d. 
1, Y = 

fi'COS (8 i) - xi'sin( 8 i) 'sin( 'Vi) + xi'cos (8 i) ·cos ( 11 i) 'cos ('Vi) 

f{sin( 8 i) + xi'Cos (8 i) 'sin( 'Vi) + xi'sin( 8 i) 'cos (11 i) ·cos ( 'Vi) 
d. 
t,Z - Xl' . sin(11 t') • cos ('Vl')\ I d Single Leg Equatio 

-xi'sin( 8i) 'sin( 'Vi) + xi'cos (8 i) ·cos (11 i) 'cos ('Vi) 

X(COS (8 i) 'sin( 'Vi) + X(sin( 8i) 'cos (l1i) 'cos ('Vi) 

-X(sin( fli) 'cos ('Vi) 

d. - r· 'cos (8.) 
I,X I 1 

= di,y - fi'sin ( 8i) 

d. 
I,Z 

Multiplying the first equation by cos (9 i) and the second equation by sin(9i) ' 

xi'sin( 8i) 'cos (8i) 'sin( 'Vi) + xi'sin( 0i) 2 
·cos (11 i) 'cos ('Vi) 

-xi'sin( 11 i) 'cos ( 'Vi) 

cos (8i) , ( di, x - fi'cos (Oi) ) 

= sin ( 8i) ' ( di, y - fi'Sin ( 0i)) 

d. 
1, Z 
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Then adding the first and second equation to form another 

Another similar transform can be performed by multiplying the first equation by 

sin( 0 i) and the second by cos ( 0 i) . 

-xi' sin ( Bi)2 ,sin( 'Vi) + Xi' sin ( Bi) ·cos (6i) -cos (11 i) ·cos ('Vi) 

xi"cos ( Oi) 2 
-sin ( 'Vi) + X{sin( Oi) -cos (Oi) ·cos (11 i) ·cos ( 'Vi) = 

-X{sin( 11 i) .cos ( \Vi) 

sin ( Oi)' (di , x - f{COS (Oi)) 

cos ( \ ) . ( di,y - f{sin( 9i)) 

d. 
1,Z 

Then subtracting the first from the second 

[ 
xi' sin ('Vi) l=[COS (O~' (di'Y - rfsin(Oi)) - Sin(Oi)·(di,x - rj'COS (Oi)) 1 

-X{sin(rli)'COs ('VV di,z Eq.2 

Combining Equations 1 and 2 

Xf sin ( \Vi) cos (ei)' (di , y - rfsin( ei) ) - sin ( ei)' (di , x - rfcos (ei)) 
x(cos ( Tli) -cos (\Vi) = cos ( 9i) . ( di , x - ffcOS ( ei) ) + sin( ei)' ( di, y - f(Sin( 9i) ) 

-X{sin(lli) ·COS (\Vi) di,z 
Eq.3 

Taking the square of each row and adding the lines. 

(The leg length can not be negative, so only the positive square root is taken.) 



From the first row ofEq. 3 

. ( ) cos (9i)· (di , Y - f(sin( 9i) ) - sin( 9J. (di , x - f(COS (9i)) 
stn \(Ii =--------------------

x. 
1 
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The square root 
can be either +/-

Since di,z in the third row ofEq. 3 can not be negative, either sin( 11 i) is negative or cos ('Vi) 

is negative. 

So there are two solutions based off the sign of cos ( 'Vi) . 

2.4 Vertex Dependence 

The position of a vertex depends on both the tool orientation n and position P on the 

upper plate and internal geometry. The tool orientation of the upper plate describes the 

plane in which the plate lies. It is also the normal vector to that plane. The vector curl or 

cross product of two lines in the upper plate's plane will determine the normal vector. 

Since the normal vector is normalized (nx 2 + n/ + nz 2 
= 1), the lines used in the cross 

product need to be normalized as well (divided by the line length). The lines from P to 
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d1 and P to di are used, whose line lengths are V1 and Vi respectively. (Note: this is

done in order to develop equations relating the vertex di in terms of di .)

Which can be rewritten as

or expressing in terms of d1.

Since the upper plate's geometry is fixed, the angle γ i between the lines from P to d 1 and

P to d i does not change.

or

which can be rewritten as
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(p - d ).d. + (p - d ) .d. + (p .- d ) .d. =p2 - (P.d + P·d + P'd ) - V .V .. cos(r.) xl, X 1, X Y 1, y 1, Y Z 1, Z I, Z xl, X y 1, y Z 1, Z 1 1 I 

This equation is used with Eq. 4 and Eq. 5 to find an expression for di: 

-(p - d ) . d. + (p - d ) . d. = (p - d ) . P - (p - d ) . P - V . V.' n 
y 1, Y 1, X xl, X 1, Y xl, x y y 1, y x 1 1 Z 

(p - d ) . d. - (p - d ) . d. = (p - d ). P - (p - d ). P + V . V.' n Z 1, Z 1, Y Y 1, y 1, Z Z 1, Z Y Y 1, y Z 1 1 X 

(p - d ) .d. + (p - d ) .d. + (p - d ) .d. =p2 - (P.d + P·d + P·d ) - V .v .. cos(r.) xl, X 1, X Y 1, y 1, Y z 1, Z 1, Z xl, x y 1, Y z 1, Z 1 1 1 

Expressing in matrix notation 

-(p - d ) (p - d ) 0 d. (p - d ) . p - (p - d ) . p - V . V. ' n 
y l,y x l,x I,X X 1, x y y 1,y xlI Z 

0 (p - d ) -(p - d \ d. = (p - d )- P - (p - d ).p + V ·V.·n 
z l,z y l,y J 1,y Z l,z y y l,y Z 1 1 X 

(p - d ) (p - d ) (p - d ) d. p2 _ (p . d + P . d + P . d ) - V . V.' cos (1.) x l,x y l,y z l,z I,Z X l,x y l,y Z l,z 1 1 1 

or moving the coefficients of di to the right side 

d. - (p - d ) (p - d ) 0 I,X Y 1,y x Lx 

d. = 0 (p - d ) - (p - d ) l,y Z 1,z Y l,y 

d. (p - d ) (p - d ) (p - d ) I,Z X l,x Y 1,y Z I,z 

Which can be expressed as 

where 

(p - d \ . P - (p - d ) . P - V . V.' n 
x 1,x) y Y l,y XlI Z 

(px - dl,J.Py - (py - dl,y ) 'Px - V1,Vi'nz 

2 ' 
P - (Px'd1, x +Py'dl,y +PZ'dl,Z) - v1,vi,cos (ri) 

C =- (d - P )'[ (d _p )2 + (d _ P )2 + (d _ P )2] o l,y y 1,x x l,y y 1,z Z 



CHAPTER 3 

CONCLUSION 

It is important to be able to move a parallel-leg mechanism through a prescribed path. 

Since most tools are symmetric, the mobile upper plate of a parallel leg mechanism can 

be rotated about its tool axis without changing the tool orientation. Thus a single degree 

of freedom exists for the upper plate, a rotation about the tool axis. Having an equation 

expressing the leg variables in terms of a single point on the upper plate (in addition to 

the tool axis position and orientation) would enable the generation of the leg positions for 

different rotations of the upper plate. The point chosen is the vertex dl, where the first 

leg connects onto the upper plate. 

Thus, all leg variables Xb llb & Wi have been expressed first as functions of di . 

Then the vertices have been expressed as functions of the single variable, dl, and the two 

parameters, tool axis orientation n and tool axis position P. 

For the leg i, the solution is expressible in terms of di . 

Xl': (d. )2 + (d. )2 + (d. )2 + (r.)2 - 2.r .. (d. ·sin(e.) - d. -OO8 (e.)) 
I,X l , y 1,Z 1 1 l ,y 1 I,X 1 

cos(e.).d. - sin(e.)-d. 
. () 1 1, Y 1 I,X sm 'V . =---~---

1 X. 
1 

(x.)2 _ (cos(e.)-d. _ sin(e.)-d. \2 
() 

1 1 1, Y I 1, xl 
cos 'V . =~----------

1 X. 
1 

d. -OO8 (e.) + d. .sm(e.) - T. 
( ) 

I,X 1 l,y 1 1 

OO8~ i =------(~)~-­X{OO8 'Vi 

The square root 
can be either +/-

However taking ~i and 'Viinto account together, the Single Leg Equation still needs to be 

satisfied_ As such, dz can not be negative, so either sin( 11 i) or cos ( \fI i) is negative. 
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These equations combined with 

(d - P ? + (d _ P )2 l,y Y 1.z z (d -PJ -(d -p ) 1,x l ,z z (d1,x- P J 

-C1 Co C
1 d .p - d .p - v ·v.·n 

I.X 

(dl,X-P~ (d -p ) 
l ,y x l,x y liZ 

(d -p ) 
d. = l,z Z l,y Y d .p - d .p + v ·v.-n 

t,y l,y Z l,z Y 1 1 X 
[d 

C1 C1 C
1 

d. p2 _ (P.d +P -d +P 'd ) - V .V .. cos (r .) 1,Z 

(d1,x - P ~2 + (d},y - Py? 
x l ,x y l,y Z 1,2; 1 1 1 

(d -PJ .(d -p ) (d -p ) l,x l,z z l,z Z 

Co Co C1 

where 

C =-[(d - P )\2 + (d _ P )2 + (d _ P )\2] 
1 1, x x 1, y Y l ,z Z 

expresses all the legs in terms of d1. 

From inputting the different points on the tracer line of the tool axis position P, 

this process can be repeated to generate a set of such solutions. In addition, when 

constructing the tracer path, the tool orientation need not be held constant. 

Another approach would be to map the state space numerically by constructing a 

series of different tool axis positions' P and orientations' n. Each different value of P and 

n corresponds to a different plane the mobile upper plate can lie in. The three 

dimensional space can then be generated by overlaying a progfessive set of planes and 

removing the unattainable configurations. 

This analysis can be extended to consider velocity by simply taking the 

derivatives with respect to time of Xi, 11i, & 'Vi where only the variables dt, D, and P have 

time derivatives. The second derivative could also be taken to find.the accelerations of 

the leg variables. Acceleration and velocity are important in design of mechanisms 

because the control systems need to produce them. 
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Also, instead of constraining the leg bases to lie on the same ground plane, the 

Single Leg Equation can be modified to incorporate an elevation z in the Zg- direction at 

base point B. 

Using 

cos(9) -sin(9) 0 I 0 0 [I -g·z 0 

B(r,9,z):= sin(9) cos(9) 0 . 0 1 -E'r . c·z 1 0 

o 0 0 g'r I 0 0 I 

It can be shown that the Modified Single Leg Equation would be: 

[ 

r'cos(9) - x·(sit(9)·sit(\I1) - cos(9)·cos( TJ)'cos(\V» -] 

d(r,e,z,TJ,\I1,x):= r-sit(O) +z·(cos(O) - sU(O»,(sU(TJ),cos(\I1)-sit(\I1» +x-(sit(\I1)-cos(9) +cos(TJ)-cos(\I1)·sit(e» 

z- x'su(''1)'cos(w) 

From this equation the leg parameters could be expressed as functions of the variables dt, 

0, and P. 

A last modification that could also be done is not to constrain the tool axis 

orientation to be normal to the mobile upper plate_ Then n would not be the tool axis 

orientation, and the upper plate would be able to eccentrically rotate about the tool axis 

instead. 

The reason why an elevation and eccentricity were not addressed was because in 

parallel leg mechanisms the leg bases do primarily lie on the same base plane and the tool 

is also primarily normal to the mobile upper plate. 



APPENDIX

DUAL NUMBER REPRESENTATION

Dual numbers are used to determine the leg vertex (top) position in terms of the ground.

The following is an overview of dual numbers. Refer to Fischer's Dual-Number Methods

M Kinematics, Statics and Dynamics for an in-depth derivation.

A dual number is comprised of a primary (real) component and a dual (s)

component, where 62 = O. This is a useful representation of simultaneous rotation and

translation. The rotation is done in the primary plane and the translation is done in the c

plane. (The reason why translation is done in the E plane is because from one coordinate

transform to another, you never multiply separate translations, but multiply instead the

translation by the next rotation; thus in dual numbers, a rotation times a translation ends

up in the a plane, pure rotations stay in the primary plane, and any multiplied translations

disappear.) Now a dual angle is the rotation (vector curl) about a coordinate axis and a

translation along that same coordinate axis (the translation does not effect the plane of

rotation, but simply elevates the rotated plane). The breakdown of coordinate

transformation is the same as if done with a pure rotation, i.e. a 3X3 matrix M, whose

det(M) =I in all cases. However, to represent the cos(0+re), a Taylor series expansion

about the primary component is done. (Note, the expansion of f(a+cao) = f(a) + a ao

[df(a) I dal; all other terms disappear because a 2= 0.) On the next page are the dual angle

rotations and translations about the X, Y, & Z axes respectively.
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So M transforms coordinates in b into a. However to do this, it is important to

remember (θ+rε) is measured in a, not b.

To decompose a dual vector, it is important to realize that N = No + (r x No)ε,

where No is the angular orientation: projections along i, j, & k axes.

Now the dual vectors for transformations about the X, Y, & Z axes are
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