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ABSTRACT

SYNTHESIS AND CHARACTERIZATION OF
LOW PRESSURE CHEMICALLY VAPOR DEPOSITED

BORON NITRIDE AND TITANIUM NITRIDE FILMS

by
Narahari Ramanuj a

This study has investigated the interrelationships governing the growth kinetics, resulting

compositions, and properties of boron nitride (B-C-N-H) and titanium nitride (Ti-N-CI)

films synthesized by low pressure chemical vapor deposition (LPCVD) using ammonia

(NH3)/triethylamine-borane and NH 3/titanium tetrachloride as reactants, respectively.

Several analytical methods such as the FTIR, UV/Visible spectroscopy, XPS, AES, RBS,

SEM, and XRD were used to study the stoichiometry and structure of the deposited films.

The B-N-C-H films were synthesized over a temperature range of 300 to 850°C at various

flow rate ratios of the reactants and total pressure range of 50 to 150 mTorr. The deposits

were amorphous in all cases having an index of refraction ranging between 1.76 and 2.47

depending on the composition of the films. The stress of the deposited films varied from

+240 to —200 MPa, depending on the deposition parameters. The hardness and Young's

modulus were found to be between 5 to 12 GPa and 50 to 120 GPa, respectively.

Electrical properties of the BN films were measured using metal-insulator-metal (MIM)

and metal-insulator-semiconductor (MIS) structures. The films did not react with water

vapor and exhibited dielectric constant between 3.12 and 5.5. Free standing X-ray

windows with thickness varying from 2000A to 12,000A, were fabricated using the mildly

tensile and compressive films and X-ray transmission studies through these windows



indicate significantly lower absorption when compared to the commercially available

polymeric X-ray windows.

The Ti-N-Cl deposits exhibited an Arrhenius dependence in the deposition temperature

regime of 450 to 600 °C from which an activation energy of —42 kJ/mol was calculated.

The growth rate dependencies on the partial pressures of NH 3 (50 to 100 mTorr) and

TiCl4  (1 to 12 mTorr) yielded reaction rate orders of 1.37 and —0.42 respectively. Films

with compositions trending towards stoichiometry were produced as the deposition

temperature was decreased and the NH 3 partial pressure was increased. The chlorine

concentration in the films was observed to decrease from —8 % (a/o) at the deposition

temperature of 450 °C down to —0.2 % (a/o) at 850 °C. The film density values increased

from 3.53 to 5.02 g/cm 3 as the deposition temperature was increased from 550 to 850 °C.

The resistivity of the films was dependent on changes in deposition temperature and flow

rate ratios. The lowest resistivity value of 86 μΩcm was measured for a deposition

temperature of 600°C and an NH3/TiCl4 flow ratio of 10/1.The film stress was found to be

tensile for all deposits and to decrease with higher deposition temperatures. Nano-

indentation measurements yielded values for the hardness and Young's modulus of the

films to be around 15 and 250 GPa, respectively. X-ray diffraction measurements revealed

in all cases the presence of cubic TiN phase with a preferred (200) orientation. For the

investigated aspect ratios of up to 4:1, the deposits were observed to exhibit conformal

step coverage over the investigated range of processing conditions.
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CHAPTER 1

INTRODUCTION

Legend tells of a very rich and powerful Maharaja in Kashi, called Purushotama (1400

AD), who ruled most of India during its golden period. Known for his generous charities

and confidence in his ability at the game of chess, he put forth an open challenge to

everyone and promised to grant any wish to the victor. Finally, a wise Brahmin defeated

him and on being asked to name his reward, the Brahmin asked only to be given one grain

of rice for the first square of the chess board, two for the second, four for the third and so

on. Foolishly the king agreed to this seemingly trivial request. Anyone who has never tried

to calculate the numbers corresponding to the other squares will appreciate how the

repeated doubling rapidly produces huge numbers: the number of grains of rice for the

sixty-four square is a nineteen digit number, far in excess of the total number of grains of

rice in the world.

The phenomenal rise of the integrated circuit, better known as silicon chip, is due to a

similar exponential increase'. The origin of the integrated circuit can be traced back to the

developments in 1959 by Jack Kilby at Texas Instruments and Robert Noyce at Fairchild

Semiconductor Corporation, laying the foundations for what was to follow. Two years

later a circuit comprising of four transistors was successfully fabricated on a single piece

of silicon, and over the next few years increasingly complex circuits were produced. In

1964 Gordon Moore, also at Fairchild, examined this trend and predicted that the number

1
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of transistors on a chip would continue to double every year. This now famous prediction

has come to be known as Moore's law.

Just like the Brahmin's request, it is hard to grasp the implications of Moore's law, and yet

Moore's law continues to hold true after thirty-five years. Granted, the rate of increase has

slowed down somewhat so that the current rate of increase is closer to a factor of two

every two years. Nevertheless, it is now possible to accommodate around 64 million

transistors on a single chip. In terms of the chessboard analogy we are at about the

twenty-sixth square, with little sign of the progress slowing.

It may be helpful to put the evolution of the computer into a larger historical context.

Many computer analysts divide the history of the computer into three or more distinct

phases2 . The first phase was dominated by the clunky but powerful mainframe computer,

pioneered by IBM, Burroughs, Honeywell, and others. These systems were so expensive

that entire division of scientists and engineers were forced to share one machine.

The second phase of computing began in the early 1970s, when the engineers at Xerox

PARC realized that the computer power was exploding even as the size of the chips was

imploding. They envisioned a ratio of computers to people that would eventually reach

one-to-one. To test their ideas, in 1972 they created ALTO, the first PC ever built.

The third phase of computing is now known as ubiquitous computing, which refers to a

time when computers will be connected to each other and the ratio of computers to people
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flips the other way, with as many as one hundred computers for every person. It is

estimated that by 2020, the era of ubiquitous computing should be in full flower. Beyond

2020, it is likely that the reign of silicon will end and entirely new computer architectures

will have to be created. Computer analysts believe that this will lead to a fourth phase, the

introduction of artificial intelligence into computing systems. From 2020 to 2050, the

world of computers may well be dominated by invisible, networked computers having the

power of artificial intelligence, reason, speech recognition, even common sense. "Long-

term, the PC and workstation will wither because computing access will be everywhere: in

the walls, on wrists, and in 'scrap computers' (like scrap paper) lying about to be grabbed

as needed." — Mark Weiser, Xerox PARC. The drive towards invisibility of the PC may be

a universal law of human behavior. As Weiser says: "Disappearance is a fundamental

consequence not of technology but of human psychology. Whenever people learn

something sufficiently well, they cease to be aware of it."

Today transistors are made by using beams of light to make microscopic grooves and lines

on silicon wafers (a process called "photolithography"). Computer experts today debate as

to how many transistors can be crammed into a microprocessor by means of this etching

process. The Motorola Power PC 620, for example has almost seven million transistors

squeezed into silicon chips smaller than a postage stamp. This miniaturization process

however cannot continue indefinitely. There is a limit to how many wires can be etched on

a wafer. This limit is the result, in part, of the wavelength of the light beam.
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Typically, light beams do the etching of silicon wafers from a mercury lamp, which have

wavelengths measured in microns. Over the last few decades, Moore's law has been

driven by using increasingly smaller and smaller wavelengths of mercury light to

manufacture microprocessors. Mercury lamps emit light of wavelength 0.43 micron and

0.365 micron (ultraviolet). These distances are about 300 times thinner than a human hair.

The technology that may dominate the first few years of this century, perhaps untill 2005,

is based on the pulsed excimer laser, which can push the wavelength down to 0.193

micron (deep UV). But beyond 2020, this process will end and entirely new technologies

will be required.

In the past the increase in the number of devices on a chip has been almost totally due to

constant improvements in the fabrication methods, enabling ever-smaller devices and more

complex circuits to be constructed. Quite amazingly, amidst such a rapidly changing

environment, the transistor itself has changed very little. Progress has been made simply be

scaling down the dimensions of the individual devices and adjusting certain related

properties accordingly. However several factors suggest that this approach may not be

viable for much longer. If this trend is to continue into the twenty-first century, a

replacement for the conventional semiconductor transistor must be found.

There are several advantages of integration. The prime intention for this dramatic

miniaturization has been an economic one. It costs little more to manufacture a chip

containing one million components than it does to produce a single discrete device. In

addition, the chip already contains the necessary interconnections between the



components, whereas discrete devices have to be individually connected to form a circuit,

a process that is both expensive and unreliable. This means that an integrated circuit

manufacturer who wants to remain competitive has been forced to follow, if not lead the

way, in producing ever more complex circuits on a single chip. The other key factor is

performance. Small transistors operate faster than larger ones and at the same time are

more reliable since the electrical contacts within an integrated circuit are far less likely to

fail than the conventional soldered joints used to attach discrete components on to a

circuit board.

At the same time as the circuit size has been increasing, the size of the individual

components has decreased substantially. This has been achieved primarily by progressively

refining the photolithographic techniques, allowing finer structures to be resolved. The

benefits of this reduction in size are easy to appreciate. If we reduce all of the dimensions

by a factor of two, then four times as many devices can be squeezed on to the same area

as before. Since the cost of a circuit is effectively governed by the surface area that it

occupies, this reduces the cost per function by a factor of four. There is also a second

major incentive to reduce the size of the individual components, and that is the effect it has

on the speed of the operation of the devices. The speed of a MOSFET is governed by the

time it takes an electron to cross the gate region. By reducing this distance by a factor of

two we therefore also obtain a similar increase in the performance of the devices. These

advantages of reduced cost, smaller size and increased performance have fuelled the rapid

increase in the number of electronic devices that can be placed on a single chip.



Having the technology to transfer the image to the wafer is not the only problem

associated with manufacturing smaller devices. As the size of the individual devices is

reduced, the chance of a microscopic dust particle causing a catastrophic failure of one of

the elements increases. Also, since several lithographic stages are required, it is vital that

each mask should be precisely aligned on the wafer. Current technology is more than able

to cope with these requirements, and therefore on the manufacturing side there seems little

reason why the progress towards ever-smaller devices should not continue at least into the

next century.

A second point concerns the devices themselves. How far can the dimensions of a

transistor be reduced before it ceases to function in the desired way? The rules governing

the behavior of these structures as the dimensions are reduced, or scaled, are in principle

quite straightforward — all the dimensions, both lateral (along the surface of the chip) and

vertical (perpendicular to the surface), are reduced by a common scaling factor. Let us

consider the implications of applying a scaling factor of two. As we have already seen, this

leads to a fourfold increase in the number of devices that can be accommodated within a

given area.

Let us suppose for a moment that the current and voltages are maintained at the same

levels as before. The electrical power consumed by each device is given by the product of

the current and switching voltage. Consequently, the power required by each device

remains constant. However, since there are now four times as many devices within a given

area, the power requirements per unit area are increased by a factor of four. This poses a
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serious problem since the power is converted into heat. Consequently, the amount of heat

produced also increases by a factor of four. This excess heat must be dissipated somehow

or the temperature of the chip will increase until something catastrophic occurs. As it is, a

standard chip produces about the same amount of power as a dim light bulb. This may not

sound like terrific amount, but it is actually several times more than the amount of heat

produced by the same area of an element on an electric cooker.

The usual way to combat this problem is to apply a technique known as constant field

scaling. Since the distance between the source and drain has been reduced by the scaling

factor of two, we need to reduce the voltage difference by a similar factor in order to

obtain the same gradient as before. The switched voltage is reduced by the scaling factor,

as is the current flowing through the device. Consequently, the power produced by each

device decreases by a factor of four.

The greatest problems facing further miniaturization of integrated circuits concern the

humble interconnect, the tiny connecting lines that form the electrical links between the

devices on the chip. Various materials are used to form these conducting elements,

ranging from heavily doped silicon, to silicides and metals, principally aluminum and

copper. One of the key problems with interconnects is their resistance to the flow of an

electric current. The time required for propagation of electrical signals depends on two

factors. These are the resistance of the wire to the flow of current, and the capacitance, or

amount of charge stored in the system. The time taken for a signal to propagate along a

wire is therefore dependent on what is called the RC factor, the product of resistance and
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capacitance of the wire. It may seem surprising that the time depends not explicitly on the

length of the wire, but there is a strong implicit dependence since both resistance and

capacitance vary with the length of the wire.

The most obvious approach when reducing the size of components in integrated circuits is

to scale the interconnects in the same manner, so that the width and thickness of the

connecting wires are decreased accordingly. We can predict the effects of these measures

by considering how the resistance and capacitance change under such scaling. Let us

examine capacitance first. The interconnect runs across the top surface of the

semiconductor below. The amount of charge stored in the interconnect depends inversely

on the thickness of the oxide layer separating the interconnect from the semiconductor

wafer. We have proposed that the width of the interconnect is reduced by the scaling

factor of two, but how does the length of the interconnect change? For the time being let

us suppose that it is also subject to the same factor. From these considerations we estimate

that the area of the interconnect in contact with the surface of the oxide is a factor of four

times smaller in the scaled circuit. However, this partially offset by the fact that the oxide

layer is reduced in thickness, and so overall the capacitance decreases by a factor of two.

This result seems quite promising, but the effects of scaling on resistance are not so good.

As the cross-sectional area of the wires is reduced it becomes increasingly difficult for the

current to flow through the wires, and so the resistance increases. If both the thickness

and width of the interconnects are scaled, then the cross-sectional area is reduced by a

factor of four and the resistance increases accordingly. However, since the resistance is
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also proportional to the length of the wire, we find that overall the resistance is also

proportional to the length of the wire, we find that overall the resistance increases by a

factor of two. Since the resistance increases by the same factor as the capacitance

decreases, the time delay stays the same as in the unscaled system. This is bad news.

Although the switching times of the individual devices are reduced by scaling, the delays in

propagating signals between them are not. This suggests that the speed of an integrated

circuit will ultimately be limited by the need for devices to communicate with one another.

We have seen that the current flowing between the devices is reduced by a factor of two,

but the cross sectional area of the wires is reduced by a factor of four. As a result the

current per unit area is twice as large as it was before scaling. Since the decrease in the

cross-sectional area also leads to an increase in resistance, this in turn means that more

heat is generated as the current flows through the wire. The heat causes the ions to vibrate

rapidly, and since they are under constant bombardment from the concentrated flow of

electrons, they may literally be wrenched out of their lattice sites. This movement of the

ions, known as electromigration, may be so severe that all the atoms in a small region are

removed, physically destroying the connection.

This assessment of the effects of scaling the interconnects may seem pessimistic, but in

reality the situation can be much worse. We assumed in our argument that the length of

the interconnect scales down in proportion to the other dimensions, but this is not

necessarily the case. In particular, although great efforts are taken in the layout of the

circuits, there is always a requirement for some long interconnects which pass from one
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side of the chip to the other. Obviously, these are not reduced in length as the size of the

device is reduced. If anything the trend to increase the size of the individual circuits has

tended to make these interconnects progressively longer. This poses serious problem. If

we repeat the above analysis but consider the interconnect length to remain the same with

scaling, then we find that reducing the dimension by a factor of two means that

capacitance remains the same, while the resistance increases by a factor of four. In

consequence, the time taken for a signal to propagate along these long interconnects will

actually increase quite dramatically with scaling.

We arrive at the following conclusion that putting too many devices on a chip may

seriously slow down the operating speed of the system. What can be done about this? The

answer to any question lies in the 3 pillars of science, which are Matter, Life, and Mind.

Matter forms the building block of anything that exists and determines the behavior of the

macroscopic properties. In this case there are 4 materials to be dealt with, Semiconductor,

Insulator, and Conductor. Gallium Arsenide has already been studied as an alternative for

the semiconductor and devices with higher efficiency and speed have been fabricated and

used in wireless communication chips. Copper has found its way into the chip by replacing

aluminum as the metallic conductor because of its lower resistivity. As for the insulator

and conducting materials, the need is for lower dielectric constant, lower resistivity, and

higher thermal stability. This has been our motivation for extensively investigating Boron

Nitride and Titanium Nitride as promising materials for the above mentioned and several

other applications.



11

Nitride ceramics combine the superior hardness of ceramics with high thermal and

mechanical stability, making them suitable for applications as cutting tools, wear-resistant

parts and structural components at high temperatures'. Boron nitride is a very promising

inorganic dielectric material because of its low atomic number, chemical inertness and

thermal stability4 . Titanium nitride on the other hand is attractive as a metallic conducting

film with superior mechanical, thermal, optical and electrical properties 5 .

The boron nitride films have properties such as multiband electro-, photo-, and cathode-

ray luminescence6, electrically insulating, chemically inert, thermally stable, resistant to

corrosion, and having desirable mechanical properties. Potential applications of boron

nitride films include using the boron nitride film as high temperature dielectric', heat-

dissipation coatings8, passivation layers 6, diffusion sources of boron9, and sodium barrier6 .

Since boron nitride is highly transparent to x-rays, it can be used in the fabrication of

masks for x-ray lithography 10 . Also, the lubricative characteristics of its laminar structure

make it a uniquely qualified material for fiber coatings in ceramic matrix composites

(CMC)4 .

Titanium nitride is an extensively investigated material because of its many potential

applications. It is already widely used as a wear resistant coating on tools'', as a gold

substitute for decorative coatings, and for thin film resistors. The integrated circuit (IC)

industry has also shown an increasing interest in TiN because of its thermal stability, good

diffusion barrier properties, and low electrical resistivity 12-13 . Recently TiN films have been

investigated as a contact layer for silicon and as a gate electrode in



metal/oxide/semiconductor integrated circuits". Potential applications also include solar

energy absorber and transparent heat mirror because of its optical properties in the visible

and IR regions 15-16  These different applications of TiN result from its properties, which

depend on the composition (Ti:N ratio), impurity (0 2,Cl,etc.) content and the structure,

which in turn depend on the growth technique used and the deposition parameters

employed.

The RC time delay can be reduced by using a low dielectric constant material between the

interlevel metals, or by using a refractory low resistivity barrier material between the poly

and the metal film. This results in a reduction of the wiring capacitance between interlevel

metals and a decrease in the resistance of the metallic film, which enhances switching

performance. A desirable interlevel dielectric (ILD) material should exhibit, in addition to

a low dielectric constant, low mechanical stress, high thermal stability, and low moisture

absorption. Several ILD candidates have been explored over the last few years including

fluorinated SiO2 17-27, fluorinated polymers28,29, aerogels, and boron nitride30,31 Boron

nitride films produced by LPCVD offer an attractive combination of properties that

include high mechanical strength, good optical and x-ray transparency, chemical inertness,

low coefficient of thermal expansion, high thermal conductivity and thermal stability. A

desirable conducting metallic film should exhibit good thermal stability and chemical

passiveness, in addition to low resistivity. In recent years, Titanium nitride films are

conventionally deposited by reactive sputtering32, however these films suffer from poor

step coverage due to the shadowing effect, resulting in inadequate heat resistance.

LPCVD can realize such desirable properties if the surface reaction deposition mechanism



13

is dominant. Presence of chlorine in the TiN films is a reliability threat and is likely to

shorten the lifetime of an integrated circuit, because the metal alloy on the TiN film could

be easily corroded by chlorine. All the current and potential applications of the B-N-C-H

and Ti-N-Cl films depend on the film properties which further depends on the growth

parameters. Hence, a study was initiated to investigate the influence of the process

parameters on growth rate and film properties of LPCVD TiN.

1.1 Thin-Film Deposition Methods

Thin-film deposition techniques have traditionally been used in the microelectronics

industry for microchip coating, wear and corrosion resistance, and thermal protection.

Deposition methods can be classified under two groups: Physical Vapor Deposition

(PVD) and Chemical Vapor Deposition (CVD).

1.1.1 Physical Vapor Deposition

Physical vapor deposition (PVD) is mainly focused into two categories, evaporation and

sputtering. The objective of these deposition techniques is to controllably transfer atoms

from a source to a substrate where film formation and growth proceed atomistically,

without the need of a chemical reaction.

In evaporation, atoms are removed from the source by thermal means, whereas in

sputtering the atoms are dislodged from a solid target by the impact of gaseous ions.

Advances in vacuum-pumping equipment and Joule heating sources spurred the

emergence of PVD as a suitable industrial film deposition process. In general, the
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properties of the film obtained by PVD are governed by the following: evaporation rate of

the atoms, vapor pressure of the target materials, deposition geometry, temperature,

pressure, and thermal history of the substrate28 .

Traditionally, evaporation was the preferred PVD technique over sputtering. Higher

deposition rates, better vacuum (thus cleaner environments for film formation and

growth), and versatility in the fact that all classes of materials can apply were some of the

reasons for the dominance of evaporation. The microelectronics revolution required the

use of alloys with strict stoichiometric limits, which had to conformally cover and adhere

well to substrate surfaces. This facilitated the need for the sputtering technique and so, as

developments were made in radio frequency, bias, and magnetron variants, so were

advances made in sputtering. The decision to use either technique depends solely on the

desired application and has even spurred the development of hybrid techniques 28 . A

comparison of the two is given in Table 1.1.
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Table 1.1 Evaporation vs. Sputtering

Evaporation	 Sputtering

A. Production of Vapor Species

1. Thermal evaporation mechanism Ion	 bombardment	 and	 collisional
momentum transfer

2. Low kinetic energy of evaporant atoms
(@ 1200K , E = 0.1 eV)

2. High kinetic energy of sputtered atoms
(E = 2-30 eV)

3. Evaporation rate — 1.3 x 10 17 atoms/cm2-
sec

3. Sputter rate ~ 3 x 10 16 atoms/cm2-sec

4.	 Directional	 evaporation	 according to
cosine law

4.	 Directional	 sputtering	 according	 to
cosine law at high sputter rates

5. Fractionation of multicomponent alloys,
decomposition, and dissociation of
compounds

5. Generally good maintenance of target
stoichiometry, but some dissociation of
compounds

6. Availability of high evaporation source
purities

6.	 Sputter	 target	 of	 all	 materials	 are
available; purity varies with material

B. The Gas Phase

1.	 Evaporant	 atoms	 travel	 in	 high	 or
ultrahigh	 vacuum	 (~	 10-6 	 - 	 10-10 	 ton)
ambient

1. Sputtered atoms encounter high pressure
discharge region (~ 100 mtorr)

2. Thermal velocity of evaporant 10 5 cm/sec 2. Neutral atom velocity ~ 5 x 104 cm/sec
3. Mean-free path is larger than evaporant-
substrate spacing; evaporant atoms undergo
no collisions in vacuum

3.	 Mean-free	 path	 is	 less	 than	 target-
substrate spacing; Sputtered atoms undergo
many collisions in the discharge

C. The Condensed Film

1. Condensing atoms have relatively low
energy

1. Condensing atoms have high energy

2. Low gas incorporation 2. Some gas incorporation
3.	 Grain	 size	 generally larger than for
sputtered film

3. Good adhesion to substrate

4. Few grain orientations (textured films) 4. Many grain orientations
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Chemical vapor deposition is discussed next. Some factors that distinguish PVD from

CVD are:

1. Reliance on solid or molten sources

2. Physical mechanisms (evaporation or collisional impact) by which source atoms enter

the gas phase

3. Reduced pressure environment through which the gaseous species are transported.

4. General absence of chemical reactions in the gas phase and at the substrate surface

(reactive PVD processes are exceptions).

1.1.2 Chemical Vapor Deposition

Chemical Vapor Deposition (CVD) is one of the most important methods of film

formation used in the fabrication of very large scale integrated (VLSI) silicon circuits, as

well as of microelectronic solid state devices in general. It may be defined as the formation

of a non-volatile solid film on a substrate by the reaction of vapor phase chemicals

(reactants) that contain the required constituents. In this process, chemicals in the gas or

vapor phase are reacted at the surface of the substrate where they form a solid product. A

large variety of materials, practically all those needed in microelectronic device

technology, can be created by CVD. These materials comprise insulators and dielectrics,

elemental and compound semiconductors, electrical conductors, superconductors and

magnetics. In addition to its unique versatility, this materials synthesis and vapor phase

growth method can operate efficiently at relatively low temperatures. For example,

refractory oxide glasses and metals can be deposited at temperatures of only 300° to

500°C. This feature is very important in advanced VLSI devices with short channel lengths
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and shallow junctions, where lateral and vertical diffusion of the dopants must be

minimized. This also helps in minimizing process-induced crystallographic damage, wafer

warpage and contamination by diffusion of impurities.

1.1.2.1 Overview of Chemical Vapor Deposition Process: The individual process steps

in the CVD technique are outlined as follows 33 :

1. Mass transport in the bulk gas flow region from the reactor inlet to the deposition

zone.

2. Gas phase reactions leading to the formation of film precursors and byproducts.

3. Mass transport of film precursors to the growth surface.

4. Adsorption of film precursors on the growth surface.

5. Surface diffusion of film precursors to growth sites.

6. Incorporation of film constituents into the growing film.

7. Desorption of byproducts of the surface reactions.

8. Mass transport of byproducts in the bulk gas flow region away from the deposition

zone towards the reactor exit.

Schematically, this is seen in Figure 1.1.
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Figure 1.1 Scheme to show the transport and reaction processes underlying CVD.

1.1.2.2 CVD Reactor Systems: CVD reactors are designed to obtain optimal film

thickness, crystal structure, surface morphology, and interface composition. A CVD

reactor system typically consists of a reagent handling arrangement for delivering the

source compounds, a reactor unit, and an exhaust system. The reagent handling system

mixes and meters the gas mixture to be used in the reactor. The design depends on the

source compounds. Gaseous sources are fed from a high pressure gas cylinder through a

mass flow controller, in this case nitrous oxide. Liquid and solid sources are typically used

by contacting them with a carrier gas in a bubbler. The source temperature, carrier gas
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flow rate, and the total pressure of the source determine the amount of reagent

transported from the bubbler. In this study, a carrier gas is not needed because of the high

vapor pressure of DES and the low pressure nature of the deposition. The need for films

with reproducible and controllable optical, electrical, and mechanical properties means that

CVD reagents must be pure, must not produce byproducts that incorporate into the

growing film or interact with gas handling and reactor construction materials.

There are a wide variety of CVD reactor geometries used to accommodate the many CVD

applications. These include horizontal reactor, vertical reactor, barrel reactor, pancake

reactor, and multiple-wafer-in-tube LPCVD reactor. Essentially, this study involves a

multiple-wafer-in-tube LPCVD (low pressure chemical vapor deposition) reactor. LPCVD

is the main production tool for polycrystalline silicon films, especially for the films used in

the microelectronics industry 19-21. A typical configuration for this reactor is shown in

Figure 2.2. This reactor operates around 0.5 Torr and wall temperatures are

approximately equal to those of the deposition surfaces. The main advantage of LPCVD is

that is allows a large number of substrates to be coated simultaneously while maintaining

film uniformity. This is a result of the large diffusion coefficient at low pressures, which

makes the growth rate limited by the rate of surface reactions rather than the rate of mass

transfer to the substrate.

Finally, the exhaust system treats the effluents so that hazardous byproducts are disposed

of in a safe and environmentally sound manner. Mechanical pumps are typically added for
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the low-pressure operation. Dry and wet chemical scrubbers, as well as pyrolysis units, are

used to clean up the reactor effluent.

1.1.2.3 Nucleation and Growth: The growth of a thin film by CVD is initiated by

exposing a substrate to the film precursors in the reactor. The resulting growth and

microstructure of the film is determined by surface diffusion and nucleation processes on

the growth interface, which are influenced by the substrate temperature, reactor pressure,

and gas-phase composition. An amorphous film is formed at low temperatures and high

growth rates when the surface diffusion is slow relative to the arrival of film precursors.

At high temperatures and low growth rates, the surface diffusion is fast relative to the

incoming flux, allowing the adsorbed species to diffuse to step growth and to form

epitaxial layers replicating the substrate lattice. Nucleation occurs at many different points

on the surface at intermediate temperatures and growth rates. Adsorbed species then

diffuse to the islands which grow and coalesce to form a polycrystalline film. The presence

of impurities increases the nucleation density. CVD film growth modes may be

characterized in terms of three main growth models for thin films: Volmer-Weber growth

(three-dimensional island growth), Franck-van der Merwe growth (two-dimensional layer

by layer), and Stranski-Krastanov growth (layer plus island)33 .

1.1.2.4 Chemical Reactions and Kinetics: The versatility of the CVD technique is

demonstrated through the multitude of films synthesized by various reaction schemes,

including pyrolysis, reduction, oxidation, and disproportionation of the reactants. The

underlying chemistry is typically a complex mixture of gas-phase and surface reactions.
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The fundamental reaction pathways and kinetics have been investigated for only a few well

characterized, industrially important systems. These include silane chemistry (pertinent to

this study and discussed in detail in the experimental procedure) and thus silicon

deposition, free-radical reactions, and intramolecular reactions of organometallic

compounds.

1.1.2.5 Reaction Mechanism in CVD: Adsorption, surface reaction and desorption are

important steps in the CVD process, which need to be understood properly in order to be

able to explain the reaction mechanism.

• Adsorption and Desorption: CVD reactions being surface catalyzed, reactants adsorb

on the surface. The simplest expression for the amount of a gas adsorbed on a surface,

is given by the Langmuir Adsorption Isotherm34 as:

where:	 0 = fraction of the total sites adsorbed by the gas,

P = pressure of the gas,

K = equilibrium adsorption constant for the gas.

In CVD reactions, many times, both the reacting species adsorb onto the surface,

thereby resulting in what is known as competitive adsorption. The adsorption

isotherm in this case is given by:

where: OA, OB = fraction of total sites covered by species A and B,

KA, KB = equilibrium adsorption constant for species A and B,
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• Reaction: The surface catalyzed reaction in a CVD process is usually a bimolecular

reaction between the two adsorbed species. In that case, the rate of the reaction is

dependent on the concentration or the fraction of the sites occupied by each of the

species. If this reaction is the rate determining step, which it usually is, the rate of film

deposition can be given as:

This method of treating a surface catalyzed reaction is known as the Langmuir-

Hinshelwood kinetics34 . If one of the pressures is maintained constant and the other is

varied, the rate first increases, passes through a maximum and then decreases. The

falling off of the rate at high pressures can be explained to be due to the fact that one

reactant displaces the other reactant, as its pressure is increased. Two special cases of

equation 1.3 are34 :

1) Sparsely covered surfaces, where both PA and PB are sufficiently low (due to dilution

or very high vacuum), for the pressure terms in the denominator to be neglected, so

that the rate equation (1.3) becomes,

2) When reactant A is weakly adsorbed (i.e. KA << 1), the term KAPA in the denominator

in equation 1.3 might be neglected to give,

Further if the reactant B is very strongly adsorbed so that KBPB >> 1, we have,
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1.1.2.6 Transport Phenomena: Fluid flow, heat transfer, and mass transfer are all

characterized under transport phenomena. Transport phenomena govern the access of

film precursors to the substrate and influence the degree of desirable and unwanted gas-

phase reactions taking place before deposition. The complex reactor geometries and large

thermal gradients of CVD reactors lead to a wide variety of flow structures impacting film

thickness and composition uniformity, as well as impurity levels. Direct observation of

flow is difficult because of a lack of a suitable visualization technique for many systems

and because of practical constraints such as no optical access and possible contamination

of a production reactor. Therefore, experimental observations and approximately chosen

computer models are employed on individual systems 35 .

The sequential steps of deposition process can be grouped into (i) mass transport-limited

regime and (ii) surface-reaction-limited regime. If the mass transfer limits the deposition

process, the transport process occurred by the gas-phase diffusion is proportional to the

diffusivity of the gas and the concentration gradient. The mass transport process that limits

the growth rate is only weakly dependent on temperature. On the other hand, it is very

important that the same concentration of reactants be present in the bulk gas regions

adjacent to all locations of a wafer, as the arrival rate is directly proportional to the

concentration in the bulk gas. Thus, to ensure films of uniform thickness, reactors that are

operated in the mass-transport-limited regime must be designed so that all locations of

wafer surfaces and all wafers in a run are supplied with an equal flux of reactant species.
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If the deposition process is limited by the surface reaction, the growth rate, R, of the film

deposited can be expressed as R = R0* exp(-Ea/RT), where R. is the frequency factor, E a

is the activation energy, usually 25-100 kcal/mole for surface process, R is the gas

constant, and T, the absolute temperature. In the operating regime, the deposition rate is a

strong function of the temperature and an excellent temperature control is required to

achieve the film thickness uniformity that is necessary for controllable integrated circuit

fabrication.

Figure 1.2 Deposition rate as a function of substrate temperature exemplifying diffusion
controlled and surface-reaction controlled regimes

On the other hand, under such conditions the rate at which reactant species arrive at the

surface is not as important. Thus, it is not as critical that the reactor be designed to supply

an equal flux of reactants to all locations of the wafer surface. It will be seen that in

horizontal low-pressure CVD reactors, wafers can be stacked vertically and at very close
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spacing because such systems operate in a surface-reaction-rate limited regime. In

deposition processes that are mass-transport limited, however, the temperature control is

not nearly as critical. As shown in Figure 1.2, a relatively steep temperature range, and a

milder dependence in the upper range, indicating that the nature of the rate-controlling

step changes with temperature.

1.1.2.7 Factors Affecting Film Uniformity: Some of the main factors affecting the film

thickness uniformity in LPCVD are the temperature profile in the reactor, the pressure

level in the reactor and the reactant gas flow rates. To obtain a flat thickness profile across

each substrate wafer throughout the reactor requires a judicious adjustment of these

parameters. In tubular reactors, increase in temperature or pressure, increases the

deposition rate upstream, thereby using up more reactant gases and leaving less to react at

the downstream end; the opposite effect takes place on lowering the temperature and

pressure. Similar effects occur with variations of the reactant gas flow rates at constant

gas partial pressure, or with changes in the size and number of the wafers processed per

deposition run. The uniformity of thickness and step coverage of these films are very

good. These films have fewer defects, such as particulate contaminants and pinholes,

because of their inherently cleaner hot wall operations and the vertical wafer positioning

that minimize the formation and codeposition of homogeneously gas phase nucleated

particulates.
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1.2 Types of CVD Process

As mentioned in the previous section, chemical reactions are very intrinsic to any CVD

process and hence energy in some form or the other must be provided for the desired

chemical reaction to take place. This energy could be supplied by heat (thermal), by an

electric glow discharge (plasma) or by some kind of electromagnetic radiation (e.g. laser).

Depending on the type of energy supplied to initiate and sustain the reaction, CVD

processes have been classified as 35 : (i) Plasma enhanced CVD, (ii) Photo induced CVD,

or (iii) Thermally activated CVD.

1.2.1 Plasma Enhanced CVD (PECVD)

In this method, gaseous reactants are introduced in a region of glow discharge (plasma)

created by applying an electric field, using A/C, D/C or microwave sources, between two

electrodes. This results in the formation of highly reactive species, which react and form a

solid thin film product on the substrate and electrode surfaces. The molecules can be near

to the ambient temperature but the breakdown electrons will be at higher temperatures,

causing the reaction. Thus this method can be employed at relatively low temperature and

is useful for temperature sensitive materials. Film deposition rates are substantially higher

in this method than in thermally activated CVD. Also, conformal step coverage can be

achieved. However, the disadvantage of this method is the complex process that occurs in

the plasma state making the synthesis of stoichiometric films difficult.
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1.2.2 Photo Induced CVD

Short wavelength UV radiation is used to activate the reactants in the gaseous phase

forming the product material. A selective absorption of photon energy by the reactant

molecules or atoms initiates the process. The advantage of this method is low deposition

temperature (needed for films like Si02) and absence of radiation damage. The limitation

of this method is unavailability of effective production equipment. In another type, laser

beams are used for activating the reactants. In yet another type, the reactant atoms or

molecules absorb a specific wavelength of the laser energy applied resulting in chemical

gas phase reaction that are very specific, leading to highly pure film deposits. But, these

methods are still in developing stages35 .

1.2.3 Thermally Activated CVD

This process uses direct thermal energy for the chemical reaction. The simplest type of this

CVD is the conventional atmospheric pressure CVD (APCVD) where the reactant gases

are allowed into the chamber at normal atmospheric pressure. Energy is supplied by

heating the substrate directly. The temperature and the reactant flow rates determine the

film growth rate. The advantage of the APCVD is its simplicity in that no vacuum pumps

are needed. The disadvantage is the tendency for homogeneous gas phase nucleation,

which leads to particle contamination, unless special optimized gas injection techniques are

used. The deposition rate and uniformity of the films deposited using CVD process can be

determined by the rate of mass transfer of reactant gases to the substrate, or the rate of

surface reaction of the reactant gases. In atmospheric pressure CVD, these two rates are

of the same magnitude.
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Lowering the gas pressure by about 3-4 orders of magnitude enhances the mass transfer

rate relative to the surface reaction rate. This makes it possible to deposit films uniformly

with a highly economical close spaced positioning of the substrate wafers kept vertically

inside the chamber. Thus low pressure CVD (LPCVD) is a widely used method in cost

competitive semiconductor industry. Another advantage of this method is that the gas

phase nucleation is reduced.

Depending on the method of supply of thermal energy, CVD reactors can be classified as

either hot wall or cold wall reactors. In a hot wall reactor system, the reactor is heated to

a high temperature and the gas molecules hitting the wall receive the thermal energy. Here,

the substrate is indirectly heated. The advantage of this system is a temperature gradient

that can be provided to the chamber, which results in uniform thickness. In the cold wall

system, the substrate is heated to high temperature directly. The reactants that are

adsorbed on the surface undergo chemical change due to the temperature of the substrate.

But in this case, controlling the wafer's temperature is difficult and hence uniform

deposition is difficult to achieve.

1.3 Low Pressure Chemical Vapor Deposition (LPCVD) Process

Most LPCVD processes use resistance heating to attain isothermal conditions so that the

substrate and the reactor walls are of similar temperature. However, infrared radiation

heating techniques are also sometimes used.
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The mass transfer of the gases involves their diffusion across a slowly moving boundary

layer adjacent to the substrate surface. The thinner this boundary layer and the higher the

gas diffusion rate, the greater is the mass transport that results. Surface reaction rates, on

the other hand, depend mainly upon reactant concentration and deposition temperature. In

LPCVD, the rate of mass transfer is enhanced with respect to the heterogeneous surface

reaction rate by lowering the gas pressure. This improved rate of mass transfer makes it

possible to deposit films uniformly even on closely placed wafers. Moreover, high

deposition rates are attainable with LPCVD because of the large mole fraction of reactive

gases in the reactor, since no or little diluent gas is required 36 .

Some of the main factors affecting the film thickness and uniformity in LPCVD are the

temperature profile in the reactor, the pressure level of the reactor and the reactant gas

flow rates. To obtain a uniform thickness profile across each substrate wafer throughout

the reactor, a judicious adjustment of these parameters is required'. In general, the

uniformity of thickness and step coverage of the films obtained by LPCVD is very good.

These films have fewer defects, such as particulate contaminants and pinholes, due to their

inherently cleaner hot wall operations and the vertical wafer positioning that minimize the

formation and codeposition of gas phase particulate".

1.3.1 Advantages of CVD

Thin films are used in a host of applications in VLSI fabrication, and can be synthesized by

a variety of techniques. Regardless of the method by which they are formed, however, the

process must be economical, and the resultant films must exhibit uniform thickness, high
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purity and density, controllable composition and stoichiometries, high degree of structural

perfection, excellent adhesion and good step coverage. CVD processes are often selected

over competing deposition techniques because they offer the following advantages:

1. A variety of stoichiometric and non-stoichiometric compositions can be deposited by

accurate control of process parameters.

2. High purity films can be deposited that are free from radiation damage without further

processing.

3. Results are reproducible.

4. Uniform thickness can be achieved by low pressures.

5. Conformal step coverage can be obtained.

6. Selective deposition can be obtained with proper design of the reactor.

7. The process is very economical because of its high throughput and low maintenance

costs.

1.3.2 Limitations of CVD

Fundamental limitations of CVD are the chemical reaction feasibility and the reaction

kinetics that govern the CVD processes. Technological limitations of CVD include the

unwanted and possibly deleterious but necessary by-products of reaction that must be

eliminated, and the ever present particle generation induced by homogeneous gas phase

nucleation that must be minimized.
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1.4 Dielectric Materials

A dielectric is a material of low dc electrical conductivity and hence a good insulator or

storage medium of electric energy as in a capacitor. Dielectrics play an important role in

the fabrication and development of semiconductor microcircuits. Their major functions

have been for the isolating circuit elements, impurities, masking against oxygen and

dopant diffusion, passivating and protecting device surfaces, insulating double-level

conductor lines, and tapering or planarizing the device topography.

The requirements of these dielectric materials in the form of thin frlms for VLSI circuits

for high density devices featuring linewidths in the low micron to submicron range, should

have minimal structural defects and good step coverage. The particle density must be as

low as possible, and the size of the particulate contaminants should not exceed 25% of the

smallest feature size in the integrated circuit to avoid electrical failures of device reliability

problems.

1.4.1 Requirements of Dielectric Materials for VLSI Technology

Dielectric frlms for insulating applications of multiple level VLSI devices must sustain

relatively high dielectric breakdown fields, should have a low dielectric constant (to

minimize the parasitic capacitance between conductors) and a high electrical resistivity,

must have a low loss factor for high frequency applications, must be free of pinholes and

microcracks and should have a low compressive stress and excellent adhesion properties.

In addition, depending on the layer structure, some of the films must allow hydrogen to

diffuse through to allow removal of interface states by annealing in hydrogen, and be able
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to block alkali ions. All films must be readily depositable at temperatures compatible with

the device structural materials and device performance requirements, with excellent

compositional control and good step coverage. There materials must be patternable by

precision lithography and selective etching.

Table 1.2 Desired dielectric constant (K) for future technologies9

Technology
(MFS* in µm)

Maximum number
of wiring levels**

Dielectric K Year

0.35 4 — 5 SiO2 or
SiO2 (F)

3.9 1995

0.25 5 Polymer 3 — 3.7 1998
0.18 5 — 6 Polymer < 3 2001
0.13 6 Polymer 5_ 2 — 5 2004
0.1 6 — 7 Polymer /

aerogels / air 
Polymer /

aerogels / air

1 — 2

1 — 2

2007

20100.07 7 — 8

* MFS = minimum feature size; ** microprocessor

1.4.2 Requirements for Low Dielectric Constant ILD Materials

The electrical, chemical, mechanical and thermal requirements for the interlayer dielectric

materials may be summarized in a table as follows:

Table 1.3 Properties of ILD9

Electrical Mechanical Chemical Thermal
K, anisotropy Film thickness/ unif High chemical resist High th stability

Low dissipation Adhesion High etch sel Tg
Low leakage Low stress Low moist abs Low TCE

Low charge trap High tensl modulus Low sol in H20 Low th shrink
High E strength High hardness Low gas perm High th cond
High reliability Low shrinkage High purity
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1.4.3 Applications of Dielectric Materials in VLSI Technology

A. In device structures for

• isolation of circuit elements

• vertical insulation of high-temperature conductor levels in multilevel structures

(polysilicon, silicides, refractory metals)

• vertical insulation of low-temperature conductor levels in multilevel structures

(aluminum and its alloys)

• alkali ion and moisture barrier

• impurity gettering

• contour leveling or planarization

• over-metal top passivation

B. For temporary layers and processing aids as

• masking structures against oxidation

• gettering layers for impurities

• sacrificial material in lift-off patterning

1.4.4 BN as a Dielectric Material

CVD BN has unique properties because it is usually highly oriented, which emphasizes the

effect of the layered structure. The boron and nitrogen atoms are 1.46 A apart in the ab

plane and the layers are separated by 3.34 A. Thus properties such as thermal expansion

and electrical resistivity differ in directions parallel and perpendicular to the substrate

surface. The large c direction spacing makes it easy for the planes to slip over one another

giving BN good lubricating properties.
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Some of the attractive properties of BN are its low deposition temperature, high

insulation, high passivation effects against moisture and the alkali metal ions, conformal

step coverage, high crack resistance and chemical inertness. It starts dissociating at

2700°C in vacuum and is oxidized in air only at temperatures as high as 1200°C. It has a

reported dielectric constant close to that of silicon dioxide and electrical resistivity in the

order of 10 14ohm-cm with a dielectric strength in the order of 10 6 V/cm and an optical

band gap of 4-6 eV. This makes a good material to study the electrical properties.

Table 1.4 Properties of CVD boron nitride dielectric .'

Tensile strength (ksi) 6

Modulus (Msi) 3.6

Flex strength (ksi) 15

Poisson's ratio -0.025

Thermal conductivity (W/M.K) a-62.7

c-1.45

Coeff. T.E. (10 -6) a-3.24

c-81

Electr. Resist. (ohm-cm, 437 /°C) a-3 x 107

c-3 x 109

Dielectric strength (V/mil) c-4000

Dielectric constant (5 x 10 9 Hz) a-5.1

c-3.4

Loss tangent 3 x 10 -4

Density (g/cm3) 2.22

Melting point 3000 °C
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1.4.5 Borane Triethylamine Complex as a Precursor

Extensive work has been done on the chemical vapor deposition of BN thin frlms on

various substrates including silicon, quartz, and glass. A wide range of precursors have

been used to obtain these thin films which include diborane, borontrichloride, triethyl

boron, dicarborane and borane triethylamine (TEAB). TEAB has several advantages over

many of the other precursors. Table 1.1 gives some of the properties of TEAB.

Table 1.5 Properties of TEAB (Aldrich Chemicals)

Chemical name Borane triethylamine complex (TEAB)

Chemical formula (C2H5)3N.BH3

Molecular weight (g/mol) 115.03

Specifrc gravity (g/cc) 0.777

Freezing Point -3°C

Boiling point 97°C

Appearance Colorless liquid

Vapor pressure 20 Torr at 97°C

CAS Registry number 1722-26-5

TEAB is a relatively non-toxic and non-pyrophoric substance and this obviates the need

for expensive cabinets and a cross-purging gas supply for safety reasons. However, TEAB

has a low vapor pressure and hence has to be forced into the reactor under high pressure.
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1.5 Refractory Materials

Ceramic materials are inorganic, nonmetallic materials which consist of metallic and

nonmetallic elements bonded together primarily by ionic and/or covalent bonds. In general

most ceramic materials have low thermal conductivities due to their strong ionic-covalent

bonding and are good thermal insulators. Because of their ability to resist the action of hot

environments, both liquid and gaseous, such materials are termed as refractory materials.

Low resistivity interconnection paths are critical in order to fabricate dense, high

performance devices. These materials are characterized by extremely high hardness, very

high melting points, and resistance to chemical attacks. Hence these materials find

applications as hard coating materials, diffusional, protective, and thermal coatings.

1.5.1 Application of Refractory Materials in ULSI

In contrast to the dielectric materials discussed in the previous sections, these materials

have only become of interest recently for ULSI. Up to the present, the integrated circuit

gate electrodes have been fabricated from LPCVD polysilicon, which is heavily doped

with phosphorus. Such heavily doped polysilicon can have resistivities as low as 500 g2-

cm, so it behaves as a conductor, although not a very good one. Its compatibility with

standard processing steps, however, makes it a very attractive gate material. The final

metallization of the standard single-layer metal conductor circuits have been provided by

sputtered aluminum. As required, the sputtered Al can be doped with Si to minimize

spiking of Al into the Si that it must contact. It can also be doped with copper to minimize

electromigration effects.



37

In recent years, VLSI requirements have led to closely spaced long interconnection lines

with smaller cross sections. The ensuing RC time delay can limit the speed with which

circuits can be operated. Also, the power consumption due to high resistance can be

appreciable and heat the circuits more than permitted. Therefore, the doped poly available

is becoming inadequate for the new generation of circuits. This has led to the development

of refractory metal silicide frlms because of their high-temperature processing capability

and low resistivities. These are WSi 2, MoSi2, TaSi2, and TiSi2 . The properties of silicides

and refractory metals is shown in Table 1.6.

Table 1.6 Properties of silicides and refractory metals

Material Melting Point (°C) Resistivity μΩ-cm) Thermal Coeff. of

Expansion (10 -61°C)

3.0Si 1420 500 (heavily doped)

TiSi2 1540 13 — 17 10.5

MoSi2 1870 22 - 100 8.2

TaSi2 2400 8 — 45 8.8

WSi2 2050 14 - 17 6.2

Ti 1690 43 - 47 8.5

Mo 2620 5 5.0

Ta 2996 13 - 16 6.5

W 3382 5.3 4.5

The first problem occurs with the gate electrode. The solution that has been developed has

been to create a "polycide" structure. Here, a thin layer of phosphorus-doped poly is
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deposited and then a conducting layer of silicide is deposited on top of the frrst layer. The

combination is a much better conductor than the doped poly. The common choices for

polycide applications are the refractory-metal silicides, which include WSi2, MoSi2, TiSi2

and TaSi2, among which titanium disilicide is the most promising candidate owing to its

low resistivity and schottky barrier height of 0.55 eV to n-type silicon; this is

advantageous in the formation of ohmic contacts. As VLSI requirements become more

demanding, multilevel conductor circuits are being developed. The final metallization layer

can be aluminum, since there are no additional processing steps that require temperatures

above 350 C. However, if we wish to use a second conductor level between the gate

electrode and the final metallization, then aluminum is no longer acceptable. It melts at

about 660 C, should not be heated above 500 C, and there would be additional processing

steps well above these temperatures. Some IC developers have tried to develop low-

temperature processing techniques for dielectrics, and others have tried to use multiple

layers of polysilicon in this application. Both approaches have severe short comings, so

CVD of refractory metals has some attraction. The resistivity of the refractory metals or

silicides are not as good as aluminum, but for tungsten or molybdenum, it can be within a

factor of two, a large improvement over poly. The low resistivity refractory materials frnd

application as low resistance gate interconnections, ohmic contacts, planarized low

resistance vias, and contact barrier materials.

1.5.2 TiN as a Refractory Interconnect Material

From a device point of view, the use of heavily-doped n-type poly-Si frlms as gate

materials even in a polycide structure has a major disadvantage in the CMOS technology.
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Using n+ poly-Si as the gate electrode for each type of device, the work-function

difference, (toms, will be different for the n- and p-channel transistors thereby causing an

asymmetry in threshold voltages". The performance of p-channel devices can be improved

by using, as the gate electrode, a conductive material having a work function very close to

the mid-gap of silicon; thereby the step for threshold voltage adjustment is considerably

simplifred. Refractory metal nitrides seem to be convenient for this purpose and TiN is the

most promising candidate for its relatively low resistivity and the work function value near

Si midgap, which enables both types of transistors to operate in surface channel mode".

Further, upon high temperature processing of polycide, the metal component of the silicide

diffuses into the gate oxide causing the failure of the device. This creates the need for low

resistivity diffusion barrier materials like TiN, TiW, and WSi2 . TiN barrier seems to be the

most preferred due to its inertness and processing ease. The high conductivity and fine-line

patternability of refractory metals makes them attractive gate materials in VLSI

applications. However, W and Mo are not used as stand-alone conductor materials due to

poor adhesion to Si0 2 surfaces. Instead, a layer such as Ti, TiW, or TiN is required under

W or Mo films to promote adhesion to SiO 2. The physical properties of TiN have been

listed in Table 1.6.
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Table 1.7 Physical properties of titanium nitride39

Melting Point 3200 °C

Thermal Expansion 18 x 10" °C" 1

Thermal Conductivity 24 W/m-K

Hardness 1770 kg/mm2

Resistivity 30x10-6Ω-cm

Density 5.4 g/cm3

Young's Modulus 36 Msi

Table 1.8 Properties of titanium tetrachloride (Alfa Aesar, Inc)

Chemical name Titanium Tetrachloride

Chemical formula TiCl4

Molecular weight (g/mol) 189.88

Specific gravity (g/cc) 1.726

Freezing Point -25 °C

Boiling point 136.4 °C

Appearance Colorless to light yellow liquid

Vapor pressure 10mm Hg @ 20 °C

CAS Registry number 7550-45-0
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1.5.3 Titanium Tetrachloride and Ammonia as Precursors

In this study, titanium tetrachloride (TiCl 4) and ammonia (NH3) are used as precursors to

deposit a titanium nitride film on silicon substrates by low pressure chemical vapor

deposition (LPCVD). Some properties of TiCl 4 used for the study are listed in Table 1.7.

1.6 Objectives of this Study

This thesis seeks to: (a) study the growth kinetics of the reaction and establish a rate

equation, (b) characterize the mechanical, optical, chemical, electrical, and structural

properties of the deposited films, (c) study the effect of variation in the process parameters

on these film properties, and (d) study the feasibility of using these materials for a wide

range of applications. The primary goals of the present work are listed is to:

• Fabricate BN and TiN thin films by low-pressure chemical vapor deposition.

• Study the growth kinetics and reaction mechanism of the deposited frlms.

• Determine the mechanical, optical, chemical and electrical properties of these frlms.

• Correlate the properties of the deposited frlms to the film stoichiometry and deposition

parameters.

• Optimize deposition parameters to obtain low stress and low dielectric constant BN

frlms and to obtain low resistivity and chlorine content in the TiN frlms.

• Fabricate freestanding x-ray window from BN films.

• Investigate the use LPCVD BN as an inorganic low dielectric constant material.

• Obtain highly reflective stoichiometric TiN frlms at temperatures below 600 °C.

• Investigate the use of LPCVD TiN as a wear resistant coating for tooling applications.
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In Chapter 2, a review of literature of boron nitride and titanium nitride thin frlms, the

preparation techniques and the influence of microstructure of these thin films on the

properties are discussed. In addition, an overview of low dielectric constant materials in

general, X-ray windows, and Diffusion barriers are discussed.

In Chapter 3, the experimental procedure to fabricate boron nitride and titanium nitride

frlms and the characterization techniques used are described.

The important results of this work are described in Chapter 4 and this is followed by the

concluding remarks and suggestions for future work are given in Chapter 5.



CHAPTER 2

LITERATURE REVIEW OF BN AND TiN FILMS

2.1 Introduction

Hard coating materials can be divided into three categories, depending on the nature of the

bonding. The first includes the ionic hard oxides of Al, Zr, Ti, etc. Next are the covalent

hard materials exemplified by borides, carbides, and nitrides of Al, Si, and B, as well as

diamond. Finally, there are the metallic hard compounds consisting of the transition metal

borides, carbides, and nitrides. Typical mechanical and thermal property values for

important representatives of these groups of hard materials are listed in Table 2.1 40 . From

the table, we can see that BN and TiN films offer a very well balanced set of desirable

properties with BN being second only to diamond with respect to hardness. BN happens

to be a covalent nitride, where as TiN is a metallic nitride. Hence, BN is a dielectric and

TiN is a conductor with a high coefficient of thermal expansion.

In this chapter a review of the deposition techniques of boron nitride (B-C-N-H) and

titanium nitride (Ti-N-Cl) thin films, their properties, and their applications will be

discussed. A brief review of dielectric and interconnect materials along with their

mechanical, optical, chemical, structural, and electrical characteristics, including hardness,

stress, optical transmission, and electrical resistivity and the dielectric constant of thin

films in general and BN and TiN films in particular will be discussed. This is followed by a

review of the applications of these films, such as X-ray windows, diffusion

43



Table 2.1 Mechanical and Thermal Properties of Hard Materials.

Material Melting
Temperature

(°C)

Hardness
(kg-mm-2)

Density
(g-cm3)

Young's
Modulus

( kN-mm -2)

Thermal Exp.
Coeff

(10-6 K-1)

Thermal
Conductivity

(Wm-1K-1 )

Fracture
Toughness
(MPa-m1/2)

Ionic
Al203 2047 2100 3.98 400 6.5 25 3.5

TiO2 1867 1100 4.25 200 9.0 9
ZrO2 2710 1200 5.76 200 8.0 1.5 4 - 12

SiO2 1700 1100 2.27 151 0.55 2 <1
Covalent

C(Diamond) 3800 8000 3.52 1050 1 1100
B4N 2450 4000 2.52 660 5
BN 2730 5000 3.48 440
SiC 2760 2600 3.22 480 5.3 84 3

Si3N4 1900 1700 3.19 310 2.5 17 4
AN 2250 1200 3.26 350 2.7

Metallic
TiB2 3225 3000 4.5 560 7.8 30
TiC 3067 2800 4.9 460 8.3 34 0.46
TiN 2950 2100 5.4 590 9.3 30
TaC 3985 1600 14.5 560 7.1 23
WC 2776 2300 15.7 720 4.0 35
HfN 6.9 13
HfC 3928 2700 12.3 460 6.6

Substrates
High-Speed Steel 1400 900 7.8 250 14 30 50 - 170

Ni Superalloys 1280 7.9 214 12 62 >100
Ti 1667 250 4.5 120 11 13 80
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barriers, and next generation lithography (NGL). Finally, the aim and scope of this work

will be discussed.

2.2 Deposition Techniques of Boron Nitride Thin Films

Thin films of boron nitride have been grown on various substrates including copper, steels,

silicon, quartz, sapphire and fibers. The techniques used (Table 2.1) have included

chemical vapor deposition (CVD)6-10,47-47, low pressure chemical vapor deposition

(LPCVD) 48,49 , plasma assisted CVD43,50-54, reactive sputtering55,56, electron beam

irradiation57, ion beam deposition58-60, ion plating and pulse plasma method61-63 . Boron

sources have included diborane6-9,43,48 (B2H6), boron trichloride41,45,52, borazene49, triethyl

amine borane complex 53 , 54, decaborane46 , hexachloroborazene47, Organoamine boranes47 ,

B-vinylborazenes47, 2—vinyl-pentaborane47 2,4,6-B-triamino-1,3,5-N-triphenylborazene 47 ,

etc. In this section a review of the synthesis of boron nitride by chemical vapor deposition

and low-pressure chemical vapor deposition techniques is done, as it is relevant to the

present work.

2.2.1 Synthesis by CVD Techniques

CVD BN can be prepared from BCl 3 and NH3, BF3 and NH3 , B2H6 and NH3 , borazine,

trichloroborazine, borontriethylamine and NH 3 . Four reactions for forming CVD BN are

most common. They are:

BCl3 + NH3 ↔ BN + 3HCl

B3N3H3Cl3 ↔ 3BN + 3HCl

B3N3H6 ↔ 3BN + 3HCl

BF3 + NH3 ↔ BN + 3HF
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The reaction involving BCl3 forms an amorphous material at temperatures of 1100°C and

below4 and dense hexagonal BN in the temperature range of 1600 to 1900°C with

pressures below 2 Torr 4. The orientation improved with increasing deposition

temperatures, but crystallinity can also be attained at lower temperatures by the use of

plasmas4 . Better crystallinity can also be obtained by using low pressures.

Table 2.2 Synthesizing techniques of boron nitride thin films

Technique Reactants Remarks References
CVD B2H6, NH3, H2,

N2
Deposition temp. 400-1250°C, max.
Deposition rate at 800°C, clear,
vitreous films

6 - 8

CVD BCl3 , NH3, H2
(Ar)

Deposition temp. 250°-1250°C, films
deposited below 450°C are unstable in
moist atmosphere, transparent and
smooth films are produced between
1000° and 1200°C

41-45

MFCVD B 10H14, NH3 Stoichiometric frlms are deposited at
temp. Of about 850 °C

46

LPCVD B2H6, NH3 Physical and optical properties of the
films formed at temp. 300°-400°C are
stable and inert towards water and
aqueous solutions

48, 50

LPCVD Borazine Films formed at temp. 300 °-400°C
react with atmospheric moisture

49

PECVD B2H6, NH3 Deposition temp. 1000°C,
polycrystalline structure appears

43

PECVD B2H 6 , NH3 Deposition temp. 550°-620°C,
amorphous structure

52

PECVD BH3N(C2H5 )3 ,
NH3

Deposition temp. 200°-350°C,
amorphous structure, good electrical
properties

53-55

Sputtering B, BN, N2 (Ar) Films can be deposited without
heating the substrate

55, 56

Electron beam
evaporation

BN Stable amorphous structure,
deposition temp. 1050°C

57

Ion beam
deposition

B, N2, NH3 (Ar) Ion beam plating of e-beam
evaporated boron

58-60

Ion beam
deposition

B3N3H6 (Ar) Plasma decomposition 58- 60

Pulse plasma B2H6, B, N2, H2 Plasma decomposition, cubic phase 61 - 63
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When hydrogen was included with BCl 3 and NH3 , it resulted in less crystallinity, decreased

moisture resistance, and free boron and chlorine incorporation in the deposits. Oxygen and

carbon inclusions tend to break up the hexagonal deposits. Baronian 41 used this BCl3-NH3

system to form CVD BN films at deposition temperatures from 600 to 900°C on a quartz

substrate heated by inductive coupling to a graphite susceptor. The gas flows were 230

cc/min of NH3 and 25 cc/min of BCl 3 , and the gas pressure was held between 200 and 600

p.m to obtain a deposition rate of 50 Å/min. the refractive index of these films ranged from

1.9 to 2.0.

The BCl3-NH4 system was also studied by Matsuda et al. 4 but with H 2 addition, over a

temperature range of 1200 to 2000°C and a pressure of 5 to 60 Torr. The BCl 3 and H2

were introduced in an outer tube and NH3 in the inner tube at a rate of 90, 670, and 140

cm3/min, respectively, and passed over a hot graphite substrate. The flow rates used were

0.1 ml/s of BCl 3 , 0.5 ml/s of NH3, 0.4 ml/s of H2 and 0.7 ml/s of argon at 1200°C to

produce a hexagonal material. The crystalline phase was stable in air from 20 to 900°C.

Kuntz4 formed CVD BN using BF3 and NH3 using temperatures from 1600 — 1700 °C

and pressures below 2 Torn The material produced was highly crystalline. The BF3

reaction tends to be much cleaner. Hexagonal deposits have been prepared at lower

temperatures and BF3 is less apt to produce boron in the deposit. Pierson4 produced these

hexagonal BN deposits at only 1100°C and pressures of 30 — 40 Torr. Many

investigators6-9 have deposited BN thin films from diborane and NH 3 using an inert carrier

gas according to the reaction
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B2H6 + 2NH3 = 2BN + 6H2

Rand et al. 6 used many substrates such as Si, Ta, Mo, Ge and fused silica, at various

temperatures ranging from 600°C to 1080°C. The typical deposition rates varied from 12.5

to 60 nm/min. in H2 or He and 100 nm/min. in nitrogen. The dependence of the deposition

rate on temperature and NH 3 to B2H6 ratio was found to be complex. The deposition rate

exhibited a maximum at 800°C and it decreased as the NH3/B2H6 ratio was increased from

10:1 to 20:1.

Makoto Hirayama et al 9 deposited amorphous and polycrystalline boron nitride frlms on n-

type Si substrates using a B2H6-NH3-H2 system. When the deposition temperature was

below about 1000°C, the film was amorphous. When the deposition temperature was over

1000°C, the film was polycrystalline with a hexagonal structure. During deposition of BN

films, boron diffused into the silicon substrates. BN films thicker than 500 A deposited

below 1000°C acts as infinite diffusion source of boron. When these films were used as

diffusion source, the maximum values of boron surface concentration correspond to the

solid solubility of boron in Si at each temperature. A thin BN frlm (about 80A deposited at

700°C) gave a surface concentration of boron in the range between 10 16 and 1020 cm-3 by

varying the prediffusion heat-treatment conditions.

Murarka et al. 56,58 studied the growth process on silicon substrates. The deposition rate

was proportional to the flow rate of B 2H6 and to the negative fifth power of the flow rate

of NH3 . For a fixed NH3/B2H6 ratio, the deposition rate increased linearly with the flow
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rate. The deposition rate increased with temperature in the temperature range 400°C to

700°C, and at higher temperatures, the reaction was nearly independent of temperature.

Baronian41 , Motojima et al:43 and Takahashi et al.44,45 used BCl3 and NH3 with the

following reaction

BCl3 + NH3 = BN + 3HCl

Baronian deposited BN thin films on quartz substrates at temperatures ranging from 600°-

900°C. Motojima et al. used Cu substrates at temperatures in the range 250°-700°C. The

frlms deposited at temperatures below 450°C were unstable in a moist atmosphere.

Takahashi et al. studied in detail the effect of the substrate material on the growth process.

According to their results, Fe and Ni were the favorite elements for forming BN crystalline

deposits. The formation of the first layer of BN was initiated by a catalytic action of the Fe

atoms.

Nakamura46 proposed a new CVD method in the molecular flow region (MFCVD) for

depositing BN films using B 10H24 and NH3 reaction gases at substrate temperatures

between 300° and 1200°C. He has reported that the decomposition of the frlms could be

closely controlled by regulating the pressure of the source gases and stoichiometric BN

films could be deposited at NH3/B 10H24 ratios of 20 or more at a substrate temperature.

2.2.2 Synthesis by LPCVD Technique

A.C. Adams and C.D. Capio 50 deposited frlms of a boron-nitrogen compound with a

composition of approximately B6NHx at reduced pressure by reacting diborane and
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ammonia at 250° - 600°C in an LPCVD reactor. The thickness uniformity was within ±

3% for films deposited at 350°C. Infrared spectra showed that the frlms contain boron and

nitrogen, possibly bonded in a ring structure and hydrogen bonded as BH, NH 2, and

possibly NH. The film properties are nearly independent of the ratio of the reactants, but

are affected by the deposition temperature. The frlm refractive index is about 2.2 for frlms

deposited at 340°C. At 600nm, the absorption coeffrcient is about 2.5 x 10 4 cm-1 and

increases with increasing temperature. The films were chemically inert, being insoluble in

all the etching solutions investigated. However the films are easily etched in a CF 4-O 2

plasma. The step coverage is conformal with no pin holes and surface defects.

Levy et al20 studied the microstructure of amorphous hydrogenated LPCVD boron nitride

frlms with respect to hydrogen bonding and distribution. NMR, ESR and EGA techniques

were used in the characterization. It was found that the hydrogen is essentially randomly

distributed as monohydrides; other configurations such as dihydrides and monohydride

clusters, are estimated to be less than 20% total. Radiation damage to the frlm was

revealed by a strong ESR signal. However the radiation damage does not cause hydrogen

to aggregate.

2.3 Deposition Techniques of Titanium Nitride Thin Films

Titanium nitride (TiN) thin films have been deposited over the past years using different

reactants have been used as the precursors for these depositions. The choice of the

deposition method as well as the precursors is dictated by the temperature requirements

and the equipment availability. The properties of the deposited frlm are dependent to a
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great extent on the deposition technique (CVD, PVD, etc) as well as on the precursors

used. TiN has been commonly deposited using reactive sputtering or by rapid thermal

nitridation of sputter deposited titanium 32 . However the sputter deposited films suffer from

a lot of disadvantages like poor conformality, low step coverage, etc. In the recent years,

as the aspect ratios of features have increased, CVD methods have been sought as a better

alternative for TiN thin film deposition. Many workers have studied the deposition of TiN

films by different types of CVD. Table 2.1 shows a summary of the methods and reactants

different researchers have used to deposit titanium nitride.

Table 2.3 Summary of different deposition techniques and reactants used for TiN
thin film deposition.

Technique Reactants T (°C) P(Torr) Remarks Ref

LPCVD (cold
wall)

TDMAT, NH3 327 0.1 Single wafer reactor,
argon used as a diluent.

64

LPCVD (cold
wall)

TiCl4, NH3 650 Single wafer reactor,
nitrogen used as a diluent.

65

LPCVD TiCl4, NH3 480 20 Single wafer rotating disk
reactor, nitrogen used as a

diluent.

66

LPCVD (cold
wall)

TDEAT, NH3 250-450 10-500 Single wafer MOCVD
reactor.

67

LPCVD (hot
wall)

TiCl4, NH3 450-750 Single wafer load-locked
reaction chamber

68

LPCVD (cold
wall)

TiCl4, NH3 ,
H2

550-750 0.15 Argon used as a diluent 69

APCVD TiCl4, NH3 400-700 760 70
APCVD (hot

wall)
TiCl4, N2, H2 800-900 760 Deposition of film on

molybdenum substrates.
71

PVD
(sputtering)

Ti cathode, N2 300 Bias at a power of 250 W
was used.

72

PVD (cathodic
arc dep.)

Ti cathode, N2 280, 460 Bias of 350-600 V 73
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2.3.1 Synthesis by CVD and LPCVD Techniques

As can be seen from Table 2.1, TiN CVD has been done using different combinations of

reactants. Commonly NH3 and N2 have been used as sources of N while titanium halides

(more commonly TiCl4), titanium dialkylamides, tetrakisdimethyl (or ethyl) amino titanium

(TDMAT/TDEAT) have been the common sources for Ti. But whatever the reactants, the

reaction rate is always important since it ultimately determines the film growth rate. This

study of the reaction rate and mechanism, better known as the kinetic study, has been

carried out by several researchers, for different reactant combinations and reactor

geometries.

Buiting et. al. 69 deposited TiN films from TiCl 4, NH3, H2 and Ar gas mixtures, in a small

cold wall LPCVD system. They found out that the reaction rate and hence the deposition

rate to be proportional to the 1.3 power of the partial pressure of NH 3 and inversely

proportional to 0.5 power of the partial pressure of TiCl 4 . They proposed the following

rate equation with an apparent activation energy of 61 kJ/mol.

rate = 1.3 * 10-5 exp(-7500/T) (PH2)0(PNH3)1.3(PTiCl4)-0.5

A similar study was carried out by Imhoff et. al. 74 using the same reactants and a similar

reactor system, with the only difference being that in this case, instead of TiCl 4, NH3 was

introduced closer to the substrate. In this case, the deposition rate was obtained to be:
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Imhoff et. al. proposed that these contradictory rate orders were a result of a difference in

the gas injection configuration in the two reactor systems. The gas (say A), which was

injected closer to the substrate, poisoned the sites for adsorption by the other gas (say B).

As a result, increasing the partial pressure of A, gave lesser sites for adsorption of B,

thereby leading to a decrease in the deposition rate, hence the negative power. The

apparent activation energy was determined to be 79 kJ/mol.

Dekker et. al. 71 carried out TiN deposition in a hot wall CVD reactors at temperatures

higher than 800°C, using TiCl 4, N2 and H2 as the reactants. They found the growth rate

dependence on TiCl4 concentration to change from a positive order to a negative order

with increasing TiCl 4. The rate order was 0.5 with respect to N2 concentration and

changed from 1 to 1.5 for H2 concentration. The apparent activation energy was around

100 kJ/mol.

Jiang et. al. 75 used a cold wall CVD to deposit TiN on graphite substrates using TiCl 4 ,

NH3 and H2 at temperatures from 1100-1600 °C and for different NH3 :TiCl4 flow ratios.

For low flow ratios, they found the deposition rate to increase with increasing flow ratio

and deposition temperature. For higher flow ratios, the deposition rate decreased with

increasing flow ratio and was almost constant with increasing deposition temperature.

Bouteville et. al76 have carried out a thermodynamic study of titanium nitride formation on

a patterned silicon substrate, using TiCl 4, NH3 and H2. They performed calculations in the



54

temperature range of 700-1300 K and in the pressure range 27-133 Pa so as to determine

the yield.

2.4 Properties of Boron Nitride and Titanium Nitride Films

In this section the mechanical, optical, chemical, thermal and radiation hardness are

discussed. It is found that the structure of the BN thin films are amorphous or

polycrystalline (hexagonal or cubic) depending on the method of synthesis. Table 2.2 gives

a few details of the properties of BN films based on the method of synthesis. The density41

of the BN films is 1.7-2.1 gm/cc.

Table 2.4 Properties of BN thin films

Deposition
technique

Refractive
index

Optical
band gap

(eV)

Dielectric
constant

Electrical
resistivity
(a-cm)

Dielectri
c

strength
(V/cm)

Ref-
erences

CVD 1.7 - 1.8 3.8 3.7 1014 5 x 106 6
CVD 1.7 - 2.8 - - - - 77
CVD - - 3.3 - 3.7 109 - 10 1° 107 9
CVD 1.9 - 2.0 5.83 - - - 41
CVD - 5.8 - 6.2 - - - 42
CVD - - - - - 43
CVD 1.65 - - 1014 - 44

MFCVD - 5.9 - - - 46
PECVD - - 2.7 - 7.7 109 - 51
PECVD - - 3.5 - 7 x 106 53, 54
PECVD 1.746 4.7 3.8 - 5.7 - 7 x 106 78

Sputtering - 4.9 - 5.6 3.8 - - 55
Sputtering 1.6 - 1.9 3.3 - 5.6 - - - 56
Magnetron
Sputtering

1.6 - 2..5 4.8 - 5.14 - - -

Ion beam
deposition

- - - 101° - 10 14 - 60

Plasma pulse 1.5 - 1.6 5.0 5.6 7.0 1016 106 63
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The chemical composition of the films depends on several experimental parameters. Films

synthesized by r.f. sputtering 56in argon gas discharge have an excess of boron and BN.

however, by controlling the experimental parameters, stoichiometric BN thin frlms can be

grown. It was also found that boron nitride thin frlms prepared by ion beam deposition

method 58,59 contain a considerable amount of oxygen and those obtained from pulse

plasma method 63 show the presence of microinclusions of B203 and boron. Some films

react with moist atmosphere. The intrinsic cause of such a reaction was reported 6 , 53 to be

due to the presence of oxygen at the time of deposition.

Guanghu Chen et al. report that the optical absorption edge of BN films consists of a low

energy region in which a increases exponentially as incident photon energy hv, and a high

energy region in which a varies as (hv)m, which is the characteristics of amorphous

materials. An increase in the cubic boron nitride (c-bn) content, the absorption edge shifts

to the higher energy and the optical band gap increases. For a BN frlm with a 88% cubic

phase, the optical band gap exceeds 6.0 eV, which is compared to that of c-BN single

crystal.

0. Stenzel et al. have deposited both cubic and hexagonal boron nitride frlms by

magnetron sputtering. The optical constants of the frlms have been determined from the

near incidence reflection spectroscopy (NIR) up to the UV. h-BN frlms showed a steep

absorption edge with an Eg located near 4.8 eV, while that for c-BN was around 3.4 eV.
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The refractive index of c-BN was found to be identical to the bulk value of 2.12, while

that of h-BN varied from 1.6 to 2.5.

The IR spectrum of a film deposited on silicon shows two typical absorption bands. A

strong asymmetrical band at 1400 cm -1 is attributed to B-N bond stretching. A weaker

sharper band at 800 cm -1 is attributed to B-N-B bond bending. The broadness and

frequency shifting of the BN stretching vibration band depend on experimental conditions.

The adherence of the films depends on the substrate material and deposition conditions.

However, the adherence of the films has been generally satisfactory. The films deposited at

reduced pressure at 340 °C have a lower stress at all NH3 to B2H6 ratio is less than about

0.3; at higher ratios, the film stress is compressive. For the B-H-N structure, the

hydrogen content affects the stress. When the hydrogen content is less than about 21 atom

percent, the films are under tensile stress and, for hydrogen concentrations of about 24

atom percent, the films are under compressive stress.

The thermal stability of the BN films depends on the deposition conditions. For example,

the films deposited by CVD 43 at above 600 °C were stable decreased in mass by 1-2

percent on heating and were stable in air at temperatures below 750°C. For frlms deposited

at temperatures over about 1000°C, no changes were observed in the polycrystalline

patterns even after a long treatment in hydrogen or nitrogen for several tens of hours at

1250°C. However, amorphous films deposited below 1000°C were decomposed during

heat treatment in nitrogen9.
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The boron nitride films are chemically stable and cannot be attacked by etching solutions

except for phosphoric acid 6,9,41 . The etch rate of the film9is about 8 nm/min. in a solution

of equal volumes6 of deionized water and phosphoric acid at 130°C and 15 nm/min. in

phosphoric acid at 180°C. The films can be etched easily in a CF 4-O 2 41 plasma, but the

etch rate depend on the deposition temperature of the film.

The optical band gap and the refractive index vary according to the experimental

parameters and boron-to-nitrogen ratio. The reported values of the band gap lie in the

range from 3.3 to 6.2 eV (Table 2.2) and the refractive index from 1.5 to 2.8. In the

visible region, the stoichiometric BN film is highly transparent and colorless but, on

increase in the boron-to-nitrogen ratio in the film structure, the color becomes pale yellow,

deep brown or light golden56 .

BN films are good electrical insulators. Their electrical resistivity is about 10 Ω-cm at

room temperature and 10 3 at 200°C. The dielectric constant is about 4. BN films have a

low dielectric losses at frequencies ranging from dc to microwave. The dielectric

breakdown field strength is about 10V/cm.

The chemical composition of the films prepared by LPCVD 48-50 differs from stoichiometric

BN film and these films are called borohydronitride (B-H-N) films. Johnson et al. 79

reported that B3NH films produced using LPCVD in a manner similar top that used by

Adams and Capio50 were susceptible to radiation damage from 1-3 KeV X-ray radiation.

This would lead to pattern distortion and shorten the life span of the masks. They related
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the problem to hydrogen content of the film and there by the deposition temperature of the

film. Levy et al. 85 showed that the heat treatment of the film resulted in the loss of the

 hydrogen bond to the ammonia at around 700°C and the loss of hydrogen bond to the

boron at around 1100°C. The result indicated that the conduction follows the Frenkel-

Poole emission mechanism. The current-voltage (I-V) characteristics of BN films are non

linear. The conduction mechanism through BN films is either Schottky type (Poole-

Frenkel) or space charge limited depending upon the conditions of the film deposition.

In the last few years there has been a great interest in the study of the physical properties

of titanium nitride thin films. This is due to the variety of applications found for this

material in several areas. It is widely used as a wear resistant coating on tools, as a gold

substitute for decorative coatings and for thin film resistors65 . Recently it has been

investigated as a diffusion barrier in various semiconductor metallization schemes (as a

diffusion barrier), a contact layer for silicon, a gate electrode in metal / oxide /

semiconductor integrated circuits and even as a solar energy absorber and transparent heat

mirror because of its optical properties in the visible and IR regions. These different

applications of TiN are a result of its properties, which depend on the composition (N:Ti

ratio), impurity (O 2,C1,etc.) content and the structure, which in turn depend on the growth

technique used and the deposition parameters employed. Table 2.2 gives a brief summary

of the different properties of TiN film and the process by which these films were

deposited.
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Table 2.5 Summary of properties of TiN films deposited by different processes

Deposition
Technique

Density
(g/cc)

Resistivity

(μΩΩ-cm)
Chlorine
cont. (%)

Hardness
(Mohs)

Step coverage Ref

LPCVD (450-
750 °C)

4.2-4.9 200-650 2-6 - - 68

APCVD (400-
700 °C)

- 200-6000 0.5-50 8.5 - 70

PECVD 3.7 550-4500 NA - 30-90% for an
aspect ratio of

1:1

80

LPCVD (550-
750 °C)

- 100-1100 0.5-10 - 100% for an
aspect ratio of

1.9

69

LPCVD
(rotating disk

reactor)

- 80-1000 1-14 - 100% for
aspect ratio > 2

81

TiN is widely used in a variety of applications due to its different properties. Many

researchers have studied the properties of thin film and coatings of TiN by a variety of

methods. Wu et. al. 82 demonstrated the capabilities, advantages and limitations of different

techniques, namely scanning electron microscopy (SEM), transmission electron

microscopy (TEM), thin film X-ray diffraction (XRD), secondary ion mass spectroscopy

(SIMS), X-ray photoelectron spectroscopy (XPS) and Rutherford backscattering

spectroscopy (RBS), to obtain valuable information primarily about the morphology of

TiN thin films.

Several researchers64,65,80,82 studied conformality and step coverage of TiN films deposited

by different methods. Almost all of them found TiN films to be nearly 100% conformal for

aspect ratios as high as 1.7. For higher aspect ratios, conformality was found to be pretty

good.
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Many researchers 70,69,82 have studied the variation of film resistivity. They found that the

Cl content was responsible for high resistivity and that Cl content decreased with

increasing temperature. Thus, high deposition temperature led to the formation of films

with low resistivities of around 100 µohm-cm. Presence of oxygen in the film was also

found to cause an increase in the film resistivity72 . Roman et. al. 73 found out that presence

of oxygen during deposition even resulted in weaker adhesion of the film because of the

TiO2 formed. Arena et. al. 81 used XPS and Auger electron spectroscopy (AES) to obtain

qualitative information about Cl in TiN films and even studied its effect on the corrosion

and step coverage of the films.

Oh et. al." have studied the preferred orientation of TiN thin films using XRD technique.

They observed that as the thickness of the TiN deposited increased, the preferred

orientation changed from (200) to (110) to finally (111). They concluded it to be a

combined effect of strain energy and surface energy of the film. Yokoyama et. al." also

found the preferential orientation to be (200) by carrying out XRD of TiN films deposited

by cold wall LPCVD. Kurtz and Gordon 70 tested hardness of TiN film 3 p.m thickness

grown on stainless steel substrate and found it to be 8.5 on Moh's hardness scale, on

which diamond is 10. Roman et. al. 73 used Vicker's method to determine hardness of

sputter deposited TiN on high-speed steel, to be around 2000 kg/mm2 .

2.5 Applications of CVD Boron Nitride

CVD BN has been well known as a release agent and has been used in crucibles because,

it is chemically inert to many reagents and metals in a temperature range of 1020 to
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2020°C. It doesn't react with graphite at 2220°C and reacts only slightly with W at

2020°C. It has been immersed in boiling water for extended periods without any changes.

It can also be used as an electrical insulator or heat shield especially when it is highly

oriented so the basal planes are perpendicular to the electrical current or heat flow.

Because of its high dielectric strength, it can also be used in high temperature capacitors.

film can be used as an insulator in a metal-insulator-semiconductor (MIS) memory diode 9 .

BN films form a transparent substrate for X-ray lithography mask 41,86,87. The BN mask is

inexpensive and easy to fabricate, highly transparent to Pd L X-rays and dimensionally

stable through all phases of mask processing. This mask is also optically transparent to

facilitate registration.

BN films are useful as a restricted-area boron diffusion source. This method can be used

to fabricate planar diodes using only one photomask. The n type Si wafers are thermally

oxidized to about 300 nm, and the windows are opened in the silicon dioxide. Next a BN

film is deposited. To diffuse the boron in the windows, the BN film must be decomposed.

For this, the samples are heated in nitrogen atmosphere at 1100°C for about 120 minutes.

Boron diffuses into the silicon through the windows, and the bare silicon surface appears

on the windows. Then, to make ohmic contacts, Ni can be deposited directly by electroless

plating on bare silicon surfaces of the windows and on the back face of the silicon wafer.

Thus by these processes, planar diodes can be made by using only one photomask.



62

BN film coatings are useful to increase the hardness of materials58-60  as protective coatings

against the oxidation of base materials. BN thin films show a stable, strongly non-ohmic

high field conductivity6 . A film of about 100 nm thick (or thinner) may be used in

integrated circuits as thin film varistors or voltage limiters. BN films can be used as high

quality insulating films53,54 for MIS structures based on III-V compounds such as GaAs

and these structures are suitable for high frequency device applications.

Other applications of CVD BN include furnace components, boats, trays and tank liners

which can be used at very high temperatures in the absence of air. Even in air, the BN is

protected by B203 until the B 2O3 begins to vaporize at about 1100°C. when it is ground

up, it can also be used as a thermal insulating powder. It can also be used as a window at

5.511m, 12 m and above 15 µm where it can be employed as an infrared polarizer. Its low

dielectric constant of 3.4 in the c direction also makes it useful in microwave applications,

such as radomes.

In addition to the above applications, CVD BN has also been used as a fiber coating in

composites to densify composites and as a matrix in composites. As a fiber coating, it

provides a weak bond between the fiber and matrix resulting in a tough composite. In

carbon-carbon composites, it increases the oxidation resistance by protecting the fibers. In

view of BN good thermal conductivity, it is valuable as a heat sink and mounting material

in value and transition circuits, which can replace the toxic and less readily worked

beryllia. Another importance, but still with some conservations; is that it can be used as a
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distortion-free radiation mask for its structurally stability and free of distortion over the

range of common processing conditions.

Boron nitrogen compounds have attracted the attention of a lot of researchers to work

with for two main factors. First, the BN moiety is isoelectronic with C-C. Second, the sum

of the covalent single-bond radii of boron and nitrogen is very similar in magnitude to that

of the two carbon atoms. Consequently, there are superficial analogies between certain

boron nitrogen compounds and their organic counterparts.

Potential applications of boron nitrogen films have been proposed such as:

1- high temperature dielectrics

2- heat-dissipation coatings

3- passivation layers

4- diffusion sources of boron

5- sodium barriers

6- Next generation lithography (NGL)

All the above mentioned applications have encouraged us to synthesize a new compound

which may have some unique properties. The starting point of this research work stemmed

from the idea of combining the properties of both boron nitrogen and carbon films. This

led us to form a hard and transparent B-C-N. Ease of formation, suitable mechanical

properties, transparency, stability, optical transparency, etching resistivity and low defect

density.
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2.5.1 Dielectric Thin Films

Within the next three years, 0.35-µm and early 0.25-µm generation devices will become

available. To accommodate these smaller design rules and higher device densities, the

number of interconnect levels must increase from three levels to five or possibly six. Use

of more interconnect levels complicates the manufacturing process, but means that

interconnect linewidths and packing densities need not shrink in proportion to the

reduction in transistor gate length. This postpones the need to adopt revolutionary copper

interconnect / low-k dielectric schemes. However a time will definitely come when further

increase in the number of levels will not decrease the signal propagation time because the

signal propagation time would be limited by the capacitance between the interconnect

layers as reflected in the delay constant 88 .

Where pm  is the sheet resistance of the interconnect, L is the interconnect length, E die is the

dielectric constant of the interlevel dielectric (ILD), d die is the thickness of the ILD, R is

the resistance of the interconnect metal, and C is the capacitance of the ILD. It is evident

from the relationship that a low RC constant can readily be achieved through material

modification by reducing the resistance of the interconnect metal and the dielectric

constant of the ILD.

A desirable ILD material should exhibit in addition to a low dielectric constant, low

mechanical stress, high thermal stability and low moisture absorption. Several ILD

candidates have been explored over the last few years. These have included fluorinated

SiO2 17-27, fluorinated polyamides28,29 and BN30,31films. Fluorine is the most
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electronegative and the least polarizable element. Therefore, incorporation of F reduces

the number of polarizable geometry. These changes result in lowering polarizability of the

fluorinated Si02 film itself, thus lowering the dielectric constant.

2.5.1.1 Organic Fluorinated Dielectric Films: As interconnect dimensions in integrated

circuits shrink well below 0.5 µm, traditional dielectric insulators have inadequate

performance. Organic polymers, in general, exhibit lower dielectric constants than

inorganic oxides and nitrides, and thus are candidates for the intermetal dielectric at these

small dimensions. Most organic polymers do not possess adequate thermal stability for

backend processing, however. A few candidates, such as fluorinated poly(arylenethers),

may prove useful if they possess sufficient dimensional stability to withstand multilayer

interconnect processing.

Organic polymers, specifically polyimides, were used for integrated circuit IMD in

production by IBM from the early 1970s through the late 1980s. In addition to organic

polymers, many of which exhibit c of 3 or below, at least two classes of materials are

currently under investigation. One is Si0 2 that has been fluorinated by a variety of

methods22 . Another is the class of silicon-oxygen polymers called silesquioxanes, which

can be thought of as high organic content spin-on glasses 22 . For subsequent generations, it

appears that only a few unique and thermally stable polymers exhibit sufficiently low c

combined with other important properties and processing characteristics.
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A family of thermally stable, low-dielectric constant polymers are under development at

AlliedSignal Advanced Microelectronic Materials as an alternative to polyimides for IC

intermetal applications. The polymers, fluorinated poly(arylenethers), are envisioned for

use in devices fabricated with design rules of 0.25 m and below. They are prepared by

condensation of decafluorobiphenyl with aromatic bisphenols22 . Compared to polyimdes,

these polymers exhibit comparable thermal stability while providing significantly lower c,

lower moisture absorption, higher outgassing rates, and greater ease of processing.

Silsesquioxanes polymers typically result from hydrolysis and condensation of alkyl- or

aryltrialkoxysilanes, Rsi(OR')3. With c of 1.7 — 3.0, they may provide an intermediate

dielectric solution for the 0.35 or 0.25 m generation of devices. These materials, also

under development, can contain upto 50% organic content by weight, but possess a

silicon-oxygen backbone that contributes to their relatively high stability when exposed to

oxygen plasmas. The silsesquioxanes exhibit high thermal stability, low residual stress, low

moisture absorption, and excellent gap filling and local planarization properties. Since they

are processed in a similar fashion to spin-on glass, they may offer a much lower dielectric

constant than traditional dielectrics, without the major process integration challenges that

will surely accompany purely organic polymer dielectrics.

The primary means of reducing the dielectric constant and refractive index has been

fluorination of the polymer backbone. This has been achieved by incorporation of

hexafluoro groups and by aromatic substitution of fluorine atoms, trifluoromethyl groups,

fluorinated alkoxy side chains, and more recently, pentafluoro sulfur groups. Reduction of
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dielectric constant in polyimides has also been achieved by introducing fluorine-containing

additives and by blending Teflon into the bulk polyimide material. Control of the refractive

index of polyimide waveguide materials has been achieved through copolymerization of

fluorine containing monomers. It is believed that the dielectric constant and refractive

index of fluorinated polyimides are reduced by a combination of mechanisms. First, the

electronic polarizability is reduced through the addition of fluorine-carbon bonds. In

addition, interchain charge transfer complexation and associated chain packing are

impeded by bulky fluorinated side groups, by kinks in the polymer backbone, and by

spacer groups. Low refractive indices in fluorinated polyimides can be accurately

predicted by current property prediction techniques. This suggests that it is the fluorine

atoms and the bonds in the polymer repeat unit that have the largest effect in reducing

refractive index. As a result of the preferential alignment of the most polarizable groups in

the polyimide, i.e., the main chain phenyl rings, control of refractive index in polyimides in

and out of the plane of the film by introducing orientation into the polymer film, increases

the refractive index in the direction of orientation and reduces normal to the direction of

orientation.

2.5.1.2 Fluorinated SiO2 Dielectric Films: Several reports 17-27 have indicated that the

dielectric constant of silicon dioxide films can be reduced with increasing amounts of F in

the films. Usami et al. 17 used a parallel-plate electrode CVD system to deposit SiOF films

using tetraethoxysilane (TEOS)-He-02-C2F6 gas plasma generated by r.f. power at 13.56

MHz at a temperature of 360°C and a pressure of 9 Torr. They found that the deposition

rate and refractive index of the film decreases with increasing C 2F6 flow rate. This
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suggested that the there is a change in the film composition and also a decrease in film

density with increase in C2F6 addition. They suggested that the Si-O bond strength was

influenced by Si-F bond formation due to the high electronegativity of fluorine was the

cause of reduction of refractive index due to the structural changes in the film. The

dielectric constant of the SiOF films were compared before and after annealing at 400°C in

a hydrogen atmosphere for 30 minutes. Before annealing, the relative dielectric constant of

the conventional PE-TEOS oxide was 4.9. this value was higher than that of thermally

grown silicon dioxide (3.9). This result is due to the presence of highly polarized

compounds such as Si-OH and H20 in the film. With increasing fluorine concentration,

however, the relative dielectric constant decreased. It is supposed that polarization of Si-O

bonds was changed with the presence of Si-F bonds due to the high electronegativity of

fluorine. After annealing the relative dielectric constant was lower (4.5) than that before

annealing at all fluorine concentration indicating that the highly polarized compounds such

as Si-OH and H20 content in the films decreased even though a small amount of fluorine

desorbed from the film. The least dielectric constant of 3.6 was obtained at 14 atomic %

fluorine.

2.5.1.3 BN and SiBN Thin Films: Recent publications78,89 have reported on the use of

plasma enhanced chemical vapor deposition (PECVD) to synthesize BN and SiBN as

potential low E  materials. Maeda et al. 85 deposited amorphous SiBN ternary films using a

parallel plate electrode reactor using a SiH 4-B2H6-NH3-Ar gas mixture at a frequency of

13.56 MHz to obtain low dielectric constant films. Strong and broad absorption bands

were seen at wavenumbers 890 cm -1 and 1320 cm-1 in the IR absorption spectrum
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corresponding to Si-N and B-N lattice vibrations respectively. The refractive index was

found to decrease with increasing B atomic ratios. An observed value of 1.71 obtained

from stoichiometric boron nitride was similar to hexagonal like amorphous boron nitride

films. The static dielectric constant (at 1MHz) monotonically decreased from 6.8e. of

silicon nitride to 3.0e. for stoichiometric boron nitride with increasing boron atomic ratio.

The optical dielectric constant also decreased with increasing boron atomic ratio to obtain

a value of 2.9s. for BN. Thus the difference between the static and the optical dielectric

constants was extremely small for BN films while the static dielectric constant was 1.75

times larger than the optical one for Si3N4.

2.5.2 Transparent Boron -Nitrogen-Carbon Thin Films

Compounds containing only boron and nitrogen have some special properties, such as

being electrically insulating, chemically inert, thermally stable, and resistible to corrosion.

Besides, they have desirable mechanical properties and reasonable wide bandgap. The

addition of an atom having different bonding radii to a matrix film is an effective method

for changing the stress of the film. Mechanical stress can pose serious problems in

semiconductor technology where layers of differing materials must be grown on a silicon

substrate. For example, stress may cause crystal defects in the underlying substrate,

cracking of deposited films, or voiding in aluminum conductor lines. Each of these

examples leads to a loss of device yield. Stress is caused partly by differing thermal

expansion coefficients between substrate and grown layer. For films produced by chemical

vapor deposition the actual stress measured varies considerably from thermal stress which

is predicted from thermal exapansion coefficients. The difference, called intrinsic stress, is
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a heavily dependent on process conditions during film growth. Plasma-enhanced CVD

induces intrinsic stress by ion bombardment and cross linking effects. But intrinsic stress

also is found with CVD-layers deposited without plasma enhancement. BN is usually

deposited by the reaction of diborane and ammonia in hydrogen or an inert carrier gas.

The group at Bell Laboratories, Murarka et al. 90, found that the stress was compressive

for temperatures above 700 C and that films richer in boron were tensile. In other words,

stoichiometric boron nitride deposited at high temperatures and a high NH3/B2H6 ratio

was compressive. The LPCVD-BN developed at Bell Laboratories was deposited using

B2H6 and NH3 as source gases at around 400C. In order to get the tension required for x-

ray mask membranes, B-rich off stoichiometric composition was inevitable for this

material. In fact the atomic ratio of B/N was between 3 and 5. The bandgap for an

amorphous material is characterized by the local chemical environment. Therefore, the

excess metallic B-B bonds, which are a result of off-stoichiometry, narrower the bandgap.

In order to widen the optical gap of LPCVD-BN while retaining tension, lowering the

deposition temperature is effective. Unfortunately, this condition lowers the Young's

modulus because excessive hydrogen incorporation. Hence, it is difficult to simultaneously

get a high optical transparency and a high Young's modulus using this material. Addition

of a small amount carbon improves the film stoichiometry and also decreases the hydrogen

content. The increase in the stoichiometric structures of boron to nitrogen increased

optical transparency. The low hydrogen content also increases the Young's modulus of

the films. The radiation resistance of BNC was also improved over LPCVD-BN. It is well

known that it is easy to change the atomic structure of materials having low average

coordination number, such as a material with many bondings terminated by hydrogen
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atoms having one-fold coordination. Therefore, the stress relaxes easily due to changes in

the atomic structure. Since the atomic structure of BNC is mainly dominated by B-N

bonding networks with a large binding energy, the radiation resistance of BNC must

exceed that of LPCVD-BN. A transparent ternary boron compound film B-C-N was first

reported by Montasser et al. at room temperature. However, the optical data indicates the

film to be like a soft organic film. Masao Yamada et al. have deposited rigid ternary boron

compound film, boron-nitro-carbide (BNC), deposited by plasma-enhanced chemical

vapor deposition between 300 C and 500C.

2.5.2.1 X-ray Windows:

Modern analytical instruments are often equipped with a wide variety of signal detectors.

Signals such as transmitted electrons, diffracted electrons, backscattered electrons,

secondary electrons, and characteristic x-rays can all be collected using various types of

signal detectors. The above discussed signals are collected by either a solid state detector

or a scintillator/photomultiplier detector. Both these detectors are isolated from the

microscope column by means of a x-ray window. A major consideration for windows is

their ability to withstand adverse environments and special conditions necessary to make

critical measurements. The window provides separation between the environment of the

sample and the detector. These differences include pressure of one atmosphere (or

greater) and sample environments of helium, water vapor or atmospheric gasses typical of

the environment of the analytical instrument installation.91
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Typically thin beryllium or polymeric films have been used as windows. Yet these films

have limitations on their usefulness. For example, the potential for pinhole leaks increases

as the beryllium foil thins, and a thin beryllium foil is more likely to fail through exposure

to atmosphere. Nor can it be used in a harsh chemical environment. Also beryllium is

extremely poisonous and processing of such a material endangers the workers. The

polymeric film on the other hand is far more fragile and must be treated carefully. One of

the most important criteria for selecting a window is its transparency to x rays. The

polymer windows lose some transmission due to the silicon support grid, which is installed

to provide mechanical support to the soft membrane. 91 The corrosion and temperature

resistance is far less than desirable and hence there is a need for materials that are optically

transparent and possess good thermal, mechanical, and chemical properties. Boron nitride

due to its low atomic weight and extremely good mechanical, thermal, chemical and

optical properties is believed to be an excellent candidate for the x-ray windows.

2.5.2.2 Next Generation Lithography (NGL)92
: As figure 1 illustrates, there will soon

be a need for a new lithographic technology, if we are to maintain the present rate of

progress in IC development. The figure shows the trend of wavelength reduction, which

has driven the resolution improvements in optical lithography over the past two decades.

The line is drawn such that the minimum features (half-pitch) are roughly equal to the

exposure wavelength. With resolution enhancement technology (RET), such as phase

shifting and OPC, it is possible, theoretically, to print features as small as half the

wavelength (half-pitch) also shown in the figure.



Figure 2.1 Trends in VLSI miniaturization, exposure wavelength and limits of resolution
enhancement techniques (RET) as a function of time. The current trend in
miniaturization will reduce feature sizes below the capability of optical
lithography around 2005. The cost will probably be prohibitive before then.
(Graph courtesy of Dr. S. Okazaki, Hitachi Ltd.)

The difference between printing at the wavelength (binary masks) and at half the

wavelength, using RET is cost. Even with this, the trend line for chip features (Moore's

law) has a much steeper slope than that for wavelength reduction. The two lines intersect

at roughly the 250 nm node (DUV 248). Moore's law intersects the RET limit at about

the 70 nm node, which implies is that optical lithography, although technically possible,

gets very expensive beyond the 250 nm node and probably not possible below the 70 nm

node. This offers the opportunity for NGL technology such as SCALPEL.



Figure 2.2 Trends in ULSI miniaturization, exposure wavelength and limits of resolution
enhancement techniques (RET) as a function of time.

Over the next several years, it will be necessary for the semiconductor industry to identify

a new lithographic technology that will carry it into the future, eventually enabling the

printing of lines as small as 30 nanometers. Potential successors to optical projection

lithography are being aggressively developed. Collectively known as Next-Generation

Lithographies (NGLs), Extreme UV lithography (EUVL) is one of the leading NGL

technologies; others include x-ray lithography, ion-beam projection lithography, and

electron-beam projection lithography. "On the other side of that wall is the SCALPEL

electron-beam technology, which will allow printing of much smaller features because

there aren't the wavelength restrictions with electrons that one encounters with light," says
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Dr. Harriott from Lucent Technology. Electrons have an equivalent wavelength of 0.0037

nanometers, compared to the 250 nanometers wavelength of the current technology.

SCALPEL (SCattering with Angular Limitation Projection Electron-beam Lithography)

has the potential to satisfy the lithographic requirements for many IC generations, down to

the minimum feature sizes contemplated in the semiconductor industry association

roadmap. The aspect of SCALPEL that differentiates it from previous attempts at

projection electron-beam lithography is the mask. This consists of a low atomic number

membrane covered with a layer of a high atomic number material. The high atomic number

material is the one on which the pattern is delineated. While the mask is completely

electron transparent at the energies used (100 keV), contrast is generated by utilizing the

difference in electron scattering characteristics between the membrane and the patterned

materials. The membrane scatters electrons weakly and to small angles, while the pattern

layer scatters them strongly and to high angles. An aperture in the back-focal plane of the

projection optics blocks the strongly scattered electrons, forming a high contrast aerial

image at the wafer plane. The membrane, which is only 0.1 to 0.15 micron thick, is

supported on a grill of struts spaced 1 mm apart. The resulting image has to be stitched

together from hundreds of narrow stripes into a seamless pattern on the wafer. The

SCALPEL system is schematic represented in figure 4.



Figure 2.3 Basic SCALPEL principle of operation showing contrast generation by
differentiating more or less-scattered electrons.
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Figure 2.4 Schematic cross-section of a SCALPEL mask showing patterned membrane
area and supporting grillage.



77

With no consensus yet on what the new-generation lithography will be, it appears

increasingly unlikely that one will be ready in time for the 100 nanometers chip generation,

which, according to Moore's Law (Figure 2) is expected in the year 2006. At the same

time, industry giants are reluctant to shell out the $1 billion or more needed for the

development of any option, which creates the risk of advances in lithographic technology

possibly becoming bottlenecked. Hence there is renewed interest in pushing optical

lithography yet one more notch. Optical technology possesses an enormous resource base

from which to draw for addressing technical problems.

With shorter light wavelengths and resolution enhancement optics, optical lithography

could be the basis for both the 100-nanometer and 70-nanometer chip generations. If that

were to be the case, the need for NGL would be pushed back by only a single generation,

at 50 nanometers, before the limits of microelectronic device structures would be reached

and no further developments would be possible due to the quantum effects.

Whether chipmakers will want to make the large research investments needed to push

silicon-microchip technology to its limits remains to be seen. Several years ago, it was

assumed that an NGL would be needed by around 2005 in order to implement the 100

nanometer generation of chips. Currently, industry consensus is that 193-nanometer

lithography will have to do the job, even though this will be difficult. There has recently

been discussion of using light at 157 nanometers to push the current optical technology

even further, which would further postpone the entry point for an NGL technology. It is

therefore crucial that any potential NGL be able to address the printing of feature sizes of
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50 nanometers and smaller. The race to develop the technology that will succeed 193-

nanometer lithography will be interesting to watch!

2.6 Applications of CVD Titanium Nitride

2.6.1 Refractory Metal Interconnects for VLSI

The most important application area for conductive films is to provide interconnections

between contacts which are made to devices in a microcircuit. Both single-metal and

multimetal films are used for this purpose. In addition, the complexity of VLSI circuits has

brought about the need for multi-level metallization schemes. Films used for

interconnections must adhere firmly to the semiconductor contact and also to the

insulating layer that is placed over the semiconductor. They should be readily deposited by

a relatively low temperature process, since metallization is one of the last steps in

microcircuit fabrication. They should be easily patterned with high resolution, without

etching the insulating layer on which they are placed. They should be relatively soft and

ductile, so that they can withstand cyclic temperature variations during processing and in

service. They must be highly conductive, and capable of handling high current densities

while still maintaining their electrical integrity. Finally, they should be easily connected to

external terminations40 . Most of these requirements are met by gold and aluminum films.

However, aluminum is a viable choice as the metal, since it bonds well to SiO2 as well as

to Si3N4 insulating layers, by a relatively short heat treatment.
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The unusual materials which comprise these coatings are drawn from several classes of

solids and include ionic ceramic oxides (e.x., Al203, ZrO2, TiO2), covalent materials

(e.g., SiC, BC, diamond), transition metal compounds (e.g., TiC, TiN, WC) and metal

alloys (e.g., CoCrAlY, NiAl, NiCrBSi) 40 . As a whole they are characterized by extremely

high hardness, very high melting points, and resistance to chemical attack, attributes that

have earmarked their use in critical applications where one or more of these properties is

required; correspondingly the respective categories of hard, thermal and protective

coatings denote the functions to which they are put.

2.6.2 Diffusion Barriers

Diffusion barriers are thin film layers used to prevent two materials from coming into

direct contact in order to avoid reactions between them. Paint and electrodeposited layers

are everyday examples of practical barriers employed to protect the underlying materials

from atmospheric attack. Ideally, a barrier layer X sandwiched between A and B should

possess the following attributes:

1. It should constitute a kinetic barrier to the traffic of A and B across it. In other

words, the diffusivity of A and B in X should be small.

2. It should be thermodynamically stable with respect to A and B at the highest

temperature of use. Further, the solubility of X in A and B should be small.

3. It should adhere well to and have low contact resistance with A and B and possess

high electrical and thermal conductivity. Practical considerations also require low

stress, ease of deposition, and compatibility with other processing.
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A large number of materials have been investigated for use as barrier layers between

silicon semiconductor devices and Al interconnections. These include silicides, refractory

metals, transition metal alloys, transition metal compounds, as well as dual-layer barriers

such as refractory metal-silicide, transition metal-silicide and transition metal compound-

silicide combinations. A compilation of these materials and reaction is given in Table 8-3.

Table 2.6 Aluminum — Diffusion Barrier — Silicon Contact Reactions 40

Diffusion Barrier Reaction
Temperature (°C)

Reaction Products Failure Mechanisms

Cr 300 Al7Cr C
V 450 A13V, Al-V-Si C
Ti 400 A13Ti C

Ti-W 500 D
TiN-PtSi 550 MN, A13Ti C

ZrN 550 Al-Zr-Si C
PtSi 350 AI2Pt, Si C

Pd2Si 400 A13Pd, Si C
NiSi 400 AI3Ni, Si C
CoSi2 400 A19Co2, Si C
TiSi2 550 Al-Ti-Si D

MoSi2 535 Al 12Mo, Si D
TaN-NiSi 600 AIN, Al3Ta C

C= Compound formation; D= Diffusion

To appreciate the choice of barrier materials, we first distinguish among three models that

have been proposed for successful diffusion-barrier behavior.

1. Stuffed Barriers. Stuffed barriers rely on the segregation of impurities along

otherwise rapid diffusion paths such as GBs to block further passage of two-way

traffic there. The marked improvement of sputtered Mo and Ti-W alloys as

diffusion barriers when they contain small quantities of intentionally added N or 0

impurities is apparently due to this mechanism. Impurity concentrations of —10-1
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to 10-3 at% are typically required to decorate GBs and induce stuffed barrier

protection. In extending the electromigration life of Al, Cu may in effect "stuff' the

conductor GBs.

2. Passive Compound Barriers. Ideal barrier behavior exhibiting chemical inertness

and negligible mutual solubility and diffusivity is sometimes approximated by

compounds. Although there are numerous possibilities among the carbides,

nitrides, borides, and even the more conductive oxides, only the transition metal

nitrides, such as TiN, have been extensively explored for device applications.

Although TiN has proved effective in solar cells as a diffusion barrier between N-

Si and Ti-Ag, contact resistances are higher than desired in high current density

circuits.

3. Sacrificial Barriers. A sacrificial barrier maintains the separation of A and B only

for a limited duration. Sacrificial barriers exploit the fact that reactions between

adjacent films in turn produce uniform layered compounds AX and BX that

continue to be separated by a narrowing X barrier film. So long as X remains and

compounds AX and BX possess adequate conductivity, this barrier is effective.
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2.7 Aim and Scope of the Present Work

The aim of the present study was

• Fabricate BN and TiN thin films by low-pressure chemical vapor deposition.

• Study the growth kinetics and reaction mechanism of the deposited films.

• Determine the mechanical, optical, chemical and electrical properties of these films.

• Correlate the properties of the deposited films to the film stoichiometry and

deposition parameters.

• Optimize deposition parameters to obtain low stress and low dielectric constant

BN films and to obtain low resistivity and chlorine content in the TiN films.

• Fabricate freestanding x-ray window from BN films.

• Investigate the use LPCVD BN as an inorganic low dielectric constant material.

• Obtain highly reflective stoichiometric TiN films at temperatures below 600 °C.

• Investigate the use of LPCVD TiN as a wear resistant coating for tooling

applications.

In Chapter 3, the experimental procedure to fabricate boron nitride and titanium nitride

films and the characterization techniques used are described. The important results of this

work are described in Chapter 4 and the effect of various deposition parameters on the

properties is discussed in detail. Concluding remarks and suggestions for future work are

given in Chapter 5.



CHAPTER 3

EXPERIMENTAL PROCEDURE

3.1 Introduction

Boron nitride (B-N-C-H) and titanium nitride (Ti-N-CI) thin films with varying

compositions were synthesized in a LPCVD reactor with a vapor phase flow system

adjusting various parameters including temperature, pressure, gas composition and time of

deposition. The chemical, mechanical, optical, electrical, and structural properties of the

films were determined as a function of deposition parameters. Ellipsometry and

interferometry measured refractive index and thickness of the films respectively. The

current-voltage (I-V), capacitance-voltage (C-V), resistivity and the dielectric constant of

the BN films were measured. Hardness and Young's modulus were determined using a

Nanometrics nano-indenter. The composition of these films were determined by AES,

XPS, and RBS. X-ray diffraction study revealed the structural properties of these films.

3.2 LPCVD Reactor

The deposition reactor is schematically shown in Figure 3.1. This reactor was

manufactured by Advanced Semiconductor Materials America Inc.(ASM America, Inc.)

as a poly silicon micro-pressure CVD system. The horizontal reaction chamber consists of

a 13.5 cm diameter fused quartz tube and a 144 cm long encapsulated with a three-zone,

10 kwatt, Thermco MB-80 heating furnace. The process tube door was constructed of a

300 series stainless steel, with a side hinge and sealed with an 0-ring. At one end a heating

83
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jacket maintained the temperature of the bubbler to a constant value ranging between 0°C

and 70°C, depending on the flow required. The vapors of the precursor (TEAB and TiC14)

were passed to a vapor phase flow controller, which was connected to the reactor by

means of a pipe. The lines that carried the vapors of the precursor were heated to 70°C

and the vapor phase controller was maintained at 90° to avoid the condensation of the

precursor. A MKS mass flow controller controls the flow of ammonia into the reaction

chamber. A spare nitrogen mass flow controller was installed to incorporate any necessary

additional reactant gas into the chamber or for backfilling. This spare controller could be

calibrated for the gases other than nitrogen.

Figure 3.1 Schematic representation of the LPCVD reactor
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The other end of the reaction chamber is connected to a vacuum station comprised of a

Leybold-Heraeus Trivac dual stage rotary vane pump backed by a Leybold-Heraeus roots

pump to create the necessary vacuum in the system. An oil filter system is used to filter

unnecessary particles from oil and thereby increasing the lifetime of the pump. End caps

designed for this reactor have a provision for cold water circulation to avoid overheating

of the 0-rings. A ceramic tube was setup between the chamber and the heater to enhance

the radiation heat transfer thus reducing the temperature deviation through the reaction

tube. The temperature was kept constant across all zones and confirmed using a calibrated

K type thermocouple. Mass flow controller set points were programmed with a MICON 3

microprocessing controller which produces the set point voltage and automatically

monitors the flow vs. the programmed flow limits. The pressure in the reactor is

monitored with an automatic exhaust valve and measured at the reactor inlet using a

capacitance manometer (13 Torr MKS baratron pressure gauge). For the deposition of

TiN films, the reactor described above was modified to insert the precursor vapors near

the wafers as shown in Figure 3.2. This was done in order to avoid the formation of a

yellow solid complex on the walls of the reactor which are cooled to protect the 0-rings.
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Figure 3.2 Schematic diagram of the modified experimental setup.

3.2.1 Vapor Phase Flow Mechanism

The vapor phase flow system, designed and fabricated in-house 20, consists of a stainless

steel bubbler connected to a precalibrated capillary tube fastened onto the re action

chamber. The vapor phase flow system was developed on the basis of thermodynamic

principles, which states that when the phases are not in equilibrium, mass transfer occurs

between the phases. The rate of transfer of each species depends on the departure of the

system from equilibrium. Equilibrium is a static condition in which no changes occur in the

macroscopic properties of the system with time. This implies a balance of all potentials
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that may cause change. If vapor and liquid are to exist in equilibrium one cannot exercise

independent control over these two variables for this system. The number of independent

variables that must be arbitrarily fixed to establish the intensive state of a system, i.e., the

degrees of freedom F of the system, is given by the celebrated phase rule of J. William

Gibbs, which can be given as follows:

Where;

F = number of degrees of freedom

C = number of components

P = number of phases

On applying the above equation to our system, which consists of a single component i.e.,

TEAB or TiC14, two phases involving the liquid and the vapor phase, we get the number

of degrees of freedom to be 1. This implies that on changing one of the variables, which

was temperature in our case, the pressure of TEAB or TiCl 4in the vapor phase

automatically gets fixed.

On the basis of the above principle, a heating jacket was made to cover the precursor

bubbler and by varying the temperature of the jacket, the amount of precursor in the vapor

phase was controlled. The goal was to maintain at any time sufficient vapor in the bubbler

so that the vapor phase flow controller that was connected in series to the bubbler would

always remain the rate-determining step. The precursor used as a source of boron and

titanium can slowly react with oxygen and forms an undesirable white powder
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contamination and hence requires handling in an inert glove box. The flow rate of the

precursors was maintained between 1 and 10 sccm for all the runs. This was achieved by

maintaining the temperature of the bubbler between 40 to 65°C.

3.3 Experimental Setup

3.3.1 Leakage Test

The leak check is one of the most important steps in these experiments because the usage

of a vapor phase flow system does not allow the bubbler to be maintained at a positive

pressure. This results in a high probability of leakage into the bubbler. A leak would result

in a change in the deposit structure (due to oxygen) and could result in haze depending on

the size of the leak, therefore a leakage check in the CVD is an important step before

making an experiment. After pumping the reaction system for a whole day, the rate of

pressure increase in the chamber was measured at a fixed period of time in the chamber by

closing the outlet valve of the chamber, to obtain the leakage rate. For this LPCVD

system, the leakage rate deviated from 0.13 to 2 mTorr/min. Depending on the chamber

conditions, a very low leak rate for relatively new chambers and higher leak rate for a

chambers with long service time was observed. Overall, the leakage rate in the system was

sufficiently low to carry out the depositions.

3.3.2 Calibration of Gas Flow System

CVD reactors and other process systems require that the rates of introduction of the

process gases into the process chambers be controlled. In some applications, this is
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achieved by adjusting the gas influx to maintain a constant chamber pressure. More

commonly, the process gas flow is directly controlled. To do this, mass flow controllers

are used. Mass flow controllers consist of a mass-flowmeter, a controller, and a valve.

They are located between the gas source and the chamber, where they can monitor and

dispense the gases at predetermined rates. The operation of a thermal mass flowmeter

relies on the ability of a flowing gas to transfer heat. The mass flowmeter consists of a

small sensor tube in parallel with the larger main gas flow tube. A heating coil is wrapped

around the sensor tube midway along its length, and temperature sensors are located

upstream and downstream of the heated point. When the gas is not flowing, and the heat

input is constant, the temperatures at both sensors are equal. Flowing gas causes the

temperature distribution in the sensor to change. It can be shown that the mass flow, mf, is

given by:

Where Wh is the heater power, AT is the temperature difference between the points where

the sensors are located, and lc is a constant that depends on the heat transfer coefficients,

the specific heat of the gas, the density of the gas, and the thermal conductivity of the gas.

Mass rate can be thus measured by the temperature difference.

Gas flows were controlled by Applied Materials model AFC 550 automatic N2 mass flow

controllers, which were, corrected for NH3 flow. The pressure in the reactor was

measured with a barratry gauge from MKS. The N2 calibration of the AFC was checked

by delivering a fixed volume of gas (product of the metered flow rate and time) into the
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known reaction chamber volume. The pressure increase was measured and used to

calculate the volume of the gas corrected to the standard condition. (0°C, 1 atm).

According to the gas law, the flow rate corrected to STP (sccm) is given by the formula :

Where AP = pressure increase in Ton,

To = 273 K

Po = 760 Ton

V = volume of the chamber, cm3

At = time of delivering gas, sec.

Routine flow rate calibrations were conducted before every run.

3.3.3 Calibration of the Vapor Phase Flow Controller

Where:

P = Pressure of the reactor chamber

R = Universal gas constant

T = Temperature of the chamber

n = number of moles of the gas
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The reactor is maintained at room temperature. The volume of the reactor is calculated

from the dimensions of the tube. By measuring the rate of pressure increase inside the

reactor, the molar flowrate can be calculated from the equations above. Once the molar

flowrate of the vapor has been calculated, the volumetric flow rate of the gas at standard

conditions i.e., in sccm can be calculated using the equations given above.

3.4 Deposition Procedure

The boron nitride and titanium nitride films were deposited on 4 different types of

substrates. (100) oriented single crystal p-type, boron-doped single-side polished Si wafers

(Silicon Sense Inc.), (100) oriented single crystal p-type, heavily doped with boron single-

side polished Si wafers (Silicon Sense Inc.), (111) oriented single crystal p-type , boron

doped single-side polished Si wafers (Silicon Sense Inc.) and lastly fused quartz wafers

(obtained from Hoya, Japan). The details of the Si wafers are given in Table 3.1. Apart

from these substrates, the boron nitride films were also deposited on Platinum and

Hafnium carbide films, which in turn were deposited on (100) p-type Si by Sputtering. The

Titanium nitride films were also deposited on aluminum holders as well as on stainless

steel watchstraps and dental drills

The wafers were labeled and accurately weighed (up to 4 decimal places) using an

electronic balance. These wafers are then placed on a quartz boat. The wafers used to

measure the stress on the film are placed back-to-back at a distance of 12.5 cm from one

end of quartz boat and the quartz wafer at a distance of 4 cm from the stress monitors in
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all the experiments. The boat was placed in the reaction chamber at a distance of 54 cm

from the loading end.

Table 3.1 Specifications of the Si wafer

Property Type - 1 Type — 2 Type - 3
Source Silicon Sense Inc. Silicon Sense Inc. Silicon Sense Inc.
Diameter 100 mm 100 mm 100 mm
Orientation <100> <100> <111>
Thickness 525f 25 µm 525 ± 25 µm 525 ± 25 µm
Type/Dopant P/Boron P/Boron P/Boron
Resistivity 1 - 15 0.01 - 0.02 1 — 10
Grade Test Test Test

Once the wafers are loaded, the door of the reactor is shut and all the inlet valves are

closed. Now the bypass valve is opened and the chamber pressure is reduced from

atmospheric pressure to 5 Torr. Then the outlet (main) valve is opened and pressure is

dropped down to as low as 10 mTorr. This two-step procedure of reducing the chamber

pressure ensures that the process wafers are not subjected to a sudden force and as a

result they don't break. A low pressure is maintained inside the chamber using the vacuum

pumps. The furnace is turned on and the required temperature is set. The reactor is then

subjected to a baking period till the out gassing rate is very low. The average bake out

time was found to be approximately 3 hours. precursor is injected into the reaction

chamber through the vapor phase flow controller and Ammonia is added into the reaction

chamber by means of the mass flow controller. Time of deposition was varied according to

the required film thickness. Among the deposition parameters recorded were the

background pressure, reaction temperature, flow rates of the reactants and the deposition
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time. Experiments were performed to change the stoichiometry of deposited films by

adding ammonia to the amine complex in the reactor.

Samples are allowed to cool to room temperature and the wafers are removed from the

reactor by introducing nitrogen to fill the vacuum chamber and rise the pressure to

atmospheric pressure. The samples are then weighed and the deposition rate can be

calculated by knowing the mass gain (mg/hr) due to deposition. Samples were observed in

an optical microscope for the presence of microcracks and for gas phase nucleation.

3.5 Characterization of Boron Nitride and Titanium Nitride Films

3.5.1 Thickness

The measurement of film thickness can be a fairly simple measurement or it can be a quite

complex, depending on the nature of the film. The most direct technique is the

measurement of the step height when a portion of the deposited film is etched away. This

is done by electronically tracking the portion of a mechanical stylus as it is traversed

across the step. In the case of a transparent film on a reflective substrate, the thickness of

films can be measured by a polarizing spectrometer or "ellipsometer". This is an

instrument whose operation is based on the fact that elliptically polarized light changes its

polarization upon reflection from a thin transparent film on a reflecting substrate. The

ellipsometer creates an elliptically polarized monochromatic light beam on reflection from

a thin film. The B-N-C-H film thickness was measured by Nanospec interferometer that

bases its estimation on the monochromatic light interface fringes formed within a zone
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limited by sample surface and a semi-transparent mirror. The device consists of

Nanometrics Nanospec/AFT microarea gauge and SDP-2000T film thickness computer.

The thickness of the film deposited on the wafer was measured at five different points. The

refractive index provided was first estimated, as for silicon dioxide, 1.46 is the typical

value. Thickness was measured at five different points on the wafer. Deposition rate was

determined as the film thickness over the deposition time, and averaged over all the wafers

in the run. The TiN film thickness was measured by a Sloan Dektak-II surface

profilometer.

3.5.2 Growth Rate

Growth rate was determined in terms of Amin, by dividing thickness by the time of

deposition. Growth rate was used as measure of the rate of reaction and was studied with

respect to the temperature of deposition as well as the partial pressures of the reactant

gases in order to establish the rate equation.

3.5.3 Density

The films were deposited on just one side of the wafers by placing them back to back. The

film was thus deposited on a known surface area of 78.5 sqcm and the thickness of the

film was determined as described in section 3.5.1. Thus the volume of the film could be

determined, and knowing the film weight, density could be determined as the ratio of mass

(weight) to volume.
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3.5.4 Refractive Index

The refractive index was determined by a Rudolph Research Auto EL ellipsometer, which

consists of a polarizer and a compensator. Plane (45°) polarized light the polarizer is

elliptically polarized when it passes through the compensator. It is then reflected by the

sample surface, collected by a detector, analyzed for its intensity, and finally quantified by

a set of delta psi values. The values were then fed to a computer that numerically solves

the equation to give the refractive index of the film. The refractive index of the film

deposited on the wafer was measured at five different points and then averaged out to the

refractive index of the wafer.

3.5.5 Fourier Transform Infrared Spectroscopy

The vibrational motions of the chemically bound constituents of matter have frequencies in

the infrared regime. The oscillations induced by certain vibrational modes provide a means

for matter to couple with an impinging beam of infrared electromagnetic radiation and to

exchange energy with it when the frequencies are in resonance. In this experiment, the

intensity of a beam of infrared radiation is measured before (Io) and after (I) with the

sample as a function of light frequency. A plot of I/Io versus the frequency is the "infrared

spectrum". Fourier transform infrared (FTIR) spectra of the films obtained from Perkin -

Elmer 580 were observed for B-N, B-N-B vibration modes and the presence of N-H, C-H

bonding. The levels of interstitial oxygen and phosphorus were determined by using

infrared absorption spectroscopy. The analysis was done on a Perkin-Elmer 1600 series

FTIR spectrophotometer to determine the characteristics of the deposits. A spectrum of

percent transmittance or absorption was obtained for samples of known thickness.
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3.5.6 Film Stress

Stress develops in the film due to difference in the thermal coefficient of expansion of the

film and the substrate, lattice mismatch between a crystalline film and the substrate, and

also due to defects developed in the bulk during the growth process, which is termed as

intrinsic stress. The stress in the film will cause the substrate to slightly bend after the

deposition resulting in some radius of curvature.

He-Ne laser beam source

Surface bending due to tensile
stress of the deposited film

Reflecting mirror

Si wafer

Image screen

R - R' is the radius of curvature of bending

Figure 3.3 Schematic representation showing the experimental setup to measure the
radius of curvature of the bending of silicon substrate due to stress in the
film.

Stress of the film can be calculated using Stony's formula
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where E and v are Young's modulus and Poisson ratio of the substrate. D, t are the

substrate and film thickness' respectively, R is the radius of curvature of the composite.

By convention R is negative for a convex wafer surface (compressive film stress) and

positive for a concave wafer surface (tensile film stress).

Film stress was determined with a home-built system that measured changes in the radius

of curvature of a wafer resulting from deposition on a single side. Such depositions were

achieved by placing two wafers back to back. The experimental setup to measure the

radius of curvature of the substrate bending is shown in Figure 3.3. The distance between

two points generated by light from two fixed and parallel He-Ne lasers was determined

after reflection from the surface of a wafer before and after deposition. An angled mirror

was used to project the reflection of the two points onto a wall where their separation

could be more accurately measured.

In the present set of experiments, for the wafers used, Young's modulus of the substrate

was taken as 1.85 X 10 11 Pa with a Poisson ratio of 0.3. Substrate average thickness was

525 p.m. Considering the geometry of the instrument used, the equation (3.6) reduces to

where R' is the difference of the deflection of the projected laser spots after and before

deposition.
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3.5.7 X-Ray Diffraction (XRD)

A collimated beam of X rays, with wavelength λ ~ 0.5 — 2 A, was incident on the

specimen and was diffracted by the crystalline phases in the specimen according to

Bragg's law.

Where:

X = X-ray wavelength,

d = Interplanar spacing,

0 = Bragg diffraction angle, and

n = Integer giving the order of the diffraction.

The intensity of the diffracted X rays is measured as a function of the diffraction angle 20

and the specimen's orientation. This diffraction pattern was used to identify the

specimen's orientation. This diffraction pattern was used to identify the specimen's

crystalline phases and to measure its structural properties. This is a nondestructive

technique with a probing depth of typically a few microns. The films deposited were

analyzed using X-ray diffraction (XRD), so as to determine the orientation of the lattice

planes. The equipment used was a Phillips X-ray Diffractometer, which was operated

using APD software. A 40 kV voltage was used at a current of 45 mA to do the XRD.

The angle (20) range scanned was 5° to 110° in a duration of 6 hours.
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3.5.8 UV/Visible Spectrophotometer

The optical transmission of the films was measured using a Varian DMS 300 UV/visible

spectrophotometer over a range of wavelength from 190nm to 900nm. This also gives an

approximate estimation of the optical band gap of the semiconducting BN thin film. The

optical transmission of the films were measured using a Varian DMS 300 UV/visible

spectrophotometer over a range of wavelength from 200nm to 900nm. This was carried

out with samples deposited on quartz substrate. The optical transmission of BN films were

of particular interest at a wavelength of 6320 A, since x-ray mask alignment equpiments

rely on light rays around this wavelength. From the optical transmission spectrum, it is

possible to estimate the optical band gap. The optical band gap is determined from the

calculated values of absorption coefficient, a. The intensity of the transmitted wave, I,

through a film of thickness t, is related to the intensity of incident wave Io by Beer-

Lambert law

If the average thickness of the film is known, then absorption coefficient for each

wavelength can be calculated. The absorption coefficient of semiconducting films in the

high-absorption region ( > 10 4 cm-1 ), assuming parabolic band edges and energy-

independent matrix elements for interband transitions, is given according to Tauc by the

following equation:
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where hγ , Eg(opt) and K 1 denote the photon energy, optical energy gap, and an energy-

independent constant, respectively. Formally, the optical band gap E g(opt) is obtained as the

intercept of the plot of (α*hγ) 1/2 againsthγ.

3.5.9 Hardness and Young's Modulus Measurements

The hardness and Young's modulus of the BN and TiN films were determined using a

Nano Instruments indenter. The system consisted of a diamond tip, with the same area-to-

depth ratio as the traditional. At the top of the loading column was a coil and magnet

assembly that provided a controlled loading force with a resolution of about 0.5 1.1N. The

position of the indenter was determined by a capacitance displacement gauge which allows

one to detect displacement changes of 0.2-0.3 nm. In all cases a minimum of 16 curve

represents the observed displacement due to an increased loading at a constant rate of 200

µN/s to a maximum of 4.5 mN. The second segment of the curve represents the unloading

at the same constant rate down to 20% of maximum load. From that latter segment, the

deformation contact depth hp and elastic recovery depth he can be measured. A linear least

squares fit of the upper segment extrapolated down to 0 yields the value of hp. The

difference between the maximum displacement and hp yields the value of he . The hardness

is obtained at the maximum displacement using the formula

where P is the applied load and A is the contact area calculated from the known geometry

of the indenter
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Assuming that the area in contact remains constant during initial unloading and adopting

Sneddon's solution for the elastic deformation of an isotropic elastic material, the elastic

modulus is obtained from the contact stiffness S, the slope of the unloading curve, given

by

where h is the displacement of the indenter, and Er is the composite moduus for the

indenter/sample combination

where Ef and Ei are Young's moduli for film and indenter, respectively, and of and v i are

Poisson's ratios for the film and the indenter, respectively. Since v appears as a quadratic

term and therefore represents only a small correction, of was taken as 0.3, while the

values for the diamond indenter Ei and vi were taken to be 1010 GPa and 0.213,

respectively.

3.5.10 X-ray Photoelectron Spectroscopy (XPS)

X-ray photoelectron spectroscopy was used for the compositional analysis of the boron

nitride films. Low energy x-rays of K-alpha aluminum (which has energy of 1.487 keV)

were used to cause the photoelectron emission. The principle used here is that just as the

electron bombardment of materials can produce emitted electrons and x-rays, striking the

material with x-rays can do the same. In this technique, only electrons from the top 1-10

monolayers are emitted without significant loss from collision. Thus even though the x-ray

beam penetrates deep into the sample material, XPS is basically a surface analysis
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technique. However the films were sputtered by ion milling to a depth of 500A and then

again the analysis was carried out. Hence both the surface as well as the composition in

the film were determined by this technique.

3.5.11 Auger Electron Spectroscopy (AES)

Auger electron spectroscopy (AES) uses a focused electron beam to create secondary

electrons near the surface of a solid sample. Some of these (the Auger electrons) have

energies characteristic of the elements, and in many cases, of the chemical bonding of the

atoms from which they are released. Because of their characteristic energies and shallow

depth from which they escape without energy loss, Auger electrons are able to

characterize the elemental composition and at times the chemistry of the surfaces of

samples. AES has the attributes of high lateral resolution, relatively high sensitivity,

standardless semiquantitative analysis, and chemical bonding information in some cases.

3.5.12 Scanning Electron Microscopy (SEM)

The scanning electron microscope (SEM) is often the first analytical instrument used when

a quick look at a material is required and light microscopy no longer provides adequate

resolution. In the SEM an electron beam is focused into a fine probe and subsequently

raster scanned over a small rectangular area. As the beam interacts with the sample it

creates various signals, all of which can be appropriately detected. These signals are highly

localized to the area directly under the beam. By using these signals to modulate the

brightness of a cathode ray tube, which is raster scanned in synchronism with the electron
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beam, an image is formed on the screen. This image is highly magnified and usually has the

look of a traditional microscopic image but with a much greater depth of field.

3.5.13 Rutherford Backscattering Spectrometry (RBS)

Rutherford backscattering spectrometry (RBS) analysis is performed by bombarding a

sample target with a monoenergetic beam of high energy particles, typically helium, with

an energy of a 2 MeV. A fraction of the incident atoms scatter backwards from heavier

atoms in the near surface region of the target material, and usually are detected with a

solid state detector that measures their energy. The energy of a backscatterred particle is

related to the depth and mass of the target atom, while the number of backscattered

particles detected from any given element is proportional to concentration. This

relationship is used to generate a quantitative depth profile of the upper 1 — 2 micron of

the sample. Alignment of the ion beam with the crystallographic axes of a sample permits

crystal damage and lattice locations of impurities to be quantitatively measured and depth

profiled.

3.5.14 Resistivity

A number of techniques are employed to measure electrical properties of thin films. For

insulating films, where current flows through the film thickness, electrodes are situated on

opposite film surfaces. Small evaporated or sputtered circular electrodes frequently serve

as a set of equivalent contacts; the substrate is usually the other contact. For more

conductive metal and semiconductor films, it is common to place all electrodes on the
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same film surface. Such measurements employ four terminals - two to pass current and

two to sense voltage. The following figure shows the contact configuration.

A very common way to report values of thin-film resistivity is in terms of sheet resistance

with units "ohms per square." To understand this property and the units involved, consider

the film of length 1, width w, and thickness d. If the film resistivity is p, the film resistance

is R = pl/wd. Furthermore, in the special case of a square film, (1=w),

A very convenient way to measure the sheet resistance of a film is to lightly press a four-

point metal tip probe assembly into the surface as shown in Fig. xyz. The outer probes are

connected to the current source, and the inner probes detect the voltage drop.

Electrostatic analysis of the electric potential and field distributions within the film yields

where K is a constant dependent on the configuration and spacing of the contacts.

determine the resistivity of the film, first the sheet resistance was determined using a

standard four-point probe. The sheet resistance when multiplied by thickness of the film

gave the resistivity of the film.
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Figure 3.4 Schematic representation of a four point probe

3.5.15 Emissivity

Temperature dependent emissivity of TiN was acquired using a spectral emissometer. This

emissometer consists of a Fourier transform infrared spectrometer designed specifically to

facilitate simultaneous measurements of surface emittance and temperature by using

optical techniques over the near- and mid-IR spectral range and temperatures ranging

from 300 to 700 K. These measurements gave the spectral data for reflectance,

transmittance and emittance of the films as a function of wavelength.

3.6 Electrical Characterization of BN Thin Films

3.6.1 Metallization of BN Films

The electrical properties of the synthesized films were determined by studying the

characteristics of the devices made by the films. To study the electrical characteristics of
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the device, an electrical contact is needed which was provided by Al metallization. The

boron nitride thin films were coated with pure Al. This was done in an evaporator, and the

important parameters of deposition are given in Table 3.2. A mask is used to obtain Al

dots of diameter 300µm and 600µm on the boron nitride film, while a uniform coating of

Al is deposited on the back surface (Si surface of the stress monitor).

Table 3.2 Parameters for metallization of BN thin films

Base pressure 10-6 Torr
Heating source Tungsten filament (resistance heating)
Evaporating source Al wire
Purity of evaporating source 99.9999% (Al)
Rate of deposition 50 Amin.
Ultimate thickness of deposit 900 A
Substrate temperature room temperature
Distance between the filament and the
substrate

200 mm

Size of the dots 300 m and 60011m diameter

Thin Al films were deposited by applying heat to the source of the film material, thereby

causing evaporation. The heated source was resided in a high-vacuum environment, hence

the vaporized atoms/molecules are likely to strike the substrate without suffering any

intervening collisions with other gas molecules. The rate of mass lost from the source per

unit area per unit time, R, as a result of such evaporation, can be estimated from the

Langmuir-Knudsen relation:
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Where: M is the gram-molecular mass; T is the temperature in °K, and P e is the vapor

pressure in Pa.

Al films were deposited with resistance-heated source. That is, a wire of low vapor

pressure metal Tungsten was used to support small strips of the metal to be evaporated.

The substrate was placed above the source. The chamber is now evacuated and a pressure

as low as 10 -6 tort. is achieved. Now the power supply to the resistance is slowly increased

i.e., the W-wire is then resistively heated till Al on the resistance wire melts and

evaporates. Once evaporated, the vacuum is broken and the chamber is opened. The

substrate coated with the Al film is then removed.

3.6.2 Device Fabrication

Two kinds of devices were built using boron nitride thin films, the MOS (Metal Oxide

Semiconductor) and the MINI (Metal Insulator Metal). Further, the MIM structures were

built by 2 ways, in the first method a metal film was deposited on the Si substrate and in

the second, a very highly conducting Si substrate was used i.e., type - 2 substrate as

shown in the table. The process flow diagram for the fabrication of the devices is shown in

detail as follows:



Figure 3.5 Process flow diagram for the fabrication of the MOS device.
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Figure 3.6 Process flow diagram for the fabrication of the MIM device (Si Type-2)
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Figure 3.7 Process flow diagram for the fabrication of the MIM device with metal film

3.6.3 Capacitance - Voltage (C-V) and Current - Voltage (I-V) Measurements

Capacitance - voltage (C-V) and current - voltage (I-V) measurements was done for the

films on both the low resistivity as well as the high resistivity p - type Si substrates. On the

front side of BN, Al dots were evaporated through a shadow mask. The back side BN was

removed by plasma etching (if necessary) and Al was deposited for back contact as

explained in the previous section. The dielectric constant of the BN films were measured

at five places and the breakdown voltage was determined. Subsequently, a bias stress

study was made by applying a ± 1MV/cm for 2 - 5 minutes at room temperature and C-V

measurements were done after each polarity of stress. Temperature-bias stress

measurements were also made to find out if there are trapped charges in the insulator. This

was done by applying a positive and negative polarity of 0.5 MV/cm for 10 minutes at 120

°C. To find out the nature of the charges, bias-temperature aging studies were done on the
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samples. The recombination-generation kinetics of the electrons in the inversion region of

the device was studied by taking the C-V measurements with a-c signals at different

frequencies. Frequencies ranging from 10 Hz to 1Mhz were used in this study. Also, the

mobility of charges and the presence of charge traps were studied by shining of light with

different intensities on the devices.

3.7 Free Standing B-N-C-H membrane

3.71 Fabrication of Free Standing B-N-C-H Membranes

The process flow diagram for fabricating the freestanding X-ray windows and resulting

cross sectional view are shown in Figures 3.8 and 3.9. P type (100) Si wafers were

deposited with LPCVD B-N-C-H films on both sides and then processed in NJIT's class-

10 clean room. The wafers were cleaned in the wet chemical stations with M-pyrol

primary and secondary baths maintained at 90 °C for 10 minutes each and this was

followed by a DI-water rinse for 10 minutes. This process was carried out to cleanse the

wafer from any organic impurities. The wafers were then spin/rinse/dried in a Semitool

systems dryer. Positive photoresist was then applied on the back side of the wafer and was

soft baked at 110 °C for one minute. The wafer was then placed in the Karl Suss exposure

tool with the mask and exposed for 30 seconds. This was followed by the pattern

development for 6 minutes following which the wafers were hard baked at 115 °C. The

patterned wafers were placed in the Phantom RIE reactive ion etcher with a CF 4 flow of

40 sccm, pressure of 250 mTorr and a power of 150 W. The wafers were etched for 6
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minutes to form the pattern and after inspection were placed in a KOH bath at 90 °C for

10 hours to form the freestanding B-N-C-H membranes.

Silicon

Figure 3.8 Process flow diagram for the fabrication of the free standing B-N-C-H
membranes

Figure 3.9 Cross sectional view of the X-ray window
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3.7.2 Characterization of B-N-C-H Free Standing Membranes

The Freestanding membranes, which were fabricated as explained in the previous section

were then reactive ion etched with CF4 plasma to obtain membranes with different

thickness. Freestanding membranes from 2000 A to 10,000 A were produced by this way.

These membranes were then tested for X-ray transmission through them as a function of

X-ray energy and were compared to the transmission obtained from the commercially used

X-ray window.



CHAPTER 4

RESULTS AND DISCUSSION

4.1 Introduction

The growth kinetics, film properties, and applications of LPCVD boron nitride (B-N-C-H)

and titanium nitride (Ti-N-CI) films synthesized on Si and quartz substrates are discussed

in this chapter. The numerous current and potential applications of these films are based

on their properties, which are in turn dependent upon the stoichiometry and further on the

deposition technique and the processing conditions. Hence, in this chapter an effort has

been made to correlate the properties of the deposits with the stoichiometry and the film

processing conditions. Changes in the mechanical, electrical, optical, and structural

properties due to variations in the process parameters are also explained. Reaction

mechanism explaining the experimental growth kinetics data for LPCVD TiN has also

been discussed.

This chapter also discusses the fabrication, characterization and testing of the LPCVD B-

N-C-H freestanding X-ray windows. The performance characteristics of these X-ray

windows are discussed and compared with the commercially available ones. In addition to

this, results from the investigation of LPCVD BN as an inorganic low dielectric constant

material, LPCVD TiN as a highly reflective stoichiometric film at temperatures below 600

°C, and LPCVD TiN as a wear resistant coating for tooling applications are also

discussed.

113
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In all the experiments, films deposited were uniform and no peeling was observed

indicating that the adhesion properties of both the B-N-C-H and Ti-N-Cl films on silicon

and quartz substrates are excellent. There were no cracks on the film surface and the film

thickness was found to be uniform across the wafer with a deviation of up to ±5%.

Observation of the film under the optical microscope revealed no presence of particulate

matter or voids, suggesting that gas phase nucleation was avoided. In this chapter, we

shall first study the growth kinetics, film composition, and properties of the B-N-C-H

films, which will be followed by the same for Ti-N-Cl films.

4.2 Kinetic Study of Boron Nitride Deposition by LPCVD

4.2.1 Influence of Temperature on the Deposition Rate and Film Composition

At a fixed TEAB complex flow rate of 17 sccm, total pressure of 500 mTorr, and a

NH3/TEAB flow ratio of 10/1, the deposition rate is shown in Figure 4.1 for the

deposition temperature range of 300 to 850 °C. From 300 to 400 °C, the rate follows an

Arrhenius behavior yielding an apparent activation energy of 22 kcal/mol. Above 400 °C,

the growth rate is observed to decrease monotonically with increasing temperature due to

a combination of effects, including the transition into the mass transfer limited regime, the

adsorption of decomposition products which act as retardants to the growth process, a

decrease in the equilibrium conversion for exothermic reactions, and due to the depletion

of reactants caused by the reactions on the hot wall of the furnace. The decrease in

deposition rate was seen to continue till 650 °C above which the triethylamine complex

decomposes into nitrogen and low molecular weight hydrocarbons, which adsorb over the
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surface resulting in the incorporation of carbon and hydrogen into the films and increasing

the deposition rate. From this point the deposition rate is controlled by the breakup of the

complex and it is seen to increase gradually as temperature is increased from 700 to 900

°C. It should be noted that at this point the film is composed primarily of carbon as

observed by the AES compositional analysis. Increasing the temperature further increases

this process and increases the carbon content.

Figure 4.1 Variation of average growth rate as a function of temperature

It can be seen from Figure 4.2 that at any constant NH3/TEAB flow ratio, as the

deposition temperature is increased from 400 to 600 °C, the B/N composition ratio

decreases approaching stoichiometry. Since the TEAB complex is the limiting reactant,
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operating in the mass transfer controlled regime results in the depletion of TEAB, which

results in an increase in the adsorption of NH3 on the reaction sites and a subsequent

increase in the nitrogen content resulting in the production of films trending towards

stoichiometry. This trend continues only up to 600 °C, above that temperature, the

reaction kinetics and the resulting film composition is controlled by the TEAB complex

breakdown. For all the investigated NH3/TEAB flow ratios the carbon content in the films

was seen to increase with an increase in deposition temperature from 400 to 600 °C as

shown in Figure 4.3. This is due to the initiation of the breakup of the complex which

occurs at ~ 650 °C. Films which were deposited at or above 700 °C were found to have

up to 80 % carbon and 10 % each of boron and nitrogen.

Figure 4.2 Film composition as a function of deposition temperature.
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Figure 4.3 Carbon concentration in the films as a function of deposition temperature.

4.4.2 Influence of Reactant Flow ratio on the Deposition Rate and Film Composition

A plot of growth rate as a function of the flow ratio is shown in Figure 4.4. At a constant

total pressure of 100 mTorr and deposition of 575 °C, it is seen that as the NH3/TEAB

flow ratio is increased from 1 to 2000, the deposition rate decreases sharply from around

70 A/min to 5 A/min approaching a plateau at around 200 sccm. It is also important to

note that the depletion along the reaction chamber decreases reaching a minimal spread at

around 200 sccm. Both these observations are consistent with an incremental filling of

surface sites by the higher presence of NH3 which not only dilutes the amount of TEAB,

thus accounting for the reduced growth rate, but also makes more TEAB available to

react downstream, thus, accounting for the reduced depletion effects. Figures 4.2, 4.3, and

4.5 show the variation in the film composition at different deposition temperatures with a
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variation in the NH3/TEAB flow ratio. It is seen that at any constant deposition

temperature, an increase in the NH3/TEAB flow ratio results in the decrease in the B/N

ratio of the films. In other words, the films trend towards stoichiometry as the flow ratio is

increased. At a deposition temperature of 575 °C, it can be seen that the B/N ratio

decreased from —5.5 to —1 as the NH3/TEAB flow ratio was increased from 1 to 1000. At

the same time, an increase in the NH3/TEAB flow ratio causes a decrease in the carbon

content in the deposits. Both these figures confirm the previously suggested mechanism of

NH3 dilution resulting at higher NH3/TEAB flow ratios.

Figure 4.4 Variation of growth rate with the flow ratio of the reactants.
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Figure 4.5 Variation of Film composition as a function of NH3/TEAB flow ratio

4.3 FTIR Spectroscopy and Auger Analysis of BN Thin Films

Infrared absorption spectroscopy showed large differences in the chemical bonding of

hydrogen to both boron and nitrogen as B-H, NH 2 and possibly N-H. The broadness and

frequency shifting of the B-N band also depends on experimental conditions. Peaks were

seen at 3400 cm-1 ; 3220 cm-1 and 1540 cm-1 ; 2500 cm-1 ; strong and asymmetric at 1400

cm-1 ; and weaker and sharper at 800 cm -1. These absorption bands were respectively

attributed to the characteristic vibrations of N-H, NH2, B-H bond stretching, B-N bond

stretching and to B-N-B bond bending. The spectrum was sensitive to the deposition

temperature. The typical FTIR absorption spectra of boron nitride thin films (Figure

4.3(a)) at 400°C, 0.5 Ton pressure and a flow ratio of NH3/TEAB = 10/1 showed

absorption peaks at wavenumber of about 1350 cm-1 corresponding to the B-N vibration
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mode, and a small peak close to 800 cm -1 corresponding to the B-N-B vibration. Apart

from these major peaks, B-H peak at wavenumbers 2500 cm-1 , and N-H peaks at

wavenumbers 3200 cm-1 and 3400 cm-1 C-H peak at 2900 cm-1 could be seen. Also a

contamination 0-H peak can be seen at about 3600 cm -1 .

Figure 4.6(a) Typical FTIR spectrum of BN films at 400 °C

It can be seen that the B-N and B-N-B absorption peaks increase with increasing flow rate

of ammonia at all the temperatures under consideration. In addition, with increase in

temperature, at 550 °C (Figure 4.3(b)), the peaks at wavenumbers 3400 cm -1 , 3200 cm-1 ,

and 2900 cm -1 and 2500 cm-1 corresponding to N-H, C-H and B-H vibration modes

respectively disappear.
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Figure 4.6(b) Typical FTIR spectrum of BN films at 575 °C

Figure 4.7 Variation in the spectra with the flow ratio at 550 C.

Figure 4.6(b) shows the shift in the peak position with increasing temperature at a

constant flow ratio of NH3/TEAB = 50/1. This indicates that the stoichiometry of the film

is changing with increasing flow ratio. As the thickness increases, the intensity of the peak

also increases. Auger analysis indicated a carbon percentage of about 8, but from the



122

infrared absorption spectra, no C-C or C-H peaks at high temperatures and at high flow

rate could be identified. This reveals that it is not bonded in any carbide form, rather in an

elemental form. Thus, FTIR is insensitive to the presence of carbon in the film. Thus the

film is essentially amorphous carbon containing boron nitride.

4.4 Properties of LPCVD BN Thin Films

4.4.1 Film Density

The density of the films was determined by dividing weight gain by film volume as

calculated from the product of film thickness and known area of the wafer. The

thicknesses used were based on the values obtained by the Nano spectrophotometer.

Figure 4.8 shows the variation of the film density as a function of deposition temperature

for the NH3/TEAB flow ratios of 10/1, 20/1, and 30/1. At a constant deposition

temperature, it is seen that the density increases with increase in flow ratio of NH 3/TEAB.

This could be explained by the composition changes that take place with increasing flow

ratio. Increasing the NH3/TEAB flow ratio causes the film stoichiometry to shift from

B5N to B3N to BN, which means that the N content in the film increases as the flow ratio

is increased, resulting in the increase in the film density. Examination of the films under the

optical microscope did not show evidence of any gas phase nucleation or voids. For all the

flow ratios, increase in the deposition temperature resulted in a slight increase of film

density up to 550 C and decrease at higher deposition temperatures. Higher deposition

temperature is believed to eliminate voids and decrease the incorporated hydrogen content

from the deposits. This is consistent with the findings from FTIR spectroscopy where the

N-H and B-H and C-H peaks were found to disappear at higher deposition temperatures.
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Film density values as high as 2.22 g/cc were calculated which is near the 2.25 g/cc

reported in the CRC handbook for hexagonal BN. However, as the deposition

temperature approaches 600 C, at which the TEAB complex breaks down, the carbon

concentration in the film begins to increase significantly. At a deposition temperature of

575 C and NH3/TEAB flow ratio of 10/1, the film comprises of 65% B 25% N and 10%

C. The C basically replacing the N sites and hence the density begins to decrease. At

temperatures higher than 600 C, the film is composed primarily of carbon and it could be

considered as a polymer for all practical purposes. The B and N content drop to around

10% each and hence the film density drops significantly.

Figure 4.8 Variation of film density with increasing flow ratio of NH 3/TEAB

4.4.2 Refractive Index

Figure 4.9 shows the variation of the refractive indices of the film with the NH 3/TEAB

flow ratio for the deposition temperatures of 400, 475, 500, and 575 C. In all cases,
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increasing the NH3/TEAB flow ratio resulted in a decrease in the film refractive index.

From the composition analysis we have seen that increasing the NH3/TEAB flow ratio

causes a reduction in the incorporated carbon in the films and the B/N ratio approaches

stoichiometry. This could explain the decrease in the refractive index values. For a

deposition temperature of 575 C, increasing the NH 3/TEAB flow ratio from 1/1 to 1000/1

caused the refractive index to decrease from 2.4 to 1.76. The decrease is sharp for the

flow ratio change from 1/1 to 30/1, after which the refractive index stabilizes at around 1.8

up to an investigated flow ratio of 2000/1.

Figure 4.9 Variation of refractive index with increasing flow ratio of NH 3/TEAB

The changes in the refractive index track the compositional changes that take place due to

the variation in the flow ratio. The carbon content is seen to exhibit a similar dependence

on the NH3/TEAB flow ratio. An increase in the deposition temperature was seen to

decrease the film refractive index consistently for the 4 deposition temperatures studied.
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This is attributed to the formation of stoichiometric boron nitride films as the temperature

is increased. It should be noted that this behavior holds only till 575 C, above which the

breaking of the TEAB complex results in the incorporation of high amounts of carbon in

the films and an increase in the refractive index.

4.4.3 Film Stress

The addition of an atom having different bonding radii to a matrix film is an effective

method for changing the stress of the film. In a low pressure chemically vapor deposited

BN film, it is difficult to obtain tensile stress except for extremely boron-rich films. The

controllability of tensile stress in BN film was improved by the introduction of a small

amount of carbon into the BN matrix, using LPCVD between 400 and 800 C. Also the

radiation resistance of BNC deposited films was improved five times better than that of

LPCVD BN. At lower flow ratios of 10:1 of NH 3 :TEAB (Figure 4.10), the films were

mildly tensile and the values are comparable (about 50MPa). With increase in the ammonia

flow rate, the stresses in the film changed from mildly tensile to mildly compressive and

the trend continued at higher flow ratios of 50:1 at 550 °C. Within the temperature ranges

studied the highest compressive stress attained was about 150 MPa. The effect is mainly

due to the influence of ammonia which increases the nitrogen percentage in the films since

the carbon percentage is almost constant over this range of temperature. At lower

temperatures and low ammonia flow rate the films were mildly tensile and the films

became more tensile with increase in temperature. while at higher flow ratios and lower

temperature, the films were mildly compressive and the compressive stress increased with

increase in temperature. Interestingly, a transition from mildly compressive to mildly
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tensile behavior with increase in temperature was seen in the films at a constant

NH3/TEAB ratio of 20:1.

Figure 4.10 Variation of stress with increasing flow ratio of NH 3/TEAB

4.4.4 Optical Properties

The dispersion in the data presented in the literature confirms the critical role that

particular film deposition technique exerts on the optical properties. Amorphous boron

nitride with a B/N ratio of 1 has a refractive index of 1.8-1.9 at a wavelength of 633 nm

and 1.7-1.8 at 541 nm, while polycrystalline films have a slightly higher index of 1.9-2.0,

and cubic boron nitride has an index of 2.12. The refractive index is expected to vary with

the content of both boron and carbon. Boron rich films have relatively higher refractive

index values. The absorption edge Eg reported was approximately 5 eV for amorphous
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BN, 5.90 eV for stoichiometric boron nitride BN, and 5.83 eV and 3.84 eV. The

transmission was studied at a wavelength corresponding to red light (X = 6330A). The

absorption coefficient a was calculated using Beer-Lambert law:

I/IO = exp(-ax)

Where 1/I. is the fraction of the transmitted light and x, the thickness of the film. The

optical transmission of the films synthesized varied from 92% to 72% at 633nm

(corresponding to red light) depending on the thickness of the film and the stoichiometry

of boron, nitrogen and carbon ratios in the films. As the wavelength is reduced from the

visible region to the ultra violet region (approx. < 300nm) the transmission goes down and

at about 210nm the light is completely absorbed. This is typical of a semiconducting

Figure 4.11 Optical transmission of BN thin films
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material with the electrons jumping from the valence band to the conduction band as a

result of the excitation of the electrons due to this supplied quanta of energy (by a

photon). All thicknesses were normalized to 1 cm and the absorption coefficient was

calculated. It was seen that near stoichiometric BN films are reasonably optically

transparent. Typical optical transmission curve is shown in Figure 4.11.

Figure 4.12 Optical absorption coefficient a as a function of the incident photon
wavelength for varying NH3/TEAB flow ratios.

In general, the optical absorption edge of this amorphous wide band gap semiconductor

consists of a low energy region 1 in which a varies as exp hv, and a high energy region 2

in which a varies as (hv)m, m=1/2 for direct band gap materials and m=2 for indirect band

gap materials. Historically region 2 has received the most attention because it
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predominates in amorphous Si and tetrahedral-bonded narrow band gap semiconductors.

However, there are significant differences between the spectra of amorphous narrow band

gap semiconductors of which BN is representative. In the latter case, it is equally

important for these two regions.

Figure 4.13 Determination of the optical band gap from the plot of (αhv) 1/2 vs hv.

For the LPCVD B-N-C-H films composed of the single amorphous BN phase, the

absorption coefficient a has the form ahv = K1(hv-Eg) 2 in region 2 where K1 is a

materials constant, and Eg is the optical band gap. The plot of (ahv)1/2 versus hv is

shown in Figure 4.13 The optical band gap of 4.24 is calculated from the X axis intercept

of the linear part of the plot (αhv)1/2 versus hv. As the deposition temperature was

increased from 400 to 600 C, the optical band gap was found to increase from 3.0 to 4.5,
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while at a constant temperature, increase in the NH3/TEAB flow ratio from 1/1 to 50/1

did not result in any significant change in the optical band gap.

4.4.5 Structure Study

In the case of synthesis of BN thin films, a heterogeneous reaction must occur in order to

obtain good films. However, some portions of the overall reaction may occur in the gas

phase. BN molecules adsorbed on the Si wafer surface diffuse randomly and have a

greater opportunity to re-evaporate (desorb) because they are less firmly bound to the

surface. As the adsorbed molecules diffuse on the surface, they may encounter other

diffusing molecules and form a pair. This molecule pair would be more stable than an

isolated molecule and would less likely to desorb. As the pairs diffuse on the surface, they

may join other molecules, forming a larger and more stable cluster, until the cluster had a

low probability of desorbing and a critical cluster or stable nucleus was formed. The

probability of diffusing molecules encountering each other depends strongly on the number

of adsorbed molecules on the surface. Thus, it is a strong function of their arrival rate

(through the pressures of the precursors) and their desorption rate (through the

temperature of substrate and the binding energy of the diffusing molecules to exposed

surface). After stable deposited nuclei formed, additional adsorbed molecules diffusing on

the surface can either initiate additional nuclei or join existing nuclei. When the existing

nuclei were close enough together, additional molecules were more likely to join an

existing nucleus, and the number of nuclei saturated and remained constant as the size of

each nuclei grows. The saturation number of nuclei depended on the substrate, the arrival

rate of molecules, and the temperature. Thus, a continuous film formed as the nuclei
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impinged on each other. Ever after a continuous film formed, the structure was strongly

influenced by the thermal energy available for surface migration. At very low

temperatures, the adsorbed BN molecules had little thermal energy and cannot diffuse

significantly on the substrate surface before they were covered by subsequently arriving

molecules. Once they were covered, their random arrangement was locked into place, and

an amorphous structure with no long-range order formed. At higher temperatures,

adequate surface diffusion was possible to allow a crystalline structure to form 41 . The X-

ray diffraction pattern of BN films deposited on silicon at the highest deposition

temperature of 575 °C (shown in Figure 4.14) only exhibits the peak of Si (100) at about

69 °, the peaks of BN are not present. Therefore, the films are amorphous at all

temperatures that were studied.

Figure 4.14 X-ray diffraction pattern for a boron nitride film on silicon deposited at a
temperature of 575 °C, pressure of 0.05 Ton, TEAB flow rate of 1 sccm,
and NH3 flow rate of 50 sccm.
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4.4.6 Electrical Characterization of BN Films

A detailed electrical characterization was done to determine the potential of these films as

low E  IMD. CV and IV measurements were done for the films on both the type-1 and

type-2 substrates. MIS and MIM structures were fabricated to study the CV and IV

behavior exhibited by the films. The following table gives the summary of the electrical

measurements carried out on the boron nitride films.

Table 4.1 Electrical data measured for BN films

Substrate Thickness
(A)

Dielectric constant

type 1-Si 1500 3.1 — 5.5
type 2-Si 1500 3.1 — 5.5

4.4.6.1 Dielectric Constant Measurements: The dielectric constant of BN films

measured at five locations on every sample was in the range of 3.1 to 5.5. The breakdown

voltage was more than 4 MV/cm which is the equipment limit. The dielectric constant was

found to be frequency dependent and was measured at different frequencies ranging from

1KHz to 1MHz by a HP4194A CV/IV measuring instrument. The dielectric constant e

was measured using the formula

where d is the thickness of the film, A the area of the capacitor (area of the Al contacts -

300µm and 60011m) and C is the effective series capacitance of the dielectric as well as the

intrinsic capacitance generated due the applied potential on the minority carriers of the

dopant of the Si wafers. The latter varies with changes in applied voltage across the Al

contacts. CV plot obtained for BN films on the HP4149A is shown in Figure 4.15.
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Figure 4.15 Typical MIS capacitance-voltage curves for LPCVD boron nitride

In describing this curve we begin at the left side (negative voltage), where we have an

accumulation of holes and therefore a high differential capacitance of the semiconductor.

As a result the total capacitance is close to the insulator capacitance. As the negative

voltage is reduced sufficiently, a depletion region that acts as a dielectric in series with the

insulator is formed near the semiconductor surface and the total capacitance decreases.

The capacitance decreases until finally inversion is reached. With inversion there is no

further change in the capacitance, since the depletion width has reached its maximum.
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4.4.6.2 Investigation of LPCVD BN-Si Surfaces Using MIS Structures: The exact

nature of the BN-Si interface is not yet fully understood. The MIS characteristics is

greatly influenced by the interface traps and the oxide charges that exist. Hence the

properties of the BN film can be studied by an investigation of the MIS structure having

BN as the insulator. The basic classifications of the traps and charges are as follows:

1. Interface trapped charges,

2. Fixed oxide charges,

3. Nitride trapped charges and

4. Mobile ionic charges

An interface trap is considered as a donor if it can become neutral or positive by donating

an electron. An acceptor interface trap can become neutral or negative by accepting an

electron. When a voltage is applied, the interface-trap levels move up or down with the

valence and the conduction bands while the fermi level remains fixed. This change of

charge contributes to the MIS capacitance and alters the ideal MIS curve. In other words,

the interface trap exhibits a frequency dependent behavior. Hence the presence of interface

traps may be detected by the frequency dependent study of the MIS structures. The result

of such a study is shown in the fig. 4.16.



Figure 4.16 Capacitance-frequency plot for BN MIS structures

From the Figure 4.11 we can see that as the frequency is increased, the accumulation

capacitance decreases. The reason being, at high frequencies the interface traps cannot

follow the ac voltage swing, which yields a capacitance free of the interface traps. Hence

we can conclude that the MIS structures which were fabricated contained significant

density of the interface traps. This could be one of the reasons for not achieving lower

dielectric constants.
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Figure 4.17 C-V curve shift along the voltage axis due to (+) or (-) fixed oxide charge

The fixed oxide charge has the following properties: It is fixed and cannot be discharged

or charged over a wide variation of the surface potential; it is located within the order of

30 A of the Si-SiO2 interface; its density is not greatly affected by the oxide thickness or

by the type or concentration of the impurities in silicon; it is generally positive and

depends on oxidation and annealing conditions, and on the silicon orientation. The

presence of fixed charge would cause a shift in the C-V curve, in accordance with the

principle of charge neutrality. The presence of ionic charges like sodium also causes the

shift of the C-V curve because these ions are free and can move back and forth through

the film, depending on the biasing situation. Also the presence of the nitride trapped

charge causes the C-V curve shift. These traps are associated with the defects in the film.
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They are usually neutral, and are charged by introducing electrons and holes in the film.

Once charged, for the same surface potential, the applied voltage would be reduced

indicating a shift in the C-V curve. Figure 4.17 shows significant shift in the C-V curve

suggesting the presence of a good number of a combination of fixed oxide charges, ionic

charges and nitride trapped charges.

Bias temperature cycle not only indicated the presence of mobile ions, it also shows the

presence of trapped positive charges in the bulk of the insulator. Although some of the

trapped negative charges can be discharged in the gate or in the semiconductor, the

trapped positive charges are essentially immobile on this field and temperature range.

These trapped charges could be due to the dangling bonds caused by the following 2

reasons:

1. the boron rich nature of this non-stoichiometry of the films

2. the elemental carbon in the films.

These two facts is already shown in the XPS analysis. Low precursor ratio yielded boron

rich films whereas high substrate temperatures caused the unbonded excessive carbon. CV

shift in response to the polarities indicates a presence of mobile ions in the insulator.

Third, there is considerable trapped immobile charges in the bulk of the insulator for which

the flat-band does not go back to the original value prior to the aging. Fourth, the

possibility of trapped negative charges being attracted to the gate electrode or to the

semiconductor and consequently being discharged cannot be excluded.
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Figure 4.18 Capacitance-Voltage measurements on MIM structures

It is seen that in all the cases the dielectric constant of the films increased with increase in

flow ratio. This could be due to the varying stoichiometry in the films, or the variation of

thickness of the film or could be due to the effect of carbon impurity in the boron nitride

film. The least value obtained was 3.12 at a deposition of 575°C, pressure of 0.05 Torr

and a flow ratio of NH 3/TEAB = 50/1. From the XPS analysis also it is seen that the films

tend to attain stoichiometry and more transparent films at these deposition conditions.
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Figure 4.19 Variation of dielectric constant with flow ratio of NH 3/TEAB

A dielectric constant reacts to electromagnetic radiation differently from free space

because it contains electrical charges that can be displaced. For a sinusoidal

electromagnetic wave, there is a change in the wave velocity and intensity described by the

complex coefficient of refraction

n = n -ik

where n is the index of refraction and k is the index of absorption. The coefficient of

refraction is related to the complex dielectric constant (n *)2 = E * = E' - i E'', whereE' is the

relative dielectric constant and c" is the relative dielectric loss factor. Neglecting the

imaginary terms, the dielectric constant is equal to the square of the index of refraction.

= n2
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Thus by knowing the refractive index of the film, a fairly good idea of the dielectric

constant of the material can be estimated.

4.4.6.3 Current-Voltage (I-V) Characteristics of the Films: Figure 4.20 (a)/(b) shows

the I-V characteristics of BN films deposited on type-1 and type-2 Si wafers respectively.

The resistivity of the films was always greater 4.5 x 10" a-cm.

Figure 4.20 I- V characteristics of BN films on (a) type-1 Si and (b) type-2 Si
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4.4.7 Boron Nitride X-ray Mask & Windows

It is well known that it is easy to change the atomic structure of materials having low

coordination number, such as a material with many bondings terminated by hydrogen

atoms having one fold coordination. Therefore the stress relaxes easily due to changes in

the atomic structure. Since the atomic structure of BNC is mainly dominated by B-N

bonding networks with a large binding energy, the radiation resistance of BNC must

exceed that of BN films. A transparent ternary boron compound film B-C-N was first

reported by Montasser et al. at room temperature. According to the optical data

however, the films are considered as organic soft films. Addition of small amounts of

carbon introduced tension successfully and improved the film stoichiometry and decreased

the hydrogen content. The increase in the stoichiometric structures of boron to nitrogen

increased optical transparency. The low hydrogen content also led to increase in Young's

modulus of the film. The mechanical stress and optical transparency of the films exhibit a

correlation with the dc electrical resisitivity. This is mainly attributed to the important role

of hydrogen. Hydrogen is present in multiple configurations in the as-deposited films, and

is essentially randomly distributed as monohydrides and with a homogeneous

concentration. The tensile stress decreases monotonically with the hydrogen content,

whereas the optical transparency is found to increase.

4.4.7.1 B-N-C-H X-Ray Window Fabrication: The etch rate of B-N-C-H films as a

function of power and CF4 flow rate are shown in Figures 4.21 and 4.22. We can see that

at a constant pressure of 200 mTorr and a constant CF4 flow rate of 40 sccm, the etch rate

increases sharply up to a power of 350 W and then stabilizes. However, at a constant flow
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rate of 40 sccm, as the Power was increased from 20 to 80 sccm, the etch rate increases

linearly from 250 to 2500 A/min. From these etch kinetics plots we can conclude that the

etch rate was transport limited. This is advantageous since we need to etch these films at a

very controlled rate so as to avoid damaging the freestanding membranes. In order to

fabricate membranes of the order of 2000 to 3000 A, the membranes were thinned initially

at etch rates as high as 2000 Å/min, following which conditions were changed so as to

operate at etch rates of 100 A /min to maintain better control over the thickness.

Wet etching of the B-N-C-H films was also tried in Sodium Hypochlorite solution

(CLOROX), but the freestanding membranes were too delicate and popped due to the

movement in the solution.

Figure 4.21 Variation of etch rate of the B-N-C-H films with power.



Figure 4.22 Variation of etch rate of the B-N-C-H films with CF 4 flow.
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Figure 4.23 X-ray transmission through the B-N-C-H films of varying thickness.
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4.4.7.2 Characterization of B-N-C-H X-Ray Windows: Figure 4.23 gives a comparison

of the X-ray transmission for the B-N-C-H freestanding membranes of thickness ranging

from 2000 to 12,000 A and the commercially available MOXTEK at energies as low as

0.1 keV. From this figure we can see that all the B-N-C-H membranes showed X-ray

transmissions much higher than the MOXTEK! Even membranes thicker than a micron

exhibited much better performance. The MOXTEK was seen to exhibit a X-ray

transmission of —10% at an energy of 0.25 keV, while the fabricated freestanding B-N-C

H membrane allowed more than 80% transmission. Also, the membranes were loaded into

the detector column and tested for vacuum tightness and it was found that the membranes

held vacuum with negligible leakage.
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4.5 Kinetic Study of LPCVD Titanium Nitride

4.5.1 Influence of Temperature on Deposition Rate

TiN films were deposited at different temperatures while keeping all other parameters

such as total pressure, reactant partial pressures, and reactant flow rates constant. Two

sets of data were obtained: (a) For a NH3/TiC14 flow ratio of 10, experiments were carried

out at 450, 475, 500, 530, 550, 600 and 700 °C and (b) For a NH 3 /TiC14 flow ratio of 5,

experiments were carried out at 600, 700, 800 and 850 °C. Film deposition rate is a

measure of the rate of the chemical reaction and can be expressed as follows:

Where:

PA = partial pressure of species A

x,y = reaction rate orders

k = rate constant of the reaction

Ea = activation energy for the reaction, kcal mol -1

R = gas constant, 1.987 cal K -1mol-1

T = temperature, K

A0 = constant

Since the flow rates of the reactants and the total pressure were maintained constant, the

growth rate for each of these experiments was dependent only on the exponential terms of
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the reactant species in eq. 4.2. Thus the apparent activation energy was calculated from

the slope of the line obtained by plotting growth rate as a function of 1000/T on a semi

log scale.

At a fixed total pressure of 70 mTorr and NH3 flow rate of 50 sccm, the growth rate

dependence on deposition temperature is shown in Figure 4.24 for NH3/TiC14 flow rate

ratios of 5:1 and 10:1. For both these flow rate ratios, an Arrhenius behavior was

observed yielding an apparent activation energy of 42 KJ/mol. The apparent activation

energy depends on the adsorption heat of the reactant which itself depends on the surface

coverage. As a consequence, the apparent activation energy is strongly dependent on gas

injection configuration which explains why this value is lower than those reported by

Buiting et al (61 KJ/mol) and Imhoff et al (78.9 KJ/mol). For the NH3/TiC1 4 flow rate

ratio of 10:1, the growth rate is seen to saturate above 550 °C reflecting the onset of the

mass transfer limited regime. No such saturation was noted for the flow rate ratio of 5:1

up to the investigated deposition temperature of 850 °C.

It is worth noting that the reaction between NH3 and TiC1 4 is thermodynamically feasible

at room temperature, the product being a yellow soft powder complex (TiC14.nNH

3)8-9. Formation of that powder was indeed evident in the front and exhaust ends of the reactor

tube, which was situated outside the heating zone of the furnace. In order to minimize

this undesirable byproduct formation, the TiC14 gas was introduced through a stainless

steel tube into the hot reaction zone and allowed to mix with the NH 3 only close to the

wafers. Fig. 4.25 illustrates the dependence of elemental film composition on deposition
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temperature in the two regimes where the NH3/TiC1 4 flow rate ratio was 5:1 and 10:1. For

both these flow rate ratios, it appears that the films are Ti rich and become progressively

richer as the deposition temperature is increased. At the lowest investigated deposition

temperature of 450 °C and flow rate ratio of 10:1, the Ti/N ratio was closest to the

stoichiometric value. The increase in Ti concentration with higher deposition

temperatures was compensated by a decrease in the Cl content of the films. Over the

temperature range of 450 to 850 °C, the Cl content in the films decreased from —8 % (a/o)

down to —0.2% (a/o).

Figure 4.24 Plot of growth rate vs. 1000/T for TiN films.
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Figure 4.25 Variation of Film Composition with Deposition Temperature

4.5.2 Influence of Reactant Partial Pressures on Deposition Rate

The reaction orders for the TiC14 and NH 3 reaction were determined for a deposition

temperature of 600°C and a total pressure of 110 mTorr. These conditions were selected

to allow a sufficient partial pressure span, while maintaining a reasonable deposition rate

and a Cl content deemed acceptable. Keeping the NH3 partial pressure constant at 50

mTorr, the partial pressure of TiC14 was varied from 1 to 12 mTorr while also varying the

argon carrier gas partial pressure in order to maintain a constant total pressure within the

reaction chamber. Similarly, while keeping the TiC14 partial pressure constant at 8

mTorr, the partial pressure of NH3 was varied from 50 to 100 mTorr with corresponding

variations in argon partial pressure to maintain the aforementioned total pressure. The
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growth rate plotted on a double logarithmic scale as a function of the partial pressures of

TiC14 and NH3 are shown in Figures 4.26 and 4.27 respectively. These plots indicate an

increase in growth rate with the decrease in TiC1 4 partial pressure and the increase in NH 3

partial pressure in agreement with the results of Buiting et. al 8 . From the slopes of these

plots the reaction orders with respect to TiC14 and NH3 were calculated as -0.42 and 1.37

respectively. Since all other parameters being constant in equation 4.1, the growth rate is

proportional to the partial pressure of the varying reactant. If x is the order of

proportionality, then we have,

Figure 4.26 Plot of growth rate as a function of partial pressure of TiC14.
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Figure 4.27 Plot of growth rate as a function of partial pressure of NH3 .

The dependence of film composition on partial pressure of the reactants is shown in

Figures 4.28 and 4.29. The Ti/N ratio appears not to vary significantly with changes in

the TiC14 partial pressure. This may be explained by the preferential adsorption of that

specie as a result of the close proximity of the TiC14 delivery tube to the wafers. On the

other hand, the increase in NH3 partial pressure has the effect of reducing the Ti/N ratios

to values that progressively approach stoichiometry. This results from the higher number

of NH3 molecules available to compete with TiC14 for available adsorption sites. Changes

in the partial pressures of both reactants appear to have no effect on the incorporated Cl

content of the films.



Figure 4.28 Variation of Film Composition as a Function of TiC14 Partial Pressure
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Figure 4.29 Variation of Film Composition as a function of NH3 Partial Pressure
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4.5.3 Rate Equation

Knowing the values of the activation energy and the rate orders with respect to NH 3 and

TiC14 from the experimental deposition rate results, the following rate equation is

established.

where:

r = deposition rate, mol cm -2 min-1

T = deposition temperature, K

P. = partial pressure of reactant a, Pa

The occurrence of the negative order of the reaction with respect to TiC14 suggests that

the reaction mechanism may involve: (1) competitive adsorption of two or more gases on

the surface and a reaction rate which is dependent on the surface fractions covered by

these two gases [Langmuir-Hinshelwood like mechanism] and (2) competitive reaction

paths consisting of the intended deposition reaction and parallel reactions. In the later

case, increasing partial pressure of TiCl 4 could drive the reaction towards the complex

formation, which in turn results in the decrease in TiN formation, as less NH3 is

available. The rate equation obtained is consistent with the model put forth by Imhoff et.

al. 9 using Langmuir-Hinshelwood kinetics for the case of competitive adsorption. For

competing reactions, at low partial pressures of the reactant, the growth rate increases

with the partial pressure of the reactant resulting in a positive reaction order. At high
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partial pressures of the reactant, the growth rate decreases with increasing reactant partial

pressure resulting in a negative reaction order. Pintchovski et al. report positive reaction

orders with respect to both NH 3 and TiC14. This result does not confute the observed

mechanism because experiments were performed by using both NH3 and TiC1 4 injections

far from the substrate. Neither NH3 nor TiC14 can act as the poisonous species, so growth

rate always increases with increasing NH3 or TiC14 partial pressures. Imhoff et al. have

injected NH3 near the substrate and reported a reaction order of -0.63. In the present

study, TiCl4 having being introduced close to the wafers may also explain the observed

negative rate order. Our results are consistent with those of Buiting et al who similarly

introduced TiC14 close to the wafers and reported rate orders of —0.5 and 1.37 for TiCl4

and NH3 , respectively.

The dependence of film composition on partial pressure of the reactants is shown in

Figures 4.28 and 4.29. The Ti/N ratio appears not to vary significantly with changes in

the TiC14 partial pressure. This may be explained by the preferential adsorption of that

specie as a result of the close proximity of the TiCl 4 delivery tube to the wafers. On the

other hand, the increase in NH3 partial pressure has the effect of reducing the Ti/N ratios

to values that progressively approach stoichiometry. This results from the higher number

of NH3 molecules available to compete with TiCl 4 for available adsorption sites. Changes

in the partial pressures of both reactants appear to have no effect on the incorporated Cl

content of the films.
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4.5.4 Reaction Mechanism

In the gaseous phase at lower temperatures, NH3 and TiC14 are known to form a

TiC14.nNH3 complex. In accordance with this, a yellow powder, presumably to be of

TiC14 .2NH3 , was observed at the cooler pumping-side exhaust in the experiments carried

out. At higher temperatures, the complex is believed to finally decompose into TiN.

To study the reaction mechanism in detail, consider the following elementary reactions:

(1) TiC14 adsorption: Because of the sp a hybridization of the Ti atom in the TiC14

molecule, direct adsorption of TiC14 on one site is less probable. Instead it adsorbs

dissociatively on 2 adjacent sites, according to

(2) NH3 adsorption: On hot surface, NH3 adsorption is dissociative according to the

following steps,

NH3 (g) + 2S <--> NH2-S + H-S (4.7)

NH2-S + S <---> NH-S + H-S (4.8)

NH3- S + S ↔ N-S + H-S (4.9)

(3) Surface reaction: TiC13-S reacts with either of NH2-S, NH-S and N-S to give TiN,

according to the following reaction:

TiCl3-S + N-5 + S <---> TiN + 3 Cl-S (4.10)

TiCl3-S + NH-S <---> TiN + 2 Cl-S + HC1 (g) (4.11)

TiCl3-S + NH 2-S <—> TiN + Cl-S + S + HC1 (g) (4.12)

Reaction 4.10 is improbable because it involves three species. Reaction 4.11 involves two

steps with three sites, and reaction 4.12 involves only one step with two sites for NH3
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dissociation. So, reaction 4.11 is less probable than reaction 4.12. According to the

Langmuir-Hinshelwood theory, the numerator of the growth rate expression is related to

the adsorption phenomena leading to TiN formation. The denominator is related to the

adsorption which inhibits TiN deposition by poisoning surface sites. Thus at a fixed

temperature the growth rate can be given as,

Where Θi is the surface coverage rate, Ki is the equilibrium constant of the adsorption

reaction of the species i, Pi is the thermodynamic equilibrium partial pressure of the

species i, and K is a proportionality constant depending on the temperature. The growth

rate, r, is proportional to the TiC13 partial pressure because of direct adsorption, and to

the square root of the NH3 partial pressure because of dissociative adsorption. As a

consequence adsorption and desorption are generally not rate-determining steps of the

overall process. Then, the denominator is close to one, and r is expressed by

and the rate determining step is eq. 4.11 or 4.12. For the TiC1 4-N2-H2 gaseous phase,

Dekker et a. also claimed that the rate determining step is the reaction between TiC13 and

NH-s. In our case, TiC14 is introduced quite near the substrate, so we can expect a very
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high TiC14 coverage. ΘTiC13 can no longer be neglected. The rate equation has to

include the surface poisoning by TiC13 species as in the equation

The equilibrium constant can be written as

By keeping in mind that hydrogen is used in excess, we can assume that the TiC13 partial

pressure is proportional to the square root of the TiC14 partial pressure. Finally, for our

experimental conditions, the rate expression can be written as

We find satisfying fit for the reaction order with respect to the preponderant species near

the substrate surface (here it is the TiC14). Ammonia is introduced far from the substrate
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and then impinges a TiC14 poisoning surface. So an attenuating exponent a must be

introduced in order to lead to a reaction order of 1.37.

4.6 Characterization Study

4.6.1 X-ray Photoelectron Spectroscopy

Spectra were acquired on a Physical Electron Quantum 2000 ESCA system. The X-ray

source on this instrument could be focused to a spot size of approximately 10 The

acceptance angle is ±23°. Depth profiles were obtained by alternating an acquisition

cycle with a sputter cycle during which material was removed from the sample using a 4

keV Ar source raster over a 4 mm x 4 mm area. In order to eliminate crater wall effects,

the data was acquired from a smaller region in the center of the sputter area. The

equivalent sputter rate in SiO2 with this source using these conditions is ~ 76 Å/min.

Figure 4.30 Elemental compositional analysis by X-ray photoelectron spectroscopy.
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Figure 4.30 shows a typical XPS spectra obtained for the TiN deposits. Figures 4.31 and

4.32 show the elemental concentration as a function of sputter time giving information

about the depth profile. From these figures we can see that the elements detected on the

surfaces of the samples include C, N, 0, F, Si, S, Cl, and Ti. However, carbon was

observed only on the surface. Also, the oxygen concentration dropped sharply from the

surface into the bulk of the film.

Figure 4.31 Depth analysis of the TiN films by RBS.
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Figure 4.32 Depth analysis of the TiN deposits by XPS.

4.6.2 Rutherford Backscattering Spectrometry (RBS)

The Ti, N, Cl, and 0 concentrations were also measured by Rutherford Backscattering

Spectrometry. A typical RBS spectra for the deposits is shown in Figure 4.33. RBS

spectra were fitted with simulated spectra, from which the compositions were derived.

The thickness of the sample plays an important role here since too thick samples do not

allow separation of the component signals and hence the precision and signal accuracy is
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degraded. Hence, films with thickness less than a micron were deposited. RBS

measurements gave information about the areal density of Ti atoms, from which the

thickness of the deposits were verified by using the values of the film density.

Figure 4.33 Rutherford backscattering spectrometry of the TiN films.

4.7 Properties of LPCVD TiN Films

4.7.1. Color

The color of pure TiN films has been reported to be golden. The color of the TiN deposits

was found to be dependent on deposition temperature. In the temperature range of 450 to

600 °C, the films appear to be reddish while from 600 to 800 °C the color turned to

brownish. At 800 °C and above, the deposits exhibited the golden color characteristic of
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the TiN used for decoration. This color change is believed to be due to higher

concentrations of Ti in the films as the temperature is increased which causes a shift in

the absorbed spectra towards higher energies.

4.7.2 Density

A series of experiments was carried out at a constant NH 3/TiCl4 flow ratio of 5 and

pressure of 70 mTorr at 600, 700, 800 and 850 °C. The density of the films deposited was

determined by dividing the film weight by film volume as calculated from the product of

film thickness and known area of the wafer. The thickness in this case was obtained using

Sloan Dektak as mentioned in section 3.4.2. There is a sight increase in the density with

temperature. Higher density at higher deposition temperatures might be an indication that

films were becoming purer and thus achieving a density closer to that of bulk TiN.

Figure 4.34 Variation in film density with deposition temperature.
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Figure 4.35 Variation in film density with NH3/TiC1 4 flow ratio.

As the flow ratio was increased, the density increased at first but then became constant at

a value of around 4.9 gm/cc (Figure 4.35). The films in this case were deposited at a

temperature of 600 °C and pressure of 70 mTorr. This variation in the density might be

due to the change in the composition of the film.

4.7.3 Film Stress

Stress was determined for the films deposited at a pressure of 70 mtorr at four different

temperatures for each of the flow ratios of 5 and 10. It was found to be tensile. This

means that the film causes the wafer to be concave on the side it is deposited. Figure 4.36

shows the results plotted for the two different flow ratios. The stress decreased with the

increase in temperature. The lowest stress was observed to be 40 MPa at a deposition
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temperature of 850°C, for a flow ratio of 5. Since it is not desirable of films to exert

stress on the wafer, either tensile or compressive, low stress means better film quality

Figure 4.36 Variation in film stress with deposition temperature.

4.7.4 Resistivity

The variation in resistivity with temperature was also studied at 2 different flow ratios.

Figure 4.37 shows the results. Resistivity was found to decrease with increasing

temperature. All the experiments were carried out at a pressure of 70 mtorr. The lowest

resistivity obtained was 86 µohm-cm at a temperature of 850°C and flow ratio of 10.

Since TiN is used in the microelectronics industry as a diffusion barrier, low film

resistivity is an important characteristic, and again, high temperature leads to this

desirable film quality.
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Figure 4.37 Variation in film resistivity with deposition temperature.

4.7.5 Hardness and Young's Modulus

On an average, the titanium nitride films were 50% harder than silicon. At an indentation

of 200 nm, the value of the hardness ranged from 13 to 17 GPa depending on the film

deposition process parameters while the hardness for silicon was found to be about 10

GPa. Study of the variation in the film hardness with the deposition temperature (Figure

4.38) showed that the film hardness decreased with increasing film deposition

temperature, for a NH3:TiC14 ratio of 5.
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Figure 4.38 Variation in film hardness with deposition temperature.

4.7.6 Optical Properties

Figure 4.10 shows the optical characterization of a Tin film deposited at 600°C and 70

mtorr pressure, using a NH3:TiC14 flow ratio of 5. From the reflectance, emittance and

transmittance spectra in the IR region, it can be concluded that TiN films can act as a

good reflector of IR radiation (i. e. heat), since they reflect more than 80% of the

radiation. It is for this heat reflecting property of TiN films that they have been used as

heat mirrors in architectural applications. Almost zero radiation is transmitted while a

very small percent is emitted. However this behavior was found to change at a deposition

temperature of around 750°C, where the reflectance went down considerably and the
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emittance increased; the transmittance remained unchanged. The probable cause for this

was formation of some kind of oxide that had different optical properties.

Figure 4.39 Optical Properties of TiN.

4.7.7 Step Coverage and Film Morphology

Figures 4.40-4.43 illustrate the step coverage of TiN films deposited at 475 for aspect

ratios of —2:1 and —5:1 and at 600 °C for an aspect ratio of —2:1. Its apparent that the step

coverage is quite conformal at both deposition temperatures and for both aspect ratios. A



167

plug exhibiting no voids is readily observed for the aspect ratio of —5:1. Columnar

growth is evident in all three micrographs, which impacts the surface topography and is

typical for metallic films deposited at this temperature regime.

Figure 4.40 SEM micrograph of TiN deposited at 475°C and NH3/TEAB of 10/1.
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Figure 4.41 SEM micrograph of TiN deposited at 475°C and NH3/TEAB of 10/1.
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Figure 4.42 SEM micrograph of TiN deposited at 525°C and NH 3/TEAB of 10/1.
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Figure 4.4 3 SEM micrograph of TiN deposited at 600°C and NH3/TEAB of 10/1.
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4.7.8 X-ray Diffraction (XRD)

X-ray diffraction analysis was carried out for a TiN film of thickness 2578 A deposited at

600°C and 70 mtorr, using a NH3:TiC14 flow ratio of 5. The corresponding X-ray

diffraction plot is shown in Figure 4.44. From the d-value of 2.13 A for the (200) plane,

the lattice constant was calculated as 4.26 A.

Table 4.1 compares the relative intensities of different orientations for the above film

with those given in the diffraction data card for TiN. Looking at the minimal relative

intensities of the peaks for orientations other than (200), we can safely say that the

orientation of the film is (200). This is in agreement with the findings of Oh et. al., who

have confirmed that for lower thickness (<5900A), TiN films exhibit a preferred

orientation of (200).

Figure 4.44 X-ray Diffraction plot for TiN.
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Table 4.1 Comparison of experimental XRD data with standard data.

Orientation
(hid)

Standard Data for TiN Experimental Data

d (A) Rel. int. (%) d (A) Rel. int (%)

111 2.44 77 2.46 0.5

200 2.12 100 2.13 100

220 1.496 56 1.498 0.4

311 1.277 26 1.278 0.1

222 1.223 16 No peak

400 1.059 7 1.0598 2.2

331 0.972 11 0.9475 0.6

420 0.948 22 No peak

422 0.865 21 No peak

4.8 Etching Study

In many applications of thin film deposition, etching of the film is an important aspect. In

wet etching, mostly hydrogen fluoride (HF) is used for etching of thin films. However,

HF is a very dangerous chemical and is notorious for causing skin burns. Thus finding an

alternative to HF for etching becomes essential. In the case of TiN thin films, Buiting et.

al. have reported that the mixture of ammonium hydroxide, hydrogen peroxide and water

is effective in etching the film.

Etching experiments were carried out using an etching solution containing NH 4OH, H202

and H20 in different proportions. The wafers etched were all from the same experiment.

NH4OH used was concentrated while H202 was used as a 30% solution. The different

1:1:0. Figure 4.45 shows the results of the etching experiments. The rate of etching
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Figure 4.45 Etching characteristics in NH4OH/H202/H20 solution.

(given by the slope of the plot during the initial stages of etching) decreased as the

proportion of water was increased, i.e. as the etching solution was diluted. In the case

where no water was added, the film etched almost completely within just half an hour,

while it took more than 2 hours in the case where dilution was maximum. In all the cases,

the etching was complete and uniform, thus proving the ammonium hydroxide-hydrogen

peroxide mixture as an efficient etching solution for etching of TiN thin films.

4.9 Effect of Aluminum on LPCVD of TiN

During one of the experiments, it was observed that the presence of aluminum in the

reactor altered the color of the TiN film deposited. In the case of deposition carried out at

600°C, in the presence of aluminum, the color of the film deposited was found to be

brilliant golden, which is characteristic of pure TiN films. However for the deposition
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carried out under the same process conditions but in the absence of aluminum, the color

of the film deposited was observed to be reddish brown. This implied that the presence of

aluminum was affecting the composition of the deposited film.

However, the same golden color of the film is observed for deposition carried out at

higher temperatures (850°C). This implies that there is some similarity between the

composition of the film deposited at 600°C in the presence of aluminum and the one

deposited at 850°C in the absence of aluminum. This similarity was presumed to be low

chlorine content in both the films. The chlorine content in the case of film deposited at

850°C is low since the chlorine content decreases with increase in the deposition

temperature. So it was suggested that the low chlorine content of the film deposited in the

presence of aluminum was a result of the fact that aluminum reacted with the chlorine to

form AlC1 3. Thus lesser chlorine went into the film, thereby imparting a golden color to

the film. This inference was further strengthened by the fact that the resistivity of this

film was very low (21 μΩcm). This aspect of TiN deposition might be particularly useful

in the applications where TiN coating is used for decorative purposes or as a low

resistivity film and the substrate on which the film is deposited cannot tolerate the

temperature at which a pure TiN film is deposited. By carrying out the deposition in the

presence of aluminum, this might be achieved at considerably lower temperature, which

the substrate can survive. Apart from making the process feasible, this also results in

huge savings in energy and time. Essentially, an entire separate study can be carried on

the LPCVD of TiN in the presence of aluminum.
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CONCLUSIONS

In this study, Boron Nitride (B-N-C-H) and Titanium Nitride (Ti-N-Cl) films have been

deposited by low pressure chemical vapor deposition (LPCVD), using ammonia

(NH3)/triethylamine borane and NH3/titanium tetrachloride (TiC1 4) as precursor materials,

respectively. Growth kinetics, film stoichiometry and properties have been investigated as

a function of the deposition parameters. Several analytical techniques such as FTIR, XPS,

AES, RBS, and XRD have been used to study the composition and structure of the

deposits.

The B-N-C-H films were synthesized over a temperature range of 300 to 850°C for the

NH3/TEAB flow ratios of up to 2000/1 and total pressure range of 50 to 150 mTorr. The

deposits were found to be amorphous in all cases, with an index of refraction ranging

between 1.76 and 2.47, dielectric constant ranging between 3.12 and 5.5, and stress

varying from +240 to —200 MPa depending on the composition of the films. Hardness and

Young's modulus were found to be between 5 to 12 and 50 to 120 GPa, respectively.

Freestanding X-ray windows were fabricated, tested, and seen to be more sensitive for

light element detection than the commercially available X-ray windows. The B-N-C-H

films of 2000 A thickness exhibited X-ray transmission of 80% at energies of 0.25 to 0.5

keV compared to 10% by the commercially available X-ray windows. The deposits were

boron rich at lower temperatures, but with increasing temperature, the films attained

compositions close to stoichiometric BN. There was about 8% carbon in the films that

175
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was not in a compound form. It was found that the film stress was either mildly tensile or

compressive (+100MPa - -150MPa) depending on the deposition conditions. The static

dielectric constant varied from 3.12 to 5.5 depending on the deposition condition. The

optical and the static dielectric constant behavior were similar. At higher flow rates the

films tend to be stoichiometric and transparent.

In this study, we have also investigated the interrelationships governing the growth

kinetics, resulting compositions, and properties of titanium nitride (TiN) films synthesized

by low pressure chemical vapor deposition (LPCVD) using titanium tetrachloride (TiCl 4)

and ammonia (NH3) as reactants. The kinetics of the reaction between TiCl 4 and NH3 was

first established resulting to formulation of a rate equation showing the dependence of the

reaction on the partial pressures of both reactants, which is shown as follows:

For the reactor geometry used, the reaction rate was found to be inversely proportional to

TiCl4 partial pressure and directly proportional to NH3 partial pressure. Deposition rate as

a function of temperature was found to follow an Arrhenius behavior in the temperature

range of 450 to 550 °C, yielding an apparent activation energy of 41.82 kJ/mol. The RBS

results show that the films produced were nearly stoichiometric with chlorine atomic

concentration ranging from 0.15 to 7.19 % (a/o). The electrical, mechanical, and structural

properties of the TiN films were also determined. The film density values were seen to

increase from 3.53 to 5.02 g/cm3 as the deposition temperature was increased from 550 to
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850 °C. The resistivity of the films was found to be dependent on changes in deposition

temperature and flow rate ratios. The lowest resistivity value of 86 μΩcm was measured

for a deposition temperature of 600°C and an NH3/TiC14 flow ratio of 10/1.The film stress

was tensile for all deposits and was seen to decrease with higher deposition temperatures.

Nano-indentation measurements yielded values for the hardness and Young's modulus of

the films to be around 15 and 250 GPa, respectively. X-ray diffraction studies indicate that

cubic TiN films were formed. It is known that Al is very sensitive to the presence of

chlorine, which means that the chlorine content should be as low as possible. At a

temperature of 600°C, by operating at high NH 3/TiC14 ratios, films with negligible chlorine

content were produced.
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