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ABSTRACT

AXISYMMETRIC VIBRATIONS OF HOMOGENEOUS AND SANDWICH
SPHERICAL SHELLS WITH A HOLE AT THE CENTER

by
Wai-Kwong Wong

Based on Hamilton's principle and the theory of elasticity, both linear and nonlinear

governing equations of motion are derived for elastic spherical shells. Most of the

analysis is focused on the free axisymmetric vibrations of homogeneous and

sandwich shallow spherical shells. The nonlinear behavior, which allows for small

deflections, is also discussed.

The linear vibrations of homogeneous and sandwich shallow spherical shells

with a hole at the center are investigated with emphasis placed on the effect of

thickness-shear deformation and rotatory inertia. The effects of curvature and the

size of the central hole are studied for free axisymmetric motions of spherical shells

with various types of edge conditions. Two tracers are introduced to identify the

transverse-shear deformation and rotatory inertia terms in the homogeneous shell and

in the core of the sandwich shell. The refined model is derived which includes these

two effects while the classical model is formulated by setting the tracers equal to

zero. The face layers of the sandwich shell are taken to be membranes. Equations

governing the axisymmetric motion of shallow shells are deduced yielding a system

of three second-order differential equations in terms of the displacements and time.

The numerical solution of the governing equations is obtained by using the Shooting

Method, in which the natural frequency is assumed to be the same in all



displacements. By introducing dimensionless ratios related to the elastic and

geometric properties of the shell, the equations appear in a form which is readily

adaptable for solutions of homogeneous and sandwich shallow spherical shells as

well as circular plates.

Numerical results for the linear vibrations of a sandwich shell reveal that the

effect of thickness-shear deformation and rotatory inertia must be considered in

calculating the natural frequencies. For both homogeneous and sandwich shells, the

curvature has a dramatic effect on the increase of the fundamental frequencies. The

fundamental frequencies increase with the increase of the size of the central hole for

all of the boundary conditions investigated for the refined model. For the classical

model, the frequency increase with size of hole is limited to the case of the clamped

outer boundary conditions.

Numerical results show that for the nonlinear vibrations of the homogeneous

shell with relatively small curvature, the magnitude of the deflection should be small

in order to get, the natural frequency.

On the other hand, the Finite Difference Method, which is employed to solve

both the linear and nonlinear cases, shows that the natural frequency may not be the

same for all displacements.
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CHAPTER 1

INTRODUCTION

1.1 Research Objectives

The problem of vibrations of both homogeneous and sandwich spherical shells has been

investigated extensively because of the important applications of such structures in

different fields of aerospace and mechanical engineering. Since sandwich structures

possess good heat insulating properties, their shell configurations find wide applications

in various modern and sophisticated components such as space vehicles, domes, nuclear

reactors, and pressure vessels.

Time-dependent vibratory motions are set up in a spherical shell whenever it is

disturbed from a position of stable equilibrium. If these motions occur in the absence of

external loads, they are classified as free vibrations. If these motions are set up by time-

dependent external loads, they are referred to as forced vibrations. A spherical shell,

since it is assumed to be an elastic body, is composed of an infinite number of mass

particles. As a consequence, when it is set into motion it possesses an infinite number of

degrees of freedom. Its response to a disturbance may thus be analyzed into an infinite

number of periodic motions which are referred to as its normal modes of free vibration.

Each of theses normal modes has an associated natural frequency of free vibration.

A knowledge of the free-vibration characteristics of elastic shells is important

both to our general understanding of the fundamentals of the behavior of a shell and to

the industrial application of spherical shell structures. In connection with the latter, the

natural frequencies of the spherical shells must be known in order to avoid the destructive

effect of resonance with nearby rotating or oscillating equipment.
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The objective of this investigation is to study linear axisymmetric free vibrations

of homogeneous and sandwich shallow spherical shells with a circular hole at its center,

in which various types of edge conditions are employed. The curvature of the shell and

the size of the central hole are varied to investigate the free natural frequencies by using

the Shooting Method. Emphasis is on the transition from the vibrations of a circular flat

plate to those of a spherical shell. The effects of transverse shear deformation and

rotatory inertia are included in the analysis.

On the other hand, there are many situations such as seismic tests or nuclear

explosions, in which these structures are subjected to transient loads and large amplitudes

of motion may occur. If the amplitude of motion is of the same order as the thickness of

the shell, then for the mathematical description of the motion the linear theory of shells is

inadequate and the use of nonlinear theory of shells is necessary. This will take into

account the large deformation with higher order bending and stretching effects.

The further work of this investigation on nonlinear behavior of the free vibration

of homogeneous spherical shells will be discussed because it is necessary to employ

nonlinear theories which allow for finite deflections, since the solutions predicted by the

linear theory are valid only for small displacements. The nonlinear behavior assumes the

angles of rotation are large compared to the linear strain components and small compared

to unity, thus leading to nonlinear strain-displacement relations. It follows that the

problem becomes geometrically nonlinear but remains linear in material properties.
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1.2 Literature Survey

By using a generalized Hamilton's principle in derivation of the equations of motion,

Koplik [1] and Grossman [2] investigated the vibrations of both linear and nonlinear

spherical shells without a central hole, respectively.

Simplified nonlinear elasticity theory, referred to as the case of small

deformations and small rotations [3], has been applied by many authors in considering

the finite displacements of thin elastic bodies such as plates and shells. Yu [4] introduced

a generalized variational equation of motion in nonlinear elasticity theory in which

displacements and strains are expressed in powers of the thickness coordinate and

stresses are integrated over the thickness to yield shell-stresses. Carrying out the

variational approximation in the thickness direction yields the generalized variational

equation of motion for the shell, with Euler equations yielding the complete system of

stress equations of motion, boundary conditions, and stress-strain-displacement relations.

Koplik [1] derived a complete and consistent system of first-order dynamic equations for

both thin homogeneous spherical shells and thin sandwich spherical shells, by adopting

the linearized version of the generalized Hamilton's principle.

To simplify the nonlinear theory, small deformations and small rotations are

applied, in which the angles of rotation are large compared to the linear strain

components and small compared to unity, thus leading to nonlinear strain-displacement

relations. However, the strains still maintain their linear relationship with the stresses,

with the result that the problem becomes geometrically nonlinear but remains linear in

material properties. For such simplified nonlinear strains, Yu [5] made use of the

ordinary variational equation of motion to derive the nonlinear equations of motion and
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boundary conditions for cylindrical shells. Grossman [2] derived a complete and

consistent system of nonlinear dynamic equations for thin homogeneous spherical shells

by adopting the generalized variational equation of motion.

Recently, Xu and Chia [6] employed the Marguerre-type shallow-shell theory to

study dynamics of shallow spherical shells with a circular opening at the apex. However,

in spite of the importance of their research, their work received little attention. Hence, in

this dissertation, we will derive the linear dynamic equations for both the thin

homogeneous and sandwich spherical shells with a hole at the center. Also, we will show

the nonlinear dynamic equations for thin homogeneous spherical shells with holes at the

center. The derivation is based on the work done in [1, 2, 4, 5] and Hamilton's principle

[7, 8]. The texts by Leissa [9, 10] include a very well-prepared bibliography, covering

the literature in spherical shell and circular plates. The books by Wang [11] and

Sokolnikoff [12] explain the background of the theory of elasticity.

1.3 Present Work

In Chapter 2 of this dissertation, the linearized stress equations of motion for both thin

homogeneous shallow spherical shells and thin sandwich shallow spherical shells are

derived for axisymmetric vibrations. Two tracers are introduced to identify the effects of

transverse shear deformation and rotatory inertia terms in the homogeneous shell and in

the core of the sandwich shell. The face layers of the sandwich shell are taken to be

membranes. The governing differential equations of the refined model which includes

these two effects are deduced yielding a system of three second-order differential

equations in terms of the displacements. The governing differential equations of the



5

classical model are formulated by neglecting the two effects by setting the tracers equal

to zero.

Chapter 3 of this investigation, the nonlinear axisymmetric vibrations for thin

homogeneous spherical shells are derived for both the refined and classical models.

In Chapter 4, the Shooting Method [13, 14, 15] is employed to solve for the

natural frequencies of the linear axisymmetric vibrations of homogeneous and sandwich

spherical shells for both models. The analysis is applied for varied curvature and the size

of the central hole of the shells with various edge conditions.

Finally in Chapter 5, the Finite Difference Method [16, 17, 18] is applied to

analyze the transition from linear axisymmetric vibrations to nonlinear axisymmetric

vibrations for the classical model.



CHAPTER 2

EQUATIONS FOR HOMOGENOUS AND SANDWICH SPHERICAL SHELLS

2.1 Spherical Shell Coordinates

In this thesis, the basic assumptions are that the spherical shells are thin and elastic.

Generally, if the shell is composed of a single homogeneous material, the middle surface

is selected as the reference surface. If the shell is of layered construction, it is more

convenient to use, as the reference surface, or so-called neutral surface that is analogous

to the neutral axis of a beam.

In order to understand the sandwich spherical shell coordinates, it is advisable as a

first step to present a single-layered homogeneous spherical shell. The spherical

coordinates for the homogeneous case, 0 , 0 , and R+z are chosen so that z=0 designates

the middle surface whose radius is R and z= ±h designates the outer and inner surfaces.

Figure 1.1 Spherical Coordinates

6



7

As shown in Figure 1.1, 0 is the angle between the normal to the middle surface

and the z axis in the horizontal plane. The coordinates 0 and 8 are sufficient to locate a

particular point on the middle surface.

In treating problems with spherical sandwich shells, 0 , 0 , z i are employed with

the three spherical middle surfaces of the layers as the reference surfaces for

measurements in the thickness direction, the subscript i= 1,2, or 3 referring to the core,

inner or outer face layers of the sandwich.

Figure 1.2 Cross-section of Sandwich Spherical Shell

As shown in Figure 1.2, this coordinate system requires the use of the three radii,

R i . Based on the assumption from [1], the two face layers are chosen to have the same

thickness and to be of the same material. The core has a thickness 2h 1 , each of the two

face layers a thickness 2h2 , and the total thickness of the shell is 2h.

Due to the assumption that the face layers are membranes with 
h2 < —1 , it is
hi 20

reasonable to set the three radii, R i approximately equal to R, so as to offer the
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convenience of symmetrical integration in the 'derivation. In this manner, the stress-

strain-displacement relations, introduced later, can be deduced most easily from those of

the homogeneous spherical shell. Of course, both the z and z i coordinates can be used

interchangeably for homogeneous and sandwich problems.

To employ the thin shell assumption the following is taken as,

Further, by assuming 0 to be much smaller than unity, the corresponding

equations can be reduced to those for shallow spherical shells. For such shells this

assumption leads to the following reductions,

By means of these relations the 0 , 0 , z coordinates are then replaced by the

r , 0 , z coordinates, respectively.

The criterion for shallowness accepted in [1] as well as by most authors is adopted

as follows,

where H is the rise from the reference plane to the highest point in the middle surface of

the shell and a is the projected radius of the shell on the reference plane, as shown in

Figure 1.3. If the equation of a meridian of a spherical shell is taken in the form,



For a shallow spherical shell, the H 2 term is taken to be zero, resulting in,

The shallow shell equations can then be further reduced by restricting the analysis to that

of axisymmetric (torsionless) motion. This is accomplished by setting u 0 = 0, fie = 0

and independence of 0.

9

Figure 1.3 Homogeneous Shallow Spherical Shell

2.2 Displacement Form

For a moderately thin shallow spherical shell of uniform thickness 2h with coordinates r,

61 in the middle surface and its faces at z= ±h, the displacements are assumed to be of

the following form:
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where the quantities u,., Le o , fir Po and w are the shell-displacements and all are

functions of r, 9 and time, t only. Whereas u r , u 9 , and w are displacements at the

middle surface of the shell in the r, 9 and thickness direction z, the variables fir and /3B

are the angular displacements of the normal to the middle surface of the shell in the r

and 9 directions.

By taking the axisymmetric (torsionless) assumptions, the displacement form is

further reduced to,

It should be noted that the assumed displacements are the truncated forms of the

infinite expansion series for displacements given by Cauchy and Poisson for plates [1].

Since a plate is a special case of a spherical shell with an infinite radius of curvature,

these displacements are assumed in [1] to obtain axisymmetric and shallow spherical

shell equations for infinitesimal displacements.

To present a unified approach for the sandwich spherical shells, r, 9, z i

coordinate system is adopted, where the subscript i= 1,2, or 3 referring to the core, inner

or outer face layers of the sandwich respectively.

By taking the axisymmetric (torsionless) and shallow shell assumptions and the face

layers to be membranes and therefore neglecting their flexural rigidities, the resulting

displacements are in the form:
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The superscript (i) =1,2 or 3 designates the core, inner or outer face layer of the sandwich

and z i is measured from the middle surface of each layer.

The quantities u, 16 and w are the shell-displacements and all are functions of r

and time, t only. Whereas u and w are displacements at the middle surface of the core in

the r and z directions, respectively. The variable /1 is the angular displacement of the

normal to the middle surface of the core in the r direction.

With the shell-displacements chosen in this form it can be seen that the

displacements are continuous at the interfaces between the core and faces of the sandwich

shallow spherical shell. Furthermore, with independence of /3 and w, the thickness-

shear deformation of the core can be included in the analysis, although no account is

taken of this effect in the faces.

2.3 Hamilton's Principle

Of the many procedures that are available to derive the equations of motion for the thin

elastic spherical shell, Hamilton's principle is employed on account of its simplicity and

elegance and because, at the same time, the natural boundary conditions that are to be

derived. Hamilton's principle is an extension of the principle of virtual work from statics
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to dynamics. It can be formulated for either a rigid or deformable body by invoking

D'Alembert's principle to accommodate inertia forces. Integration with respect to time is

carried out between fixed initial and final instants of time t o and t1 , under the constraint

that the virtual displacement is required to vanish at t o and t1 . In the case of a

deformable body, the virtual displacement must also vanish at those parts of the boundary

on which displacement are prescribed.

Hence, the Hamilton's principle is given as,

where U is the strain energy and K is the kinetic energy, and W is the work potential.

However, W is set to be zero for the free vibration analysis, hence,

The times t o and t1 are arbitrary. The symbol .5 is the variational symbol and is

treated mathematically like a differential symbol. Variational displacements are

arbitrary. Since the strain energy involves the stress and strain terms, with both related to

the displacements, the next section is to show the stress-strain-displacement relations.
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2.4 Stress-Strain-Displacement Relations

2.4.1 Strain-Displacement Relations

The theory of elasticity is employed to derive the strain-displacement relations for the

homogeneous spherical shell, in which the derivation is shown in Appendix A. Then the

strain — displacement relations for the sandwich spherical shells become,

where the superscript (1) =1,2 or 3 designates the core, inner or outer face layer of the

sandwich, respectively. It should be noted that due to the assumption that the face layers

are membranes, the transverse shearing shell-stresses in the faces are equal to zero, so

that,

While e ) and eye are zero because of the axisymmetric assumption, which is shown in

the Appendix A.
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2.4.2 Stress-Strain Relations

With the assumption of the shell to be elastic, generalized Hooke's law [7] can be applied

to the shells that are made of elastic materials. The following shows the stress-strain

relations,

where i =1, 2 or 3, E3 = E 2 , V3 = V2 and h3 = h2 due to the same face layers thickness

7r

2

2

kH is the correction factor having the value — as in [1] for the purpose of adjusting the
1

simple thickness-shear frequency of a homogeneous plate to its exact value. kH is taken

equal to unity for the sandwich spherical shell.

It should be noted that due to the membrane face layers assumption, we get,

The normal stress azz(i) , which acts in normal direction to the neutral surface, is neglected,

This is based on the argument that on an unloaded outer shell surface it is zero, or if a

load acts on the shell, it is equivalent in magnitude to the external load on the shell,

which is a relatively small value in most cases.
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Furthermore, since e(i)0z and ere are zero, we have,

2.4.3 Stress Resultant-Displacement Relations

Since the strains, and therefore the stresses, have been shown to be linear across the

thickness of a thin elastic spherical shell, it is convenient to integrate the stress

distributions through the thickness of the shell and to replace the usual consideration of

stresses by a consideration of statically equivalent force resultants, NTT ) ,N00(i) , Qr(z1) and

bending moments resultants, Mrr( 1) , MBe . In the following, all the stresses will be

integrated in which they act on a shell element whose dimensions are infinitesimal in the

r and 0 directions and equal to the shell thickness in the normal direction, z i .

Hence the corresponding resultants are,

where i = 1, 2 or 3, jj rr or 00 , h3 = h2 due to the same face layers thickness

It should be noted that the following integral equations are for the integration of the

stresses across the thickness:
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The membrane force N„(1) , is obtained by substituting (2.11a) into (2.13a) giving the

force-strain relation,

The force-displacement relation is now obtained by substituting (2.9) into the above

equation,

For the membrane force N,(2) , the force-strain relation is,

Then the force-displacement relation is,

By the same substitution process with (2.9), (2.11b), (2.13a) and (2.14), the membrane

forces N ei) are obtained as follows,
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To obtain the bending moment M,(1) , (2.11a) is substituted into (2.13b) giving the

moment-strain relation,

The moment-displacement relation is now obtained by substituting (2.9) into the above

equation,

similarly

By the same substitution process utilizing (2.9), (2.11a), (2.11b), (2.13a) and (2.14), the

bending moments M,(2) , M„(3) , /1/42) and M o( 02) are all equal to zero because all the terms

h.

in the integration involve j z i dz i , which is equal to zero.
-

To obtain the transverse shear force Q rz(1) , we substitute (2.11c) into (2.13c) giving the

force-strain relation,



The force-displacement relation is now obtained by substituting (2.9) into the above

equation,

1 	
H

where k s (= —) is a tracer for transverse shear deformation.
k 

From (2.12a) and (2.12c), all the other transverse shear forces are equal to zero due to

their related zero stresses.

Since the normal stresses are assumed to be zero in (2.12b), normal forces Nom` ) are equal

to zero.

18
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2.5 Stress Equations of Motion

In this section, the stress equations of motion for the homogeneous and sandwich

spherical shells are derived by using Hamilton's principle, introduced in Section 2.3.

the kinetic energy K and the strain energy U are shown

as the following:

The kinetic energy of an infinitesimal element is given by,

where the dot indicates a time derivative, dV =rdrd0dzi  is the infinitesimal volume,

i=1,2 or 3 , and pi is the density, where p3 = p2 .

Substituting (2.7) into (2.19) gives,

Since the displacements are independent of 0 , measured from 0 to 27r , then



Integrating over the thickness of the shell gives,

Taking the variations for the displacements and applying Hamilton's principle yields,

Since from integrating by parts, for instance,

while [uδu]t1t0 = 0 because the virtual displacement or the velocity is zero at t = to and

t = ti .

In the following the strain energy is determined by using Hamilton's principle.

The strain energy of one infinitesimal element is given by,

20

Integrating over the volume of the shell we have,



To apply Hamilton's principle of strain energy yields,

By substituting (2.11a), (2.11b) and (2.11c) into the equation we obtain,

21

Collecting the terms of variational strain gives,

By using stress-strain relations from (2.11a), (2.11b) and (2.11c) yields,

By substituting (2.9), (2.10) and (2.12a) into (2.22) and integrating the 9 from 0 to 2n- ,



Substituting (2.13) into the above equation yields,

22

From integration by parts, we have for the first terms as an example,



and by using

(2.20) and (2.23),we obtain,

23

The equation (2.24) can only be satisfied if each of the double and single integral

parts is zero individually. Moreover, since the variational displacements are arbitrary,

each integral equation can only be satisfied if the coefficients of the variational

displacements are zero. Thus, the coefficients of the double integral set to zero give the

following three Stress Equations of Motion:
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where kg is a tracer for rotatory inertia.

2.6 Boundary Conditions

For the single integral part of (2.24) to be zero, the coefficients of the virtual

displacements or the virtual displacements are set to be zero. Since virtual displacements

are only zero at all times when the boundary displacements are prescribed, this translates

into the following possible boundary conditions for r, and r1,



25

2.7 Displacement Equations of Motion

This section derives the displacement equations of motion for the homogeneous and

sandwich spherical shell. Two models will be presented. Since the equations include the

effects of rotatory inertia //3 and transverse shear Q,,(1) , the model is called the Refined

Model. To obtain results for this model, calculations are made with the tracers

lc, = k g = 1 for the sandwich case and 1( 5 =-
12 

and k g =1 for the homogeneous case.
71. 2

The second model, called the Classical Model is obtained by setting lc = k g = 0, in

which rotatory inertia and transverse shear effects are neglected.

2.7.1 Refined Model

Substituting the stress resultant-displacements relations from (2.15) to (2.18) into the

stress equation of motion (2.25) results in the following three Displacement Equations of

Motion.

The first one in the u-direction is obtained by substituting (2.15) and (2.16) into (2.25a):



By expanding and collecting the terms with the same coefficients yields,

26

(2.27a)
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The second equation in the j3 -direction is obtained by substituting (2.15) to (2.18) into

(2.25b),

Collecting terms with the same coefficients:



therefore,

The third equation in the w-direction is obtained by substituting (2.15), (2.16) and (2.18)

into (2.25c),

28

or,
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Hence, equations (2.27a) through (2.27c) for the Refined Model yields the Linear

Axisymmetric Displacement Equations of Homogeneous and Sandwich Spherical Shells

as follows,

where
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2.7.2 Classical Model

The Classical Model for the Displacement Equations of Homogeneous and Sandwich

Spherical Shell is formulated by neglecting the effects of both transverse shear

deformation and rotatory inertia by setting k s = k g =0.

Letting k g = 0 in (2.25b) gives,

Substituting the above equation into (2.25c) yields,

By setting lc,. 0 in (2.18), leads to /1 being neglected and in terms of w,

By substituting the stress resultant-displacements relations from (2.15) to (2.17) into the

stress equation of motion (2.25) gives the following two Displacement Equations of

Motion.
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The first one in the u-direction is obtained by substituting (2.15) and (2.16) into (2.25a),

which is the same as the refined model,

The second equation in the w-direction is obtained by substituting (2.15) to (2.17) into

(2.25d),



Expanding and collecting the terms with the same coefficients yields:

32

After simplifying we obtain,

By taking the coefficients C2 , C3 and C4 from (2.29) and expanding out ,8 gives:



By substituting (2.25e) into the above equation yields,

Hence, the Classical Model for the Linear Axisymmetric Displacement Equations of

Homogeneous and Sandwich Spherical Shells become:

33

where



CHAPTER 3

EQUATIONS FOR THE NONLINEAR VIBRATIONS OF HOMOGENEOUS
SPHERICAL SHELLS

3.1 Introduction

In order to study the nonlinear free vibration problem, the nonlinear elasticity theory [2]

is employed to derive the nonlinear governing equations for the homogeneous spherical

shell. Since nonlinear equations represent a logical extension of their linear counterpart,

the derivation in this chapter is similar to that of the linear case presented in Chapter 2.

Therefore, the homogeneous spherical shell is assumed to be thin and elastic. Hence, the

spherical shell coordinates, 0 , 0 , and R + z are chosen so that z = 0 designates the

middle surface whose radius is R and z = ±h designates the outer and inner surfaces.

Furthermore, the shell is taken to be shallow and vibrates axisymmetrically (torsionless

motion). Then from (2.6), the displacement form is:

The governing equations can also be formulated by using the Hamilton's

principle, introduced in section three of Chapter 2, by (2.8b),

where U is the strain energy and K is the kinetic energy. W is the work potential which is

equal to zero for free vibration.

34
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The times to and t 1 are arbitrary. The symbol g is the variational symbol and is

treated mathematically like a differential symbol. Variational displacements are

arbitrary. Since the strain energy involves the stress and strain terms, both relating to the

displacements, we obtain the stress-strain-displacement relations in the next section.

3.2 Nonlinear Stress-Strain-Displacement Relations

3.2.1 Nonlinear Strain-Displacement Relations

The nonlinear theory of elasticity [2] is employed to derive the strain-displacement

relations for the homogeneous spherical shell, the derivation work is presented in

Appendix B. The following is the nonlinear strain-displacement relations for the

homogeneous shells,

3.2.2 Nonlinear Stress-Strain Relations

The following shows the nonlinear stress-strain relations,
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It should be noted that the normal stress o which acts in the normal direction to the

neutral surface, is assumed to be zero.

3.2.3 Nonlinear Stress Resultant-Displacement Relations

Similar to the linear case, it is convenient to integrate the stress distributions through the

thickness of the shell and to replace the stresses by the stress resultants. All the stresses

will be integrated over the region they act on a shell element whose dimensions are

infinitesimal in the r and 0 directions and equal to shell thickness in the normal direction,

z,

where ii = rr or 00 .

Equations (2.14) give the following equations for the integration of the stresses across the
thickness,

Membrane force Nrr can be obtained by substituting (3.4a) into (3.5a),
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The nonlinear force-displacement relation is now obtained by substituting (3.3) into the

above equation,

By the same substituting process with (3.3), (3.4b), (3.5a) and (3.6), the nonlinear

membrane force Nee is,

To get the bending moment M,,, we substitute (3.4a) into (3.5b) giving us the moment-

strain relation,

The nonlinear moment-displacement relation is now obtained by substituting (3.3) into

the above equation,

therefore



Similarly for A4 6,9 ,

38

The nonlinear transverse shear force Qr z is obtained by substituting (3.4a) and (3.4c)

into (3.5c),

The nonlinear force-displacement relation is obtained by substituting (3.3) into the above

equation,

therefore,

where ks is a tracer for transverse shear deformation, and k, is a tracer for the effect of

transverse shear force on membrane force.
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3.3 Nonlinear Stress Equations of Motion

In this section, we derive the nonlinear stress equations of motion for the homogeneous

spherical shell by using Hamilton's principle which is given by equation (3.2),

where K is the kinetic energy and U is the strain energy.

The kinetic energy of one infinitesimal element is given by,

where the dot indicates time derivatives, dV = rdrd0dz is the infinitesimal volume, and

p is the density.

Substituting (3.1) into (3.8) yields,

Integrating over the thickness of the shell and over 0 , measured form 0 to 27r gives,

Taking the variations for the displacements and applying Hamilton's principle,

Integrating the first term by parts, we have,



where [1184 = 0 since the virtual displacement is zero at t = to and t = t 1 .

On the other hand, the strain energy of an infinitesimal element is given by,

Integrating over the volume of the shell, we have,

Applying Hamilton's principle we get,

Substituting (3.4) yields,

40

Collecting the terms of variational strain gives,

therefore
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To include the effect of transverse shear force on membrane force by (3.5c), we have an

additional term,

By substituting (3.3) into (3.11) and integrating 6 from 0 to 27r ,

By using (3.5) we have,

hence,

Integrating the first term by parts gives,



(3.9) and (3.12) gives,

42

Equation (3.13) can only be satisfied if each of the double and single integral

parts is zero individually. Moreover, since the variational displacements are arbitrary,

each integral equation can only be satisfied if the coefficients of the variational

displacements are zero. Thus, the coefficients of the double integral are set to zero giving

the following three Nonlinear Stress Equations of Motion:

where k g is a tracer for rotatory inertia.

It should be noted [2] that by Qrz = 
 Eh [ ∂w + 13 - in (3.14b) by setting kt = 0 in
k s (1 + v) 	 . 
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For the single integral part of (3.13) to be 'zero, the coefficients of the virtual

displacements or the virtual displacements are set equal to zero. Since virtual

displacements are only zero at all times when the boundary displacements are prescribed,

this translates into the following possible boundary conditions for ro and r1,

Hence the following gives the boundary conditions for the free vibration of spherical

shells:

• Free edge condition at ro

• Clamped edge condition at ri

• Simple Supported edge condition at r1

• Free edge condition at rl
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3.4 Nonlinear Displacement Equations of Motion

In this section we derive the nonlinear displacement equations of motion for the

homogeneous spherical shell. Two models will be presented. When the equations include

the effects of rotatory inertia p and transverse shear Q, , the model is called the Refined

Model. To obtain results for this model, calculations are made with the tracers

12k, = π2 and k g = 1 for the homogeneous case. The second model, called the Classical

Model is obtained by setting lc, = k g = 0 , which neglects the rotatory inertia and

transverse shear effects.

3.4.1 Nonlinear Refined Model

By substituting the nonlinear stress resultant-displacement relations from (3.7) into the

nonlinear stress equation of motion (3.14), we obtain the following three nonlinear

displacement equations of motion of homogeneous spherical shells.

The first one, in the u-direction, is obtained by substituting (3.7a) and (3.7b) into (3.14a),

By expanding and collecting the terms with the same coefficients we get,



therefore,

The second equation in the /3 -direction is obtained by substituting (3.7c), (3.7d) and

(3.7e) with k, = 0 into (3.14b),

45

thus,

The third equation in w-direction is obtained by substituting (3.7a), (3.7b) and (3.7e) with

k, = 1 into (3.14c),
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Hence, the Refined Model for the Nonlinear Axisymmetric Displacements Equations of

Homogeneous Spherical Shells is given by,
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where k s is a tracer for transverse shear deformation and kg is a tracer for rotatory

inertia.

3.4.2 Nonlinear Classical Model

The Classical Model for the Nonlinear Axisymmetric Displacement Equations of

Homogeneous Spherical Shell is formulated by neglecting the effects of both transverse

shear deformation and rotatory inertia, i.e. setting lc, = k g = 0.

By setting kg .= 0 in equation (3.14b) with k, = 0 we have,

Substituting the above equation into (3.14c) with k, =1 yields,

By setting ks = 0 and k, = 0 for equation (3.7e), in which β is neglected,

Then Substituting (3.14e) into (3.3d) yields,
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Substituting the nonlinear stress resultant-displacements (3.7) into the nonlinear

stress equations of motion (3.14a) and (3.14d) gives the following two nonlinear

axisymmetric displacement equations of motion:

The first equation in the u-direction is obtained by substituting (3.7a), (3.7b) and

(3.140 into (3.14a), which is the same as the refined model,

The second equation in the w-direction is obtained by substituting (3.140, (3.7a) to (3.7d)

into (3.14d) giving,

By expanding and collecting the terms with the same coefficients we have,



After simplifying we have,
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By taking the coefficients c 2 , c3 and c4 from (3.19) and expanding out fi leads to,

therefore,

By substituting (3.14e) into the above equation yields,
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Hence, we have the Classical Model for the Nonlinear Axisymmetric Displacement

Equations of Homogeneous Spherical Shell:

wnere,



CHAPTER 4

LINEAR AXISYMMETRIC VIBRATIONS OF HOMOGENEOUS AND
SANDWICH SPHERICAL SHELLS

4.1 Shooting Method

In order to determine the natural frequencies and mode shapes of a homogeneous and

sandwich spherical shell, it is assumed that each of the normal modes executes simple

harmonic motion with an associated natural frequency co . The result is that the period

and phase of the motion are the same for all points in the shell. Since the free vibrations

take place at the natural frequencies of the system and in general, the motion will consist

of several simultaneous oscillations at the various natural frequencies of the system.

However, under certain specified conditions, all the coordinates will undergo

harmonic motion corresponding to the natural frequencies of the system. When such

motion takes place in every part of the system, the motion is called the principal mode of

vibration of the normal-mode vibration. Although normal-mode vibrations represent a

very restricted type of motion, they are extremely important in that the more general

types of motion can be represented by the superposition of normal-mode vibrations.

With these considerations in mind, the time dependence of the shell variables can be

removed by assuming that their spatial and temporal variations are separable. Therefore,

we will assume that the frequencies for the components are the same:

51
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Let us take the refilled model given by Equations (2.28). If Equations (4.1) are

substituted into (2.28), the modes of free vibration (u, 6 , w) must satisfy the system of

'differential equations:

Then the governing differential equations become the ordinary differential

equations (4.2). We use the Shooting Method [13, 14, 15] to find the frequency, w using

the boundary conditions to be given later. Equations (4.2) can be written as a system of

first order differential equations and then integrated numerically using Runge-Kutta

algorithm.

In order to demonstrate the various effects of the many parameters included in the

above frequency analysis and to permit a more convenient manner by which the natural

frequencies can be calculated, it is advantageous to introduce the following dimensionless

ratios:
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In (4.3), the subscript 1 refers to the core and the subscript 2 refers to either face

layer inasmuch as the sandwich construction implies face layers of the same thickness

and material. Furthermore, the total thickness of the composite shell is given by

For the purpose of the dimensionless frequency, the ratio —a) will be employed [1],
wo

w, is equal to the first simple-thickness shear frequency of an infinite homogeneous

plate divided by r . The rise H is related to the radius a of the edge and the mean radius

R of the sphere by H = —
a2
.  For the sandwich case, the co, is defined by

2R

where P represents the lowest simple thickness-shear frequency. Reduction to the

homogeneous case, by taking k s = 
12

—27 , kg =1, and rh = 0 yields,
7r
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For the sandwich case ks =1, for the homogeneous case lc, = 
12
2 

while k g =1, and
7r

The case now considered is an ordinary sandwich spherical shell with a cellular

cellulose acetate core and aluminum face layers of equal thickness for which rp = 34.4,

= 1683, 	 r1 =2177, 	 r2 = 1.189, 	 u i =0.09091, 	 u 2 = 0.29709 , 	 E 1 =5297psi,

E 2 = 10.5 x 10 6 psi, p1 = 0.00031 lb/in 3 , and p2 = 0.010664 lb/in 3 . The geometrical

ratios are chosen as rh = —1 
and —

2h = —1 , which are typical values for thin sandwich
10 	 a 20

spherical shells. The total shell thickness 2h is taken to be —
3 inch. Then a is 6 inches,

10

and h1 = —3 inch by (4.4) and rh = 1 . Finally, for the refined model, we get
22 	 10

k s = k g = 1. From [1], co, is equal to 9,350 cps because the lowest simple thickness-

shear frequency of the associated infinite sandwich plate is 10,600 cps from (4.5b).

Values for the rise start with —
H 

= 0 for the circular plate and terminate with —H = 6 ,
2h 	 2h

which is equivalent to a ratio of total thickness to middle surface radius, —
2h = —1 .
a 20

However, Koplik [1] and most of the previous papers only considered the maximum rise

equal to 5.

In order to investigate the homogeneous spherical shell, rh is set to be zero and

the dimensionless ratios rp, , r1 and r2 are automatically eliminated from equations (4.6).
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A steel shell is chosen with Poisson's ratio, v 1 taken as 0.3 and —2h = —1 , where hi = h .
a 20

Then, E 1 = 29 x10 6 psi, p1 = 0.02696 lb/in 3 , and h1 = —3 by taking a = 6 inches. From
20

[1], co, is equal to 67,800 cps because the lowest simple thickness-shear frequency is

213,000 cps from (4.5c).

The foregoing two Sections, (4.2) and (4.3) present the results of the refined

model and classical model, respectively. Three boundary conditions will be applied to

each model for both sandwich and homogeneous cases: (1) clamped on the outside and

free on the inside, (2) simply supported on the outside and free on the outside, (3) free on

the outside and free on the inside. The dimensionless radius, i.e. —

r at the outer edge
a

boundary is equal to 1, where a( = 6 inches) is the outer radius. Four different

dimensionless sizes of holes, e = —b = 0, 0.1, 0.2, 0.3 are applied to the inner edge
a

boundary, where b is the radius of the hole at the center. Using the shooting method, we

obtain almost the same values of the natural frequency co as found in [1]. The transverse

deflection w normalized to be the magnitude of 1 at the hole is plotted in figures later.

4.2 Refined Model

Three boundary cases of the refined model for both sandwich and homogeneous spherical

shells are presented in this section. A free boundary condition is applied at the inner edge

with three different boundaries at the outer edge: clamped edge, simply supported edge

and free edge. It should be noted that displacement in the u direction at free boundary
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edge is set equal to zero. The free inner boundary becomes zero by plugging it with a

rigid central ring.

The displacement boundary conditions are now obtained by substituting (2.15),

(2.17) and (2.18) into (2.26):

For the clamped outer boundary, r =1:

For the simply supported outer boundary, r =1:

For the free outer boundary, r =1:

In the following three sub-sections, (4.2.1), (4.2.2) and (4.2.3) we will present the

results for the clamped outer boundary, simply supported outer boundary and free outer

boundary, respectively. Each sub-section consists of both sandwich and homogeneous

cases. For each sandwich or homogeneous case we have four tables (a, b, c, d) and two
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plots (Figures a and b). Table (a) shows the dimensionless frequency —c° as a function of
w

curvature or the rise —
H 

from 0 to 6 and the dimensionless size of the hole, c = — from 0
2h	 a

to 0.3, where co, = 9,350 cps for the sandwich case and 67800 cps for the homogeneous

case. Table (b) is Table (a) multiplied by co o . Table (c) illustrates the dependence of

a) with different sizes of holes for a shell having the maximum allowable rise, —
H = 6 ,

coo 2h

compared with those of a circular plate with zero rise, —
H = 0 . Table (d) shows how 

co
2h

varies curvature for a shell with no center hole, i.e. = 0, compared with a shell with a

hole, 6' = 0.3 .

Figure (a) and Figure (b) plot the mode shapes with the normalized transverse

displacement w as the ordinate and dimensionless radial coordinate —r as the abscissa.
a

4.2.1 Clamped and Free Case

In order to get the natural frequencies and the normal mode shapes of free vibration of

refilled model, Equations (4.2) are first written into a system by using the fourth-order

Runge-Kutta algorithm. By the displacement boundary conditions found in (4.7a), the six

shooting boundary values at the outer edge are set:

u(1) = 0 , u'(1) = a , f3(1) = 0 , 	 (1) = r , w(1) = 0 and W(1) = 0 ,

and using an initial guess for co ,
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where the prime indicates differentiation with respect to r. Hence, a, y & w are the

unknowns. The shooting method is used to find a, y & w so that the system (4.2)

satisfies the boundary conditions.

The numerical results for the sandwich case (both tracers, k 3 and kg equal to

unity) are given in Table 4.1.a and Table 4.1.b, showing that the frequency increases with

increase of the rise	 and the size of hole E . Comparing our results for -
b = 0 with

2h	 a

that by Koplik [1] we find that Koplik gave --c° from 0.05172 for zero rise to 0.26960 for
coo

a maximum rise equal to 5, which leads to less than 0.2 percent of error.

Table 4.1.a Refined Model of Dimensionless Frequencies of Clamped-Free Sandwich
Case

(OW°
H/2h b/a=0 b/a=0.1 b/a=0.2 b/a=0.3

0 0.05182 0.05336 0.05741 0.06360
1 0.08910 0.09037 0.09354 0.09818
2 0.14177 0.14404 0.14927 0.15599
3 0.18414 0.18680 0.19332 0.20305
4 0.22611 0.22859 0.23466 0.24412
5 0.26926 0.27157 0.27709 0.28577
6 0.31300 0.31524 0.32042 0.32848

Table 4.1.b Refined Model of Fundamental Frequencies of Clamped-Free Sandwich
Case

co
H/2h b/a=0 b/a=0.1 b/a=0.2 b/a=0.3

0 484.5 498.9 534.8 594.7
1 833.1 845.0 874.6 918.0
2 1325.5 1346.8 1395.7 1458.5
3 1721.7 1746.6 1807.6 1898.5
4 2114.1 2137.4 2194.0 2282.6
5 2517.6 2539.2 2590.8 2671.9
6 2926.6 2947.5 2995.9 3071.4
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Table 4.1.c Increase of Dimensionless Frequency with Rise According to the Refined
Model of Clamped-Free Sandwich Case

b/a ω/ωo who° &O w, % Increase of

for H/2h = 0 for H/2h = 6 co /co,

0 0.05182 0.31300 0.26118 504 %
0.1 0.05336 0.31524 0.26188 490 %
0.2 0.05741 0.32042 0.26301 458 %
0.3 0.06360 0.32848 0.26488 416 %

Table 4.1.d Increase of Dimensionless Frequency with Size of Hole According to the
Refilled Model of Clamped-Free Sandwich Case

H/2h ω /ωo

for b/a=0

w /ωo

for b/a =0.3

Δωlwo % Increase of
w /co o

0 0.05182 0.06360 0.01178 22.7%
1 0.08910 0.09818 0.00908 10.2%
2 0.14177 0.15599 0.01422 10.0%
3 0.18414 0.20305 0.01891 10.3%
4 0.22611 0.24412 0.01801 8.0%
5 0.26926 0.28577 0.01651 6.1%
6 0.31300 0.32848 0.01548 4.9%

We note that in Table 4.1.c, the frequencies --a) increase between 416 percent
W p

and 504 percent from the zero rise to the maximum allowable rise in the four different

sizes of holes. However, Table 4.1.d demonstrates that the frequencies increase between

4.9 percent and 22.7 percent from -
b = 0 to the maximum dimensionless hole, -

b = 0.3 in
a 	 a

the seven different rises. The mode shapes are plotted in Figure 4.1.a and Figure 4.1.b.

The former shows the graph with -
b = 0 with different rises while the latter is the case of
a

the dimensionless hole, -
b = 0.3.
a
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Figure 4.1.a Mode Shapes of Sandwich Refined Model with b/a=0 for Clamped Outside
and Free Inside Case



Figure 4.1.b Mode shapes of Sandwich Refined Model with b/a=0.3 for Clamped
Outside and Free Inside Case
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To calculate frequencies of a homogeneous shell based on the refined theory we

further put rh = 0 , kg = 12/π² and kg =1 in Equation (4.6). Similar to the sandwich case,π

Table 4.2.a and Table 4.2.b show that the frequency of the homogeneous shell increases

with the bigger hole and the curvature. Comparing the present results with the no hole

case with the data by Koplik [1], it was found that -Lis equal to 0.01237 for zero rise
0),

which yields a result 0.4 percent higher, while-- is equal to 0.05257 for rise of 5 which
ωo

only leads to 0.04 percent of error.

Table 4.2.a Refined Model of Dimensionless Frequencies of Clamped-Free
Homogeneous Case

ω/ωo

H/2h b/a=0 B/a=0. 1 b/a=0.2 b/a=0.3
0 0.01242 0.01705 0.02109 0.02678
1 0.01681 0.02072 0.02426 0.02941
2 0.02564 0.02899 0.03188 0.03614
3 0.03526 0.03881 0.04147 0.04512
4 0.04441 0.04887 0.05175 0.05517
5 0.05259 0.05842 0.06206 0.06567
6 0.05988 0.06690 0.07190 0.07623

Table 4.2.b Refined Model of Fundamental Frequencies of Clamped-Free Homogeneous
Case

co
H/2h b/a=0 b/a=0.1 b/a=0.2 b/a=0.3

0 842.1 1156.0 1429.9 1815.7
1 1139.7 1404.8 1644.8 1994.0
2 1738.4 1965.5 2161.5 2450.3
3 2390.6 2631.3 2811.7 3059.1
4 3011.0 3313.4 3508.7 3740.5
5 3565.6 3960.9 4207.7 4452.4
6 4059.9 4535.8 4874.8 5168.4
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Table 4.2.c Increase of Dimensionless Frequency with Rise According to the Refined
Model of a Clamped-Free Homogeneous Case

b/a who, co Iw o Δω/ωo % Increase of

for H/2h = 0 for H/2h = 6 w ωo

0 0.01242 0.05988 0.04746 382%
0.1 0.01705 0.06690 0.04985 292%
0.2 0.02109 0.07190 0.05081 241%
0.3 0.02678 0.07623 0.04945 185%

Table 4.2.d Increase of Dimensionless Frequency with Size of Hole According to the
Refined Model of a Clamped-Free Homogeneous Case

H/2h w/wo 	
for b/a=0

w/wo
for b/a =0.3

Δω/wo % Increase of
w /ωo

0 0.01242 0.02678 0.01436 115.6%
1 0.01681 0.02941 0.01260 75.0%
2 0.02564 0.03614 0.01050 41.0%
3 0.03526 0.04512 0.00986 28.0%
4 0.04441 0.05517 0.01076 24.2%
5 0.05259 0.06567 0.01308 24.9%
6 0.05988 0.07623 0.01635 27.3%

Table 4.2.c illustrates that the frequencies increase between 185 percent to 382

percent from zero rise to the maximum allowable rise in the four different size of hole

cases. Table 4.2.d shows that the frequencies increase between 24.2 percent to 115.6

percent from -b = 0 to the maximum dimensionless hole, -b = 0.3 in the seven different
a 	 a

rise cases. Figure 4.2.a and Figure 4.2.b plot the mode shapes for zero rise and a rise of

six with different sizes of holes, respectively.
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Figure 4.2.a Mode Shapes of Homogeneous Refined Model for H/2h=0 with Different
Sizes of Holes for Clamped Outside and Free Inside Case
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Figure 4.2.b Mode Shapes of Homogeneous Refined Model for H/2h=6 with Different
Sizes of Holes for Clamped Outside and Free Inside Case
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4.2.2 Simply Supported and Free Case

Similar to the clamped on outside and free on inside case, Equations (4.2) are first written

into a system by using the fourth-order Runge-Kutta algorithm. From the displacement

boundary conditions found in (4.7b), the six shooting boundary values, u(1), u'(1) , 13(1) ,

β'(1) , w(1) and w'(1) at the outer edge are set:

where a , y & w are the unknowns, and A is found to be independent of w and is set

equal to one in the analysis. Then the three unknowns, a , y & w are determined by

employing the Shooting Method stated in the previous section.

Table 4.3.a and Table 4.3.b present the frequency of the sandwich case in which

the frequency increases with increase in rise and the size of hole.

Table 4.3.a Refined Model of Dimensionless Frequencies of Simply Supported-Free
Sandwich Caseω/ωo

H/2h b/a=0 b/a=0. 1 b/a=0.2 b/a=0.3
0 0.04083 0.04221 0.04591 0.05166
1 0.08443 0.08537 0.08777 0.09144
2 0.14123 0.14328 0.14784 0.15342
3 0.18413 0.18679 0.19322 0.20261
4 0.22609 0.22859 0.23467 0.24408
5 0.26923 0.27156 0.27711 0.28579
6 0.31297 0.31522 0.32043 0.32852
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Table 4.3.b Refined Model of Fundamental Frequencies of Simply Supported-Free
Sandwich Case

H/2h b/a=0 b/a=0.1 b/a=0.2 b/a=0.3
0 381.7 394.7 429.3 483.0
1 789.4 798.2 820.7 854.9
2 1320.5 1339.7 1382.3 1434.5
3 1721.7 1746.5 1806.6 1894.4
4 2114.0 2137.3 2194.2 2282.1
5 2517.3 2539.1 2591.0 2672.2
6 2926.2 2947.3 2996.1 3071.6

As shown in Table 4.3.c, there is a noticeable increase of the frequency from 536

percent to 667 percent from zero rise to the maximum allowable rise in the four different

size of hole cases. Table 4.3.d demonstrates that the frequencies increase from 5.0

percent to 26.5 percent from -
b = 0 to the maximum dimensionless hole, -

b = 0.3 in the
a 	 a

seven different rise cases. The mode shapes are plotted in Figure 4.3.a and Figure 4.3.b.

The former plots the case of -
H = 0 with different hole sizes, while the latter shows the
2h

rise of six.

Table 4.3.c Increase of Dimensionless Frequency with Rise According to the Refined
Model of a Simply Supported-Free Sandwich Case

b/a who, who, &oho, % Increase of

for H/2h = 0 for H/2h = 6 ω/ωo

0 0.04083 0.31297 0.27214 667 %
0.1 0.04221 0.31522 0.27301 647 %
0.2 0.04591 0.32043 0.27452 598 %
0.3 0.05166 0.32852 0.27686 536 %
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Table 4.3.d Increase of Dimensionless Frequency with Size of Hole According to the
Refined Model of a Simply Supported-Free Sandwich Case

H/2h w /ωo
for b/a=0

ω/ωo
for b/a =0.3

Δω/ωo % Increase of
ωo /ωo

0 0.04083 0.05166 0.01083 26.5%
1 0.08443 0.09144 0.00701 8.3%
2 0.14123 0.15342 0.01219 8.6%
3 0.18413 0.20261 0.01848 10.0%
4 0.22609 0.24408 0.01799 8.0%
5 0.26923 0.28579 0.01656 6.2%
6 0.31297 0.32852 0.01555 5.0%
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Figure 4.3.a Mode Shapes of Sandwich Refined Model for H/2h=0 with Different Sizes
of Holes for Simply Supported Outside and Free Inside Case
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Figure 4.3.b Mode Shapes of Sandwich Refined Model for H/2h=6 with Different Sizes
of Holes for Simply Supported Outside and Free Inside Case
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Table 4.4.a and Table 4.4.b show that the frequency of the homogeneous shell

increases with the size of hole and the curvature.

Table 4.4.a Refined Model of Dimensionless Frequencies of Simply Supported-Free
Homogeneous Caseω/ωo

H/2h b/a=0 b/a=0.1 b/a=0.2 b/a=0.3
0 0.00603 0.00908 0.01145 0.01473
1 0.01362 0.01551 0.01712 0.01953
2 0.02481 0.02662 0.02786 0.02957
3 0.03526 0.03822 0.03962 0.04113
4 0.04357 0.04898 0.05144 0.05315
5 0.05042 0.05732  0.06241 0.06522
6 0.05692 0.06378 0.07088 0.07689

Table 4.4.b Refined Model of Fundamental Frequencies of Simply Supported-Free
Homogeneous Case

H/2h b/a=0 b/a=0. 1 b/a=0.2 b/a=0.3
0 408.8 615.6 776.3 998.7
1 923.4 1051.6 1160.7 1324.1
2 1682.1 1804.8  1888.9 2004.8
3 2390.6 2591.3 2686.2 2788.6
4 2954.0 3320.8 3487.6 3603.6
5 3418.5 3886.3 4231.4 4421.9
6 3859.2 4324.3 4805.7 5213.1

The frequencies shown in Table 4.4.c increase between 422 percent and 844

percent from the zero rise to the maximum allowable rise in the four different size of hole

cases. Table 4.4.d shows that the frequencies increase between 16.6 percent to 144.3

percent from -b 
= 0 to the maximum dimensionless hole, -b 

= 0.3 in the seven different
a 	 a

rise cases. Figure 4.4.a and Figure 4.4.b plot the mode shapes for no hole case and the

dimensionless hole size of 0.2 with different rises, respectively.
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Table 4.4.c Increase of Dimensionless Frequency with Rise According to the Refined
Model of a Simply Supported-Free Homogeneous Case

b I a who, ωo/a), Δω/ωo % Increase of

for H/2h = 0 for H/2h = 6 a) / ωo

0 0.00603 0.05692 0.05089 844 %
0.1 0.00908 0.06378 0.05470 602 %
0.2 0.01145 0.07088 0.05943 519 %
0.3 0.01473 0.07689 0.06216 422 %

Table 4.4.d Increase of Dimensionless Frequency with Size of Hole According to the
Refined Model of a Simply Supported-Free Homogeneous Case

H/2h w /ωo
for b/a=0

w /ωo
for b/a =0.3

Δωo/ω0 % Increase of
ω /ωo

0 0.00603 0.01473 0.00870 144.3%
1 0.01362 0.01953 0.00591 43.4%
2 0.02481 0.02957 0.00476 19.2%
3 0.03526 0.04113 0.00587 16.6%
4 0.04357 0.05315 0.00958 22.0%
5 0.05042 0.06522 0.01480 29.4%
6 0.05692 0.07689 0.01997 35.1%



Figure 4.4.a Mode Shapes of Homogeneous Refined Model with b/a=0 for Simply
Supported Outside and Free Inside Case
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Figure 4.4.b Mode Shapes of Homogeneous Refined Model with b/a=0.2 for Simply
Supported Outside and Free Inside Case
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4.2.3 Free and Free Case

To employ the fourth-order Runge-Kutta algorithm for Equations (4.2) written into a

system, the six shooting boundary values, u(1), u'(1) , 8(1) , /3'(1) , w(1) and w'(1) at the

outer edge from (4.7c) are:

where a , r & w are the unknowns, and 2 is found to be independent of w in the

analysis and taken as one in value.

By using the procedures of the Shooting Method, the numerical results for the

sandwich case are obtained in Table 4.5.a and Table 4.5.b. Similar to the previous two

boundary cases, the frequency increases with the size of hole and the rise.

Table 4.5.a Refined Model of Dimensionless Frequencies of Free-Free Sandwich Caseω/ωo

H/2h b/a=0 b/a=0.1 b/a=0.2 b/a=0.3
0 0.08126 0.08400 0.09124 0.12460
1 0.09512 0.09751 0.10384 0.11382
2	 0.12797 0.12979 0.13465 0.14251
3 0.16875 0.17021 0.17402 0.18026
4 0.21257 0.21384 0.21705 0.22225
5 0.25744 0.25865 0.26157 0.26620
6 0.30242 0.30366 0.30654 0.31096
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Table 4.5.b Refined Model of Fundamental Frequencies of Free-Free Sandwich Case
ω

H/2h b/a=0 b/a=0.1 b/a=0.2 b/a=0.3
0 759.8 785.4 853.1 958.0
1 889.4 911.7  970.9 1064.3
2 1196.5 1213.6 1258.9 1332.5
3 1577.9 1591.5 1627.1 1685.4
4 1987.6 1999.4 2029.4 2078.0
5 2407.1 2418.4 2445.6 2488.9
6 2827.6 2839.3 2866.1 2907.5

It can be seen from Table 4.5.c, that the frequencies increase between 150 percent

to 272 percent from the zero rise to the maximum allowable rise in the four different size

of hole cases. Table 4.5.d shows that the frequencies increase between 2.8 percent to 53.3

percent from -
b = 0 to -

b = 0.3 in the seven different rise cases. The mode shapes are
a 	 a

plotted in Figure 4.5.a and Figure 4.5.b for the case with -
b = 0 and the case with -

b = 0.3,
a 	 a

with different rises respectively. It should be noted that since both boundaries are set to

be free, the normalized transverse deflection, w at the outer edge boundary is not zero

while the w-displacement at the inner boundary is normalized to be one.

Table 4.5.c Increase of Dimensionless Frequency with Rise According to the Refined
Model of a Free-Free Sandwich Case

b/a who, who, Δω/ωo % Increase of

for H/2h = 0 for H/2h = 6 ω /ω,

0 0.08126 0.30242 0.22116 272 %
0.1 0.08400 0.30366 0.21966 262 %
0.2 0.09124 0.30654 0.21530 236 %
0.3 0.12460 0.31096 0.18636 150 %
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Table 4.5.d Increase of Dimensionless Frequency with Size of Hole According to the
Refined Model of a Free-Free Sandwich Case

H/2h w /ωo
for b/a=0

w /ωo
for b/a =0.3

Δω/wo % Increase of
ω/ωo

0 0.08126 0.12460 0.04334 53.3%
1 0.09512 0.11382 0.01870 19.7%
2 0.12797 0.14251 0.01454 11.4%
3 0.16875 0.18026 0.01151 6.8%
4 0.21257 0.22225 0.00968 4.6%
5 0.25744 0.26620 0.00876 3.4%
6 0.30242 0.31096 0.00854 2.8%



78

Figure 4.5.a Mode Shapes of Sandwich Refined Model with b/a=0 for Free Outside and
Free Inside Case
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Figure 4.5.b Mode Shapes of Sandwich Refined Model with b/a=0.3 for Free Outside
and Free Inside Case
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Similar to the sandwich case, Table 4.6.a and Table 4.6.b show that the frequency

of the homogeneous shell increases with the size of hole and the curvature.

Table 4.6.a Refined Model of Dimensionless Frequencies of Free-Free Homogeneous
Case
ω/ωo

H/2h b/a=0 b/a=0. 1 b/a=0.2 b/a=0.3
0 0.02566 0.03419 0.04256 0.05450
1 0.02687 0.03510 0.04329 0.05507
2 0.03021 0.03770 0.04541 0.05674
3 0.03503 0.04164 0.04872 0.05940
4 0.04077 0.04654 0.05295 0.06290
5 0.04702 0.05208 0.05788 0.06709
6 0.05354 0.05801 0.06327 0.07180

Table 4.6.b Refilled Model of Fundamental Frequencies of Free-Free Homogeneous
Case

H/2h b/a=0 b/a=0.1 b/a=0.2 b/a=0.3
0 1739.7 2318.1 2885.6 3695.1
1 1821.8 2379.8 2935.1 3733.7
2 2048.2 2556.1 3078.8 3847.0
3 2375.0 2823.2 3303.2 4027.3
4 2764.2 3155.4 3590.0 4264.6
5 3188.0 3531.0 3924.3 4548.7
6 3630.0 3933.1 4289.7 4868.0

Table 4.6.c Increase of Dimensionless Frequency with Rise According to the Refined
Model of a Free-Free Homogeneous Case

b/a who, who, Δω/ωo % Increase of

for H/2h = 0 for H/2h = 6 ωo /ω,

0 0.02566 0.05354 0.02788 109 %
0.1 0.03419 0.05801 0.02382 70.0 %
0.2 0.04256 0.06327 0.02071 49.0 %
0.3 0.05450 0.07180 0.01730 32.0 %
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Table 4.6.d Increase of Dimensionless Frequency with Size of Hole According to the
Refilled Model of a Free-Free Homogeneous Case

H/2h ω/ωo
for b/a=0

ω /ωo
for b/a =0.3

Δω /ωo % Increase ofω/ωo

0 0.02566 0.05450 0.02884 112.4%
1 0.02687 0.05507 0.02820 104.9%
2 0.03021 0.05674 0.02653 87.8%
3 0.03503 0.05940 0.02437 69.6%
4 0.04077 0.06290 0.02213 54.3%
5 0.04702 0.06709 0.02007 42.7%
6 0.05354 0.07180 0.01826 34.1%

Table 4.6.c demonstrates that the frequencies increase between 32 percent and

109 percent from zero rise to the maximum allowable rise in the four different size of

hole cases. Table 4.6.d shows that the frequencies increase between 34.1 percent to

112.4 percent from -b 
= 0 to -b 

= 0.3 in the seven different rise cases. Figure 4.6.a and
a 	 a

Figure 4.6.b plot the mode shapes for zero rise and rise of six with different sizes of

holes, respectively.



82

Figure 4.6.a Mode Shapes of Homogeneous Refined Model for H/2h=0 with Different
Sizes of Holes for Free Outside and Free Inside Case
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Figure 4.6.b Mode Shapes of Homogeneous Refined Model for H/2h=6 with Different
Sizes of Holes for Free Outside and Free Inside Case
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4.3 Classical Model

Similar to the refined model presented in Section (4.2), three boundary cases of the

classical model for both sandwich and homogeneous shells are shown in this section. A

free boundary is applied at the inner edge with three different boundaries at the outer

edge: clamped edge, simply supported edge and free edge, respectively.

Substituting the solution forms from (4.1a) and (4.1b) into (2.30) we have,

where C1 to C4 are found in (4.6).

To obtain results for the classical model, the tracers k s and kg are set equal to

zero by neglecting the effects of transverse shear deformation and rotatory inertia,

respectively. Such assumptions lead to the displacement boundary conditions described

in (2.26b) and (2.26c) in terms of w-displacement only. Hence, now taking k 3 = 0 in

Equation (2.18), yields /3 = – 
dw
— which is (2.25e).	 In order to get the outer
dr

displacement boundary condition in (2.26b), we first substitute (2.25e) into the (2.15b),

(2.15c) and (2.17a) and then (2.26b) at r =1 becomes,

To evaluate the displacement boundary condition in (2.26c) in terms of the w-

displacement, set kg = 0 in (2.25b) which give:



Substituting (2.15) and (2.17) together with (2.25e), (2.26c) at r = 1 yields,

The clamped outer displacement boundaries at r = 1 are,

The simply supported outer displacement boundaries at r = 1 are,

The free outer displacement boundaries at r = 1 are,

u(1) = 0,

The free inner displacement boundaries at r = —
b = e are
a

u(ε) = 0,
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The following three sub-sections, (4.3.1), (4.3.2) and (4.3.3) will present the

results of clamped outer boundary, simply supported outer boundary and free outer

boundary, respectively. Each sub-section consists of both the sandwich and

homogeneous cases. Each sandwich or homogeneous case will demonstrate four tables

(a, b, c, d, e) and two plots (Figures a and b). Table (a) shows the dimensionless

frequency, —
co 

by varying the curvature or the rise —
H 

from 0 to 6 and the dimensionless
ωo 	 2h

size of the hole, e =—b 
from 0 to 0.3, where co, = 9,350 cps for the sandwich case and

a

67,800 cps for the homogeneous case. Table (b) gives the fundamental natural

frequency, ω , which is Table (a) multiplied by w 0 . Table (c) illustrates the results of

—co 
with different sizes of holes for the shell having the maximum allowable rise,

ωo

H
 = 6 , compared with those for a circular plate with zero rise, —

H 
= 0 . Table (d) shows

2h	 2h

the results of —c° with varied curvature for the shell with no center hole, 6 = 0,ωo

compared with those for the shell with hole, e = 0.3 . Table (e) illustrates the comparison

results for the plate case, i.e. —
H = 0 with the analytical solutions by Leissa [10].
2h

Figure (a) and Figure (b) plot the mode shapes with the normalized transverse

displacement w as the ordinate and the dimensionless radial coordinate —r as the abscissa.
a
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4.3.1 Clamped and Free Case

In order to obtain the natural frequencies and the normal mode shapes of free vibration

for the refined model, Equations (4.8) are first written into a system by using the fourth-

order Runge-Kutta algorithm. From the displacement boundary conditions found in

(4.9a), the six shooting boundary values, u(1), u'(1) , w(1), w'(1) , w"1) and w"(1) at the

outer edge are set: u(1) = 0 , u'(1) = a , w(1) = 0 , w'(1) = 0 , w''(1) = 2 , wm (1) = y .

a , y & ω are the unknowns, and 2 is set equal to one as in the previous cases.

The three unknowns, a , y & ω are determined by employing the Shooting

Method. The numerical results for the sandwich case are presented in Table 4.7.a and

Table 4.7.b, in which the frequency increases as the rise and the size of hole become

bigger, except the case between the hole size of 0 and 0.2.

Comparing the present results for -H = 0 with the analytical solution in Table
2h

4.7.e, we observe that the values of the frequencies are quite close to each other, except in

the case of -b = 0 .
a

Table 4.7.a Classical Model of Dimensionless Frequencies of Clamped-Free Sandwich
Case
w /ωo

H/2h b/a=0 b/a=0. 1 b/a=0.2 b/a=0.3
0 0.12593 0.12094 0.12336 0.13526
1 0.14413 0.13951 0.14151 0.15206
2 0.18807 0.18388 0.18521 0.19366
3 0.24325 0.23910 0.24003 0.24723
4 0.30212 0.29764 0.29860 0.30566
5 0.36087 0.35578 0.35737 0.36547
6 0.41707 0.41125 0.41424 0.42469
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Table 4.7.b Classical Model of Fundamental Frequencies of Clamped-Free Sandwich
Case

ω
H/2h b/a=0 b/a=0.1 b/a=0.2 b/a=0.3

0 1177.4 1130.8 1153.5 1264.6
1 1347.6 1304.4 1323.1 1421.7
2 1758.5 1719.3 1731.7 1810.7
3 2274.4 2235.6 2244.2 2311.6
4 2824.8 2782.9 2791.9 2857.9
5 3374.1 3326.6 3341.1 3417.1
6 3899.6 3845.2 3873.1 3970.9

We notice that in Table 4.7.c, the frequencies increase over two hundred percent

from the zero rise to the maximum allowable rise in the four different size of hole cases.

However, Table 4.7.d illustrates that the frequencies increase between 1.2 percent and 7.4

percent from -
b 

= 0 to - = 0.3 in the seven different rise cases. Figure 4.7.a plots the
a 	 a

mode shapes of the case with -
b 

0 with different rises, while Figure 4.7.b plots the case
a

of the dimensionless hole, -
b 

= 0.3.
a

Table 4.7.c Increase of Dimensionless Frequency with Rise According to the Classical
Model of a Clamped-Free Sandwich Case

b/a ω/ω, ω Iw o Δω/ωo % Increase of

for H/2h = 0 for H/2h = 6 ωo /ωo

0 0.12593 0.41707 0.29114 231%
0.1 0.12094 0.41125 0.29031 240%
0.2 0.12336 0.41424 0.29088 236%
0.3 0.13526 0.42469 0.28943 214%
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Table 4.7.d Increase of Dimensionless Frequency with Size of Hole According to the
Classical Model of a Clamped-Free Sandwich Case

H/2h w /a) 0

for b/a=0

w /ωo
for b/a =0.3

&oho° % Increase of
a) /a) 0

0 0.12593 0.13526 0.00933 7.4%
1 0.14413 0.15206 0.00793 5.5%
2 0.18807 0.19366 0.00559 3.0%
3 0.24325 0.24723 0.00398 1.6%
4 0.30212 0.30566 0.00354 1.2%
5 0.36087 0.36547 0.00460 1.3%
6 0.41707 0.42469 0.00762 1.8%

Table 4.7.e Comparison of Classical Model of Dimensionless Frequency of Circular

Plate for Clamped-Free Sandwich Case (-H 
= 0)

2h

b/a=0 b/a=0.1 b/a=0.2 b/a=0.3

Present Study 0.12593 0.12094 0.12336 0.13526
Leissa [10] 0.12066 0.12002 0.12300 0.13503

% error 4.4% 0.8% 0.3% 0.2%
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Figure 4.7.a Mode Shapes of Sandwich Classical Model with b/a=0 for Clamped Outside
and Free Inside Case



Figure 4.7.b Mode Shapes of Sandwich Classical Model with b/a=0.3 for Clamped
Outside and Free Inside Case

91
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To calculate the frequencies of a homogeneous shell based on the classical theory

we further put rh = 0 , k s = 0 and k g = 0 in Equation (4.6). Similar to the sandwich case,

Table 4.8.a and Table 4.8.b show that the frequency of the homogeneous shell increases

with the bigger hole and the curvature, except for the case where the hole size -
b 

= 0.1.
a

Comparing the present results for H = 0 with the analytical solution in Table 4.8.e, the
2h

values of the frequencies are quite close to each other, except in the case of -
b 

= 0 .
a

Table 4.8.a Classical Model of Dimensionless Frequencies of Clamped-Free
Homogeneous Case

ω I ω 0
H/2h b/a=0 b/a=0.1 b/a=0.2 b/a=0.3

0 0.01301 0.01249 0.01273 0.01396

1 0.01729	 0.01683 0.01699 0.01795
2 0.02605 0.02561 	 0.02570 0.02642

3 0.03575 0.03523 0.03534 0.03610
4 0.04510 0.04445 0.04474 0.04585
5 0.05353 0.05275 0.05339 0.05515
6 0.06101 0.06019 0.06119 0.06373

Table 4.8.b Classical Model of Fundamental Frequencies of Clamped-Free
Homogeneous Case

H/2h b/a=0 b/a=0.1 b/a=0.2 b/a=0.3
0 882.1 846.8 863.1 946.5
1 1172.3 1141.1 1151.9 1217.0
2 1766.2 1736.4 1742.5 1791.3
3 2423.9 2388.6 2396.1 2447.6
4 3057.8 3013.7 3033.4 3108.6

5 3629.3 3576.5 3619.8 3739.2
6 4136.5 4080.9 4148.7 4320.9
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Table 4.8.c demonstrates that the frequency increases over three hundred percent

from zero rise to the maximum allowable rise in the four different size of hole cases.

Table 4.8.d illustrates that the frequency increase between 1.0 percent and 7.3 percent

from -b = 0 to the maximum dimensionless hole, -b = 0.3 in the seven different rise cases.
a	 a

Figure 4.8.a and Figure 4.8.b plot the mode shapes for zero rise and rise of six with

different sizes of holes, respectively.

Table 4.8.c Increase of Dimensionless Frequency with Rise According to the Classical
Model of a Clamped-Free Homogeneous Case

b/a who, who° Δω/ωo % Increase of

for H/2h = 0 for H/2h = 6 ω/ωo

0 0.01301 0.06101 0.04800 369 %
0.1 0.01249 0.06019 0.04770 382 %
0.2 0.01273 0.06119 0.04846 381 %
0.3 0.01396 0.06373 0.04977 357 %

Table 4.8.d Increase of Dimensionless Frequency with Size of Hole According to the
Classical Model of a Clamped-Free Homogeneous Case

H/2h ω/ωo
for b/a=0

'who°
for b/a =0.3

Δω/ωo % Increase of
ω /ωo

0 0.01301 0.01396 0.00095 7.3%
1 0.01729 0.01795 0.00066 3.8%
2 0.02605 0.02642 0.00037 1.4%
3 0.03575 0.03610 0.00035 1.0%
4 0.04510 0.04585 0.00075 1.7%
5 0.05353 0.05515 0.00162 3.0%
6 0.06101 0.06373 0.00272 4.5%
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Table 4.8.e Comparison of Classical Model of Dimensionless Frequency of Circular

Plate for Clamped-Free Homogeneous Case (—
H 

= 0)
2h

ω/ωo

b/a=0 b/a=0.1 b/a=0.2 b/a=0.3

Present Study 0.01301 0.01249 0.01273 0.01396
Leissa [10] 0.01246 0.01239 0.01270 0.01394

% error 4.4% 0.8% 0.2% 0.1%

Figure 4.8.a Mode Shapes of Homogeneous Classical Model for H/2h=0 with Different
Sizes of Holes for Clamped Outside and Free Inside Case
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Figure 4.8.b Mode Shapes of Homogeneous Classical Model for H/2h=6 with Different
Sizes of Holes for Clamped Outside and Free Inside Case
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4.3.2 Simply Supported and Free Case

Similar to the clamped on outside and free on inside case, Equations (4.8) are first written

into a system by using the fourth-order Runge-Kutta algorithm. From the displacement

boundary conditions found in (4.9b), the six shooting boundary values, u(1), u'(1) ,

w(1) , w'(1) , w"1) and w''') at the outer edge are set as follows:

a , y & ω are the unknowns, and 2 is found to be independent of ω and taken equal to

one in the analysis. Then the three unknowns, a , y & ω are solved by employing the

process from the Shooting Method stated in the previous section.

Table 4.9.a and Table 4.9.b present the frequency of the sandwich case in which

the frequency increases with the increase of the rise, except for the case where the hole

size —
b = 0.1. However, the frequency fluctuates as the size of hole varies.
a

Comparing the present results for —H 
0 with the analytical solution in Table

2h

4.9.e, we observe that the values of the frequencies are quite close to each other, except

for the case of = 0 .
a
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Table 4.9.a Classical Model of Dimensionless Frequencies of Simply Supported-Free
Sandwich Case

ω/ωo
H/2h b/a=0 b/a=0.1 b/a=0.2 b/a=0.3

0 0.06218 0.05795  0.05594 0.05519
1 0.09792 0.09495 0.09354 0.09307
2 0.16292 0.16046 0.15934 0.15921
3 0.23223 0.22946 0.22858 0.22922
4 0.29970 0.29594 0.29582 0.29842
5 0.36074 0.35540 0.35540 	 0.36429
6 0.41190 0.40527 0.41041 0.42434

Table 4.9.b Classical Model of Dimensionless Frequencies of Simply Supported-Free
Sandwich Case

ω
H/2h b/a=0 b/a=0.1 b/a=0.2 b/a=0.3

0 581.3 541.8 523.0 516.0
1 979.2  887.8 874.6 870.2
2 1523.3 1500.2 1489.9 1488.6
3 2171.4 2145.5 2137.3 2143.9
4 2802.2 2767.0 2766.0 2790.3
5 3373.0 3323.0 3323.0 3406.1
6 3851.3 3789.3 3837.3 3967.6

As shown in Table 4.9.c, there is a noticeable increase of the frequency from 562

percent to 669 percent from the zero rise to the maximum allowable rise in the four

different size of hole cases. Table 4.9.d shows that the frequencies fluctuate between 0.4

percent to 11.2 percent from -
b 

= 0 to the maximum dimensionless hole, -
b 

= 0.3 in the
a 	 a

seven different rise cases. The mode shapes are plotted in Figure 4.9.a and Figure 4.9.b.

The former shows the case of -
H 

= 0 with different hole sizes, while the latter plots the
2h

rise of six.
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Table 4.9.c Increase of Dimensionless Frequency with Rise According to the Classical
Model of a Simply Supported-Free Sandwich Case

b/a ω/ωa ω/ Δω/Δωo % Increase of

for H/2h = 0 for H/2h = 6 ω /ω,

0 0.06218 0.41190 0.34972 562 %
0.1 0.05795  0.40527 0.34732 599 %
0.2 0.05594 0.41041 0.35447 634 %
0.3 0.05519 0.42434 0.36915 669 %

Table 4.9.d Increase of Dimensionless Frequency with Size of Hole According to the
Classical Model of a Simply Supported-Free Sandwich Case

H/2h ω /ωo 	
for b/a=0

ω/ωo
for b/a =0.3

Δω /ωo % Increase (+)
or Decrease (-)

of ω/ωo
0 0.06218 0.05519 -0.00699 -11.2%
1 0.09792 0.09307 -0.00485 -5.0%
2 0.16292 0.15921 -0.00371 -2.3%
3 0.23223 0.22922 -0.00301 -1.3%
4 0.29970 0.29842 -0.00128 -0.4%
5 0.36074 0.36429 0.00355 1.0%
6 0.41190 0.42434 0.01244 3.0%

Table 4.9.e Comparison of Classical Model of Dimensionless Frequency of Circular

Plate for Simply Supported-Free Sandwich Case (-H = 0)
2h

b/a=0 b/a=0.1 b/a=0.2 b/a=0.3

Present Study 0.06218 0.05795 0.05594 0.05519
Leissa [10] 0.05823 0.05728 0.05570 0.05509

% error 6.8% 1.2% 0.4% 0.2%
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Figure 4.9.a Mode Shapes of Sandwich Classical Model for H/2h=0 with Different Sizes
of Holes for Simply Supported Outside and Free Inside Case
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Figure 4.9.b Mode Shapes of Sandwich Classical Model for H/2h=6 with Different Sizes
of Holes for Simply Supported Outside and Free Inside Case
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Table 4.10.a and Table 4.10.b show that the changes of frequency of the

homogeneous shell are similar to those of the sandwich case discussed above.

Table 4.10.a Classical Model of Dimensionless Frequencies of Simply Supported-Free
Homogeneous Case

ω/ωo
H/2h b/a=0 b/a=0.1 b/a=0.2 b/a=0.3

0 0.00643 0.00599 0.00578 0.00570
1 0.01386 0.01359 0.01346 0.01343
2 0.02507 0.02477 0.02468 0.02476
3 0.03574 0.03523 0.03532 0.03585
4 0.04436 0.04361 0.04416 0.04574
5 0.05132 0.05055 0.05140 0.05394
6 0.05782 0.05713 0.05811 0.06104

Table 4.10.b Classical Model of Fundamental Frequencies of Simply Supported-Free
Homogeneous Case

ω
H/2h b/a=0 b/a=0.1 b/a=0.2 b/a=0.3

0 436.0 406.1 391.9 386.5
1 939.7 921.4  912.6 910.6
2 1699.7 1679.4 1673.3 1678.7
3 2423.2 2388.6 2394.7  2430.6
4 3007.6 2956.8 2994.0 3101.2
5 3479.5 3427.3 3484.9 3657.1
6 3920.2 3873.4 3939.9 4138.5

The frequencies shown in Table 4.10.c increase between 799 percent and 971

percent from the zero rise to the maximum allowable rise in the four different size of hole

cases. Table 4.10.d demonstrates that the frequency fluctuates between 0.3 percent and

11.4 percent from -
b = 0 to -

b = 0.3 in the seven different rise cases.
a 	 a

Figure 4.10.a and Figure 4.10.b show the mode shapes for the zero hole case and the

dimensionless hole size of 0.2 with different rises, respectively.
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Table 4.10.c Increase of Dimensionless Frequency with Rise According to the Classical
Model of a Simply Supported-Free Homogeneous Case

b/ a ω/ω, ω/ω, Δω/ωo % Increase of

for H/2h = 0 for H/2h = 6 ω /ω,

0 0.00643 0.05782 0.05139 799 %
0.1 0.00599 0.05713 0.05114 854 %
0.2 0.00578 0.05811 0.05233 905 %
0.3 0.0057 0.06104 0.05534 971 %

Table 4.10.d Increase of Dimensionless Frequency with Size of Hole According to the
Classical Model of a Simply Supported-Free Homogeneous Case

H/2h ω /ωo
for b/a=0

ω /ω0
for b/a =0.3

Δω /ωo % Increase (+)
or Decrease (-)

of ω/(00
0 0.00643 0.00570 -0.00073 -11.4%
1 0.01386 0.01343 -0.00043 -3.1%
2 0.02507 0.02476 -0.00031 -1.2%
3 0.03574 0.03585 0.00011 0.3%
4 0.04436 0.04574 0.00138 3.1%
5 0.05132 0.05394 0.00262 5.1%
6 0.05782 0.06104 0.00322 5.6%

Table 4.10.e Comparison of Classical Model of Dimensionless Frequency of Circular

Plate for Simply Supported-Free Homogeneous Case ( H = 0)
2h

ωho ()

b/a=0 b/a=0.1 b/a=0.2 b/a=0.3

Present Study 0.00643 0.00599 0.00578 0.00570
Leissa (10] 0.00602 0.00592 0.00575 0.00569

% error 6.8% 1.2% 0.5% 0.2%
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Figure 4.10.a Mode Shapes of Homogeneous Classical Model with b/a=0 for Simply
Supported Outside and Free Inside Case
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Figure 4.10.b Mode Shapes of Homogeneous Classical Model with b/a=0.2 for Simply
Supported Outside and Free Inside Case
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4.3.3 Free and Free Case

To apply the fourth-order Runge-Kutta algorithm for Equations (4.8) written into a

system, the six shooting boundary values, u(1), u'(1), w(1), w'(1) , w"(1) and w'''(1) at the

outer edge are set as follows:

where a , y & ω are the unknowns, and 2 is independent of ω in the analysis and taken

as one in value.

Using the procedures of the Shooting Method, we obtain the numerical results for

the sandwich case in Table 4.11.a and Table 4.11.b. The frequency decreases with the

larger hole and increases with the curvature. Comparing the present results for -
H = 0
2h

with the analytical solution in Table 4.11.e, we observe that the values of the frequencies

are quite close to each other, except in the case of -
b = 0 .
a

Table 4.11.a Classical Model of Dimensionless Frequencies of Free-Free Sandwich Case
ω /ωo

H/2h b/a=0 B/a=0.1 b/a=0.2 b/a=0.3
0 0.11138 0.10439 0.09996 0.09876
1 0.12191 0.12326 0.11555 0.11158
2 0.14897 0.14383 0.14071 0.13993
3 0.18521 0.18112 0.17877 0.17826
4 0.22591 0.22619 0.22089 0.22069
5 0.26864 0.26596 0.26479 0.26496
6 0.31213 0.30995 0.30935 0.30997
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Table 4.11.b Classical Model of Fundamental Frequencies of Free-Free Sandwich Case
ω

H/2h b/a=0 b/a=0.1 b/a=0.2 b/a=0.3
0 1041.4 976.0 934.6 923.5
1 1139.8 1152.4 1080.4 1043.3
2 1392.9 1344.8 1315.7 1308.3
3 1731.8 1693.5 1671.5 1666.8
4 2112.3 2081.5 2065.3 2063.4
5 2511.8 2486.7 2475.8 2477.3
6 2918.4 2898.0 2892.4 2898.3

As shown in Table 4.11.c, the frequencies increase between 180 percent and 214

percent from the zero rise to the maximum allowable rise in the four different size of

hole cases. However, Table 4.11.d illustrates that the frequencies decrease between 0.7

percent and 11.3 percent from -
b 

= 0 to -
b 

= 0.3 in the seven different rise cases. Figure
a 	 a

4.1 l.a plots the mode shapes of the case with -
b 

= 0 with different rises. Figure 4.11.b
a

plots the case of the dimensionless hole, -
b

 = 0.3, in which they have the same mode
a

shapes. Similar to the refilled model shown in Section (4.2.3), the w deflection is

normalized to be unity at the inner boundary.
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Table 4.11.c Increase of Dimensionless Frequency with Rise According to the Classical
Model of a Free-Free Sandwich Case

b I a ω I ω, ω / ω o &oho, % Increase of

for H/2h = 0 for H/2h = 6 ω ho 0

0 0.11138 0.31213  0.20075 180 %
0.1 0.10439 0.30995 0.20556 197 %
0.2 0.09996 0.30935 0.20939 209 %
0.3 0.09876 0.30997 0.21121 214 %

Table 4.11.d Increase of Dimensionless Frequency with Size of Hole According to the
Classical Model of a Free-Free Sandwich Case

H/2h ω/ωo
for b/a=0

ωho°
for b/a =0.3

Δω/ωo
or Decrease (-)
% Increase (+)

of ω /ωo
0 0.11138 0.09876 -0.01262 -11.3%
1 0.12191 0.11158 -0.01033 -8.5%
2 0.14897 0.13993 -0.00904 -6.1%
3 0.18521 0.17826 -0.00695 -3.8%
4 0.22591 0.22069 -0.00522 -2.3%
5 0.26864 0.26496 -0.00368 -1.4%
6 0.31213 0.30997 -0.00216 -0.7%

Table 4.11.e Comparison of Classical Model of Dimensionless Frequency of Circular

Plate for Free-Free Sandwich Case (-H = 0)
2h

ω 1(0 0

b/a=0 b/a=0.1 b/a=0.2 b/a=0.3
Present Study 0.11138 0.10439 0.09996 0.09876
Leissa [10] 0.10625 0.10358 0.09974 0.09870

% error 3.5% 0.5% 0.2% 0.1%
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Figure 4.11.a Mode Shapes of Sandwich Classical Model with b/a=0 for Free Outside
and Free Inside Case
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Figure 4.11.b Mode Shapes of Sandwich Classical Model with b/a=0.3 for Free Outside
and Free Inside Case



110

Similar to the sandwich case, Table 4.12.a and Table 4.12.b show that the

frequency of the homogeneous shell increases with the curvature but decrease with the

bigger hole. Similarly, Table 4.12.e shows that the values of the frequencies are close to

that of the analytical solution.

Table 4.12.a Classical Model of Dimensionless Frequencies of Free-Free Homogeneous
Case
ω/ωo

H/2h b/a=0 b/a=0.1 b/a=0.2 b/a=0.3
0 0.01152 0.01079 0.01032 0.01020
1 0.01405 0.01346 0.01309 0.01299
2 0.01977 0.01935 0.01911 0.01905
3 0.02665 0.02635 0.02618 0.02616
4 0.03394 0.03370 0.03360 0.03362
5 0.04134 0.04116 0.04112 0.04119
6 0.04874 0.04860 0.04863 0.04877

Table 4.12.b Classical Model of Fundamental Frequencies of Free-Free Homogeneous
Case

ω
H/2h b/a=0 b/a=0.1 b/a=0.2 b/a=0.3

0  781.1 731.6 699.7 691.6
1 952.6 912.6 887.5 880.7
2 1340.4 1311.9 1295.7 1291.6
3 1806.9 1786.5 1775.0 1773.6
4 2301.1 2284.9 2278.1 2279.4
5 2802.9 2790.6 2787.9 2792.7
6 3304.6 3295.1 3297.1 3306.6
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The frequencies presented in Table 4.12.c increase over 300 percent from the zero

rise to the maximum rise in the four different size of hole cases. Table 4.12.d illustrates

that the frequencies decrease between 0.1 percent and 11.5 percent from -b =0 to
a

-b = 0.3 in the seven different rise cases.
a

Figure 4.12.a and Figure 4.12.b plot the mode shapes for zero rise and rise of six

with different sizes of holes, respectively.

Table 4.12.c Increase of Dimensionless Frequency with Rise According to the Classical
Model of a Simply Free-Free Homogeneous Case

b I a ω /Δωo ω I ωo Aω/ωo % Increase of

for H/2h = 0 for H/2h = 6 ω I ωo

0 0.01152  0.04874 0.03722 323 %
0.1 0.01079 0.04860 0.03781 350 %
0.2 0.01032 0.04863 0.03831 371%
0.3 0.01020 0.04877 0.03857 378 %

Table 4.12.d Increase of Dimensionless Frequency with Size of Hole According to the
Classical Model of a Free-Free Sandwich Case

H/2h ω 1 ω o
for b/a=0

ω I ωo
for b/a =0.3

Δω I ωo
or Decrease (-)
% Increase (+)

of ω/ωo
0 0.01152 0.01020 -0.00132 -11.5%
1 0.01405 0.01299 -0.00106 -7.5%
2 0.01977 0.01905 -0.00072 -3.6%
3 0.02665 0.02616 -0.00049 -1.8%
4 0.03394 0.03362 -0.00032 -0.9%
5 0.04134 0.04119 -0.00015 -0.4%
6 0.04874 0.04877 0.00003 0.1%
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Table 4.12.e Comparison of Classical Model of Dimensionless Frequency of Circular

Plate for Free-Free Homogeneous Case (—
H 

= 0)
2h

ω /ωo
b/a=0 b/a=0.1 b/a=0.2 b/a=0.3

Present Study 0.01152 0.01079 0.01032 0.01020
Leissa [10] 0.01098 0.01070 0.01030 0.01019

% error 4.9% 0.8% 0.2% 0.1%

Figure 4.12.a Mode Shapes of Homogeneous Classical Model for H/2h=0 with Different
Sizes of Holes for Free Outside and Free Inside Case
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Figure 4.12.b Mode Shapes of Homogeneous Classical Model for H/2h=6 with Different
Sizes of Holes for Free Outside and Free Inside Case
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4.4 Comparison of Results for Two Models

The fundamental frequency changes with the rise for the three boundary cases with

—

b = 0.3 are plotted in Figure 4.13. The solid lines represent the sandwich case while the
a

cross lines represent the homogeneous case, where the notation c-f is the clamped on

outside and free on inside, ss-f is the simply supported on outside and free on inside, and

f-f is free on inside and free on inside. It can be seen that there are big differences in

frequency between the three boundary conditions in the homogeneous case, especially

when the rise is small.

The following six figures show the comparison results for the two models with

the three boundary cases. In each boundary case, two figures will be presented, in which

figure (a) plots the sandwich case and figure (b) plots the homogeneous case. The solid

line represents the classical model and the cross line represents the refined model.

As shown Figure 4.14.b of the clamped on outside and free on inside boundary case, the

error is insignificantly small between the models when —

b = 0 so that the use of the
a

classical theory in calculating the fundamental frequencies is fully justified. This

contrasts with the case of the sandwich shell shown in Figure 4.14.a for which results of

the classical model deviated from those of the refined model. The same conclusion can

be applied in the simply supported on outside and free on inside boundary case as shown

in the comparison of Figure 4.15.a and Figure 4.15.b. However, there is no such

phenomenon in the free on outside and free on inside boundary case as shown in the

comparison of Figure 4.16.a and Figure 4.16.b.
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Figure 4.13 Axisymmetric Vibrations of Refilled Model with b/a=0.3 for Clamped,
Simply Supported and Free Spherical Shells



Figure 4.14.a Axisymmetric Vibrations of Sandwich Spherical Shells for Clamped
Outside and. Free Inside Case
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Figure 4.14.b Axisymmetric Vibrations of Homogeneous Spherical Shells for Clamped
Outside and Free Inside Case
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Figure 4.15.a Axisymmetric Vibrations of Sandwich Spherical Shells for Simply
Supported Outside and Free Inside Case
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Figure 4.15.b Axisymmetric Vibrations of Homogeneous Spherical Shells for Simply
Supported Outside and Free Inside Case
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Figure 4.16.a Axisymmetric Vibrations of Sandwich Spherical Shells for Free Outside
and Free Inside Case
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Figure 4.16.b Axisymmetric Vibrations of Homogeneous Spherical Shells for Free
Outside and Free Inside Case



CHAPTER 5

NONLINEAR AXISYMMETRIC VIBRATIONS OF HOMOGENEOUS
SPHERICAL SHELLS

5.1 Finite Difference Method

In our previous work on linear vibrations of spherical shells, we were able to obtain the

numerical solution by means of the shooting method. However, the assumption of the

displacement forms u(r,t)=u(r)eiωt , β(r,t)= β(r)eiωt , and w(r,t) = w(r)eiωt in (4.1) is

no longer valid in the nonlinear case. For example, the classical model for the nonlinear

axisymmetric displacement equations of a homogeneous spherical shell were given

previously (3.20) as follows:

Substituting u(r,t) = u(r)eiwt and w(r,t) = w(r)eiωt into (5.1a) and (5.1b) yields,
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Due to the nonlinear nature of Equations (5.1), the time dependence through el" cannot

be eliminated.

In order to determine the solution of (5.1), a finite difference method is employed.

Length and time are divided into a grid and we let,

s is the size of the hole, i = 0,1„N, and j = 0,1, 	
1—

M , Δr = 	 N is the number

of divisions, and Δt = —1 
is the time increment.

M

The governing differential equations (5.1) are approximated by using of the

following formulas [16, 17, 18]:
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where the subscript i represents the radial position while the superscript j represents the

time position. Replacing (5.1) with the above approximation (5.2) and solving for the

highest time increment, u!+ 1 , 	 in terms of the lower time increment, we have the

equations:

where U.s = ui+1,ui,ui-1 , and w.s = wi+2 , wi+1,wi , ....etc., 11 and f2 contain all terms at time

step j and j-1.

Here we have a two time step method. We need the values of the variables at

time j —1, and j to find the values at time j +1 in (5.3). Similarly, the boundary

conditions are also approximated by using (5.2c) since they involve derivatives. Let the

initial condition for the rise, —
H = 0 , be the analytical solutions [10],
2h

where k 4 = C3 2—ω , J 0 ,.1 1 ,170 ,111 ,10 , and Ko are Bessel functions.
C4

We take this initial condition to be the same as that chosen by [10] for the uncoupled

version of (5.1).

To start the process, we assign the initial condition (5.4) to both j= 0 and j= 1

time steps in order to obtain the numerical solution at time step j = 2 . Then continue the

process to obtain solutions at any time step j. The constants Ai , A2 , A0 , Bo , Co , and D0 in

(5.4) are calculated so that they satisfy the boundary conditions. We note that the
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constants are going to be functions of the natural frequency ω . In order to find the period

T, we iterate in time and find how long it will take for the solution to come back to the

initial curve. That is when (uj+NΔt  , VI? 	 ) is almost the same as (4', 14) -1 ) . Since Δt is

taken to be small, we will have is small. Then the period T is

approximately equal to NΔt . From Figure 5.1.a, once the periodicity occurs, i.e. the

period T= 2π/ω, the natural frequency ω is found.

5.2 Comparison with Results from Shooting Method

Before analyzing the nonlinear vibrations, we first use the fmite difference method to

solve for the linear vibrations and compare the results with those obtained by the shooting

method presented in Chapter 4. We consider the clamped outer boundary and free inner

boundary of homogeneous case of the classical model with the dimensionless hole size

E = 0.2 in Section (4.3.1). We then compare the linear version in Equations (5.1) by

using the finite difference method.

Table 5.1 shows the results from the two methods. Figure 5.1.a through Figure

5.1.d represent the plots from the finite difference method (F.D.M.). The magnitude of

the deflections is normalized to be one, as in the shooting method.
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Table 5.1 Comparison of Results for Linear Vibration

H/2h

with 6 = 0.2

ω = 27r 1 T

Shooting Method

ωw = 21Z- IT

F.D.M.

% error

0 863.1 842.3 2.4 %

1 1151.9 1104.3 4.1 %

2 1742.9 1712.0 1.8 %

3 2396.1 2362.1 1.4 %

It should be noted that by using the finite difference method, the natural

frequencies of the u and w directions are found to be different. In Table 5.1, ωw is the

natural frequency in the w direction, which is almost the same as the natural frequency ω

found by the shooting method. But the natural frequency ωo x, in the u direction found by

the finite difference method is equal to 24,272 cps with the rise —H 
= 0 to 3 , plotted in

2h

Figure 5.1.a. From the numerical results, we can stipulate that the value of w(r, t) did not

effect u(r, t) in Equation (5.1a). Therefore Equation (5.1a) can be solved for u(r, t). It is

inserted in Equation (5.1b) as a known forcing term. Then Equation (5.1b) is solved as a

nonhomogeneous equation. The solution for w(r, t) would then be a linear combination

of the homogeneous solution and the particular solution. However, we did not follow this

path, instead we solve the simultaneous equation using a finite difference scheme. From

Figures 5.1.b through 5.1.d, we observe that the periodicity reduces the accuracy when

the rise —H is increased. From [1], Koplik concluded that the ωu is the higher
2h

predominantly extensional mode in both the uncoupled and coupled vibrations.



Figure 5.1.a Linear Vibrations in the u Direction with H/2h = 0 to 3
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Figure 5.1.b Linear Vibrations in the w Direction with H/2h = 0



Figure 5.1.c Linear Vibrations in the w Direction with H/2h = 1
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Figure 5.1.d Linear Vibrations in the w Direction with H/2h = 3
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5.3 Comparison with Results of Linear Vibrations

This section presents the results of nonlinear vibrations of Equations (5.1) with the same

boundary conditions used as in Section (5.2). Table 5.2 and Figure 5.2.a through Figure

5.2.d show the results for the nonlinear vibrations. We found that the nonlinear problem

only behaves well when the magnitude of the deflection is small, say in the order of 0.01,

as shown in the following four figures. Also, from Table 5.2 and Figure 5.2.b through

Figure 5.2.d, we have periodicity when the magnitude of the deflections is small as is

expected. Hence, we only expect periodicity when the variables in the nonlinear problem

are small. We also observe that the natural frequency ωu in the u direction is equal to

23,489 cps with the rise —H = 0 to 3 , plotted in Figure 5.2.a. As the magnitude of the
2h

deflection increases, we loose periodicity. In other words, the magnitude does not return

to the original position.

Table 5.2 Comparison of Results for Nonlinear Vibration

H/2h

with Z. = 0.2

ωw = 277- IT

Linear Case

ωw = 271- IT

Nonlinear Case

0 842.3 1005.3

1 1104.3 1132.1

2 1712.0 *Lack of Periodicity

3 2362.1 *Lack of Periodicity

* Lack of Periodicity means the curve did not o back to the initial curve, see Figure 5.2.d.



Figure 5.2.a Nonlinear Vibrations in the u Direction with H/2h = 0 to 3
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Figure 5.2.b Nonlinear Vibrations in the w Direction with H/2h = 0
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Figure 5.2.c Nonlinear Vibrations in the w Direction with H/2h = 1
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Figure 5.2.d Nonlinear Vibrations in the w Direction with H/2h = 3
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CHAPTER 6

CONCLUSIONS

By starting with Hamilton's principle as well as the derivation based on [1, 2], we have

succeeded in finding the equations for the solution for the natural frequencies of linear

and nonlinear shallow spherical shells. The linear vibration case involves the analysis of

both the sandwich and homogeneous spherical shells while the nonlinear equation case

deals with the vibration of the homogeneous shells.

In the linear case, by using the Shooting Method, we assume the natural

frequency is the same in all the displacement directions, 16 , u, or w. The analysis is

applied for shells with varied curvature and size of central hole for three sets of outer

boundary conditions, namely, clamped, simply supported and free. In all cases the inside

edge condition remains free.

It is observed that the fundamental frequencies are extremely sensitive to

curvature demonstrating increases in the frequencies of over 100% when comparing zero

rise to the maximum rise, for all the boundary cases of both models. We have

demonstrated that the fundamental frequencies increase with the bigger holes in the

clamped boundary cases of both models, but only in simply. supported, and free outer

boundary cases of the refined model. It is noted that when the central hole is equal to

zero, the classical model can be employed giving the same results as the refined model

for the homogeneous case with clamped and simply supported outer boundary conditions.

However, we see that the fundamental frequencies of the sandwich case in the classical

model are far higher than those in the refined model. It is also observed that with the

central hole of dimensionless radius, —
b 

= 0.3, the refined model for both sandwich and
a
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homogeneous cases should be applied to find the frequency, except for the sandwich case

of the free outer boundary condition, since the frequency calculated by the classical

model gives results which deviate significantly from those of the refilled model.

In the nonlinear case, the finite difference method is employed to analyze the

natural frequency using the classical model for the homogeneous case with a clamped

outer boundary condition and a dimensionless hole size of e = 0.2 . The period, T is

determined numerically, where the frequency ω is equal 2π/T. The numerical results

show that the fundamental frequencies are different in the u and w directions in either the

uncoupled or coupled case. This leads to the conclusion that the assumption of the same

natural frequency in each displacement direction is a very specific condition, consistent

with the assumption of most of the previous researchers. As pointed out further, analytic

work is needed to substantiate that the frequencies of the extension and transverse

directions are not the same.

It is found that the nonlinear vibration of the spherical shell has a natural

frequency, only in the case that the magnitude of the deflection is small, in the order of

0.01. We observed that the periodicity in the w direction is significantly reduced in

accuracy when the rise is equal to 3. However, the periodicity in the u direction is much

more stable. The natural frequency ωu is over 20,000 cps, while the natural frequency in

the w direction, c o w is around 1,000 cps.

In conclusion, it is noted that the shooting method is a powerful tool in

determining the natural frequency in the linear vibration of shallow spherical shells. It

may be further employed to solve for nonshallow shells. However, employing this

method is based on the specific assumption that the natural frequency is the same in all
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the directions. Thus, a larger research effort would be required in solving the problems in

which different frequencies are assumed in different displacement directions.



APPENDIX A

DERIVATION OF STRAIN-DISPLACEMENT RELATIONS

In this appendix, the theory of elasticity [7, 12] is employed to derive the strain-

displacement relations for the homogeneous spherical shell.

Firstly, the infinitesimal distance of an undeflected state of the spherical shell has the

form [7]:

Let Po and P1 be two neighboring points in an untrained state. After deformation,

Po and P1 take the positions as P0 ' and , respectively. We assume the coordinates of

the points P0 and P are a and a + da respectively, where a represents the

coordinates, 0 , 0 or z. The coordinates of the points Po ' and p ' will then be denoted by

a + and a + + da + 4 , where is the coordinate change.

Hence, the infinitesimal distance is deflected in the following state:

By taking the axisymmetric (torsionless) simplifications , i.e. U0 = 0 , we get,

and independence with 0 .

Taking the first order differential approximation [7], we have,
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In order to have the approximation be consistent with linear elasticity theory, the

following assumptions are further taken,

Therefore, (A3) becomes,	

where,



From [12], we have the following formulas,

Normal strains (Linear case):

Shear strain (Linear case):

141

Substituting (A2) and (A7) with (A3) into (A8) yields,
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Employing the thin shell assumption the following is taken as,

Assuming the shell to be shallow gives,

By taking the axisymmetric (torsionless) assumptions, the displacement form is,

Substituting (A13) with (A11) and (Al2) into (A10), the strain — displacement (linear)

relations become,

From [1], the strain-displacement relations for the sandwich case are,
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APPENDIX B

NONLINEAR STRESS-STRAIN-DISPLACEMENT RELATIONS

In this appendix, the nonlinear theory of elasticity [2, 3, 4, 5] is employed to derive the

stress-strain-displacement relations for the homogeneous spherical shell. Assuming a

shallow shell leads to the following nonlinear stress components [2]:

where, the superscript * represents the nonlinear stress components, and ω is the rotation.

In the simplified nonlinear case, often referred to as the case of small rotations as

in [3], we omit the effects of the linear strains on the nonlinear stresses and on the

nonlinear strain terms in (B 1). Thus, the nonlinear stresses based on the simplified

nonlinear theory are formulated as follows:
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To further simplify the problem [2, 4, 5], the angle of rotation ω z about an axis

normal to the middle surface is assumed to be negligible, since it is usually much smaller

than the surface rotations ωr and ω e . Furthermore, the axisymmetric (torsionless)

assumption yields ωr = 0 . Therefore, the final nonlinear stress components become:

From [2, 3], we have the following nonlinear strain components,



where, the superscript * represents the nonlinear strain.

The simplified nonlinear assumptions stated before yield,

146

It should be noted that for the presentation in Chapter 3, the superscripts * , which

represents the nonlinear terms, have been omitted.



REFERENCES

1. Koplik, B., and Yu, Y. Y., "Axisymmetric Vibrations of Homogeneous and Sandwich
Shallow Spherical Caps," Journal of Applied Mechanics, Trans. ASME, Vol. 89,
Series E, Sept. 1967, pp. 667-673.

2. Grossman, P. L., Koplik, B., and Yu, Y. Y., "Nonlinear Vibrations of Shallow
Spherical Shells," Journal of Applied Mechanics, Trans. ASME, Vol. 91, Series E,
Sept. 1969, pp. 451-458.

3. Novozhilov, V. V., Theory of Elasticity, Pergamon Press, New York, 1961.

4. Yu, Y. Y., "Generalized Hamilton's Principle and Variational Equation of Motion in
Nonlinear Elasticity Theory, with Application to Plate Theory," Journal of the
Acoustical Society of America, vol. 36, 1964, pp. 111-120.

5. Yu, Y. Y., "Application of Variational Equation of Motion to the Nonlinear Vibration
Analysis of Homogeneous and Layered Plates and Shells," Journal of Applied
Mechanics, vol. 30, No. 1, Trans. ASME, vol. 85, Series E., Mar. 1963, pp. 79-86.

6. Xu, C. and Chia, C. Y., "Non-Linear Vibration and Buckling Analysis of
Laminated Shallow Spherical Shells with Holes," Composites Science &
Technology, Vol. 54, n1, 1995, pp. 67-74.

7. Soedel, W., Vibrations of Shells and Plates, Marcel Dekker Inc. New York, 1993.

8. Kraus, H., Thin Elastic Shells, Wiley, New York, 1967.

9. Leissa, A. W., Vibrations of Shells, NASA SP-288, U.S. Government Printing Office,
Washington, D.C., 1973.

10. Leissa, A. W., Vibrations of Plates, NASA SP-160, U.S. Government Printing Office,
Washington, D.C., 1969.

11. Wang, C. T., Applied Elasticity, McGraw-Hill Book Company, New York, 1953.

12. Sokolnikoff, I.S., Mathematical Theory of Elasticity, McGraw-Hill, 1956.

13. Burden, R. L. & Faires, J D., Numerical Analysis, International Thomson Publishing,
1993.

14. Kockler, N., Numerical Methods and Scientific Computing, Oxford Science
Publications, 1994.

147



148

15. Action, F.S., Numerical Methods that Work, Harper & Row, New York, 1970.

16. Soare, M. V., Application of Finite Difference Equations to Shell Analysis, Oxford,
New York, Pergamon Press, 1967.

17. Street, R. L., The Analysis and Solution of Partial Differential Equations, Monterey,
California, Brooks/Cole Pub. Co., 1973.

18. Ugural, A. C., Stresses in Plates and Shells, WCB McGraw-Hill, 1999.


	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract (1 of 2) 
	Abstract (2 of 2) 

	Title Page
	Copyright Page
	Approval Page 
	Biographical Sketch
	Dedication
	Acknowledgement
	List of Contents (1 of 3)
	List of Contents (2 of 3)
	List of Contents (3 of 3)
	Chapter 1: Introduction
	Chapter 2: Equations For Homogenous And Sandwich Spherical Shells
	Chapter 3: Equations For The Nonlinear Vibrations Of Homogeneous Spherical Shells
	Chapter 4: Linear Axisymmetric Vibrations Of Homogeneous And Sandwich Spherical Shells
	Chapter 5: Nonlinear Axisymmetric Vibrations Of Homogeneous Spherical Shells 
	Chapter 6: Conclusions
	Appendix A: Derivation Of Strain-Displacement Relations
	Appendix B: Nonlinear Stress-Strain-Displacement Relations
	References

	List of Tables (1 of 4)
	List of Tables (2 of 4)
	List of Tables (3 of 4)
	List of Tables (4 of 4)

	List of Figures (1 of 3)
	List of Figures (2 of 3)
	List of Figures (3 of 3)

	List of Symbols 



