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ABSTRACT

FLUIDIZATION AND SOOT FILTRATION IN A ROTATING FLUIDIZED BED

by
Gui-Hua Qian

A horizontal rotating fluidized bed (RFB) has been investigated for the removal of soot

from diesel engine exhaust. This requires necessitating an understanding of the nature of

fluidization, particle mixing and filtration in the RFB.

In an RFB, particles are subject to a centrifugal force which can be much larger

than the force of gravity. Therefore the Geldart classification for conventional fluidized

beds must be modified for rotating fluidized beds. A theoretical analysis shows that group

A particles (minimum bubbling velocity Umb > minimum fluidization velocity Umf) can

shift to group B (Umb = Umf), and group C particles (agglomerating) can shift to group A

under a centrifugal force. Therefore, certain group C particles can be fluidized in rotating

fluidized beds. However, for very high "g", such particles shift to group D (spouting) and

cannot be fluidized. This was verified experimentally by successfully fluidizing 7 1.1M

alumina particles in the RFB which behave as group C in a conventional fluidized bed.

Thus an important and unique feature of RFB technology is that it enables the use of very

fine bed particles in a fluidization mode.

Since the RFB works as a shallow bed, the distributor plays an especially

important role in its fluidization behavior. The pressure drop in an RFB was measured

using slotted, perforated and sintered metal cylindrical gas distributors as a function of

rotating speed, gas velocity and bed thickness with both polydisperse alumina particles

and nearly monodisperse glass beads. The measured pressure drop for the different

distributors depends strongly on the distributor design. A theoretical model available in



the literature is used to calculate the minimum fluidization velocity and the pressure drop

as a function of rotating speed, mass loading and gas velocity which are then compared to

the experimental results.

Particle motion in an RFB was studied by observing the mixing of two layers of

particles of different color and different density. Experiments show that bubbles are

responsible for particle motion and mixing for layers of the same material. When a layer

of denser particles is placed on the distributor, the mixing behavior is similar to that

observed for layers of the same material. However, when a layer of less dense particles is

placed on the distributor, mixing is dominated by differences in density and occurs before

bubbles are visible.

A horizontal rotating fluidized bed filter (RFBF) charged with either polydisperse

alumina granules or nearly monodisperse glass beads, was used to capture soot from

diesel engine exhaust. The mass average filtration efficiency, calculated on the basis of

the total mass of soot that was captured in the bed, was found to be up to 90% at the start

of filtration at steady state flow conditions. Time and equipment limitations did not

permit obtaining data with a build up of soot in the bed or the exploration of the effect of

varying engine load conditions. A critical factor in obtaining high filtration efficiency is

the use of fine sized bed particles (high surface area/volume) which is enabled by the use

of an RFB. The filtration efficiency increased with increasing gas flow rate as the bed

passes from the packed bed to the fluidized bed mode. The filtration efficiency also

varied as a function of agglomerated soot size, showing a minimum for soot particles in

the 0.3 to 0.6 μm range. This is a consequence of particles larger than 0.6 Jim being

removed mainly by inertial impaction and interception and smaller particles mainly by



diffusion. Distributor plugging and fines generation due to attrition of the bed media were

identified as critical issues and need to be addressed for realizing improvements in this

area.
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CHAPTER 1

INTRODUCTION

1.1 Background

Diesel engines are widely used in transportation and for small power applications. They

operate by compressing the diesel fuel and air mixture to very high pressures, raising the

gas temperature to the point of combustion. As a consequence of their overall lean

operation and higher compression ratio, they tend to emit less CO per mile and unburned

hydrocarbons with higher thermal efficiency.

The design of the combustion process, however, promotes the production of

significant quantities of particulate matter (soot) and NOx. There is evidence that

particulates from diesel engines are biologically more active than those from spark

ignition engines. They are suspected carcinogens (Russell-Jones, 1987). Therefore, diesel

emission control is being addressed worldwide. More stringent standards have been

proposed and promulgated to limit the emissions of particulates from diesel engines in

many parts of the world (Heck and Farrauto, 1995, Burgler et al., 1992, Needham et al.,

1991).

Controlling Diesel emissions is more complex than those from gasoline engines.

Because HC and CO emissions are relatively low, the main problem is to reduce the

particulate and NOx (Heck and Farrauto, 1995). Diesel engine manufactures are trying to

develop proved diesel engines which will produce less soot and NO x . Nevertheless, the

"after-treatment" technology will be needed to meet the projected stringent emissions

standards.

1
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1.2 "After-Treatment" Technology for Diesel Engine Exhaust

1.2.1 Monolith

A monolith is a ceramic or metallic support having the structure of a honeycomb with

numerous small parallel channels for gas flow. In catalytic applications, the surfaces of

these channels are covered by a wash coat containing the active catalyst. It offers a

number of advantages over a packed bed of catalyst pellets, especially lower pressure

drop. Monoliths have been widely used as supports in environmental applications.

In the mid-1980s, many engine manufacturers considered using a device to

physically filter or trap the particulates on the wall of a wall-flow honeycomb (Farrauto,

et al., 1992, Murtagh, et al., 1994). The gases were forced to flow through the monolith

wall and exit the adjoining channel. The particulates, having larger particle size than the

pore size of the monolith wall, were trapped. Since this device had limited capacity

before pressure drop became excessive, it was necessary to periodically regenerate it by

combustion. The dry carbon particles of the particulates require at least 400-450 °C for

ignition. However, the engine exhaust does not reliably reach these temperatures. It was

hoped that a heterogeneous catalyst would reduce the light-off temperature of the

particulates. This approach has met with limited success. Generally, a burner system to

periodically and reliably elevate the temperature of the exhaust to the ignition point of the

particulates would be required. The best designs required an expensive and elaborate

control system, which was not considered economical for most applications. Although

ceramic monolith filter development has proceed straightforward, regeneration systems

are problematic and costly. Therefore, these development efforts led to disappointing

results. Using catalytic fuel additives to promote regeneration in a trap through lowering
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the incineration temperature of the collected soot has now been developed by PSA in

France. Both Johnson Mathey and Engelhard have commercialized filter which employ a

oxidation step to convert NO to NO 2 and then utilize the reaction: NO2 + C ---> CO + NO

to oxidize soot at low temperatures. Desirable improvements to these technologies would

be enhanced durability, reduced probability of plugging, reactor tolerance and total

conversion of the NO2 to N2.

1.2.2 Cyclone

Arcoumanis, et al., 1994, developed a cyclone technique to treat exhaust of stationary

diesel engine. A water-cooled heat exchanger was used to cool the exhaust gas and

induce particulate growth in the stream prior to the cyclone. Four smaller cyclones were

used in a parallel arrangement to minimize the back-pressure in the engine. The cyclone

system with the heat exchanger achieved around 50% filtration efficiency at all operating

conditions except at high engine speeds and high load. The poor cyclone performance in

this regime may be due to re-entrainment of the deposited material in the hoppers back

into the cleaned gas flow. The best performance was obtained from the exhaust system

with the heat exchanger, cyclones with long hoppers and exhaust gas recirculation stream

via the standard route. Efficiencies of up to 77% were obtained. This approach cannot be

used for mobile diesel applications.

1.2.3 Fibrous Filter

Fibrous is a commonly used method of particulate control due to the simplicity of the

filter structure and the low cost of materials. Zhu et al., 1998, tested fibrous filters
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filtration efficiency for removal of soot from diesel exhaust. With a fresh filter, filtration

efficiency was below 20%. With increasing time on stream, the particulate accumulation

inside the filter gave rise to increased flow resistance (pressure drop) and typically

resulted in increased collection efficiency. After 14 hours, efficiencies as high as 30%

were obtained. Due to the drawbacks of low efficiency, difficulty in regeneration and

ultimately unaccepted pressure drop, this technology does not appear promising for diesel

applications.

1.2.4 Rotating Fluidized Beds (RFB) as Filters

Granular bed filters are widely used for aerosol and dust capture with high filtration

efficiency (Clift, 1983, D'Ottavio and Goren, 1983). However, they cannot handle that

typical engine effluent flow rates in a unit of sufficiently small size. Pfeffer and Hill,

1978, suggested the use of RFB as a filter device. The use of rotating fluidized bed filter

(RFBF) has been shown to have many advantages, such as high collection efficiency,

relatively low pressure drop, high flow rate of gas per unit area of distributor, ability to

operate at high temperatures and a very small "footprint" compared to other granular bed

filters, such as conventional fluidized beds, packed beds or moving beds. The minimum

fluidization velocity in the RFB is much higher than that in conventional fluidized beds

since centrifugal force. The high efficiency of an RFBF is due to the ability to increase

the minimum fluidization velocity by increasing the rotating speed and thus the

centrifugal force, so that formation of bubbles can be avoided even at very high gas flow

rates (Pfeffer, et al., 1986). Diesel engines emit not only amount soot, but also a

significant amount of NOx. The goal is to develop an RFBF act as a reactor to
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simultaneously remove soot and NOx from diesel engine exhaust using catalytic granules

to filter the soot. The soot is captured by the catalyst granules in the rotating fluidized bed

reactor (RFBR) and subsequently oxidized with the accompanying reduction of NOx to

produce N2 and CO2. The desired overall catalytic reaction can be written as:

Soot + NOx + O2  ---> CO2 + N2

With the soot acting as the reducing medium for NOx, then the bed can become as self-

cleaning, as has been discussed by Tsutsumi et al., 1994, Sun, 1996, Tang, 1997 and

Ma, 1998.

1.3. Objectives

The aim of this study is to enhance our understanding of a novel air pollution control

system for removal of soot and NOx from the exhaust gas of diesel engines using an

RFBR. A parametric study of the operation of needs to be developed. This should include

the effect of using different distributors, particle behavior and mixing and the nature of

fluidization in centrifugal fields. Furthermore an investigation of filtration efficiency for

soot removal is necessary for practical application of the RFB. The four major objectives

of this dissertation are presented below.

1. The first objective is a study of the effect of using different distributors (slotted,

perforated and sintered metal) on the fluidization behavior. This will include

measurements of pressure drop and minimum fluidization velocities in an RFB as a

function of rotating speed and gas velocity. The experimental results will be

compared to theoretical models available in the literature.

2. The second objective is to study particle motion and mixing in an RFB by observing
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the mixing of two layers of particles of different color and or density. The

experimental results will be compared to mixing studies in the literature of

conventional fluidized beds.

3. The third objective is to study the nature of fluidization and the behavior of particles

in centrifugal fields both theoretically and experimentally. The effect of acceleration

force "g" on gas-solid fluidization will be determined and compared to the Geldart

classification for gravity driven fluidized beds.

4. The fourth objective is to determine the parameters that affect the filtration efficiency

in an RFBF used to capture soot from the exhaust of a diesel engine. The filtration

efficiency as a function of soot size and gas velocity will be evaluated for different

collector particles and rotating speed. A comparison with granular bed filtration

theory will be provided.



CHAPTER 2

DESCRIPTION OF APPARATUS

2.1 Rotating Fluidized Bed

A rotating fluidized bed as shown in Figure 2.1, is a cylinder with a porous wall that

rotates around its axis of symmetry either vertically or horizontally, allowing gases to

enter and preventing filter media from leaving. The granular material is introduced into

the cylinder and is forced to the wall due to the large centrifugal forces produced by the

rotation. The drag force of the gas, which flows radially inward through the porous wall,

opposes the centrifugal force. At minimum fluidization, the drag force is balanced by the

centrifugal force caused by the rotation of the bed. Therefore, the minimum fluidization

velocity is much higher than that found in conventional fluidized beds, in which the drag

force balances the force of gravity on the bed media. RFBs can be used by rotating the

cylindrical bed either around a vertical or a horizontal axis. However, when treating

diesel engine exhaust from vehicles, the bed needs to be rotated at relatively high RPM to

maintain proper fluidization conditions, resulting in a centrifugal acceleration of more

than 100 times that due to gravity. Therefore the force of gravity is negligible relative to

the centrifugal force and the position of the bed (vertical or horizontal) is unimportant.

Since it is much more convenient to configure the bed horizontally in a vehicle, our

RFBR was rotated along the horizontal axis.

7
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Figure 2.1 Schematic diagram of horizontal rotating fluidized bed.

The gas velocity going through an RFB is a function of radius, r, and decreases

with increasing r resulting in a reduction in fluid drag. In contrast, the centrifugal force

increases with increasing r. Consequently, fluidization occurs layer by layer starting with

the inner surface outwards as the superficial air velocity increases (Chen, 1986). We

define the superficial gas velocity, U g, to be based on the outer radius, ro, of the bed of

particles. The inner surface minimum fluidization velocity, U mfi, is the superficial gas

velocity at which the inner surface of the bed is first fluidized. The critical minimum

fluidization velocity, Umfc, is the superficial gas velocity at which the entire bed is

fluidized.



2.2 Distributors

Three types of distributors, illustrated in Figure 2.3, were tested. The first consists of a

slotted cylinder covered on the inside with a fine mesh screen. The second is a perforated

cylinder covered on the inside with a fine mesh screen. The third is a sintered stainless

steel cylinder. The slotted cylinder was made of stainless steel in which 30 slots were cut,

0.6 cm by 13.3 cm, resulting in 37% open area. The perforated cylinder was made of

stainless steel in which 460 holes, 10 mm in diameter were drilled, resulting in 52% open

area. The cylinder wall was covered on the inside with a 325 mesh (45μm) stainless steel

screen. The sintered metal distributor (manufactured by Pall Corporation) is composed of

type 316 low-carbon stainless steel powder sintered together in an inert environment

resulting in an average pore size of 55 μm. A variable speed motor provided the rotation

of the RFB and the rotating speed was calibrated by a stroboscope. Tables 2.1a and b give

the rotating speeds in rpm, rad/s and "g" for sintered metal, slotted and perforated
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distributor, respectively. Here "g" is defined as the ratio of the centrifugal acceleration to

that due to gravity.

Figure 2.3 Structure of distributors.

Table 2.1a Rotating speeds and "g" for the sintered metal distributor

rpm Rad/s "g"
325 34 7
525 55 19
700 73 34
900 94 56
1200 126 99
1600 167 176
2000 209 275

Table 2.1b Rotating speeds and "g" for the slotted and perforated distributors

rpm rad/s "g"
325 34 8
525 55 21
700 73 37
900 94 60
12001 126 107
1600 167 190
2000 209 297
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2.3 Particle Size and Density of Bed Material

Experiments were conduct with several different bed materials. Properties of these

materials are given in Table 2.2. The size distributions for these particles were measured

using an Aerosizer (Amherst Process Instruments, Inc.). Alumina particles were provided

by the ALCOA Technical Center, Pittsburgh, PA. The mean particle diameter of fresh

alumina particles is 63 pm. After washed by water more than 10 times and sieving with a

325 mesh screen (45 m m), the fines were removed and the remaining washed alumina

particle mean diameter is 89 m m. Q705 alumina which mean size is 68 m m is the high

quality alumina particles and the fines have been removed by the manufacture. Some

experiments were also done using glass beads manufactured by MO-SCI Corporation

which have a much narrower size distribution. The mean size is 80 gm.

The bulk density of alumina was measured by tapping the particles to a constant

volume and weighing the particles. The particle density of the alumina was calculated

from the bulk density based on a voidage of 0.4. The particle density of the glass beads

was reported by the manufacturer.

Table 2.2 The properties of particles for experiments

Bulk Density
(kg/m3 )

Density
(kg/m3)

Mean Dia. (pm)
(by volume)

Mean Dia. (pm)
(by number)

Fresh alumina 930 1550 63 4
Washed alumina 930 1550 89 28

Glass beads -- 2450 80 75
Q705 alumina 730 — 850 1320 68 48
CP-5 alumina 770 — 1000 1470 7 2

White glass beads -- 2200 91 61
Blue glass beads -- 2200 84 56



CHAPTER 3

PARAMETRIC STUDY OF ROTATING FLUIDIZED BED

3.1 Introduction

Rotating fluidized beds have been studied for more than 20 years. Levy et al., 1978, did

experiments on the startup of a vertical RFB. When stationary, the bed material was at

the bottom of the test section. As the distributor was accelerated, the bed material flowed

part way up the vertical wall, reaching a limiting height as the angular velocity was

increased. As the distributor was decelerated, the bed material stayed on the wall, until a

sufficiently low value of angular velocity was reached at which the material slid back

down under the influence of gravity.

Kroger et al., 1979, analyzed the flow in both packed and fluidized beds in a

rotating system. Experiments to determine the pressure drop and radial flow distribution

were conducted. Moreover, Kroger et al., 1980, studied the particle distribution and

mixing in a centrifugal fluidized bed using 440 pm and 875 pm white and black glass

beads. Visual observations showed that bubbles are the primary mechanism causing

radial mixing. The effectiveness and rate of mixing were found to increase with air flow

rate. The data showed that the rate of axial mixing increased rapidly with air flow rate

above initial fluidization. The rate of tangential mixing of bed material was also found to

increase with air flow rate.

Levy et al., 1981, studied particle elutriation from centrifugal fluidized beds.

Experiments performed with glass beads bed material show that the air flow rate at which

particle elutriation is initiated is a strong function of the angular velocity of the bed and

the bed thickness. Once elutriation begins, the rate of particle loss depends on air flow

12



rate, angular velocity, and bed thickness. Qualitative agreement is obtained between the

experimental data and a terminal velocity model for particle loss. The model over-

predicts the air flow rate at which particle loss occurs and differences appear to be due to

the vertical variations in radial velocity in the chamber and to active bubbling in the bed,

which lead to enhanced rates of elutriation.

Takahashi et al., 1984, studied the bed pressure drop and minimum fluidization

velocity in a horizontal setup. They found the pressure drop does not remain constant

after fluidization, but attains a maximum value at a certain fluidizing velocity. A further

increase in gas velocity beyond this point results in a decrease in pressure drop.

Fan et al., 1985, proposed a model based on the balance between the forces,

including the centrifugal and fluid frictional forces, exerted on the fluidized particles and

the effective weight of the particles. Equations have been derived from the model for

predicting the critical fluidization velocity and the maximum pressure drop through the

centrifugal bed. Their data for the critical fluidization velocity and the maximum pressure

drop of the bed indicated that the proposed model is valid and the derived equations are

of practical use.

Chen, 1987, proposed a fundamental theory based on a local momentum balance

to explore the fluidization phenomena in a centrifugal fluidized bed. Unlike the

conventional vertical bed, a centrifugal bed is predicted to be fluidized layer by layer

from the inner free surface outward, in a range of aeration rates. The span of this range

increases with the depth of the particle bed. The pressure drop is predicted to exhibit a

plateau, which agrees well with the observations of many investigators, but disagrees

with the investigations of Takahashi et al. and Fan et al., in which the pressure drop
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exhibited a maximum. Predictions of the critical fluidization velocity and the

corresponding pressure drop agree well with the data of Fan et al.

In order to fully develop the application of the RFB, it is necessary to understand

the fluid mechanics of the device. In this chapter, experiments to measure the minimum

fluidization velocity and pressure drop of bed as a function of gas velocity and rotating

speed using different distributors are presented. These results are compared to theoretical

calculations.

3.2 The Special Properties of Rotating Fluidized Beds

The particles inside an RFB are subjected to a centrifugal field. The ratio of bed thickness

to the equivalent diameter of distributor is very small. The gas velocity at inner surface of

the bed is higher than that at the distributor since the radius is smaller.

Because RFBs are very thin compared to conventional fluidized beds, wall effects

can be expected to be small. Consider, for example, the ratio of the area of the bed in

contact with the wall (endplates for the RFB) to the area of the bed perpendicular to the

gas flow at the distributor. In RFBs, that ratio is of the order of 0.1 compared to the value

of 4 for a conventional bed of circular cross-section and height equal to one diameter.

From another side of view, the distributor would strongly affect the fluid dynamic

characteristics of the bed.

We have studied the fluid dynamic characteristics of an RFB using three different

types of cylindrical gas distributors: slotted and perforated cylinders covered on the

inside with a fine wire screen and a sintered metal cylinder. The results show that the

pressure drop response obtained upon transition from the packed bed to the fluidized bed
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regime is quite different for these types of gas distributors. The structure of the gas

distributor affects the way in which the bed fluidizes and provides a possible explanation

for the different pressure drop behavior as a function of superficial velocity reported in

the literature. We also determine the minimum fluidization velocity from the

experimental curves of pressure drop versus superficial velocity. Because we are using

alumina particles in most experiments which are not monodisperse, but have a relatively

broad particle size distribution, these values may differ significantly from those which

would be obtained using other definitions, such as change in bed height or acoustic shot

noise (Cody et al., 1996). We also report some results using glass beads, which are much

closer to being monodisperse and are more spherical than the alumina particles.

Consequently, we expect the glass beads to "flow" better than the alumina. Therefore, the

glass beads are ideal for investigating the effect of surface morphology on the fluid

dynamics in the RFB.

3.3 Theory

The pressure drop and minimum fluidization velocity in RFB can be obtained by using

the classical relationships for conventional fluidized beds by replacing the acceleration of

gravity, g, in these relationships by the radial acceleration, r o produced by the rotation of

the distributor.

3.3.1 Uniform Bed of Particles

In the fixed bed regime, the pressure drop equation is given in:
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The minimum fluidization velocity at a given value of r in the rotating fluidized bed can

be found by equating the pressure drop across the rotating fluidized bed with that across

the packed bed giving:

Thus, the inner surface minimum fluidization velocity U mfi, (the velocity at which the

inner surface of the bed is first fluidized) is obtained by letting r = ri in Equation (3.4).

Similarly, the critical minimum fluidization velocity Umfc (the velocity at which the entire

bed is fluidized) is obtained by letting r = ro in Equation (3.4).

The pressure drop across the bed is a function of gas flow rate and can be

calculated from one of the following three equations:

1) When Ug ≤ Umfi, the superficial gas velocity is less than the surface minimum

fluidization velocity and the bed is packed:



the sum of the pressure drops across the fluidized and packed beds:

fluidization velocity, the bed is totally fluidized and the pressure drop is:

If the sphericity of particles is known, e. g., O s = 1 for the spherical glass beads,

the above equations can be used directly.

If the sphericity of particles is unknown, e. g., for fresh alumina particles, in the

equations given in Kao et al., 1987, the correlations suggested by Wen and Yu, 1966,

the bed is first fluidized) becomes:

Similarly, the critical minimum fluidization velocity Umfc (the velocity at which the entire

bed is fluidized) equals:

17
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and the average minimum fluidization velocity U mf is:

3.3.2 Two Layers of Distinguishable Particles

Equations for the minimum fluidization velocities and pressure drop can be derived for

each of the two distinguishable layers of particles in the bed. The two layers of particles

may have different minimum fluidization velocities since the density and particle size

distributions may be different. If we assume layer 1 is at the distributor and layer 2 is on

the inside of the bed, and the radius of the interface is r m, we can apply equations (3.1) to

(3.3) to each layer.

For layer 2, the inner surface minimum fluidization velocity is given by Equation

(3.4) with r = ri and the critical minimum fluidization velocity for that layer with r = rm .

Similarly, for layer 1 at the distributor, the inner surface minimum fluidization velocity is

obtained from Equation (3.4) with r = rm and the critical minimum fluidization velocity

would be determined with r = rc .

The bed pressure drop can be calculated from

where the pressure drop in each layer is determined from equations (3.5) - (3.7).
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3.4 Results and Discussion

The experimental system used to measure pressure drop is shown in Figure 3.1. Before

the particles were loaded, the pressure drop of the empty bed due to the distributors as a

function of gas velocity and rotating speed was measured as shown in Figure 3.2. If taken

photographs for the bed, the experimental system is as shown in Chapter 5 Figure 5.6.

Figure 3.1 Experimental System for Pressure Drop Measurement.

3.4.1 Startup of Bed Using Sintered Metal Distributor

Figure 3.3 shows the photographs of the RFB for different startup conditions using the

sintered metal distributor with 0.4 kg load of fresh alumina particles. For both cases

presented, the final rotating speed obtained was 325 rpm. When the rotation is started

slow with no gas flow, the particles are forced to the distributor wall and form a uniform

thickness, as shown in Figure 3.3a. When the start rotation is very rapidly again with no

gas flow, the particles have not enough time to distribute uniform along the wall, as

shown in Figure 3.3b. However, gas flow started and the gas velocity increased to 0.056

m/s (the minimum fluidization velocity is 0.014 m/s at this rotating speed), the thickness

of the bed becomes uniform and the bubbles are observed, as shown in Figure 3.3c.



Figure 3.2 Pressure drop of distributors as a function of superficial gas velocity and rotating speed.
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Figure 3.3 Photographs of the RFB for different startup conditions using the 50 1.1m
sintered metal distributor (rotating speed: 325 rpm (34 rad/s); 0.4 kg fresh alumina
particles).

3.4.2 Sintered Metal Distributor with Fresh Alumina Particles

The sintered metal distributor allows the fluidizing gas to flow uniformly into the bed. As

the gas velocity increases, the bed changes from a packed bed to a partially fluidized bed
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with fluidization occurring radially outward starting at the inner surface at velocity Umfi.

With increasing velocity, the entire bed is fluidized at velocity Umfc. Fluidization occurs

in this manner because both the gas velocity (and thus the drag force) and the centrifugal

force are a function of radial position in the bed. At the inner surface, the drag force is

highest and the centrifugal force is lowest. The pressure drop across the bed increases

linearly in the packed bed region and becomes constant after Umfc is reached, when the

bed is totally fluidized. Figure 3.4 is the typical curves of pressure drop through the bed

versus gas velocity with fresh alumina particles.

Figure 3.4 shows the pressure drop for the sintered metal distributor as a function

of increasing and decreasing gas flow rate for a 0.4 kg particle charge at a rotating speed

of 55 rad/s (525 rpm). The pressure drop due to the sintered metal distributor with no

particles in the bed is also shown in the figure. In this and all subsequent figures, the

pressure drop across the bed refers to the total pressure drop less that of the distributor.

The rotating bed is operated with the axis of its cylindrical distributor horizontal.

Initially, the distributor is at rest with the particles at the bottom of the bed. Without any

gas flow, the rotating speed of the distributor is increased slowly to obtain a uniform

distribution of bed particles, i.e., uniform bed thickness. Then, as the gas flow is

increased, the pressure drop across the bed is measured using a water-filled manometer at

a selected set of superficial velocities. These are shown by the data points on the figure

labelled Forward. As the flow rate is further increased, the pressure drop remains

relatively constant, indicating that the bed has been fluidized. There is no sudden drop in

pressure when the bed becomes fluidized, as was observed using the slotted distributor

(shown in Figure 3.9). The results shown in Figure 3.4 are consistent with those found in
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the literature (Chen, 1987) which exhibit a plateau in the pressure drop curve after

fluidization has been achieved. It should be noted that the pressure drop of the bed

follows a slightly different path when increasing or decreasing the gas flow rate. Thus,

when the flow rate is decreased from its maximum value with the bed still rotating at 525

rpm, a different curve is followed, labelled Backward. This behavior has not to our

knowledge been previously reported in the literature. But this result is in good agreement

with those of Tsinontides and Jackson, 1993, for cracking catalyst (75 μm, mass mean

diameter), who also established that the hysteresis effect is inversely related to the

flowability of the particles in conventional fluidized beds.



24

Figure 3.4 Pressure drop using the sintered metal distributor as a function of increasing
and decreasing flow rates at rotating speed of 525 rpm.

Figure 3.4 shows that the pressure drop of the bed increases slightly upon the

transitioning from the fixed bed to the fluidized bed regime. This increase in pressure

drop demonstrates that the particles in the RFB are fluidized layer by layer from the inner

free surface outward because of the radial decrease in gas velocity and the increase in

centrifugal force. From Figure 3.4 we can estimate the experimental surface minimum
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fluidization velocity Umfi from the fixed bed pressure drop line and the critical minimum

fluidization velocity Umfi from the fully fluidization bed pressure drop line (see Theory).

Figure 3.5 shows the pressure drop profile with the sintered metal distributor for

different particle charges. As expected, the pressure drop is higher for larger particle

charge both in the packed bed and in the fluidized bed regimes. Again, the minimum

fluidization velocity increases slightly with increasing charge.

Figure 3.5 Pressure drop as a function of flow rate for two different alumina particle
charges in the sintered metal distributor at a rotating speed of 525 rpm.
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Figure 3.6 Experimental and calculated pressure drop for the sintered metal distributor
with a 0.4 kg alumina particle charge (5.5 mm bed thickness) as a function of superficial
gas velocity for different rotating speeds. (dp = 84 1.1m, I-. = 61.5 mm, ri = 56 mm, c =
0.47).

Figure 3.6 compares the pressure drop for a 0.4 kg particle charge as a function of

flow rate at four different rotating speeds. The pressure drop is again the same for fixed

bed conditions, but varies with rotating speed after fluidization is achieved. Higher

rotating speed produces a larger pressure drop. The minimum fluidization velocity is also

higher at the higher rotating speeds due to the increase in centrifugal force. For the

sintered metal distributor with fresh alumina (unknown sphericity), the pressure drop can
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be calculated directly from the theoretical Equations (3.5) — (3.8). Figure 3.6 shows a

comparison of theoretical calculations and the experimental data. Above the critical

minimum fluidization velocity, the whole bed is fluidized and the pressure drop of the

bed which is a function of the weight of the particles remains constant. The agreement is

very good in the packed bed regime but the pressure drop is overpredicted in the fluidized

bed regime.

Figure 3.7 Comparison of experimental and calculated minimum fluidization velocity for
the sintered metal distributor with a 0.4 kg alumina particle charge (5.5 mm bed
thickness) as a function of rotating speed. (dp = 84 pm, ro = 61.5 mm, ri = 56 mm).
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Figure 3.7 shows that the theoretical calculation of minimum fluidization velocity

curves agree with the experimental data reasonably well. This figure shows that the

minimum fluidization velocity increases with increasing rotating speed.

Figure 3.8 Pressure drop using the sintered metal distributor as a function of increasing
and decreasing flow rates at rotating speed of 525 rpm.

3.4.3 Sintered Metal Distributor with Glass Beads

Figure 3.8 shows pressure drop measurements using the sintered metal distributor for a

charge of 0.4 kg of glass beads at a rotating speed of 525 rpm as a function of superficial
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gas velocity. As the gas flow is increased, the pressure drop across the bed increases. As

the flow rate is further increased, the pressure drop becomes of a constant indicating that

the bed has become fluidized. These are the data labelled Forward. When the velocity is

decreased from its maximum value with the bed still rotating at 525 rpm, a different data

are obtained labelled Backward. As can be observed in Figure 3.8, the forward and

backward are almost the same. This study of the hysteresis effect with glass beads shows

no substantial pressure drop difference occurs with fluidization or defluidization. These

results are in good agreement with the results of Cody et al., 1996, for glass beads in the

Geldart-A region. The hysteresis effect with glass beads is different from that obtained

using alumina particles (as shown in Figure 3.5), although both of them belong to the

Geldard same group. This difference is balanced to be due to differences in the size

distribution and the resulting flow ability of the glass beads and the alumina particles.

3.4.4 Slotted Distributor with Alumina Particles

The pressure drop was first measured across the distributor with no particles present.

Then particles were added. Figure 3.9 shows the pressure drop measurements using the

slotted distributor for a particle charge of 0.4 kg at a rotating speed of 700 rpm as a

function of superficial gas velocity which varies between 0 to 0.12 m/s. The pressure

drop due to the slotted distributor with no particles in the bed is also shown in the figure.

In this and all subsequent figures, the pressure drop across the bed refers to the total

pressure drop less that of the distributor. The rotating bed is operated with the axis of its

cylindrical distributor horizontal. Initially, the distributor is at rest with the particles at the

bottom of the bed. Without any gas flow, the rotating speed of the distributor is increased
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slowly to obtain a uniform distribution of bed particles, i.e., uniform bed thickness. Then,

as the gas flow is increased, the pressure drop across the bed is measured using a water-

filled manometer at a selected set of superficial velocities. These are shown by the data

points on the figure labelled First Forward (FF) in Figure 3.9. On this curve, the pressure

drop increases steadily until it decreases suddenly by approximately 550 Pa, roughly 60%

of its peak value, at the superficial velocity of 0.076 m/s. As the flow rate is further

increased, the pressure drop remains nearly constant with a slight upward trend. If the

flow rate is then decreased from its maximum value with the bed still rotating at 700 rpm,

a different curve is followed, labelled Back/Subsequent (B/S), on which the pressure drop

decreases nearly linearly without the discontinuity exhibited on curve FF. If the gas flow

is then increased for a second time with the bed still rotating, the pressure drop follows

the curve B/S, rather than the original FF curve. However, if the rotation of the bed is

stopped and the process is repeated starting with a uniform bed, then the curve FF is

again obtained. We define the average minimum fluidization velocity U mf is to be the gas

velocity which corresponds to the peak of the pressure drop.

We now consider the way in which the bed fluidizes and restructures when the

slotted distributor is used. As the gas flow is first increased with the bed rotating, the

particles form a packed bed of uniform thickness over both the slots and the metal webs

(see Figure 2.4a). At the flow rate for which the bed fluidizes, the particles can, by

definition, flow and as a result the bed can restructure. Because the webs are wide

compared to the slots and the bed is shallow (thickness of the bed is 5 mm for 0.4 kg

particle charge), the fluidization occurs primarily over the slots. Moreover, for the

shallow beds used in this work, it occurs over a very small increment in flowrate, because
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the surface and critical minimum fluidization velocities are nearly equal (see Theory).

Thus, the bulk of the particles over the webs remains in the packed, unexpanded state.

The particles in the fluidized, expanded state above the slots are thus free to flow over

those regions above the webs which have not expanded (see Figure 3.10).

Figure 3.9 Pressure drop for a 0.4 kg charge of alumina particles in the slotted distributor
as a function of increasing and decreasing flow rate at 700 rpm.
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Figure 3.10 Conceptualization of Pressure Drop Behavior for the Slotted Distributor



Figure 3.11 Photographs of the surface of RFB using the sintered metal (a, c, e) and
slotted (b, d, f) cylindrical distributors. (a. Ug=0 m/s; b. Ug=0 m/s; c. Ug=0.085 m/s, d.
Ug=0.19 m/s, e. Ug=O m/s after high gas flow; f. U g=O m/s after high gas flow).
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We believe that this restructuring of the bed explains both the magnitude of the

reduction in pressure drop and its "one-time" hysteresis behavior. The abrupt thinning of

the bed in the flow path causes the decrease in pressure drop to be much greater than that

observed due to the change in porosity which occurs at incipient fluidization in

conventional fluidized beds or rotating fluidized beds with other types of distributors.

This phenomenon does not occur when the sintered metal distributor is used.

Furthermore, the redistribution of bed particles is maintained by the rotational force, even

in the absence of gas flow. Thus, when the gas flow is stopped with the bed still rotating,

no such striking decrease is observed as the superficial velocity is subsequently

increased. Only after the rotation is stopped and the bed is brought to a uniform thickness

is it again observed. Photographs of the bed presented below provide striking

confirmation of this description.

Figure 3.12 summarizes the pressure drop measurements using the slotted

distributor as a function of flow rate for particle charges of 0.4, 0.5 and 0.7 kg. The

rotating speed is 55 rad/s (525 rpm) and the superficial gas velocity varies between 0 and

0.10 m/s. As expected, the pressure drop for both the fixed bed and fluidized bed

increases with increasing particle charge. The minimum fluidization velocities also show

a modest increase with increasing particle charge. These curves are comparable to the FF

curve in Figure 3.9 and exhibit the same behavior.
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Figure 3.12 Pressure drop as a function of increasing gas flow rate for three different
charges of alumina particles using the slotted distributor.

Figure 3.13 shows the pressure drop due to a 0.4 kg particle charge as a function

of flow rate at four different rotating speeds in the forward direction. For the packed bed,

the pressure drop profile is independent of rotating speed. After the bed is fluidized, the

pressure drop increases at a higher rotating speed. The minimum fluidization velocity

also increases as the rotating speed is increased. These results are all consistent with the
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36

Figure 3.13 Pressure drop due to a 0.4 kg alumina particle charge as a function of
increasing flow rate at four different rotating speeds using the slotted distributor.

Figure 3.14 shows the calculated results compared with the experimental results

using the slotted distributor RFB. The experimental data are much lower than the

calculated values because only a fraction of particles are fluidized using the slotted

distributor. The area of the gas going through the distributor is less than the total area of
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the distributor so that the experimental superficial minimum fluidization velocity is much

lower (roughly 70%) than that calculated from the theoretical equations which assume

that all of the particle are fluidized. On the other hand, as shown in Figure 3.7, the

experimental results for the sintered metal distributor agreed with the theory fairly well

because all of the particles are fluidized. These results clearly show the different

fluidization characteristics obtained with the two different distributors.

Figure 3.14 Comparison of experimental and calculated minimum fluidization velocity
for the slotted distributor with a 0.4 kg alumina particle charge (5 mm bed thickness) as a
function of rotating speed. (dp = 84 pm, r0 = 67 mm, = 62 mm).
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Figure 3.15 Pressure drop due to a 0.5 kg glass bead charge as a function of increasing
flow rate at different rotating speeds using the slotted distributor.

3.4.5 Slotted Distributor with Glass Beads

The pressure drop in the slotted distributor was measured using a charge of 0.5 kg glass

beads, which have a much narrower size distribution than the alumina particles. Figure

3.15 shows the bed pressure drop curve for these particles as a function of flow rate for

different rotating speeds. It should be noted that at low rotating speeds, e.g., 325 rpm and
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525 rpm, there is no sudden drop in pressure after fluidization and the results are similar

to those obtained using the sintered metal distributor (see below). This behavior is due to

the better flowability of the narrow size distribution glass beads as compared to the

alumina particles. At low rotating speed, the gas velocity and the centrifugal force are

both relatively smaller so that the particles over the webs can flow back to the slots.

However, when rotating speed is increased to 700 rpm, the pressure drop curve is similar

to that obtained with the alumina particles and shows a sudden drop-off after fluidization.

This change in pressure drop behavior occurs because the centrifugal force acting on the

particles at high rotating speed is large so that the glass beads in the web areas are forced

to the wall and cannot redistribute over the slots. Thus for the slotted distributor the bed

pressure curve is dependent on the flowability of the particles.

3.4.6 Perforated Distributor with Alumina Particles

The behavior of the perforated distributor is intermediate between sintered metal

distributor and slotted distributor. Although its fraction of open area is higher than that of

slotted distributor, it does not distribute gas as uniformly as the sintered metal distributor.

Figure 3.16 shows the pressure drop of the bed using the perforated distributor as a

function of superficial gas velocity. After minimum fluidization velocity, the pressure

drop decreases suddenly, but not as much as with the slotted distributor (see Figure 3.9).

This difference suggest that for the perforated distributor there is less particle movement

from the open area to the web area.
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Figure 3.16 Pressure drop due to a 0.4 kg alumina particle charge as a function of
increasing flow rate at different rotating speeds using the perforated distributor.

Figure 3.17 compares theoretical calculations and experimental measurements of the

minimum fluidization velocity as a function of rotating speed using slotted and perforated

distributors. The minimum fluidization velocity for the slotted distributor is lower than

that for the perforated distributor. This observation is consistent with the greater open

area of the perforated distributor compared to that of the slotted distributor (52% vs.

37%)This means that there is more fluidization area using perforated distributor than



using slotted distributor.
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Figure 3.17 Comparison of experimental and calculated minimum fluidization velocity
for the slotted and perforated distributors with a 0.4 kg alumina particle charge (5 mm
bed thickness) as a function of rotating speed. (dp = 84 pm, ro = 67 mm, ri = 62 mm).



CHAPTER 4

PARTICLE MOTION AND MIXING IN ROTATING FLUIDIZED BEDS

4.1 Introduction

Although much basic and applied data on fluidization has been generated during the past

fifty years (Davidson et al., 1985), some fundamental questions still need to be addressed.

For example Jackson, 1998, concluded that a combination of careful bed height, fluid

pressure drop and fluctuation velocity measurements, in beds of several diameters should

be capable of providing a substantial amount of information about the particle phase

stresses. Recently, Menon and Durian, 1997, measured particle motions or local particle

fluctuation velocities by diffusing-wave spectroscopy (DWS) in a conventional gas-

fluidized bed of glass beads and demonstrated that the motion of macroscopic bubbles is

the source of particle motions in the bed. They concluded that the homogeneous state of

the bed known as the uniformly fluidized state (after incipient fluidization has occurred

but before bubbles are observed) is actually a weak solid in which particles are at rest. In

the bubbling state, particles are carried in convection patterns with a downflow at the

walls and an upflow in the middle of the bed. Superimposed on this overall convection is

motion in the vicinity of rising bubbles, where particles are swept up with the bubbles.

Using DWS, Menon and Durian, 1997, measured the mean squared particle fluctuation

velocity or granular temperature near the wall of their fluidized bed as a function of

particle diameter and gas flow rate. Similar experiments were done by Cody et al., 1996,

1997, by measuring the acoustic shot noise (ASN) excitation of the surface of the

fluidized bed vessel by random particle impacts. The results of all of these experiments

are compared in a recent paper by Cody et al., 1998, who show that for Geldart-B

42
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(Geldart, 1986) glass spheres (dp 150 pm) the agreement between the two independent

sets of data is excellent, but for Geldart-A glass spheres (dp 120 pm) there is a

systematic difference between the two measurements. The DWS measurements of Menon

and Durian, 1997, do not show the bifurcation in the fluctuation velocity observed in the

ASN measurements of Cody et al., 1996, 1997, below the Geldart B/A transition at dp

120 pm. The authors (Cody et al., 1998) attribute this difference to the fact that the

experiments by Cody et al. were performed in a cylindrical vessel whereas those by

Menon and Durian were performed in a square vessel together with the hypothesis that

Geldart-A fluidization is dependent on particle circulation within the fluidized bed. To

prove this point, they present theoretical arguments that the Geldart-A glass spheres of

Menon and Durian are behaving like Geldart-B glass spheres due to the low shear

circulation at the face of the square vessel. This hypothesis, that Geldart-A fluidization is

dependent on circulation within the fluidized bed, if correct, has significant implications

for all experimental and theoretical research in the area of fluidization.

In a conventional fluidized bed, it is difficult to avoid circulation of the particles

because of wall effects. Also the minimum fluidization velocity is relatively low so that

the range between the minimum fluidization and the minimum bubbling velocity is

narrow even for Geldart-A particles. A rotating fluidized bed (RFB), on the other hand,

has several advantages for these kinds of studies. There are negligible wall effects since

the distributor comprises the cylindrical vessel and the only "walls" are the end plates.

Minimum fluidization velocities are also typically much higher than for a conventional

fluidized beds with initial fluidization occurring at the inner surface and proceeding

rapidly outward with increasing gas velocity (Kao et al., 1987). However, it must be
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emphasized that there are essential differences between conventional fluidized beds and

rotating fluidized beds. An important difference is the magnitude of the respective

acceleration fields experienced by the bed particles. Thus our results may not shed direct

light on the discrepancy between the findings of Menon and Durian, 1987, and Cody et

al, 1996.

In this chapter, we present experimental results of mixing caused by Geldart-A

particle motions in an RFB. Our simple experimental procedure is to load two different

colored layers of particles consisting of the same or different materials. If the two colored

layers of particles mix together, it is obvious that the particles have moved. At the same

time, the relationship between pressure drop of the bed and superficial gas velocity is

measured in the packed, partially fluidized, and totally fluidized bed operating regions.

We did not measure bed expansion since in our rotating fluidized bed experiments the

bed is very shallow (approximately 1 cm) and is also non-uniform both radially and

axially. By comparing our observations of particle mixing and bubble formation with

pressure drop, the point at which particle motion occurs can be determined. Kroger et al.,

1980, have previously studied particle mixing in a centrifugal fluidized bed. Their visual

observations show that bubbles are the primary mechanism causing radial mixing for

Geldart-B and Geldart-D particles. Fluidization with bubbling at the freeboard surface

was observed at the value of the predicted minimum fluidization velocity. However,

Kroger et al., 1980, did not study mixing of Geldart-A particles.

The primary purpose of this chapter is to study particle motion and mixing as gas

flow rate increases. Therefore, no data is presented on the fluidization/defluidization

hysteresis effect. We previously studied this phenomenon and reported on it in Qian et
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al., 1998. Pressure drop across a bed of alumina powder from the same batch used in the

current experiments was measured with increasing and then decreasing gas flow rate

using the same experimental arrangement and conditions as reported in this current paper.

Our results in Qian et al., 1998, show there is a slight difference between the pressure

drop curves obtained with increasing and decreasing gas flow rate. These results are in

good agreement with those of Tsinontides and Jackson, 1993, for cracking catalyst (75

gm, mass mean diameter), who also established that the hysteresis effect is inversely

related to the flowability of the particles. Studies of the hysteresis effect with glass beads

(again, similar to those used in the current paper) show no substantial pressure drop

difference occurs with fluidization or defluidization (Qian, 1998). These results are in

good agreement with the results of Cody et al., 1996, for glass beads in the Geldart-A

region.

4.2 Experimental System

A schematic diagram of the experimental system is shown in Figure 5.6 in Chapter 5. A

Pulnix progressive scan CCD Camera (Model Number: TM-1001-477; resolution:

768(H)x494(V); shutter speed from 1/60 to 1/10000 second) was used to study particle

mixing in the RFB as a function of increasing gas velocity. The camera was connected to

a computer in order to view and store the photographs in real time. All optical

measurements using the Pulnix digital camera were taken perpendicularly through the

Plexiglas end-plate. However, the inner surface of the rotating fluidized bed was also

observed at an angle by eye and exhibited the same behavior that was seen in the

photographs. We did not see any accumulation of particles sticking to the Plexiglas end-
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plates in any of our experiments, indicating that electrostatic forces for our relatively

large particles were negligible.

The sintered metal distributor with an average pore size of 55 μm was used. The

inner radius of the distributor, which is the same as the outer radius of the bed, was 61.5

mm. To determine the inner radius of the bed precisely is difficult. The inner radius

varies with the mass of particles loaded into the bed. Upon rotating the RFB, the inner

surface appeared non-uniform both radially and axially in the packed bed mode. When a

second layer of particles was added to the bed, this non-uniformity remained. At the inner

surface minimum fluidization velocity (Umfi), pronounced irregularities in the bed surface

disappeared, causing the surface to become more uniform. Since we used shallow beds,

very little bed expansion occurs. Consequently, we have measured the thickness of both

layers in the bed at Umfi. These values are given in Table 4.1.

The rotating speed of the RFB was set at 525 rpm (55 rad/s) which is equivalent

to a centrifugal acceleration of 19 times that due to gravity. The bed is initially loaded

with particles of one color, and then rotated at low speed. The other colored particles are

blown into the bed using a flexible tube, so that two different layers of particles are

formed in the bed. The interface between the two layers is distinct and clearly visible.

The bed rotational speed was then increased to 525 rpm as determined with a

stroboscope. The strobe frequency was set to match the rotational frequency of the bed so

that any macroscopic bubbles present could be observed. The pressure drop as a function

of gas velocity and rotating speed was measured using a U-tube water manometer. Before

loading particles into the bed, the pressure drop of the distributor of the empty bed was

also measured.
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Table 4.1. Four Combinations of Geldart A particles and their properties

Inner Layer Particle
Density

Mean Dia.
(by Volume)

Outer
Layer

Alumina,
black

Alumina,
white

Glass,
blue

Glass,
white

kg/m3 Pm

Alumina,
black 5.4, 5.8 1550 88.9

Alumina,
white

5.0, 6.3 1550 88.9

Glass,
Blue 4.8, 4.6 4.0, 4.2 2200 84.0

Glass,
white _ 2200 91.3

Ordered pairs in table give outer and inner layer thickness (mm) in that order as measured at the end-plate.

Our experiments were conducted with four combinations of Geldart-A particles as

described in Table 4.1. The bed material consisted of blue or white glass beads provided

by MO-SCI Corporation and alumina provided by the ALCOA Technical Center. The

alumina particles are washed and get rid of fines. The color of alumina is white. Black

alumina was made by coating the alumina with submicron soot from a diesel engine

exhaust. The effect of the soot coating on the particle size distribution and density of the

alumina was negligible. Separate experiments were performed to ascertain whether the

black alumina particles have significantly different fluidization properties from the fresh

white alumina particles. We measured the pressure drop as a function of gas flow rate

using a smaller 5.7 cm ID, 7.6 cm long rotating fluidized bed at two different rotating

speeds. The results show that the values of the pressure drop for both materials are

identical at a rotating speed of 600 rpm and are acceptably close (within experimental

error) at a rotating speed of 1000 rpm where the gas flow rate is much higher. Thus, the

very fine soot layer on the black alumina does not influence its fluidization properties.
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The particle density of the glass beads is 2200 kg/m 3 and the particle density of

the washed alumina is 1550 kg/m 3 (see Table 4.1). The particle size distribution for all of

these particles was measured using an Aerosizer (Amherst Process Instruments, Inc.) and

is shown in Figure 4.1. The alumina particles have a relatively broad size distribution,

whereas the glass beads have a much narrower size distribution. The volume average size

of the white glass beads, blue glass beads and alumina are 91.3 µm, 84.0 and 88.9

pm, respectively. All of them belong to group A of Geldart's powder classification based

on conventional gravity-driven fluidized beds (Geldart, 1986).

Figure 4.1 Particle size distribution by number for bed materials used.
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4.3 Results and Discussion

The sintered metal distributor allows the fluidizing gas to flow uniformly into the bed. As

the gas velocity increases, the bed changes from a packed bed to a partially fluidized bed

with fluidization occurring radially outward starting at the inner surface at velocity Umfi.

With increasing velocity, the entire bed is fluidized at velocity U mfc. In this chapter, we

take the sphericity, Øs, to be unity for both the spherical glass beads and the washed

alumina particles. The minimum fluidization velocity and the pressure drop curves can be

calculated from the equations (4.4 — 4.7) and equation (4.12) in Chapter 4.3 theory.

Presented below are the experimental results for the four different particle systems

investigated.

4.3.1 Blue and White Glass Beads

Blue glass beads (0.3 kg) were placed on the distributor and the RFB was rotated. As the

bed was rotating, white glass beads (0.3 kg) were added to the bed to produce two

distinguishable layers of particles. The interface between the two colored layers is

distinct and clearly visible. However, the radial location of the inner surface of the white

beads is generally not uniform due to the method used to introduce the second layer. As

the gas velocity was increased, the pressure drop of the bed was measured. Figure 4.2

shows the measured points of net pressure drop (total pressure drop less the pressure drop

of the distributor) as a function of gas velocity. Figure 4.2 also shows the theoretical

pressure drop curve with the theoretically calculated inner surface and critical minimum

fluidization velocities. In order to fit the experimental data to the theoretical curves we

multiplied the weight of the particles by a correction factor, f, equal to 0.85.
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The application of this factor is reasonable for the following reasons. First, we

conducted a large number of experiments in the RFB where particles were weighed

before and after the experimental run. Data from 12 different runs using either alumina or

glass beads as the bed material showed an average weight loss of the order of 5% of the

bed weight. Some particles were lost during the initial fill-in procedure, some were lost

due to elutriation at high gas velocities and still others were lost whenever the bed

rotation was started or stopped. However, the major contribution to the correction factor,

f, is due to the non-uniformity of the bed thickness both radially and axially. The effect of

gravity alone produces a somewhat thicker bed at the bottom compared to the top of the

horizontal rotating bed. For example, at 525 rpm the centrifugal acceleration is about 19

g's. The resulting difference of approximately 5% in the radial thickness of the bed

allows more gas to percolate through the thinner part of the bed giving a lower pressure

drop than predicted by theory. This phenomenon was pointed out by Chen, 1987, who

compared the experimental data of the pressure drop in a rotating fluidized bed obtained

by many different investigators (Fan et al., 1985, Demircan et al., 1978, Levy et al.,

1978) to the theory. Chen concluded that the theory always overpredicts the data with an

average error of more than 10% and sometimes as much as 20%. Thus, setting f = 0.85

for the glass beads is consistent with our experimental observations as well as with

previous experimental data.

By assuming a constant voidage of 0.41, the theoretical and experimental values

of Umfi and Umfc in Figure 4.2 are seen to be in excellent agreement. However, it should

be noted that in a rotating fluidized bed, as opposed to a conventional fluidized bed, there

can be small radial variations in bed voidage due to differences in local velocities and
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centrifugal acceleration (Mutsers and Rietema, 1977, Chen, 1987).

When Ug < 0.105 m/s, the predicted value of Umfi, the RFB is expected to be in

the packed bed regime. Several photographs were taken in this range. Figure 4.3-A (Ug =

0.054 m/s) shows a typical photograph of the bed. The bed had a non-uniform surface

due to the method of filling the second layer of particles with different color, as discussed

above. In this condition, the particles are static relative to each other and behave as a

solid.

As the gas velocity was increased to Ug = 0.113 m/s, the bed surface started to

become more uniform as shown in Figure 4.3-B. Particles begin to fluidize at U mfi. Upon

increasing the gas velocity further the bed begins to fluidize outwardly until the entire

bed is fluidized at Umfc. Between the inner surface and the critical minimum fluidization

velocities the bed is partially fluidized. In this range, particles are still relatively stable in

relation to one another. The two different colored layers of particles have not mixed yet,

indicating that particles have not moved in the radial direction. However, those particles

that have already been fluidized close to the inner surface of the bed appear to have

moved along the surface and the bed has become somewhat fluid-like. As the gas

velocity is increased further the bed surface became more uniform, i.e., the inner surface

of the white glass beads is sharply delineated, as can be seen in Figure 4.3-C at

Ug = 0.134 m/s.

In theory, the minimum gas velocity at which the first inner layer of particles can

begin to move is the inner surface minimum fluidization velocity, Umfi. The surface

should start to become more uniform at this point. However, detecting this onset is

difficult using either a camera or through visual observation. We note that the inner
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at which a photograph (not shown) indicated that the bed was still packed. Our theoretical

calculation indicates that the inner surface gas velocity (U mfi) is 0.105 m/s and the critical

fluidization velocity (Umfc) is 0.134 m/s.

When Ug = 0.142 m/s, the particles began to mix and the interface between the

two colored layers became diffuse. Figure 4.3-D shows that the particles are partially

mixed. The interface between the two colored layers disappears in the bed section

between the two arrows in the figure. This condition was frozen by quickly lowering the

gas flow rate. The photograph was taken and then Ug = 0.142 m/s was reset. The entire

bed became mixed very rapidly. There is no visible interface, as shown in Figure 4.3-E.

The gas velocity at which the bed became totally mixed was slightly higher than the

theoretical Umfc, as would be expected for Geldart-A particles. However, this slight

difference is within experimental error and does not clearly indicate a non-bubbling

totally fluidized bed regime before mixing occurs. Bubbles were also observed when the

mixing velocity was re-established. This observation indicates that bubbles cause the bulk

motion of the particles in the radial direction, in agreement with the results of Menon and

Durian,1997. In contrast to their results, there is no clearly discernible difference between

Umfc and the minimum bubbling velocity, Umb, i.e., they either coincide or are nearly

equal.

For gas velocities between Umfr for r = r m (the radius of the interface) and Umfc,

the interface between the two colored layers is in the fluidized region of the bed. At

velocities in this interval, particle motion and mixing of the two layers could occur by

particle diffusion. However, during the time when Ug was greater than Umfi and less than
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Umb and thus could have been in this interval, we did not observe any "blurring" of the

interface either visually or upon examination of the digital photographs. Mixing due to

diffusion occurs on a much longer time scale than the rapid mixing observed at the onset

of bubbling. Thus to the extent that particle motion occurred at the interface due to

diffusion, it did so on a length scale too small to be observed in our experiments.

Particle motion and mixing can also occur due to circulation flow in a fluidized

bed. However, our beds are very thin compared to conventional fluidized beds. Consider,

for example, the ratio of the area of the bed in contact with the wall (end-plates for the

RFB) to the area of the bed perpendicular to the gas flow at the distributor. In our beds,

that ratio is on the order of 0.1 compared to the value of 4 for a conventional bed of

circular cross-section and height equal to one diameter. Thus, we would not expect any

significant effect due to shear at the wall. Indeed, we did not observe any circulation flow

in our experiments.
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Figure 4.2 Pressure drop as a function of superficial gas velocity for two different
colored layers of glass beads. Letters A to E refer to the photographs in Figure 4.3.
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Figure 4.3 Photographs of RFB at different superficial gas velocities for blue and white
glass beads.
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4.3.2 Black Alumina and White Alumina

In order to verify the above results, alumina was used instead of glass beads in the same

experiment. The average particle size of the alumina is almost the same as that of the

glass beads, but its density is lower and its size distribution is much wider. The alumina

particles, like the glass beads, fall into the Geldart-A classification for conventional

fluidized beds. Black alumina (0.4 kg) was filled into the bed and while the RFB was

rotating, white alumina (0.3 kg) was loaded into the bed. Figure 4.4 presents the

experimental pressure drop values and the theoretically calculated curve (less pressure

drop of the distributor) as a function of gas velocity. The bed voidage used was 0.425.

The measured weight of the alumina was multiplied by a correction factor, f = 0.80, in

order to fit the experimental points to the theoretical curve for the same reasons as given

above for the glass beads. The small difference in f factors for the glass beads and

alumina particles is probably due to the fact that the alumina particles have a much wider

size distribution with more smaller particles (see Figure 4.1).

The experimental method was the same as was used for the glass beads. When Ug

< 0.074 m/s, the predicted (fro, the RFB is in the packed bed regime. In this condition,

the bed surface is not uniform due to the fill-in procedure and particles in the two layers

did not mix. Several photographs were taken. These photographs all show the same

structure of the bed, as illustrated in Figure 4.5-A (Ug = 0.043 m/s).

The first change was observed at 0.080 m/s (Figure 4.5-B). The bed surface began

to become uniform. Between Umfi and Umfc the bed was partially fluidized. However, the

black and the white particles did not mix. Figure 4.5-C shows a photograph of the bed at

Ug = 0.083 m/s. Mixing had not occurred, but the inner surface of the bed had become
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even more uniform than in Figure 4.5-B.

Figure 4.5-D shows a photograph that was taken at Ug = 0.089 m/s, when the bed

was partially mixed. Again, the interface between the two colored layers disappears in the

bed section between the two arrows in the figure. This condition was frozen by lowering

the gas flow rate. After the photograph was taken, the same gas velocity was reset. A

couple of seconds later total mixing of the bed occurred, and bubbles appeared as shown

in Figure 4.5-E. Based on the pressure drop curve and this observation, the experimental

Umfc is estimated to be 0.089 m/s. It is the first point at which the gas velocity has no

effect on pressure drop, i.e., the pressure drop becomes constant. The theoretical

calculation gave a higher Umfc = 0.111 m/s. Even though these particles are in the

Geldart-A classification, the mixing point appears to occur at the experimentally

measured Umfc which, within observational uncertainty, is also the minimum bubbling

velocity. Again, before bubbling neither small-scale mixing at the interface nor

establishment of circulation flow were observed.
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Figure 4.4 Pressure drop as a function of superficial gas velocity for two different
colored layers of alumina. Letters A to E refer to the photographs in Figure 4.5.
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Figure 4.5 Photographs of RFB at different superficial gas velocities for black and white
alumina.
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4.3.3 Blue Glass Beads Outside and White Alumina Inside

Since the densities and size distribution of the alumina particles and glass beads are

different, their minimum fluidization velocities are also different. In order to investigate

the mixing properties for particles of different materials, having different densities, blue

glass beads (0.4 kg) were loaded into the bed first. While the RFB was rotating, white

alumina (0.3 kg) was filled into the bed giving two layers of particles with different

colors and densities. Again, the pressure drop of the bed was measured as the gas velocity

was increased. Figure 4.6 shows the experimentally measured pressure drop points and

the theoretically calculated curve vs. gas velocity. The previously used voidages and

correction factors for the glass beads and the alumina were used in calculating the

pressure drop curve. Figure 4.7 shows the photographs that were taken during this

experiment.

Until point A (Ug = 0.080 m/s) in Figure 4.6, the inner bed surface was non-

uniform, as can be observed in Figure 4.7-A. The next measurement point was at Ug =

0.086 m/s. As the alumina inner surface began to fluidize, the surface became more

uniform very quickly, as shown in Figure 4.7-B. The calculated minimum fluidization

velocities are as follows: for glass beads, Umfi = 0.105 m/s and Umfc = 0.122 m/s; for

alumina Umfi = 0.079 m/s and Umfc = 0.095 m/s. We believe that the photograph at point A

was taken just before the inner surface minimum fluidization velocity was reached,

although the velocity at this point is approximately equal to the calculated tiro for the

alumina. It appears that the entire layer of alumina began to fluidize before the glass

beads started to fluidize. We were not able to take photographs showing the surface

becoming progressively more uniform. However, we observed that a thin light blue layer
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intermediate between the darker blue glass beads inner layer and the white alumina outer

layer formed when the glass beads began to fluidize. This thin layer did not grow and was

seen until total mixing of the bed was obtained with bubbles appearing, as shown in

Figure 4.7 -C at Ug = 0.118 m/s. At this point the particles mixed very quickly.

The observed behavior can be explained by the fact that the alumina particles

were already totally fluidized by the time the entire glass bead layer became fluidized.

Therefore, the mixing was very fast. The particles mixed when the glass beads reached

the critical fluidization velocity. It appears, however, that the theoretical calculations give

higher values of the minimum fluidization velocities than those observed experimentally.
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Figure 4.6 Pressure drop as a function of superficial gas velocity for blue glass beads and
white alumina layers. Letters A to C refer to the photographs in Figure 4.7.
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Figure 4.7 Photographs of RFB at different superficial gas velocities for blue glass beads
and white alumina powder.

4.3.4 White Alumina Outside and Blue Glass Beads Inside

Alumina particles (0.3 kg), having a lower density than the glass beads were placed on

the outside of the bed adjacent to the distributor. Glass beads (0.5 kg) were filled on the

inside of the bed. In this case the mixing behavior was entirely different from that
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observed in the previous experiments. As the gas velocity was increased, the bed pressure

drop was measured. Figure 4.8 presents the experimental pressure drop points and the

theoretically calculated curve as a function of gas velocity. The calculation method and

the correction factors were the same as had been used previously. As can be seen from

the figure, in this case the theoretical pressure drop curve overpredicts the experimental

values in both the packed and fluidized bed regimes. Figure 4.9 shows the photographs

that were taken during the experiment.

At point A (Ug = 0.064 m/s) in Figure 4.8, neither the glass beads nor the alumina

are fluidized, i.e., both layers are in the packed bed regime. The particles were stationary

relative to each other and therefore the inner surface of the bed was not uniform, as

shown in Figure 4.9-A. In the packed bed regime several photographs were taken without

any changes in the appearance of the bed surface.

At Ug = 0.097 m/s the bed surface became more uniform. At the same time, a

radial segment of the bed began to mix without observing any bubbles as shown in Figure

4.9-B. The appearance of the more uniform surface occurred very quickly. At the

previous measurement point (Ug = 0.091 m/s, not shown) the bed surface was still not

uniform even though the glass beads may have become fluidized based on the theoretical

pressure drop curves. The next three photographs (Figure 4.9-C, Figure 4.9-D, and Figure

4.9-E) show that the mixed region (between the two arrows where the interface is no

longer visible) grew larger as the gas velocity was increased. Eventually, at 0.110 m/s the

entire bed became mixed (no interface) as can be seen in Figure 4.9-F. Bubbles were not

observed at this gas velocity. Bubbles appeared later at 0.118 m/s.

The calculated fluidization velocities of the glass beads and alumina are: U mfi =
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0.083 m/s and Umfc = 0.105 m/s, and Umfi = 0.095 m/s and Umfc = 0.111 m/s, respectively.

Thus, the glass beads had already been partially fluidized when the alumina particles

started to become fluidized at 0.095 m/s. However, the outer portion the inner layer of

glass beads remained in the packed bed regime. This packed bed layer covered the

alumina particles as a "lid" preventing the expansion of the particles in the alumina layer.

Once all of the glass beads became fluidized, the "lid" was removed, and the entire bed

proceeded to fluidize.

Unlike the previous experiments, the mixing of the bed began at the gas velocity

at which the alumina particles started to become fluidized. At this point a small section of

the bed started to mix (see Figure 4.9-B) and grow (see Figures 4.9-C, D, E) until the

entire bed was fluidized (see Figure 4.9-F). In contrast to the virtually instantaneous

mixing observed in the prior experiments, density driven mixing occurs gradually

because the more dense glass beads move into the fluidized alumina layer due to the

centrifugal force. Bubbles were not observed until Ug = 0.118 m/s, which was somewhat

higher then the velocity of total mixing (see Figure 4.9-G).



66

Figure 4.8 Pressure drop as a function of superficial gas velocity for white alumina and
blue glass beads layers. Letters A to G refer to the photographs in Figure 4.9.
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Figure 4.9 Photographs of RFB at different superficial gas velocities for white alumina
and blue glass beads.
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4.4 Discussion

For particles of the same material, the two layers of particles do not mix until bubbles

appear. This result is similar to that of Menon and Durian, 1997, who concluded that

bubbles are responsible for the bulk motion of particles in the conventional fluidized bed

used in their study. Below Umfi the bed behaves as a solid. Between the calculated Umfi

and Umfc the inner surface is observed to become more uniform, i.e., in this respect, the

bed exhibits fluid-like behavior before mixing. After Umfc particles inside the bed start to

move radially and mixing occurs rapidly. Bubbles are a strong source of particle motion

and the bed becomes totally fluid-like. To within observational error, the mixing,

minimum critical fluidization velocity and minimum bubbling velocity coincide. These

results are different from these of Menon and Durian, 1997, who found bubbling to occur

in their gravity-driven bed at a velocity appreciably greater than the minimum

fluidization velocity for Geldart-A particles. Figure 4.10 is a schematic representation of

these ideas.

For conventional fluidized beds, the minimum bubbling velocity, Umb, is

dependent on the size and density of the particles. For Geldart-B particles, Umb is equal to

the minimum fluidization velocity, Umf, whereas for Geldart-A particles, which were used

in our experiments, Umb is larger than Umf so that there is an appreciable operating region

in which the bed is fluidized but not yet bubbling. Cody et al., 1998, suggest that particle

circulation in a conventional circular cross-section fluidized bed which leads to shear

forces may be responsible for Geldart-A behavior. Our RFB has negligible wall effects

and hence presumably negligible particle circulation. The fact that we observe no mixing

of particles before bubbles are observed could be a consequence of the hypothesis of
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Cody et al. that Geldart-A fluidization is dependent on circulation within the fluidized

bed and can mimic Geldart-B like behavior when particle circulation is absent. On the

other hand, the RFB differs from a conventional fluidized bed in that the acceleration

field is considerably greater than gravity. Therefore, previous studies in conventional

fluidized beds to determine Umb may not be relevant. Indeed, the location of the Geldart

A/B boundary in the diameter-density plane is likely to be a function of the magnitude of

the effective acceleration field. Our results are also consistent with the hypothesis that a

shift in the location of this boundary occurs that results in particles in the Geldart-A

classification for conventional beds exhibiting Geldart-B behavior in an RFB. We intend

to present a theoretical analysis of this issue in the future.

For particles of different density, the mixing characteristics of the two layers

depend on whether or not the denser particles are near the distributor. When the denser

particles are near the distributor the mixing behavior is very similar to that of particles of

the same density. When the less dense particles are near the distributor the mixing

behavior is quite different. Mixing occurs gradually due to the differences in density and

fluidization properties of the two layers and total mixing is observed before bubbles

appear.



Figure 4.10 Schematic diagram of operating region.
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CHAPTER 5

GAS-SOLID FLUIDIZATION IN A CENTRIFUGAL FIELD

5.1 Introduction

The behavior of fluidized solid particles has been reported in the literature for over 50

years. Wilhelm and Kwauk, 1948, early on, described the stability of a fluidized bed of

solids fluidized with either a liquid or a gas. Two modes of fluidization, termed

particulate and aggregative fluidization, were observed depending on the value of the

Froude number, umf2/(gdp). Particulate fluidization, which was obtained in solids-water

experiments, is characterized by the separation of individual particles much the same as

the molecules of a gas. It is a non-bubbling, homogeneous fluidization. By contrast, in

aggregative fluidization, observed in solids-air experiments, the particles tend to remain

aggregated, more closely resembling a liquid than a gas. Gas rises through the bed mainly

in the form of bubbles and the system is heterogeneous. Jackson, 1963, developed

constitutive equations for both the gas and particle phases that showed that an ideal

fluidized bed is always unstable if there are no interaction forces between the particles.

Rietema, 1973, showed that the cohesive force between particles in contact could

stabilize the fluidized bed.

Many studies have shown that the interaction between particles and between the

fluid and the particles are closely linked to the fluidization quality. Mutsers & Rietema,

1977a, b, performed experiments using two different gases (nitrogen and hydrogen)

having different densities and viscosities. They were also able to achieve different

effective gravity forces by carrying out their experiments in a large centrifuge (up to 20

"g") but reported experimental results only up to 3.07 "g". They found that the dense-
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phase porosity and the bubble point porosity in freely bubbling beds are influenced not

only by hydrodynamic effects, but also by interparticle forces. They concluded that the

effective gravity has an effect on the fluidization stability and is related to fluidization

quality.

Generally, fluidization stability and quality is a function of particle size and

density, fluid viscosity and density, and drag force, cohesive force, and gravity force. The

gravity force is clearly a very important factor, but because almost all fluidization

experiments have been conducted in vertical gravity-driven beds (1 "g"), we have not

seen any references in the literature analyzing the effect of gravity on particle fluidization

stability and quality. This research will show the effect of a variable acceleration field

("gravity") on the Geldart powder classification and analyzes fluidization quality at

different "g" forces.

5.2 Powder Classification in a Conventional Gravity-Driven Fluidized Bed

This section reviews the previous work on powder classification in gravity-driven gas-

solids fluidized beds. In addition, a new semi-theoretical equation is presented for the

transition from Geldart group A to group C particles.

5.2.1 Geldart's Powder Classification

Geldart, 1973, in his well known classification of solids fluidized by gases, empirically

found that the behavior of solid particles with respect to their fluidizing properties falls

into four groups: A, B, C and D. These groups are characterized by the mean particle

size (dp) and by the density difference between the particles and the gas (pp-pf).
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Geldart observed that:

• Powders in group A exhibit dense phase expansion after minimum fluidization and

prior to the commencement of bubbling. When the gas supply is suddenly cut off, the

bed collapses very slowly. All bubbles rise more rapidly that the interstitial gas

velocity.

• Powders in group B bubble at the minimum fluidization velocity. Bed expansion is

small and the bed collapses very rapidly when the gas supply is shut off Most

bubbles rise more rapidly than the interstitial gas velocity.

• Powders in group C are difficult to fluidize at all since the interparticle forces are

greater than those which the fluid can exert on the particles.

• Powders in group D can form stable spouted beds. Only the largest bubbles rise more

slowly than the interstitial fluidizing gas, so that gas flows into the base of the bubble

and out from the top of the bubble.

In most applications of fluidized beds, maximal heat and/or mass transfer between

the fluidizing gas and the bed solids is desired. Such transfer is optimal in beds that are

uniformly fluidized and not bubbling. For this reason, the fluidization obtained using

group A particles is preferable to that using group B particles and both are superior to that

realized with group C and group D particles. This ranking forms the basis for our

discussion of fluidization quality.

Rietema, 1984, pointed out that Geldart's classification is correct only when

operating at normal temperatures and pressures and in the earth's gravitational field.

Other factors that must be taken into account include cohesion, gas viscosity, the
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adsorption of gas on the particles and gravitational acceleration. Rietema concludes by

saying: "A certain powder which shows A-powder behavior might show B-powder

behavior when the effective gravitation is increased or a gas of lower viscosity is used.

Similarly, a powder, which shows C-powder behavior, might evince A-powder behavior

when a gas of higher viscosity is used."

5.2.2 Criterion for the Transition between Group A and Group C Particles

Geldart, 1973, defined powders that are in any way cohesive to belong to group C.

Normal fluidization of these powders is extremely difficult; the powder lifts as a plug in

small diameter tubes, or channels (rat-holes) badly with the gas passing up through voids

extending from the distributor to the bed surface. This difficulty arises because the

interparticle forces are greater than the drag force that the fluid exerts on the particle. The

interparticle forces are generally the result of very small particle size (van der Waals

forces), strong electrostatic charges (Coulombic forces), or the presence in the bed of wet

or sticky material (capillary forces). Geldart presented only an empirical curve (with no

defining equation) to distinguish between group A and C particles in his classification.

Molerus, 1982, derived a semi-empirical equation to describe the transition

between group A and C particles assuming that the product of the Euler number for

fluidization and the Reynolds number is a constant (≈ 5.0) for small Reynolds numbers

and the voidage, Є ≈ 0.5. However, it is unclear whether this equation can be extended to

different accelerations. Therefore, in order to analyze the behavior of the transition

between group A and C particles under a centrifugal field, a new semi-theoretical

equation will be developed.
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The critical difference between group A and C particles is that group A particles

can be fluidized individually, whereas group C particles will tend to agglomerate because

of interparticle cohesive forces and can only be fluidized as agglomerates. Therefore, we

will focus on a single particle inside the bed, which is acted upon by a drag force, a

gravity and buoyancy force, and a cohesive force. We will analyze each of these forces

separately below.

Drag force: If the relative velocity between a single particle and the surrounding fluid is

u and the drag force on the particle is Ed, then the drag coefficient, CD, is defined by

At the terminal velocity, ut, for a single falling particle, the drag force is balanced by the

net force due to gravity and buoyancy, giving

Khan and Richardson, 1990, have shown that if a particle is in a suspension of like-

particles supported by a fluid having a superficial flow velocity, u, the drag force on a

single particle in the suspension of voidage, Є , is Є 4.8 times that on a single isolated

particle. This applies to both the Stokes' and Newton's law regions. Thus:

Gravitational force Wg and buoyancy force Wb: When the bed is in the fluidized state,

it behaves as a fluid and the density of the "fluidized bed" (solids and gas) is:



The buoyancy force Wb on a spherical particle is given by:

and the "effective weight" of the particle is:

in agreement with Foscolo and Gibiloro, 1984.

Cohesive force: The dominant interparticle force between two particles is the van der

Waals force. The van der Waals force between two perfectly spherical and rigid particles

of diameter d 1 and d2 can be expressed as:

where A is Hamaker's constant, which, for most solids, has been calculated to have an

average value of A=10 -19 J (Rietema et al., 1993). Here S is the distance between the two

particles and can be estimated to be between 0.15 and 0.4 nm (Krupp, 1967). Normally 8

is taken as 0.4 nm (Iwadate et al., 1998, Zhou and Li, 1999). If we assume that the

particles have the same size, d 1 = d2 = dp, then Equation (5.7) becomes:

But the calculated cohesive force using Equation (5.8) is extremely high

(Massimilla and Donsi, 1976, Rietema et al., 1993) when compared to experimental

values. Most powders, however, have a rather rough surface with many protuberances,
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generally called asperities with radii of curvature often not larger than 0.1 µm. Therefore,

the value of dp in Equation (5.8) should be replaced by the diameter of the asperities, l

(Rietema et al., 1993). This will reduce the value of the cohesive force and make it much

more realistic. Thus, the effective average cohesive force depends strongly on the surface

structure of the particles, i.e., the size distribution of the asperities and their surface

density. Consequently, Equation (5.8) becomes:

Massimilla and Donsi, 1976, suggest using a mean value of l equal to 0.2 μm.

Transition equation between group A and group C: Group A particles can be

fluidized individually. At the maximum flow velocity, um (before the particles flow out of

showing all the pertinent forces acting on a particle on the fluidized bed.

The transition equation can be expressed as:
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which is the transition equation for group A/C particles.

Here, A = 10 -19 J, 1= 0.2 μm, 8 = 0.4 nm. The voidage for group C particles is different

measurement by Chaouki et al., 1985, for aerogels. The voidage, 6, for group A particles

is approximately 0.4.

Gas

Figure 5.1. Conceptual representation for transition of group A/C.

For a gas-solid system in a conventional fluidized bed, g = 9.8 m/s2 . A plot of
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log paper with slope = -3 as shown in Figure 5.2. This figure and all subsequent figures

are based on fluidization by air at ambient conditions. The two straight lines bracket the

empirical result of Geldart, 1973, and are in close agreement with the semi-empirical

boundary lines for soft and hard particles of Molerus, 1982, which represent the transition

of group A/C. Thus Equation (5.13) is an excellent representation of the transition from

group A to group C without requiring the specification of any additional empirical

parameters. It should be noted, however, that Equation (5.13) is sensitive to the voidage

and the voidage will change with the particle size. For example, the voidage was found to

be as high as 0.67 for 1 SiC particles (Zhou et al., 1999). Furthermore, in a

centrifugal field, the voidage could be smaller than in a conventional gravity-driven

fluidized bed since the centrifugal force will tend to pack the particles closer together

(Mutsers et al., 1977).

We have replaced the particle diameter by the size of the asperities in Equation

(5.13) to calculate the van der Waals cohesive force, but for very fine particles (dp < 0.2

l  should be replaced by dp.

5.2.3 Criterion for the Transition between Group A and Group B Particles

Foscolo and Gibilaro, 1984, emphatically rejected the idea that interparticle forces are

responsible for the stabilization of a fluidized bed at gas flows below that required to

initiate bubbling. Instead, they invoked the stability criterion presented by Wallis, 1969,

that bubbles occur when conditions are such that the propagation velocity of a voidage

disturbance reaches the velocity of elastic waves in the bed. In some respects this idea is

analogous to the condition of a projectile reaching the velocity of sound in a fluid. Thus,
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for voidage propagation velocities smaller than the elastic wave velocity, us < tie,

disturbances will be accommodated in an essentially homogeneous manner, whereas for

tie > ue, this is no longer possible and bubbles are formed. This reasoning led to a

relatively simple criterion for the instability or transition of Geldart A/B:

where 6b is the voidage at which the transition from particulate to aggregative fluidization

occurs. For cases of practical interest, Єb = Єmb, where Єmb is the voidage at the minimum

bubbling velocity. Foscolo and Gibilaro, 1984, applied the stability criterion given by

Equation (5.14) to define the boundary between powders that undergo a degree of

particulate expansion (umf , > umf) when fluidized by air and those that do not ( umb = umf ).

Table 5.1: Equations to calculate n and ut for different Re t
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Equation (5.14) is dependent on the terminal velocity of a single particle, the

(Richardson and Zaki, 1954). The terminal velocity ut can be obtained from Equation

for 2 < Re, < 5 x 10 2 and CD %Z.', 0.44 for 5 x 10 2 < Re, < 2 x 10 5 (Schlichting, 1979).

Thus for different Re t regimes, u t and n can be expressed by the equations in Table 1

(assuming the particle size is much smaller than the diameter of the fluidized bed,

dp
----- 0 ).
Di

Inserting the physical properties of air and letting Є b = 0.35 corresponding to the

practical minimum value of Єmf for spherical particles into Equation (5.14), the boundary

dividing group A/B powders for conventional gas-solid fluidized beds is obtained and

plotted in Figure 5.2. The curve is in good agreement with the result of Oltrogge, 1972,

given in Geldart's 1973 paper based on an equation suggested by Verloop and Heerjes,

1970, but modified empirically to fit his experimental data. Also shown in Figure 5.2 are

the transition curves between group A/B given by Molerus, 1982, for soft and hard

particles.

5.2.4 Criterion for the Transition Between Group B and Group D Particles

Molerus, 1982, gave a simple criterion for the transition from group B to group D
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powders assuming that the transition occurs with coarse-grained particles at Re » 1. From

the non-dimensional representation of the drag exerted on the particles in the high

Reynolds number regime, experimental data has shown that the Euler number can be

taken to be constant for a given porosity. In particular, at minimum fluidization:

According to Molerus, this result has a simple physical meaning. With high Reynolds

number and therefore dominance of the inertia forces in comparison with viscous forces,

the dynamic pressure of the fluid, pfu2mf,must at the onset of fluidization exceed a

certain value in comparison to the effective weight of the particles per unit area. From

that consideration it is reasonable to assume that such systems tend to spout. Thus the

dynamic pressure of the fluid must exceed a critical value pfu2mf = constant with onset of

fluidization so that Equation (5.16) can be written as:

Using the experimental data by Mathur, 1971, the final result for the transition of group B

to group D particles from Equation (5.17) is obtained as:

This result is plotted in Figure 5.2 and agrees well with the experimental data reported by

Geldart, 1973.



Figure 5.2. Powder classification for fluidization by air.
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5.3 Powder Classification in a Centrifugal Field

Here we will extend the results presented in the previous section for the classification of

powders in gravity-driven fluidized beds to apply to fluidized beds in a centrifugal field,

i.e., in rotating fluidized beds (RFB).

5.3.1 Criterion for the Transition between Group A and Group C Particles

Equation (5.13) is our semi-theoretical result for the transition from group A to group C

particles. The g in the equation refers to the gravitational acceleration acting on the

particles. In a centrifugal field, g will be replaced by the centrifugal acceleration, a,

which will be given in non-dimensional form as "g"= a/(9.8 m/s 2).

Figure 5.3 shows the calculated boundary for the transition of group A and C

particles at 1 "g", 10 "g", 100 "g" and 1000 "g". It shows that the boundary curve shifts

to the left with increasing "g". It can be seen, for example, that particles exist (of specific

size and density) that belong to group C at 1 "g", but belong to group A at 10 "g". The

figure also shows that it should be possible to fluidize some group C particles without

agglomeration in a centrifugal field, depending on the value of "g".
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Figure 5.3. Group A/C transition for fluidization by air at different "g".

5.3.2 Criterion for the Transition Between Group A and Group B Particles

Equation (5.15), suggested by Foscolo and Gibilaro, 1984, is also seen to be dependent

on the gravitational acceleration. In a centrifugal field, the gravitational acceleration is

replaced by the centrifugal acceleration and Equation (5.14) can be modified accordingly.

Figure 5.4 shows the calculated boundary transition curves for group A and B particles at

1 "g", 10 "g", 100 "g" and 1000 "g". It shows that the boundary curve shifts to the left

with increasing "g". Thus, if group A particles can shift to group B in a centrifugal field

and the additional centrifugal force (above 1 "g") will reduce the fluidization quality for
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Figure 5.4. Group A/B transition for fluidization by air at different "g".

5.3.3 Criterion for the transition between Group B and Group D particles

Equation (5.18) suggested by Molerus is used to calculate the transition from group B/D

in a centrifugal field. Figure 5.5 shows the calculated boundary transition curves for

group B/D at different "g". Clearly, in a centrifugal field, group B particles can shift to

group D, which are not easy to fluidize and tend to spout. Figure 5.5 also shows that

group D particles can shift to group B or even to group A if "g" is less than unity. Thus,

by decreasing "g", group B particles can shift to group A, and group D particles can shift
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to group B or to group A. Group D particles are large or dense and are difficult to

fluidize. However, if they shift to group B or A, the fluidization quality of group D

particles will be improved. This effect can be achieved by fluidization under micro-

gravity conditions such as fluidizing particles on the moon, or by applying an external

force, such as a magnetic or electric field to balance the gravity force.

Figure 5.5. Group B/D transition for fluidization by air at different "g".
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5.4 Experiments

In order to test the ideas and equations developed for the classification of powders in a

centrifugal field presented above, a series of experiments were performed in a rotating

fluidized bed where the centrifugal acceleration could be varied from 7 to over 200 "g ".

5.4.1 Experimental System

A schematic diagram of the experimental system used in our research is shown in Figure

5.6. Dry compressed air was fed to the RFB through a bank of calibrated rotameters. A

variable-speed motor provided rotating speeds between 0 to 5000 rpm. The metal

distributor (manufactured by Pall Corporation) was composed of sintered 316 low-carbon

stainless steel powder with an average pore size of 55 Its length was 15.2 cm with

inner radius (the same as the outer radius of the bed) of 6.15 cm. Plexiglas end plates

were used so that the bed and bed surface could be observed by eye or by a high-

resolution digital camera.

The rotating speed of the RFB was set at 325, 525, 700, 900, 1200, 1600 and 2000

rpm (34, 55, 73, 94, 126, 167 and 209 rad/s) which is equivalent to a centrifugal

acceleration of 7, 19, 34, 56, 100, 178, and 278 "g", respectively. The strobe frequency

was set to match the rotational frequency of the bed so that any macroscopic bubbles

present could be observed. The pressure drop as a function of gas velocity and rotating

speed was measured using a U-tube water manometer. Before loading particles into the

bed, the pressure drop of the distributor of the empty bed was also measured and then

subtracted from the measured pressure drop of the bed loaded with particles.



Figure 5.6 Schematic diagram of the experimental system.



Figure 5.7 Particle size distribution.
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Our experiments were conducted with Geldart A and C particles with properties

listed in Table 5.2. The bed material consisted of glass beads provided by MO-SCI

Corporation and alumina provided by the ALCOA Technical Center. The particle size

distribution for all of these particles was measured using an Aerosizer (Amherst Process

Instruments, Inc.); typical results are shown in Figure 5.7. The fresh alumina has a broad

size distribution with many fines; washed alumina has far fewer fines. The glass beads

have a much narrower size distribution than the alumina particles and a higher density.

The 7-micron alumina particles, due to their small size, belong to Geldart group C; all the

others belong to Geldart group A.

Table 5.2 Particle size, density and their Geldard's group classification

Glass Beads 2450 82 75 Geldart A
Washed Alumina 1550 89 28 Geldart A
Fresh Alumina 1550 63 4 Geldart A
Q-705 Alumina 1320 68 48 Geldart A
7-µm Alumina 1470 7 2 Geldart C

5.4.2 Experimental Results

Experiments were conducted by measuring the pressure drop of the bed as a function of

gas velocity and rotating speed. Visual observations of the minimum fluidization and

minimum bubbling velocity and the quality of fluidization were made by eye and by

high-resolution photography.

Group A particles: The most easily observed difference between powders in group A

and B is whether or not the bed bubbles at or very close to minimum fluidization. The
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minimum bubbling velocity (Umb) is defined as the gas velocity when bubbles are first

observed. At low gas flow rate the bed is in the packed bed regime. As the gas velocity is

increased, the inner surface begins to fluidize (See Chapter 3). The inner surface fluidizes

first because at that point the gas velocity in the bed is highest and the centrifugal force is

lowest. The velocity at which fluidization occurs at the inner surface is called the inner

surface minimum fluidization velocity, (U mfi). With increasing velocity, the entire bed is

fluidized at critical minimum fluidization velocity (U mfi). The minimum fluidization

velocities, Umb and (irate were determined from the pressure drop data as described in

Chapter 3. Figure 5.8 shows the pressure drop for a 0.5 kg charge of washed alumina

particles as a function of the gas flow rate at different rotating speeds. At rotating speeds

greater than 325 rpm, the minimum bubbling velocity, (fifth, was observed before the

critical minimum fluidization velocity ((irate) was reached, i.e., when the entire bed has

fluidized. At the rotating speed of 325rpm, the values of Umb, Umfi and (Umfc are practically

the same.



Figure 5.8 Pressure drop due to a 0.5 kg charge of washed alumina particles as a function
of flow rate at 325 rpm, 525 rpm, 700 rpm and 900 rpm.

Similar experiments have been conducted using Q-705 alumina particles and glass

beads. Figure 5.9 and 5.10 show the pressure drop for a 0.5 kg charge of Q-705 alumina

particles and 0.5 kg charge of glass beads, respectively, as a function of flow rate at

different rotating speeds. As seen in the figures, the results are very close to those

obtained using the washed alumina.
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Figure 5.9 Pressure drop due to a 0.5 kg charge of Q-705 alumina particles as a function
of flow rate at 325 rpm, 525 rpm, 700 rpm and 900 rpm.
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Figure 5.10 Pressure drop due to a 0.5 kg charge of glass beads as a function of flow rate
at 325 rpm, 525 rpm and 700 rpm.

The above experiments indicate that in all cases Umf and Umb are very close or

practicaly equal. Here Umfc is the average of Umfi and Umfc. In Figure 5.4, we have marked

the mean size and density of the particles used in each of the above experiments.

According to the figure, for all of our centrifugal accelerations ("g"), the particles behave

as Geldart group B. However, in Geldart's classification, for a gravity driven bed, these

particles should behave as group A. Thus our experiments imply that group A particles

can shift to group B in a centrifugal field.
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Figure 5.11 Pressure drop due to a 0.5 kg fresh alumina particles charge as a function of
flow rate at 325 rpm, 525 rpm, 700 rpm and 900 rpm.

The effect of fines: Geldart and Abrahamsen, 1980, studied the effect of fines on the

behavior of conventional gas-fuidized beds. They found that the presence of a small mass

fraction of fines below 45 pm strongly affects and increases the ratio Umb/Umf. Using

fresh alumina particles, which contains significant fines below 45 µm, we measured the

pressure drop of the bed and observed the onset of bubbling, U mb. Figure 5.11 shows the

pressure drop for a 0.5 kg charge of fresh alumina particles as a function of flow rate at
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different rotating speeds. It is clear, especially at the higher rotating speeds, that Umb is

higher than Umfc. Thus the presence of fines causes the powder to exhibit group A

behavior even in the presence of the centrifugal field.

Fluidization of group C particles: The ability to fluidize of group C particles is

potentially significant because of the rapidly growing need for using ultra-fine particles in

industrial applications. There are two basic methods to improve the fluidization quality of

fine cohesive group C particles. One is by application of an external force, such as

vibration or from a magnetic, electric or acoustic field. The other is by altering the

intrinsic properties of the particles, e.g., modifying their surface characteristics or mixing

them with other particles having different size or shape (Wang et al., 1998, Mori et al.,

1992, Chirone et al., 1992, Zhu et al., 1994, Tung et al., 1989). From the theoretical

analysis presented above, we have shown that group C particles can shift to group A in a

centrifugal field and thus can be more easily fluidized. This is a new approach to

improving the fluidization quality of fine particles and requires experimental verification.

We therefore carried out experiments in our rotating fluidized bed using 7 pm

Geldart group C alumina particles. These particles normally tend to agglomerate. In our

experiments, a 0.3 kg charge of the 7 µm alumina particles was loaded into the RFB. The

rotating speeds were set at 325, 525, 700, 900, 1200, 1600 and 2000 rpm, equivalent to 7,

19, 34, 56, 100, 178, and 278 "g" respectively. At each rotating speed, the pressure drop

of the bed was measured as a function of gas flow rate. The strobe frequency was set to

match the rotational frequency of the bed and the bed condition was observed by eye.

Figure 5.12 shows the measured pressure drop in the bed as a function of flow
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rate at different rotating speeds. Figure 5.13 summarizes our observations of the bed

condition corresponding to the last data point at each rotating speed shown in Figure

5.12.

Figure 5.12 Pressure drop due to a 0.3 kg charge of 7 µm alumina particles as a function
of flow rate at 325 rpm, 525 rpm, 700 rpm, 900 rpm, 1200 rpm and 1600 rpm.



Figure 5.13 Visual observation of the powder in the RFB corresponding to the data point
at the highest velocity shown in Figure 5.13.
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At 325 rpm (7 "g") and 525 rpm (19 "g"), the particles are observed to be

agglomerated and the bed surface is non-uniform. At higher gas velocity, the gas passes

through large regular channels, which are somewhat smaller at higher rpm. This is a

normal observation for group C particles in a conventional fluidized bed. The pressure

drop increases with gas velocity in the packed bed regime until the pressure drop curve

reaches a plateau due to channelling.

At 700 rpm (34 "g"), the particles appear to have de-agglomerated in the bed,

although the bed surface is still not completely uniform. At higher gas velocity, very

small channels could still be observed. It is hard to say whether the particle behavior

belongs to group C or group A.

At 900 rpm (56 "g") the particles have totally de-agglomerated and the bed

surface is uniform. At higher gas velocity, the particles behave like group A or B

particles and the bed appears uniformly fluidized without channelling as illustrated in

Figure 5.13d. In Figure 5.12 the pressure drop increases with gas velocity in the packed

bed regime and goes to a plateau after minimum fluidization is reached. Thus, between

700 and 900 rpm, the particles shift from group C to group A or B behavior.

At 1200 rpm (100 "g") and 1600 rpm (178 "g"), the bed surface is very uniform

in the packed bed regime because of the high rotating speed. The pressure drop increases

steadily, then, as the gas flow is further increased, it decreases suddenly. At this point, a

"rat hole" is observed inside the bed. The gas passes through the rat-hole instead of

flowing between the particles. The difference between operating at 1200 rpm and 1600

rpm is that the rat hole size at 1600 rpm is larger than that at 1200 rpm. The gas velocity

at which the pressure drop suddenly falls due to the formation of the rat hole at 1600 rpm
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is higher than that at 1200 rpm. Similarly, the rat-hole size at 2000 rpm (278 "g") is even

larger than at 1600 rpm and the corresponding gas velocity, when the pressure drop

suddenly falls, is higher. These results indicate that the particles are not easy to fluidize at

high centrifugal force. It should be noted that at very high rpm the pressure drop curve

looks like that obtained for group D particles rather than for group A or B particles.

Figure 5.14 Powder classification for fluidization by air at 56 "g".

Since the voidage in the bed is probably lower than 0.4 due to the centrifugal field

(Mutsers et al., 1977b), we used a voidage of 0.35 for the transition curve between group

A and C. Figure 5.14 shows that the transition boundary between group B/D has shifted
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further to the left than the transition boundary between group A/B. Thus there is no

transition between group A and B at high "g ". Rather, the 7 VIM alumina group C

particles shift directly into group B, bypassing group A altogether. In Figure 5.15, which

shows the results at a rotating speed of 2000 rpm (278 "g"), the 7 vim alumina particles

have shifted from group C to group D. This observation explains why we did not observe

good fluidization of the 7 vim alumina particles at rotating speeds of 1200 (100 "g"),

1600 (178 "g") and 2000 rpm (278 "g").

Figure 5.15 Powder classification for fluidization by air at 278 "g".
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5.5 Discussion

It is clear from both our theoretical analyses and our experimental results in the RFB that

Geldart's powder classification cannot be used in centrifugal fields without modification

to take into account gravity forces greater that 1 "g". As discussed in Iwadate and Horio,

1998, cohesive group C particles can only be fluidized in the form of agglomerates. They

define this type of fluidization as "agglomerating fluidization". Agglomerating

fluidization is characterized by plug formation or channeling in the bed. The transition

that group C particles cannot be fluidized individually and group A particles can is the

basis for Equation (5.13), which we have used to determine the transition between group

A and C particles. Thus the essential characteristic of group C particles is that they are in

the agglomerating fluidization regime.

The major difference between group A and B particles is whether bubbles appear

at the minimum fluidization velocity or after the minimum fluidization velocity is

reached. Thus both group A and B particles give rise to stable fluidization.

Geldart, 1973, obtained an equation for the transition of group B to group D by

calculating the density/particle size combination of powders for which bubbles less than a

given size would rise more slowly than the interstitial gas velocity. He chose a very large

bubble size (25 cm) for his calculation. Molerus, 1982, developed his semi-empirical

equation for the transition between group B and D from spouted bed data. Beds

exhibiting very large bubbles or spouted bed are both unstable fluidized beds. Thus group

D particles give rise to unstable fluidization.

Based on the definitions given above, we can rearrange Equations (5.13) and

(5.18) to give:
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where g/9.8 represents the dimensionless strength of the centrifugal field ("g").

If we plot the left-hand side of Equations (5.19) and (5.20) as the ordinate and dp

as the abscissa we obtain Figure 5.16. This figure shows the effect of different "g"

conditions on the powder classification chart, e. g., on the earth, on the moon, in a

centrifugal field and in deep space. Here we have indicated that particles in group A and

B (cross-hatched area) will result in stable fluidization. For example, if we choose

particles of density 1 g/cm3 , the figure shows that particles between 60 to 10,000 µm

would achieve stable fluidization on the moon, whereas particles between 30 to 1500 µm

would achieve stable fluidization on the earth. For rotating fluidized beds, the figure

shows that it will be difficult to achieve stable fluidization at above 100 "g" except in a

very narrow particle size range.



Figure 5.16 Powder classification for fluidization by air at different "g".



CHAPTER 6

SOOT REMOVAL FROM DIESEL ENGINE EXHAUST USING
ROTATING FLUIDIZED BED FILTER

6.1 Introduction

In spite of a concerted effort to develop diesel engine emission control systems, none has

been found that can continuously remove both soot and NOx. The emissions from diesel

engines include solid, liquid, and gaseous components. The combined solid and liquid

components are called particulates. Heck and Farrauto, 1995, reported that the

composition of the particles is typical 43% dry soot (primarily carbonaceous material),

2% S03+H20, 20% fuel-derived components and 35% lube oil derived components. The

soot components that are soluble in organic solvents are called the soluble organic

fraction (SOF) and have their origin in fuel and lube oil. The gaseous phase consists of

gases that affect human health such as unburned hydrocarbons (UHC), carbon monoxide

(CO), nitrogen oxides (NO +NO2) and sulfur oxides (SO2 + SO3) and are considered

pollutants. The bulk of the gases emitted is considered non-hazardous and includes

nitrogen (N2) oxygen (02), water vapor (H2O) and carbon dioxide (CO2). However, CO2

is a greenhouse gas that is believed to induce global climate change.

Needham, et al., 1991, measured a typical composition of diesel particulate

emitted using the US Federal Transient Procedure (FTP) test. For current turbocharged

and aftercooled heavy duty direct injection (DI) engines, the mass composition is: 41%

carbon, 14% sulphate and water, 7% derived from fuel that was not completely

combusted, 25% from lubricating oil that was not completely combusted and 13% other.

The average total particulate emissions are 0.37 g/hp•h. This result is supported by results

from other researchers (Cartellieri and Herzog, 1988, Springer, 1988).
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Table 6.1 Soot size measurements in the literature

Reference	 Diesel Engine	 Measurement Methods
Baumgard et al., 1996	 1988 and 1999 models	 Electrical Aerosol Analyzer

(EAA)
Vuk et al., 1976	 Caterpillar 3150

Johnson et al., 1994

Suarez et al., 1998 	 Heavy-duty	 Iridium (III) tracer
Panne et al., 1995	 Diesel passenger cars
Kerminer et al., 1997	 Diesel passenger car
Richkeard et al., 1996 	 Europe Light duty vehicles Quartz Crystal Microbalance

Scanning Mobility Particle Sizer

Arcoumanies et al., 1994	 2.5 liter direct injection	 TSI 3932C differential mobility
particle sizer (DMPS)

Wenninger et al., 1999 	 Standard dilution tunnel

Zhu et al., 1998	 2.3 liter 4-cylinder Nissan TEM Microscope
diesel engine
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Table 6.1 provides information on the soot size measurements reported in the

literature. Normally, individual diesel soot particles are very small, below 0.1 pm.

However, the small individual soot particles will tend to agglomerate in the exhaust

stream. The agglomerated soot size is often between 0.1 to 1.0 pm.

Several technologies have been studied for diesel engine emission control,

including the monolith or honeycomb, fibrous filter, cyclone and packed bed collectors.

These have been presented and discussed in the Chapter 1.

Konstandopoulos et al., 1989, modeled a ceramic trap as a packed bed collector

and showed that the collection efficiency for nuclei mode particulate is almost 100%

since the diffusion collection mechanism is extremely efficient for particles below 0.1

pm. Very little research has been performed on the application of granular beds

including packed and fluidized beds for diesel engine soot removal. D'Ottavio and

Goren, 1983, reported single grain capture efficiency for 0.6 to 4.5 pm solid and liquid

aerosol particles at high speed gas flow through clean granular beds. Their data show that

when impaction is the dominant capture mechanism, the single grain capture efficiency

depends on the Stokes number, Reynolds number and the fraction of collecting solids in

the bed. The collection efficiency, at some conditions, can reach 90%. Clift, 1983,

reviewed some fundamental problems arising in the filtration of gases by packed (fixed

beds). For some applications, cake on the upstream face of the filter will build-up and

increase pressure drop. Fluidized bed filters can avoid the formation of cake since the

particles are fluidized. Clift et al., 1981, analyzed filtration in a fluidized bed. Once the

gas velocity is above the minimum fluidization velocity, bubbles appear and aerosol

bypass decreasing collection efficiency.



Pfeffer and Hill, 1978, suggested the use of a rotating fluidized bed as a filter

(RFBF). The drag force of the gas, which flows radially inward through the porous wall

acting on the bed particles, is balanced by the centrifugal force caused by the rotation of

the bed. Therefore, the minimum fluidization velocity increases as the rotating speed is

increased so that the formation of bubbles, which can cause bypass of soot particles, can

be avoided even at high gas flow rate (Pfeffer et al., 1986). Another innovative advantage

of using a RFBF is that catalyst granules can be used to filter soot as well as catalyze its

oxidation by NOx and 02 at high temperatures, with a concomitant reduction of NOx to

N2. This mode of operation can make the bed self-cleaning and avoid the need for

regenerating the granules as they become saturated with soot. In this mode, we refer to

the system as a rotating fluidized bed reactor (RFBR). We believe that the use of an

RFBR has promise for treating the emissions from diesel engines which contain both

particulate (soot) and gaseous pollutants by using a catalyst to promote the reduction of

NOx with soot to form N2. This chapter summarises the results of a study of the filtration

efficiency of soot removal from diesel engine exhaust using a horizontal RFBF as a

function of exhaust flow rate and soot concentration and size distribution.

6.2 Experimental System

The experimental set-up used in this study is shown in Figure 6.1a and b. Figure 6.2 is the

temperature and exhaust flow rate from our diesel engine (1.8 litre 1981 Volkswagen

Rabbit Diesel Engine) as a function of engine load and RPM. In Figure 6.1a, the exhaust

gas from the diesel engine (which is connected to a dynamometer) goes through

calibrated orifice meters, a heater and the RFBF. In Figure 6.1b, the exhaust gas from the



Figure 6.1 Flow sheets of experimental set-up used in this research.



Figure 6.2 1981 Volkswagen Rabbit diesel engine exhaust temperature and flow rate as function of engine load and RPM.
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diesel engine goes directly to the RFBF, and then to the calibrated orifice meters (without

the heater). The difference between these two systems is that in the second configuration,

the RFBF is connected directly to the engine. Because the exhaust gas temperature at idle

may not be high enough for a catalytic reaction, e. g., when engine load is 3 ft-lb, and

rotating speed is 1000 RPM, the exhaust temperature is around 100 °C as shown in Figure

6.2a, the heater in Figure 6.1a was used to raise the temperature to catalyst operating

conditions. The filtration efficiency experiments for soot removal at engine idle

conditions are mainly conducted in the configuration illustrated in Figure 6.1a. At high

engine load and RPM condition, for example, when the engine load is 54 ft-lb, and the

rotating speed is 1700 RPM, the exhaust temperature can reach more than 600 °C and is

sufficiently high for a catalytic reaction to occur. At these conditions, experiments were

conducted in the configuration shown in Figure 6.1b. In order to reduce the heat loss, the

heater was bypassed and the length between the outlet from the engine and the inlet to the

RFBF was reduced to only 6 feet.

A variable-speed motor (AC Motor, Lincoln Electric, M/N: RN4S0.5TC61Q15)

provides rotating speeds for the RFB between 0 to 5000 rpm. Two sintered metal

distributors with average pore sizes of 55 and 100 pm were used. In addition, a perforated

distributor (open rate of 52%) covered on the inside with a 325 mesh (45 pm) stainless

steel screen was also tested. The soot concentration and particle size distribution is

measured before and after the RFBF with a TSI Aerosizer system. This instrument

provides particle size measurements from 0.1 µm to 200 µm vs. particle number

distribution as well as particle mass distribution. The mass average filtration efficiency η,

is calculated based on the particle mass concentrations before and after the RFBF:



113

where G in is the particle mass concentration entering the RFBF and Cout is the particle

mass concentration leaving the RFBF over the same period of time.

The filtration efficiency of a single size particle, η i , is calculated based on the

particle numbers for this size of particle before and after the RFBF:

where ηi is the filtration efficiency for the ith particle size, Ni,in is the number particles

of size i before the RFBF over a measured period of time, Ni,out is the number particles

of size i after the RFBF over the same period of time.

Figure 6.3 Sampling methods in the experiments.

Figure 6.3 is the sampling methods used in this Chapter. Direct sampling method

k "T" connection between the sampling tube and stream pipe. The Aerosizer sucks the

gas at a constant sampling gas velocity. For isokinetic sampling method, the sampling gas

velocity to Aerosizer equals the gas velocity in the stream pipe. For engine idle condition,
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the experimental results measured by direct sampling method. The comparison of these

two methods is shown in Figure 6.17 and 6.18.

The filter granules consist of either glass beads obtained from MO-SCI

Corporation or alumina provided by the ALCOA Technical Center. The particle size

distribution for all of these particles was measured using the TSI Aerosizer; typical

results are shown in Table 2.2 in Chapter 2. Bulk alumina has a broad size distribution

with many fines. Q-705 alumina is a high quality alumina powder that contains fewer

fines. The glass beads have a much narrower size distribution without any fines. The 7-

micron alumina particles due to their small size belong to Geldart group C and also have

a narrow size distribution. We also conducted experiments using Cu-ZSM-5 catalyst

manufactured by ExxonMobil with a bulk density is 751 kg/m 3 .

6.3 Results and Discussion

As shown in Figure 6.2a, b, the engine exhaust temperature and flow rate is a function of

engine load and RPM. The soot size and concentration changes with engine operating

conditions. Figure 6.4 shows the soot size number distribution at the inlet of the RFBF, at

engine idle and also at high load, measured with the Aerosizer over a 90 seconds period.

The number of soot particles at high load and at 1600 RPM is much higher than at idle

conditions. Normally, the soot particle size is below 2 pm at idle condition, but both soot

size and concentration increase at high load conditions. It should be noted that soot size

from a modern diesel engine is reported to be on the order of 0.02 μm. However, the

measured soot size entering the RFBF is much larger because of agglomeration during

the relatively long time of transport in the pipe between the engine and the RFBF
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(Baumgard et al., 1996, Vuk et al., 1976, Kerminer et al., 1997). Another reason for the

relatively large soot size is that our diesel engine is about 20 years old. Filtration

efficiency of soot in the RFBF has been studied using different distributors and different

filtration granules at engine idle and at high load conditions.

Figure 6.4 Soot size number distribution at the inlet to the RFBF at different engine
condition measured by the Aerosizer in 90 seconds. Sampling flow rate is 2.0 ml/min.

6.3.1 Sintered Metal Distributor at Engine Idle Condition

The sintered metal distributor will distribute the diesel exhaust (gas plus soot) into the

RFBF much more uniformly than the slotted or perforated distributors (Qian et al., 1998).

In experiments using the 50 pun sintered metal distributor, pressure drop vs. diesel

exhaust gas velocity data were measured as a function of time, and plotted in Figure 6.5.

After 40 minutes, the bed pressure drop continues to increase with time even when the
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gas velocity remains relatively constant, but the pressure drop continues to increase,

indicating the soot plugs the pores of the distributor. Pore plugging is a consequence of

the tortuous flow path in the sintered metal distributor. Soot, which is very wet and

contains incompletely combusted fuel and leaking lubricating oil, tends to cake in the

pores.

Figure 6.5 Variation of gas flow rate and total pressure drop (including bed and
distributor) as a function of time on line.

Similar experiments were performed using the sintered metal distributor having

an average pore size 100 μm. After 60 minutes of operation (higher gas flow rate than

that in Figure 6.5), the pressure drop starts to increase and the pores of sintered metal

distributor eventually also become plugged. Consequently, filtration efficiency must be
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measured before distributor plugging occurs.

Figure 6.6 presents the mass average filtration efficiency as a function of

superficial gas velocity for a filter media of 0.4 kg alumina using the 100 m sintered

metal distributor at engine idle conditions. For the packed bed mode (U g < Umf = 0.18

m/s), the mass average filtration efficiency is seen to increase with gas velocity up to Umf•

After the bed fluidize (Ug > Umf = 0.18 m/s), the filtration efficiency quickly drops off to

zero. This is because the alumina granules contained fines which appear in the outlet

stream region after fluidization, obscuring the actual quantities of soot leaving the RFBF.
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Figure 6.6 Mass average filtration efficiency as a function of superficial gas velocity.

6.3.2 Perforated Distributor at Engine Idle Condition

In order to understand the plugging problem, a perforated distributor (see Chapter 2)

covered with a 45 μm stainless steel screen is used. The pores of the screen present no

tortuous path for the exhaust gas, but the screen is still plugged by soot after 160 minutes

as shown in Figure 6.7. This plugging occurs because the soot is very wet and contains
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fuel and Tube SOF. At engine idle condition, the temperature of the exhaust is low and the

wet soot stays on the surface of screen. The total (bed plus distributor) remains

approximately constant until 160 min. At that time, the pressure drop increases

dramatically. The pressure drop continues to increase from that time forward, indicating

the further accumulation of sot on the distributor. This behavior is in contrast to that

observed for the sintered metal distributor in which the plugging of its tortuous paths

occurs more gradually. Therefore filtration efficiency experiments at engine idle

condition must be done before the screen has plugged.

Figure 6.7 Variation of gas flow rate and total pressure drop as a function of time on line
using the perforated distributor covered with a 45 μm screen.

Alumina Particles: In a set of experiments using 0.5 kg alumina particles as the bed

material, the soot concentration is measured at the inlet and the outlet as a function of gas
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velocity. At gas velocities below the minimum fluidization velocity, we operate in the

packed bed mode. When we increase the gas velocity, the inner surface begins to fluidize

and as the velocity is increased, the entire bed becomes fluidized at the critical minimum

fluidization velocity. The inner surface minimum fluidization velocity Umfi (at the surface

of the bed) and the critical minimum fluidization velocity Umfc (at the distributor) are

calculated based on the theoretical analysis given by Section 4.3. The filtration efficiency

versus soot size distribution is given in Figure 6.8. Here, the measurement diameter of

soot is based on the density of soot of 1.25 g/cc and assume the soot sphericity equal 1. It

shows that the filtration efficiency for soot particles larger than 2 µm or smaller than 0.2

pm is high in the packed bed mode. The filtration efficiency is higher at the inner surface

minimum fluidization velocity (0.176 m/s) than that at a lower gas velocity (0.100 m/s).

For the total fluidization mode (U g > Umfc), the filtration efficiency for particles below 0.5

pm is higher than that for the packed bed mode, but quickly drops off to zero after 0.5

pm. This is because the alumina granules contained fines between 0.7 and 1.5 pm which

appear in the outlet stream region after total fluidization.

In Figure 6.9, the mass average filtration efficiency is seen to increase with gas

velocity up to Umfi, but drops to zero because the alumina fines are blown out with the

soot. If we increase the rotating speed of the RFBF to 2000 rpm at the superficial gas

velocity Ug = 0.24 m/s, and then subsequently decrease the gas velocity, the bed reverts

back to the packed bed mode (calculated U mfi = 0.8 m/s, Umfc = 1.0 m/s when rotating

speed is 2000 rpm), the alumina fines stay inside the bed and the filtration efficiency

improves. Figure 6.8 also shows that filtration efficiency goes through a minimum for

particles in the 0.3 to 0.6 pm range in the packed and fluidized bed modes, and the



minimum shifts to smaller particle size as the bed becomes fluidized.
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Figure 6.8 Mass average filtration efficiency as a function of soot using the perforated
distributor.
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Figure 6.9 Mass average filtration efficiency as a function of superficial gas velocity
using the perforated distributor.

Glass Beads: In order to verify that the reason the filtration efficiency in the fluidization

mode drop to zero is due to the effect of alumina fines, experiments were conducted

using glass beads without fines present in the filtration media. In a set of experiments

using 0.5 kg glass beads as the bed material, the soot concentration was measured at the

inlet and the outlet as a function of gas velocity. The inner surface minimum fluidization
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velocity Umfi is 0.232 m/s and the critical minimum fluidization velocity U mfc is 0.280

m/s based on the theoretical calculations.

Particle Size (pm)

Figure 6.10 Particle size number distributions at inlet and outlet to the RFBF as a
function of superficial gas velocity using the perforated distributor.

The particle size number distributions at the inlet and outlet of the RFBF at

different superficial gas velocity are shown in Figure 6.10. The number of soot particles

at the outlet is lower than that at the inlet since much of the soot has been captured by the
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glass beads. The filtration efficiency versus soot size number distribution is calculated

and shown in Figure 6.11.

Figure 6.11 Filtration efficiency as a function of soot using the perforated distributor.

Figure 6.11 shows that the filtration efficiency in the fluidized bed mode is higher

than that in the packed bed mode without the complication of fines emission when using

alumina. The mass average filtration efficiency increases with gas velocity and it reaches

90% in the fluidization mode as shown in Figure 6.12. Figure 6.11 also shows that the

filtration efficiency for soot particles larger than 1 µm or smaller than 0.2 pm is very
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high. However, the filtration efficiency again goes through a minimum for particles in the

0.3 to 0.6 µm range. This result is consistent with Figure 6.8. This is a consequence of

particles larger than 0.6 .tm being removed mainly by inertial impaction and interception

and particles smaller than 0.2 mainly by diffusion. This is in agreement with a

number of theoretical analyses of filtration efficiency in granular beds [Clift et al., 1981,

Paretsky et al., 1971].

Figure 6.12 Mass average filtration efficiency as a function of superficial gas velocity
using the perforated distributor.
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Figure 6.13 Schematic diagram of filtration mechanism for different size particles
(Strauss, 1975).

Figure 6.13 shows a schematic diagram of the three classical filtration mechanisms for

granules to capture small particles. There are inertial impaction, interception and

Brownian diffusion. Some inertial impaction is a function of the Stokes number, the

filtration efficiency is higher for larger particles and higher gas velocities. Interception is

a function of bed porosity and the ratio of particle diameter to granule diameter. If the

bed porosity is low or the ratio of particle diameter and granule diameter is large, the

filtration efficiency by this mechanism will be high. For very small particles, especially

under 0.1 µm and low velocities, the Brownian diffusion mechanism is controlling. As

the particles become smaller, filtration efficiency becomes higher. The total filtration

efficiency is the combination of all of the mechanisms so that the filtration efficiency is

high for large (inertia) or small (diffusion) particles, but goes through a minimum at

around 0.3 µm when neither capture mechanism is dominant.
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Figure 6.14 Color difference due to soot deposit on filter media (80 µm glass beads) vs.
time using the perforated distributor.

During filtration experiments, glass beads from the RFBF are sampled every half hour.

Figure 6.14 shows the color of glass beads samples versus time measured by a

spectrophotometer. At the beginning of the experiment, the glass beads are clear and

clean. As soot deposits on the surface of glass beads, they become progressively darker.

The figure shows that the glass beads keep on getting darker and therefore are continually

capturing soot for at least 160 minutes. The soot mass per glass beads surface area can be

measured by TGA (Thermogravimetric Analyzer) according to the mass of soot and the

surface area of glass beads. The mass of soot per glass beads surface area is also shown in

Figure 6.14. It shows that the soot mass per surface area of glass beads increases with

time.
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Superficial Gas Velocity Ug (m/s)

Figure 6.15 Mass average filtration efficiency as a function of superficial gas velocity at
different rotating speeds using the perforated distributor.

Figure 6.15 is the mass average filtration efficiency as a function of superficial gas

velocity at different rotating speeds using the perforated distributor when 0.5 kg glass

beads are loaded. At 525 rpm, after fluidization which occurs (U mfc = 0.10 m/s), at a

superficial gas velocity of 0.14 m/s, bubbles containing soot bypass the granules and

cause the filtration efficiency to drop. At 700 and 900 rpm, the filtration efficiency

increases with superficial gas velocity. In our experiments, we did not reach the point

where filtration efficiency dropped significantly due to bypassing the filtration media

with gas bubbles. At these values of rotating speed, the minimum fluidization velocities

were 0.18 m/s and 0.29 m/s.
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Superficial Gas Velocity U g (m/s)

Figure 6.16 Mass average filtration efficiency as a function of superficial gas velocity
using the perforated distributor.

Figure 6.16 presents the mass average filtration efficiency when operating the

RFBF with 0.75 kg 0.8 mm glass beads at 900 rpm. The filtration efficiency is very low

because these large glass beads have a very small surface area and a much small Stokes

number for a given velocity. For example, the surface area per collector volume of the 80

m glass beads is 10 times higher than that of the 0.8 mm glass beads. The Stokes

number is 2 x 10 -3 when Ug = 0.3 m/s for typical soot size 0.7 m. The filtration is in the

diffusion regime at this low Stokes number. This is the reason why the filtration

efficiency is very low when using 0.8 mm glass beads.

In order to determine the effect of particulate sampling on filtration efficiency, we
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compared direct sampling with isokinetic sampling using the experimental setups shown

in Figure 6.1b. Direct sampling is keep the sample gas flow rate as a constant no matter

what is the gas flow rate in the main stream. Isokinetic sampling is the sample gas

velocity is the same as that in the stream. Figure 6.17 compares the filtration efficiency as

a function of soot size using isokinetic and direct sampling methods. The results of the

two curves are very close. This is because the soot size is small. The soot concentration in

the sampling tube is the same as in the stream.

Figure 6.17 Filtration efficiency as a function of soot size using isokinetic and direct
sampling methods.

Figure 6.18 shows the mass average filtration efficiency as a function of

superficial gas velocity using isokinetic and direct sampling methods. These two test data
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are sufficiently similar that previous measurements taken before we adopted isokinetic

sampling are not grossly in error. Since the sampling gas flow rate generated by

Aerosizer is limited, this test is in the packed bed mode.

Superficial Gas Velocity U g (m/s)

Figure 6.18 Mass average filtration efficiency as a function of superficial gas velocity
using isokinetic and direct sampling method.

6.3.3 Perforated Distributor at High Engine Load and RPM Condition

At engine high load condition for our engine, the exhaust temperature is much higher

than at idle, and soot concentration is much higher. Figure 6.19 presents the particle

number distribution at the inlet and outlet of the RFBF loaded with Cu-ZSM-5 catalyst at

engine high load conditions. The soot number at the outlet is much lower than that at

inlet, especially for small soot particle diameter. At this operating condition, Cu-ZSM5
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fines (probably produced by attrition at the high rpm of RFBF) blow out since there is an

increase of larger particles at the outlet.

Figure 6.19 Particle number distribution at inlet and outlet of RFBF loaded with Cu-
ZSM-5 catalyst using the perforated distributor.

Figure 6.20 presents the particle number distribution at the inlet and outlet of the

RFBF loaded with Q-705 alumina particles at engine high load conditions using the

perforated distributor. Again, the soot number at the outlet is lower than that at the inlet

except for large particles. This is caused by alumina fines being emitted at high gas flow

rate.

When using the perforated distributor at engine high load condition, the pressure

drop did not continue to increase after two hours of running the experiment. But when we

checked the screen after the experiments, we found soot on the surface of distributor.
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Further more, the screen was found to be broken after approximately 3 hours due to the

exposure to high exhaust temperature. The apparent reason for the breakage is that the

screen became covered with soot which ignited producing a high local temperature,

which caused metal deformation and fracture of the thin screen. On the other hand, when

the perforated distributor was used at engine idle condition (relatively low temperature),

the screen did not break.

Figure 6.20 Particle number distribution at inlet and outlet of RFBF loaded with Q-705
alumina using the perforated distributor.

6.3.4 Sintered Metal Distributor at High Engine Load Condition

Figure 6.21 is the particle number distribution at the inlet and outlet of the RFBF loaded

with 7µm alumina at engine high load condition using the sintered metal distributor (100



134

μm pore size). These small granules have a very high surface area per collector volume,

10 time higher than 80 μm glass beads or more than 100 times higher than 0.8 mm glass

beads. The filtration efficiency should be higher than when using larger particles since

the Stokes number is inversely proportional to the granule size, i. g., the Stokes number is

around 0.2 for 7 μm alumina particles, 0.002 for 0.8 mm glass beads. Figure 6.21 shows

that the filtration efficiency is very high for both particles smaller than 0.3 m soot or

larger than 10 p.m soot. But we could not determine the filtration efficiency for on the

order of 1 μm soot particles because alumina fines that are approximately that size blow

out. It should be noted that based on pressure drop measurements, the sintered metal

distributor did not become blocked in three hours of running the engine at high load.

However, inspecting the pores of the sintered metal distributor showed large quantities of

soot present.
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Figure 6.21 Particle number distribution at inlet and outlet of RFBF loaded with 7 μm
alumina using the 1001.1m sintered metal distributor.

6.4 Discussion

The experimental results indicate that RFBF can be used for removal of soot from diesel

engine exhaust under certain conditions. The mass filtration efficiency can exceed 90%.

The filtration efficiency is high for soot particles below 0.3 μm or above 0.6 μm because

diffusion and inertial impaction become dominant mechanisms of capture for small and

large particles, respectively. For a modern diesel engine, the soot size is normally below

0.1 p.m. However our engine due to agglomeration produces a peak of about 0.6 to 0.7

µm for the entire range of engine operating conditions.

Although the RFBR has many advantages for treating diesel engine exhaust,
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including high filtration efficiency and the ability to reduce NOx with catalytic granules,

there are still many problems that need to be solved. One problem is plugging of the

distributor. We have found that both the sintered metal and perforated distributor will

clog as a function of fine on stream. However, they do so in different ways. The sintered

metal distributor due to its tortuous flow path plugs steadily. Whereas the perforated

distributor with its component fine mesh screen plugs much more abruptly. These effects

are more pronounced under engine idle conditions (low temperature). When moisture

from combustion condenses producing wet soot, which tends to cake on the distributor.

The moisture problem will not be severe for modern engines with high exhaust

temperatures.

The second problem involves elutrition of catalysts fines, either initially present

or produced by attrition, during fluidization. These fines are not only undesirable as

exhaust emissions but cause difficulties in measuring the filtration efficiencies of the

RFBR for soot. For example, when using alumina as the RFBR granules, we have

measured negative filtration efficiencies even though the filtration of soot particles may

be as high 90% on a mass basis. These negative efficiencies are due to the emission of

around 1 alumina fines which are very close to the size of the soot. Using glass beads

which do not contain or generate fines, we have mass average filtration efficiencies of

between 50 and 85% when operating as a packed bed and as high as 90% when operating

in the fluidized bed mode. However one should operate the RFBR close to minimum

fluidization to avoid significant bypassing of soot in the bubble phase.



CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS

7.1 Conclusions

1. The minimum fluidization velocity and the pressure drop were measured as a function

of rotating speed and bed charge for two different bed materials in a horizontal rotating

fluidized bed using slotted, perforated and sintered metal cylindrical distributors. The

fluidization characteristics were very different for the slotted and sintered metal

distributors because of bed restructuring. This restructuring, verified by high resolution

photography, explains both the magnitude of the reduction in pressure drop upon

fluidization and its unusual hysteresis behavior. Using particles with a narrow size

distribution (glass beads), the effects of restructuring were prominent only at high

rotating speeds. This behavior can be attributed to the greater flowability of the glass

beads. The fluidization characteristics using the sintered metal distributor, on the other

hand, showed reasonable agreement with established theory. The perforated distributor

exhibited intermediate behavior. Consequently, distributor design is very important in

obtaining desired performance when using rotating fluidized beds.

2. For particles of the same material, the two layers of particles do not mix until

bubbles appear. Below Umfi the bed behaves as a solid. Between the calculated U mfi and

Umfc the inner surface is observed to become more uniform, i.e., in this respect, the bed

exhibits fluid-like behavior before mixing. After U mfc particles inside the bed start to

move radially and mixing occurs rapidly. Bubbles are a strong source of particle motion

and the bed becomes totally fluid-like. To within observational error, the mixing,

minimum critical fluidization velocity and minimum bubbling velocity coincide. For

137
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conventional fluidized beds, the minimum bubbling velocity, Umb, is dependent on the

size and density of the particles. For Geldart-B particles, Umb is equal to the minimum

fluidization velocity, Umf, whereas for Geldart-A particles, which were used in our

experiments, Umb is larger than Umf so that there is an appreciable operating region in

which the bed is fluidized but not yet bubbling. Our RFB has negligible wall effects and

hence presumably negligible particle circulation. However, no mixing was obtained

before bubbles were observed, suggesting Group B behavior. For particles of different

density, the mixing characteristics of the two layers depend on whether or not the denser

particles are near the distributor. When the denser particles are near the distributor the

mixing behavior is very similar to that of particles of the same density. When the less

dense particles are near the distributor the mixing behavior is quite different. Mixing

occurs gradually due to the differences in density and fluidization properties of the two

layers and total mixing is observed before bubbles

3. The nature of fluidization and the behavior of particles in a centrifugal field

was investigated. For conventional fluidized beds, Geldart classified powders into four

groups: A, B, C and D based on their fluidization behavior. A simple model that can be

used for variable "g" was developed to determine the transition boundary between group

A and group C particles. The theoretical analysis shows that group A particles can shift to

group B, and group C particles can shift to group A under a centrifugal force. Therefore,

certain group C particles can be fluidized in rotating fluidized beds. However, for very

high "g", such particles shift to group D. Experiments using 7 μm alumina particles

conform that Geldart group C particles will fluidize in a rotating fluidized bed operating

at a sufficiently high rotating speed to shift them into group A or B. Similarly, group A



particles behave as group B confirming our mixing results which showed group B

behaviors (bubbles were observed at minimum fluidization velocity) for group A

particles.

4. A horizontal rotating fluidized bed filter (RFBF) charged either with

polydispersed alumina granules, or nearly monodispersed glass beads, was used to

capture soot from diesel engine exhaust at both idle and high load engine conditions. The

filtration efficiency, calculated on the basis of the total mass of soot that was captured in

the bed, was found to be in excess of 90% when using glass beads in the fluidized bed

mode when operating with fresh particles (no soot build up in the bed). The filtration

efficiency increased with increasing gas flow rate as the bed passes from the packed bed

mode to the fluidized bed mode. The filtration efficiency also varied as a function of

agglomerated soot size, showing a minimum for soot particles in the 0.3 to 0.6 μm range.

This is a consequence of particles larger than 0.6 μm being removed mainly by inertial

impaction and interception and smaller particles mainly by diffusion. However, the

feasibility of using an RFB as a filter for diesel engine exhaust depends on the

availability of catalytic granules that do not contain fines and resist attrition.

7.2 Recommendations

1. The study in this dissertation shows that potential applications need to be explored

using fine catalysts which have larger specific surface area and are more active in the

catalytic reactions by using rotating fluidized beds.

2. Fines were found to blow out when using alumina particles. This might be

caused by elutriation or particles attrition. This can be mitigated by enhancing attrition
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resistance of particles and installing a proper filter before the outlet of RFBF.

3. Both sintered metal distributor and screen were found clog by soot at engine

idle condition. This problem has not been found using sintered metal distributor at engine

high load condition. However, soot was stay inside the pores of the distributor and screen

was broken because of the high temperature. Distributor design is very important in this

application. Catalytic metal distributor is strongly recommended.

4. More theoretical analysis on filtration efficiency needs to be studied since the

mechanism of soot filtration has not been well understood.
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