

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

COMPONENT-BASED SOFTWARE ENGINEERING

by
Zhiyuan Wang

To solve the problems coming with the current software development methodologies,

component-based software engineering has caught many researchers' attention recently.

In component-based software engineering, a software system is considered as a set of

software components assembled together instead of as a set of functions from the

traditional perspective. Software components can be bought from third party vendors as

off-the-shelf components and be assembled together.

Component-based software engineering, though very promising, needs to solve

several core issues before it becomes a mature software development strategy. The goal

of this dissertation is to establish an infrastructure for component-based software

development. The author identifies and studies some of the core issues such as

component planning, component building, component assembling, component

representation, and component retrieval.

A software development process model is developed in this dissertation to

emphasize the reuse of existing software components. The software development process

model addresses how a software system should be planned and built to maximize the

reuse of software components. It conducts domain engineering and application

engineering simultaneously to map a software system to a set of existing components in

such a way that the development of a software system can reuse the existing software

components to the full extent. Besides the planning of software development based on

component technology, the migration and integration of legacy systems, most of which

are non-component-based systems, to the component-based software systems are studied.

A framework and several methodologies are developed to serve as the guidelines of

adopting component technology in legacy systems.

Component retrieval is also studied in this dissertation. One of the most important

issues in component-based software engineering is how to find a software component

quickly and accurately in a component repository. A component representation

framework is developed in this dissertation to represent software components. Based on

the component representation framework, an efficient searching method that combines

neural network, information retrieval, and Bayesian inference technology is developed.

Finally a prototype component retrieval system is implemented to demonstrate the

correctness and feasibility of the proposed method.

COMPONENT-BASED SOFTWARE ENGINEERING

by
Zhiyuan Wang

A Dissertation
Submitted to the Faculty of

New Jersey Institute of Technology
In Partial Fulfillment of the Requirements for the Degree of
Doctor of Philosophy in Computer and Information Science

Department of Computer and Information Science

May 2000

Copyright© 2000 by Zhiyuan Wang

ALL RIGHTS RESERVED

APPROVAL PAGE

COMPONENT-BASED SOFTWARE ENGINEERING

Zhiyuan Wang

Dr. Franz J. Kurfess, Dissertation Advisor	 Date
Associate Professor of Computer Science, NJIT, Newark, NJ
Associate Professor of Computer Science, Concordia University,
Montreal, Quebec, Canada

Dr. D. C. Douglas Hung, Committee Member 	 Date
Associate Professor of Computer Science, NJIT, Newark, NJ

Dr. David Nassimi, Committee Member	 Date
Associate Professor of Computer Science, NJIT, Newark, NJ

Dr. Pengcheng Shi, Committee Member	 Date
Assistant Professor of Computer Science, NJIT, Newark, NJ

Dr. Yongming Tang, Committee Member	 Date
Assistant Professor of Computer Science,
Fairleigh Dickinson University, Teaneck, NJ

Dr. Ke Liu, Committee Member 	 Date
Adjunct Associate Professor of Computer Science, Concordia University,
Montreal, Quebec, Canada
Senior Software Engineer, AT&T, Middletown, NJ

BIOGRAPHICAL SKETCH

Author: 	 Zhiyuan Wang

Degree: 	 Doctor of Philosophy in Computer and Information Science

Date: 	 May, 2000

Undergraduate and Graduate Education:

Doctor of Philosophy in Computer and Information Science,
New Jersey Institute of Technology, Newark, New Jersey, 2000

Master of Science in Computer and Information Science,
New Jersey Institute of Technology, Newark, New Jersey, 1999

Bachelor of Science in Electrical Engineering,
Shanghai Jiao Tong University, Shanghai, P.R. China, 1995

Major: 	 Computer Science

Publications:

Zhiyuan Wang, Franz J. Kurfess, "Component Retrieval with Neural Associative
Memory," submitted to European Conference on Artificial Intelligence, 2000.

Jason T. L. Wang, Steve Rozen, Bruce A. Shapiro, Dennis Shasha, Zhiyuan Wang,
Maisheng Yin, "New Techniques for DNA Sequence Classification," Journal of
Computational Biology, Vol. 6, No.2, pp. 209-218, 1999.

Jason T. L. Wang, Bruce A. Shapiro, Dennis Shasha (editors), Zhiyuan Wang
(contributor), Pattern Discovery in Biomolecular Data: Tools, Techniques and
Applications, Oxford University Press, New York, 1999.

Zhiyuan Wang, Philip B. Johnson, Jason T. L. Wang, Cathy H. Wu, "Biological
Software Development on the World Wide Web," in Proceedings of the 6th
International Conference on the Fuzzy Theory and Technology, pp. 423-426, 1998.

Gung-Wei Chirn, Jason T. L. Wang, Zhiyuan Wang, "Scientific Data Classification:
A Case Study," in Proceedings of the 9th International Conference on Tools with
Artificial Intelligence, pp. 216-222, 1997.

iv

This dissertation is dedicated to
my parents and my beloved wife

v

ACKNOWLEDGMENT

The author would like to take great pleasure in acknowledging his research advisor, Dr.

Franz J. Kurfess, for his kindly assistance and remarkable contribution to this

dissertation. He not only served as the author's research supervisor, providing valuable

and countless resources, insight, and institution, but also constantly gave the author

support, encouragement, and reassurance. Without his help, this dissertation could not

have been published. Many thanks are given to Dr. Jason T. L. Wang, who helped the

author establish a solid academic background. The author also thanks Dr. David Nassimi,

Dr. D. C. Douglas Hung, Dr. Pengcheng Shi, Dr. Yongming Tang, and Dr. Ke Liu for

actively participating in his committee. Special thanks are given to the author's beloved

wife, who gave the author courage when he faced challenges, who gave the author

inspiration when he solved problems, and who gave the author tremendous help when he

needed it the most. The author can not thank too much for what she has done and

sacrificed for him.

vi

TABLE OF CONTENTS

Chapter

1	 INTRODUCTION 	

1.1	 Motivation 	

1.2	 Objectives and Outline 	

2	 COMPONENT TECHNOLOGY 	

Page

1

1

4

7

2.1 Component Definition 	 7

2.2 Why Components ? 	 10

2.3 Component, Object, and Module 	 14

2.4 Forms of Components 	 18

2.5 Technical Issues 	 22

3 COMPONENT-BASED SOFTWARE DEVELOPMENT 	 28

3.1 Introduction 	 28

3.2 Component Software Development Process 	 30

3.2.1	 Domain Engineering 	 31

3.2.2	 Application Engineering 	 37

3.3 Team Roles in Component Software Development 	 40

3.3.1	 System Engineering Team 	 41

3.3.2	 Development Team 	 42

3.3.3	 Support Team 	 45

3.4 Summary 	 48

4 LEGACY SYSTEM COMPONENTIZATION 	 50

4.1	 Legacy System 	 51

vii

TABLE OF CONTENTS
(Continued)

Chapter

4.2

4.3

Componentization 	

4.2.1	 Wrapper 	

4.2.2	 Componentization Framework 	

Integration with Internet Application 	

Page

53

54

55

59

4.3.1	 Methodology 	 59

4.3.2	 Wrapping Techniques 	 62

4.3.3	 Integration 66

4.4 Case Study 	 70

4.5 Summary 	 73

5 COMPONENT REPRESENTATION 	 75

5.1 Introduction 	 75

5.2 Related Work 	 79

5.3 Component Representation Framework 	 84

5.4 Summary 	 91

6 COMPONENT RETRIEVAL 	 92

6.1 Neural Associative Memory 	 92

6.2 Retrieval Method 	 96

6.3 Enhancement 	 103

6.3.1	 Weight Adjustment in Associative Memory 	 105

6.3.2	 Dynamic Thesaurus with Bayesain Inference 	 107

6.3.3	 Sparse Matrix Multiplication 	 116

viii

TABLE OF CONTENTS
(Continued)

Chapter	 Page

6.4 Experiment 	 117

6.5 Summary 	 126

7 CONCLUSION AND FUTURE WORK 	 127

REFERENCES 	 130

ix

LIST OF TABLES

Table Page

3.1 Traditional team roles and component-based team roles 	 49

5.1 Illustration of faceted method 	 82

6.1 Weight function parameters 	 106

6.2 Symbols of variables 	 111

LIST OF FIGURES

Figure Page

2.1 The MVC framework 	 20

2.2 Hierarchical system framework 	 20

3.1 Component-based software development process model 	 32

3.2 Detailed illustration of system assembly 	 33

4.1 Illustration of a simple wrapper 	 54

4.2 Typical integration of legacy systems and Internet applications 	 67

4.3 Internet application with two wrappers 	 68

4.4 Legacy system with two wrappers 68

4.5 Processing with 3270 terminals 	 70

4.6 Wrapping BPP system by screen scraping 	 71

4.7 Decoupling GUI and BPP system by socket 	 71

4.8 BPP system integrated with Internet applications 72

4.9 The BPP system is decomposed into components 1 to N. These components
can be reused by new component-based systems. An object-oriented
wrapper is used by all Internet applications. 	 73

5.1 Illustration of enumerative method describing software tools 	 80

6.1 A structure of a typical biological neuron. It has multiple inputs (in) and one
output (out). The connection between neurons is realized in the synapses. 	 93

6.2 A model of an artificial neuron 	 93

6.3 A simple neural associative memory 	 94

6.4 Illustration of Hebb rule. The amount of modification depends on the presy-
naptic and postsynaptic signal.. 	 98

6.5 Thesaurus architecture. Ellipses are facet values. 	 109

xi

LIST OF FIGURES
(Continued)

Figure Page

6.6 Mapping between primary and secondary facet values 	 110

6.7 Component retrieval system architecture 	 118

6.8 Precision and recall rate without thesaurus 	 125

6.9 Precision and recall rate with thesaurus 	 125

xii

CHAPTER 1

INTRODUCTION

1.1 Motivation

This decade, especially the late half of the decade, has witnessed a dramatic expansion of

computer usage. Computer technologies appear in every aspect of human life. All kinds

of traditional services, such as shopping, banking, trading, etc, are available via computer

and Internet. The result is the rapid increase of demand of computer software in both size

and complexity. Although a wide variety of methodologies has been recognized in the

software engineering community, software development is still facing lots of problems,

such as inability to deliver, exceeding budgets, missed due date, poor performance, high

maintenance costs, etc. These problems partially result from the fact that software

development methodologies do not emphasise reuse. For a long time, software

development has been a process that starts from scratch and is conducted without reusing

the result of other software development activities. To better understand the problem, let

us compare the development of a car to that of a software system.

Examining the composition of a car, we will notice that the components of a car

are made by different manufacturers. Car manufacturers do the design, buy components

that they need from different component manufacturers, and assemble them into

products. That way, the car manufacturers can concentrate on the design to ensure the

overall quality of their product. They do not worry about how the components are made.

They only need to know the specification of components to determine if the components

fit in the overall design or not. They might be making some important components such

as engine and transmission themselves. But no resource is unnecessarily wasted on

1

2

making other components such as brakes, shock absorbers, tires, etc. The quality and

availability of such components is guaranteed by the component manufacturers. Some

components can be bought off the shelf, and some need to be specially ordered from the

manufacturer. The component manufacturer then applies the same strategy to develop

their product. They do the design and buy necessary components from other

manufacturers. This strategy recursively applies to each component manufacturer. The

key to this strategy is the reuse of available components. It allows the designers and

developers to focus on important issues and frees them from having to worry about the

details of implementing each component.

On the other hand, during the development of a software system, such a strategy

of reuse is rarely found. Typically, in the design stage of a software system, designers

design the software system and decompose it without knowing or unwilling to find out if

there are existing components out there that may perform part of the function that the

system is looking for and can be integrated into the new system. The result is the

difficulty of reusing components even though they may be available. In the development

stage, the developers implement each component of the system without knowing that the

same functionality may have been implemented by other developers. Few reusable

components can be used during this stage and most of them are on the binary library level

such as input, output routines. The lack of reuse of existing components in the software

development processes results in the waste of human resources, difficulties in managing

quality, and even failure to delivery.

The ideal development strategy of software systems should be the same as that of

cars: buy components and build system, briefly "buy and build". Unfortunately the

3

current strategies to develop software system are "buy or build". On one hand, the

software system is bought from outside sources, like Microsoft Office. On the other hand,

the system is custom-made and usually built from scratch. The advantage of buying

software system is the cost efficiency. Because the systems are sold as products, the

development and maintenance cost is distributed to customers. Therefore the cost is

relatively low. However, since it is aiming at a wide variety of customers, the software

system is limited to be for general purposes. So it may not fit some customers' demand.

As a matter of fact, lots of software systems, such as stock trading system, are not

available as a ready-to-use product. The custom-made software system can meet

customers' special needs. However, since that kind of software systems needs to be built

from scratch, the development and maintenance cost is high.

First proposed by McIlroy [49], component technology has been seen as a

promising approach to overcome the above problems. However the component

technology seemed to go nowhere until recently, when it was on the verge of success.

There are two main forces to resurrect component technology and make it possibly the

most important milestone in the software engineering community. The first is technology

evolution. During the thirty-year period since McIlroy had first predicted mass-produced

components, people in the software engineering community had to face the reality that no

technology was available to build and assemble software components and no platform

independent languages were available. The technical difficulty impeded the component

technology from being taken seriously. Now with the help of component middleware,

such as CORBA [54], DCOM [64], and EJB [51][74], it is the first time that building a

software system from reusable software components is feasible.

4

The other factor to make the component technology more appealing than ever is

the high business pressure. With the fast growth of current economics, a typical software

system's life span has been reduced to 2 years or so. New releases are coming out semi-

annually or even quarterly. The traditional software development strategies are not

sufficient anymore, since without reusing components a lot of time has to be wasted to

implement functionality that has been implemented by existing software components.

Component technology solves this problem by facilitating the "buy and build" strategy in

software development. Software components can be bought at a relatively low cost

compared to they being developed arid maintained repeatedly by individual developer.

The components then are composed into a software system that accommodates users'

special business needs. With the help of component technology, a custom-made software

system can be accomplished at a low price and in a short time.

1.2 Objectives and Outline

Component technology is not something that appears suddenly over a night. The concept

of component technology has been there in the software engineering community for

nearly thirty years. However, there is still no clear standard and guideline to software

development on how to facilitate component reuse. There are some key issues to be

solved before the component technology can be successfully used in practice. These

issues are:

• Component planning

• Component building

• Component assembling

5

• Component representation

• Component retrieval

Component planning is the issue of how to decompose a software system into

components such that it maximizes the reuse of software components. Component

planning requires careful analysis in the application domain to extract the most common

functionality and build components to achieve the functionality. Component building

focuses on technologies that build components. This is the best solved issue among the

five issues. Major programming languages now support the concept of components, such

as JAVA. The de facto standards of component assembly are CORBA, DCOM, and EJB.

In his doctoral dissertation [72], Y. Tang proposed a methodology to facilitate the

automatic assembly of software components into software systems. His research result is

a step towards software assembly lines that automatically build software systems. After

components are built, they need to be distributed into persistent storage for future usage.

Component representation and retrieval focuses on how to store and retrieve components

efficiently and accurately.

The objective of this dissertation is to build an infrastructure to facilitate

component-based software development. We will study four of the above five issues,

namely component planning, component building, component representation, and

component retrieval.

This dissertation has 7 chapters. In Chapter 2, an overview of the current state of

component technology is given. The definition of a component is also justified. Chapter 3

proposes a software development process model for component-based software

6

development. The proposed process model focuses on the processes that facilitate the

component technology in software development. It addresses how a software system

should be planned and built to maximize the reuse of software components. The proposed

software development process model conducts domain engineering and application

engineering simultaneously to map a software system to a set of existing components in

such a way that the development of a software system can reuse the existing software

components to the full extent. A definition of team roles for component-based software

development is also given to maximize the output of a component-based software

development team in this chapter. Chapter 4 deals with the issue of component building.

Unlike most of the current researches on component building which usually study the

technologies to build components from scratch, an opposite and new approach is given to

build components from existing software systems. This chapter also studies how to

integrate components built from existing software systems with Internet applications to

extend traditional services to online customers. In chapter 5, we propose a framework to

represent components in component repositories. This framework is the starting point of

our component retrieval method. In chapter 6, an efficient method of searching and

retrieving components from component repositories is proposed. This method combines

neural associative memory, information retrieval, and Bayesian inference technology. A

prototype of a retrieval system is also implemented. Experiments are conducted to test the

feasibility of our proposed method.

CHAPTER 2

COMPONENT TECHNOLOGY

More and more often when reading a computer magazine, one can not help noticing a

word: component. It often appears in the context of component technology, component-

based technology or component-based software engineering. However it is hard to find a

definition of the term component. From the context, it is noticeable that sometimes a

component is actually a chunk of code. More specifically it is a library function. People

call it a component instead of a library function. Sometimes, a component is something

you can use "as is" in your software system to utilize its provided functionality without

having to bother to implement the functionality yourself. Sometimes a component is even

a template or a framework for design works of software systems. Then what really is a

component and what is component-based technology? We will try to answer these

questions and give some background knowledge about component and component

technology in this chapter.

2.1 Component Definition

What is the definition of component? The reality is there is no consensus on the

definition of component. Here we list some popular definitions of component.

According to Clemens Szyperski [70], "a software component is a unit of

composition with contractually specified interfaces and explicit context dependencies

only. A software component can be deployed independently and is subject to third-party

composition." This definition emphasizes deployment and explicit contextual

7

8

dependency. According to this definition, dependency is inevitable for software

components.

Cited in [70], Philippe Krutche from Rational Software states: "a component is a

nontrivial, nearly independent, and replaceable part of a system that fulfills a clear

function in the context of a well-defined architecture. A component conforms to and

provides the physical realization of a set of interfaces." Here the functionality of a

component is stressed. Krutche believes that components should be almost independent

of other components. This definition does not stress the deployment characteristic of

components.

In his famous book, "Software components with Ada" [7], Grady Booch defines:

"a reusable software component is a logically cohesive, loosely coupled module that

denotes a single abstraction." This definition focuses on the resemblance between

components and modules. It does not further stress any unique characteristic of

components.

Ivar Jacobson, in his classic book "Object-Oriented Software Engineering" [29],

states: "By component we mean already implemented units that we use to enhance the

programming language constructs. These are used during programming and correspond

to the components in the building industry." In this definition, Jacobson implies that

components are only used during implementation. This definition does not specify

whether or not components should be independent of others, nor does it indicate the

deployment of components.

Although the above definitions emphasize different aspects of component, they

have one thing in common: all of them relate components to the implementation of a

9

software system. In his book "Software Engineering with Reusable Components" [63],

Johannes Sametinger gives a wider concept of components: "Components are self-

contained, clearly identifiable pieces that describe and/or perform specific functions, have

clear interfaces, appropriate documentation, and a defined reuse status."

This definition addresses two kinds of components. One is at the implementation

level such as individual functions to perform specific functionality. In addition to that, it

explicitly claims that items that "describe" rather than "perform" functionality can also be

viewed as components. This implies the qualification of design level work such as

"framework" and "design pattern" as components.

We believe that Johannes Sametinger's definition is the most comprehensive one

and best describes components. When describing the components that "perform"

functionality, Clemens Szyperski's definition is the best one. It reveals the most

distinctive difference between reusable component and reusable library functions. A

component can be deployed as a part of a system whereas a library function has to be

included in a program to provide its functionality. We give our definition of components

by combining the definitions of Sametinger's and Szyperski's:

Components are self-contained, clearly identifiable pieces that describe

and/or perform specific functions with clear interface for reuse. A design

level component is a unit to describe design issues with explicit domain

restrains. An implementation level component is a unit for independent

deployment and subject to third party composition with contractually

specified interfaces and explicit context dependencies.

10

2.2 Why Components ?

The notion of components has been brought into the software engineering community for

a long time. First presented by McIlroy [49], the idea behind software components is to

implement components that perform some specific functions and when a software system

is under construction, they can be used as building blocks to build software systems with

ease and quality. Use of components is an well-adopted strategy in many mature

engineering disciplines. However, being on the research papers for 30 years, the idea of

reuse of components to build software system does not seem to get enough attention from

the real world. Software engineers still build their systems in the traditional procedural

way. Now under certain forces, the software development strategy has finally started to

change to component based approach. These forces are:

• Available technology

• Business environment

• Observation from other engineering disciplines

• High flexibility

Available technology

Because of the dramatic increase of size and complexity of today's leading software

systems, the old development strategies with very little reuse are no longer able to

produce high quality software systems in a timely way. In order to resolve this so-called

software crisis, software component reuse has gained a lot of attention from the software

engineering community and is regarded as the best possible cure by some researchers.

11

Due to the characteristics of software engineering, however, it does not seem easy

to apply component strategy to it. It might be the only engineering discipline that deals

with something that does not have any visual information to the observers. After the idea

was presented for the first time, it has been a tedious 30 years for people who tried to

adopt the idea and failed. The reasons are complicated. One obvious obstacle is the

technology difficulty. Not until recently, technology has become available to facilitate

component technology such as assembling components. Thanks to the rapid development

of computer technology there has not been a better time than today to adopt component

technology. We have almost everything we need. All the technology that may facilitate

the adoption of component technology is in hand. They may not be perfect but make

component technology possible. Among these, the technology to build components and

assemble those into a software system is the most important one.

For the past decade, software systems have been moving from centralized ones to

distributed ones. Accordingly, technologies like CORBA, DOOM, and EJB were

invented to facilitate the distributed computing environment by allowing part of a

software system to communicate or to integrate with other parts of the systems which

may be residing on different machines and developed under a totally different

environment. This kind of technology makes it possible to assemble a software system

from different components developed in different environments. These technologies also

act as a pioneer to be studied as to how and in what way software components should be

built and assembled.

12

Business environment

Another compelling factor of the merge of component technology is business pressure.

In today's market, no software company can afford a development cycle of more than 2

years. A much shorter cycle, probably only of half to 1 year, is desirable by most

companies. Apparently, the old fashion of building software systems from scratch is not

preferable anymore. Reuse becomes the only way to get out of the woods. By reusing

existing components, a lot of resources and time are saved. To save significant time,

today's reuse can not just stay at library function level. That does not save much.

Therefore, large size components with specific functionality are needed. Besides code

reuse, the reuse of design idea such as design pattern and framework is also desirable.

Observation from other engineering disciplines

Another reason for using components stems from the observation of other engineering

disciplines. As we stated repeatedly, other engineering disciplines have demonstrated the

power of using components. When a car engineer builds a car, he decomposes the system

into small components or subsystems, such as body, drive train, chassis and so on. He

does not care about how they are built. He leaves these details to the engineers who are

responsible for them. He only cares about what specification he needs for those

subsystems and how to assemble those parts in a way such that the best can be pulled out

of the configuration. For each engineer who is responsible for the subsystems, the same

discipline is applied. For different cars, most of the same subsystem may be reused. This

is the common case in car industry. However, one does not see the analog in software

engineering. Software engineers do decompose a large system into subsystems, however

13

this decomposition is not systematic. Different engineers can decompose the same

software system in different ways. The chance of reusing the decomposed parts in

another system is therefore very slim. This directly results in the long development cycle

of software systems. So from the lesson we learn from other engineering disciplines,

component reuse is the best way to save resources and to lower the costs to build

software systems.

High flexibility

The final force to give component technology an advantage over other methods is

flexibility. In the traditional sense, people only have two ways, each on one extreme, to

get a software system. On one extreme, they have to build a software system specifically

for their needs. A development team is dedicated to that system. They usually do not get

much help from other teams. The result is a customized system that very well fulfills the

desired functionality. The development and maintenance costs are high, though. The

other extreme of this scale is to buy a software system or a package. This way, the cost is

relatively low and there is practically no maintenance burden at all. However the

disadvantage is also apparent. Software being bought usually aims at a general purpose. It

analyzes the market needs and finds the most wanted feature for the product and

implements it. The reality that it can not implement all the wanted features makes it less

preferable when a specific function is needed. When buying a software system, the

buyers try to find the closest possible one to their needs. When a software system is

bought, it is almost impossible to reengineer the software to make it serve better.

Software development companies do not leave much room in their product for

14

modification. So what is the best way to get a software system? Our answer sits in the

middle of the scale, buy the parts and build the whole.

The hybrid approach of buying and building a software system makes it appealing

to the software engineering community. In this approach, a project is started like those

starting from scratch. In the middle of the development, however, components are bought

from third party component manufacturers either as a standard product or as a custom-

made one instead of being built in the team. As a result, efforts are saved and bug-free

components are available for assembly. Those components that can not be bought then

are built by the develop team. Finally, when all the components are available, the

assembly takes place and the final product is done. This approach improves the quality of

software systems, saves time on the development, and significantly reduces the cost of

maintenance. Since the functionality has been isolated in different components, when a

problem occurs it is relatively easy to find the responsible component and pinpoint the

problem in the component. When an upgrade or new functionality is needed, only the

corresponding component needs to be examined, modified, or replaced.

2.3 Component, Object, and Module

From the description above, someone may have questions already in his mind. The

concept of a component seems similar to that of objects and modules. Components and

objects look alike in the sense that they are a piece of code that implements some

function and hides its internal implementation. A module looks like a component because

modules are a part or a subsystem of a software system and also perform some specific

functions just like components. Sometimes people do use these terms interchangeably

15

and a clear distinction among these three is hard to draw. This section will explain the

common and difference among components, objects and modules.

Component

As we pointed out before, the concept of component includes not only code segments that

perform functions but also items that describe functions, such as system architecture and

design framework. Apparently this high level describing ability is not found in objects

and modules.

According to the definition by Clemens Szyperski, a component is an independent

deployment item. This implies the characteristic of components of separating themselves

from other components. In order to achieve this, a component has to be self-contained.

The ideal case is that it does not contain anything defined or implemented in other

component. Some object-oriented purists argued that components should show

inheritance like objects do. Thus two components may be strongly connected. We do not

support this claim. We believe that a component has to be independent and self-

contained. This avoids environment incompatibility when components are deployed.

Components have a published interface for third party assembly. Object also has

its interface for it being used by other objects. The difference between these two is that

the interface of a component could be either a procedural interface or an object interface.

The procedural interface is a function that when invoked by other components, the

internal service of the invoked component can be accessed by the calling component.

Object interface is defined on an object. The interface can not be reached without the

existence of the object. An object interface is of course more preferable than the

16

procedural one. But as we will see in the later chapter regarding legacy system

componentization, a procedural interface is inevitable, especially when we wrap a legacy

system into a component and add an interface on the top. However there is a tricky way

to turn a procedural interface into an object interface. A reference class can be defined

and it has its own interface. In that interface, the procedural interface of a component is

called. This way, the procedural nature of the component interface is hidden in the

reference class. To other components, only the reference class and the associated

interface are noticed.

Object

Object oriented technology so far has been the most successful programming technology

in the software engineering community. Actually without it, component technology may

be impossible. Objects share a lot of common characteristics with components. They all

have interfaces to publish the services. They all encapsulate internal data and hide

implementations. Differences between objects and components are equally clear. First, an

object is an instance of a class. A component is not. An object has to be instantiated

through its constructor. A component is a unit of deployment. The concept of

instantiation does not exist. The concept of inheritance, we believe, should not apply to

components, neither should the concept of polymorphism. Components are units of

deployment, so it is more likely to be context constrained and dependent on the

underlying component architecture. Objects do not have this kind of constraints.

17

Module

In the traditional software development strategy, a software system is decomposed during

the design stage into several subsystems. The subsystems may be again decomposed.

These subsystems are considered as modules in a system. Modules are close to

components in the way that they are all parts of a system and they are composed together

to form a complete system.

The difference between modules and components are rooted in the underlying

component technology. In order to be reused and composed by a third party, a component

should be as general and independent as possible. Generality gives components a better

chance to be reused by other software systems and independence makes a component

deployed independently. Modules do not have these characteristics. Modules are usually

designed within a software system. Function separation is the main criteria when doing

modularization. Software engineers usually do not keep generality and independence in

mind. The result is that modules are usually not general enough and can not be reused in

another systems without major surgery. Modules may have strong connection with other

modules, which makes it impossible to deploy one module without taking other modules

together. It is advocated by all software engineering books that when doing modular

design, least possible interconnection or coupling is appreciated. However in the real

world, because modules are usually only for a specific system, software engineers usually

do not bother to try to get the least possible interconnection between modules.

Another difference is that components are for deployment and third party

composition and assembly, so the interface of a component has to follow the syntax of

the underlying component architecture, such as CORBA, DOOM, and EJB. Modules do

18

not have this kind of constraints and could be implemented in any form. Data

encapsulation and hidden implementation is also an option for modules.

So from the above observations, we can see that object is the concept that focuses

more on programming aspect. The emphasis of modules is on system architecture and

function analysis. The component is between these two. It has some programming

constrains and it also has some system architecture constrains. Moreover, as we pointed

out, a component is a unit of independent deployment. This character is found neither in

objects nor in modules.

2.4 Forms of Components

When we think of software components, we always think of program code, either a

complete program or some part of it. Libraries in C and C++ and packages in Java are

good examples of this kind of basic reusable units. When libraries and packages are

included or imported in the program, they are used in an as-is form. Programmers do not

change the code of libraries and packages. Adjustment is made through parameters.

However, a code segment is not the only form of components. We consider

components as being able to both perform and describe functionality. So the following

are qualified as components too:

• System and program architectural framework

• Prototype

• Data structure and algorithm

• Software life cycle process

19

System and program architectural framework

The framework may be the most important component to study and the most crucial

factor in the success of component technology. A framework gives a direction for all

following reuse procedures. According to [70], a framework is a set of cooperating

classes, some of which may be abstract, that make up a reusable design for a specific

class of software. This definition makes it clear that a framework is task oriented. A class

of software that performs similar tasks could and should share a framework. Frameworks

describe an overall design for a specific class of software, such as stock trading system,

pay roll system, and so on.

A framework only specifies high level design, and leaves the implementation to

the software engineers and developers. The famous model-view-controller (MVC)

framework is shown in Figure 2.1. It is the most widely used framework for GUI design.

Some frameworks come with their default or standard implementation for one or some

parts of the framework. A framework in object-oriented technology usually specifies the

interfaces of its parts and the interaction between each part. In component technology,

however, the composition or assembly technology may have to be taken into account.

A framework can be hierarchically divided into sub-frameworks. A framework

for a specific class of software may specify some lower level frameworks and gives

specification for those sub-frameworks. Then these sub-frameworks have their definition

and again may include some other frameworks that are one more level lower than them.

The hierarchical framework structure is illustrated in Figure 2.2.

Figure 2.1 The MVC framework

Figure 2.2 Hierarchical system framework

21

A program framework is like the system framework. The difference is only that a

program framework applies to the program that implements functions. So a program

framework can be thought of as a framework to specify how to implement a specific class

of functions. For example, a program framework to authenticate user information may

have an object to represent the user information, an object to represent authentication

information and an interface to authenticate the user by comparing user information and

authentication information.

Prototype

Prototypes are a widely used development method for reuse. Reuse of prototypes can

eliminate the redundant cost of testing the feasibility of similar software systems. When a

big software system or a part of it is analyzed, it is always simplified to its simplest form.

Then a prototype can be built based on that. After the successful testing, the result of

prototype testing can be served as the starting point of the software system and be stored.

When another similar system is being developed, a good and quick development strategy

can be given based on the results of the previous prototypes.

When a project needs to adopt new technology such as JAVA, CORBA, and EJB,

there are not very many software engineers and developers familiar with them. It is hard

to fully utilize the advantages of these new technologies when applying them for the first

time. That is another scenario when prototype is coming into play. The value and

feasibility of the new technology is studied by making a prototype. If it is successful, then

the prototype can be reused for similar tasks.

22

Data structure and algorithm

It is easy to understand why data structures and algorithms are reusable components for

experienced software developers. For a certain class of tasks, a certain class of data

structures and algorithms is better than others. For example, people use an array to do

bubble sort since it is easy to manipulate the swap operation. People use heap sort to sort

big amount of data rather than using bubble sort since heap sort has lower time

complexity. So for a class of similar tasks or functions, taking into account the

restrictions for the implementation, such as time restriction and space restriction, a certain

class of data structures and algorithms may be preferred. These data structures and

algorithms are reusable components.

Software life cycle process

This is always used as an important software development strategy. The development of a

software system always goes through several steps or stages during its life cycle to ensure

the quality of software. Usually a standard procedure is defined. However, depending on

the different natures of software systems, a class of software systems may not have to go

through the same procedure as another class of systems does. Each class of software

systems may come up with its own unique life cycle process. So software life cycle

process can be reused for software systems with similar functionality.

2.5 Technical Issues

Component-based software engineering has changed the software engineering

community dramatically. Although it is not formalized and standardized, people in the

23

industry recognize the value of the component-based approach. More and more

companies have dedicated researchers to study the feasibility of component-based

software engineering within the organization. Before we continue on, we would like to

address some characteristics of component-based software engineering.

Most people are confused by the concept of component. They think components

are only at the coding level which means components are a segment of reusable code.

This idea seems normal but is wrong and may impede further develop of component-

based software engineering. We believe that component-based software engineering is

not restricted just to the implementation level. It actually consists of two levels. One is

high level abstract component technology and the other is implementation level

component technology.

The high level abstract component technology emphasizes the strategy and

methodology of component technology. It takes on the way people analyze, design and

implement software systems. It does not focus on the detail how the components are built

and how they are assembled by the underlying building and assembling technology.

In reality, the high level abstract component technology is trying to answer

questions as follows. How is a system designed at the interface level? Because

components consist of interfaces that are responsible for communication among

components, it is important to design a system in which components are communicating

with each other strictly through interfaces. How to decompose a system so that further

change and updates of its components is most likely to be efficient? How to build a

component that is likely to be reused often and successfully? How to manage the

generality and flexibility of components? What should the system architecture of

24

component-based software engineering be: layered or tiered? These are questions still

under investigation. Some approaches have been given in [2] [17]. The result of research

in this area will dramatically change the way software systems are built and the software

engineers' primary roles and required skills.

The implementation level component technology focuses on how the proposed

high level abstract component technology can be implemented. Predictably, the abstract

component technology will not agree on every issue just like operating systems have their

own belief on which scheduling algorithm is the best. As a result, implementation level

component technology needs to solve technical difficulties and implement what the

abstract component technology proposes. One of the issues for implementation level

component technology to solve is as follows: How should the components be represented

and be located? This is the core issue of the component technology. As in the definition

of a component, there is no strict representation of component. It can be in all kinds of

formats. Then how to represent a component certainly is very important. The

representation also directly leads to the methodology of how to locate a desired

component in component repository. Some methodologies have been proposed such as

information retrieval technology, formal description technology and so on. However most

of them focus on components that are implementation level functions. This kind of

representation ignores the reality that some components are framework, architecture and

even reusable ideas. A component representation framework thus is needed to standardize

the way to describe all kinds of components and facilitate the search for desired

components.

25

Assembly technology is another example of implementation level component

technology. It is far from being well understood. Currently not many technologies

support the idea of component assembly. The most popular one is remote procedure calls

plus dynamic link libraries. Conventionally a segment of code in a program only can call

another segment of code within the same program. This is called process boundary. In

order to let one process utilize the service of another process, or to let processes

communicate with each other, a wide variety of inter-process communication (IPC)

mechanisms has been adopted by modern operating systems, such as files, pipes, sockets,

and shared memory.

Soon after software engineers found out that low level IPC was difficult to

program and error prone, a new technology, remote procedure calls, was introduced. RPC

hides the fact that calls are made across process boundaries and makes it look like the

caller and callee are on the same machine. This made it possible to write a segment of

code somewhere and implement it somewhere else. Thus RPC is a very good candidate

for gluing separate pieces of code together. Despite the convenience of RPC, people

found the procedural nature of it did not work very well for object-oriented approaches.

Thus interface definition languages (IDL) were proposed to eliminate the shortcomings

of RPC. IDL changes the notion of functions to interfaces. Therefore IDL makes the

inter-connection between objects very clear and easy to understand. The support of object

and object interface makes it more suitable than RPC in the component world. In fact, in

the current component technology, software engineers use IDL to bound components and

use objects as components. Although it is not perfect, it is reasonable, since components

can have a lot of forms and object is certainly one of them.

26

The component repository [70] is another core issue for implementation level

component technology. It has been a consensus that without a component repository and

its searching capacity, the component technology would be of no use. The repository is

vital to locate desired and quality components. A detailed study of component repository

is presented in the later chapters. Due to the tradition, some researchers use "component

library" instead of "component repository". We will use the terms "component

repository" and "component library" interchangeably in the rest of this dissertation.

Black box abstraction and white box abstraction is an issue under hot discussion

for component technology. Black box and white box abstraction have been widely

studied in software engineering. For object-oriented technology, black box abstraction for

an object is preferred. Black box abstraction means that only the interface of an object is

available for users. The implementation behind the interface is not visible for outsiders.

Black box abstraction forces data encapsulation and it does not allow users to know

inside details. On the contrary, a white box abstraction makes both the interface and

implementation available for observation. The implementation in a white box abstraction

could be either modifiable or not modifiable. Taking it one step further, some researchers

refer to the white box of which the implementation is available but modification is

prohibited as to glass box. Researchers call those that reveal partial implementation gray

box in the sense that the implementation is not totally unavailable, nor totally available.

In this dissertation, in a black box only the interface is visible, in a white box both

interface and full implementation are available and in a gray box both interface and

partial implementation are available. We do not further distinguish if the revealed

implementation is modifiable or not.

27

Components can be white box, gray box, or black box. Black box is preferred

during object-oriented programming. But in the component technology, it may not be

preferred. Remember that components are built to obtain the maximum generality.

However in the real world, higher generality means harder to fit in to a specific task. A

black box leaves users no chance of studying and understanding the implementation of

the component. Users buy the component and use it as it is. If the component is small, it

is likely to perform its alleged function without problem. But if a component is small, it

reduces little development cost. So customers would rather buy some large scale

components that may take a long time to develop by themselves. Chances are that large

components usually need to contain some special business logic that is unique to the

customers. For example, the transaction systems in all banks may be similar. Most of

processes are the same and can be realized in a component. But each bank has some

unique functions in its transaction systems. When they buy a component for the

transaction system, they are looking for those special functions too. So if a component

only implements the common functions and comes with a black box abstraction, then

there is no chance for the users to feel satisfied. Large components usually have to realize

a large portion of common functions and meanwhile provide a means to accomplish the

special functions. The only way to solve this is gray box abstraction. A component

bought from providers should implement the common functionality. And enough space

should be left for users to modify. The provider has to study the task of the component

carefully so that the component can be built in a way that unique functions can be added

easily. The reality is the larger a component is, the less generality it has. So to

compensate that, gray box is needed and modification may be necessary.

CHAPTER 3

COMPONENT-BASED SOFTWARE DEVELOPMENT

In the previous chapter, we introduced the concept of component technology which has

been considered as the hope for curing the so called "software crisis". Component

technology has so many unique characteristics that in order to fully take advantage of

them a new field needs to be explored in the software engineering territory. People need

to think of software development in a whole new way. The result is component-based

software engineering.

3.1 Introduction

Software development can be viewed as a process of mapping the requirements of

customers into software systems that can run successfully on computers. The user

requirements that can be viewed as the abstract representation of the software system

describe the "what" aspect of the system and the implementation of the system can be

viewed as to describe the "how" aspect of the system [14]. Traditional software

engineering has developed a wide variety of software development process models. The

following is a list of the most popular models.

Linear Sequential Model

LSM is sometimes called the "classic life cycle" or the "waterfall model". It was

proposed by Winston Royce [61]. It usually consists of four steps: requirement analysis,

28

29

design, code generation, and testing. This model usually serves as the basis for other

process models.

Prototyping Model

Prototyping model [8] is a loop that starts from gathering requirements. After that, a

quick prototype design is given to the customers. The quick design focuses on a

representation of those aspects of the software system that will be visible to the

customers. Customers give their feedback on the prototype and a revised version is given

based on the feedback. The process continues until a prototype is finalized. The prototype

then serves as a starting point of the system implementation.

Incremental Model

This model combines elements of the linear sequential model with the iterative

philosophy of the prototyping model [48]. The incremental model applies linear

sequences in a staggered fashion as calendar time progresses. The sequential model is

applied repeatedly and the result of each sequential activity serves as the starting point of

the next sequential activity.

Spiral Model

The spiral model, originally proposed by Boehm [6], is an evolutionary software process

model that couples the iterative nature of prototyping with the controlled and systematic

aspects of the linear sequential model. In the spiral model, a software system is developed

in a series of incremental releases. Unlike the incremental model, in which each

30

sequential activity is equally weighted, during the early iterations of the spiral model, the

incremental release might be a paper model or prototype. During later iterations,

increasingly more complete versions of the engineered system are produced. It provides

the potential for rapid development of incremental versions of the software system.

Each of the above four models has its own strengths and is well recognized by the

software engineering community. However all the process models have defined processes

that were mainly developed based on the procedural nature of software development. It

does not facilitate the idea of reusing existing software components as building blocks to

assemble software systems. Nowadays, component building and assembling technology

is available via CORBA, DOOM, and EJB. In order to best utilize the strength of

component technology, a process model that focuses on facilitating the reuse of existing

software component must be given. In the following section, such a process model will

be proposed.

3.2 Component Software Development Process

When developing a software system, two issues are very important, domain knowledge

and user requirements. A software system works in a certain domain and the

corresponding domain knowledge determines primarily how the software system would

behave. The domain specifies a playground and restrictions for a software system.

Requirements give specifications to the software system as to what functionality users

want within that domain. It lays the objectives and restrictions for the software system.

Domain knowledge and user requirements work together to define the software system.

31

In order to achieve the maximum reuse of components, a thorough study is

needed toward the domain. This process is called domain analysis. Meanwhile, in order

to build the software system from reusable components, requirements also need careful

analyzing to make the reuse of components efficient. The result of domain analysis is a

set of reusable components and the result of requirement analysis is a set of demanded

components. So for component-based software engineering, the development of a

software system includes two activities, domain analysis and requirement analysis. These

two activities are occurring simultaneously.

It is unusual that when a software system in a domain is developed for the first

time, the entire characteristics of the domain are well studied. If a domain is a relatively

new one, every time an application is developed, a part of the domain that is covered by

the application is studied. The results of the development activity, such as design

documents, system architecture, implementation components, can be stored as

components and reused for the future applications. The activity of domain analysis is

continuously undergoing through applications until the domain is thoroughly understood,

whereas the activity of requirement analysis is application wise. Figure 3.1 shows an

outline of the development process of component-based software system. The details of

the box "system assembly" are shown in Figure 3.2.

3.2.1 Domain Engineering

Domain engineering is a new area for software engineering [60] [771 The problem with

current domain engineering research is that there is little awareness or research at the

system development level and negligible work has been done on integrating domain

32

engineering with an overall software system development process. Our approach solves

this problem by integrating domain engineering with application engineering together to

define a component-based software system development process.

Figure 3.1 Component-based software development process model

Domain engineering is usually used interchangeably with domain analysis. In this

dissertation, we distinguish between these two by considering domain analysis as a part

of domain engineering. Domain analysis is defined as follows:

The component-based domain analysis is the identification, analysis, and

specification of common request. The result of component-based domain

analysis should be a set of reusable components. The components that

need to be realized include frameworks, design patterns, design

33

documents, system architectures, functional components, and interface,

etc.

In the definition above, we use the term functional component to denote the

implementation level component that performs a function.

Figure 3.2 Detailed illustration of system assembly

Domain analysis is a complicated, continuous activity. By continuous, we mean

that domain analysis does not stop until the specific domain has been fully explored. It is

not like requirement analysis that aims at one particular application and only exists

during the life span of the system development. The success of domain analysis is based

on the completeness of domain knowledge. Domain knowledge can be obtained from the

following aspects:

34

• Documentation

• Existing applications

• Expert knowledge

• Customer specialty

Documentation

Documentation is the direct way to acquire domain knowledge. Writing documentation is

a good system development practice under any development environment. Ideally enough

documentation should be available when domain analysis starts. Unfortunately, chances

are there is not a lot available. Because at the beginning of domain analysis, the domain is

not fully studied, therefore documentation is not widely available for that domain.

Existing applications

Existing applications are good examples and study cases during the domain analysis.

Documentation sometimes is difficult to understand even if it is well written. Existing

applications give a good study case. An application covers a certain part of the

application domain. By learning the existing application, a part of the domain

characteristics will be explored. Ideally, if we have a wide range of applications that

cover the whole domain, the characteristics of the domain will be fully uncovered.

However, usually domain knowledge is not fully mastered and each time when we are

working on a new application, some new features of the domain will be revealed. That is

why domain analysis is a long-term activity and has to be coupled with requirement

analysis.

35

Expert knowledge

For an analyst, if he or she is not very familiar with the domain, then expert expertise

becomes important. The truth is that for a large domain it is usually hard to grasp all the

domain knowledge. A domain analyst can be fluent in one area of the domain, but it is

hard to be in all areas. When some knowledge is beyond the understanding of the domain

analysts, experts are needed to present the knowledge. One cannot assume analysts can

learn everything by themselves. The expertise from an expert may point out a direct and

shortest path to target. Without it, that knowledge may be obtained with much higher

costs.

User specialty

Users are the ones who use the applications. They may not have the thorough

understanding of the entire knowledge of the domain. However, they are very familiar

with the specific applications. They are very clear about what they expect from the

applications. As we stated before, each application covers part of the domain. Therefore

users usually are experts in the particular area within the domain. Suggestions or

feedback from users can be a very good source for domain knowledge.

After the domain knowledge is achieved, component-based domain analysis

usually consists of the following steps:

• Abstract units from the domain knowledge

• Identify candidate reusable units

• Verify reusable units

36

• Generalize reusable units

• Identify reusable units by name and describe units

The steps of domain analysis are straightforward. Among these, the first step to

abstract units from domain knowledge is the most difficult and the most crucial one for

the success of domain analysis. When a domain analyst is abstracting units, the difficulty

is in direct proportion to the volume of the domain knowledge. The most common way

for domain analysis is to gather existing applications in the domain and abstract the units

based on the applications. This way, it is easy to see clearly what functions this domain

usually performs and what the relationship between these functions is. That is the reason

why it is usually hard for the first project in the domain to develop. The above steps for

domain analysis is continuous and recursive. It gets better and better over the time and

finally reaches a point where the domain has been completely analyzed and all the

possible reusable units are discovered. After that, any new application can easily map

itself into a set of reusable components for development.

Identifying candidates for reusable components is the activity of finding

frequently repeated components. For the applications in the same domain, they usually

have a common set of functions needed to perform. These are the candidates for reusable

implementation level components. They also have a common set of design patterns,

system architecture, frameworks, etc. These are the candidates for describing

components. Verifying reusable components is the activity to choose those most likely to

be reused. Some of the verified reusable component candidates will be implemented by a

domain-wise component development team that belongs to the application domain. Some

37

are left to the future application's develop team. Those being chosen to implement by the

domain component development team usually are general, not likely to change across

applications, highly repeated, and easy to adapt. After verification of the reusable

components, each of them is given a unique name and proper description and passed on

for implementation.

Domain models are the result of domain analysis. They can be drawn after the

reusable components are discovered. A domain model is one level higher than reusable

components. It is the abstraction of relation between components and collection of

components. Some models are highly repeated such as front end GUI, back end server,

data server and data storage. Each of them is a collection of components that are realized

during the domain analysis and relationships among them are also discovered at the same

time.

3.2.2 Application Engineering

Application engineering is the activity undertaken parallelly to that of domain

engineering. Application engineering takes advantage of the results of domain

engineering and also benefits from the completeness of domain engineering. It is easy to

understand that domain engineering benefits application engineering since domain

engineering provides solid background knowledge to application engineering. As we

stated earlier, the domain engineering activity includes collecting existing applications.

After a software system is developed, it becomes an existing application. Therefore it

gives domain engineers another case study to better understand the domain.

38

Gathering requirements is the first step of application engineering. It is a part of

the requirement analysis [18]. Requirements are gathered by system engineers who

contact the users to get the details of what they want from the application. Requirements

may contain every detail of the system if the users or the system engineers have a

thorough understanding or knowledge toward the application. However, this is not

always the case. Users usually only know what their objective is. They often do not have

much domain knowledge. Therefore they cannot give a detailed requirement that can be

mapped to system specification directly. A typical example is a bank that wants to

develop a transaction system. They want the system to have certain functionality without

knowing the details of how the system achieves the goal in the particular domain. System

engineers have more domain knowledge and are able to transform user requirements into

much more detailed requirements for the developers. When help is needed, they resort to

domain engineers.

The commonly used technology during requirement analysis is use case analysis.

Use cases [29] provide a description of how the system will be used. To create use cases,

the analyst should first identify the different types of people or devices that use the

system or application. These people or devices are called actors. Actors represent roles

that people play, like the system operators. Actors actually could be anything that

communicates with the system or application. Note the actors are not the same as users.

Actors play only one role whereas users can play more than one role at the same time.

For example, a system administrator can be the one who updates the hardware of a

system and the one who maintains the system configuration. In this example, there are

two actors, one for updating and one for maintenance, and one user, the system

39

administrator. Usually a system consists of actors of different levels. Primary actors are

those working directly and frequently with the system and secondary actors are those

usually doing supporting work. Use case analysis, like other analysis activities, requires

recursive actions or multiple iterations to finish. Usually the primary actors are identified

during the first iteration and secondary actors are identified during the following

iterations.

When the use cases are identified, the system functions and process flows can be

identified. System specification is achieved based on the use cases. When extracting

system specifications, domain models can be referenced to better and faster achieve the

specifications. During the system design, components are discovered from the system

specification. A lot of technologies can be used to accomplish it. Most 00 technologies

fit very well in this area.

After the requirements are specified by the system engineers, developers take over

the job to develop the desired system. Since the system design is the result of identifying

reusable components, most components needed in the system should be available,

especially for the applications that are constructed in a well-studied domain. Of course

there are still specific components that are unique to this application. For these

components, project developers have to build them specifically. Then those specially

developed components are added to the component collection for the domain. The key to

the success of this stage is the availability of a controlled repository that contains all the

existing components for the domain or several domains. We will study the component

repository in more detail in later chapters. The technologies to glue the components

40

together and to construct systems are beyond the scope of this dissertation. A more

detailed study can be found in [32].

3.3 Team Roles in Component Software Development

A software system or application is developed by a development team. During the

development of a software system, team members need to work on their own part of the

application, help each other, and integrate their work into a complete system. In [27][35],

detailed studies of team roles have been conducted to help the success of software

development. Like traditional software engineering discipline, a good and clear definition

of team roles for component-based software development can help achieve the maximum

usage of team resources. However, the definition of team roles in [27][35] does not apply

very well to component-based software development. New team roles need to be defined

and added to accommodate the unique characteristics of component-based software

development. In this section, we will define the team roles for component-based software

development teams. In the definition, both traditional team roles and new component-

based team roles will be presented to form a complete component-based development

team.

A component-based software development team can be basically divided into

three subteams. The first is the system engineering team, the second is the system

development team and the third is the support team. These three teams work together to

build a software system. The system engineering team is more like a front-end team that

communicates with the end users whereas the development team is the one that works on

the back-end and implements the system. The support team gives technical support to

41

both system engineering team and develop team. In the following subsections, we will

define these three subteams and their unique team roles in detail.

3.3.1 System Engineering Team

The system engineering team works with end users to get their requirement and it also

needs to communicate with domain engineers to get domain knowledge to help the

developers during the development. A good system engineering team should have the

following team members.

Project Sponsor

The project sponsor is the one that brings in the project from the end users. He or she is

responsible for the project. The project sponsor is also responsible for getting enough

resources such as funding and labors to the whole project. Usually the project sponsor

works very closely with the end users and is very familiar with the business that the end

users are in. The project sponsor takes the business from the end users and delivers the

product (software system) to them. He or she should also be holding a certain level

position so that he or she can resolve issues and even conflicts.

Domain Expert

The domain expert is in charge of the domain knowledge of the application. In the system

engineering team, a domain expert should hold enough knowledge of the domain and a

certain degree of the knowledge toward the specific software system. The domain expert

works closely with the domain engineers to get the required domain knowledge. When

42

other team members have questions about the domain knowledge, he or she is the first

contact in that matter.

Project Manager

For each project, there is a designated project manager. He or she coordinates the

members in the system engineering team. The project manager ensures the smooth

development of the software system, and that the product is delivered as agreed between

the project sponsor and end users.

System Engineer

System engineers are working on the details of a project. They should hold the domain

knowledge for the specific application. They write the detailed requirement for system

developers and are responsible for answering questions from developers. They are the

contact points between the system engineering team and the developer team. They also

should be able to understand implementation details to some extent so that they can

correlate business logic with the implementation. This understanding is important for

facilitating future maintenance.

3.3.2 Development Team

The development team implements the software system. A component-based software

development team has roles that can be found in a traditional software development team.

In addition, there are some team roles uniquely belonging to a component-based software

development team.

43

Component System Architect

The component system architect is the most important role in a component-based

software development team. A sound software architecture provides an overall structure

and a set of rules for managing the scale and complexity that is inherent in enterprise

software development. Component-based software development requires a clear

definition of system architecture before the implementation starts. A component system

architect needs to be very knowledgeable in the specific domain. He is responsible for

recognizing frameworks within the component-based software system. He defines the

functionality of each framework and the interoperation among them, and ensures smooth

integration of the frameworks. This is the most important role in the component-based

system development process in the sense that it gives the direction of the development. If

a wrong system architecture is proposed, no matter how good other team members are

working, a failure of the system is inevitable. In order to facilitate reuse, a component

system architect must have good awareness of existing frameworks and keep updated

about the latest development in the domain.

Component Framework Architect

Imagine a component system architect as a master planner for a city's development. He

divides the city into different functional areas, such as finance area, university area, and

sports area. Then the component framework architect can be viewed as the planner for

each of the functional areas. A component framework should accept the plug-in of

components. It facilitates the interoperation of these components and lays restrictions on

their interaction. These restrictions have to be specific and precise enough for

44

components, otherwise even the smallest inconsistency of component interaction can lead

to system failure.

A component framework architect needs a thorough understanding of the existing

frameworks in the domain. This ensures the minimum time to be used during the

framework design. Modifications to the existing framework and creation of new

framework are usually necessary due to the unique requirements of the system. When

these are inevitable, a framework architect has to be careful in the following two issues:

preservation of compatibility with most existing components and preservation of

interoperability with other existing frameworks. A component framework architect also

has to specify very precisely what the framework expects from and provides to a

component. Only this way, developed components can be sure of quality and in working

order when plugged in the framework.

Component Developer

Components are the building blocks of a software system. System architectures and

system frameworks are the blueprint of a system and components are functional blocks to

build the system according to the blueprint. Component developers are those who transfer

the specifications on the blueprint into real components. On this level, component

programming language and programming skill is important. Component development is

not much different from that of traditional software development. Component developers

have to be extremely careful when they analyze the specification. The restrictions laid out

by system framework and architect have to be precisely met. Otherwise the inconsistency

of component interactions can lead to system failure.

45

Component Assembler

Components do not perform any functionality when isolated from other components. For

a component system, all the developed components need to be assembled to form a

complete system. A component assembler takes the frameworks and components and

assembles them together according to the requirement. Component assembler is a unique

team role in component-based software development process.

The distinction between component developer and component assembler is

difficult to maintain sometimes. A component developer may want to adopt ready to use

components in his component as building blocks. In this case, he has to be a component

assembler. Component assembly can be achieved by programming or some automated

assembling tools. Currently, manual assembly such as IDL is the means for most

component systems. Automation tools are not widely available. Java's Swing has some

built in assembler. For example, a text field component can be dropped into a scroll bar

component to form a text field with scroll bar. However this kind of automation tool is

very limited and only good for specific application.

3.3.3 Support Team

The support team helps to ensure that the system engineering team and the development

team have the necessary technical infrastructure and knowledge base to meet their needs.

Most roles in this team are heavily influenced by the unique characteristics of the

component technology.

46

Metrics Expert

A metrics expert is responsible for providing projects with guidance in performance

estimation. He collects the metrics such as function points to estimate the effort being put

in the system and the result out of the effort. This team role adjusts the resources assigned

to each team and tries to maximize the result-effort ratio. It also measures the progress of

adopting component technology and identifies the most effective reuse strategies. A

complete survey of metrics models can be found in [20].

Reuse Expert

A reuse expert possesses certain knowledge about the existing reusable components. He

is responsible for helping customers or developers to find the needed components. This

goal is achieved usually by the utilization of a component library. So a reuse expert can

also be called component librarian. The term component library is the same as component

repository. We will use them interchangeably in the rest of this dissertation. A component

library is where the components are stored permanently and it is open for search. A

detailed study of the component library will be conducted in the later chapters.

Component librarians are responsible for managing component libraries, checking

components in and out of the library and using their insight to the library to help

customers find the most appropriate component for their needs. Not like regular librarians

who do not have to have the expertise or knowledge toward the books in a library, a

component librarian usually needs to know the components in the library to some degree

to better serve the customers. Also because a component library is not a real library but a

47

digital virtual library, the librarians need to have some computer knowledge to operate

the component library.

Tester

Like traditional software development, testing is crucial for the success and quality of

software systems. A component-based system tester needs to know testing strategies like

traditional testers do. They are also facing new challenges from component-based

technology. In addition to testing the functionality of components, their interfaces also

have to be tested to ensure that they meet the requirement and can be reused for further

systems. In order to guarantee the successful integration of components, the interactions

of components should be tested too.

Legacy Expert

The componentization of legacy system is new to the software engineering community.

Legacy systems are those that are old in terms of technology by which they were

implemented but still perform crucial operations in today's business. Such systems are

usually well developed and functionally stable but hard to integrate with newly developed

system when migrating to new technology. Componentization of legacy system is to

wrap legacy systems and make them integratable with other components. The

methodology of componentizing legacy system will be studied in more detail in later

chapters. A legacy expert provides advice on both the suitability of legacy assets for

wrapping and the impact of proposed new components. He should not only hold

48

necessary knowledge of the legacy system but also be exposed to the latest technology to

facilitate componentization.

Source Control Manager

Source code control is very important in traditional software development. It holds true

for the component-based software development too. During the development or

maintenance process, multiple developers could be working on the same component. In

order to synchronize their work, any modification or development has to be put under

control. A source control manager is responsible for the integrity of components: keeping

track of the modification made on components, laying restrictions on the priorities to

modify components, and making sure each developer is aware of the currently

undergoing modifications on the component.

Table 3.1 shows which roles are traditional and which ones are unique to

component-based software development.

3.4 Summary

In this chapter, we have proposed a development model to develop software systems

based on reusable components. This model utilizes the unique characteristics of

component-based technology. A domain-wide analysis and a system-specific analysis are

conducted simultaneously and benefit each other. A definition of team roles for

component-based software development is proposed. Some roles have corresponding

counterpart in a traditional software development team with additional responsibility

49

attached to them. Some roles are unique to a component-based software development

team, such as component assembler. The clear definition of team roles provides a

convenient catalog of different skill sets that apply to different parts of a project. It

ensures the skills of individuals to be used to their maximum and the best possible

software systems being developed by the team.

Table 3.1 Traditional team roles and component-based team roles

Team Role Traditional Component-based

Project Sponsor X X

Domain Expert X

Project Manager X X

System Engineer X X

Component System
Architect

X

Component Framework
Architect

X

Component Developer X

Component Assembler X

Metrics Experts X X

Reuse Expert X

Tester X X

Legacy Expert X

Source Control
Manager

X X

CHAPTER 4

LEGACY SYSTEM COMPONENTIZATION

Component technology is a recent software development technology for the software

engineering community and industry. It has the potential to dramatically reduce the cost

and time period of software development. Increasingly, more and more commercial

enterprises are trying to employ sophisticated component technology such as OMG's

CORBA, Microsoft's DCOM, and Sun's EJB to address key business applications.

Most of these business applications, however, have been implemented for a long

time and are based on then advanced but by now obsolete technologies. These systems

are called legacy systems [75]. Despite the old, outdated technologies, most of the legacy

systems play an important role for their organizations. They are usually the core

applications and have been maintained for a long time. Therefore legacy systems are very

stable and robust in the sense that they are almost bug free and rarely out of service. It

would be ideal if these legacy systems could be substituted by the new systems

implemented using component technology. However, the size and complexity of those

legacy systems prevents them from being replaced or rewritten in a short period of time

and the critical position of those systems does not allow any kind of outage.

Then how can component technology be applied to these legacy systems in a

timely manner? The answer is legacy system componentization. By being

componentized, the legacy systems still provide the stable services that organization

needs, and at the same time they can be treated as components and can be integrated with

other components to compose a new software system which fully adopts the new

software development technologies. Currently, the research of evolving legacy systems is

50

51

conducted at the object-oriented level [45] [57] [71]. It does not facilitate the idea of

adopting component technology. However the results in this research area establish a

very good foundation for the idea of legacy system componentization. The technologies

used to evolve legacy systems are mainly wrapping [16][34][65][78] and extraction

[11][28][43]. Most of the researches only adopt one of the two technologies. In this

chapter, we will study the evolution of legacy system on component level and propose

several hybrid systematic approaches to componentize legacy systems using both

wrapping and extraction.

4.1 Legacy System

We have seen so many advantages of the component technology. It may be a major

breakthrough in the computer technology history. We see many computer-related

businesses going after component and component technology. We see some companies

successfully adopting the technology already. But in the real world, the software industry

does not only have new technologies. Nowadays software engineers and programmers

use object-oriented and component technology to build applications and software

systems. But there are also plenty of software systems developed in the 1960s, 70s, and

80s in the old procedural fashion. They are huge systems fully developed far before the

emerging of the concept of component-based software engineering and even before the

appearance of the object-oriented technology. These systems are called "legacy systems"

in the sense, to some extent, that they are part of the heritage of the old technology. Most

of them reside on mainframes. Despite the long time existence of these systems, they do

not quietly disappear, as people would assume. On the contrary, many of them are still

mission critical applications for the organizations which use them on a daily basis.

52

For those legacy systems, rewriting or redeveloping is obviously not a good

choice. Abrupt abandoning of legacy systems and their instant replacement by something

"new and better" is normally not an option [70]. Think of a legacy transaction system

currently being used by a bank. It is old and it does not adapt easily to the new

technology. But it works fine, rarely or never crashes due to any code problem. It is

impossible to imagine that the executives would tolerate any problem caused by the use

of a newly developed system. This is not saying that the new system must be less robust

or of less quality than the old system. This situation occurs because usually the old

transaction system is big and it would take too many resources and time to start over a

new system. Also it takes a long period to test the new system to assure the quality.

Under current business pressure, which is much more furious than it was 10, 20 or 30

years ago when the legacy system was developed, it is a conservative yet maybe the best

approach for the bank to use the legacy system and gradually improve it instead of

developing a whole new system that adopts the cutting edge technologies to replace the

legacy system.

So how to deal with the legacy systems? Let us examine a transaction system

again. As a legacy system, it may only be accessed by manual log-on and the operators

have to manually interact with the system by sitting in front of a terminal and typing in

command. This scenario is definitely not acceptable for today's high demand market. A

lot of banks have offered online transaction, like Citibank. Customers can pay their bills

online, transfer money between different accounts, and check recent credit card

transactions. This kind of services is not possible if it does not adopt new technology

such as Internet technology and component technology. Of course it is unrealistic for

53

banks to develop a totally new system to provide these functions. Again this is because

the high business pressure does not allow any kind of service shortage. Besides these

services still need to access data sitting on the legacy system. The core operations for the

new system remain the same as those handled by the legacy system. The only difference

is that the new services need to handle a large volume of requests simultaneously from

the Internet. Manual operation does not exist any more. So in order to adopt the

component technology to fulfill the market's new demand while still keeping the legacy

systems in operation to provide stable and secure services, legacy system

componentization is the best approach.

4.2 Componentization

From the component technology point of view, it is possible to componentize a legacy

system by either wrapping it into a big component or decomposing it into several small

and lower-leveled components each of which performs different functions, i.e. extracting

components from a legacy system. The extracted components then can be wrapped, and

reused or assembled with other components to build new systems. In fact as stated on the

workshop on CBSE [9], component technology has to be able to adopt the old legacy

system in its context.

In the following sections, we will discuss the methodologies to componentize

legacy systems and more specifically, we will look into the detail of how to

componentize and integrate legacy systems with Internet applications. Finally a case

study is provided to illustrate the methodologies and detailed techniques presented in this

chapter.

54

4.2.1 Wrapper

The basic strategy to componentize legacy systems is to use wrappers [78]. Due to the

importance of the legacy systems, people sometimes are reluctant to modify the legacy

systems, or even if they do, the modification will be very limited. The legacy system

itself is not able to communicate with other components since it does not use the

component technology and usually does not have a published interface for integration or

assembly. In order to enable its integration, a published interface has to be introduced by

a wrapper that wraps the legacy system and hides their implementation detail. Figure 4.1

illustrates a simple wrapper.

Figure 4.1 Illustration of a simple wrapper

A wrapper has two sets of functionality. One is to provide an interface to the

public. Any system that is interested to integrate the legacy system needs to follow the

definition of the interface. The other functionality of a wrapper is to translate the

incoming message from the published interface to the native format that is

understandable to the legacy system and do the same translation on the response from the

legacy system. A wrapper can be used to hide a legacy system's dependencies and to

55

provide the same functionality as the legacy system does to other components. Wrapping

technology is widely supported by the industry. We will talk about wrapping technology

in more detail later.

4.2.2 Componentization Framework

A legacy system can be reused by other systems by the help of wrappers. But how is the

quality of wrapping to be assured? We propose a methodology to describe the steps to

wrap a legacy system. This methodology also involves extraction technology to find

possible components in the legacy systems. The methodology consists of the following

steps:

• Understand the business activity

• Understand the business logic

• Analyze and decompose the business logic

• Analyze the legacy system and map it with the decomposed business logic

• Decompose the legacy system on the implementation level (option)

• Wrap each unit of the decomposed system or wrap the whole system into a

component

Understand the business activity

This step is to identify the importance of a business activity. Hundreds or even thousands

of legacy systems can be used by an organization. Some of them are big and mission

critical, but not all of them. For those big and important legacy systems, wrapping and

componentization is the way to keep the functionality while enabling them to adopt new

56

technologies. For other less critical ones re-engineering or even rewriting may be the best

way. By rewriting, the new component will strictly follow the definition of component

and will not need wrappers which means less processing time (no overhead for the

wrappers) and more flexibility. One should keep in mind that when performing

componentization, a real component is always preferred. Wrapping is for the systems that

are hard to be rewritten or re-engineered.

Understand the business logic

Business logic is composed of process flows of a business activity. It can be very

complicated in terms of the degrees of process flows and the implementation. A good

understanding of the business logic assures a solid foundation for further analysis. In this

step, people should pay attention to the high-level process flows and do not have to worry

about the implementation detail. A flow chart of the processes is helpful at this point.

Analyze and decompose the business logic

After understanding the business logic, a more careful look has to be taken. The process

flows are further studied with emphasis on functionality. The activity of decomposing the

business logic is taking place in this step. When performing decomposing, it should be

kept in mind that generality is highly preferred. The business logic should be divided into

units in such a way that the unit has a general functionality and it has a good chance of

being reused by other systems. Minimizing the relation between units and maximizing

independence of each unit is another point to be addressed. The closer the relation

57

between two units, the more likely they can be combined into one unit. This step is the

key toward the success of wrapping components.

Analyze the legacy system and map it with the decomposed business logic

This is the most difficult step since the implementation needs to be touched and examined

carefully. In the above steps, a high level component picture is drawn. However because

of the procedural nature of the implementation of the legacy system, the high level

decomposition of business logic is not guaranteed to be mapped or reflected in the

implementation. This problem can be minimized if the system is developed strictly

according to the object-oriented model. Unfortunately that is not the case for most legacy

systems that were developed before object-oriented technology was available. So careful

assessment should be done on the code level to see if it is possible to map the

decomposition of the business logic to the implementation. If the mapping is successful,

the implementation is decomposed into different units in the same way as the business

logic is divided. If it is not, a compromise should be reached between the business logic

and the implementation. The previous steps may have to be revisited to have another

decomposition on the business logic that is closer to the implementation. There is no pre-

determined method we can use in this step. However the componentization skill, domain

knowledge and insight to the implementation are critical to the success.

Decompose the legacy system on the implementation level (option)

Assume we have finished all the above steps and found a good decomposition both on the

business logic level and implementation level and they match each other very well. Now

58

the implementation decomposition steps into action. Some object-oriented technologies

[11][53][66] can be used in this step. One can imagine that the approaches of

decomposing and the amount of work depend on how and how well the system is

implemented. If it follows the object-oriented model, not much work should be

necessary. Another possible and more likely scenario is that no compromise is found

between the business logic and implementation. The system can not be decomposed and

remains monolithic. If that is the case, we do not need to do anything here. Pass the

system on to the next step. The goal of this step is to decompose the implementation. So a

thorough understanding toward the implementation is critical.

Wrap each unit of the decomposed system into a component or wrap the whole system

into a component

The final step of our methodology is to wrap the decomposed units or the whole legacy

system if it can not be decomposed. Basically what is needed in this step is to understand

how each unit works as a stand-alone component. A wrapper is individually developed

dependent on the characteristic of each unit or the unit is totally rewritten to become a

real component. Several technologies can be used in this step [39][52]. A more detailed

study will be conducted in the next section.

The above componentization framework answers a general question of how to

componentize a legacy system. However detailed technologies may still have to be

developed in each step of the framework. Hands-on experience plays a very important

role most of the time.

59

4.3 Integration with Internet Application

The ultimate goal of legacy system componentization is to make it integratable in new

software systems that adopt component technology. The most compelling force to move

software systems to component-based area comes from the business reality. Internet

technology has changed today's business models. Conventionally when customers need

business service, personal presence to the service agent is necessary. For example, go to a

bank to talk to an assistant about a home loan. With the help of Internet technology, most

of the service can be obtained from the Internet and without any face-to-face interaction.

As a result, development of new enterprise-wide Internet applications has been spurred in

all aspects of business. Most of them link to the existing legacy systems. In this case,

legacy system componentization could be viewed as preparation for the integration of the

system to Internet applications. In the above section, we have presented a general

framework of how to componentize legacy systems. In this section, we view the

integration of legacy system to Internet applications as a special case for componentizing

legacy system in the sense that the objective of componentization is limited to only the

integration with Internet application. For this kind of legacy systems, we present a

specific methodology that takes advantage of the characteristic of this special case.

4.3.1 Methodology

Time pressure comes as the most powerful influence on the decision of how to

componentize legacy systems. The methodology we presented in the preceding section

can be viewed as serving for a long term and ultimate goal. The result of applying it to

the legacy system is the best possible componentization. Systems being reformed in this

60

way have achieved their maximum reusability for future applications. However this

methodology can take a long time since a thorough understanding of the system is needed

and some steps may have to be revisited several times to get the ultimate resolution. No

quick work around is allowed in the methodology. This methodology from a long-term

point of view is good but may not be suited for those systems that need a quick

integration with Internet applications.

In reality, a lot of Internet applications need to integrate legacy systems to provide

online services, such as online shopping and online trading. For this kind of legacy

systems, we present another methodology that may not be as good as the previous one in

terms of the thoroughness of componentization of the legacy system. However it gives a

quick solution to answer the demand of today's high-pressure business reality. This

methodology consists of the following steps:

• Examine the implementation

• Wrap the system

• Integrate with Internet application

Examine the implementation

For the quick solution, we are not as concerned about the business logic as we were in the

previous methodology. The reason is simple: we do not care to decompose the system if

we do not need to. As a legacy system, it is usually big and provides a variety of services

in one system. We may only need part of the functionality provided by the legacy system

for the new system. It is a better solution if we can decompose the legacy system and use

the wrapped or reengineered components from the legacy system to build our new

61

application. In that way, we do not have any unnecessary implementation. However, this

decomposition may be time consuming and needs a clear understanding of the whole

system which is usually a problem if the system was developed a long time ago and

people who contributed have left the organization. The quick solution therefore is to

adopt the whole legacy system which provides a super-set of the services needed in the

new system. Then wrap the whole system as a component and integrate it with the

Internet application, provided we have found the system we need. The implementation

needs careful examination. The input and output of the implementation is the most

interesting part to us. Depending on how the system gets requests and how it responds, a

variety of wrapping technologies is available. Contrary to the previous methodology we

are not interested in implementation detail of the business logic. The I/O part of the

implementation instead needs to be examined carefully.

Wrap the system

After careful assessment of the implementation, wrapping technology comes into play.

Depending on the technology that was adopted to implement the legacy system, different

wrapping technology will be used. Some wrapping technology will be presented in the

next section.

Integrate with Internet application

The componentized legacy system then is to be integrated with the Internet application.

In order to have a smooth integration, the developers need to study the interface of legacy

62

systems, and different integration strategies are available depending on the wrapping

technology. In the following section we will discuss the integration strategy in detail.

The above componentization methodology is considerable simpler than the

previous one. It thus provides a quick solution when it is urgently needed. The limitation

is obvious, though: a lot of unnecessary implementation is kept in the new system and it

does not facilitate any further integration with other applications. So ideally, this

methodology is only applied for emergency situations and a thorough componentization

of the legacy system is always favorable. A more practical approach is to quickly

componentize a legacy system to provide services, and meanwhile conduct a thorough

componentization on the system and replace the fast, componentized system at last.

4.3.2 Wrapping Techniques

In order to give an appropriate wrapper, we need to revisit the evolution of software

development. The wrapping techniques presented in this section are based on the

development technology of the legacy systems. During the first stage, most of the legacy

systems were designed and developed on mainframes. At that time, users were typically

provided interfaces via 3270 character-based terminals. Operators interacted with

computer system via the terminals. This period of software development is referred to as

3270 era. Software systems developed in this period were mainly monolithic.

After that, software engineers used the "client/server" model to separate the

functionality of software systems. The client/server model maximizes throughput and

improves the economics of delivery because computing power is distributed among

63

mainframe computers, and workstations. In the client/server model, the client

development environment provides end-user interface development, logic, desktop

integration, and server subscription tools. This environment yields deployable clients to

provide local intelligence and data and access to local data servers. Servers are typically

responsible for the primary logic operations, access to enterprise data, enterprise

modeling, and reasoning components of applications. The separation of client and server

makes it possible for both to only concentrate on its own operation and development

environment. This period is referred to as client/server era.

During this period, the main communication mechanisms between client and

server are sockets for applications running across machines, and inter-process

communication (IPC) mechanisms, like Unix pipes or message queues, for applications

running on the same machine. Two kinds of clients exist in this era, "fat clients" and

"thin clients". Fat clients are those that have most of the process or application done on

the client side. They send a request to the server only when some data have to be fetched

from the server or some key process has to be done on server. They are called "fat"

because they handle most of the expensive operations themselves. Thin clients are those

that only request service from server. The client itself usually only collects the required

data, and sends it to the server. Some display the response from server. Most GUI

applications fall in this category. In the client/server era client and server are developed

on all kinds of platforms. The trouble is that for each server different clients have to be

developed depending on the client's working platform.

Now the network technologies have brought us the distributed and heterogeneous

computing environment [12]. An application no longer has to be on a single machine. It

64

can be distributed over different machines. Those machines are working together to

provide services over a network. As a part of the network technology, Internet technology

is the one people are very familiar with. Users access the Internet from a wide variety of

machines. The standard user interface is an Internet browser. Almost all of the

applications are running on the server side. Nowadays companies are providing

automated service by publishing their service web site. Internet users can access these

services by linking to the published service site. To keep their services competitive,

companies have to provide online services. This period is referred to as Internet era.

These online service applications are defined as Internet applications.

Legacy systems are usually referred to as those developed during the first two

periods. Among these two, client/server systems are relatively easier to be wrapped. For

3270 applications, screen scraping is a mature technology for wrapping. Remember a

3270 system uses a 3270 terminal to communicate with the outside world. The idea

behind screen scraping is to use a 3270 terminal emulator and fools the legacy system to

think it is dealing with a 3270 terminal now. The emulator gets input or request from the

user or other applications, translates it into the format of a 3270 terminal and sends it to

the legacy system. The legacy system does not know the request is from an emulator. It

runs the input and gives the response as it usually does. The emulator gets the response,

translates it back and sends it to the calling application or user. Since the 3270 system is

very old, in most cases companies that have them have already developed the emulator.

The only problem is that usually this emulator appears in the form of a function library.

So this kind of emulator does not satisfy the requirement of component interface very

well. The wrapper of a legacy system should be in component-oriented fashion, not in

65

procedural fashion that the function library of emulator always gives. If the 3270 wrapper

is in procedural fashion, then either a component based 3270 wrapper or a component-

oriented wrapper around the current procedural wrapper should be developed.

Some of the client/server applications are actually based on 3270 systems. The

server side is a 3270 system wrapped by a 3270 emulator. We do not treat it as 3270

system since the 3270 characteristic is hidden and transparent to the client. Basically the

strategy to wrap a client/server system is to adopt component middleware. No matter

what kind of communication mechanism the old system uses, it consists always of 4

parts. A client sends a request, the server receives it, the server sends the response back,

and the client receives it. This scenario can be mapped into component middleware, such

as CORBA, DCOM, and EJB, which provides exactly the same service. The interface

defined on the client and server needs to be published to the other side. Note that here we

actually wrap the client/server system into two components, the client component and the

server component. Each has it own interface that can be reached through component

middleware. This way, the communication between a client and a server is hidden by

component middleware. An alternative to this approach is to explicitly use sockets. The

interface can remain the same or be slightly changed to adapt to the characteristics of

socket communication. Most component middleware that communicates between

different machines is indeed based on socket communication. So they should not have a

lot of difference. By using middleware, developers do not have to worry about the lower

level implementation. However the advantage of sockets over component middleware is

that it can be used to communicate through firewalls. Usually middleware can not talk

66

through firewalls. So if a server has to be reached on the other side of the firewall, using

sockets is a solution.

Another way to wrap the client/server application is to use synchronized

messaging middleware, such as BEA's Tuxedo [25], IBM's MQSeries [23], and Sun's

Java Messaging Service [30]. An asynchronized messaging middleware provides a

message pipe between any two computing environments. It ensures the delivery of each

message and retains the messages in a persistent store until they are delivered. The

communication between client and server then can be realized by the adoption of

messaging middleware. The communication flow is as follows. A client puts its request

in the messaging queue. A server retrieves the request from the queue then processes it.

The result of the server's operation is put back in the queue. The client gets the response

from the queue. The advantage is the persistent storage provided by the messaging

service. When all servers are busy, the request can be kept in the queue until a server has

time to process it. Another advantage is the relative ease to wrap the application. In the

previous wrapping strategy, in order to use the component middleware, the input/output

of the implementation may have to be changed dramatically to meet the requirement of

component-oriented interface. With the messaging middleware, the input/output may

only have to be redirected to the storage of the messaging queue. Therefore it provides a

relatively easy way to wrap the application.

4.3.3 Integration

Internet applications are the applications that provide services to the Internet users. Some

functionality provided by an Internet application already exists. It is just changed to

67

Internet-based. To provide that existing functionality, the corresponding system can be

wrapped and integrated with an Internet application. The interface of Internet applications

needs to talk to the wrapped interface of the legacy system. In the rest of this section, we

will propose three different ways to integrate componentized legacy systems to Internet

applications. Figure 4.2 shows a typical integration of a wrapped legacy system and a

wrapped Internet application.

Figure 4.2 Typical integration of legacy systems and Internet applications

Interface (I) denotes the interface for the Internet application and interface (L)

denotes the interface for the legacy system. In this configuration, a client sends a request

through World Wide Web. The Internet application gets the request and processes it.

When service is needed from the legacy system, the Internet application sends the request

to the legacy system through its wrapper. At this point, the wrapper of the Internet

application talks to the wrapper of the legacy system. The legacy system gets the request,

provides the service and gives the response back. Both the Internet application and the

legacy system have their own wrapper. These two wrappers establish, perform, and

68

commit the communication. The wrapper for the Internet application is not mandatory if

the Internet application fully adopts component technology. There are two alternatives to

this model. The first one is shown in Figure 4.3 and the second in Figure 4.4. Again the

wrappers for Internet applications are not mandatory in these two alternatives.

Figure 4.3 Internet application with two wrappers

Figure 4.4 Legacy system with two wrappers

In Figure 4.3, the wrappers are both on the Internet application. This is the

situation when a quick work is urgently needed. The legacy system may be so

complicated that a wrapper of good quality for the system can not be built in time. That

69

way, we write a specific wrapper for the legacy system. This wrapper only wraps part of

the services the legacy system provides and only can be used by the particular Internet

application, so it is smaller than a general-purpose wrapper and can be built much faster.

This way, we sacrifice generality for the time pressure. This model is also good for the

situation when the legacy system may not have many Internet applications to be

integrated with. Then a specific wrapper may be a better choice than a general one.

However it is obvious that this is a solution far from perfect or even good. Since if the

legacy system does not have its own wrapper, each Internet application needs to develop

its own wrapper for the legacy system. It may be a shortcut for some applications. But

from a long-term point of view, time spent on developing individual wrappers will

definitely far exceed that for developing a general wrapper for the legacy system. So this

is a model for temporary use.

Figure 4.4 shows both wrappers on top of the legacy system. This can be done by

defining the wrapper for the Internet application in such a way that it defines an object for

each of the business services provided by the legacy system. This wrapper is more

preferable than the separate wrappers in the sense that it provides a higher level and more

abstract object-oriented interface. This high level object-oriented feature of the wrapper

can be fully utilized by the newest component integration technology like CORBA, EJB,

and DCOM. The Internet application does not have to develop its own wrapper for the

legacy system's interface. It can directly invoke the services of the legacy systems by

calling the corresponding object interface through component middleware, such as

CORBA, EJB or DCOM. Internet application developers would definitely like this

model. However the demand of resources needed to put into building such a wrapper and

70

the technical difficulty may be high and deter some organizations. The payoff will be

high though, after the wrapper is built.

4.4 Case Study

In this section, we will give an example of how to apply the above framework,

methodology and technology. The BPP system is a legacy system in a big

telecommunication company T. The BPP system provides the service to connect Ti

cables between two offices within the United States. The network of T 1 s can be

considered as a graph. Each office is a node on the graph and each Ti between two

offices is an edge between two nodes. Before the BPP system was built, the process of

locating T 1 s were done manually by operators. Sales people got user requests and passed

them to the operators. Operators used 3270 terminals to interact with a back end

centralized processing system, denoted M to get necessary information. There were

several hundreds of screens each of which had a specific purpose and returned a certain

set of information. Based on the information the operator got from the terminal, he or she

could determine how to construct the T 1 s between two offices so that it cost the least.

Figure 4.5 shows the process flow.

Figure 4.5 Processing with 3270 terminals

71

The BPP system uses screen scraping to simulate the 3270 terminals. It provides a

user interface GUI to the operators. The operator only needs to input the necessary data

gathered from users. The BPP system uses screen scraping technology to talk to the back

end processing system. Based on the feedback from M and the rules to construct the T 1 s,

BPP can achieve the same result without any user interaction. By doing this, BPP saves a

lot of labor cost by automating most of the work. This is the first stage of evolution of the

BPP system. Figure 4.6 shows the system configuration.

Figure 4.6 Wrapping BPP system by screen scraping

For the second stage, the GUI was separated from the BPP system. This was to

make the GUI more portable and make the BPP system more accessible. GUI and the

BPP system constitute a client/server architecture. The communication between these two

was realized by socket. Figure 4.7 shows the system configuration.

Figure 4.7 Decoupling GUI and BPP system by socket

72

For the third stage, the GUI needed to become web-based so that users could

access the GUI from Internet and local installation and maintenance of the GUI could be

avoided. Besides this, potential new subsystems may need the service from BPP system.

These new subsystems could be built by component technology and be viewed as Internet

application. Due to the time pressure, configuration shown in Figure 4.3 was adopted.

Each Internet application built a dedicated legacy system interface in order to talk to the

BPP system. Figure 4.8 shows the system configuration.

Figure 4.8 BPP system integrated with Internet application

The fourth stage of the evolution of the BPP system is currently undergoing.

There are two major objectives for this stage: extracting reusable components from the

BPP system and build a component-oriented interface for the BPP system. By

decomposing and extracting reusable components, the functionality of the BPP system is

easier to be adopted by new systems. By building a component-oriented interface, new

Internet applications or other applications do not need to develop specific interfaces for

the BPP system anymore. Figure 4.9 shows how the new BPP system will look.

73

Figure 4.9 The BPP system is decomposed into components 1 to N.
These components can be reused by new component-based systems. An
object-oriented wrapper is used by all Internet applications.

• 4.5 Summary

In this chapter, we presented a framework of legacy system componentization. We also

presented a specific methodology of componentizing legacy systems and integrating them

with Internet applications. Although the latter seems a special case of componentizing

legacy system, it is indeed the most prevailing and compelling force to move legacy

74

systems into component-based systems in today's business. The framework and

methodologies proposed in this section are high level systematic guidance for addressing

the issue of component building base on existing legacy system. A case study was also

provided to illustrate the proposed framework and methodologies.

CHAPTER 5

COMPONENT REPRESENTATION

5.1 Introduction

In "Architectural mismatch: why reuse is so hard" [22], the authors raise a question about

why the systematic construction of large-scale software applications from existing parts

remains an elusive goal. Their answer is "some of the blame can be rightfully placed on

the lack of pieces to build on or the inability to locate the desired pieces when they do

exist."

We share the same opinion with them. The definition of component states that

components are units of deployment. So one of the reasons for their existence is to allow

reusability and integration with other components to produce final products. Imagine we

have a mature component-based technology to build software systems by assembling

software components, but do not have a component market. What are the consequences?

The component-based technology is of no use. We can build systems but we can not find

desired components: the building blocks. We end up implementing the components

ourselves, which means we are again building our system from scratch not from reusable

components. So we strongly believe that the availability of a component market

determines whether or not component-based technology will succeed. As a matter of fact,

we believe that software component reuse must be supported by an environment that

encompasses the following elements:

• a component market that stores, and advertises software components and can be

accessed to buy software components

75

76

• a specification management system that stores the specification of components and

the component reference to the physical location or physical copy of components

• a search tool that locates the component fitting the user's requirement the best

• a retrieving tool that retrieves the desired component from the component market

The above elements imply two open problems for researchers: distribution and

retrieval. After a component is developed and fully tested, the manufacturer needs to put

it on the market. This activity is distribution. From the mature engineering principles, we

know the most important thing in marketing is how to precisely specify the product.

These specifications are then organized into catalogs. However, for the software

engineering community it is not clear how to specify a software component. Retrieval is

the opposite activity of distribution. Suppose we have a software component market

already. We have catalogs of components at hand, now the question is how to find the

software component that is the most suited for a user's requirements. This is a question of

how to match information from a catalog to a user's criteria. Again in this activity,

specification of components plays an important role. Let us first examine how CORBA,

the currently leading component-based technology, deals with the issue of distribution

and retrieval.

In CORBA [54], there are two services, naming and trading. The naming service

works in the following way. As soon as a client connects to the ORB, it invokes a

standard call to retrieve the object reference for the naming service, because from that it

can get references to objects to do anything else that is available on the system. But this

retrieval activity is far from sufficient. You can associate a name, or a hierarchy of name,

77

with an object reference, but you cannot store extra information such as syntax,

specification for what the object does, how much it costs to run, etc. A customer needs to

know in advance what the objects do and which one he likes before he uses the naming

service. In order to store information associated with objects, CORBA provides another

service called trader.

A trader is like an electronic combination of a mail order catalog and the yellow

pages, where you can look up a service you want, from every provider available. When

you find one you like, the trader gives you the object reference. It is like a yellow pages.

You can find something you want, but do not have to know the exact information about

it. Yellow pages group similar information together. You use common sense or your own

criteria to find out which particular item suits you the best. The same thing happens with

the trading service. Each object will register various pieces of information about what it

does, how and where it does it, how much it costs, where to pick up output, and so on,

termed "property list". There is no official property list standardized by ISO. It is

reasonable since different trading domains have different properties, and the expertise to

draw up the list lives in the domains. However consensus is still needed on the property

list within one domain, otherwise programmers won't know what to specify in their query

to retrieve the desired component.

The "property list" we believe is dependent on the domain. It holds true for the

mature engineering areas. For example the specification for car products is definitely not

the same as that for electronic products. Even in the car product industry, the

specification for air filter, for instance, is different from that for oil filter. People tend to

think software development as one domain, but we believe that with the fast growth of

78

the usage of software systems in different areas, the software development will be

divided into different domains. Different software development strategies will be applied

on software systems depending on the domain the software system is in. Possible

domains include business applications, scientific applications, operating system

applications and so on. The OMG Domain Technology Committee is organizing "domain

task forces" to oversee the standardization of domain specification [70]. Currently active

task forces are focusing on:

• Business objects: common business object, business object facility

• Manufacturing: high-level requirements, product data management

• Electronic commerce: electronic payment facility, asset and content management

• Telecommunications: control and management of audio/video streams

• Financial: currency, insurance

• Medical: patient identification services, healthcare lexicon service

The future "property list", we believe, relies heavily on the domain of the

application and differs from domain to domain. OMG does not specify how the trading

service should be implemented. The detail is left to the CORBA vendors. No matter how

implemented, the trading services from different vendors should have a similar interface,

such as a trading browser to enable user to browse the component repository, to users.

In this chapter, we will study the open problem of component distribution. The

core issue behind this problem is how to represent components. We will propose a

component representation framework.

79

5.2 Related Work

Let us go back to the original question: how is a software component to be distributed

and retrieved? The core issue behind this question is the component representation

schema. According to the component representation schema, components can be

abstracted and distributed into persistent storage, and according to it, components can be

retrieved from the storage.

As mentioned above, no commonly agreed representation has yet been presented.

Ideally, the representation should contain what Tracz [73] has called the 3C model —

concept, content, and context. The concept of a software component is "a description of

what the component does". This is usually represented by textual description and

published interface. The content of a component should be how it is implemented. This

would be a highlight of the realization of the software component. Usually casual users

do not care about this part, but for software engineers who may be responsible for

customizing the component, it should be made accessible. The context places a

component within its domain of applicability. This specifies the environment under

which the component performs its functionality correctly. To describe a component

accurately, concept, content and context have to be translated into a concrete

specification schema.

For the past decade, a lot of effort has been put into the representation of

components. Methods have proliferated in recent years. Currently there are four major

categories of methods to represent components. These are the library science approach

[58][59][72], the AI-based approach [47] [551168], the formal method approach

[31][50][80], and the hypertext approach [40].

80

Library science approach

The library science approach adopts methods originally developed for repository

information systems. The majority of this kind of methods falls into three categories:

enumerated representation, facet representation, and free text indexing.

In enumerative methods, a subject area is broken into mutually exclusive, usually

hierarchical, classes. The well-known example is the Dewey Decimal System [15].

Figure 5.1 shows an example of a scheme for describing software tools.

Figure 5.1 Illustration of enumerative method describing software tools

The advantage of the enumerative method is that its highly structured

representation makes it easy to understand and use for users. Besides the hierarchical

structure helps users to understand the relationship among represented objects. It is also

easy for users to browse the structure to find the components they are interested. The

81

disadvantage is the difficulty to construct the hierarchical structure. Thorough domain

knowledge and complete domain analysis is needed to build the structure since it has to

be broken into mutually exclusive categories. Even worse, there may be instances that do

not fit in only one category, but equally well into several. Another disadvantage of the

enumerative method is that it is not easy to maintain. It is hard to add, delete, restructure

and store on persistent storage. When a new component is added, if it does not fall into

any existing class, then the whole enumerative scheme has to be redefined to

accommodate the new component. IBM Share System [58] is one of the first enumerated

component repository systems.

In a faceted representation, a subject area is analyzed into basic terms that are

organized as facets. A facet list is used to describe a component. Each facet in the list

describes one characteristic of the represented component. It may have one or multiple

values associated with it. Table 5.1 shows the faceted expression for describing the same

software tools in Figure 5.1, plus a new class of software tools that runs on LINUX

operating system.

A facet representation does not explicitly state the relationship between

components. However, a facet list is relatively easy to maintain by adding, deleting or

changing the facets in the facet list and facet values in each facet. As we can see from

Table 5.1, the new class of software tools can be added by adding a new facet value

"LINUX" to the facet "platform". The facet representation was first studied by Prieto-

Diaz when he was at GTE Laboratories [59].

Free text indexing extracts frequently used words to index components. When a

description of a component is given, free text indexing tries to find the components that

82

contain the words appeared in the description with high frequency. In their system [19],

Frakes and Nejmeh extracted descriptive terms from comments in C programs to

represent components in the C language. The problem with this method is the availability

and accuracy of comments in the programs. So the resulting descriptive terms may not

characterize the components very well.

Table 5.1 Illustration of faceted method

class platform object operation name

software UNIX directory create mkdir

software UNIX directory create In

software UNIX directory destroy rmdir

software UNIX file create/modify touch

software UNIX file create/modify vi

software UNIX file destroy rm

software DOS directory create and

software DOS directory destroy deltree

software DOS directory destroy rd

software DOS file create/modify edit

software DOS file destroy del

software LINUX directory create mkdir

software LINUX directory create In

software LINUX directory destroy rmdir

software LINUX file create/modify touch

software LINUX file create/modify vi

software LINUX file destroy rm

83

AI-based approach

AI-based approaches [47][55][68] use knowledge representation methods developed in

the area of Artificial Intelligence to represent components. The goal is to give semantic

meaning to the representation so that it increases the accuracy during the search of

components. Among these, the semantic net is the most widely used one. In a semantic

net, similar components are grouped together to form a directed graph. The nodes

represent components and the edges specify the relationships between components. The

advantage of this approach is the retrieval accuracy. The problem with this approach is

the difficulty of getting enough knowledge about a domain. The semantic net can also be

computationally expensive due to the graph nature of semantic net. Therefore poor

response times are one of the major problems with this approach.

Formal method approach

The formal method approach [31][50] [80] is relatively new in this area. Researchers are

trying to use formal methods to describe a component. Signature, pre-state and post-state

of a function are often used to specify functions. While theoretically sound, the problem

with this approach is substantial. It only focuses on the implementation level components.

The design level components, such as design patterns, frameworks, can not be

represented by formal methods. As we stated in the definition of components, this kind of

components is certainly very important to the component-based technology. Another

problem with this approach is the difficulty in transforming a retrieval query into a formal

specification. Users need to have knowledge of formal methods to be successful in using

this approach.

84

Hypertext approach

The last approach is the hypertext approach [40]. In this approach, a component is

described by a set of features. For each feature, there may be a link to other related

components. The good side is the ease of browsing the whole storage. The bad side is the

difficulty to locate components. If you are looking for a component, you may follow the

links to get it. But chances are, unless you are very clear about what you are looking for,

you get the wrong links most of the time and it takes substantially longer than you expect

to finish the search. This especially holds true when searching in a large amount of

components.

5.3 Component Representation Framework

Among the above four component representation categories, the library science approach

is the most flexible one and gains most of the research attention these days. We choose

the facet representation as the basis for our component representation framework. The

reasons are as follows: components are not just program segments in today's component

industry. The formal method approach, which is suitable only for implementation level

components, then is ruled out; Although AI-based approaches may perform well for a

small component repository, the time complexity of them hinders their wide utilization;

Difficulties of finding components make the hypertext approach impractical; The success

of free indexing depends heavily on the availability of high quality descriptive terms of a

component, which is a rare case in the real world. So the free indexing method is out of

consideration.

85

We observe two important requirements of component representation:

expandability and easy maintenance. In reality, a component repository could have tens

or hundreds of new components added in every day. Outdated components are replaced

by newly developed, more full-fledged components. Among the facet representation and

enumerative representation, the former works better than the latter with respect to these

two characteristics. For the facet representation, expandability and maintenance can be

achieved by updating the underlying facet list and terms associated with it. For

enumerative representation, a careful study has to be made on the new component and if

the new component has functionality crossing the branches of the hierarchical structure,

restructuring may be necessary. This operation is expensive and makes enumerative

representation less expandable than facet representation. One question with the facet

representation, though, is that it seems not to contain enough semantic information. We

believe that the facet representation is sufficient for representing components, based on

the following observation: in mature engineering disciplines, component information is

clearly classified and listed in catalogs. For each type of components, a unique set of

information items is used to describe the component. This does not cause any problems in

practice. We argue that the future mature component-based software engineering will be

going in a similar direction. Like components for other engineering disciplines, software

components have common attributes shared by each component and unique attribute to

distinguish themselves from others. These attributes make up the facet list for the

components.

Based on the above observation, we propose a framework to represent

components by adopting double facet lists. One facet list is used to represent the common

86

attributes and the other facet list to describe the unique attributes. The framework is

shown as follows.

Component representation framework

Component

Universal Identifier: string

Local Identifier: string

Originator Organization: string

Domain: string

Type: string

Interface: parameter list

Return Type: string

Exception List: list

Location: string

Description: facet list

This representation framework is a facet list. Each facet represents one common

characteristic shared by all components. There are single or multiple values associated

with each facet. One facet in the facet list, namely description, is a facet list itself. This

facet list has facets that uniquely belong to specific components depending on the domain

the component is in. Below is a more detailed explanation of the component

representation framework.

87

Universal Identifier

This facet is used to identify components universally. The value for this facet has to be

universally unique, like IP addresses. The scheme to determine universal identifiers

should be managed by a centralized organization.

Local Identifier

This facet helps to identify local components. The value is locally unique. It will be

assigned by the local organization, typically the developer of the component, following

some naming convention. The local identifiers can also be a subset of the global

identifiers. If this component will be available externally, a universal identifier is also

needed.

Originator Organization

This facet indicates who is the originator of the described component. It has an URL-like

format, xxx.yyy.zzz. The last field is the country code, e.g. us, de, jp, cn. The second last

field denotes the organization's nature, i.e. a commercial company, an educational

institution or a government organization. Values could be edu, org, com. The third last

one is the abbreviation of the organization's name, such as att for AT&T, njit for New

Jersey Institute of Technology. It is assigned like the way a URL is assigned. Any other

field is optional and is controlled by the organization's local authority. Usually it can be

used to indicate which group in the organization is responsible for the component. Let us

take a look at an example. "Originator organization: bpp.att.com.us " means the

component is created by the group named bpp at AT&T that is located in the United

States. Note for international companies like AT&T, IBM... the location is not restricted

88

to one country. So bpp.att.com.cn and bpp.att.com.jp are also possible. It means the bpp

group is in the China branch of AT&T and Japan branch, respectively.

Domain

This facet specifies in which application domain the component is located. Possible

values could be "finance", "tele-communication", "education", "medical", and so on.

This facet is used to distinguish similar components in different domains. For example,

brakes can be used on cars and planes. They have the same name and same function, but

are not in the same application domain.

Type

Type is used to distinguish a component from other components within the same domain

by its functionality. The value could be "design pattern", "framework", "stack", "queue"

and so on.

Interface

This facet specifies how to interact with the component. For an implementation level

component, this is where the published interface is stored. The parameters passed to the

interface are specified here. For a design level component it could be a command used to

access the content of the component. Users who know what the interface of a desired

component is can use this field to find the component. It is also called signature of a

component. Note the term signature is used with different meanings in different contexts.

Sometimes it is also a subset of the property list that describes the component sufficiently

enough to distinguish it.

89

Return Type

The return type specifies what the system will get after the component finishes its

operation. It is used together with the interface of a component to specify the action of a

component. These two facets in the framework are important during the composition of

components.

Exception List

The exception list is for implementation level components only. The exception list stores

all the possible exceptions a component could encounter during execution. The

component may throw an exception to alarm the system when any exception in the

exception list occurs. Recall that in the formal methods approach, usually precondition

and postcondition must be specified to guarantee the success of an operation. Some

researchers claim that precondition and postcondition [50] need to be considered in the

representation of a component. We argue that precondition and postcondition are usually

only good for describing functional routines. It is useful to ensure the correctness of the

execution of a function or method. However a component exists in a much broader

context and precondition and postcondition usually is not enough to describe the behavior

of a component. Besides, as the complexity of a component grows, the precondition

would be very complicated and difficult to be specified in the representation. We believe

the component itself should be able to detect any exception to the precondition and throw

the exception to alarm the system. So we count more on the exception list to ensure the

correctness of execution of a component than on the precondition and postcondition

checking.

90

Location

Location specifies where a component is. When a customer finds a useful component, he

or she uses this facet to find the location of the component. Since distributed systems are

more and more popular in the computer industry, we believe the component repository

does not have to be centralized. It could distribute itself across different locations for

better services. The component repository could be a virtually centralized repository

composed of several physically separated sub-repositories. In this case, the location of a

component needs to be specified so that it can be located within the virtual component

repository. An URL like format can be used to uniquely locate the repository and

component. In order to distinguish the address of a repository from that of a WWW site, a

location-independent naming system is needed. In their paper, Browne et al. [10], gives a

complete discussion of such a naming system.

Description

This is one of the most important facets in the component representation. It contains a

pointer to another facet list in which the characteristics of a component are recorded. The

facets in this facet list are determined by the type of the component and the domain the

component is in. This facet list is like the property list in the CORBA specification. We

believe that when the component technology becomes mature, each component will be

classified into one particular class. Components in the same class have certain

characteristics to differentiate themselves. In the automobile industry, tires are

differentiated by the outer tire diameter, inner tire diameter and the ratio of width to inner

diameter. Similar differentiation will develop over time for software components. For

91

example, queues can be distinguished by size, objects that they operate on, whether or not

they are persistent and so on. So for each class of components, a unique facet list can be

set up and used to differentiate one component from another. When a user is searching a

component, he usually knows the class of the components he is looking for. Like a car

mechanic knows what he is looking for in a catalog, a brake pad or an air filter. When the

class of the component is determined, the facet of description in the representation is

uniquely determined. Then by specifying the specification for this description facet, the

appropriate component can be found.

5.4 Summary

In this chapter, we proposed a component representation framework. This framework

employs facet lists to represent components. The most important part in this framework is

the description facet since it describes the unique characteristic of a component. Most of

the retrieval queries compare the desired property of an unknown component against the

description facet. In the next chapter, we will see how the representation framework

facilitates searching and retrieving activity in component repository.

CHAPTER 6

COMPONENT RETRIEVAL

Software component repositories are persistent storage used to store components and are

the key to the reuse of components. As repositories of software components continue to

grow the issue of retrieving components from a component repository has become one of

the key issues in the component-based technology. The representation of components in a

component repository should facilitate the search and retrieval activity. Otherwise, no

matter how good the representation method is, no one will use a repository that can not

find the requested components. Each of the representation schemes presented in the

previous chapter has its own strength and its corresponding method to retrieve

components. Based on the proposed software component representation framework, we

have developed an efficient method based on neural network technology to retrieve

relevant components.

6.1 Neural Associative Memory

Neural network technology is increasingly used in the knowledge representation,

reasoning and rule extraction area [38]. A neural network usually consists of processing

elements (called neurons) and connections between them with coefficients (weights)

bound to the connections, which constitute the neuronal structure, and training and recall

algorithms attached to the structure. There are a lot of variants of neural networks for

different computing problems. In this dissertation, we apply a variant called neural

associative memory [3] [36] for searching components that match or closely match the

92

93

user query. Figure 6.1 shows an illustration of a real biological neuron [33] and Figure

6.2 shows the counterpart of an artificial neuron.

Figure 6.1 A structure of a typical biological neuron. It has multiple
inputs (in) and one outputs (out). The connection between neurons is
realized in the synapses.

Figure 6.2 A model of an artificial neuron

Neural associative memory [3] [36] [69] is a single-layer neural network that maps a set of

input patterns X = x 1 , ..., xm } into a set of output patterns Y = {y 1 , ..., ym}. Figure 6.3

shows an illustration of a simple neural associative memory. The associative memory

remembers a set, S = {(xk, yk): k=1, m}, of mappings. When a new input x is

94

presented to the network, the corresponding output y is calculated by a mapping y = xW.

W is called the synaptic connectivity matrix.

Figure 6.3 A simple neural associative memory

Neural associative memory can be categorized in different ways. One way is

feedforward and feedback. In a feedforward network, an input vector x is presented to a

single layer of n neurons. The output vector y is calculated in a single processing step. In

a feedback model, the output signal is fed back to the input, the network treat the signal

as a new input and process it again. The output of a feedback model converges to a stable

state that presents the final output of the memory. Another way to categorize neural

associative network is hetero-association and auto-association. In hetero-association, the

network remembers a mapping from pattern x to y, where x and y are not the same. In

auto-association, the network remembers a mapping from one pattern to itself, x to x.

95

During the learning stage, each pair (xk, yk) E S is presented to the associative

memory. This provides a presynaptic and postsynaptic signal at every synapse.

According to these two signals, the synaptic weight is changed. We call the method to

determine how to change synaptic weight learning rules. Several popular learning rules

have been proposed, such as Hebb rule, agreement rule and correlation rule [56]. We use

R to denote the learning rules. The synaptic connectivity matrix W with learning rule R

is:

For auto-association, it becomes

In the retrieval stage, a new input pattern x is applied to the input of the network.

The input signals are propagated through the synaptic connection wij to all neurons at the

same time. Each neuron j transforms the input signals into its dendritic potential di , which

is the sum of inputs weighted by the corresponding synaptic strength:

The new activity of neuron j is determined by a non-linear operation called threshold

detection:

Function fj is called activation function and θj is called threshold. This equation is used to

determine if the neuron j is active or not.

96

6.2 Retrieval Method

Our goal is to develop a method to facilitate retrieval of desired components in

component repositories. Efficiency is the highest priority since we believe that in the

future component repositories will grow huge. In an ideal case, when a user query a

specific component, he should get it in a very short time. Note that we are concerned

about online time that is used to search exactly or approximately matched components.

The offline time spent to update and organize the repository is ignored.

In order to be able to find the desired component from the repository, a

representation framework has been proposed in the earlier section. For each component,

there are ten facets to represent the components. In order not to lose generality we

suppose there can be at most n facets to represent a component. Let the facet be denoted

R1, R2, ..., Rn . Each facet R i is a set of finite values, Ri = j = 1 to N i } where N i is the

number of values for facet Ri . The space for the repository then is:

Let y denote a component and d, denote the representation of a component. Then

= (U1, U2, U3, ..., Uri) where 11i c R i . d9 is a facet list. Let L denote the relevancy

between two components. Note that the relevancy between two components is the

relevancy between two facet lists. So L is also used to denote the relevancy between two

facet lists and called facet list relevancy. L is defined as:

97

Lf is called facet relevancy. The facet list relevancy is the sum of all facet relevancies

divided by the number of facets. We will quantify the facet relevancy Lf later.

The description facet of a component adopts a facet list to describe a component.

This facet list contains several key aspects of the component. We denote this facet list by

F and each of facets by Fi, i = 1, . . . , n; n is the number of facets. For each facet F i , there is

a set of values associated with it, Fi = {Tik : k = 1, ..., M i } where Mi is the number of

values associated with facet f i . The feature space for F then is:

The associative memory we use is a one-layer feedforward network. In our model,

we use Hebb learning rule to train our associative memory. The Hebb learning rule is

stated as follows. If both the neuron on position i of the input pattern X, xi, and the

neuron on position j of output pattern Y, yj, are active, the weight of the corresponding

synapse, w ig, is increased by 1, otherwise the weight remains the same.

Figure 6.4 shows the Hebb rule. Then the synaptic connectivity matrix W can be

defined as:

98

Figure 6.4 Illustration of Hebb rule. The amount of modification depends
on the presynaptic and postsynaptic signal.

In the retrieval stage, for each neuron the threshold 0 is defined to be 0 and the

activation function is defined as f (x) = x. The output of each neuron then is :

In our method, we assign one neural associative network Ni to one facet Ri in the

representation of components. A binary vector is used to represent the feature space of R i .

The dimension of the vector is set to the number of values in R i . Therefore each bit in the

vector represents one value in the feature space. For example, if there are three values for

the facet of originator, att.com.us , att.com.cn and ibm.com.us, then the vector to represent

the feature space of the facet is [xi, x2, x3]. Vector [0,0,1] means the component is

produced by ibm.com.us . Vector [1,1,0] means the component is a joint product between

att.com.us and att.com.cn.

Another binary vector is used to represent the feature space of components. We

set the number of bits in the binary vector the same as the number of components in the

component repository. One bit in the vector represents one particular component. For

99

example if we have 5 components in the repository, we use a binary vector [ye, Y2,y3,Y4,

y5] to represent them. Vector [0,0,0,0,1] means the first component is chosen, vector

[0,0,1,0,0] means the third one and vector [0,1,1,0,0] means third and fourth components

in the component repository are both chosen.

During the training stage, one facet of a component representation is fed into its

dedicated neural associative network. For example, in our representation framework,

there are 10 facets, so we use 9 neural associative memories to remember the facet values

of each component, except for the facet "description". For the description facet, we need

more neural associative memories since it itself is a facet list. For each facet, suppose the

components have n unique values, then we use an n-dimensional vector to denote the

feature space. For one component, suppose the value for the facet occurs on the ith

position of the vector, then the bit xi in the input vector X is set to 1 and others are set to

0. Suppose this component is the jth one in the component repository, then the bit yj in

the output vector Y is set to 1. Based on these two vectors, the increase of the synaptic

connectivity matrix Δwij can be determined. After all the component representations are

fed into the associative memory, the synaptic connectivity matrix W is constructed. Note

that during the training stage, there can be multiple bits set to 1 in the input vector, if one

component has multiple values for one facet (like in the above example, a component is a

joint product of two organizations). It is also possible for the output vector to have

multiple 1 s if multiple components share the same value for one facet. Neural associative

memories for different facets can be trained simultaneously to save training time. Let us

look at an example of training stage.

100

Example 1:

Suppose there are 4 components, C1, C2, C3, and C4. The facet list contains 3 facet values

[remove, create, modify]. Component C1 contains "remove". Component C2 contains

"create, modify". Component C3 contains "create". Component C4 contains "modify".

The facet values can be represented by a vector X=[remove, create, modify], and the

components can be represented by another vector Y=[C1, C2, C3, C4]. The mapping of

facet value vector and component vector for component C 1 is thus [1, 0, 0] -> [1, 0, 0, 0].

After this mapping is fed to the associative memory, the synaptic connectivity matrix is :

The mappings for C2, C3, and C4 are [0, 1, 1] -> [0, 1, 0, 0], [0, 1, 0] -> [0, 0, 1, 0],

and [0, 0, 1] -> [0, 0, 0, 1], respectively. After all the three pairs of mappings are fed to

the associative memory, the complete synaptic connectivity matrix is constructed as

follows:

End of example

During the retrieval stage, the desired component representation is broken down

into facets. The values for each facet is fed into its dedicated associative memory to recall

101

the components that have the same value for this facet. After one processing step, all the

components having this value will be recalled. Let us continue the previous example.

Example 2:

Suppose a user is looking for a component that contains facet value "modify". The new

input vector thus is [0, 0, 1]. The new output vector can be calculated: Y=XxW=[0, 1, 0,

1]. This output indicates that component C2 and C4 contains one of the desired facet

values that, in this case, is "modify". If the user is querying for components containing

"modify" and "create", the new input then will be [0, 1, 1]. The new output vector will be

[0, 2, 1, 1]. This output vector suggests that component C1 contains 0 desired value, C2

contains 2, C3 contains 1, and C4 contains 1. Notice that all components that contain at

least one of the desired facet values are retrieved. The number on each bit in the output

vector indicates how many facet values the component, which is represented by the

corresponding bit, contains.

End of example

The above example shows if the number of searched facet values is larger than

one, the components that contains at least one value in the query are all recalled. So one

component may partially match a desired component if it does not contain all but part of

the desired facet values. This unique feature of associative memory gives us a way to

determine how closely the retrieved components match the query.

102

We now quantify facet relevancy Lf. Suppose component q has values U i for facet

i where Ui c R i , and component (p' has values U i ' for facet i, where Ui'c R i . The facet

relevancy Lf is defined as follows:

Lf (Ui,Ui ') = IUi n I I lU i u U I if U i and U i ' are not facet lists, where

ISI denotes the number of elements in set S.

For example, a query looked for a component made by a joint team between

att.com.us and att.com.cn . Three components were retrieved. One component retrieved

was made by att.com.us . The second one was made by the joint team at att.com.us and

att.com.cn . The third was made jointly by att.com.us , att.com.cn , and ibm.com.us . Then

the facet relevancy on the facet of originator between the query component and the first

retrieved component is 1/2, i.e. I{ att.com.us , att.com.cn } n {att.com.us }I / I {att.com.us ,

att.com.cn } u { att.com.us } I = 1/2. And the same way, we can derive that the facet

relevancy between the query component and the second and the third retrieved

components is 2/2 =1, and 2/3, respectively.

The value of lUi n Ui'l and lUi u Ui'l I can be derived from the output vector. We

showed in example 2 that the value on each bit in the output vector indicates how many

facet values that the corresponding component and the query component have in

common. Suppose U i is the facet values in the query and W is the facet values in the

component j. V is the output vector which represents all the components. Vi is the jth bit

in V and represents component j. When Ui is presented to the associative memory, it is

transformed into an input vector. The output vector V is the multiplication of the input

103

vector and the synaptic connectivity matrix. Then for component j, lU i n Ui'l = Vj and

Note that when a facet itself is a facet list, the corresponding facet relevancy is the

facet list relevancy between the two underlying facet lists. This applies, in our case, to the

description facet in the representation framework. Notice that the "description" facet is

actually a facet list that is used to describe the unique characteristics of components.

Now we are able to calculate the relevancy between two components L (d Φ , dΦ).

Now given a threshold m, m E [0,11 and a query representation, we can retrieve all the

related components whose representation has a relevancy larger than or equal to m to the

query representation. m is specified by user and is used to indicate how close a user wants

the retrieved components to the query. When m is equal to 1, the result is an exact match.

That means the user gets exactly what he specifies in the query. If m is less than 1, the

result will be close to the query and is called an approximate match.

Ranking is critical when performing approximate match retrieval. We use

relevancy to determine how close the retrieved components are to the query one. When

they are returned by an associative memory, the components are ordered by relevancy,

components with higher relevancy are displayed earlier.

6.3 Enhancement

The proposed retrieval method based on associative memory is efficient and accurate.

However, there are some inherent shortcomings. We identify three issues for the

proposed method. The first is the weight between facet values and components, the

second is synonym support, and the third is the time complexity of matrix multiplication.

104

Note that in an associative memory, the weight reflects the relation between a

facet value and a component. 1 means a component contains that specific facet value and

0 means it does not. When a user is looking for a component, our method gives the result

sorted by relevancy. Relevancy is determined by the number of feature values that are

contained in the components, i.e. the sum of weights a component gets. However, the

associative memory does not know how unique a facet value is to a component. Let us

think of two scenarios.

In the first scenario, there are 100 components, and two facet values. One facet

value, V1, is contained in all 100 components. The other facet value, V2, is only contained

in component A. After the training step, the weight between V1 and each component is 1

and the weight between V2 and component A is 1. So to component A, V1 and V2 are of

the same importance since they have the same weight, 1, to A. However from common

sense, we know V2 is certainly more unique to A than V1. It better describes the

characteristic of A than V 1 , since it is only contained in A while V1 is shared by 100

components. In the second scenario, imagine we have two components A and B. A

contains 5 facet values V1, V2, ..., V5 and B contains only one facet value V1. When the

user is looking for a component that contains V1, B is certainly a better candidate than A,

because V1 is more unique in B than it is in A.

These two scenarios address one question: how to adjust the weight so that it

reflects the uniqueness of a facet value to a component. Two factors need to be taken into

account: the frequency a facet value appears in the whole component repository and the

frequency a facet value appears in a component. We will study this issue in Section 6.3.1.

105

Another issue to be addressed is synonym support. In reality, it is hard for a user

to know which facet value is used to describe components. He can guess a facet value

which he thinks is the most likely to describe the component he is looking for. If he

chooses a wrong value, he can not get the component even the component is indeed in the

repository yet described by another facet value. A thesaurus is a solution to this issue. We

will propose a thesaurus model with Bayesian inference and dynamic user feedback

adjustment in Section 6.3.2.

The last issue of the proposed method is the time complexity of the matrix

multiplication operation. Remember a synapse connectivity matrix is a matrix that could

be big. It easily grows to the size of the magnitude of 10 x 10,000. Multiplication on this

size of matrixes usually is time-consuming. However with the help of parallel algorithms

and matrix operation algorithms, this issue can be solved. We will discuss it in Section

6.3.3.

6.3.1 Weight Adjustment in Associative Memory

As discussed in the previous section, the binary weight schema, i.e. the weight between

components and facet values is either 1 or 0, is not sufficient for accurate component

retrieval. The binary weight distribution is based on the false conjecture that all facet

values are equally related to a component. In reality, however, some facet values may be

more unique to a component than others as we illustrated in the two scenarios in the

previous section. In order to reflect that fact, we need to vary the weights in the way that

facet values that are more unique to a component have heavier weights.

106

Our new weight assignment method is based on two observations. First, there is a

tendency for less frequent facet values to be more precise to describe components.

Second, the more facet values to describe a component, the less weight each facet value

should be assigned. These two observations lead to our facet value weighting function:

This is a variant of classic weight function proposed in [62]. The parameters to

the function are defined in Table 6.1.

Note that the sum of weights of all facet values in a component is 1 for

normalizing the importance of the facet values. Let us reuse the facet values and

components in example 1 to construct the new synaptic connectivity matrix. Following

the weight function, the new matrix is constructed as follows:

Table 6.1 Weight function parameters

Symbol Definition

w1 Adjusted weight between facet value i and
component j

wij Weight in original synaptic connectivity matrix
N Number of components in the repository
ni Number of components exhibiting facet value i
F Number of distinct facet values

107

Heuristically, this function takes into account the number of components that

exhibit a particular facet value and the number of facet values that is contained by a

component. The more components exhibit a facet value i, the smaller log(N/ni) is. Thus

the lighter the weight of the facet value is to the component. Meanwhile the more facet

values a component contains, the more items is in the denominator. Therefore the larger

the denominator is and the lighter the weight is to the component. This way, the weight

function assigns heavier weight to those facet values that better describe the components.

As a result when the components are retrieved, their ranking is more accurate. We will

test the weight function in our experiment section.

6.3.2 Dynamic Thesaurus with Bayesian Inference

In the real world, a user might specify a facet value that is not memorized by the

associative memory. For example, a user may be looking for components that contain

"delete" as its facet values. However, delete is not in the associative memory. Instead,

"remove" is memorized by the associative memory and the components that contain it are

those that the user is interested in. Using the original proposed associative memory, a

user is not able to retrieve or has a less chance to retrieve the appropriate component

without any synonym support.

A Bellcore study of people choosing terms to describe common objects, cooking

recipes, editor commands, and other items revealed that the probability of two people

choosing the same word for those objects is between 10% and 20% [21]. Using 15 aliases

or synonyms will achieve 60-80% agreement, and 30 aliases can get up to 90%

agreement.

108

Learned from the Bellcore study, a thesaurus can be a help to the shortcoming of

our proposed associative memory. A variety of thesaurus models are proposed in

different domains [42] [44]. A thesaurus in our system memorizes synonyms and when a

facet value is not found in the associative memory, it gives the facet values semantically

close to the queried facet value. With the help of thesauri, our associative memory can

improve its performance by giving more possible matched components.

One problem with a traditional thesaurus is that the weights between synonyms

are usually fixed and are set by the experts. In our repository, we do not want to have

fixed weights between synonyms. We want to construct our thesaurus in such a way that

it discovers and uses the interests of users to adjust the weights between synonyms. So

the weights of synonyms are more dynamic and the results of component retrieval are

more beneficial to the later users. In this section, we will present a thesaurus model that

uses Bayesian inference to adjust the weights between synonyms by taking into account

the previous component retrieval results and the users' feedback.

The thesaurus in our system is organized as follows. The thesaurus contains two

layers of facet values. The first layer is called primary layer, denoted P, which contains

the facet values that are memorized by the associative memory. The facet values in this

layer are called primary facet values. The second layer is called secondary layer, denoted

S, which contains the synonyms of the facet values of the first layer. These facet values

are called secondary facet values. The facet values in the thesaurus are initialized as

follows. When a component is put into the repository, the thesaurus updates itself to

contain the new primary facet values. Meanwhile, the developer or whoever is

responsible of the components can specify the synonyms to the primary facet values and

109

put them in the secondary layer A traditional thesaurus can also be referenced when

constructing the relation between primary layer facet values and secondary layer facet

values. Figure 6.5 shows the architecture of the thesaurus. Note some facet values can be

contained in both primary layer and secondary layer. This is caused by the fact that

people use words interchangeably. Let us look at the following example of the

architecture of the thesaurus.

Figure 6.5 Thesaurus architecture. Ellipses are facet values.

Example 3:

Suppose we have three components C1, C2, and C3. Each of them contains "delete",

"remove", and "exit". The relation among these three primary facet values are specified

by their component developers as follows:

"delete" 	 ("remove, quit")

"remove" -4 ("delete", "exit", "quit")

"exit" —4 ("quit", "remove")

110

The mapping between primary and secondary facet values thus is constructed as shown in

Figure 6.6.

End of example

Figure 6.6 Mapping between primary and secondary facet values

Table 6.2 shows the symbols that will be used in this section. We will explain the

symbols in more detail when we use them later on.

There are two activities in the thesaurus. When a facet value queried by a user is

found in an associative memory, i.e. a hit in the primary layer, all components that

contain the facet value will be retrieved from the associative memory. Besides those, the

secondary facet values in the secondary layer that are pointed to by the primary facet

value will be also presented to the associative memory to retrieve components. This

procedure is defined as "forward propagation".

When a facet value in a query is not found in the primary layer but found in the

secondary layer, a backward procedure defined as "backward propagation" takes place.

All the primary facet values that points to the found secondary facet value will be

presented to the associative memory to retrieve components. This is a reverse action of

the forward propagation.

Table 6.2 Symbols of variables

Symbol Definition

P Primary layer
S Secondary layer
Pi Facet value i in primary layer
Sj Facet value j in secondary layer
Nu Number of secondary facet value j

referred by primary facet value i
ΔNijk Increase of the number of secondary

facet value j referred by primary
facet value i for retrieval process k

FRij Relevancy between primary facet
value i and secondary facet value j
in forward propagations

BRij Relevancy between primary facet
value i and secondary facet value j
in backward propagations

Treq Total number of queries on the
primary facet values

Treq(i) Total number of queries on the
primary facet value Pi

In the original associative memory, a query input is composed as a binary vector,

i.e. the values in the vector is either 0 or 1 dependent on if the query facet value is found

in the associative or not. When a thesaurus is in use, the facet values that are achieved by

either forward propagation or backward propagation will set values on corresponding bits

in the input vector. These values will be between 0 and 1 and be the same as FRij for

forward propagation or BRij for backward propagation. Now let us look at the variables

defined in Table 6.2 and how to use them in our thesaurus.

Nu is the number of secondary facet value Si being referred by primary facet value

Pi . In the thesaurus, these two facet values are connected by a directed edge from Pi to S j .

111

112

If five users are looking for components that contains P i , three of them finally decide that

components containing Si are also interesting and two of them find component containing

Sm interesting. Then we say ΔNij^k is 3 and ΔNim^k is 2 for retrieval process k. Nu is defined

as the sum of ΔNij over all retrieval processes:

We can quantify FRij , relevancy between P i and Sj in a forward propagation, based

on Nu . FRij is defined as follows:

Note that Nu changes with the retrieval processes. Heuristically, the more retrieval

processes have been conducted, the more users have put their opinions to the relation

between Pi and Sj and the more accurate FRi j is. Here is an example of calculating FRi j

and composing input vector.

Example 4:

Suppose P1 is "delete" and corresponding Si, S2, and S3 are "remove", "quit", and "exit".

Three users conducted retrieval process by using delete as their query facet value. The

first user thought "remove" and "quit" were also interesting. For him, 0N11 1 is 1 and

ΔN12^1 is 1. The second one thought "remove" and "exit" are interesting, so 0N11 2 is 1 and

ΔN132 is 1. For the third one, who thinks "remove" is interesting, ΔN11 ^3 is 1. Then

FR11=3/5, FR12=1/5, and FR13=1/5 after the thesaurus is used by three users.

113

When the forth user is looking for components containing "delete", then the value

for facet value "delete" in the input vector is 1. If "remove", "quit", and "exit" are also in

the primary layer, then the values for them are 3/5, 1/5, and 1/5, respectively, in the input

vector. The result of the retrieval activity of the forth user will then again be counted to

calculate the

End of example

The above example is an illustration of forward propagation. It is less complex

than backward propagation since we only need to find the synonyms pointed to by the

primary facet values. The relevancy is well established by previous processes. If the

query facet value S i is not found in the primary layer P, but found in the secondary layer

S, and it could be pointed by multiple primary facet values {P 1 1 P icP}, what is the BR ij

between P i and Sj? We will use Bayesian inference to calculate it.

Bayesian inference is based on Bayes' theorem which was discovered by Thomas

Bayes in 1763 in his unpublished work "An Essay Towards Solving a Problem in the

Doctrine of Chances" [41]. The basic idea of Bayes' theorem is to predict events under

conditions of uncertainty. The equation of Bayes' theorem takes into account knowledge

of past events and new observations to infer the probable occurrence of an event.

Mathematically Bayes' theorem is presented as follows:

P(BIA) means the possibility of A given that B has occurred. P(BIA) is called

posterior probability in this equation. It represents the result of the inference. P(AIB) and

114

P(AIB) are called likelihood, which is the likelihood that A happens given that B and B

happens. P(B) and P(B) are called prior probability which is the prior knowledge we

observe from past events. By expanding the denominator of the equation, we can derive

the following equation:

In our thesaurus, A is the event that secondary facet value is of a user's interest

and B is the event that primary facet value is of a user's interest. So P(BIA) is interpreted

as if a secondary facet value S i is presented to the thesaurus by a user, what is the

probability that a primary facet value P i will be interesting to the user. The Bayes'

theorem can be rewritten as follows:

P, denotes the primary facet values in the thesaurus's primary layer. P is the

primary facet layer that contains all the primary facet values. P(P z) denotes the possibility

that Pz is queried by a user. P(Pz) is the prior knowledge the thesaurus knows about the

primary facet values. P(Pz) is defined as follows:

Treq(z) is the total number of user requests on primary facet value P z and Treq is the

total number of requests performed on the thesaurus. P(S jIPz) is defined as P(SjlP z) =

115

Plug in those items in the formula, and P(P i lSj) can be calculated. The relevancy between

Pi and Si in a backward propagation, BR ij , then is defined as BRij=P(PilSj).

Example 5:

Suppose there are 2 primary facet values, "delete" and "remove". Both facet values point

to second facet values, "quit" and "exit". So P1 is "delete", P2 is "remove", S1 is "quit",

and S2 is "exit". Suppose there were 3 users using the repository. User number 1 looked

up facet value Pi "delete" and determined he also interested in facet value S1 "quit".

1 = 1. The second user looked up facet value Pi "delete" and was also interested in

both S1 "quit" and S2 "exit". So ΔN11 2 = 1. ΔN122 = 1. The third user looked up P2 and

was interested in Si, 0N21 3 = 1. Then FR11 = ΣkΔN11k/ΣkΣzΔN1zk = 2/3, FR12 = 1/3, FR21

= 1, and FR22 = 0. If the forth user is looking up facet value "quit" and "exit". Since both

facet values are not in the primary layer, the thesaurus needs to calculate P(PilSj). From

the assumption, we know T req is 3. Treq(1) is 2 and Treq(2) is 1. So BR11=P(P1lS1) = 4/7,

BR12=P(P1lS2) = 1. BR21=P(P2lS1) = 3/7, and BR22=P(P2IS2) = 0. Note when backward

propagation takes place, the values for Treq , T req(i), and FRij do not change after the

retrieval process.

End of example

The power of this thesaurus model is that it takes users' feedback into account.

Note that N ib, Treq, and T req(i) change each time after the user finishes one

process of component retrieval. We believe each user is an expert in terms of judging

how close synonyms relate to each other, and users tend to have a consensus on the

116

relation between synonyms. So the more users use the thesaurus, the closer the thesaurus

is close to the consensus.

6.3.3 Sparse Matrix Multiplication

The associative memory we use is a powerful tool in terms of memorizing facet values.

However, as a reader might notice, the calculation on the associative memory is either

vector multiplying vector or vector multiplying matrix. The synaptic connectivity matrix

is a matrix that could have a large size. As we all know, matrix multiplication, especially

with large matrices, is a relative expensive operation. In order to improve the efficiency,

we need to improve our original associative memory.

Fortunately, the synaptic connectivity matrix is a sparse matrix. There are some

research results on sparse matrices that we can take advantage of to lower the time

complexity on matrix multiplication. So the computational complexity of our matrix

multiplication is proportional to the sparse matrix multiplication algorithms that are used

to implement the associative memory. The detail of these algorithms is beyond the scope

of our paper. We will utilize the result of the algorithms to illustrate the feasibility of our

associative memory.

We identify two issues that, we think, are important to the performance of a

sparse matrix multiplication algorithm. First the size of the matrix the algorithms can

cope with. This is important because the size for synaptic connectivity matrix could be as

big as at the magnitude of 10 x 100,000. So we are looking for algorithms that are

feasible at least for that size. Secondly, we believe the scalability of the algorithms to

117

parallel processing is very important. A fast response can be achieved by using parallel

machines to do matrix multiplication.

The following research papers give us some idea what algorithms can be used.

Papers [1][76] proposed efficient algorithms and both of them work well for matrices of

size of 28924 x 28924. Paper [24] presented an algorithm to utilize the power of parallel

processing. Besides the work on algorithms, faster hardware and bigger computer

memories also make a big contribution to the improvement of the performance of sparse

matrix multiplication. In our prototype, we will still use regular matrix multiplication

since there are not many currently available components that can be store in a repository.

Actually there are very few publicly available components at the time this paper is being

prepared. Traditional matrix multiplication is not a problem so far for the prototype.

When more and more components are available, sparse matrix algorithms then can be

adopted to implement a component retrieval system.

6.4 Experiment

We have developed a prototype of a component repository retrieval system based on our

proposed methods. We need to point out that this system is intended as a rapid prototype

aimed at testing our proposed approach and not as a complete classification and retrieval

system. It is not aimed at testing the system usability, nor the user friendliness of the

interface of a potential prototype based on our method. So the system is relatively simple

and not very user friendly. The general architecture of our prototype is shown in Figure

6.7.

118

Figure 6.7 Component retrieval system architecture

Implementation

The system is implemented in C++ on a Sun Sparc 20 workstation running Sun's Solaris

2.5 operating system. It works as follows:

The client initializes a request to looking for components in the component

repository. The server gets the request, parses it, and sends it to the vector generator. The

vector generator contains the knowledge of the primary facet values. If the facet values

are found in the primary facet values, a new input vector is generated by setting values on

the bits that represents the facet values that the user is interested. The vector generator

also forwards the facet values to the thesaurus whether it finds them in the primary layer

or not.

119

The thesaurus looks for the facet values in the primary layer. If it finds them, the

facet values in the secondary layer that are pointed to by the primary facet values are also

retrieved to set the input vector. The relevancy between primary facet values and

secondary facet values FR is calculated. If the facet values are not found in the primary

layer, but in the secondary layer, the thesaurus retrieves the facet values in the primary

layer that points to the found secondary facet values. The relevancy BR is calculated.

Then the synonyms found by the thesaurus are returned to the vector generator. The

vector generator generates new input vectors by using the synonyms and BR or FR.

The input vector is then multiplied by the synaptic connectivity matrix. New

output is generated to indicate which components in the component repository contain the

facet values or their synonyms. The result then is sent back to the server. The server

sends the representation of the component back to the user. If the user is satisfied with the

search result, he sends the request again to the server to retrieve the component by

presenting the unique identifier to the server. The thesaurus takes the response of a user

and uses it to update the variables in Table 6.2 for future usage. The server then queries

the component repository to get the component.

The component repository performs routine updates, such as adding new

components, deleting old components and replacing old versions of components by new

versions. It also reports such changes to the associative memory so that the associative

memory keeps the most up-to-date representation of the components. Every time the state

of component repository changes, the neural associative memory adjusts its memory

accordingly. This work may be done during a less busy time of a day as in the middle of

the night.

120

The following problems came up during our experimentation while putting the

system in a prototypical implementation.

When we first designed the system, we used the tradition client server model to

handle the request. When a request comes in, the server spawns a child process to handle

the request. However, one problem with the associative memory is its relatively

expensive usage of computer memory.

Recall that each associative memory remembers all the possible values for one

facet, say n, which means we need a vector of n bits to represent the values. We need

another m-bit vector to represent the m components in the component repository.

Suppose each component has at most C unique values for each facet. Then the number of

possible values n for one facet is C x m. The number of bits of the input vector therefore

is n= C x m. Then the size of a neural associative network is n xm=Cxmx m=

0(m2). For a mid size component repository, say it contains thousands of components, it

would be a limited concern of memory space. But when we have hundreds of users

sending queries to the same server at the same time, it would be a problem, because there

are hundreds of child processes running and each of them tries to allocate a memory

space for the associative memories.

Therefore we changed our classic client server model to the persistent server

model. In this model, when the system first starts up, the server spawns a certain number

of child processes. When a request comes in, it is put in a queue by the server. Any idle

child can read a query from the queue, and process the query. When no idle child is

available, the queries are stored in the queue and wait for the first available child to pick

121

up. This model also saves CPU time by eliminating overhead to start and shutdown child

processes.

Furthermore, instead of using child process, we use threads to handle the

processing. When spawning a child thread, the child thread is in the same address space

of the main thread. This makes it possible to pass in the address of the synaptic

connectivity matrix to the child threads for them to process. So child threads do not need

to load the whole matrix as opposed to what the child processes do. This thread model

further saves memory space for our prototype. The number of child threads is tunable. In

the real application, the application administrator can do an estimation of the pattern of

user activity, like what is the peak time of a day, what is the possible maximum number

of users who access the server at the same time, etc. Based on this information, the

system can be tuned to best fit users' needs.

Experiment Results

In addition to the implementation of the prototype, we also used it to verify the

sufficiency and accuracy of our proposed methods. Research approaches that have been

done on component repositories usually use different ways to represent and retrieve

components (refer to Chapter 5). There is no available benchmark system for us to test

against. Following the experiments done in [13], we design the experiments to show the

feasibility and correctness of our proposed methods instead of testing against other

available systems.

The component base is the most difficult part to standardize in this experiment.

Again following [13], we use a family of 30 Unix commands that are used to create,

122

modify, and delete files, pipes and sockets as our component base. Instead of using 10

facets proposed in the component representation, we use 2 facet lists to represent the

components. This is feasible due to the fact that our representation is highly scalable, so 2

facet lists is enough for the purpose of demonstrating the feasibility of the proposed

methods.

One important issue in the experiment is to determine the threshold value. As

addressed in [13], "determining a way to compute thresholds other than by trial and error

is still an unsolved problem in text retrieval research", we believe it is the same situation

for component retrieval research. In our experiments, we will change the value of the

threshold to see the impact of it on the overall system performance.

The precision rate and recall rate are two concepts that have traditionally been

used to evaluate retrieval methods. Following the definition in [46] [62], let Q be a set of

components that should be returned as a response to a query, and let R be a set of

components that are actually returned to a query. Then the precision rate and recall rate

are defined as:

The precision rate is the proportion of retrieved items that are relevant, measured

by the ratio of the number of relevant retrieved items to the total number of retrieved

items. The recall rate is the proportion of relevant items retrieved, measured by the ratio

of the number of relevant retrieved items to the total number of relevant items in the

collection. For a retrieval system, a high precision rate and a high recall rate are

123

favorable, which means the retrieval system is able to retrieve relevant components with

a small number of irrelevant components.

A group of Unix C, C++ programmers and Unix, NT system administrators was

asked to search the Unix commands in the component repository. The experiment

participants were taught the syntax for the query and how to use the component retrieval

system first. Then they were free to use words and phrases to compose their queries based

on their knowledge toward Unix commands. They recorded the number of queries they

tested, the number of retrieved components and the number of components they actually

wanted and were in the repository. When testing the ranking of retrieved components, the

experiment participants used a scale of 1-10 to denote how satisfied they were with the

ranking with 10 being the best and 1 the worst.

The experiments are organized in the following order:

1. Testing Precision(R) with threshold changing

2. Testing Recall(R) with threshold changing

3. Testing Precision(R) with thesaurus and threshold changing

4. Testing Recall(R) with thesaurus and threshold changing

5. Testing ranking without weight function

6. Testing ranking with weight function

The results of experiment 1 to 4 are shown in Figure 6.8 and Figure 6.9. An

obvious trend for the change of recall rate with respect to the change of threshold is

observed. The result suggests that when a threshold value is lower, more components will

be retrieved. Thus high recall rate is more likely since the queried components are more

124

likely to be returned in the candidate components. When the threshold is high, low recall

rate is more likely because less candidate components are retrieved from the component

repository. However the trend for the precision rate is not apparent. When the threshold is

small, the number of components retrieved is large. Thus the precision rate is relatively

low. When the threshold becomes higher, the precision rate should become higher

because the number of component retrieved becomes smaller. However the number of

desired components is also becoming smaller which offsets the change of the number of

retrieved components to some degree. Thus the change of precision rate is not so obvious

as that of recall rate.

When a thesaurus is applied, the recall rate is relatively higher, and precision rate

is relatively lower because more candidate components are retrieved, provided the

experiments are conducted using the same threshold value. The result confirms that it is

hard to get both high precision and recall rate for retrieval systems as proved in

information retrieval system. Our system shows that for our component repository, a

threshold of 0.3 or 0.4 is favorable because it achieves relatively high precision rate while

it is also acceptable for the recall rate. Usually for a component retrieval system with a

small component repository, the recall rate is more important than precision rate since the

user likes to see as many relevant components as possible in one retrieval process. When

a component repository is big, however, the precision rate also has to be taken into

account to limit the number of components returned by the retrieval system. Otherwise

the users will quickly lose interest using the retrieval system if they have to filter

hundreds of returned components to find the ones they are interested in. A balanced

choice between precision rate and recall rate needs to be given.

Figure 6.8 Precision and recall rate without thesaurus

125

Figure 6.9 Precision and recall rate with thesaurus

For the experiments of ranking of components, i.e. experiment 5 and 6, we set the

threshold to 0.3 which enables the retrieval system to retrieve most of the desired

components. The average score for retrieval without weight adjustment in the associative

memory is 6.3 while it is 7.4 for retrieval with weight adjustment. These two scores,

126

although as expected, are less convincing than the precision rate and recall rate in our

experiment because of the possible bias of experiment participants and the relatively

small size of component repository. However, all of our participants feel the difference

among the experiments conducted with and without the use of weight function.

6.5 Summary

In this chapter, we have proposed a method, which is combined of neural associative

memory, information retrieval, thesaurus, and Bayesian inference technologies, to find

components in a component repository. The neural associative memory is able to

memorize the relationship between components and facet values when the weight

function is able to specify the closeness of the relationships. Bayesian inference enables

the thesaurus to change its weights between synonyms so that the thesaurus is able to take

into account users' feedback and adapt to users' preference.

CHAPTER 7

CONCLUSION AND FUTURE WORK

In this dissertation, we established an infrastructure for component-based software

development. The topics we studied include software planning, software building from

legacy systems, component represenation, and software component retrieval.

We proposed a software development process model and a definition of

component-based software development team roles. They are different from their

counterpart in the traditional software engineering in the sense that they facilitate the

development of software systems based on reusable software components. The proposed

software development process model achieves maximum software component reuse by

conducting domain engineering and application engineering simultaneously to map a

software system to a set of existing components. The definition of team roles adds unique

team roles that exist only in the component-based software engineering. By giving a clear

definition of team roles, it helps to achieve the maximum usage of team resources.

Unlike most studies that focus on how to build new components by using the most

advanced component technology, we studied component building in an opposite

direction: how to build components from legacy systems. This is more difficult than

building components from scratch since there are many technical restrains on

transforming legacy systems to component-based systems. We proposed a framework to

decompose legacy systems and build components by extracting component candidates

and wrapping them. A specific methodology is also proposed to facilitate a special case

of component building: the integration of legacy systems with Internet applications. By

127

128

using this methodology, it is possible to wrap a legacy system in a timely manner and

make it available for newly emerging and demanding Internet services.

Another issue that was studied is how to retrieve a software component in a

component repository. We believe the success of component technology depends on the

availability of a mature component market that stores and distributes components. If such

a market is at hand, then how do people find the wanted components? To solve this

question, we first proposed a framework to represent components. This component

representation framework uses double facet lists to represent components. The relatively

simple yet powerful scheme of facet representation is able to accommodate the big, up-

coming component market. More importantly, the inherent structure of the representation

facilitates efficient component retrieval.

Based on the representation framework, an efficient retrieval method adopting the

neural associative memory technology was developed to find and retrieve components

from component repositories. The neural associative memory memorizes facet values in a

facet list that is used to represent components. In one processing step, it can accurately

and quickly find all the components that contain the query facet values. The strength of

this method is that by training an associative memory offline, it achieves online

efficiency when it interacts with users.

Using the associative memory as a starting point, a weight function derived from

information retrieval technology was proposed to refine the associative memory. The

weight function makes the associative memory memorize not only the relation between

facet values and components, but also the strength of the relation. Experiments show that

the weight function improves the retrieval precision rate. Bayesian inference is used to

129

improve the performance of the associative memory. In order to provide synonym

support, a two-layer, dynamically adjusted thesaurus using Bayesian inference was

proposed. The thesaurus is able to adjust the weights between synonyms by taking into

account user preference during the retrieval activities. This thesaurus model improves

both the precision rate and recall rate of the associative memory. In order to lower the

computational expenses of matrix multiplication, we also looked into available sparse

matrix multiplication algorithms and parallel algorithms to help the associative memory

further cut its response lag.

A prototype of a component repository is built to demonstrate the power of the

proposed retrieval method combined of neural associative memory, information retrieval,

thesaurus, and Bayesian inference technologies. The experiments showed the consistency

between the theoretical results and the practical results. In addition to the further study

and experimentation, the component retrieval mechanism is also under investigation for a

component-based approach to knowledge management [37]. In this case, components

contain knowledge instead, but the overall system design and construction principles are

quite similar.

REFERENCES

1. R. C. Agarwal, F. G. Gustayson, M. Zubair, "A High Performance Algorithm Using
Pre-Processing for the Sparse Matrix-Vector Multiplication," in Proceedings of
Supercomputing, pp. 32-41, 1992.

2. P. Allen, S. Frost, Component Based Development for Enterprise Systems: Applying
the Select Approach, Cambridge University Press, New York, 1997.

3. J. A. Anderson, "A Simple Neural Network Generating an Interactive Memory,"
Mathematical Biosciences, No. 14, pp.197-220, 1972.

4. D. Batory, S. O'Malley, "The Design and Implementation of Hierarchical Software
Systems with Reusable Components," ACM Transaction on Software Engineering
and Methodology, Vol. 1, No. 4, pp. 355-398, 1992.

5. R. Bellinzona, M. G. Fugini, B. Pernici, "Reusing Specifications in 00
Applications," IEEE Software, Vol. 12, No. 2, pp. 65-75, 1995.

6. B. Boehm, "A Spiral Model for Software Development and Enhancement,"
Computer, Vol. 21, No. 5, pp. 61-72, 1988.

7. G. Booch, Software Components with Ada: Structures, Tools, and Subsystems,
Addison-Wesley, Reading, Massachusetts, Harlow, England, Menlo Park,
California, Berkeley, California, Don Mills, Ontario, Sydney, Bonn, Amsterdam,
Tokyo, Mexico City, 1990.

8. F. Brooks, The Mythical Man-Month, Addison-Wesley, Reading, Massachusetts,
1975.

9. A. W. Brown, K. C. Wallnau, "The Current State of CBSE," IEEE Software, Vol. 15,
No. 5. pp. 37-46, 1998.

10. S. Browne, J. Dongarra, S. Green, K. Moore, "Location-Independent Naming for
Virtual Distributed Software Repositories," in Proceedings of the 17th
International Conference on Software Engineering on Symposium on Software
Reusability, pp. 179-185, 1995.

11. A. Cimitile, A. D. Lucia, G.A. Lucca, A.R. Fasolino, "Identifying Objects in Legacy
Systems," in Proceedings of IEEE 5th International Workshop on Program
Comprehension, pp. 138-147, March, 1997.

130

131

12. G. Coulouris, J. Dollimore, T. Kindberg, Distributed System: Concepts and Design,
Addison-Wesley, Harlow, England, Reading, Massachusetts, Menlo Park,
California, New York, Don Mills, Ontario, Amsterdam, Bonn, Singapore, Tokyo,
Madrid, San Juan, Milan, Mexico City, Seoul, Taipei, 1994.

13. E. Damiani, M. G. Fugini, C. Bellettini, "A Hierarchy-Aware Approach to Faceted
Classification of Object-Oriented Components," ACM Transaction on Software
Engineering and Methodology, Vol. 8, No. 3, pp. 215-262, 1999.

14. A. Davis, Software Requirements: Objects, Functions, and States, Prentice Hall,
Englewood Cliffs, New Jersey, 1993.

15. M. Dewey, Decimal Classification and Relative Index, 19th ed., Forest Press Inc.,
Albany, New York, 1979.

16.W. Dietrich, I. Nachkman, L. Gracer, "Saving a Legacy with Objects," in
Proceedings of Object-Oriented Programming Systems, Languages, and
Applications, pp. 77-88, New Orleans, LA, 1989.

17. D. D' Souza, A. C. Wills, Objects, Components, and Frameworks with UML: The
CataLysis Approach, Addison Wesley Longman, Reading, Massachusetts, 1998.

18. D. G. Firesmith, Object-Oriented Requirements Analysis and Logical Design, Wiley,
New York, 1993.

19. W. B. Frakes, B. A. Nejmeh, "An Information System for Software Reuse," in W.
Tracz (editor), Software Reuse: Emerging Technology, IEEE Computer Society
Press, Monterey, California, 1988.

20. W. B. Frakes, C. Terry, "Software Reuse: Metrics and Models," ACM Computer
Survey, Vol. 28, Issue. 2, pp. 415-435, 1996.

21. G. W. Furnas, T. K. Landauer, L. M. Gomez, S. T. Dumais, "The Vocabulary
Problem in Human-system Communication," ACM Transaction on
Communication, Vol. 30, No. 11, pp. 964-971, 1987.

22. D. Garlan, A. Robert, and J. Ockerbloom, "Architectural Mismatch: Why Reuse Is So
Hard," IEEE Software, Vol. 12, No. 6, pp. 17-26, 1995.

23. L. Gilman, R. Schreiber, L. Gilman, Distributed Computing With IBM MQSeries,
John Wiley, 1996.

132

24. S. Gupta, E. Rothberg, "DME: A Distributed Matrix Environment," in Proceedings of
the Scalable High-Performance Computing Conference, pp. 629-636, 1994.

25. C. Hall, Building Client/Server Applications Using Tuxedo, John Wiley, New York,
1996.

26. D. 0. Hebb, The Organization of Behavior, Wiley, New York, 1949.

27. W. S. Humphrey, M. Lovelace, Ryan Hoppes, Introduction to the Team Software
Process, Addison-Wesley, Reading, Massachusetts, Harlow, England, Menlo
Park, California, Berkeley, California, Don Mills, Ontario, Sydney, Donn,
Amsterdam, Tokyo, Mexico City, 1999.

28. I. Jacobson, F. Lindstrom, "Re-engineering of Old Systems to an Object Oriented
Architecture," in Proceedings of OOPSLA91, pp. 340-350, 1991.

29. I. Jacobson, Object-Oriented Software Engineering: A Use Case Driven Approach,
Addison-Wesley, Reading, Massachusetts, Harlow, England, Menlo Park,
California, Berkeley, California, Don Mills, Ontario, Sydney, Donn, Amsterdam,
Tokyo, Mexico City, 1994.

30. Java Message Service FAQ, http://java.sun.com/products/jms/faq.html, Feb. 2000.

31. J. Jeng, B. Cheng, "A Formal Approach to Reusing More General Components," in
Proceedings of IEEE 9th Knowledge-Based Software Engineering Conference,
pp. 90-97, Monterey, California, Sept. 1994.

32. L. Jololian, "A Meta-Semantic Language for Smart Component Adapters," Doctoral
Dissertation, Department of Computer and Information Science, New Jersey
Institute of Technology, Newark, New Jersey, 2000.

33. N. K. Kasabov, Foundations of Neural Networks, Fuzzy Systems, and Knowledge
Engineering, The MIT Press, Cambridge, Massachusetts, London, England, 1996.

34. B. Keith, "Legacy Systems: Coping With Success," IEEE Software, Vol. 12, No. 1,
pp. 19-23, 1995.

35. E. H. Khan, M. R. Girgis, "The Effect of 00 Life Cycle on Software Project
Management," in Proceedings of International Conference on Engineering and
Technology Management, pp. 233-240, 1996.

133

36. T. Kohonen, "Correlation Matrix Memory", IEEE Transaction on Computer, Vol. 21,
No. 4, pp. 353-359, 1972.

37. F. J. Kurfess, "Component-Based Knowledge Management," submitted for
publication.

38. F. J. Kurfess, "Neural Networks and Structured Knowledge," Special Issue of Journal
of Applied Intelligence, Vol. 11, No. 1, No. 2, 1999.

39. C. Landauer, K. L. Bellman, "Lessons Learned from Wrapping Systems," in
Proceedings of 5th IEEE International Conference on Engineering of Complex
Computer Systems, pp. 132-142, 1999.

40. L. Latour, E. Johnson, "SEER: A graphical Retrieval System for Reusable Ada
Software Modules," in Proceedings of 3rd International IEEE Conference of Ada
Applications and Environments, pp. 105-113, 1988.

41. P. M. Lee, Bayesian Statistics: An Introduction, Oxford University Press, New York,
1997.

42. H. Liao, M. Chen, F. Wang, J. Dai, "Using a Hierarchical Thesaurus for Classifying
and Searching Software Libraries," in Proceedings of the 21st Annual
International Computer Software and Application Conference, pp. 210-216, 1997.

43. S. Liu, N. Wilde, "Identifying Objects in a Conventional Procedural Language: An
Example of Data Design Recovery," in Proceedings of IEEE International
Conference on Software Maintenance, pp. 266-271, 1990.

44. J. Llorens, A. Amescua, M. Velasco, "Software Thesaurus: a Tool for Reusing
Software Objects," in Proceedings of 4th International Symposium on
Assessments of Software Tools, pp. 99-103, 1996.

45. A. D, Lucia, G. A. Lucca, A. R. Fasolino, P. Guerra, S. Petruzzelli, "Migrating
Legacy Systems towards Object-Oriented Platforms," in Proceedings of IEEE
International Conference on Software Maintenance, pp. 122-129, 1997.

46. Luqi, Jiang Guo, "Toward Automated Retrieval for a Component Repository," in
Proceedings of IEEE Conference and Workshop on Engineering of Computer-
Based System, pp. 99-105, 1999.

134

47. Y. Maarek, D. Berry, G. Kaiser, "An Information Retrieval Approach for
Automatically Constructing Software Libraries," IEEE Transaction on Software
Engineering, pp. 800-813, Vol. 17, No. 8, 1991.

48. J. McDermid, P. Rook, "Software development Process Models," in Software
Engineer's Reference Book, pp. 15/26-15/28, CRC Press, Florida, 1993.

49. D. Mcllroy, "Mass-produced Software Components," in Proceedings of the 1968 and
1969 NATO Conferences, pp. 88-98, 1969.

50. R. Mili, A. Mili, R. Mittermeir, "Storing and Retrieving Software Components: A
Refinement Based System," IEEE Transaction on Software Engineering, Vol. 23,
No. 7, pp. 445-460, 1997.

51. R. Monson-Haefel, Enterprise JavaBeans, O'Reilly & Associates, Beijing,
Cambridge, Paris, Sebastopol, Taipei, Tokyo, 1999.

52. H. A. Muller, K. Wong, M. A. Storey, "Wrapping Coarse-Grained Objects Using
Standard Infrastructure Technology," in Proceedings of IEEE International
Conference on Software Maintenance, pp 301, 1997.

53. J. Q. Ning, A. Engberts, W. Kozaczynski, "Recovering Reusable Components from
Legacy Systems by Program Segmentation," in Proceedings of IEEE 4th Working
Conference on Reverse Engineering, pp. 64-72, 1993.

54. R. Orfali, D. Harkey, J. Edwards, R. Crfali, Instant CORBA, John Wiley & Sons,
New York, 1997.

55. E. Ostertag, J. Hendler, R. Prieto-Diaz, C. Braun, "Computing Similarity in a Reuse
Library System: An AI-Based Approach," ACM Transaction on Software
Engineering and Methodology, Vol. 1, No. 3, pp. 205-228, 1992.

56. G. Palm, F. Schwenker, A. Strey, F. J. Kurfess, "Neural Associative Memories,"
Technical Report, University of Elm, 1994.

57. R. Penteado, P. C. Masiero, A. F. Prado, R. T. V. Braga, "Reengineering of Legacy
Systems Based on Transformation Using the Object Oriented Paradigm," in
Proceedings of IEEE 5th Working Conference on Reverse Engineering, pp. 144-
153, 1998.

135

58. R. Prieto-Diaz, "A software Classification Scheme," Doctoral Dissertation,
Department of Computer Science, University of California, Irvine, California,
1985.

59. R. Prieto-Diaz, "Implementing Faceted Classification For Software Reuse,"
Communication of ACM, Vol. 35, No. 5, pp. 89-97, 1991.

60. R. Prieto-Diaz, G. Arango, Domain Analysis and Software Systems Modeling, IEEE
Computer Society Press, Los Alamitos, California, 1991.

61. W. W. Royce, "Managing the Development of Large Software Systems: Concepts
and Techniques," in Proceedings of the 9th International Conference on Software
Engineering, pp. 328-338, 1987.

62. G. Salton, C. Buckley, "Term-weighting Approaches in Automatic Text Retrieval,"
Information Processing and Management, Vol. 5, No. 24, pp. 513-523, 1988.

63. J. Sametinger, Software Engineering with Reusable Components, Springer Verlag,
New York, 1997.

64. R. Sessions, COM and DOOM: Microsoft's Vision for Distributed Objects, John
Wiley & Sons, New York, 1997.

65. H. Sneed, "Encapsulation Legacy Software for Use in Client/Server Systems," in
Proceedings of 3rd IEEE Working Conference on Reverse Engineering, pp. 104-
119, IEEE Computer Society Press, Monterey, California, 1996.

66. H. Sneed, E. Nvary, "Extracting Object-Oriented Specification from Procedurally
Oriented Programs", in Proceedings of IEEE Working Conference on Reverse
Engineering, pp. 217-226, Toronto, Canada, 1995.

67. H. Sneed, "Planning The Reengineering of Legacy System," IEEE Software, Vol. 12,
No. 1, pp. 24-34, 1995.

68. J. Solderitsch, K. Wallnau, J. Thalhamer, "Constructing Domain-specific Ada Reuse
Libraries", in Proceedings of 7th Annual National Conference on Ada
Technology, pp. 125-134, 1989.

69. K. Steinbuch, Mensch and Automat. Springer, Heidelberg, 1961.

136

70. C. Szyperski, Component Software: Beyond Object-Oriented Programming, ACM
Press, New York, Addison-Welsley, Harlow, England, Reading, Massachusetts,
Menlo Park, California, New York, Don Mills, Ontario, Amsterdam, Bonn,
Sydney, Singapore, Tokyo, Milan, Madrid, San Juan, Mexico City, Seoul Taipei,
1997.

71. A. Taivalsaari, R. Trauter, and E. Casais, "Workshop on Object-Oriented Legacy
Systems and Software Evolution," in Proceedings of 10th Annual Conference on
Object-Oriented Programming Systems, Languages, and Applications, pp. 180-
185, 1995.

72. Y. Tang, "A methodology for Component Based System Integration," Doctoral
Dissertation, Department of Computer and Information Science, New Jersey
Institute of Technology, Newark, New Jersey, 1998.

73. W. Tracz, "Where Does Reuse Start?" in Proceedings of Realties of Reuse Workshop,
Syracuse University CASE Center, pp. 14-20, 1990.

74. T. C. Valesky, Enterprise JavaBeans: Developing Component-based Distributed
Applications, Addison Wesley, Harlow, England, Reading, Massachusetts, Menlo
Park, New York, Don Mills, Amsterdam, Bonn, Sydney, Milan, Madrid, Mexico
City, 1999.

75. I. Warren, L. W. Chang, L. Xu, The Renaissance of Legacy Systems: Method Support
for Software-System Evolution, Springer Verlag, New York, 1999.

76. J. B. White, "On Improving the Performance of Sparse Matrix-Vector
Multiplication," in Proceedings of IEEE 4th International Conference on

High Computing, pp. 66-71, 1997.

77. S. White, M. Edwards, "Domain Engineering: The Challenge, Status, and Trends, " in
Proceedings of IEEE Symposium and Workshop on Engineering of Computer-
Based Systems, pp. 96-101, 1996.

78. P. Winsbery, "Legacy Code: Don't Buy It, Wrap It," Datamation, pp. 36-41, May
1995.

79. R. Wirfs-Brock, B. Wilkerson, L. Weiner, Designing Object-Oriented Software,
Prentice-Hall, Englewood Cliffs, New Jersey, 1990.

137

80. A. Zaremski, J. Wing, "Signature Matching: A Tool for Using Software Libraries,"
ACM Transaction on Software Engineering and Methodology, Vol. 4, No. 2, pp.
146-170, April 1995.

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract (1 of 2)
	Abstract (2 of 2)

	Title Page
	Copyright Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment
	Table of Contents (1 of 3)
	Table of Contents (2 of 3)
	Table of Contents (3 of 3)
	Chapter 1:Introduction
	Chapter 2: Component Technology
	Chapter 3: Component-Based Software Development
	Chapter 4: Legacy System Componentization
	Chapter 5: Component Representation
	Chapter 6: Component Retrieval
	Chapter 7: Conclusion and Future Work
	References

	List of Tables
	List of Figures (1 of 2)
	List of Figures (2 of 2)

