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ABSTRACT

INTERACTION OF A VORTEX PAIR AND A FREE-SURFACE:
NUMERICAL SIMULATIONS

by
Haisheng Ruan

The interaction between a submerged vortex pair with a deformable free-surface in a

viscous, incompressible fluid is directly simulated and the flow is thoroughly analyzed.

This is a time-dependent nonlinear free-surface problem which we solve numerically by

integrating the two-dimensional Navier-Stokes equations and using boundary-fitted

coordinates capable of handling large free-surface deformations. In particular, the

numerical simulation of the flow at relatively high Reynolds numbers

(Re = 500,1000, 2000) and relatively high Froude numbers (Fr = 1.125, Fr = 2.0) is

investigated and analyzed for the first time. Details are given regarding the space-time

deformation of the free-surface, the path of the primary vortices, the formation of strong

free-surface vorticity and kinetic energy, and the generation of turbulence in the flow. In

particular, the turbulence characteristics have been explored at Reynolds number Re =

1000. In this flow, we identified a thin free-surface layer characterized by very fast

variations of the turbulence intensity, the kinetic energy dissipation and velocity

fluctuations. The turbulence intensity reaches a maximum at the level of the center of the

primary vortex, and then decreases significantly as the free-surface is approached. This

decay is due to a very large increase of the turbulent kinetic energy dissipation at the free-

surface and the formation of large vorticity peaks at the free-surface. Contrarily to

previous findings, there is no redistribution of the turbulence intensity at the free-surface,

that is a large increase of the horizontal velocity fluctuation at the expense of the vertical

velocity fluctuation. Instead, the horizontal velocity fluctuation is smaller than the



vertical velocity fluctuation. This is due to the fact that our Froude number is relatively

large and that the free-surface undergoes large (particularly vertical) deformations, as

permitted by our numerical scheme, as the primary vortices approach the free-surface.
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CHAPTER 1

INTRODUCTION

Recently, the study of the interaction between vortices and a free-surface has been

strongly motivated by the need to gain a physical understanding of the flow around ships

and submarines as they approach the free-surface. From a practical point of view, such a

need is motivated by the interpretation of experimental data from remote sensing of ship

and submarine wakes. In particular, the fundamental problem of a two-dimensional

vortex pair (two counter-rotating vortices of equal strength) interacting with a free-

surface has become of great interest. Such approach is motivated by experimental studies

of wave signatures at a water-air interface caused by the vortex-induced wake of a ship

(Sarpkaya & Henderson (1984); Willmarth et al.(1989)). Another area of interest is free-

surface turbulence in which vortex pairs can develop spontaneously, travel with great

speed, and carry mass and momentum over significant distances. It is crucial to

understand and predict the effect of the presence of a free-surface on the traveling speed

and transport properties of vortices, as well as on the generation of new flow structures.

Other experimental works include those of Barker and Crow (1977) and Sarpkaya et

al. (1984). While Barker and Crow (1977) studied the motion of vortex pairs near a

water-air surface, they did not give any information on the deformation of the free-

surface. Experiments explicitly designed for this purpose were performed later by

Sarpkaya et al. (1984) with underwater vortices generated by a moving hydrofoil. They

observed two types of straight, sharp surface depressions, which they named 'scars' and

`striations'. While scars are perpendicular to the hydrofoil's motion, striations are

parallel. In addition, Sarpkaya et al. (1988) and Christian and Morteza (1997) used

counter-rotating flaps to generate vortices. Of particular interest to the present work are

1
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the findings of Christian and Morteza (1997) who investigated High Reynolds number

flows (up to Re — 8000).

In contrast, numerical simulations dealing with fully non-linear free-surface

deformations have been limited to Reynolds numbers smaller than or equal to Re = 100

(Samuel and Hans, 1991). Attempts to compute the flow at higher Reynolds numbers

have been made. In many cases, however, the surface boundary conditions are greatly

simplified. Most of these investigations use the "rigid lid" or "free-slip" approximation

of the free-surface, i.e. a flat surface with zero stresses but also zero normal velocity.

This corresponds to the limit of zero Froude number. For instance, J. F. Garten et al.

discussed the dynamics of counter-rotating vortex pairs in stratified and sheared

environments at relatively high Reynolds number values (Re = 1500), but their free-

surface boundary conditions were either periodic or stress-free with zero normal vorticity,

thus preventing both free-surface deformations and complex interface/fluid flow

interactions. Another type of flow studied numerically in the past is the flow between a

rigid (no-slip) wall and a free slip plate, a model for the open-channel flow.

Approximation of the free surface by a flat slip-free plate, corresponding to the zero

Froude number limit, has been used extensively in numerical simulations (Lam and

Banerjee (1988), Handler et al. (1991), Leighton et al. (1991), Swean et al. (1991),

Handler et al. (1993), Pan and Banerjee (1995), Perot and Moin (1995), Walker et al.

(1996), among others). In particular, Leighton et al. (1991) investigate the interaction of

vorticity with the free surface and propose two models, the "spin" model and the "splat"

model, which follow a description by Bradshaw and Koh (1981). More recently, the

extension of numerical simulations to non-zero (but still small) Froude numbers has been

considered by Borue et al. (1995) and Shen et al. (1999), although these works both use

linearized free surface motions, thus assuming that the free-surface elevation remains

small during the flow dynamics.
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The goal of the present work is to investigate the full interaction between an

incompressible, viscous vortex pair and the nonlinear deformations of the free-surface, at

higher Reynolds numbers and Froude numbers than those investigated numerically in the

past. Although the vortices decay in strength, the flow dynamics is quite complex partly

due to the fact that the vortices lead to large free-surface deformations during their

approach.

The present numerical scheme is based on the Navier-Stokes equations and uses

boundary-fitted coordinates to accommodate both the local high vorticity generated by

the moving vortices and the nonlinear deformation of the free-surface. The numerical

scheme is explained in details. In particular, we found that a fully implicit numerical

scheme is desirable and that it is crucial to carefully select numerical parameters,

especially for flows at high Reynolds and Froude numbers. In this work, we have

performed flow simulations at various Reynolds numbers up to Re = 2000 and various

Froude numbers up to Fr = 3.0 .

A comparison of our results with other researchers' numerical findings was

performed at low Reynolds number values while available experimental data were used at

both low and high Reynolds numbers, whenever possible.



CHAPTER 2

FORMULATION OF THE PROBLEM

2.1 Mathematical Formulation of the Physical Problem:
Governing Equations

A pair of point vortices of equal strength lc but opposite sign are initially located at

denotes the initial translational velocity of the vortices and p the scaled dynamic

pressure. Figure 1 represents a sketch of the flow. If the fluid has density p and

characteristic length, time, velocity and pressure, respectively. The dimensionless

governing differential equations can then be written as:

or, in conservative form,

4



where the Reynolds number is defined as

The other dimensionless parameter involved in the problem is Froude number, Fr , which

can be written as

It will appear in the expression of the boundary conditions specified below.

5

Figure 1. Sketch of the flow.

Using boundary-fitted coordinates, the physical space (x, y) is mapped onto the



6

computational domain (4, TO as shown in Figure 2. The latter is a uniformly spaced

Cartesian mesh with a unit mesh spacing in each coordinate direction.

Figure 2. Mapping of the physical plane (x, y) onto the computational plane

As the flow field evolves in time, the grid in physical space will move, with its lines

being attracted to regions of high flow gradients through the use of an adaptive-grid

technique. However, the Cartesian grid in computational space always remains fixed and

uniform.

In curvilinear coordinates (4,i) , Equations (2.4) and (2.5) become



where J is the Jacobian matrix associated with the transformation of coordinates, that is

The quantities a, p, y, a * and T * are defined as follows

Their specific form will be given below.

The details of the derivation of Equations (2.6) and (2.7) are given in Appendix A.

2.2 The Boundary Conditions

We have four boundary conditions which can be expressed as follows.

2.2.1 First Boundary Condition

The free-surface, described by y = Y(x,t), is a part of the solution. Neglecting surface

tension, the boundary conditions at y = Y(x, t) are
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where surface tension has been neglected.

In the computational space (401) , the kinematic boundary condition (2.10),

expressing the fact that the free surface moves as a material surface, becomes:

Here, the subscript x refers to the grid points in physical space that are located at the

free-surface; these points are not allowed to move in the x-direction. Equations (2.13a)

and (2.13b) are used to calculate the free-surface elevation at every longitudinal location

x, and at every time step.

The free-surface in physical space (x, y) maps onto a constant n— line in the

computational domain (, q) . For the constant 	 the needed conditions for the

velocity components, u and v, in the computational domain can be obtained from

Equations (2.11) and (2.12), i.e.
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and

The conditions for the pressure p at the free-surface y = Y in the computational

space (4,1) can be obtained from Equations (2.14) and (2.15) as follows.

2.2.2 Second Boundary Condition

On the centerline, i.e. at x = 0 , due to the symmetry, we have

In the computational space 	 , Equations (2.17) gives at 4 = 0
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2.2.3 Third Boundary Condition

At x ---> 00 , — 00 < y 5 0 , we have the boundary conditions

2.2.4 Fourth Boundary Condition

In practice, it is not possible to consider an infinite domain. We thus consider a finite

replaced by

New Third Boundary Condition

second-order extrapolation along a coordinate line into the interior.

New Fourth Boundary Condition

At y = —ya , we have p = 0 , and u , v are obtained by means of a second-order

extrapolation along a coordinate line into the interior.

2.3 The Initial Condition

The initial condition (t = ) corresponds to an undisturbed free-surface. At this time, the

boundary y = 0 is still a plane boundary with zero shear stress boundary condition and
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zero velocity, i.e. u = v = 0 . The flow field is irrotational except in the vicinity of the

vortex centers.

2.3.1. The Flow in the Vicinity of the Vortex Center

The point vortex (or a line vortex along the z-direction) represents a singularity with

infinite vorticity in the flow field. The effect of viscosity is to diffuse vorticity rapidly

from the singular point. We now construct a solution describing this process.

For an incompressible fluid flow, the Navier-Stokes equation can be written as

Taking the curl of this equation, i.e. V x Equation (2.23), and noticing that V x (pVp) = 0

for constant density, we can write

The following manipulation

together with,



and

lead to the well-known vorticity equation

or, in a more compact, symbolic, form,

This equation expresses that the rate of change of particle vorticity is due to two factors:

the rate of deforming vortex lines and the net rate of diffusion of vorticity.

with

12

The vortex line turning and stretching term then becomes:
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Here, we recover the well-known result that the vortex line turning and stretching is

absent in plane flows. Equation (2.25) then reduces to

We now consider the radially-symmetric diffusion of a singer line vortex, whose axis

coincides with the z-axis in cylindrical coordinates. Then, the only non-zero velocity

component is the z-component, which depends only on r and t. The vorticity diffusion

equation becomes

We now look for a self-similar solution of this problem, in the form

the line vortex. Substitution of this solution in the diffusion equation leads to

or, in a more compact form,

Integrating once gives



where A is a constant. For the present physical problem,

finite at all values of 1) , and therefore, A = 0 . This implies

A straightforward integration leads to the solution of the form

where B is determined by the expression the vorticity

that is

This immediately gives the expression of B(t)

which, in turn, leads to the expression of the vorticity

14

(2.33)

The corresponding distribution for q(r,t) = 11 U 2 + v2 is obtained by means of the

following integration
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Since the strength of the point vortex is k = Г/2π, q(r,t) can be expressed in terms of

K:

whose dimensionless form is

It can be seen that as time t increases from 0 to 00, q(r, ,t) decreases from Г/2πr to

0. The vorticity, on the other hand, increases (for r > 0) from zero to a maximal value

before decreasing asymptotically to zero.

We now seek for an expression of the velocity in the vicinity of the vortex core. For

this, we introduce the radius rs from the vortex core, such that

where is is the time duration over which Equation (2.36) is applied. The velocity

components can then be obtained as



16

where φ is the angle defining the point considered. An acceptable error, which is

defined by the ratio between the vorticity at r = r, and the maximal core vorticity at

r = 0 , at t = t „ needs to be considered when using Equation (2.37). It is advantageous,

but not necessary in the present code, to take a non-zero error for increasing numerical

stability. It should be chosen as a suitable small positive constant. In the present work,

the numerical integration of the Navier-Stokes Equation starts at t = 0 , using the solution

(2.37) around the vortex core as the initial conditions.

2.3.2. The Potential Flow Away from the Vortex Centers

The initial condition away from the vortex core, that is r > r„ is considered to be the

potential flow which we now calculate.

Since we have assumed that the free-surface is initially undisturbed, the free-surface

vorticity is zero. This implies that, apart from a small neighborhood around the vortices,

the flow is irrotational everywhere. For this reason, we can use the image method for the

boundary condition. Consequently we can write the complex potential as follows (see
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where z refers to the location of the point considered in the complex plane, z = x + iy ,

and (1) and zvare the potential and stream functions, respectively. The position of one of

the vortices is represented by zi, , while the bar denotes the complex conjugate.

We can then write

dw
— = u — iv
dz

which gives us the velocity components

and
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Taking into account the fact that k = Г/2π , we can rewrite Equations (2.40) and

or, in dimensionless form,

In Equations (2.42) and (2.43), all variables are non-dimensional. For convenience,

we have kept the same symbols for dimensional and non-dimensional variables.

Equations (2.42) and (2.43) are used together with Equation (2.37) to calculate the initial

conditions.



CHAPTER 3

NUMERICAL SCHEME

In order to solve the previous Navier-Stokes equations subjected to highly nonlinear,

moving boundary conditions, we use a fully implicit numerical finite difference scheme.

The method used is a backward time, second-order central space formulation, coupled

with a numerical generation of adaptive curvilinear, boundary-fitted, coordinates for

which one coordinate line coincides with the free-surface. We have used the velocity-

pressure (primitive variables) formulation. The solution of the field variables (velocity-

pressure) and that of the physical space are obtained simultaneously, and particular

attention was paid to their convergence.

More details will be given below.

3.1 Equations

Here, the goal is to obtain p, u, v, x, y by solving a set of equations simultaneously.

In non-conservative form, the two-dimensional Navier-Stokes equations can be

written as

with the continuity equation being

19
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A Poisson equation for pressure can be obtained by taking the divergence of Equations

(2.1) and (2.2), that is

While for physical space coordinates we have

Considering that the physical space coordinate system moves with time as the free-

surface deforms, the equations for physical-space coordinates, velocity components and

pressure need to be solved simultaneously at each time step. For this purpose, we use the

Successive Over-Relaxation, SOR, iterative technique. In order to obtain the pressure

within the domain at any non-zero time, we use an iteration method similar to Chorin's

(1967) iteration technique. Equation (3.1) is used to obtain the initial pressure in a

manner similar to that used by Ohring and Lugt.

In finite difference form, the previous five equations give
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where n refers to the time level n , the corresponding time being t" . .

Similarly, we can write the discretization form of the equations for the pressure p ,

the physical space coordinates x , y and the position of the free-surface.

3.2 Implicit Time Differencing and Pseudo-Compressibility

The following equations represent the implicit time differencing procedure for advancing

the flow solution (p, u, v, x, y) in the interior of the domain over the time step

At = t"+ 1 — t", that is, from the time level n to the time level n+1, by using the pseudo-

time step Δτ = τn+1— τn :
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Equations (3.6) and (3.7) are derived from Equations (3.2) and (3.3), respectively.

Similarly, Equations (3.9), (3.10) are obtained from Equations (2.6) and (2.7).

The continuity Equation (2.3) is replaced by an equation with pseudo-compressibility

in order to numerically conserve mass at each time step:

Equation (3.8) is obtained from Equation (3.11) and is used to obtain the pressure p

by means of an iteration method.

3.3 Boundary-fitted Coordinates

The physical space (x,y) is mapped onto the computational domain (4,1) . The

coordinate lines in physical space are mapped onto a uniformly spaced Cartesian mesh

with a unit mesh spacing in each coordinate direction, as shown in Figure 2. As the flow

field evolves in time, the mesh in physical space will move and its coordinate lines will

be attracted to regions of high flow gradients through the use of an adaptive-grid
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technique, while the Cartesian grid in the computational domain always remains fixed

and uniform.

The relation between curvilinear coordinates (40-1) and the physical space

coordinates (x,y) is defined by the two following elliptic partial differential equations in

which the coordinates (x, y) play the role of independent variables

However, since all calculations are to be performed in the rectangular computational

domain, these two elliptic partial differential equations are transformed by interchanging

the dependent and independent variables. The transformation yields

In our numerical algorithm, the physical space coordinates (x, y) are determined in

terms of the computational space coordinates (4,i) at each time step through Equations

(3.2) and (3.3).

The finite difference discretization of Equations (3.2) and (3.3) gives the two

following equations.



where

Equations (3.8) and (3.9) are nonlinear simultaneous algebraic equations that can be

solved by means of iteration methods. Here, we use the Successive Over-Relaxation

(SOR) technique to achieve this goal. The SOR technique can be described (Fletcher

1991) as
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3.4 Adaptive Gridding

Adaptive gridding can be realized by giving a special form to the control functions P* ,

Q* of the coordinate system. The basic idea is to use the equi-distribution of a weight

function along the arc-length elements in the physical-space grid. These equi-distribution

laws for weight functions w 1 and w2 along arc-length elements on constant η — and

4 - lines, respectively, are

It has been shown that if P* and Q* have the form

then the mesh-generating equations (3.2) and (3.3) approximate the equi-distribution laws

(3.20) and (3.21), respectively. Weight functions are usually taken to be functions of the

flow gradient. They can be chosen as

On the symmetry line x = 0, the weight function w 2 is given by
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Notice that the computation of y and v on the line x = 0 requires only the control

function Q* in Equations (3.22), together with Equations (3.3) and (2.7).

Figure 3a shows the adaptive grid in our numerical simulation of the flow at

Re =100 , Fr = 0.8. One can see the automatic generation of a dense mesh in the area

of high free-surface curvature where flow gradients are also the highest. This can be

compared with the grid used by Ohring and Lugt (1991) displayed in Figure 3b.

3.5 Highly Implicit Numerical Scheme

The SOR iterative technique is utilized to solve the set of discretized equations. Two

underrelaxed (i.e. smaller than one) acceleration parameters (weights) are used, one for

the field variables, and another one for the physical coordinates. In both cases, a highly

implicit scheme is used, with underrelaxed acceleration parameters. This was found

important, especially for the numerical simulation of high Reynolds number free-surface

flows, in order to obtain numerical stability. However, each set of Reynolds and Froude

numbers requires suitable acceleration parameters. For instance, our acceleration

parameters are smaller than 0.2 for the case of Reynolds number Re = 1000 , Froude

number Fr = 1.125.

In this research, the time step is usually chosen to be At = 0.001 and maintained

constant during each run. Our numerical scheme was found to be numerically stable,

even at very high Reynolds numbers. In addition to the results presented in this thesis,

we have performed preliminary runs for the Reynolds and Froude number values

Re = 4000, Fr =1.125, for which the solution was found to be numerically stable.



Figure 3a. Section of the computational grid for the Reynolds and the
Froude number values Re = 100, Fr = 0.8 at time t = 3.64.
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Figure 3b. Section of the grid for the Reynolds and Froude number
values Re = 100, Fr = 0.8, at t = 3.475, from Ohring and Lugt's results,
1991.



CHAPTER 4

FLOW SIMULATIONS

Numerical calculations were performed for the following values of Reynolds and Froude

numbers:

Re =100 , Fr =1.125 and Fr = 0.8,

Re = 500 , Fr =1.125 ,

Re =1000 , Fr =1.125 and Fr = 2.0,

Re= 2000, Fr =1.125.

In all cases, we neglect surface tension, thus keeping the Weber number zero

(We = 0). For code validation and comparison with results published in the literature,

computations at relatively low values of Reynolds numbers Re =10 , Re = 50 , Re = 100

and different Froude number values were performed. In all cases, the initial condition

consists of the vortex described in Section 3 surrounded by the potential flow. The initial

vortex is shown in Figure 4 for Re =100 , Fr = 0.8 . Before we present our numerical

results, it is necessary to define the notion of the center of a vortex, as well as Lamb's

potential flow solution for the trajectory of a point vortex in presence of a free-surface.

In an unsteady viscous flow, the center of a vortex can be defined either as the location of

local extremal vorticity or as the center of the whirl, that is the center of nested

instantaneous streamlines. Whereas the streamlines depend on the particular frame of

reference, the vorticity field does not. In all the following figures, the instantaneous

streamlines are in a frame of reference fixed with respect to the undisturbed free-surface

and the vortex is moving relative to this frame. In general, the center of nested

streamlines does not coincide with the location of extremal vorticity. In our study, the
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Figure 4. Section of the initial velocity vector field for the Reynolds
and Froude number values Re = 100, Fr = 0.8 at time t = 0, The size
of the computational grid is 231x191.
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"center of the vortex" is defined as the location of the local extremal vorticity. Solid

equivorticity lines represent negative values while dashed lines correspond to positive

values.

As it is well-known, the classical path of a point vortex with a flat free-surface in a

potential flow (Lamb, 1932) is given by

with a unit distance between the two vortices located far away from the origin of the

system of coordinates. In the findings presented below, we compare the trajectory of the

center of the vortex from our computations with the theoretical potential flow result (4.1).

Substituting x = 1127c and Re = 0/ in Equation (2.33), we can write

which gives

This implies that the time decrease of the extremal vorticity lζ extremal lat the center of a

diffusing point vortex (see Equation (2.33)) follows the equation

This result will be compared with the vorticity decay obtained from our numerical

simulations.

Convergence of our results with mesh size was investigated at all parameter values

presented below. For example, Figure 5 illustrates our study with two different grids,
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131x111 points in the left column and 91x91 points in the right column. Here, we report

our results for the Reynolds and Froude number values Re = 100, Fr = 0.8 and at time t =

3.95. The first row in Figure 5 shows the two grids, the second row displays both the

free-surface elevation and the flow streamlines while the third row exhibits the vorticity

contours in both cases.

We now examine the results of our computations in details. In particular, our

findings are compared with those of Ohring and Lugt (1991) for Reynolds number values

up to Re =100 .

4.1 Flow Simulation for Re =10, Fr = 1.125

At Re = 10, Fr = 1.125, the flow is extremely viscous. The time evolution of the vortex

path can be observed in Figure 6. It is interesting to notice that the vortex starts its

ascension almost vertically, but soon after this, it begins traveling to the right as it raises.

The vortex continues its motion, slows down and turns away from the free-surface. This

phenomenon was observed experimentally and is referred to in the literature as the

"rebounding process". At early times, the vortex path is nearly vertical and is accurately

described by Lamb's potential flow solution (Equation 4.1). Soon after this, however, the

discrepancy is important, indicating that viscous effects play a major role. The path of

the vortex extracted from our computation is compared with Ohring and Lugt's findings.

An excellent agreement is found, although our path is slightly smoother than theirs. The

free-surface elevation is displayed on a space-time plot in Figure 7. It is interesting to

notice that the ascension of the vortex manifests itself as a central standing wave, but that

its motion to the right and rebounding correspond to a weak traveling wave on the side of

the standing wave. At all times, the free-surface elevation is rather small. The flow was
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also calculated at Re = 50, Fr = 0.356. Since good agreement with previous results were

observed, details are not reported here.



Figure 5. Comparison of the results obtained by using different grids for the
Reynolds and Froude values Re = 100, Fr = 0.8, at t = 3.95 (grid 131x111) and
t = 4.00 (grid 91x91) respectively. First row: section of the computational mesh;
second row: streamlines; third row: vorticity contours (solid lines: negative
vorticity, dashed lines: positive vorticity.)

33



Figure 6. Path of the vortex center for the Reynolds and the Froude number
values Re = 10, Fr = 1.125, in the (x, y) plane: (a) our numerical results; (b)
Ohring and Lugt's results, 1989.
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Figure 7. Space -time representation of the free-surface elevation at the
Reynolds and Froude number values Re = 10, Fr = 1.125. When the
rebounding phenomenon takes place, side traveling waves are produced.
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4.2 Flow Simulation for Re =100, Fr = 0.8

In this case, a much stronger deformation of the free-surface takes place. Indeed, the

vortex pair pushes the free-surface up, creating bumps accompanied by more localized

depressions on their sides. These depressions have been observed experimentally by

Sarpkaya and Henderson (1984) who named them "scars". Instantaneous streamlines (in

a small part of the domain) obtained by our calculations are shown in Figure 8a. For

comparison, we have reproduced those reported by Ohring and Lugt (1991) in Figure 8b.

The velocity field is shown in Figure 8c. A more global picture of the streamlines and

kinetic energy contours is displayed in Figure 9a showing high energy levels in the

vicinity of the vortex core, as well as along the scar areas facing the vortex pair. Figure

9b shows the corresponding pressure map, with negative pressure in the vicinity of the

vortex core and around the scar. Below and above the vortex, the flow experiences

positive pressure whose strength increases just below the free-surface where the elevation

of the latter is the highest. The displacement of the vortex core can be followed in Figure

10. The vortex moves straight up, following Lamb's potential flow solution over a much

larger distance than at smaller Reynolds numbers. A discrepancy, however, occurs as the

vortex approaches the free-surface. While Lamb's solution turns away from the

centerline, the viscous vortex continues his quasi-vertical ascension. Figure 10a displays

our results while Figure 10b shows Ohring and Lugt's findings (1991). A good

agreement is found.

As the free-surface elevation increases, the slope of the resulting wave increases until

it reaches such a large amplitude that the computation stops. In nature, the wave will

break. Simultaneously, the depression (scar) becomes more and more pronounced. Such

a steepening of slopes has a strong effect on the vorticity field, as we now explain. It
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may be recalled that an approximate formula for the surface vorticity is twice the surface

curvature times the tangential surface velocity. This formula implies that an occurrence

Figure 8a. Streamlines of the flow for the Reynolds and the
Froude number values Re = 100, Fr = 0.8 at time t = 3.64

Figure 8b. Streamlines of the flow for the Reynolds
and .Froude number values Re = 100, Fr = 0.8. at
time t = 3.475, from Ohring and. Lugt's results, 1991.



Figure 8c. Vectorial representation of the velocity vector for the Reynolds
and Froude number values Re = 100, Fr = 0.8 at t = 4.0. The size of the
computational grid is 91x91.
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Figure 9a. Streamlines and square root of the kinetic energy distribution
for the Reynolds and Froude number values Re = 100, Fr = 0.8, at time
t = 3.65.
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Figure 9b. Pressure distribution for the Reynolds and Froude number values
Re = 100, Fr = 0.8, at time t = 3.8. The size of the computational grid is
131x111.
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Figure 10a. Path of the vortex center for the Reynolds and the Froude
number values Re = 100, Fr = 0.8. For comparison, we have included
Lamb's potential flow solution for a flat surface. The free surface is
plotted at time t = 3.64.



Figure 10b. Path of the vortex center for the Reynolds
and Froude number values Re = 100. Fr = 0.8. For
comparison. Lamb's potential flow solution for a flat
surface is included. The free-surface is plotted, at the
time t = 3.475. from Ohring and. Lugt's results. 1991.

42



43

of positive vorticity at the scar should occur due to the changing sign of the surface

curvature. This phenomenon can indeed be observed by returning to the vorticity

contours of the flow displayed in Figure 5. The transport of the positive vorticity into the

fluid is then controlled by the vorticity flux at the surface. This flux is relatively large, as

indicated by the proximity of the different equivorticity lines.

A space-time representation of the free-surface wave can be observed in Figure 11.

The space-time function is a standing wave, due to the vertical motion of the vortex.

Finally, we have plotted the minimal value of vorticity (normalized with Reynolds

number) against time in Figure 12. The curve follows a 1/2t decay, according to

Equation (4.2), indicating that numerical diffusion is minimal.

4.3 Flow Simulation for Re =100, Fr =1.125

We have also carried out computations at the parameter values Re = 100, Fr = 1.125.

The flow obtained is similar to the previous one, although at this higher Froude number,

the free-surface can be more easily deformed, not resisting much to the ascension of the

vortex. This phenomenon is illustrated in Figure 13 where the peak of the free-surface

elevation is higher than 1 in the latest times of the computations (while it was smaller

than one in the previous case). The vorticity distribution illustrates, as in the previous

flow, the presence of negative vorticity due to the ascending vortex and the formation of

positive vorticity around the scar area of the free-surface.



Figure 11. Space-time representation of the free-surface elevation, showing
the formation of a standing wave. The Reynolds and the Froude number
values are Re = 100, Fr = 0.8.



Figure 12. Time decrease of the vorticity value (normalized with the
Reynolds number) at the center of the vortex for the Reynolds and the
Froude number values Re = 100, Fr = 0.8 (solid line). The dashed line
corresponds to 1/2t.



Figure 13. Vorticity distribution for the Reynolds and Froude number values
Re = 100, Fr = 1.125, at time t = 4.2.
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4.4 Flow Simulation for Re = 500, Fr = 1.125

Flow simulations were performed at Re = 500, Fr = 1.125 in order to investigate the

influence of increasing Reynolds number on the solution. Two computational grids were

used for these simulations (see Figure 14a). Figures 14 b,c permit the comparison

between the computed flows with the two grids. A good agreement is found. The

streamlines and kinetic energy distribution at t = 3.0 are plotted in Figure 14d. The

mounded shape of the free-surface is larger than in the previous flow and the scars are

more pointed, occupying a much more elongated region of the free-surface. As time

increases (see Figure 14e for a similar plot at t = 3.10), the crest of the mound becomes

wider, the descent to the scar much more abrupt (quasi-vertical) and the scars themselves

more pointed and pronounced (deeper). A plot of the equi-vorticity contours in Figure 15

(top) shows negative vorticity in the primary vortex as well as along the vertical portion

of the free-surface, while the positive vorticity region on the outer side of the scar is

extremely elongated. The generation of many small, localized vortices of both positive

and negative vorticity is also a new phenomenon, compared with flows at smaller

Reynolds numbers.

4.5 Flow Simulation for Re = 1000, Fr =1.125, Fr = 2.0

Our code has allowed us to investigate the flow for the Reynolds and Froude number

values Re =1000 , Fr =1.125 . Figure 15 permits a direct comparison between the equi-

vorticity lines of this flow and those of the previous flow. Similar features are observed

just before the computation stops, although one can observe the generation of a multitude

of secondary vortices in the flow. In addition, the vertical portion of the free-surface is

higher, while the curved crest has become flatter. The (quasi-vertical) trajectory of the
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center of the vortex is plotted in Figure 16 while the velocity field itself is displayed in

Figure 17a. The space-time representation of the free-surface displays a standing wave

(see Figure 17b). The streamlines and kinetic energy distribution of the flow can be

observed in Figures 18 a,b with a zoom on the primary vortex in Figure 18c. The results

shown in Figures 18 a,b are obtained by using two different computational grids. We

observe that the computations are all numerically stable. Comparable results are obtained

for a slightly higher Froude number value, Fr = 2.0 (Figure 19).

4.6 Flow simulation for Re = 2000, Fr = 1.125

Numerical simulations for the Reynolds and Froude number values Re = 2000,

Fr = 1.125 have been performed successfully with different computational grids. The

two grids used are displayed in Figure 20a and the two computational flows are shown in

Figure 20b. A good agreement between the two computations was found. A vectorial

representation of the velocity field is displayed in Figure 20c, showing similarities with

previously computed flows. It is difficult to see the effect of increasing Reynolds number

on the velocity or kinetic energy of the flow. Indeed, as Reynolds number increases,

small scale eddies gain energy and the flow becomes turbulent. These changes can be

observed more clearly on vorticity contours (see the third row of Figure 20b). The

statistical properties of the turbulent field will be explored in Chapter 5. The increase of

Froude number corresponds to a more deformable free-surface as shown by our

computation for Fr = 3.0 (see Figure 20d).



Section of the grid (mesh: 231x191).
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Section of the grid (mesh: 286x236).

Figurel4a. Section of the computational grids used for the study of
numerical convergence at the Reynolds and Froude number values
Re = 500, Fr = 1.125, at time t = 3.00.



Figure 14b. Comparison of the flows computed with two computational grids
displayed in Figurel4a, showing good agreement between the two results.
First row: streamlines of the flow, second row: contours of the square root of
the kinetic energy of the flow, third row: equi-vorticity lines (solid lines:
negative vorticity, dashed lines: positive vorticity).
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Figure 14c. Contours of the square root of the kinetic energy of the flow
described in the caption of Figurel4a, for the two different meshes
displayed in Figurel4a, showing the similarity of the flow computed by
using different meshes.
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Figure 14d. Streamlines and square root of the kinetic energy distribution
for the Reynolds and Froude number values Re = 500, Fr = 1.125 at
time t = 3.00.
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Figure 14e. Streamlines and square root of the kinetic energy distribution
for the Reynolds and the Froude number values Re = 500, Fr = 1.125, at
time t = 3.10.
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Figure 15. Equi-vorticity contours for the Reynolds and Froude number values
Re = 500, Fr = 1.125 at time t = 3.10 at which the simulation stopped (top) and for
the Reynolds and the Froude number values Re = 1000, Fr = 1.125 at time t = 3.196
at which the simulation stopped (bottom). Positive and negative vorticity are
represented by dashed and solid lines, respectively.



Figure 16. Path of the vortex center for Re = 1000, Fr = 1.125. For
comparison, Lamb's potential flow solution for flat surface is included.
The free-surface is plotted at time t = 3.0 for a 231x191 computational
grid.
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Figure 17a. Vectorial representation of the velocity field for the Reynolds and
Froude number values Re = 1000, Fr = 1.125, at time t = 3.8.



Figure 17b. Space-time representation of the free-surface elevation
at the Reynolds and Froude number values Re = 1000, Fr = 1.125.
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Figure 18a. Streamlines and square root of the kinetic energy distribution
for the Reynolds and Froude number values Re = 1000, Fr = 1.125, at time
t = 3.00. The size of the computational grid is 231x191.



Figure 18b. Streamlines and square root of the kinetic energy contours
of the flow for the Reynolds and Froude number values Re = 1000, Fr
= 1.125, at time t = 3.04, corresponding to a 271x226 computational
grid.
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Figure 18c. Streamlines and square root of the kinetic energy distribution for the
Reynolds and Froude number values Re = 1000, Fr = 1.125, at time t = 3.196.

60



Figure 19. Streamlines and square root of the kinetic energy
distribution for the Reynolds and Froude number values Re = 1000,
Fr = 2.0 at different times.
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section of the grid (mesh: 311x261).

Figure 20a. Section of the computational grids used for the study of numerical
convergence at the Reynolds and Froude number values Re = 2000, Fr = 1.125,
at time t = 3.00.
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Figure 20b. Comparison of the flows computed with the two computational grids
displayed in Figure 20a, showing good agreement between the two computations.
First row: streamlines of the flow, second row: contour lines of the square root of
the kinetic energy of the flow, third row: equi-vorticity lines (solid lines: negative
vorticity, dashed lines: positive vorticity).



Figure 20c. Vectorial representation of the velocity field and
streamlines of the flow for the Reynolds and Froude number
values Re = 2000, Fr = 1.125, at time t = 3.082.
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Figure 20d. Time evolution of the flow for the Reynolds and Froude number values
Re = 2000, Fr = 3.00. Here, the streamlines and contours of the square root of the
kinetic energy of the flow are displayed at different times.
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CHAPTER 5

GENERATION OF TURBULENCE

In this chapter, we investigate the turbulent field developed in the free-surface flow at

relatively high Reynolds number values, during the interaction between the vortex pair

and the deformed free-surface. As Reynolds number increases, more and more secondary

vortices are produced and turbulence develops.

In order to investigate the turbulence field, we need to explore the statistics of the

flow. Hereafter, the latter are computed by considering the average over the horizontal

As a rough estimate based on the theory of isotropic homogeneous turbulence

(Tennekes & Lumley 1972), we can obtain the (dimensionless) Kolmogorov scale:

for Re = 1000, where £ stands for the integral (large eddy) scale. In our numerical

simulation, the grid size in the main part of the domain is

which is of the same order as the Kolmogorov scale.

It is clear that turbulence has developed at the Reynolds number value Re = 1000

(see also L. Shen, X. Zhang, D. K. P. Yue and G. S. Triantafyllou 1999). Figure 21

displays the turbulence kinetic energy dissipation, turbulence intensity distribution, the

turbulence intensities and the mean flow profiles for the Reynolds and Froude number

values Re =1000, Fr =1.125 .
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Figure 21. Characteristics of the turbulent field for the Reynolds and Froude
number values Re = 1000, Fr = 1.125, at time t = 3.196. (a) Turbulent kinetic
energy dissipation, (b) Turbulence intensity, (c) Mean square of the velocity
fluctuation components (horizontal component: solid line; vertical component:
dashed line), (d) Mean flow velocity profile (horizontal component: solid line;
vertical component: dashed line).
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It is interesting to notice that the turbulence kinetic energy dissipation

increases rapidly as the distance to the free-surface decreases and reaches its maximal

value at the free-surface. This is in agreement with the weakening of the strong kinetic

energy at the free-surface.

Furthermore, the turbulence intensity distribution

is close to zero at large depths below the center of the primary vortices where the fluid is

quiescent. As one approaches the free-surface, it increases and reaches two maxima, one

at the level of the center of the point vortex, the other one (higher than the first one) at the

free-surface.

Finally, it is worth mentioning that the turbulence intensity (or turbulence kinetic

reached at the level of the center of the primary vortices. This is somewhat contradictory

with the following "feature" of free-surface turbulence previously reported by other

authors. Others have indeed observed an increase in the horizontal velocity fluctuation at

the expense of the vertical velocity fluctuation at the free-surface. This discrepancy is

due to the fact that our Froude number is relatively large and that our treatment of the

free-surface permits large vertical deformations of the latter.

Finally, we summarize our results as follows:

1) the turbulence region is concentrated in a surface layer located below the free-surface

and around the center of the primary vortices;



69

2) The maximal turbulent kinetic energy dissipation occurs at the highly deformed free-

surface, while a second local maximum is observed near the center of the primary

vortices;

3) The turbulence intensity reaches its maximal value near the center of the primary

vortices, and it is non-zero at the free-surface;

4) The turbulence intensity at the free-surface and in the surface layer mainly consists of

its vertical component, v' 2 , which has a sharp maximum near the center of the primary

vortices;

5) Below the center of the primary vortices, both the turbulence dissipation and

turbulence intensity decrease to zero rapidly as the distance to the free-surface increases.



CHAPTER 6

CONCLUDING REMARKS

In conclusion, the interaction between a pair of vortices and a highly deformable free-

surface has been numerically simulated by using a finite difference scheme with an

adaptive grid technique. The Froude and Reynolds numbers considered here are larger

than those considered in past numerical simulations. The success of our numerical

scheme is due to an adaptive mesh and a highly implicit technique. In addition, we gave

careful consideration to numerical stability which was crucial to the successful numerical

simulation of the highly nonlinear, unsteady and moving boundary fluid flow problem

considered in this thesis. The free-surface boundary condition is fully non-linear, thus

allowing the free-surface to deform until its slope becomes very large (corresponding, in

nature, to wave breaking). Reynolds numbers higher than those reached by previous

numerical simulations are considered, up to Re =1000 . In most cases, Froude number is

kept at the value of Fr =1.125 , although runs at different values were also performed in

order to determine the influence of the latter on the flow.

For all parameter values explored in this work, the vortex pair always starts its

motion by approaching the free-surface, following Lamb's solution during the early stage

of its ascension. At very low Reynolds numbers, the vortices turn around and rebound

away from the free-surface. The rebounding phenomenon, however, is absent in high

Reynolds number flows; in this case, the vortex pair trajectory is almost vertical.

As the vortex pair ascends, it deforms the free-surface, forming a domed area around

the symmetric line until the slope of the free-surface becomes so steep that the free-

surface breaks down (which, of course, does not happen in the computation due to the

presence of the singularity in the derivative of the free-surface elevation). The larger the

Reynolds number is, the higher the (almost) vertical part of the free-surface becomes.
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Meanwhile, the curved part of the free-surface flattens. Above a certain Reynolds

number threshold, the elevation of the free-surface is accompanied by depressions on

both sides of the dome. The depressions become more and more pointed, forming a

cusp-like shape at the highest Reynolds number values.

At high Reynolds number values, the large free-surface deformation triggers the

generation of strong vorticity at the free-surface. While the vorticity is negative below

the domed area, the vorticity is positive at the scar. This sign difference can be explained

by the change of curvature of the free-surface elevation. One can observe the generation

of vorticity in Figure 22 where the free-surface vorticity is plotted as a function of

position, at three various times, for Re = 100, Fr = 0.8 and Fr = 1.125. The vorticity at

the interface is initially zero and develops a significant jump from negative to positive

values at later times. Figure 23 displays similar plots at various Reynolds number values,

Re = 100, 500, 1000, and Fr = 1.125. It is clear that as Reynolds number increases, the

vorticity jump becomes narrower. In addition, the formation of positive vorticity below

the scar increases significantly with Reynolds number, the peak being at about 4 = 5 at

Re =100 , 4 = 100 and larger at Re = 500 and 1000. The negative vorticity

corresponding to the domed area also increases as Reynolds number increases to Re =

500, but decreases from Re = 500 to Re = 1000. This decrease of vorticity may be due to

vortex interaction as many small vortices are generated at this high Reynolds number. It

is also interesting to notice that the vorticity at the free-surface is always higher in

absolute value than the vorticity which has generated it, that is below the free-surface.

The variation of the kinetic energy at the free-surface with the Reynolds number can be

can be observed in Figure 24. In all cases, the kinetic energy is very small, except over

small distance. In this short interval, the kinetic energy is rather small at Re = 100,

increasing significantly at Re = 500, but decreases again as Reynolds number increases
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beyond Re = 500. This decrease is due to the increase of the turbulent kinetic energy

dissipation, as described in Chapter 5.

Regarding the generation of turbulence, the following remarks could be made:

• the turbulence region is concentrated in a surface layer located below the free-surface

and around the center of the primary vortices.

• The maximal turbulence kinetic energy dissipation occurs at the highly deformed

free-surface, while a second local maximum is observed near the center of the

primary vortices;

• The turbulence intensity reaches its maximal value near the center of the primary

vortices, and it is non-zero at the free-surface;

• The turbulence intensity at the free-surface and in the surface layer mainly consists of

its vertical component, v' 2 , which has a sharp maximum near the center of the

primary vortices;

• Below the center of the primary vortices, both the turbulence dissipation and

turbulence intensity decrease to zero rapidly as the distance to the free-surface

increases.

Finally, the effect of Froude number can be understood as follows. At low Froude

numbers, the free-surface is stiff, acting as a barrier to the ascending vortex pair. In

contrast, larger Froude numbers correspond to a highly deformable free-surface. At large

Reynolds numbers for which the surface deformation is very large, a way to decrease

such a deformation is to decrease Froude number. In this case, the free-surface

deformation can be considered very small, as in many previous works. In the latter, the

free-surface is assumed to remain either flat or deform linearly. This assumption breaks

as Froude number increases.



Figure 22. Free-surface vorticity versus horizontal position for different Froude
numbers at the Reynolds number value. Left: Free-surface vorticity for the
Froude number value Fr = 0.8, at times (a) t = 2.0, (b) t = 3.0, (c) t = 3.65 (the last
moment). The extremal vorticity value below the free-surface is: -23.54 at t =
2.0, -16.77 at t = 3.0, -13.89 at t = 3.65, right: Free-surface vorticity for the
Froude number value Fr = 1.125, at times (a) t = 2.0, (b) t = 3.0, (c) t = 3.57 (the
last moment). The extremal vorticity value below the free-surface is: -24.40 at t
= 2.0, -17.20 at t = 3.0, -14.61 at t = 3.57.



Figure 23. Free-surface vorticity versus horizontal position for the Froude number value Fr =
1.125 for different Reynolds numbers. It can be observed that for higher Reynolds number, the
free-surface vorticity can be much larger than the vorticity values below the free-surface. Left:
Free-surface vorticity for the Reynolds number value Re = 100, at times (a) t = 2.0, (b) t = 3.0,
(c) t = 3.57 (the last moment). The extremal vorticity value below the free-surface is: = -24.40 at
t = 2.0, -17.20 at t = 3.0, -14.61 at t = 3.57. Center: Free-surface vorticity for the Reynolds
number value Re = 500, at times (a) t = 1.5, (b) t = 3.0, (c) t = 3.1 (the last moment). The
extremal vorticity value below the free-surface is: -80.39 at t = 1.5, -54.65 at t = 3.0, -53.30 at t =
3.1. Right: Free-surface vorticity for the Reynolds number value Re = 1000, at times (a) t = 1.5,
(b) t = 3.0, (c) t = 3.196 (the last moment). The extremal vorticity value below the free-surface
is: -102.4 at t = 1.5, -80.42 at t = 3.0, -59.38 at t = 3.196.



Figure 24. Free-surface kinetic energy as a function of horizontal position x
for the following Reynolds and Froude numbers, and at the following times:
(1) Re = 100, Fr = 1.125 at t = 3.57 (blue dashdot line),
(2) Re = 500, Fr = 1.125 at t = 3.10 (green dashed line), (3) Re = 1000,
Fr = 1.125 at t = 3.196 (red solid line), and (4) Re = 2000, Fr = 1.125
at t = 3.082 (black dotted line).



APPENDIX A

DERIVATION OF EQUATIONS (2.6) AND (2.7)

We assume that there is a unique, single-valued relationship between the coordinates

or

J denotes the Jacobian matrix, that is

From Equation (A-1), we can write the following equations
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which imply

and
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We now consider the conservative form of the x-component of the momentum equation

and express each of its terms in curvilinear coordinates, i.e.



Regrouping the two terms contributing to the viscous force, we obtain
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Since



we can write the viscous term as follows.
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Similarly, the time derivative term can be expanded

This implies

We thus deduce the expression of the x-component of the momentum equation in

curvilinear coordinates, or Equation (2.4), that is



Similarly, we express the y-component of the momentum equation, i.e.
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in curvilinear coordinates and obtain Equation (2.7)



APPENDIX B

DERIVATION OF THE EQUATIONS TO DETERMINE THE
PHYSICAL-SPACE COORDINATES

physical-space coordinates (x,y) is defined in the present work by Poisson equations

Since the expression of the Jacobian matrix is
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Similarly, the manipulation of the second derivative of 4 with respect to y gives

Likewise, we obtain the second derivatives of η with respect to x and y:
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Taking into account the identities



and denoting A and B the following quantities

Equations (3.12) and (3.13) become

Solving (B-11) leads to

that is
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which are precisely Equations (3.2) and (3.3) mentioned in the text .



APPENDIX C

THE BOUNDARY CONDITIONS FOR FREE-SURFACE FLOW
DERIVATIONS OF EQUATIONS (2.14), (2.15) AND (2.16)

Equations (2.11), (2.12)

In order to obtain the free-surface velocity boundary condition, continuity of stress is

required. Neglecting the viscous stresses of the atmosphere, the non-dimensional stress

at the free-surface can be written as

where

n i --- unit normal vector,

ps--- atmospheric pressure,

p --- flow free-surface pressure,

i,j=1,2 in 2D.

This implies

which can be written in the form of the two equations
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Assuming that the atmospheric pressure is zero, i.e. p, = 0 , Equations (C-5) and (C-

6) become

Considering that

Equations (C-7) and (C-8) give

and
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These are precisely Equations (2.11) and (2.12) we mentioned earlier.

Equations (2.14), (2.15) and (2.16)

We now consider the free-surface boundary condition for the velocity components u and

v , that is derive Equations (2.14) and (2.15). In this derivation, all the equations are

written at the free-surface, i.e. at y = Y.

Because the unit normal to an Ti -line is

we can write

Substituting the identity (C-10) into equations (C-7) and (C-8), we obtain

and

which can be rewritten as

and



In the computational domain, Equation (C-11) gives

and therefore,

This implies
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From the continuity equation, we can write

Taking this into account, Equation (C-14) becomes
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This leads to the expression of the u-component of the velocity at the free-surface in the

computational domain

Similarly, the v-component of the velocity at the free-surface can be obtained from

Equation (C-12):

expression of the pressure.



APPENDIX D

DERIVATION OF THE INITIAL INDUCED VELOCITY
OF THE POINT VORTEX.

We now restrict ourselves to the two-dimensional situation. In this case, Equations (D-1)

and (D-2) imply that the velocity induced by the k-th point vortex at any arbitrary point

M(x,y) can be written as
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in the case where there are n simultaneously existing point vortices, the induced velocity

at the point M (x , y) becomes

If the point M coincides with the location of the j-th point vortex, then, according to

Equation (D-5), the remaining n —1 point vortices will make this point vortex move with

the induced velocity

Choosing n = 2 in Equation (D-6), we obtain the velocity of the point vortex due to the

two point vortex's interaction as follows:

and
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This illustrates why the vortex pair moves vertically towards the free-surface.

We now show that it is possible to calculate the initial speed of the vortex pair from

our initial condition (given by Equations (D-1) and (D-2)):
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