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ABSTRACT

THE IMPACT AND FATE OF AQUEOUS SODIUM NITRATE
ON HYDROCARBON FLAMES

by
Ann Marie Flynn

This study examined the impact and fate of sodium (fed as an aqueous

nitrate solution) in fuel-rich methane/air and methane/methyl chloride/air

flames as a function of equivalence ratios that experienced diffusion of air

from the surroundings. The flames were stabilized on a slotted, uncooled

burner. The data set was divided into profiles of relative sodium atom

concentrations, temperatures, and selected stable species concentrations. The

flames were simulated using a modified version of the Sandia FORTRAN

program for modeling steady laminar one-dimensional premixed flames

complete with detailed mechanisms. The results showed that maximum

sodium atom concentration in the flame is decreased by an increase in

equivalence ratio as well as an increase in chlorine loading In addition, the

location of maximum sodium atom concentration is shifted to a higher height

above burner as the equivalence ratio is increased.
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CHAPTER 1

INTRODUCTION

1.1 Motivation for Study

1.1.1 Incineration Emissions

Incineration is a highly engineered process that employs decomposition via

thermal oxidation at high temperatures (usually 900°C or greater) to destroy

the organic fraction of the waste and reduce volume (20). Generally,

combustible wastes or wastes with significant organic content are considered

the most appropriate for incineration. However, technically speaking, any

waste with a hazardous organic fraction, no matter how small, is at least a

candidate for incineration.

Ideally, the primary products from combustion are carbon dioxide,

water vapor, and inert ash. In reality, what appears to be a straightforward,

simple process is actually an extremely complex one involving hundreds of

physical and chemical steps, reaction kinetics, catalysis, combustion

aerodynamics, and mass and heat transfer (20). While combustion and

incineration devices are designed to optimize the chances for completion of

these reactions, they never completely reach the ideal. Instead, small

quantities of a large variety of other products may be formed, depending on

the chemical composition of the waste and the combustion conditions

1
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encountered. These by-products, along with any unreacted components of the

waste stream, become the emissions from the incinerator.

Incineration will also change the form of metal species in waste

streams; for example, elemental mercury might be converted to chloromethyl

mercury, a highly toxic compound. The principal environmental concern,

therefore, centers on the physical or chemical form of the metals (speciation)

and where they emerge from the combustion system (partitioning), i.e.,

bottom ash, in air pollution control device residues, or stack emissions (20).

In general, data on metal emissions and partitioning for hazardous

waste incineration is limited and often incomplete. Barton, Clark and Seeker

(25) have indicated that the partitioning of metals in incinerators is

dependent on the temperature history, chlorine content, residence time, and

cooling rates downstream. Pilot scale studies by Waterland (24) support the

findings of these researchers.

Over the past three or four decades, there have been important

advances in the understanding of the actions, exposure-response

characteristics, and mechanisms of action of many common air pollutants.

The passage of the Clean Air Act Amendment of 1990 reflects a growing

public concern over human exposure to air toxics (38). Studies that have been

inspired and initiated by such legislation have shown that air pollutants have

been known to cause responses ranging from reversible changes in

respiratory symptoms and lung function, changes in airway reactivity and
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inflammation, structural remodeling of pulmonary airways, and impairment

of pulmonary host defenses, to increased respiratory morbidity and mortality

(39).

1.1.2 Flame Retardants

The Montreal Protocol effectively banned the use of many halogenated

products such as Freons due to their deleterious effect on the ozone layer.

Related halo-compounds serving as flame retardants are also being replaced.

While effective as retardants, these compounds often produce toxic

byproducts during use as fire-fighting agents (64). At present, considerable

effort is being spent to find alternative fire retardants.

Earlier combustion literature indicates that sodium compounds were

once considered for flame retardants. Iya and coworkers (48) showed that

sodium inhibition, as measured by temperature rises in post flame gases of

quenched CH4/air flat flames and by OH absorption spectroscopy, was due to

a homogeneous gas phase chemical mechanism in which peak OH radical

concentrations are reduced. They also suggested that Na atoms catalyze

radical recombination. Vanpee and Shirodkar (49) showed that organo-

sodium compounds were effective flame inhibitors, as measured by increased

oxygen mass fraction at extinction in an opposed jet liquid fuel burner.
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1.1.3 Rationale for Study

The environmental awareness and activism, which catalyzed passage of the

major hazardous waste laws of the 1980's, have in many ways switched to

skepticism about the safety and effectiveness of the solutions initiated by

those laws. Citizen distrust of the waste management facilities, owners, and

operators remains high. One of the major barriers to increased incineration

capacity is public opposition to the permitting and siting of new facilities as a

result of reports of trace quantities of chlorinated dioxins, furans, heavy

metals and other combustion byproducts in the stack emissions of municipal

solid waste (MSW) and polychlorinated biphenyl (PCB) incinerators (20-22)

such as cement kilns.

In an attempt to further understand the complexities governing

incinerator emissions, this study proposes to consider the fate of metals in a

flame. By employing the waste management practice of "waste minimization

at the source of generation", the flame could possibly produce less volatile

metal species (e.g., salts) that are easily collected by a downstream

electrostatic precipitator (ESP) or a baghouse. In addition to considering the

metal species as a potential incineration emission, it is also worth considering

what the potential effects of the metal on the flame are. Certain metal species

might have either accelerating or retarding effects on combustion.
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1.2 General Overview of this Study

It has been previously stated that metal emissions are of concern to the

general public, and as a result, the scientific community. In an attempt to

illuminate answers that might diminish some of these concerns, this study

hopes to create an experimental template to investigate:

• the fate of metals in a flame

• the effect of metals on a flame

The metal that was investigated by this study was sodium (Na) and the

particular flames of interest were:

• Methane/Air (CH4/Air)

• Methane/Air/Methyl Chloride (CH4/Air/CH3Cl)

Sodium was chosen as the metal to be studied in this work for the following

reasons:

1. Aqueous sodium nitrate solutions were chosen as the sodium source

because they are non-toxic, as well as easily handled and stored. More

importantly, the combustion of this salt produced harmless vapors.

2. As will be discussed later, optical absorbance served as the primary metal

diagnostic in the flame. For the light source used, sodium offers a

convenient and strong visible atomic absorption wavelength at 589 nm.

3. Once an apparatus had been built that successfully generated

experimental data and a model had been developed to simulate the

combustion of a metal in a flame, it was hoped that it would be a
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relatively smooth transition to switch from the study of sodium to the

study of a more hazardous, environmentally toxic metal such as chromium

or mercury.

1.2.1 Experimental Overview

In order to monitor the fate of sodium in the methane/ air flame, Atomic

Absorption Spectroscopy (AAS) was employed. A beam from a broad-band

(wavelength) light source (Xenon arc lamp) was passed through the flame

and into a monochromator. The monochromator, a wavelength dispersion

device, was set at 589 nm to correspond to the sodium atom absorption. A

photomultiplier tube (PMT) connected to the exit slit of the monochromator

detected the transmitted light. A chart recorder reported the PMT signals

profiles, from which absorbances were determined.

Optical absorbance profiles and thermocouple temperature profiles

were monitored as a function of height above burner (HAB) and fuel

equivalence ratio, V. Stable species concentration profiles were also

monitored in the same fashion using a quartz sampling microprobe and gas

chromatograph (GC).
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1.2.2 Overview of Flame Model

A modified version of an existing FORTRAN program for modeling steady,

laminar, one-dimensional, premixed flames by Sandia National Laboratories

(26) was used to simulate the experimental flames for this study. It should be

noted that this one-dimensional model was used simply as a first-

approximation when attempting to describe the two-dimensional flame in

this study. It should not be assumed that the flame could be accurately

modeled as one-dimensional. However, in the absence of an available more

comprehensive flame model, this was viewed as a reasonable starting point.

The Existing Model

In its most common configuration, the existing code models a round, burner-

stabilized flat flame (i.e., no radial dependencies) with a known mass flow

rate. The user inputs the measured temperature profile along with a detailed

chemical reaction mechanism.

Modifications to the Model

The modifications that were made to the existing code for this study were as

follows:
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1. The existing model assumes a constant gas mass flow rate, M , in the

flame, as given by the continuity equation:

where p is the mass density, u is the velocity of the fluid mixture and A is

the cross sectional area of the stream tube encompassing the flame.

However, in this study, the flame was not shielded from the surrounding

air by a nitrogen shroud, as is often done with a flat flame burner. As a

result, the flame entrained air from the surroundings. At any given HAB,

the total mass flow was equal to the total gas flow fed to the burner plus

the amount of air that had been entrained up to that point. This

additional entrained air was a function of HAB, defined by x. For this

study, the existing mass flow rate term in the model was replaced by the

following expression:

In this expression, Mo represents the initial mass flow rate of gases fed to

the burner while M represents the local, total mass flow rate of gases,

including the entrained air. The constant, C, was determined from a "best
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fit" simulation of selected baseline flames. A more detailed explanation of

this simulation is presented in Chapter 5, Modeling. It should also be

noted that, like the one-dimensional flame code, this entrainment

expression was viewed simply as a reasonable first approximation when

attempting to describe the increase in mass flow rate in the flame due to

mass transfer of species from the surroundings. It is hoped that future

work would produce a more comprehensive expression to describe the

increased mass flow rate. This more comprehensive expression could then

be incorporated into the flame code.

2. The governing species balance and enthalpy balance equations were

originally derived for the model assuming a constant mass flow rate.

These expressions were rederived to include the air entrainment term,

and the source code was modified accordingly.

3. A sodium reaction subset, which accounted for the reactions of sodium in a

hydrogen/ oxygen flame (20), was added to a previously published

methane/ air oxidation mechanism (27). For selected cases, the sodium

reaction subset and reactions that accounted for sodium interaction with

chlorine were incorporated into a previously published methane/

methylchloride/ air mechanism (27).

4. An option was incorporated into the FORTRAN code to request net Rate-

Of-Production (ROP) information obtained from calls to selected

CHEMKIN subroutines. The net generation and destruction rates for
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selected species were calculated, including breakdowns of these net rates

into the rates of each contributing reaction (27)„ at each HAB.

Model Input and Output

The experimentally determined temperature profile, input mass flow rate,

and feed mole fractions were user-supplied input to the model. The output of

the model contains the mole fractions of the gases produced as a result of the

combustion of the fuel, air and metal (if included), all as a function of HAB.

The species of most interest would be CH4, CO and CO2, and sodium atom,

Na. These results are then compared to the results found experimentally.

Rate of production calculations provide key information to illuminate flame

reaction pathways, especially for sodium.

1.3 Available Data and New Advances

1.3.1 Available References

The literature referenced in this study on sodium—containing flames is but a

small fraction of the literature available on the subject. However, the cited

references on sodium are all relevant to one or more of the following aspects

of the experimental portion of this work:

• monitoring of sodium in a CH4/air flame

• use of a continuous light source

• use of a slotted burner
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• experiencing entrainment of air

• use of atomic absorption spectroscopy

1.3.2 New Advances Furthered by this Study

The novelty of this research is the detailed chemical reaction modeling of

sodium in a CH4/air flame which entrains air, in order to create a general

template for the study of other metals in a flame. In all of the exhaustive

literature searches performed, there is little or no evidence of such detailed

modeling of any metal in a flame. Kindevater and O'Haver (8) modeled

copper and magnesium using a slotted burner and an acetylene/air flame in a

very simple fashion. Because of its empirical approach, this model is not

capable of producing detailed species concentrations as a function of HAB in

the flame.



CHAPTER 2

A LITERATURE SURVEY

An extensive literature survey was made on the various aspects of the work.

Each topic is presented separately for the sake of clarity.

2.1 Experimental Apparatus

2.1.1 The Light Source

In general, the most common light source used in flame atomic absorption

spectroscopy has been the hollow cathode lamp. It consists of a tungsten

anode and a cylindrical cathode sealed in a glass tube that is filled with neon

or argon to a pressure of 1-5 torn. The cathode is constructed of the particular

metal whose spectrum is desired—in this case, sodium.

In an effort to build this experimental apparatus as a tool for multi-

element analysis, the use of a continuous source was investigated. Although

multi-element hollow cathode lamps were available, they were considered to

have relatively low intensity and high background noise compared to the

single element lamps, resulting in reduced sensitivity. Indeed, some studies

in the literature have shown that attempts to make atomic absorption

spectroscopy (AAS) a multi-element technique have centered around the use

of continuum sources (1, 2). Zander, (Mayer and Keliher (1) reported using

12
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wavelength modulation. Cochran and Hiefje (2) developed continuum source

AAS using spectral line modulation. In addition, many workers (3-8) over the

past three decades have shown that the interest and growth of continuum

source AAS has included the high pressure xenon arc lamp as the standard

light source. For this reason, the xenon arc lamp was chosen as the light

source for this study.

2.1.2 The Burner

For successful performance of AAS, a sample must first be atomized. Many

procedures, which operate at various temperatures, already exist. These

include: flame atomization (1700-3150°C), electrothermal (1200-3000°C),

inductively coupled argon plasma (6000-8000°C), direct current argon plasma

(6000-10,000°C), electric arc (4000-5000°C) and electric spark (40,000°C).

However, for absorption spectroscopy, electrothermal (graphite furnace) and

flame atomization are the most common.

Many studies (9-10) employed the use of a graphite furnace for AAS

and were fairly successful. A graphite furnace confines the atomized sample

in the optical path for a residence time of several seconds compared to a

residence time of only a fraction of a second in flame atomization. This

results in increased absorption and higher sensitivity. Also, the graphite

furnace requires as little as 1 µL for analysis compared to 1-2 mL for flame

analysis (11). However, Jones, Smith and Winefordner (9), who used a
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graphite furnace in their study, describe some less obvious disadvantages of a

graphite furnace when compared to a flame for atomization. Besides the fact

that a furnace requires more operator skill to determine the proper conditions

for each type of sample, they list the following disadvantages: poor source

intensity below 250 nm; the need for a high resolution monochromator; the

need for multiple detectors; and the need for wavelength modulation to

overcome the instability of the continuum source and broad-band background

absorption. Three years after the publication of this work, Jones (3) went on

to improve the detection limits of his continuum source atomic absorption

spectrometry (CSAAS) apparatus. One of these improvements was the

replacement of the graphite furnace by a Perkin-Elmer nebulizer burner

system with a slotted head.

A 10 cm x 0.07 cm slotted burner was used for this study, based on the

successful completion of other AAS studies (3, 4, 12) using a similar burner.

It should be noted that in spectroscopy studies, flat flames are also used.

However, these studies (12) are generally limited to emission spectroscopy.

The long path length provided by the slotted burner favors the absorption

measurements required for this work.

2.1.3 Optical Alignment

It has previously been discussed that a 300 W xenon arc lamp was used for

this study because of its versatility. However, the actual manipulation of the
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light produced by this lamp presented a problem. The light beam exiting the

arc lamp is approximately 50 mm in diameter. The width of the flame that

the light passes through is approximately 1mm. For good spatial resolution

within the flame, the diameter of the light beam should ideally be less than

the width of the flame and fairly collimated.

Two studies were investigated in which a xenon arc lamp was used

with a slotted burner for AAS. The first study was conducted by Fernando,

Calloway and Jones (3). A schematic of the optical alignment used in their

continuum source atomic absorption spectrometer (CSAAS) appears below.

Figure 2.1 Optical Alignment of CSAAS from Fernando,
Calloway and Jones (3)

This optical arrangement was reproduced in this work, but it was found that

the beam was not sufficiently collimated over the length of the burner. In

fact, because the beam was not collimated at all, this configuration was

subsequently rejected.

A second study using a xenon arc lamp and slotted burner was

conducted by Rann and Hambley (12). Their optical arrangement used for the



measurement of the distribution of atoms in a flame is presented below.
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Figure 2.2 Optical Arrangement from study of Rann and Hambley (12)

This optical system was also tested in the current work. It was found that

this particular arrangement produced a very poor signal to noise (S/N) ratio.

This S/N ratio was discussed by Rann and Hambley in their study. As a

result, this configuration was also rejected.

A third possible solution was to use a lower wattage arc lamp, since it

is suggested that lower-wattage arc lamps come close to being point sources

and are ideal for use in projection systems and for obtaining well-collimated

beams (13). However, the unattenuated beam from a lower wattage lamp

would not have produced sufficient light throughput for good SIN ratios.

The optical alignment of the beam from the arc lamp used for this

work was a modified version of that seen in the work of Rann and Hambley

(12). A schematic of the alignment appears in the following figure.
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Figure 2.3 Optical Alignment Used to Monitor Sodium in this Study

This arrangement produced an acceptable SIN ratio as well as sufficient light

throughput to the monochromator.

2.1.4 Salt Solution Feed

The aqueous sodium salt solution that was introduced to the burner was in

the form of a fine droplet, liquid spray. None of the literature reviewed

suggested a particular sodium salt for use in an AAS study. Sodium nitrate

(NaNOa3) was chosen for this study because it is inexpensive, readily

available, and easily soluble in water. The initial salt concentration used was

0.01 mol/L NaNO3 (approximately 8.5 g/L). The salt concentration suggested

by the literature survey ranged from 1g/L (3) to 0.01 g/L (4). Since the type of

salt varied so widely, the concentration of salt suggested by the literature

search proved inconclusive. The actual NaNO3 concentration used for this

work was 0.02 mol/L (1.7 g/L). It was found to be the maximum salt
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concentration that did not saturate the absorbance signal.

2.1.5 Choice of Flame

It is widely accepted that the desired flame for the study of sodium in flame

AAS is acetylene/ air (3,4,12,14,15). When the sodium salt solution is sprayed

into the flame, the high temperature of the acetylene/air flame (2100-2400°C)

insures rapid formation of sodium atoms. However, this study has attempted

to model (in a broad sense) a commercial incinerator. In order to do this, the

flame chosen was methane/air (1700-1900°C) (24) to emulate natural gas/air.

Skoog (16) addresses the problem of whether or not these temperatures are

sufficient enough to atomize the sodium ions entrained in the liquid droplets.

The temperatures provided by the burning of natural or manufactured gas in

air are low enough that only the alkali and alkaline-earth metals, with

relatively low excitation energies, produce useful spectra. Therefore, the

methane/air flame fulfills the two-prong objective of simulating a commercial

incinerator while also providing sufficiently high temperatures to produce

sodium atoms from aqueous sodium ions for useful AAS work.

2.2 Modeling

2.2.1 Sodium Mechanism

The literature contains studies of the chemistry of alkali metals in flames as

far back as 1950 (17). However, a literature search provided only one
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complete mechanism for flames containing sodium — that of Hynes, Steinberg

and Schofield (18) in their 1983 study. The mechanism lists the likely

reactions of Na, NaO, NaO2, and NaOH in 112/02 flames. However, the flame

used in this study is CH4/air, not 112/02. This problem was addressed by

Schofield (19) in a later paper. He discussed that the one aspect of alkali and

alkaline earth flame chemistry that appears to be well established is its

independence of fuel type. Except for the cyanides, no metal/carbon chemistry

plays any role in the gas phase. As a result, the same reactions occur in

hydrogen or fossil fueled flames and noted differences stem simply from the

differing flame radical concentrations, temperatures, or time scales.

Therefore, using a sodium mechanism developed for a hydrogen/oxygen flame

with the methane/air flame was a reasonable approach.

2.2.2 Development of Air Entrainment Expression

There were little literature data available regarding entrainment. According

to Spalding (30), the mass flow rate, M, in a laminar jet increased with

increasing height above burner (HAB), denoted by x. He developed the

following expression to describe the mass flow rate, which was independent of

the velocity of the injected fluid:
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The above expressions were used as a starting point in the development of an

expression to describe air entrainment for the slotted flame examined by this

study.

2.3 Data Analysis

2.3.1 Flame Absorbance Profiles

Figure 2.4 shows typical flame absorbance profiles for magnesium, silver and

chromium as discussed in detail by Skoog (16). The profiles are interpreted

according to the ability of the elements to form an oxide. The elements are

rated (16) in the following fashion:

(not readily oxidized) Ag < Mg < Cr (forms very stable oxides)
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HAB

Figure 2.4 Flame Absorbance Profiles for Magnesium,
Silver and Chromium (16)

With respect to magnesium, it seems to exhibit a maximum in

absorbance at about the middle of the flame because of two opposing effects.

The initial increase in absorbance with HAB results from an increased

number of magnesium atoms produced by the longer exposure to the heat of

the flame. As the outer zone is approached, however, appreciable oxidation of

the magnesium begins. This process leads to an eventual decrease in

absorbance because the oxide particles formed do not absorb at the

wavelength used (16).

The behavior of silver, which is not readily oxidized, is quite different.

A continuous increase in the number of atoms and as a result, the
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absorbance, is observed from the burner to the upper edge of the flame. In

contrast, chromium, which forms very stable oxides, shows a continuous

decrease in absorbance. This observation suggests that oxide formation exists

from the start.

It had been expected during the course of this work that sodium will

behave in a manner similar to that of magnesium. Both Schofield (19) and

Goodings (17) have discussed the flame chemistry of alkali (Na) and alkaline

earth metals (Mg) interchangeably. It was expected that the absorption

profile of sodium would quickly climb to a maximum and then drop off,

similar to that of Mg.

2.3.2 Non-Metallic Stable Species Profiles

The primary non-metallic stable species concentration profiles examined in

this study are methane (CH4), carbon monoxide (CO) and carbon dioxide

(CO2). It has been detailed in many other studies (flames without air

entrainment) (37, 45, 51) that the primary reactant, CH4, monotonically

declines. Figure 2. 5 details that for a fuel-lean flame, the CO rises to a

maximum and then falls as CO is converted to CO2:
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Figure 2.5 Stable Species Profiles for Fuel—Lean Flame
Without Air Entrainment

Figure 2.6 shows that for fuel-rich flames, the CO rises and then remains

constant as oxygen is depleted:

23
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Figure 2.6 Stable Species Concentration Profile for Fuel—Rich
Flame Without Air Entrainment

For the fuel-rich slotted flames in this study, it was anticipated that the CO

and CO2 profiles would likely be affected by the air entrainment.



CHAPTER 3

OBJECTIVES

The primary objectives of this research are as follows:

1. To investigate the chemical fate of sodium in a methane/air flame (as a

simple metal in an incinerator) and how this fate is altered in the

presence of chlorinated species.

2. To investigate the impact of sodium on CH4/air and CH4/CH3Cl/air flames

with respect to temperature profiles and non-metallic stable species

profiles.

These objectives were investigated in the following sequence:

• Study methane/air baseline flame

• Dope with sodium

• Study baseline flame doped with chlorinated species

• Dope with sodium

These previously outlined objectives were met through the collection of a

large quantity of experimental data, the development of a detailed chemical

reaction/ flame model, and the simulation of these flames with the model.

24



CHAPTER 4

MATERIALS AND EXPERIMENTAL METHODS

4.1 Experimental Apparatus

4.1.1 Burner

The burner used in this study is a stainless steel slotted type that is typically

found in an atomic absorption spectroscopy (AAS) apparatus, seen below in Fig.

4.1. This burner, which has a slot 0.07 cm wide and 10 cm long, was chosen

because it provided a long path length for light to pass through the flame for

stronger absorption measurements. The burner was then mounted on a vertical-

lateral translation stage to provide two-dimensional spatial resolution of the

flame relative to the stationary light source. The movement of the burner with

respect to the light beam is crucial for data collection since all of the data taken

is with respect to height above burner (HAB).

25
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4.1.2 Mixing Chamber

The mixing chamber originally used for this experimental setup was taken from

a conventional AAS assembly. However, the original solution atomization device

proved unreliable as well as inflexible since solution introduction rates could not

be varied. The present experimental configuration (Figure 4.2A) utilizes a

customized mixing chamber constructed of polyvinyl chloride (PVC) plastic. Its

dimensions are 15 cm x 4 cm x 4 cm. In its development, the mixing chamber

was optimized in the following manner:

1. The mixing chamber was fitted with two ports to accommodate the safe

introduction of the primary and an auxiliary fuel or oxidant. The ports are

offset from each other, on either side of the mixing chamber, as seen in

Figure 4.2B. This offset allows the components to combine in a swirling

fashion to encourage more complete mixing.

2. The oxidant is introduced into the chamber tunnel, via an air atomizing

nozzle, perpendicular to the fuel port. The sample provided reliable

atomization as well as variable solution notes.

3. The actual section of the mixing chamber where most of the mixing between

the fuel and oxidant takes place was made longer than that which is found in

typical AAS setups. This again was done to encourage better mixing.

It should be noted that all flows entering the mixing chamber are individually

metered.
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Figure 4.2(b) Cross-Sectional View of Mixing Chamber

The stainless steel slotted burner described in 4.1.1 was fitted into a

metal collar and sealed using a rubber o-ring. The collar was press fitted into

the PVC chamber. The mixing chamber was then mounted to an X-Y translation

stage at a slight incline (approximately 8°). The atomized spray incline was

necessary because only a small portion of the atomized spray supplied to the

mixing chamber actually gets entrained up into the burner. Unentrained liquid
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that falls out of the gas stream is drained from the mixing chamber via an exit

port found on the underside of the chamber. A simple water tube trap seals the

chamber from the ambient air.

4.1.3 Fuel and Oxidant

When analyzing sodium via atomic absorption or atomic emission experiments,

the recommended choice of fuel and oxidant is acetylene and air, respectively

(5). Certain metals require a minimum flame temperature in order to generate

sufficient atoms, and the choice of fuel and oxidant determines that

temperature. For example, sodium requires a flame temperature of

approximately 1700°C to allow the formation of atoms, whereas a metal like

chromium requires a temperature of at least 2100°C. Table 1 below shows how

the temperature of a flame is directly related to the choice of fuel and oxidant

(4). The highlighted fuel and oxidant combination characterizes a flame similar

to that used for this study.

The primary fuel used for these experiments was methane. For certain

cases, methylchloride was introduced as a secondary source of fuel and to

simulate the existence of chlorinated waste often present in incinerator feeds

together with metals. Even though a second port was available, the two fuels

were combined before they reached the primary fuel port in order to utilize a

flame arrestor for safety. The fuels were then introduced simultaneously as a

premixed fuel to the mixing chamber.
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Table 4.1 Flame Temperatures (4)

Fuel Oxidant Temperature (°C)

Natural Gas Air 1700-1900

Natural Gas Oxygen 2700-2800

Hydrogen Air 2000-2100

Hydrogen Oxygen 2550-2700

Acetylene Air 2100-2400

Acetylene Oxygen 3050-3150

Acetylene Nitrous Oxide 2600-2800

Figure 4.3 presents an overall schematic of the gas delivery system to the

burner. Other gases (oxygenated acetylene) were available, though not used.

Figure 4.3 Gas Delivery System
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As can be seen from the figure, all of the fuels (methane, methyl chloride and

acetylene) as well as the oxidants (bottled/house air and oxygen) were

individually metered.

4.1.4 Sodium Solution and Feed Reservoir

Feed Preparation

The sodium was supplied to the flame as a 0.02 mol/L sodium nitrate (NaNO3)

solution. The solution was prepared from stock NaNO3 crystals (Fisher Scientific

Company) and deionized water. Deionized water was chosen over distilled or

house water in order to minimize the amount of interference from foreign trace

ions.

Feed Reservoir System

Depending on the particular case being studied, either NaNO3 solution or pure

deionized water was fed to the burner, as seen in Figure 4.4. Each feed was kept

in its own separatory funnel that supplied individual 250-milliliter burettes. The

burettes were used to accurately monitor the amount of solution fed to the

system over any given period of time. Each type of feed, NaNO3 solutions or

deionized water, then flowed from the burettes by gravity to its own positive

displacement pump. A separate pump was used for each feed because of the

contamination expected when changing from salt solution to pure water when

using only one pump. The discharge from both pumps combined at a two-way
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metering valve. Depending on the position of the valve handle, either NaNO3 or

deionized water was fed to the burner at a rate determined by the calibrated

setting of the metering valve.

Figure 4.4 Feed Reservoir System

Atomization of Feed

As previously stated, the mixing chamber was customized to suit the needs of

this particular work. Therefore, the nebulizer usually found in a typical AAS

mixing chamber was replaced by a commercial air atomizing nozzle (Hago
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Company). It was found that, in this particular setup, a nebulizer restricted both

air flow and solution flow to the mixing chamber. The air atomizing nozzle

removed this restriction. The Hago nozzle was made of stainless steel to

minimize corrosion. It was attached to the mixing chamber at the end opposite

the burner location. The liquid was introduced to the side of the nozzle while the

pressurized combustion air was introduced at the back end of the nozzle. The air

(60 psig) atomized the liquid and also served as transport for the atomized spray

through the mixing chamber. Fine droplets were sprayed perpendicularly into

the swirling gases of fuel at an angle of 45°. A small portion of these atomized

droplets were then carried to the burner with the fuel and air. However, a rather

large portion of these atomized droplets simply deposited on the floor of the

mixing chamber and were collected via the exit port. The actual percent of liquid

getting to the flame will be discussed later in this chapter (Calibration of

Metering Valve and Liquid Flowrate to Burner)

4.1.5 Arc Lamp

The light source chosen for use in this work was a spectrally broad continuum

light source—a 300 W xenon arc lamp from Oriel (Model 6259). In conventional

atomic absorption spectroscopy (AAS), spectrally narrow atomic line sources

such as hollow cathode lamps are used. However, one of the major

disadvantages associated with conventional line source AAS is that only one

element can be determined at a time. This was an important consideration, since
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future plans for this apparatus had included the detection of atomic species

other than sodium as well as the possibility of some diatomics. The replacement

and realignment of single element lamps can be time consuming and expensive.

And even though some multi-element hollow cathode lamps are available, they

are not widely used due to their relatively low intensity, reduced sensitivity, and

high background noise compared to the single element lamps (1,2).

Using a continuum source such as an arc lamp, studies have shown that

as many as 11 elements can be detected in a single spectrum. More importantly,

as many as 6 elements have been determined simultaneously at maximum

sensitivity (i.e. sensitivity of atomic absorption with conventional line source)

(1).

Therefore, a single continuum light source has the potential to detect a

wide variety of species such as NaO. It is unlikely that there is a dedicated

single light source available to detect such unique diatomics. A notable

exception to this is the OH radical. In this case, the emission from a copper

hollow cathode lamp can be strongly absorbed by OH at 306 nm. However,

exceptions such as these are few. Therefore, the xenon arc lamp was chosen

simply for its versatility.

4.1.6 Aperture, Lens and Mirror Alignment

Aperturing the light from the arc lamp (see Figure 2.3), while completed

innovatively and successfully, reduced the very intense beam to at least 1/20 of

its original power. The goal was to make a large diameter light source (50 mm at
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the lamp exit) resemble a collimated laser beam (1mm). As outlined in Chapter

2, an optical arrangement for work similar to this has been published (3). This

particular reference suggested not to aperture the light until after the light had

passed through the flame. This would result in a relatively large diameter beam

of light passing through a narrow slotted flame. When this system was

reproduced, it was found that it did not work to any degree of satisfaction. A

configuration such as this allowed a lot of movement (steering) of the beam,

which resulted in a very noisy signal. Modifications of this configuration

produced significantly better results.

Initially, the beam exiting the arc lamp was 50 mm in diameter. A step-

down adapter (aperture) converted this beam to 37 mm. A black water walled

filter was attached to this adapter to reduce the infrared output of the high

power lamp. Located immediately at the end of the water filter is a 5 mm

aperture. Having the 5 mm aperture directly attached to the water filter allows

it to act as a "lens cap" for the lamp. In this way, it eliminates any stray

lamplight entering the room, which over a sustained period, would be a health

risk due to the ultraviolet component. Located immediately after the 5 mm

aperture was a shutter. Rather than turning the lamp on and off every time an

experiment required light/no light, the light from the lamp was shuttered

instead, before it even reached the flame.

The slightly diverging light exited the 5 mm aperture and passed through

the slotted flame. Once the light had passed through the flame it then passed
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through a 1 mm aperture. The 1 mm hole was lined up exactly with the burner

slot and was used to view particular areas of the flame. Note should be taken

that even though the aperture always viewed the same section of light from the

lamp, the area of the flame that the light passes through changed, as the HAB

changed. This ability to view portions of the flame with a small diameter

aperture allowed for good spatial resolution.

As the light from the 1 mm aperture traveled towards the monochromator,

it was necessary to incorporate a mirror pair and a prism pair for vertical and

horizontal beam steering (see Figure 4.6). These optics were required because a

lab bench long enough to mount the entire apparatus was not available.

Steering the light beam an extra six feet allowed the 1 mm beam to diverge to a

diameter of approximately 25 mm. Therefore, a 25 mm diameter, short focal

length collection lens was used to focus the diverged beam onto the

monochromator entrance slit.

Experiments have shown that placement of this lens was critical to the

resolving power of the monochromator. In order to create an optimum image for

throughput to the monochromator, the lens was located approximately one focal

length away from the monochromator. At this distance, the light was focused

down to a point having a diameter slightly smaller than the width of the

entrance slit. This procedure allowed all of the collected, focused light to pass

through the entrance slit to the monochromator, even when any flickering

motion of the flame caused the beam to move and bend,. In this manner, the
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light throughput to the monochromator was maximized. On the contrary, had

the light been focused to a diameter larger than the entrance slit, the slit would

then act as an aperture, reducing light input.

4.1.7 Monochromator and Photomultiplier Tube

The monochromator used in this experimental setup was the first half of a Spex

1400-11 Double Spectrometer. As can be seen in the figure below, light enters

the entrance slit Si. This slit was held constant at 20 	 for all experiments.

The light expands to fill concave mirror Ml, and is then reflected to grating Gl,

which had a ruling of 1800 grooves/mm. The light is then reflected from the

grating to a second concave mirror M2. A swingaway mirror M3 can divert the

"monochromatic" beam through S3, into the second-half of the instrument for

even greater spectral resolution. For the current flame experiments, mirror M3

was moved out of position and the instrument was operated as a single

spectrometer. The slit S2 was used as an exit slit for all cases studied and the

width was held constant at 100 1.1131. The monochromator has a focal length of

750 mm (i.e., a 3/4 meter monochromator), and a variable scanning speed in the

forward and reverse direction of 1-20 nm/min (1-200 A./min ). Due to the

unavailability of a scanning motor controller, a generic power supply was

adapted for this purpose.

Attached to the exit slit of the monochromator was a side-on EMI/Thorn

Photomultiplier Tube (PMT). The PMT had once been replaced by a photodiode
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because it was thought that the light from the arc lamp would saturate the PMT. However, a

simple linearity experiment using neutral density filters proved that this was not

the case. Therefore, the present configuration  utilizes a PMT for the following

two reasons:

1. the extensive aperturing of the light, resulting in such a decrease in power,

suggested that saturation of the PMT was no longer an issue.

2. the photodiode did not have the sensitivity of the PMT.

Figure 4.5 Top View of Monochromator

4.1.8 Thermocouple

Flame temperatures were measured with an uncoated Type R (Pt, Pt/13% Rd)

thermocouple, having a bead diameter of approximately 0.5mm. The useful

temperature range of the thermocouple was consistent with the methane/ air
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flame temperatures produced i.e., T< 1900°C. The thermocouple was connected

to an Omega High Performance Temperature Indicator (Model DP41-TC). This

instrument converted the voltage signal produced by the thermocouple to an

actual measurement of bead temperature in degrees Fahrenheit or Celsius. In

addition to a digital read out of temperature, the unit also provided a

proportional analog output signal.

4.1.9 Plexiglass Housing

The entire burner and mixing chamber assembly, quartz probe for gas sampling

and thermocouple are housed in a vented five sided, transparent Plexiglass

structure. The approximate dimensions are 18"x18"x24". One side of the

structure is hinged to allow easy access to the equipment. The top of the

enclosure is partly open for exhaust venting to a mildly induced draft hood.

Enclosure of the flame in this manner greatly reduced disturbances of the flame

by room air currents and, as a result, helped minimize noise in the signal from

the PMT.

4.1.10 Chart Recorder

A Linear chart recorder was used to track the signal from the PMT which was

later interpreted as absorbance measurements. In a similar fashion, it was also

used to chart the voltage signal from the Omega Temperature Indicator to

determine temperature profiles.



The complete optical configuration with all of the previously described

components is outlined in figure 4.6.
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Figure 4.6 Optical Arrangement (Top View)

4.1.11 Stable Species Sampling and Analysis System

A first step in understanding the impact of the sodium nitrate and methyl

chloride additives was to measure their effect on the important stable species

CH4, CO and CO2. The stable species experimental data in the absence of

sodium and chlorine were used to calibrate the flame model. As will be discussed

later, the stable species profiles for this particular flame are unique due to
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entrained air. Following, is a description of the individual units that make up

the gas sampling and analysis system for stable species.

Gas Sampling Probe

The hot gases were drawn from the flame with a water-cooled, quartz

microprobe connected to a vacuum. The probe orifice is approximately 50 gm.

Heat transfer in the probe cools the hot gases, effectively stopping any reaction.

The cooled sample gases are fed to a Gas Chromatograph via heated transfer

lines. The following figure depicts the microprobe.

Figure 4.7 Quartz Microprobe (Simplified)

Gas Chromatograph

The analytical system is highlighted in Figure 4.8. The gas flowed through the

heated transfer line into sample loop-equipped, six-port Valco gas sampling

valves. The samples were injected into packed columns in a Perkin-Elmer 3920

gas chromatograph (GC). With temperature programmed heating, a six foot

Carbosphere 80/100 column was used to separate CO, CO2, and light
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hydrocarbons. After separation, the CO and CO2 were catalytically reduced with

H2 to CH4 over a heated (300°C) ruthenium catalyst packed bed reacts. This

sample was then directed into a flame ionization detector (FID). (An auxiliary

six foot 1% AT-1000 on Graphpac 60/80 column, not used for this current study,

was available to separate hydrocarbons and any chlorinated hydrocarbons in the

sample. After separation, the sample was directed into a second FID). A

Hewlett-Packard 3396 Series II Integrator was used to process the FID signal

and record the results. The entire system was calibrated by filling the sample

loops with standard gas (Scotty IV) to the same pressure (at the same

temperature) as was maintained during flame sampling.

Figure 4.8 Gas Sampling and Analysis System
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4.2 Equipment Calibration and Data Acquisition

4.2.1 Calibration of Apparatus

The following section describes the calibration of each instrument in the

experimental set-up.

4.2.1.1 Calibration of 3/4 Meter Monochromator with Sodium Lamp

A sodium lamp was placed immediately in front of the 50 mm collection lens (see

figure 4.6), the room lights were turned off, and the light from the lamp was

focused directly onto the monochromator entrance slit. The monochromator was

scanned in both the forward and reverse direction in an attempt to resolve the

sodium doublet found at 589 and 589.5 nm. The light from the exit slit on the

monochromator was directed onto the PMT, with the signal monitored on the

strip-chart recorder. Figure 4.9 below shows that the sodium doublet was indeed

resolved by the 3/4 m monochromator, as evidenced by the spikes in the chart

recorder output. At first, the doublet appeared at different wavelengths in the

forward and reverse directions. It was determined that this was due to backlash

in the scanning mechanism. The instrument manual suggests to "reverse scan

about 100 A between trials, to remove backlash...". Subsequent scans were

sufficiently long to compensate for backlash.

It should be noted that the monochromator had to be calibrated with a

sodium lamp in order to find the actual location of the sodium doublet. In other

words, the monochromator dial did not corresponded to the actual numerical
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directly from the lab notebook.
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Figure 4.9 Sample Experimental Data to Show Existence of
Sodium Doublet Using Sodium Lamp

4.2.1.2 Detection of Entrained Sodium in Flame

Once it was determined that the monochromator was capable of resolving the

sodium doublet, it was necessary to determine if the monochromator and

attached PMT could detect attenuation of the light due the existence of sodium

in the flame. An arbitrary amount of sodium nitrate solution was aspirated into

a methane/air flame of arbitrary equivalence ratio, (I) and the arc lamp was

focused on the flame. As can be seen in the following figure 4.10, a reduction in

the signal from the PMT due to attenuation of the light by sodium atoms in the

flame was observed in both the forward and reverse directions. Furthermore, the

sodium doublet was also observed.
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Figure 4.10 Sample Data to Show Attenuation of Light
Due to Sodium Atoms in Flame

4.2.1.3 Calibration of Metering Valve and Liquid Flowrate to Burner

Calibration of Flow Metering Valve

In order to regulate the amount of liquid supplied to the spray mixing chamber,

a fine metering valve was installed in-line between the pump from the feed

reservoir and the mixing chamber. Not all of the liquid supplied to the mixing

chamber actually goes into the flame. A large portion of the liquid collects on the

floor of the mixing chamber and is then drained from the system. Therefore, it

was necessary to calibrate the metering valve to determine the total liquid

flowrate to the mixing chamber. Then, the fraction of total liquid actually

reaching the flame burner (determined by difference) could later be expressed as

a function of metering valve setting. Figure 4.11 shows the calibration curve for
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the metering valve at an operating pressure of 60 psig, the pressure at which all

of the experiments were performed.

Figure 4.11 Calibration Curve of Solution Fine Metering Valve

Calculation of Fraction of Liquid to Flame Burner

A simple liquid mass balance was performed on the mixing chamber. The

overall mass balance on the liquid around the mixing chamber was calculated as

follows:

Liquid Input = Output to Drain + Liquid to Flame 	 (4.1)
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The liquid input to the mixing chamber was known (via metering valve) and the

amount of liquid sent to the drain was measured. The percent liquid going to the

flame was calculated in the following manner:

Figure 4.12 schematically describes the liquid mass balance around the mixing

chamber. Forty-eight runs were performed for varying metering valve settings

and air pressures using the air atomizing nozzle. The average amount of liquid

sent to the flame based on total liquid input to the mixing chamber was 8.1%.

Figure 4.12 Schematic of Liquid Mass Balance Around
Mixing Chamber
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Saturation of Absorbance Signal

In order to eliminate the possibility of saturating the flame with sodium

solution, an experiment was also performed to determine an optimum metering

valve setting. Figure 4.13 shows that for a 0.02 mol/L NaNO3 solution (the

concentration at which the experiments were performed) the absorbance

approaches a constant at a flow rate of approximately 5.5 ml/min. This

corresponded to a metering valve setting of 7. It is assumed that at this point

that the flame is saturated with sodium. For this reason, all of the experiments

were performed at a metering valve setting of 5. This is equivalent to a liquid

flowrate to the burner of 2.1 ml/min.

Figure 4.13 Absorbance Versus Flow Rate to Flame
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4.2.2 Temperature Profiles

As mentioned earlier, a Type R thermocouple was used to take all temperature

measurements. In general, whenever a temperature profile is discussed in this

thesis, it is implied that it is a temperature profile of the flame taken in the

vertical direction. However, in order to better characterize the flame itself

without entrained sodium or water, it was necessary to perform horizontal as

well as vertical temperature profiles.

4.2.2.1 Horizontal Temperature Profile

In order to collect horizontal temperature profile data, the thermocouple was set

at a certain height above the burner. The center of the 0.07cm slot in the burner

was aligned with the bead of the thermocouple. The burner was translated in

the horizontal direction away from the thermocouple approximately 0.3 cm.

Temperature readings were taken as the burner was translated in the

horizontal direction towards the thermocouple in increments of 0.05 cm.

Readings continued to be taken as the thermocouple passed over the center of

the burner slot and ended when the thermocouple reached 0.3 cm on the other

side of the burner. A typical horizontal temperature profile for a fuel lean

methane/air flame is presented in Figure 4.14.
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Figure 4.14 Sample Horizontal Temperature Profile

Note should be taken that the asymmetric nature of the profiles is an anomaly of

the measurement. As the flame is traversed, more of the thermocouple is

immersed in the flame. This causes less conductive losses from the thermocouple

bead, resulting in an artificially higher reading. Test measurements taken by

traversing the flame in the opposite direction produce mirror image profiles,

thus confirming the argument.

4.2.2.2 Vertical Temperature Profile

When gathering data for a vertical temperature profile, the initial requirement

is that the burner be set at a height equivalent to 0.0 cm HAB. In other words,

the burner is translated in the vertical direction until the light from the arc
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lamp (which is stationary) appears to be "resting" directly on the burner,

centered over the burner slot. The thermocouple is placed such that the bead

from the thermocouple sits in the center of the burner slot. When the light from

the arc lamp and the thermocouple bead are correctly aligned over the burner

slot, the lamp illuminates the thermocouple bead. Temperatures are recorded

after the lamp is powered down.

A ruler then marks the vertical height of the top of the burner as that

which is equivalent to 0.0 cm HAB. The flame with entrained sodium solution or

water is ignited, and a temperature measurement is taken at 0.0 cm HAB. The

Linear Chart Recorder, which has been calibrated over the temperature range of

the flame, then records the temperature. To record the next temperature, the

burner is lowered 0.25 cm. The thermocouple is now recording the temperature

at 0.25 cm HAB. This procedure is repeated for 6-12 data points depending on

the equivalence ratio of the flame. An example of how the chart recorder

monitored the temperature of the flame is shown in Figure 4.15.
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Figure 4.15 Sample Data for Vertical Temperature Profile

It should be noted that the temperature profiles were difficult to acquire

at times due to occasional flame fluctuations. Therefore, for each equivalence

ratio 4) at a given HAB, temperatures were recorded for all of the flames with

sodium. Likewise, all of the flames without sodium were done together. At a

certain HAB, the airflow was held constant and the feed CH3C1/ CH4 ratio, R,

was adjusted for different conditions. The HAB was then changed and this

procedure was repeated. An example of a typical vertical temperature profile for

a methane/air flame with sodium and chlorine is shown in Figure 4.13 below.
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Figure 4.16 Vertical Temperature Profile

4.2.3 Absorption Profiles

The following step-wise procedure illustrates how absorption of light was

quantified for this work:

1. The flame was turned on and the monochromator was set at a wavelength

located immediately before 589 nm. A dark spectrum, D, was collected with

the shutter in front of the lamp closed, the room lights turned off, and the

sodium sample aspirated into the flame, i.e., this is equivalent to an emission

signal.

2. The shutter was opened allowing the light beam to pass through the flame

and the signal due to the incident source radiation, Vo, was obtained.

3. The monochromator was scanned slowly passed the wavelength of interest

and the signal due to attenuation of light by the sample, V, was obtained.
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Fernando, Calloway and Jones (3) describe the manipulation of similar data to

determine the absorbance spectrum. When the following replacements are made,

Vo = L and V=I, Fernando, Calloway and Jones propose the following for

calculation of absorbance:

It should be noted that the room lights were turned off in order to include any

signal due to emission in the dark signal. Then, when the dark signal, D, is

subtracted from either signal, L or I, any interference due to emission is

eliminated from the absorbance calculation.

The procedure for collecting reliable intensity data to determine

absorbances was based on the following experimental observations:

1. In order to compare the intensity of light having passed through the flame

with entrained water to that of a flame with entrained aqueous sodium

nitrate solution, it was originally decided to compare a 3-5 nm scan across

589 nm of the two flames at a certain HAB. It was thought that the scan with

sodium would be identical to the scan of the flame with water, except that the

sodium scan would contain a drop in optical transmission (DIP) due to

absorbance by the sodium atoms at 589 and 589.5 nm. This was not the case.

The time it took to free the system of sodium salt solution was approximately

10-12 minutes after the solution flow was stopped in favor of pure water. In
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this time, some drift in the intensity of the arc lamp was possible; hence,

while the two scans were very similar, they were not exact.

2. An alternative to scanning over a certain wavelength range was to simply sit

on a particular wavelength such as 589 or 589.5 nm. The attenuation of the

light due to sodium would be compared to the attenuation of light due to

aspirated water in the flame. This also, was not completely successful. Once

again, in the amount of time that it took to switch between the two solutions,

the intensity of the lamp could drift. This was proven experimentally by

sitting at a wavelength away from 589 or 589.5 nm.

3. Finally, it was observed that a scan with water in the region of the signal

DIP appeared to be a straight line, just as the scan with sodium would

appear without the DIP. It was then assumed that in the region immediately

before and immediately after the DIP, the scan with water and the scan with

sodium were identical. Therefore, it was concluded that the magnitude of the

sodium DIP would be determined from a sodium scan alone, as the difference

between the intensity observed immediately before 589 nm and the intensity

at 589 nm.

A typical sodium scan is presented in Figure 4.17, as well as an example

of how absorbance (A) is calculated from these results.
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Figure 4.17 Sample Scan of Absorption Data

With the benefit of these experimental observations, the following procedure

was formulated. At a given HAB, the shutter to the lamp was closed, the flame

with entrained sodium was ignited, and the room lights were turned off. The

PMT dark signal that was then recorded, accounting for any signal due to flame

emission. The shutter was then opened and a quick scan was performed in the

forward direction. This was done for two reasons. The first was to verify that the

two DIPs were indeed there- one at 589 nm and the other at 589.5 nm. The

second reason was that the DIP at 589 nm was larger than the DIP at 589.5 nm.

The larger DIP was used for analysis. In the reverse direction, the smaller DIP

appeared first. When the smaller DIP appeared, this was then used as an

indicator to significantly slow down the speed of the scanning device (drive
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motor) to the monochromator. When the second DIP had been observed, the

scanning device was turned off and the procedure was repeated for a different

HAB.

4.2.4 Stable Species Profiles

A water-cooled quartz microprobe was used in conjunction with a Perkin-Elmer

3920 gas chromatograph (GC) to determine how the concentration of major

species such as CO, CO2 and CH4 were affected by the introduction of sodium (as

NaNO3(aq)) and/or chlorine (as CH3Cl) into the flame. However, unlike the

absorption profiles, the only equivalence ratio used for the study of stable

species was 41)=1.86. This equivalence ratio was chosen because it was the "best"

flame to work with, i.e., the flame was tall enough to allow good spatial

resolution and was also well stabilized.

Once the GC was given sufficient time to warm up, the entire system was

calibrated by filling the evacuated sample loop with a standard gas (Scotty IV

Analyzed Gases) to the same temperature and pressure as was maintained

during flame sampling. This was then followed by the analysis of the stable

species in the flame at various heights above burner. The Quartz probe was

positioned in the flame in the exact same fashion as the positioning of the

thermocouple in the flame described earlier. Gas samples were drawn from the

flame with the probe, which has also been described earlier. The fuel type and

equivalence ratio were varied and the stable species profiles were recorded.



These results will be presented in Chapters 6 and 7. Sample results from

experiments with a standard gas and flame gases are presented below.
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Figure 4.18(a) Standard Sample GC Analysis



Figure 4.18(b) Flame Sample GC Analysis
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CHAPTER 5

MODELING METHODS

The first part of this chapter discusses the Sandia Fortran program for

modeling steady, laminar, one-dimensional, premixed, flat flames as it was

written by Kee, Grcar, Smooke and Miller (26). The second part of this

chapter addresses the modifications that were made to this existing code in

order to model the experimental data collected in this study. It should be

noted however, that during the course of this study, these flames were

modeled as one-dimensional flames. This was considered a reasonable first

approximation and starting point. However, further examination of the

results suggested that the flames would have been better modeled as two-

dimensional. This theory and a comparison of the flames as one dimensional

versus two-dimensional is discussed in great detail in chapter 8.

5.1 The Sandia FORTRAN Program

The premixed flame model developed by Kee et al. (26), PREMIX, predicts

temperature and species profiles in two laminar, flat flame configurations.

The first configuration is a freely propagating, adiabatic flame. The second

configuration - and the configuration of interest in this study - is the burner-

stabilized flame. For the latter configuration, two cases exist: one where the

temperature profile is known and input, and one where the temperature

profile is determined by the energy conservation equation. However, due to

59
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the difficulties in accurately accounting for the significant heat losses to the

external environment, predicted temperatures are less desirable than

measured ones (26). Therefore, if a temperature profile can be measured

accurately, it is better to use this measurement rather than the calculated

temperature profile obtained by solving an energy conservation equation.

5.1.1 The Governing Equations

The equations that govern steady, isobaric, adiabatic, quasi-one-dimensional

flames (freely propagating or burner stabilized), as described by Kee et al.

(26) may be written as follows:

K.)where (k=1, 	
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In all of the above equations, x denotes the spatial coordinate; M is the mass

flow rate (which is independent of x, as presented by Kee et al. (26)); T is the

absolute temperature; Yk is the mass fraction of the kth species (there are K

species); P is the absolute pressure; u is the linear velocity of the fluid

mixture; p is the mass density; Wk is the molecular weight of the kth species;

W is the mean molecular weight of the mixture; R is the universal gas

constant; is the thermal conductivity of the mixture; cp is the heat capacity

of the mixture; c pk is the heat capacity of the kth species; ωk is the molar

rate of production by chemical reaction of the kth species per unit volume; h k

is the specific enthalpy of the kth species; Vk is the diffusion velocity of the

kth species; and A is the cross sectional area of the stream tube

encompassing the flame.
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The final equation of interest is found in the formulation of the species

diffusion. This formulation assumes that the diffusion velocity, V k, is

composed of three parts.

V k is the ordinary diffusion velocity and is given in the Curtiss-Hirschfelder

(32) approximation by

where Xk is the mole fraction. The mixture-averaged diffusion coefficient Dk

is given explicitly in terms of the binary diffusion coefficients Pik by

Wk is a non-zero thermal diffusion velocity and is included only for the low

molecular weight species H, 112, and He. The trace, light-component limit is

employed in determining Wk as follows:



sum to unity, i.e.,

as recommended by Coffee and Heimerl (33,26).

The conservation equations governing the two types of flames

considered by the program, the burner stabilized and the freely propagating

flame, are exactly the same. However, the boundary conditions are not. For

the traditional burner stabilized flame, M is a known constant, the

temperature and mass flux fractions (Єk = Yk + pYkVkA / M) are specified at

the cold boundary, and vanishing gradients are imposed at the hot boundary.

5.1.2 The Reaction Mechanism

The net chemical production rates of species k, wk, are determined by

CHEMKIN subroutines with the aid of the user input reaction mechanism

and measured temperature (26). CHEMKIN is a FORTRAN chemical

kinetics code (28) and transport package (29). The rate of each reaction

involving species k is calculated according to the law of mass action and the
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required, user-supplied forward rate coefficient, kf. The coefficients are
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where A, n and EA in this particular situation are fitted parameters. If n=0, A

is the usual Arrhenius pre-exponential factor and EA is the activation energy.

The reverse rate constant, kr, is related to the forward rate constant, kf,

through the reaction equilibrium constant K as:

The equilibrium constant K is calculated by CHEMKIN based upon the

temperature and species thermodynamic properties. The user-supplied

thermodynamic database consists of species standard enthalpy of formation

Hof (298K), species standard entropy SO (298K) and species heat capacities Cp

as functions of temperature (27).

The user-supplied reaction mechanisms are primarily drawn from the

literature. Specific modifications to the literature mechanisms will be

discussed in the following appropriate chapters.
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5.1.3 The Numerical Solution

The numerical solution (26) begins by making finite difference

approximations to reduce the boundary value problem to a system of

algebraic equations. The initial approximations are usually on a very coarse

mesh that may have as few as five or six points. After obtaining a solution on

the course mesh, new mesh points are added in regions where the solution or

its gradients change rapidly. An initial guess for the solution on the finer

mesh is obtained by interpolating the course mesh solution. This procedure

continues until no new mesh points are needed to resolve the solution to the

degree specified by the user.

The damped modified Newton algorithm solves the system of algebraic

equations (26). However, if the Newton algorithm fails to converge, the

solution estimate is conditioned by a time integration. This provides a new

starting point for the Newton algorithm that is closer to the solution, and

thus more likely to be in the domain of convergence for Newton's method.

5.1.4 Program Structure

The premixed flame code is written in two major modules. One contains

software to solve boundary value problems i.e., the numerical method. It is

completely independent and could easily be used for problems not related to

flames. The other module contains the flame- specific coding. It reads input

from the user, defines the governing equations, makes calls to the boundary

value solver, and prints solutions for the flame problem. In addition to input



66

directly from the user, the flame program depends on data and subroutines

from CHEMKIN.

The CHEMKIN Interpreter, Chem.exe, reads user supplied

information from the following files:

• Chem.inp — contains kinetic information about the species and chemical

reactions for a particular reaction mechanism.

• Therm.dat — a data base that contains the thermodynamic properties of

all reactant, intermediate and product species in the flame.

Execution of Chem.exe creates a binary file, Chem.bin.

Tran.exe represents TRANFIT, the transport property-fitting program

in the above figure. The following files are required to execute this program:

• Chem.bin — produced by execution of Chem.exe

• Tran.dat — a data base that contains the transport properties of all the

species in the flame

A second binary file, Tran.bin, is created as a result of the execution of this

program.

The flame code, Premix.exe, requires the following files as input:

• Chem.bin — output from Chem.exe

• Tran.bin — output from Tran.exe

• Premix.inp — contains user-supplied information that defines a particular

flame and the parameters needed to solve it, in a Keyword format e.g.,
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mass flux to the burner, reactant mole fractions, and flame temperature

profile.

Successful execution of the flame code results in the following output:

• Premix.out — contains all of the information previously supplied by

Premix.inp as well as all calculated species mole fractions as a function of

HAB.

• Save.bin - this binary file can be renamed as Rest.bin and used to either

restart the same problem and continue iterating, or it can be read as a

starting estimate for a new and different flame.

Figure 5.1 provides a schematic description of the relationship between the

various components of the code as well as a broad outline of the inputs

required and the outputs generated by the model. Samples of these files are

placed in Appendix A.
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Figure 5.1 Flowchart of Inputs and Outputs to CHEMKIN
Premixed Flat Flame Code

5.2 Flame Model Development and Calibration

5.2.1 Background

It was recognized early on that the slotted burner used in this work is clearly

different (see Figure 5.2) from the usual flat flame burner for which the

Sandia code just described was developed.
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Flat Flame Burner	 Slotted Flame Burner

Figure 5.2 Schematic of Flat Flame Burner and Slotted Burner

Aside from the shape, the principal difference is entrainment (transport) of

outside air (see section 2.2.2). The laminar flat flames are typically operated

with a nitrogen shroud isolating the flame from ambient air while the slotted

flame can be considered a laminar jet subject to air entrainment (30). In

addition to the differences, the slotted burner is uncooled.

There are, however, similarities in the flames. Both flames are

laminar. The flat flame is characterized by no radial gradient. Horizontal

temperature profiles taken in the slotted flame suggest a fairly thin and

spatially uniform (horizontal) flow at a given height above burner. Hence, the

slotted flame might be treated as a one-dimensional (i.e. vertical) problem, as

is the flat flame as a first approximation.

The similarities are sufficient between the two flames that

development of a CHEMKIN-based model for the slotted flame can begin
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with the flat flame code. It is desirable, therefore, to modify the flat flame

code in a way that allows reasonable simulations of observed data within the

existing FORTRAN code structure and numerical solution technique.

The modifications made to the existing flame code can be divided into

two categories:

1. There were those changes that were intrinsic to the flame, i.e.,

independent of burner type or environment. An example of such a

modification would be the inclusion of sodium kinetics to the methane/

air mechanism. These changes will be presented in later chapters (6 and

7).

2. The second type of modifications made were those changes that were

extrinsic to the flame, such as the shape and size of the burner and the

fact that the burner (and flame) was exposed to the environment. This

exposure allowed the transport of air from the surroundings into free

flowing gases in the flame.

This chapter will deal with those modifications that are independent of flame

chemistry. Once completed, the slotted flame model must be tested. Since the

primary objective of this study is the investigation of the role of sodium,

testing (or calibration) of the new flame model had to be done in a flame

where the chemistry was relatively well known, i.e., methane/air.

Experimental data were collected for the following methane/air flames:
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Table 5.1 Methane/Air Flames Examined by this Study

Equivalence
Ratio Φ

Temperature
Profile

Stable Species
Profiles

(CH4, CO, CO2)
1.29 N/

1.86

2.48

3.15 -‘1

The experimental data from the methane/ air flame, Φ = 1.86, were used to

calibrate and confirm all non-mechanism adjustments made to the

CHEMKIN flat flame code. This calibrated program was then used to model

methane/ air flames that contained additional species such as sodium

(introduced to the flame as sodium nitrate aqueous solution) and chlorine

(introduced as methyl chloride). These results are discussed in chapters 6

and 7, respectively.

5.2.2 The Species and Enthalpy Balances

The governing premixed, flat flame equations (26) were originally derived

using the assumption of a constant mass flow rate. It has also been discussed

that the flames in the current study encountered entrainment of air and,

consequently, had a variable local mass flow rate. As a result, both the

species and enthalpy balances were rederived from first principles in order to

account for a variable mass flow rate (see Figure 5.3).
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Figure 5.3 Schematic Representation of Control Volume for a
Slotted Burner

The following equations show that the rederived expressions are identical to

the original expressions--with the exception of one additional term in each

balance due to entrainment of air. These new expressions were incorporated

into the FORTRAN source code and were used in the modeling of all cases

presented by this study.

The Species Balance



The Enthalpy Balance
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In the above expressions, Ysk and hsk refer to the mass fraction and specific

enthalpy of the kth species in the surroundings, respectively. In practice, Ysk

= 0 for all species except oxygen and nitrogen.

5.2.3 Streamtube Area

The cross sectional area of the streamtube (i.e. flame cross section)

encompassing the flame, A, can be generally described by the following

expression:

where A. is the cross sectional area of the burner opening and f(x) is an nth

order polynomial which describes the variation of A with HAB (x). The

original CHEMKIN program assumed that, in the absence of information

about the streamtube area, the value of A is constant and equal to unity,
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while the mass flux (g/cm2-s) through the burner (assumed constant) is a

user-defined input value.

In this study, however, the streamtube area increases due to thermal

expansion and entrainment. The horizontal temperature profiles of the flame

(figure 4.14) provided an approximate mapping of the area expression. Using

these data, an AREA subroutine was generated to specify the streamtube

area as a function of the spatial coordinate, x. The following simple, linear

expression approximately relates the dependence of the area with the HAB:

This relationship was incorporated into the model and was used for all cases

presented in this study.

5.2.4 Temperature Profile Correction

A type R thermocouple (T/C) was used to measure the temperature at any

point in the flame. However, the temperature that is reported by the digital

indicator does not account for the heat lost by radiation from the TIC bead to

the surroundings. The following diagram and heat balance around the T/C

bead illustrates how this omission is corrected.
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Figure 5.4 Thermocouple Bead Schematic Used for Heat Balance

A total heat balance around the bead produces the following relationship:

For the previous equation, the following constants are defined: h is the heat

transfer coefficient; a is the bead surface area; a is the Stefan-Boltzmann

constant; c is the bead emissivity; k is the thermal conductivity of the wire; ac

is the cross sectional area of the wire; x is the coordinate along the wire; Tw is

the temperature of the wire; Ts is the temperature of the surroundings

(assumed 300K for an open flame); TB is the temperature of the bead; and TG

is the temperature of the flame gases (assume TG >TB). All temperatures are

in Kelvin (K).

Note should be taken that for this study, the second term which

accounts for heat loss due to conduction along the thermocouple wire was

considered insignificant and it was assumed to be essentially zero. The
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validity of this assumption is reconsidered in Chapter 8 and results of the

sensitivity of this term i.e., the significance of the contribution of this term, is

discussed.

When the conductivity along the thermocouple wire is neglected,

manipulation of the above heat balance results in the following equation

(manipulation of this same heat balance when the conductivity term is not

neglected is presented in chapter 8 for comparison).

This expression was used to correct the experimental flame temperature data

for radiation. Similar expressions have been used in the literature (34, 43,

44). The heat transfer coefficient was calculated using the following Nusselt

number relationship for laminar flow around a cylinder (31):

where,
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For the above relationships, the following additional constants are defined: d

is the bead diameter; k is the thermal conductivity of the gas; G is the gas

mass velocity (pu); II is the gas viscosity; and Cp is the specific heat capacity

of the gas.

The properties of the gases in the boundary layer (properties of

nitrogen were assumed) (34), and the key dimensionless groups were initially

calculated at the bead temperature. They were subsequently calculated at

the film temperature, Tf,

The emissivity of the bead (31) was calculated at the bead temperature. The

gas temperature and a new film temperature were calculated. The above

procedure was repeated and this iterative process continued until the gas

temperature calculation converged.

The following flow chart gives a general description of the FORTRAN

program used to correct the measured flame temperature for radiation.
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Figure 5.5 Flowchart for Temperature Profile Correction
for Radiation

Figure 5.6 illustrates measured and corrected temperature profiles

(corrected for radiation only) for a representative Φ  = 1.86 methane/air flame.

The maximum temperature correction is approximately 230K. An

uncertainty analysis of the radiation correction procedure was performed and

it suggested that the uncertainty in the corrected temperature could be as

much as 100K.



Figure 5.6 Corrected and Uncorrected Experimental Temperature
Profiles for CH4/Air Flame, Φ=1.86

In an effort to determine an upper limit to the correction, the methane/

air model was run as an adiabatic case wherein the temperature profile is

calculated in the absence of any heat losses. The lower limit was assumed to

be the raw, experimental temperature data. The maximum difference

between the two limits, A TLimit, was approximately 600 K. Therefore, the

radiation-corrected temperatures are less than the adiabatic profiles, which

is consistent with the fact that the flame experiences heat loss to the

surroundings — especially the burner.

79
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5.2.5 Air Entrainment Modification and Analysis

In the original Sandia development of the premixed flame equations, the

total mass flow rate of gases in the flame, M , is assumed to be a constant.

However, the flame used in this work was exposed to the environment and

experiences transport of air from the surroundings. The total mass flow rate

of gases in the flame is no longer a constant, but is a function of height above

burner (30). It should be noted that for this study, the entrainment rate was

expressed as a linear function of height, x and that diffusion of species into

the flame from the surroundings begins at x = 0.0 HAB. This was considered

a reasonable starting point in the development of the entrainment expression

and a good first approximation. However, the possibility that the flame in

this study could be more accurately described as a two-zone flame (an inner

premixed flame surrounded by an outer diffusion flame) is discussed further

in chapter 8. In this particular scenario, the premixed region does not

experience diffusion of species from the surroundings, but rather diffusion

begins at the interface between the premixed zone and the diffusion zone.

Development of Air Entrainment Expression for a Slotted Flame

The entrainment of air by the slotted flame was depicted in figure 5.3. In this

study, the following relationship exists between the metered feed rate and

the total mass flow rate:
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where M. , is the metered feed rate and the entrained air is a function of HAB

(x). As a result, the total mass flow rate, M , is also a variable and a function

of HAB.

Spalding (30) showed that the mass flow rate, M , in a laminar jet was

not a constant, but rather increased with x. He also showed that M was

actually independent of the velocity of the injected fluid and the size of the

nozzle outlet:

where µ is the fluid viscosity.

Further development of this expression for a laminar jet (30) showed

that the entrainment rate, i.e. the rate of increase of M with x, was a

constant:
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The above results were used as a starting point for the development of

an expression for the variable mass flow rate found in this study. Once a trial

expression was formulated, it was inserted into the source code and the

model was executed. The model output was compared to the measured stable

species profiles for CO, CO2 and CM for a methane/ air flame, Φ = 1.86. The

working assumption here was that the reaction mechanism for methane/air

combustion (27) is accurate. In fact, this mechanism has been used

successfully in several studies by Mao (27).

Some initial, sample expressions for air entrainment for a slotted

flame took the following form:

The above expressions were individually incorporated into the flame model

for various integer values of C. The following figures detail some of the better

results.



Figure 5.7 Experimental and Modeling Stable Species Profiles for
CH4/Air Flame, Φ=1.86, using M = M. + Cx 0.5 as Air
Entrainment Expression

83

Figure 5.8 Experimental and Modeling Stable Species Profiles for
CH4/Air Flame, Φ=1.86, using M = M. + Cx2 as Air
Entrainment Expression

All of the above expressions were rejected because a poor fit to the

experimental data was produced.
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In the development of the entrainment expression, it was an important

consideration and limitation that the expression for M should have some

reasonable, physical interpretation. It was concluded that the family of

expressions for variable mass flow rate that produced the most acceptable

results took the following form:

or, more simply,

where n is a positive, real number. Incremental values of n in the range of 0

< n 3 were tested and evaluated. The following is a sample of the most

acceptable results that were produced.



Figure 5.9 Experimental and Modeling Stable Species Profiles for
CH4/Air Flame, 4)=1.86, using M/Mo=1+Cx 0.33 as Air
Entrainment Expression

Figure 5.10 Experimental and Modeling Stable Species Profiles for
CH4/Air Flame, (1)=1.86, using M/Mo=l+Cx as Air
Entrainment Expression
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Figure 5.11 Experimental and Modeling Stable Species Profiles for
CH4/Air Flame, 4)=1.86, using M/Mo=1+Cx 2 as Air
Entrainment Expression

It can be seen from the above figures, that the expressions represented by :
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produced the most reasonable results. However, the expression represented

by equation 5.33 was chosen for use in this study based on its close

resemblance to the laminar jet expression (30) and its simple, reasonable,

physical interpretation. That is: at any given height in the flame, the mass

flow rate is equal to the initial mass flow rate, plus an incremental amount of

entrainment, that is directly proportional to the HAB. It should also be noted

that the derivative of this expression, i.e. the entrainment rate, resulted in a

constant:

This is a reasonable hypothesis, based on the development and results of the

entrainment rate in a laminar jet, as discussed by Spalding (30).

Development of Air Entrainment Constant, C

At first, an arbitrary, positive, real number was chosen for the air

entrainment constant C. The model was then run and the results were

compared to the experimental data. Figure 5.12 illustrates how the CO2

profiles in a methane/air flame (4) =1.86) vary with air entrainment constant.
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Figure 5.12 Experimental and Modeling Results of CO2
Concentration Profiles for CH4/Air Flame, 1)=1.86,
for Varying Air Entrainment Constant

The first significant result is that when the entrainment constant is

set equal to zero (i.e., no entrainment), the CO2 profile is flat. This result

indicates that there is no dilution of species due to entrained air, and is

typical of results reported in the literature (37) for flat flames with nitrogen

shrouds (i.e. no air entrainment). The second result of significance is that as

the entrainment constant decreases, the amount of air available for dilution

only, decreases. As a result, the CO2 mole fraction begins to increase. This

result is reasonable and was expected.
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Analysis of the above results led to the conclusion that when the air

entrainment expression for a slotted burner is of the form expressed by

equation 5.33, the most suitable constant for a methane/ air flame was C=4.0

cm- 1 . It should be noted that while the above entrainment expression was

used for all slotted flames in this study, a unique constant was developed for

each flame class (i.e. CH4/air, CH4/air/Na etc.). These other results will be

presented in chapters 6 and 7.

Figure 5.13 shows similar results for CO profiles in a methane/air

flame (4) =1.86), as the entrainment constant was varied, for which

comparable conclusions were reached.

Figure 5.13 Experimental and Modeling Results of CO Concentration
Profiles for CH4/Air Flame, 4)=1.86, for Varying Air
Entrainment Constant



In fuel-lean flat flames without air entrainment, the CO profile rises to a

maximum and then falls as CO is converted to CO2, as seen in figure 5.14.

90

Figure 5.14 Schematic of CO and CO2 Concentration Profiles for
a Fuel—Lean Flame Without Air Entrainment

For fuel-rich flames, the CO rises and then remains constant as 02 is

depleted (45), as seen in figure 5.15.

Figure 5.15 Schematic of CO and CO2 Concentration Profiles for
a Fuel—Rich Flame Without Air Entrainment



For the fuel-rich slotted flame in this study, both the CO and CO2 rise and

fall due to air entrainment. This is seen in Figure 5.16
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Figure 5.16 Experimental and Modeling Results for CO and CO2
Concentration Profiles for a CH4/Air Flame, (1)=1.86,
Including Air Entrainment

5.2.6 Summary of Calibration Results

The following list summarizes the tasks and results related to development

and calibration of a FORTRAN program for modeling the slotted flames in

this study. It should be noted that further discussion of the assumptions used

as a basis to arrive at these results is presented in chapter 8. In particular,

the method of temperature correction as well as the phenomenon describing

mass transfer of species from the surroundings is further examined.
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However, for the purposes of this study, experimental data from a

methane/air flame, 4) = 1.86, were used as a calibration database.

1. The species and enthalpy balances were rederived. This resulted in an

extra term in each balance to account for entrainment of air, by the flame,

from the surroundings.

2. The cross sectional area of the flame, A, was estimated as a function of

distance from the burner (HAB). The result was the following expression:

3. The experimental temperature profiles were corrected to account for heat

loss due to radiation. The result was a temperature correction, AT, in the

following range:

4. The following expression was developed to account for entrainment of air,

for all flame types, when using a slotted burner:



5. The constant, C, in the entrainment expression was determined for a

CH4/air flame. This constant is independent of equivalence ratio, 0, and

was found to have the following value of C = 4.0 cm -1 .

5.3 Procedure for Executing the Model

The procedure for executing the model on a personal computer (PC) can be

found in Appendix B.
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CHAPTER 6

DISCUSSION OF EXPERIMENTAL DATA AND MODELING

RESULTS FOR METHANE/AIR AND METHANE/AIR/SODIUM

FLAMES

6.1 Introduction

The four flame types studied in this project can be categorized in the

following manner:

1. Methane/air flames without sodium

2. Methane/air flames with sodium (fed as aqueous NaNO3 solution)

3. Methane/air/chlorine (fed as CH3Cl) flames without sodium

4. Methane/air/chlorine flames with sodium

This chapter will examine the experimental data and the modeling results for

the first two categories, a comparison of methane/air flames without sodium

to methane/air flames which have been doped with sodium.

Preliminary experimental and modeling results have been presented in

chapter 5 for methane/air flames in an effort to highlight the calibration and

modifications that were made to the packaged CHEMKIN flat flame code.

The first part of this chapter will describe the additional modifications that

needed to be made to the previously calibrated code in order to model

methane/air flames with sodium. The second part of this chapter will
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compare the modeling with the experimental results obtained. This chapter

will also discuss the trends that were expected (as indicated by the

literature), observations and hypotheses.

The following table outlines the experimental data and modeling

results, which will be reviewed in this chapter:

Table 6.1 Outline of Experimental and Modeling Analysis of
CH4/Air and CH4/Air/Na Flames by this Study
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6.2 Physical Appearance of the Flame

6.2.1 Relationship Between Equivalence Ratio, Flame Speed
and Flame Height

For the methane/air flames, with and without sodium, the flame speed

appeared to decrease as the fuel equivalence ratio increased. This was

evidenced by an increase in the overall size of the flame (i.e., height and

width) as well as the inner core. The casual observer might note that the
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lower equivalence ratio (e.g., 4=1.29) produced a "smaller, tighter, neater,

sharper" flame while the higher equivalence ratio (e.g., 4=3.15) resulted in a

"larger, floppier, looser" flame. This is consistent with published dependence

of flame speed on 4 for CH4/air Bunsen flames (66).

Strehlow (53) has discussed many techniques for measuring flame

speed. One of them, the burner method, relates the flame speed to the flame

height for a premixed flame on a round burner. The speed of a flame on a

circular port of radius r is given by the following equation:

where h is the flame height of the inner, premixed cone (core) and V the

volumetric flow rate of the combustible gas mixture. Assuming that the

volumetric flow rate and the burner opening are held constant, the flame

speed is related to the flame height in the following manner:

It should be noted that this relationship was developed for a conical

shaped flame on a round burner. The flame used in this study was an
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"elongated" conical flame i.e., a tent shaped flame. However, in both cases,

the flame volume is defined as follows:

In each case, the constant burner opening was replaced by the proportionality

relationship. In effect, as the flame height increases with increase in

equivalence ratio, the flame speed decreases.

Figures 6.1 and 6.2 are photographs taken of the burner used for this

work. The camera used was set at a shutter speed of 1 second. The camera

remained stationary on a tripod at a fixed distance from the burner

(approximately 48 inches) as the fuel and oxidant flow rates were altered to

obtain the four equivalence ratios of importance for this study; 1.29, 1.86,

2.48, and 3.15.

The changes in the physical appearance of the flame resulted in the

following observations.

1. For both types of flames, increased 4) resulted in increased flame

dimensions, especially the overall height and the premixed inner core.



Figure 6.1 CH4/Air Flames
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Figure 6.2 CH 4/Air/Na Flames
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2. As seen in figure 6.1 and 6.2 for 4) = 1.29, the flame was lifting slightly off

the burner. A wire mess screen was needed to stabilize these particular

flames. However, note should be taken that the sodium-free flame was

smaller and much more unstable than the flame that contained sodium,

i.e., the flame with sodium did not appear to require a wire screen as

much as the sodium-free flame in order to be stabilized.

3. 4)=1.86 was the preferred equivalence ratio for stable species data

collection. As 4) increased from 1.86, the flame became "sloppy" and

resulted in an increase in noise in the data. As 4) decreased from 1.86, the

flame size also decreased which resulted in a decrease in spatial

resolution.

6.2.2 Changes Resulting from Addition of Sodium

A 0.02 mol/liter sodium nitrate (NaNO3) solution was aspirated into the

methane/air flame at a rate of 2.1 ml/min. When the flame was not doped

with sodium, deionized water replaced the metal solution. The most obvious

effect of sodium addition is the bright orange color due to sodium atom

emission (589 nm.) It can be seen from figure 6.3 that for each 4), the physical

size of the outer mantle increased with the addition of sodium.



Figure 6.3 CH4/Air and CH4/Air/Na Flames
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It should also be noted that the changes produced from the addition of

sodium were comparable to the changes in the flame resulting from an

increase in 4), e.g., flame became "sloppy". Possible explanations that will be

investigated further later in this chapter are as follows:

1. The flame that was doped with sodium did not actually grow in size, but

rather only appeared to grow in size. It is possible that more of the flame

was visible due to the bright orange color resulting from addition of the

sodium.

or

2. When the sodium atoms produced in the flame begin to react, the flame

becomes inhibited. As the combustion slows, the flame remains more fuel

rich locally. This is analogous to increasing the equivalence ratio. As

previously discussed, an increase in equivalence ratio causes the size of

the flame to increase.

6.3 Temperature Profiles

6.3.1 Background

All temperature profiles were obtained using a type R thermocouple. The

thermocouple, which remained stationary as the burner was translated

vertically, was connected to a chart recorder which had been calibrated.

These temperatures were then corrected for heat loss due to radiation and

plotted as a function of height above burner (HAB). The following sections
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will discuss and analyze those trends. It should be noted that all runs with

sodium were performed separately from those runs without sodium, i.e., on

different days. This was done so as to eliminate any residual effects of sodium

salt left on the probe or sodium solution in the lines. In addition, these

temperature profiles have been corrected for radiation heat loss only. As

stated earlier, a discussion of the correction of the raw temperature data for

radiation as well as conduction is presented in chapter 8.

6.3.2 Temperature Profiles for Methane/Air Flames Without Sodium

Figure 6.4 shows the radiation-corrected temperature profiles for methane/air

flames for (I) = 1.86, 2.48 and 3.15. Temperature profiles for (1)=1.29 were

unattainable for methane/ air flames without sodium.

Figure 6.4 Experimental Temperature Profiles for CH4/Air
Flames, (1)=1.86, 2.48, and 3.15
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As previously mentioned, it appears that the addition of sodium to the flame

causes the flame to grow in size. Without sodium in the flame, the flame for

4)=1.29 was simply too small to obtain any measurements and data were not

available for the above graph.

Table 6.2 outlines the approximate location of maximum temperatures

for each of the above flames.

Table 6.2 Comparison of HAB of Maximum Temperatures
for CH4/Air Flames

Methane/Air Flames

4 Max. Temp (K) HAB (cm)

1.86 1531 0.76

2.48 1536 1.3

3.15 1554 1.52

Observations

1. It can be seen from figure 6.4 as well as table 6.2 that as 4 increases, the

location of maximum temperature shifts to higher HAB.

2. The maximum temperature varied by only 23K (1531-1554 K) even

though the equivalence ratio nearly doubled going from 1.86 to 3.15 (a

factor of 1.7).



6.3.3 Temperature Profiles for Methane/Air/Sodium Flames

Figure 6.5 and table 6.3 outline the temperature profiles for methane/air

flames doped with sodium that have been corrected for radiation losses as

well as the location of maximum temperatures. In contrast to the

methane/air flames without sodium, data were available for (1)=1.29. When

sodium was added to this flame, the flame grew sufficiently large so that

when the thermocouple was inserted, the flame remained stable. This was

not the case for (1)=1.29, without sodium.
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Figure 6.5 Experimental Temperature Profiles for CH4/Air/Na
Flames, 4)=1.29, 1.86, 2.48, and 3.15



Table 6.3 Comparison of HAB of Maximum Temperatures
for CH4/Air/Na Flames

Methane/Air/Sodium Flames

0 Max. Temp (K) HAB (cm)

1.29 1516 0.13

1.86 1615 0.64

2.48 1511 1.0

3.15 1548 1.3

Observations

1. As with the temperature profiles for methane/air without sodium, the

location of maximum temperature is found at a larger HAB as 4) increases.

2. The maximum temperature for 4)=1.86 seems to be slightly higher than

the maximum temperature for all the other cases. In general, however, as

4) more than doubles as it increases from 1.29 to 3.15, the maximum

temperature increases by only 32 K.

6.3.4 Comparison of Temperature Profiles for Methane/Air Flames,
With and Without Sodium

Figures 6.6-6.8 shows how the experimental temperature profiles (corrected

for radiation only) for methane/air flames without sodium (indicated by the

blue lines) compare to the profiles for flames with sodium (indicated by the

orange lines), for 4)=1.86, 2.48 and 3.15 respectively.
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Figure 6.6 Comparison of Experimental Temperature Profiles
for CH4/Air and CH4/Air /Na Flames, (1)=1.86
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Figure 6.7 Comparison of Experimental Temperature Profiles
for CH4/Air and CH4/Air /Na Flames, 4=2.48



108

Figure 6.8 Comparison of Experimental Temperature Profiles
for CH4/Air and CH4/Air/Na Flames, Φ=3.15

Observations

1. It appears that for 4)=1.86, there is a temperature profile crossover i.e., the

flame experiences an increase in flame temperature later on in the flame.

This crossover of temperature profiles is not evident for 4=2.48 and 3.15.

2. Table 6.4 shows that the maximum temperature is located lower in the

flame when sodium is present for each 4).
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Table 6.4 Comparison of HAB of Maximum Temperatures
for CH4/Air and CH4/Air/Na Flames

Maximum Temperature & Location (HAB)

4)

Max Temp (K) HAB (cm)

w/o Na w/ Na w/o Na w/ Na

1.29 N/A 1516 N/A 0.13

1.86 1531 1615 0.76 0.64

2.48 1536 1511 1.3 1.0

3.15 1554 1548  1.52 1.3

3. The maximum temperature in the flame does not change significantly

with the addition of sodium.

4. The data for #1)=3.15 appears to contain the most noise, as evidenced by the absence of

a smooth line. This was expected. The high equivalence ratio coupled with the

addition of sodium created a very "floppy, loose, wandering" flame.

Hypotheses

1. From figure 6.6 and figure 6.7, it is seen that as 4 increases, the location

of maximum temperature increases in HAB. This was not a surprise. As

the equivalence ratio increased, so too did the overall physical size of the

flame. From this, one would expect that the size of the primary

combustion zone, or the inner core, would also increase (Figure 6.9

highlights the important regions of flame).
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Figure 6.9 Schematic Diagram of Flame Regions

Since the maximum temperature is generally located somewhat above the

primary combustion zone, as the upper boundary of the primary

combustion zone increased so too would the location of maximum

temperature (16).

2. The maximum temperature for methane/air and methane/air/sodium

flames seemed to be independent of equivalence ratio. With the exception

of 4)=1.86 with doped sodium, the maximum temperatures asymptotically

approached 1525 ± 20K. One possible explanation for this is that the

equivalence ratio that was calculated based on the metered fuel and

oxidant flows is not the same as the local equivalence ratio in the flame.

This calculation does not take into account the additional oxygen that is

entrained by the flame. A calculation was performed for (1)=1.86 where it is

shown that, at 1.8 mm HAB, the local equivalence ratio has been reduced

from 1.86 to 1.0. As a result, it is quite possible that the local equivalence
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ratios may be more similar than different, due to the fact that the flames

are diluted with entrained air.

3. For each 4), the temperature profile for the flame with sodium and the

flame without sodium can be considered effectively the same within

experimental error.

6.4 CHEMKIN Flame Code Modifications

6.4.1 Reaction Mechanism

The CH4/air and CH4/CH3Cl/air reaction mechanisms used by the computer

flame model in this study are from a previously published source (27).

However, a complete reaction mechanism was not available in the literature

for the combustion of either a CH4/air or CH4/CH3Cl/air flame doped with

sodium. What was indeed available was a subset of the reaction mechanism

for sodium in a hydrogen/oxygen flame (18). This subset included only those

reactions that contained sodium species. However, as discussed earlier,

sodium chemistry is assumed to be effectively independent of fuel type

because the metal/carbon chemistry is not likely to be significant in the gas

phase (19). As a starting point, this subset of sodium species reactions was

simply added to the existing CH4/air mechanism.

The reaction scheme which includes all the possible reactions of Na,

NaO, Na02, and NaOH is illustrated schematically in figure 6.10 and the



actual reactions are listed in table 6.5 (18). All additional relevant

information regarding the sodium reaction subset is listed in Appendix C
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Figure 6.10 Sodium Reaction Scheme



Table 6.5 Sodium Combustion Reactions (18)
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According to Schofield et al. (18), an examination of the possible reactions of

Nail (sodium hydride) indicates that this species need not be considered.

Also, due to very low sodium concentrations, molecules containing more than

one atom of sodium are unlikely.

In addition, for the purposes of this study only, a reaction set was

included to account for sodium atom production from sodium ion, since the

sodium was introduced to the flame as aqueous Na+NO3 - solution. Further
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examination of this theory suggests that the Nat is more likely converted

directly to atomic sodium. This theory is discussed in chapter 8. However, the

model that was run to simulate the flames in this study during the course of

this work included a reaction subset that accounted for sodium ion to atom

conversion. These reactions are outlined in the following table.

Table 6.6 Sodium Ion Reactions

Reaction (21) is the major source of electrons in the flame mechanism (37).

The kinetics for this reaction were drawn from the neutral analogue, CH+O =

CH+H (37). Reaction (-23) illustrates how sodium atom is produced from

sodium ion, in the presence of bath gas, M. Reaction (22) is a sink for

electrons, E.

The second subset of reactions that was added to the existing

mechanism was the likely reactions between Cl radical and Na species. These

additional reactions, which were added to the sodium subset, will be outlined

in chapter 7.
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6.4.2 Development of Air Entrainment Constant for Methane/Air
Flames Containing Sodium

The general development of the air entrainment constant for the flame code

and the specific development of the constant used to model methane/air

flames was discussed in section 5.2.4. This section will discuss the

development of the constant used in the air entrainment expression that

effectively models methane/air flames that contain sodium.

Figure 6.11 illustrates experimental and modeling CO2 profiles as

function of HAB for methane/air flames doped with sodium for 0=1.86. The

values of entrainment constant, C, vary from 1.0 C 3.0 cm -1 . As expected,

CO2 concentrations reached a maximum and then decreased due to dilution

with entrained air. A starting point was to use the entrainment constant for

methane/air flames, i.e., C=4.0 cm -1 . However, figure 6.11 shows that as C --->

4.0 cm -1 , the fit between the results and the experimental data worsens.

Analysis of the results shows that the compatibility of the experimental data

with the model is optimized at an entrainment constant equal to 2.0 cm-1.
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Figure 6.11 Experimental and Modeling CO2 Concentration
Profiles for CH4/Air/Na Flames for Varying
Entrainment Constants

Similarly, figure 6.12 shows how a change in entrainment constant affects

the CO profiles for the same methane/air/sodium flame. Once again, these

results strengthen the conclusion that a best fit is obtained between

experimental data and the model when C=2.0 cm - ' is used as the entrainment

constant.
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Figure 6.12 Experimental and Modeling CO Concentration
Profiles for CH4/Air/Na Flames for Varying
Entrainment Constants

Therefore, for all flames containing methane + air + sodium only, an

entrainment constant of c=2.0 cm - ' was used. This entrainment constant is

independent of equivalence ratio.

6.5 Stable Species Profiles

Experimental stable species profiles were collected for all flame types for (Φ) =

1.86 only. This section will discuss the comparisons between experimental

data and modeling for the following flame types:

1. Methane/air

2. Methane/air/sodium
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Methane/air flames will be discussed separately first, followed by

methane/air/sodium flames. Modeling results only (i.e., no experimental data)

will be presented for 4) =1.29, 2.48, 3.15 in an effort to illuminate any trends

in stable species profiles as a function of changing equivalence ratio.

6.5.1 Methane/Air Flames

The experimental data for stable species profiles were collected via the gas

sampling system, outlined in section 4.1.11. Figure 6. 13 shows how the

experimental data compare to the modeling results for CH4, CO2 and CO for 4)

= 1.86.

Figure 6.13 Experimental and Modeling Results of Stable Species
Profiles for CH4/Air Flame, C=4.0, 4)=1.86
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The experimental data, as well as the modeling results, follow the expected

trends that were discussed in section 5.2.4. The mole fraction of the primary

reactant, CH4, declines monotonically. The mole fraction of the intermediate,

CO, reaches a maximum at approximately the same HAB as the CH4 mole

fraction effectively disappears, at 0.5 cm HAB. The CO mole fraction then

falls as it is converted to CO2. The CO2 mole fractions reach a maximum later

at approximately 0.7 cm HAB. After reaching a maximum, CO2 mole

fractions decrease due to air entrainment. In general, the fit between the

experimental data and the model is reasonable.

Comparison of the stable species profiles and the temperature profile

for this flame shows that the temperature peaks at approximately 0.75 cm

HAB, as seen in figure 6.14. This is where the CO has effectively disappeared

and CO2 has peaked. Methane is long gone. Therefore, combustion is over.

Air entrainment is acting to drop the temperature as well as CO2

concentration after their peaks.
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Figure 6.14 Experimental Temperature Profile for CH4/Air
Flame, C=4.0, (1)=1.86

6.5.2 Methane/Air/Sodium Flames

Figure 6.15 shows the stable species profiles for methane/air flames doped

with sodium. As expected, the CH4 concentrations decline monotonically. The

CO mole fraction rises to a maximum at approximately 0.5 HAB, after which

it falls as it is converted to CO2. The CO2 peaks at 0.7 HAB, but eventually

drops off due to dilution with entrained air. As with the methane/air flame,

the fit between the experimental data and the model for the

methane/air/sodium flame is also reasonable.



Figure 6.15 Experimental and Modeling Results of Stable Species
Profiles for CH4/Air/Na Flame, C=2.0, (1)=1.86

Comparison of the stable species profiles with the temperature profile

for the same flame (figure 6.16), shows that a maximum temperature is

effectively reached at the point where the CO has disappeared and the CO2

has peaked and is starting to fall.
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Figure 6.16 Experimental Temperature Profile for CH4/Air/Na
Flame, C=2.0, 4)=1.86

6.5.3 Comparison of Stable Species Profiles for Methane/Air Flames,
With and Without Sodium

The experimental profiles, as well as the modeling results for methane/air

and methane/air/sodium flames, were as expected. It is not until the

individual species profiles are compared directly that the actual affects of

sodium on the methane/ air flame are observed.

It is clear from figure 6.17, that the CH4 profiles for methane/air

flames for 4)=1.86 is effectively unaffected by the addition of sodium.



Figure 6.17 Comparison of Experimental and Modeling Results of
CH4 Profiles for CH4/Air and CH4/Air/Na Flames, 4)=1.86

The following figure 6.18 depicts the CO profiles.

Figure 6.18 Comparison of Experimental and Modeling Results of
CO Profiles for CH4/Air and CH4/Air/Na Flames, 4=1.86
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It appears that the addition of sodium allows for the production of more CO,

earlier on in the flame. However, though the modeling results do not show

this, the experimental data indicates that the CO falls more rapidly in the

absence of Na after the peaks.

It is not until the CO2 profiles are compared, that the significance of

the addition of sodium to the methane/air flame is observed. Figure 6.19

illustrates the CO2 profiles using experimental data as well as modeling

results for methane/air and methane/air/sodium flames.

Figure 6.19 Comparison of Experimental and Modeling Results of CO2
Profiles for CH4/Air and CH4/Air/Na Flames, (1)=1.86

It is clear that there is a significant increase in the concentration of CO2

produced when sodium is present in the flame.
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Figure 6.20 represents the modeling results for the CO/CO2 ratio for

Φ=1.86. However, no conclusions can be drawn from this profile since the

model does not accurately represent the experimental CO profile.

Figure 6.20 Comparison of Modeling Results of CO/CO2 Ratios
for CH4/Air and CH4/Air/Na Flames, Φ=1.86

Figure 6.21 represents the CO/CO2 ratio for Φ=1.86 using experimental

data.

Figure 6.21 Comparison of Experimental CO/CO2 Ratios for
CH4/Air and CH4/Air/Na Flames, ( Φ )=1.86
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6.6 Sodium Profiles in Methane/Air/Sodium Flames

6.6.1 Background

During the course of this study, the relative mole fraction of sodium in the

flame was extracted from the experimental absorption data and this

approach is discussed and derived in the following sections. The trends of

these relative mole fraction profiles were then compared directly to absolute

mole fraction profiles of sodium atom obtained from the model. At the time of

this work, it was assumed that absolute sodium atom concentrations in the

flame were not necessary. It was viewed that what was more important than

absolute concentrations was the trends in the profiles and how they were

affected by changes in the flame; namely changes in equivalence ratio and

chlorine loading. However, in hindsight, a more thorough analysis of the

results showed that while the changes in trends observed in sodium mole

fraction profiles may have been in the right "direction", the assumptions

made in achieving those results were flawed. Indeed, the raw absorption data

would have been better utilized and the conclusions drawn would have been

more emphatic had the data been directly converted to absolute sodium atom

concentrations.

The comparison of relative mole fraction of sodium atom from the

experimental data with absolute mole fractions from the model will be

presented in the following sections as a coarse, initial attempt at examining
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the how the fate of sodium (as depicted by the trends observed) is affected by

changes in equivalence ratio and chlorine loading.

A discussion of the flawed assumptions made during the course of this

study regarding Beer's law as well as a comprehensive discussion of how

absolute sodium atom concentrations in the flame can be extracted from

experimental absorbance data is presented in chapter 8. Additional plots of

absorbance versus HAB will also be presented since experimental data and

modeling results that are presented on the same graph (with different axes)

may serve to confuse rather than enlighten.

During the course of this work, relative sodium concentration profiles

were obtained experimentally via manipulation of the atomic absorption

profiles. The data collection method was discussed in section 4.2.3. The

experimentally determined absorbance, A, was related to the concentration of

the absorbing species (i.e. sodium atom) through Beer's Law in the following

manner (50):

where a is the proportionality constant called the absorptivity; b is the path

length through the flame; and c is the concentration of sodium atom in the

flame. For the purposes of this study, the absorptivity and the path length

were considered constant. Therefore,



According to the ideal gas law,

where y is defined as the species mole fraction; R is the ideal gas constant; P

is the total system pressure; T is the temperature. Since the total system

pressure, P and R are constant, the concentration may be rewritten in the

following manner:

Therefore, the mole fraction, y, of sodium species can be found by the

following relationship:

For the purposes of this study, the relative mole fraction of sodium in the

flame is determined from the product of absorbance measurements and the
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corresponding radiation-corrected temperature. The shape and maxima of the

experimentally determined relative sodium mole fractions are then compared

to the absolute sodium mole fractions found from execution of the model.

6.6.2 Trends Observed From Experimental Data

Figure 6.26 shows how the experimental sodium absorption profiles (relative

mole fraction) vary with equivalence ratio.

Figure 6.22 Comparison of Experimental Sodium Absorption Profiles
for CH4/Air/Na Flames, (1)=1.29, 1.86, 2.48, and 3.15

It should be noted that for all 4) except 4)=1.29, the sodium profiles start at

HAB>0. Quite simply, sodium was undetectable at lower HAB for all other

equivalence ratios (i.e., the signal dip due to absorption by sodium atoms was

smaller than the signal noise). These HAB>0 are consistent with the
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approximate HAB of the small, blue, innermost cores still apparent in the

sodium flames pictured in Figure 6.2

Observations

1. From the above graph (figure 6.26), it is clear that maximum absorbance,

and hence maximum production of sodium atoms, increases with

decreasing 4). From an experimental viewpoint, when collecting data at

lower equivalence ratios (e.g., 4)=1.29), the drop in optical transmission

due to absorbance by sodium atoms was sharp. This was in spite of the

fact that the flame was very small and data was difficult to collect in

general. In contrast, the drop in transmission produced by sodium

absorption for higher equivalence ratios (e.g., 4)=3.15) appeared less sharp.

2. The location of maximum absorbance for each equivalence ratio increased

with increasing 4). (i.e., shifted to higher HAB).

3. The shape of the absorption profiles followed the overall shape of the

flame, for a given equivalence ratio. For example, at 4)=1.29, the flame as

well the absorption profile was narrow and sharp. However, for 4)=3.15,

the shape of the absorption profile and flame was broad and flatter.
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6.6.3 Comparison of Modeling Results with Experimental Data for
Sodium Absorption Profiles

Figures 6.27-6.30 depict how the modeling results compare with the

experimental data for 4)=1.29, 1.86, 2.48 and 3.15, respectively. Note that the

left and right y axes, respectively, on all four graphs are on the same scale.

Figure 6.23 Comparison of Experimental and Modeling Results of Sodium
Absorption Profiles for a CH4/Air/Na Flame for 4)=1.29
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Figure 6.24 Comparison of Experimental and Modeling Results of
Sodium Absorption Profiles for a CH4/Air/Na Flame for
4)=1.86

Figure 6.25 Comparison of Experimental and Modeling Results of
Sodium Absorption Profiles for a CH4/Air/Na Flame for
4)=2.48
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Figure 6.26 Comparison of Experimental and Modeling Results of
Sodium Absorption Profiles for a CH4/Air/Na Flame for
4)=3.15

In general, the agreement is good, especially the HAB location of maxima,

between the experimental data and the modeling. The following modeling

results mirrored the experimental trends:

Observations

1. As with the experimental data, the modeling results also generally show

that maximum sodium mole fraction increases with decreasing

equivalence ratio.

2. The location of maximum sodium mole fraction increases in HAB as

equivalence ratio increases.

3. The shape of the mole fraction profiles got broader with increasing 4).



CHAPTER 7

EFFECTS OF CHLORINE ADDITION TO METHANE/AIR AND
METHANE/AIR/SODIUM FLAMES

7.1 Introduction

Chapter 6 discussed the experimental and modeling results of methane/air

flames when compared to methane/air flames doped with sodium. This

chapter will take the investigation of these flames once step further by

examining the effects of chlorine addition.

Most of the discussion in this chapter regarding the effects of chlorine

addition to methane/air and methane/air/sodium flames will be based

primarily on experimental data. Modeling results will be presented for the

methane/air/chlorine flames. However, it was found that our modified

CHEMKIN flame code was not robust enough numerically to generate a

converged solution to the methane/air/sodium/chlorine flames. There will be a

discussion of the modifications made to the code in addition to the partial

results obtained for this particular flame, as well as possible improvements

that could be made in an effort to reach a solution.

Chlorine was introduced to the methane/air and methane/air/sodium

flames in the form of methyl chloride (CH3Cl). The actual amount of methyl

chloride introduced to each flame was measured as a feed molar ratio (R) of

methyl chloride to methane. For any given equivalence ratio, the air flow rate
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was kept constant. The methane flow rate was then decreased as the methyl

chloride flow rate was increased. The flow rates were chosen so as to keep the

total unburned gas flow rate nearly constant. The ratio, R, varied from 0.0 to

0.31.

The following table gives a brief overview of the type of data as well as

the type of flames that will be discussed in this chapter:

Table 7.1 Outline of Experimental and Modeling Analysis ofCH4/Air/CH3CH and CH4/Air/CH3CL/Na Flames by this Study
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7.2 Physical Appearance of the Flame

As discussed in Chapter 6, the physical size of the flame including the inner

core, increased with an increase in equivalence ratio. This was true for all

flame types. It is hypothesized that this increase in flame size is due to a

decrease in flame speed according to Equation 6.1. This chapter will explore

the change in flame characteristics due to addition of chlorine, for both

methane/air and methane/air/sodium flames.

7.2.1 Methane/Air Flames

Figures 7.1-7.4 depicts how the appearance of the flame varies for a given 4),

as the CH3Cl/CH4 ratio in the flame is altered. As previously stated in

chapter 6, all photographs were taken with a camera placed at a fixed

distance away from the burner while the fuel and/or air flow rates were

manipulated.

Observations:

1. As the ratio (R) of CH3Cl to CH4 is increased, the color of the inner core is

intensified. This is most evident for 4)=1.29 and 1.86 where the color of the

inner core becomes more opaque and changes from blue to a lighter blue-

green.

2. The physical dimensions of this slotted methane/air flame do not exhibit

any radical change due to the addition of chlorine. For 4)=1.29 (R= 0, 0.1
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and 0.31) and 1.86 (R= 0, 0.1 and 0.2) the size of the flame increases

slightly. However this is not evident for 4)=2.48 and 3.15. This is most

likely due to the low chlorine content (e.g., R=0.05) used in these flames.



Figure 7.1 CH4/Air/CH3Cl Flames, (1)=1.29
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Figure 7.2 CH4/Air/CH3 C1 Flames, 4)=1.86
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Figure 7.3 CH4/Air/CH3 Cl Flames, (1)=2.48



Figure 7.4 CH4/Air/CH3 Cl Flames, Φ=3.15
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Hypotheses:

1. As the equivalence ratio is increased from 1.29 to 3.15, the size of the

inner core also increases. This increase in flame height, h, corresponds to

a decrease in flame speed, Su. It should be noted however, that a change in

flame height is not observed within a given 4) due to a change in chlorine

content.

2. The greenish shift of the blue methane/air flames as R increases could be

due to the presence of C2 (carbon radical dimer) radical (60, 66). It emits a

series of molecular bands called the Swan Spectroscopic System. The

enhancement of C2 and other di-carbon and higher species is a likely

consequence of the H abstraction capability of the Cl atom (45) and the

subsequent formation of carbon-carbon bonds.

7.2.2 Methane/Air/Sodium Flames

Figures 7.5-7.8 illustrates the changes in color as well as size for

methane/air/sodium flames that contain varying amounts of chlorine.

Observations:

1. As with the methane/air flame, the color of the inner core changes with

the addition of chlorine. As R is increased, the intensity of the blue-green

color observed in the inner core also increases. This is more obvious in the

sodium flame compared to the non-sodium flame because the appearance
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of the blue-green inner core coincides with the disappearance of the pink

inner core (due to the presence of sodium).



Figure 7.5 CH4/Air/CH 3 Cl/Na Flames, ( Φ)=1.29
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Figure 7.6 CH 4/Air/CH 3 Cl/Na Flames, Φ=1.86
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Figure 7.7 CH4/Air/CH 3 Cl/Na Flames, (1)=2.48
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Figure 7.8 CH4/Air/CH3 Cl/Na Flames, (1)=3.15
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2. Conversely, as the chlorine content in the flame increased (i.e., R

increases), the orange color in the outer mantle (a by-product of the

combustion of sodium) decreased in intensity.

3. For any given 4), the size of the outer mantle decreased as R increased. As

the CH3Cl/ CH4 ratio was increased, the flame became "tighter" and

"neater". This change in flame size is quite evident for all ( Φ).

Hypotheses:

1. The increase in intensity of the blue-green inner core as R is increased is

possibly due to the increased production of C2 radical (60,66).

2. The decrease in the orange color of the outer mantle may be due to a

reduction in net sodium atom production (i.e., a reduction in intensity of

orange flame color) as a result of sodium/chlorine combination reactions

(discussed later in this chapter).

3. As observed with all of the flames (i.e. CH4/Air, CH4/Air/Na,

CH4/Air/CH3Cl, CH4/Air/CH3Cl/Na), as the equivalence ratio is increased,

the size of the inner core also increases. This leads to the hypothesis that

the flame speed decreases as 4) increases, even when sodium and chlorine

are added to a CH4/Air flame.
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7.3 Temperature Profiles

7.3.1 Methane/Methyl Chloride/Air Temperature Profiles

Figures 7.9, 7.10 and 7.11 depict the temperature profiles for

methane/methyl chloride/air flames of varying R values for 4) = 1.86, 2.48 and

3.15, respectively (temperature profiles for flames without sodium were not

available for 4)=1.29).

Figure 7.9 Experimental Temperature Profile of CH4/Air/CH3Cl
Flames, 4)=1.86
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Figure 7.10 Experimental Temperature Profile of CH4/Air/CH3Cl
Flames, (1)=2.48

Figure 7.11 Experimental Temperature Profile of CH4/Air/CH3Cl
Flames, (1)=3.15
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Observations:

1. As discussed in chapter 6, as (I) increased, the physical dimensions of the

flame increased. As a result, the HAB location of the maximum

temperature also increased. For methane/air flames that had been doped

with chlorine, as R increased from 0.0 to 0.2, the size of the flame also

slightly increased. However, the slight change in physical dimension

resulting from the chlorine addition did not result in any change in the

location of maximum temperature.

2. A dip in the (1)=3.15 temperature profile at approximately 0.8 cm HAB was

observed. At this time, it is unclear whether or not this dip is real. There

will be further comment on this dip in section 7.3.2.

Hypotheses:

The observation that the location of maximum temperature does not change

as the chlorine content changes may be due to the fact that the relative

amounts of chlorine added were not significant enough. However, another

explanation involves the assumed relationship of laminar flame speed and air

entrainment for this flame. The slight increase in flame height as the

chlorine content rises suggests a slightly lower flame speed (eq. 6.1). It is

possible that a slightly slower flame experiences less transport of air (02)

from the surroundings. The literature flames (47,51) were flat flames

shrouded from any air entrainment. As less air enters, less dilution occurs
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from the air nitrogen. The hotter gases lose heat at a greater rate by heat

transfer to the burner.

7.3.2 Methane/Methyl Chloride/Sodium/Air Temperature Profiles

This section will discuss the effects of chlorine addition on the temperature

profiles of a methane/air flame that has been doped with sodium. Figures

7.12-7.15 illustrate the temperature profiles for (V= 1.29, 1.84, 2.48, and 3.15,

respectively.

Figure 7.12 Experimental Temperature Profiles of CH4/Air/CH3Cl/Na
Flames, 4)=1.29
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Figure 7.13 Experimental Temperature Profiles of CH4/Air/CH3Cl/Na
Flames, 4=1.86

Figure 7.14 Experimental Temperature Profiles of CH4/Air/CH3Cl/Na
Flames, 4=2.48
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Figure 7.15 Experimental Temperature Profiles of CH4/Air/CH3Cl/Na
Flames, (1)=3.15

Observations:

When chlorine was introduced to a methane/air flame of a particular

equivalence ratio doped with sodium, there was an obvious reduction in the

physical size of the outer cone of the flame (Figure 7.5-7.8). It was illustrated

in Chapter 6 that when the physical dimensions of the flame changed due to

a change in equivalence ratio, the location of the maximum temperature in

the flame shifted e.g., when the flame size decreased, the maximum

temperature for that flame was found at a lower HAB. However, these figures

show that a change in physical dimension of the flame does not cause a shift

in the location of maximum temperature.
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Hypotheses:

1. A dip in the temperature profile for 4)=3.15 was once again observed.

However, examination of the raw data does not determine whether this is

real or anomalous. Therefore, in the absence of corroborating proof that

this is indeed real, it will be assumed that the dip in the 4)=3.15

temperature profile is an anomaly.

2. Even though the size of the outer mantle decreased with increase in

chlorine content, the size of the inner core (i.e., the location of the primary

reaction zone) remained relatively unchanged. As a result, since the

location of the primary reaction zone remained relatively unchanged with

a change in chlorine content, then so too did the HAB location of

maximum temperature.

7.4 Sodium Absorption Profiles

Preliminary sodium absorption profiles for methane/air flames (without

chlorine) have already been presented in chapter 6. It was observed that the

maximum sodium absorbance shifted to higher HAB as 4 increased. Also, the

maximum sodium absorbance appeared to decrease with increasing (1). This

section will discuss how those profiles were affected by the addition of

chlorine. The fuel-rich equivalence ratios of interest are 1.29, 1.86, 2.48 and

3.15.
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It should be noted once again (as discussed in chapter 6) that the

trends observed in this study regarding the fate of sodium in these flames

may be critically viewed as a coarse, initial investigation. A more developed

and comprehensive examination of absorbance measurements and sodium

concentration profiles will be presented in chapter 8. Caution should be taken

in noting that it is the derivation of the relative mole fraction parameter that

is based on incorrect assumptions. The absorbance versus HAB profiles are

valid.

7.4.1 Background

It was shown in Figure 6.3 that the methane/air flame increased in size and

changed color from blue to orange when sodium was added to the flame. It

was also shown that when chlorine was added to this methane/air flame

doped with sodium, that the orange color disappeared and the flame began to

decrease in size. This information is critical background material when

attempting to explain how the amounts of chlorine added to the sodium-

doped flames were chosen for different equivalence ratios.

An experiment was performed on a methane/air flame doped with

sodium (0=2.48) in order to determine what was the maximum amount of

chlorine (i.e., the upper limit) and the minimum amount of chlorine (i.e., the

lower limit) that could be added to the sodium-doped methane/air flames.

These upper and lower limits would become the minimum and maximum R



157

values used in this portion of the study. In general, the minimum R value

usually corresponded to the lowest flow rate that could be measured on the

CH3Cl rotameter. The maximum R value usually corresponded to the

greatest amount of CH3Cl that could be added to the flame and still observe

an absorbance due to the sodium atoms.

A "first guess" value of R=0.2 was chosen and the following

observations were made:

1. As soon as the chlorine was introduced to the flame, the bright orange

color, due to the presence of sodium, disappeared almost completely.

2. A blue-green color was observed in the flame, possibly due to increased

levels of C2 radical (60).

3. The flame got physically smaller (resembling a less fuel-rich flame).

4. The attenuation of transmitted light at 589 nm by the sodium atoms that

had been previously observed in the sodium doped methane/air flame was

completely gone (i.e. no absorbance).

The R value was then lowered until a reliable non-zero absorbance (i.e.,

where the signal attenuation was at least double the signal/noise) was

observed. For (1)=2.48, the upper limit CH3Cl/CH4 ratio was determined to be

R=0.11. However, even at this small R value the absorbance decreased by

71%.

Similar experiments were performed on the other equivalence ratios of

interest (i.e., what was the most chlorine that could be added to that



158

particular flame and still see attenuation due to the presence of sodium

atoms). Then, incremental R values were chosen between R=0.0 and R=

upper limit. In some cases, the actual incremental value of R was limited by

the rotameter setting. Table 7.2 summarizes these results.

Table 7.2 Summary of CH3Cl/CH4 Ratios

For 4)=1.29, the flame appeared to be very "robust" in that the size of the

signal attenuation could withstand the introduction of (relatively) large

amounts of chlorine (i.e., larger R values). This suggests that, at 4)=1.29,

many sodium atoms were being produced. However, for 4)=3.15, the slightest

amount of chlorine (i.e., very small R) introduced into the flame caused a

significant decrease in the absorbance. This then leads to the contrasting

hypothesis that for 4)=3.15, the flame was producing few net sodium atoms. It

should be noted in all experiments, the sodium nitrate solution feed rate to

the flame was constant.



7.4.2 Absorbance Profiles

Figures 7.16-7.19 depict how sodium absorbance profiles change when

chlorine is added to a methane/air flame that has been doped with sodium.

Note that all four plots were placed on the same scale in order to facilitate

comparisons between the different equivalence ratios.

Figure 7.16 Experimental Sodium Absorbance Profiles for
CH4/Air/CH3Cl/Na Flames, (1)=1.29
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Figure 7.17 Experimental Sodium Absorbance Profiles for
CH4/Air/CH3Cl/Na Flames, (1)=1.86
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Figure 7.18 Experimental Sodium Absorbance Profiles for
CH4/Air/CH3Cl/Na Flames, ( Φ)=2.48
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Figure 7.19 Experimental Sodium Absorbance Profiles
for CH4/Air/CH3Cl/Na Flames, 4)=3.15

The negative impact of chlorine on the maximum concentration of sodium

atoms for any given R value can be seen in Figure 7.20.

Figure 7.20 Change in Maximum Absorbance With Respect to
CH3Cl/CH4 Ratio, Φ=1.29, 1.86, 2.48, and 3.15
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Observations:

1. The overall concentration of sodium atoms decreased as the equivalence

ratio increased. This is evidenced by a decrease in sodium absorption

signal with increasing 4).

2. The addition of chlorine had a much more profound effect on the

absorbance signals as the equivalence ratios were increased. The

maximum absorbance peaks drop as the chlorine content increases. Also,

as 4) increases, the relative drop in absorbance with respect to R is

accelerated.

3. The location of maximum absorbance shifts to higher HAB as equivalence

ratio was increased.

4. The absorbance signal profiles "broadened" with increase in equivalence

ratio. This was expected since the overall size of the flame increased with

increase in equivalence ratio.

5. The general location of the locust of points that constitute maximum

absorbance has been highlighted. It appears that for any given

equivalence ratio, the HAB location of maximum absorbance did not

change with a change in chlorine content.

Hypothesis:

1. Figure 7.21 depicts how the maximum absorbance signal is affected by

chlorine loading, for a given 4).



Figure 7.21 Change in Maximum Absorbance Signal as a Function
of Chlorine Loading, 4)=1.29, 1.86, 2.48, and 3.15

It is clear that a chlorine loading of R=0.1 has a much greater impact on a

flame where 4)=3.15 compared to 4)=1.29. It is hypothesized that any given

chlorine loading has an overall greater impact on sodium in the flame as

the equivalence ratio is increased possibly because the amount of sodium

atoms produced is not as great, as the equivalence ratio is increased. A

complimentary explanation is that, at higher 4), the chlorine is more

effective in sodium removal — possibly due to higher concentrations of

those chlorine species which remove sodium atom.

2. The amount of chlorine added to a methane/air flame that has been doped

with sodium directly affects the concentration of sodium atoms in the

flame. It appears that, as the chlorine loading is increased, sodium atom

levels are decreased (as evidenced by a decrease in sodium absorption

163
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signal). This is possibly due to the combination reactions between sodium

and chlorine. These reactions will be discussed in section 7.5.1, Reaction

Mechanism Modifications.

3. As outlined in sections 6.3 and 7.3, the location of maximum temperature

shifted to higher HAB as the equivalence ratio increased. It was also

shown in section 7.4.2 that the location of maximum sodium absorbance

shifted to higher HAB as equivalence ratio increased. Figures 7.22 — 7.24,

representing a methane/air flame that has been doped with sodium and

chlorine (R=0.1), show how the absorbance profiles and temperature

profiles are related. Note that data for R=0.1 were not available for

(1)=3.15.

Figure 7.22 Comparison of Experimental Temperature Profiles and
Relative Absorbance Profiles for CH4/Air/CH3Cl and
CH4/Air/CH3Cl/Na Flames, Φ=1.29
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Figure 7.23 Comparison of Experimental Temperature Profiles and
Relative Absorbance Profiles for CH4/Air/CH3Cl and
CH4/Air/CH3Cl/Na Flames, Φ=1.86

Figure 7.24 Comparison of Experimental Temperature Profiles and
Relative Absorbance Profiles for CH4/Air/CH3Cl and
CH4/Air/CH3Cl/Na Flames, Φ=2.48

It appears that, as (I) increases, the maximum absorbance shift to higher

HAB is synchronous with the maximum temperature shift. This suggests

that a change in sodium atom production might be a consequence of a
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change in temperature i.e., as opposed to a delayed response due to a

chain reaction. As a result, the absorption profiles (and maxima) appear to

"follow" the temperature profiles. This is what led to the observation that

the absorbance profiles seemed to broaden with increase in equivalence

ratio—the temperature profiles had also broadened with increase in

equivalence ratio.

4. Because the general HAB location of maximum temperature in the flame

does not change with increased chlorine content, the HAB location of

maximum absorbance signal also does not change with increased chlorine

content. It is hypothesized that the HAB location of maximum

concentration of sodium atoms in the flame is dependent upon the

temperature profile, while the magnitude of maximum production of

sodium atoms is dependent on the chlorine loading. This hypothesis is

characterized by the following figure, figure 7.25.
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Figure 7.25 Schematic Diagram of Shift in Absorbance Profile With
Respect to Change in Chlorine Loading and/or
Phi/Temperature

7.5 Stable Species Profiles

This section will examine how the stable species profiles (CO, CO2, and CH4)

were affected by the addition of chlorine to methane/air and

methane/air/sodium flames. Experimental data for this part of the study were

collected for 4)=1.86 only. Of the four flames studied, this flame had the best

combination of flame height and "steadiness" for probe sampling. These

characteristics optimized spatial resolution and reproducibility of the data.

7.5.1 CO Profiles

Figures 7.26-7.27 depict CO profiles for methane/air and methane/air/sodium

flames that have been doped with chlorine, respectively.



Figure 7.26 Experimental CO Concentration Profiles for
CH4/Air/CH3Cl Flames, Φ=1.86
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Figure 7.27 Experimental CO Concentration Profiles for
CH4/Air/CH3Cl/Na Flames, 4)=1.86
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Observations:

1. For the methane/air flame, it appears that the CO profiles are relatively

unaffected by the addition of chlorine.

2. For the methane/air/sodium flame, it appears that the addition of chlorine

slightly decreases the production of CO for HAB less than 0.8 cm. At

HAB=0.8cm, the CO profiles appear to crossover, similar to the

phenomenon exhibited by the temperature profiles (section 7.3).

7.5.2 CO2 Profiles

Figures 7.28-7.29 depict CO2 profiles for methane/air and

methane/air/sodium flames that have been doped with chlorine, respectively.

Figure 7.28 Experimental CO2 Concentration Profiles for
CH4/Air/CH3CI Flames, Φ=1.86
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Figure 7.29 Experimental CO2 Concentration Profiles for
CH4/Air/CH3Cl/Na Flames, Φ=1.86

When evaluating the CO and CO2 profiles, the noise in the experimental data

limits the number of conclusive observations that can be drawn regarding

chlorine inhibition after approximately 1 cm HAB. However, comparison of

Figures 7.28 and 7.29 leads to the following observations. Note should be

taken that these observations serve to reinforce previously stated

conclusions.

Observations:

1. It appears that within the noise of the experimental data, the CO2 profiles

for the methane/air and the methane/air/sodium flames are relatively

unaffected by the addition of chlorine.
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2. The effect of air entrainment is evident in both profiles as a decrease in

CO2 mole fraction (i.e., dilution due to air entrainment).

3. The decrease in the CO2 concentration after 1cm HAB for the methane/air

flame is more rapid than that of the methane/air/sodium flame.

Hypothesis:

1. The decrease in CO2 concentration profiles for methane/air and

methane/air/sodium flames validate the effects of air entrainment.

2. The accelerated decrease of CO2 concentration in the methane/air/chlorine

flame leads to the hypothesis that this flame is more strongly affected by

dilution (i.e., entrains more air) than the methane/air/chlorine flame with

sodium.

7.5.3 CH4 Profiles

Experimental profiles of parent CH4 were obtained, as shown in Figures 7.30

and 7.31. Note should be taken that experimental data was not available for

0.0 HAB. As a result, the plots were extended back to the CH4 mole fractions

as determined by the unburned gas flow rates (represented by ).



Figure 7.30 Experimental CH4 Concentration Profiles in a
CH4/Air/CH3Cl Flame, 4)=1.86
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Figure 7.31 Experimental CH4 Concentration Profiles in a
CH4/Air/CH3Cl/Na Flame, Φ=1.86
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Figures 7.32 and 7.33 depict an enlarged portion of the CH4 profiles which

concentrate on HAB greater than 0.2 cm. The CH4 profile for the methane/air

flame doped with sodium-only is added to Figure 7.31 to assist in later

discussion.

Figure 7.32 Enlargement of Experimental CH4
Concentration Profiles in CH4/Air/CH3Cl and
CH4/Air/CH3Cl/Na Flames, 4)=1.86
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Figure 7.33 Enlargement of Experimental CH4 Concentration
Profiles in a CH4/Air/CH3Cl/Na Flame, Φ=1.86

Observations:

1. Figure 7.30 shows that the addition of chlorine appears to inhibit the

decay of parent CH4. This decrease in CH4 consumption due to chlorine is

similar to the decrease in CH4 consumption due to sodium alone.

2. Figure 7.31 shows that in the presence of sodium, increasing chlorine

content appears to increase the CH4 concentrations for all HAB.

Hypotheses:

1. It has already been shown that CO conversion from CO2 is reduced by the

addition of chlorine and/or sodium.
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7.6 CHEMKIN Flame Code Modifications and Results

Section 6.4 discussed the results of the modifications made to the CHEMKIN

flame code in order to model a methane/air flame with and without sodium. It

also discussed the development of the air entrainment constant used in the

model. The results were presented and compared to the experimental data.

This section takes that previous discussion one step further. It reviews the

modifications made to the CHEMKIN flame code when attempting to model

methane/air and methane/air/sodium flames that have been doped with

chlorine (CH3Cl). Because of the severe convergence difficulties encountered,

the methodology of trying to reach a converged solution to the model will also

be outlined in the form of a flowchart. The three-pronged approach to the

simulation for any particular flame with the code will also be discussed.

7.6.1 Reaction Mechanism Modifications

Methyl Chloride/Methane/Air Reactions Subset

The reaction mechanism used to describe the methane/air flames in Chapter

6 was actually a methyl chloride/methane/air mechanism that had been

stripped of the chlorinated species reactions (27). This resulted in a total of

184 reactions being used to describe methane/air flames. In order to model

the methyl chloride/ methane/air flames, the 71 chlorine reactions that were

previously removed were simply reinserted into the methane/air mechanism

for a total of 255 reactions (27).
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Sodium-Chlorine Reactions Subset

Table 7.3 outlines the supplementary reactions that were added to the

existing sodium—hydrocarbon mechanism to account for the likely

interactions between sodium and chlorine when sodium is placed in a

chlorinated hydrocarbon environment. The pre-exponential factors (A),

activation energies (Ea) and resulting rate constants (k) presented in table 7.3

were those that were used in the flame model during the course of this study.

Any modeling results presented in this chapter are a product of these input

parameters. However, further analysis of these modeling results led to a re-

examination of some of these parameters. While the actual reactions did not

change, the value of some of the kinetics parameters associated with these

reactions were improved. The results of these modifications are discussed in

chapter 8 and additional information is found in appendix D.

The procedure for development of this reaction subset was as follows:

• The NIST data base was searched for all sodium species and sodium ion

reactions.

• The search provided 150 possible reactions and their kinetic rate

parameters.

• Of these reactions, 8 reactions were chosen and evaluated for feasibility.

• Three of these 8 reactions were found to be unfeasible and were deleted.

• Two additional reactions were added. Their rate constants were estimated

with the QRRK method.
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• This resulted in a total number of 7 new reactions to account for the

interactions between sodium and chlorine.

The reactions used in the flame code to describe sodium-chlorine interactions

are found in table 7.3. Additional information regarding these reactions can

be found in appendix D.

Table 7.3 Sodium and Chlorine Reaction Mechanism

The CHEMKIN flame code used the above findings to calculate the forward

(as written) rate constant, k, in the following manner:
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where A pre-exponential factor or frequency factor

E activation energy, cal/mol

R gas constant = 1.987 cal/mol-K

T absolute temperature, K

n temperature exponent

ΔHrxn (calculated from Hfo at 25°C).

Note should be taken that the existing thermodynamic data base contained

data on all of the new species found in these additional reactions. However,

the transport database did not contain data for sodium chloride (NaCl). The

NaCl transport data parameters were taken to be the same as Cl0 transport

data.

7.6.2 The CHEMKIN Flame Code for CH4/CH3Cl/Air and
CH4/CH3Cl/Air/Na Flames

In order to arrive at a converged solution for any given flame, it was generally

necessary to first find .a converged solution to a flame at conditions far

removed from the particular flame of interest (i.e., with respect to

entrainment constant, temperature, and 4). One would then approach a

solution to the flame of interest in a method that could be described as
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parametric continuation. It was necessary to use this procedure of parametric

continuation on three different parameters in order to reach a solution. The

three parameters that were changed in an incremental fashion in order to

reach a suitable converged solution (and the order in which they were

manipulated) were as follows:

1. Entrainment constant, c

2. Equivalence ratio, Phi (4))

3. Temperature profile, T

For the methane/air flames with/without sodium, all three of these

parameters were changed successfully to reach a converged solution for all

cases. Once a converged solution was reached, that solution could be then

incrementally modified to optimize the solution. This procedure is outlined

schematically in figure 7.34-7.36.

With regard to methane/air flames that contained chlorine (CH3Cl),

the flame code could not reach a converged solution at the specified

(measured) temperature profiles. For the CH4/CH3Cl/Air flames, a solution

could not be reached with input temperatures any closer than 50K above the

actual temperature profile. An incremental change as small as 10K at only

one HAB would cause the convergence to fail. For the CH4/CH3Cl/Air/Na

flame, the code would only give a solution at temperatures approximately

200K above the actual temperature profile.
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Figures 7.34-7.36 depict a flowchart that outlines how all of the options

offered by the CHEMKIN flame code were completely exhausted in an effort

to reach a solution to CH4/CH3Cl/Air flames, with/without sodium. Note

should be taken that a parametric continuation was performed on only one

parameter at a time. As a result, an attempt to reach a converged solution for

any given flame was divided into three stages — one stage for each parameter.

They were as follows:

• Stage 1 - Entrainment Constant

• Stage 2 — Equivalence Ratio (i.e., Flowrates)

• Stage 3 — Temperature Profiles

None of the chlorine cases were able to satisfy the Stage 3 requirement.

All runs were performed on an IBM personal computer (PC). A

Pentium 90 MHz with 64 MB RAM (Random Access Memory) was used

initially. A case with a good restart file (i.e., a previously converged solution

as a first guess) could take as little as 30 minutes to converge and a case

without a restart file could take up to 12 hours. The PC was upgraded to a

Pentium II, 266 MHz with 128 MB RAM and the run times were decreased to

1-5 minutes for a case with a good restart file and 60-90 minutes for a case

without a restart file. The large amount of RAM was needed to run the

chlorine cases.
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Figure 7.34 Flowchart for Execution of CHEMKIN Premixed
Flame Code—Stage 1 (Entrainment Constant)
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Figure 7.35 Flowchart for Execution of CHEMKIN Premixed
Flame Code—Stage 2 (Equivalence Ratio)
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Figure 7.36 Flowchart for Execution of CHEMKIN Premixed
Flame Code—Stage 3 (Temperature Profile)
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It should be noted that if difficulty was not encountered in the running

of the flame code (e.g., having to loosen tolerances or increase number of

timesteps), it would take a minimum of 40/45 runs and up to 80 runs to reach

a converged solution for a particular flame. These flames included CH4/air,

CH4/air/Na, CH4/air/CH3Cl, and CH4/air/Na/CH3Cl for = 1.29, 1.86, 2.48,

and 3.15

Once the limits of the CHEMKIN flame code were exhausted and a

converged solution was not reached, additional alterations to the input files

that were used in the execution of the code were examined.

Transport Data/ Thermodynamic Data

An alternate transport and thermodynamic data base (62) was used (Na

species added) as an input to the code in the Tran.dat and Therm.dat files.

These changes did not get any closer to a converged solution of the particular

flames in question than the original data base.

A Reduced Kinetic Mechanism for CH4/ Air / CH3Cl Flames

A reduced kinetic mechanism (58) that contained only 63 reactions replaced

the 255 reactions that previously described the chlorinated hydrocarbon

flame in the input file. However, the reduced mechanism resulted in less

success than the larger mechanism (i.e., didn't get as far along in the

parametric continuation). The reduced mechanism was then rejected in favor
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of the larger CH4/Air/CH3Cl kinetic mechanism. It was important to the

continuity of the study that the mechanism used for the chlorinated flame

would be consistent with the mechanism that had been used for the non-

chlorinated flame. The modeling of the non-chlorinated flame was already

complete and it was previously stated that the non-chlorinated mechanism

was simply a sub-set of the large CH4/Air/CH3Cl mechanism.

Nustart.exe

Nustart.for (Nustart) is a FORTRAN program developed by Sandia National

Labs that is used to create Nustart.exe. With Nustart, the solution to a flame

with one mechanism could be used to create a restart file to a flame with a

slightly different mechanism. This was not possible before (i.e., if the

mechanism was changed, the code had to executed without a restart file).

However, it was not entirely clear how many reactions could be added or

deleted to the old mechanism when using Nustart. A reasonable assumption

was that the fewest changes to the mechanism would increase the chances of

success.

During the course of the study, a converged solution was found for a

CH4/Air/CH3Cl/Na flame at the correct temperature profile. However, the

kinetic mechanism used for this solution did not include the sodium ion

reactions (see Section 6.4.1) that account for the initial production of sodium

atoms. Nustart was used to make the transition (using restart files) from the
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"converged solution running at the proper temperatures but minus the ion

reactions" to a "converged solution running at the proper temperatures with

the ion reactions included". Unfortunately, the code could not reach a

converged solution, even when the three ion reactions were added one at a

time.

7.6.3 Development of Entrainment Constant

The general development of the air entrainment constant was discussed in

chapter 5 and the development for the specific air entrainment constant for

CH4/Air flames that contain sodium was discussed in chapter 6. These

developments required many executions of the CHEMKIN flame code in

order to optimize a converged solution at the correct temperature profile and

flow rates. Unfortunately, the CHEMKIN flame code did not converge at the

proper temperatures for CH4/Air/CH3Cl or CH4/Air/CH3Cl/Na flames. Hence,

manipulation of the output in order to optimize the air entrainment constant

was not possible. An educated guess of the optimum air entrainment

constants for chlorinated flames was based on the following observations:

1. The entrainment constant for CH4/Air flames was c=4.0 cm -1 .

2. When sodium was added to a CH4/Air flame, the flame speed appeared to

decrease. The slower, floppier CH4/Air/Na flame also appeared to entrain

less air as evidenced by the decreased dilution effect in the CO2 profiles

(Figure 6.19). This dilution effect is particularly noticeable in the
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experimental data. As a result, the entrainment constant used for

CH4/Air/Na flames (c=2.0 cm- 1) was half as large as the entrainment

constant for the CH4/Air flames (c=4.0 cm- 1).

3. Figure 7.37 shows analogous results regarding CO2 concentrations when

sodium was added to a CH4/Air/CH3Cl flame.

Figure 7.37 Experimental CO2 Concentration Profiles for
CH4/Air and CH4/Air/Na Flames, Φ=1.86

Based on these observations and the obvious effect that sodium had on

the entrainment of air, the following table summarizes the constants that

were used to execute the CHEMKIN flame code for chlorinated as well as

non-chlorinated flames. Note should be taken that the entrainment constants

used for the non-chlorinated flames were a result of optimization of the



model. The entrainment constants used for the chlorinated flames were an

educated guess based on the available data.

Table 7.4 Summary of Entrainment Constants

188

7.6.4 Modeling Results

The following figures represent a comparison of the obtainable modeling

results with the experimental data for a CH4/Air/CH3Cl and a

CH4/Air/CH3Cl/Na flame (R=0.2 and 4)=1.86). However, since the models

could not be executed at the correct temperatures, the modeling results will

not be discussed and/or analyzed relative to the experimental data.

Note should be taken that the code was run during the course of this

study with temperature measurements that were corrected for radiation only.

Since additional examination of the temperature correction showed that

conductivity through the thermocouple wires should not have been neglected

(resulting in higher corrected temperatures) the results presented here may

actually be closer to the experimental data than they appear.
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The results outlined here are presented simply to show that the

modeling results were indeed approaching a reasonable fit to the

experimental data. Of particular interest is the shape of the sodium profile.

The model predicted a reasonable fit to the experimental data, with respect to

the location of the maximum mole fraction and the overall shape of the

sodium profile.

Methane/Air/Methyl Chloride Flame

Figure 7.38 depicts how the stable species experimental data (CH4, CO, and

CO2) for a CH4/Air/CH3Cl flame (R=0.2) compares to the modeling results of

the same flame, given that the model was executed using a temperature

profile 50K above the actual corrected temperature profile. The equivalence

ratio of the metered feed to the flame was 0=1.86 and the entrainment

constant used to run the model was c=4.0 cm-1.
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Figure 7.38 Experimental and Modeling Results of Stable Species
Concentration Profiles in a CH4/Air/CH3Cl Flame, Φ=1.86,
R=0.2, Temperature = Corrected Temperature + 50K

Methane / Air / Methyl Chloride/Sodium Flame

Figures 7.39 and 7.40 show how the stable species and sodium experimental

data compare to the modeling results for a methane/air/methyl chloride flame

that has been doped with sodium. Once again, it should be pointed out that

the flame code was executed using a temperature profile 200K above the

actual corrected temperature profile. The equivalence ratio was Φ =1.86 and

the entrainment constant used was c=2.0
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Figure 7.39 Experimental and Modeling Results of Stable Species
Concentration Profiles in a CH4/Air/CH3Cl/Na Flame, Φ=1.86,
R=0.2, Temperature = Corrected Temperature + 200K

Figure 7.40 Experimental and Modeling Results of Sodium Concentration
Profiles in a CH4/Air/CH3Cl/Na Flame, Φ=1.86, R=0.2,
Temperature = Corrected Temperature + 200K



Figure 8.1 Schematic of Relationship Between Vo, V g

and 0 for a Bunsen Flame
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Figure 8.2 Schematic of Relationship Between Flame
Inner Core Height, h, Burner Radius, r
and Cone Edge, s

The burner radius, r, inner cone height, h and the cone angle, 0, are

related in the following fashion:
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Note should be taken that the spike in the Na model profile in figure 7.40 at

an early HAB is probably an anomaly. It might very well disappear once (and

if) convergence is achieved at the correct temperatures.



CHAPTER 8

CONCLUSIONS AND RECOMMENDATIONS

8.1 Conclusions

Through experimental data analysis and computer modeling, this study

examined the following:

• The fate of sodium in CH4/Air and CH4/Air/CH3Cl flames

• The effect of sodium on a CH4/Air and CH4/Air/CH3Cl flames

Analysis of the results suggested the following conclusions:

8.1.1 The Fate of Sodium in CH4/Air and CH4/Air/CH3Cl Flames

(1) Sodium was introduced into both the CH4/Air and the

CH4/Air/CH3Cl flames in the form of aqueous sodium ion (Na+). This was

done by aspirating a 0.02 mol/liter solution of NaNO3. Therefore, even though

sodium was introduced to the flame as sodium ion, the following observations

provide evidence that sodium atoms were also present in the flame:

• Bright orange luminescence (Fig 6.2) characteristic of atomic sodium

emission

• The absorbance of light at 589 and 589.5 nm. (Fig 4.14)

Therefore, it is concluded that the temperatures provided by the combustion

of CH4 and air ( Tmax ≈ 1600K) as well as the combustion of CH4/CH3Cl and

193
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air (T. 1550K) in an environment where there is additional entrainment

(transport) of air from the surroundings are sufficient to provide Na atom

concentrations capable of significant absorbance of radiation at wavelengths

characteristic of electronic transitions from the 3s state to the 3p and the 4p

levels.

(2) The sodium absorbance profiles outlined in figures 6.22 and 7.16-

7.19 for CH4/Air/Na and CH4/Air/CH3Cl/Na flames, respectively, show that

maximum net sodium atom production shifted to higher HAB as 4) increased.

That shift can be explained in the following manner:

It has already been established that as the equivalence ratio increases for

values greater than about 1.0, the flame speed/burning velocity decreases

(37). A schematic representation of the relationship between burning velocity,

Vo and cold gas flow rate, Vg as a function of cone angle, 0 is shown in figure

8.1 for a Bunsen flame, which is similar to the slotted flame used in this

study, i.e., an elongated Bunsen cone. In this relationship,

Since Vo decreases as 4) increases from 1.29 to 3.15, then 0 must also decrease

with increasing 4) (for constant V g). The relationship between the cone angle 0

and the flame dimensions and is outlined schematically in figure 8.2:
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Since 9 decreases for an increase in equivalence ratio, the height of the inner

cone, h, must also increase for constant burner radius, r. Quite simply, the

height of the inner cone must increase with equivalence ratio (for constant

cold gas flow rate). As a result, the primary reaction zone (located at the edge

of the inner cone) is shifted outward and further away from the burner.

Consequently, the production of sodium atoms is also shifted outward and

further away from the burner, i.e., to higher HAB.

However, an alternate description of how the burning velocity varies

with flame geometry can be derived from the following relationship:

where Q is the cold gas volumetric flow and A is the area of premixed

reaction surface. As seen in figure 8.3, the height of the inner cone increases

as 4) increases for a constant burner opening. As a result, the surface area of

the inner cone must also increase with an increase in 4). This is true for the

inner cone of a Bunsen flame as well as a slotted flame. Therefore, the

position of maximum heat release shifts to higher HAB i.e., from HAB1 to

HAB2.
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Figure 8.3 Illustration of Change in Inner Core Height with
Change in 4)

Therefore, a shift in the flame front to higher HAB that results from an

increase in inner cone surface area must coincide with a decrease in burning

velocity (for constant volumetric flow rate), according to equation 8.3.

(3) Figures 7.16-7.18 show that for a CH4/Air/CH3Cl/Na flame, the

maximum net atomic sodium present in the flame decreases as the chlorine

content increases for any given 4). In a chlorinated hydrocarbon environment,

there is an increased occurrence of sodium diatomics such as sodium chloride

(NaCl), due to the presence of highly electronegative chlorine atoms

(described by Table 7.3, sodium and chlorine reactions). Therefore, the

sodium absorbance profiles decrease as the chlorine content in the flame

increases simply because there is less atomic sodium available in the flame.
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It should be noted that it has not been concluded that overall sodium

production has decreased, but rather the net atomic sodium present in the

flame has been decreased due to the availability of a very stable NaCl

product outlet in a chlorinated environment.

(4) Examination of the HAB location of maxima for CH4/Air/CH3Cl

flames, figures 7.16-7.19 and 7.12-7.15, shows that the sodium absorbance

profiles parallel the temperature profiles. While the magnitude of the

maximum sodium absorbance varied with a change in chlorine content for

any given 4), the HAB location of maximum sodium absorbance did not.

However, because the production of sodium atoms is dependant upon flame

temperature, it is concluded that the HAB location of maximum sodium

absorption is not affected by a change in chlorine content in a CH4/Air/CH3Cl

flame for any given 4), simply because the HAB location of maximum

temperature is not affected by a change in chlorine content (within

experimental error).

8.1.2 Additional Conclusions Resulting from Analysis of
Experimental Data and Modeling

8.1.2.1 Atomic Absorption Spectroscopy

Atomic Line Width and Line Shape of Sodium

Atomic absorption lines are very sharp, with an inherent width of only 10 -4 -

10-5 nm (11, 15, 16). This finite width reflects the natural energy spread
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between the ground state and the excited state in the atom of interest,

namely sodium. However, two mechanisms contribute significantly to

broadening the natural line width of sodium (and indeed any atom). The first

is the Doppler effect. The atoms traveling toward the radiation source absorb

radiation of slightly lower frequency light than that absorbed by the atoms

moving away. It is common for absorption lines to be increased to about 0.001

nm by this effect (15). The second mechanism that causes an increase in the

atomic line width is pressure broadening. Collision between atoms causes a

broadening of the energy levels in the ground state and the excited state and

hence, a broadening of the peaks. This pressure broadening can be caused by

collisions between like atoms (Holtzmark broadening) or different atoms

(Lorentz broadening). It is common for pressure broadening to increase the

line width to 0.002 nm (15). In addition, minor broadening can be caused by

local electric fields (Stark effect) and local magnetic fields (Zeeman effect).

The spectral width of the sodium absorption line at 589.5 nm that has been

broadened by temperature and pressure varies with temperature in the

following manner (15):

Na spectral line width (1000K) = 0.0028 nm

Na spectral line width (3000K) = 0.0048 nm
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Line Shape and Line Width of the Monitoring Light

A continuous light source was used as the monitoring light in this study,

namely a 300 W Xenon arc lamp. Unlike the peaked shape of the sodium

absorption line, the shape of the arc lamp would be more accurately described

as a band with a width that was much greater than the spectral line width of

sodium. The difficulty encountered using a radiation source such as this for

atomic absorption can be described by the following illustrative example (15):

Using a typical commercial instrument, assume that a spectral

wave band of about 0.1 nm would fall on a detector from a

continuous source. Sodium atoms absorb over a range of

approximately 0.003 nm. If all of the light in this 0.003 nm

absorption band were absorbed from an emission wave band of

0.1 nm, then the detector would only record a loss of 3% of the

signal falling on it. Since 100% absorption of the 0.003 nm

absorption band results in only a reduction of 3% in the signal,

then absorption of 1% of the 0.003 nm absorption band (the

required sensitivity of most atomic absorption methods) would

be extremely difficult to measure with any reasonable degree of

precision. Therefore, the measurement of such small changes in

the emission signal produces a non-linear relationship between

the absorbance signal and sodium atom concentration.



201

In order for Beer's law to be obeyed in a linear fashion, desired relative line

widths of the emission source, the atomic line width and the monochromator

bandwidth are illustrated in the following figure (11). Note that the

monochromator bandwidth is approximately one hundred times greater than

the atomic line width. This is not necessarily a desired bandwidth, but rather

what is typically commercially available.

Monochromator Bandwidth 
(100x greater than

atomic lines)

Bandwidth of
Absorption Line

Bandwidth of
hollow-cathode
lamp emission

Wavelength

Figure 8.4 Relative Line Widths of Hollow-Cathode
Emission, Atomic Absorption, and a
Monochromator (11)

This was the difficulty that was encountered in this study; namely the non-

linear behavior of Beer's law due to the use of a continuous source.

This difficulty would have been overcome, however, if a hollow cathode tube

had been used as the radiation source. The hollow cathode emits relatively

narrow spectral lines because the gas temperature in the lamp is lower than
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a flame temperature (so there is less Doppler broadening) and the pressure

in the lamp is lower than the pressure in a flame (so that there is less

pressure broadening). In effect, the line width of the hollow cathode radiation

is decidedly narrower than the atomic sodium absorption line width and,

therefore, completely available for absorption.

A second difficulty that was highlighted when examining the non-

linear behavior of Beer's law in this study was the effective bandwidth of the

monochromator. In general, even good quality monochromators have effective

bandwidths that are significantly greater than the width of the atomic

absorption lines. This was indeed the situation encountered in this work. The

monochromator used for this study was a Spex 1400 —11 double spectrometer.

The bandwidth of the monochromator (&s), which is defined as the span of

monochromator settings (in units of wavelength) needed to move the image of

the entrance slit across the exit slit, can be approximated from the following

expression:

AX
I/4 	(8.4)

where D-1 is the reciprocal linear dispersion [A/mm] and w is the exit slit

width [mm]. The quoted linear dispersion for this monochromator (when

operated as a double monochromator) was approximately 5.38 A/mm.

However, this was for a 1200 groove/mm grating. This particular
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monochromator was used in this study as a single monochromator i.e., the

resolution is half that of a double monochromator, and the grating was 1800

grooves/mm. The conversion of the quoted linear dispersion to account for

single monochromator resolution as well as the change in grating is

therefore:

Since the exit slit was held constant at 100 	 the effective bandwidth of the

monochromator (Δλ ) used in this study was calculated as follows:

Even though this resolution was sufficient to resolve the sodium doublet

(separated by 6 A) it was also responsible for contributing to the non-linear

relationship between the absorbance signal and the sodium atom

concentration.
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Sodium Atom Resonance Absorption Cross Section

As outlined in chapter 6, Beer's law states that the absorbance of light by

sodium atoms, A, is directly proportional to the concentration of sodium

atoms available:

where a is the sodium absorbance cross section, c is the atom concentration

and L is the path length. For this work, it was assumed that both a and L

were constant. Since concentration, c, was proportional to reciprocal

temperature, it was also assumed that the concentration was proportional to

the product of absorbance and temperature. These assumptions produced

plots of relative absorbance (the product of absorbance x temperature) versus

HAB. However, the assumption of constant absorption cross section was

incorrect—implying that the plots of relative absorbance versus HAB are also

incorrect.

The sodium absorption cross section, a, varies with wavelength, X.

When a is plotted as a function of X, it may be represented by the following

expression:



205

where σo is the peak absorption cross section at A,0, and AX, is half the width of

the absorbance cross section measured at the half the height of the peak

(HWHM). The peak absorbance cross sections of sodium (o) decrease slightly

with temperature as the Doppler width increases in the following manner

(74):

where temperature in the above expression is in degree centigrade and covers

a range of -28°C to 144°C. It should also be noted that the literature reports

that the sodium absorption coefficient is further reduced in the far wings (i.e.,

tails) of the sodium-D doublet broadened by molecules such as 02, N2, CO2

and 1120 (75).

Expected Dependence of Absorption Vs Concentration

This study assumed that there were no deviations from the direct

proportionality between the measured absorbance and sodium atom
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concentration in the flame i.e., Beer's law was obeyed. This assumption was

incorrect for the following reasons:

1. Beer's Law is successful in describing the absorption behavior of dilute

solutions only (16). At high concentrations (usually > 0.01 M) the average

distance between the species responsible for absorption is diminished to

the point where each affects the charge distribution of its neighbors and

this phenomenon alters their ability to absorb a given wavelength of

radiation. The concentration of the solution aspirated into the flame for

this work was 0.02M — twice the concentration of the prescribed upper

limit.

2. The sodium absorbance cross section was incorrectly assumed to be

constant rather than a function of wavelength as outlined above.

3. In order for Beer's law to be obeyed, the line width of the radiation source

must be narrower than the sodium spectral line width (11). Since a

continuous light source was used for this study, not only was the

bandwidth of the source not narrower than the atomic line width, but

rather it was orders of magnitude wider than the atomic line width. The

resultant signal is described by the following figure:



Figure 8.5(a) Atomic Absorption with a Sharp Line
Source (76)
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Figure 8.5(b) Atomic Absorption with a Continuous
Source(76)

In figure (a), the source line and the absorption line are at the same

wavelength, but the half-width of the source is narrower than that of the

absorption line. Therefore, the entire center of the source line is absorbed,

in accordance with Beer's Law. In the case of the continuous source, as
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seen in figure (b), only a small fraction of the band of radiation passed by

the monochromator is absorbed and a large portion of unabsorbed light

falls on the detector. This results in a decreased sensitivity (absorbance)

and a non-linear plot of absorbance versus concentration. The following

figure illustrates the difference between calibration curves for the line and

continuum source.

Figure 8.6 Comparison of Absorption from Continuum
and Sharp-Line Sources (76)

Therefore, for all of the above reasons it would be more reasonable to expect

the absorbance versus concentration profiles to behave in a non-linear

fashion by asymptotically approaching an upper limit.

Applicability of Beer -Lambert Law

Light from the xenon arc lamp strikes the sample (hydrocarbon flame doped

with atomic sodium) with incident radiant power, Po, some of the light at 589
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and 589.6 nm is absorbed by the sample. The radiant power of the beam

emerging from the sample is P, such that P Po. The transmittance, T, is the

fraction of the original light that passes through the sample and is calculated

from the radiant power in the following manner:

The range of T is 0 to 1. The absorbance, A, (also referred to as the optical

density) is defined as:

The incident power, Po, can be calculated from the incident light intensity, L,

where,

where AX .m is the effective bandwidth of the monochromator. In a similar

fashion, the emerging power, P, can be calculated as follows:
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where c is the concentration of atoms in the sample and L is the path length.

The absorbance cross section ,a, is a function of wavelength as described in

the previous section. Simplification of the above relationships results in the

following expression which can be used to calculate the transmittance and

consequently, the absorbance.

At a constant temperature of 1949K, the following figure is an example of an

absorbance versus concentration curve that was generated for a methane/air

flame doped with sodium at 4) = 1.86.
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Figure 8.7 Non-Linear Absorbance versus Concentration Profile
for a Methane/Air flame that has been doped with Sodium,
(1) = 1.86

Note the non-linearity of the curve i.e., deviation from Beer's law. When a

family of these curves was generated at various temperatures, a plot of

absorbance versus HAB can be converted to absolute concentration of sodium

atoms versus HAB. This conversion is illustrated in the following two graphs

for a methane/air/sodium flame, (I) = 1.86.



Figure 8.8 Absorbance vs. HAB for Sodium in a
Methane/Air Flame, Phi=1.86

212

Figure 8.9 Concentration vs. HAB for Sodium in a
Methane/Air Flame, Phi=1.86

As can be seen from the above figures, the profile of absorbance vs. HAB is

similar in shape to that of concentration vs. HAB. In addition, the trends



observed in the absorbance versus HAB profiles in chapters 6 and 7 for

methane/air and methane/methyl chloride/air flames were mimicked when

converted to concentration versus HAB profiles. Sample conversions are

represented by the following graphs.
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Figure 8.10 Concentration versus HAB Profiles for
Methane/Air/Sodium Flames as Equivalence
Ratio is Varied
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Figure 8.11 Concentration versus HAB Profiles for
Methane/Methyl Chloride/Air/Sodium Flames
as Chlorine Loading is Varied

As can be seen from the above figures, the maximum concentration of sodium

atoms in the flame decreases with an increase in equivalence ratio as well as

an increase in chlorine content. In addition, the location of maximum sodium

atom concentration shifts to higher HAB with an increase in (I). Both of these

trends were observed in the absorbance versus HAB profiles previously

outlined in chapters 6 and 7.

8.1.2.2 Temperature Correction

The correction of flame temperature in this study work were flawed for the

following reasons:

1. The flame temperature profiles collected during the course of this study

were corrected for heat loss due to radiation. The correction due to the
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conductive heat lost along/through the thermocouple wires (diameter=0.2

mm) was neglected. This was an incorrect assumption because the

thickness of the thermocouple wires were such that the conductive term in

the following expression for the gas temperature, TG, was not

insignificant. The following expression for the gas temperature, TG, is a

result of the manipulation of the heat balance around the thermocouple

bead when the heat transfer due to conduction along the thermocouple

wire is included.

The above parameters that were not outlined in chapter 5 of the thesis are as

follows; kw is the thermal conductivity of the wire, ac is the wire cross

sectional area; a is the bead surface area; dT/dw is the change in temperature

along the thermocouple wire per unit length. The following graph shows the

order of magnitude of a typical temperature correction (4) = 1.86, CH4/Air/Na

flame) that accounts for conductive heat loss along the thermocouple wire:



Figure 8.12 Additional Temperature Correction (K) Due to Conductive
Heat Loss versus HAB

The relatively large thermocouple diameter was the most significant

contribution to the size of the conductivity correction.

The following graph shows how the temperature correction due to

conductive heat loss along the thermocouple wire varies as a function of

thermocouple diameter.
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Figure 8.13 Temperature vs HAB as a function of Thermocouple Diameter
for a Methane/Air Flame, (1)=1.86

It can be seen that for any thermocouple wire with a diameter greater than

0.08 mm, the contribution to the temperature correction is 50K or larger. The

following figure shows how the radiation correction affects the temperature

profile of a methane/air/sodium flame (4) = 1.86) by comparing the

temperature profile with and without the conductivity correction term.
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Figure 8.14 Comparison of Temperature Profile Correction With and
Without Heat Loss due to Conduction Along the
Thermocouple Wire

2. Ordinarily the two thermocouple wires are butt—welded so that there

would be no detectable change in diameter, permitting the thermocouple

to be modeled as a cylinder in a transverse flow field (34). In this study,

the thermocouple wires were not butt—welded together but rather simply

joined so as to form a bead. The resulting bead diameter was

approximately 0.38mm, compared to a thermocouple wire diameter of

0.2mm.

8.1.2.3 Two Zone Flame

Examination of the CO2 profiles of a CH4/Air flame, with and without sodium

(figure 6.19), showed that, at HAB greater than 1.5 cm, the CO2 mole
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fractions were reduced by as much as 75% in the flame without sodium. This

was originally thought to be due to increased entrainment of air by the

"faster", uninhibited CH4/Air flame. However, this large amount of entrained

air should have also manifested itself by significantly reducing the

temperature profile of that flame—and it did not (see figure 6.6). Instead, the

temperature profiles of the CH4/Air flame and the CH4/Air flame doped with

sodium were remarkably similar. The effect of modified air entrainment is

not evident in the CO2 and temperature profiles equally. It is therefore

necessary to develop an explanation of these results. The following

hypotheses address discrepancies such as these and offer alternative ways of

examining some of the data presented in this study.

The flames examined in this study have been simulated simply as

premixed flat flames with air entrainment. However, it would be a more

accurate description to describe them as flames consisting of two regions:

1. An inner premixed flame core—the primary combustion zone

2. An outer diffusion flame envelope

These two regions are illustrated in figure 8.15 Note should be taken that, for

the slotted burner, the inner region of the flame has a rounded top as opposed

to the pointed top typical of a round Bunsen flame.
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Figure 8.15 Illustration of Slotted Flame as Combination of
Premixed Flame and Diffusion Flame (Side-View)

The primary combustion zone is similar to that of a shrouded,

premixed flat flame. It consists mostly of a pre-heat zone where little reaction

takes place. The edge of this primary combustion zone, i.e., the interface

between the inner and outer zones (also known as the flame front or the

reaction zone) is characterized by free-radical reactions that effect significant

heat release. This thin reaction zone gives rise to a mixture of incomplete

combustion products such as CH4, CO, CO2 and H20—due to the premixed

fuel-rich environment. It should be noted that, at this flame front, the oxygen

used for the combustion of C114 is predominantly oxygen that was fed to the

burner premixed with the fuel.

The outer region of the flame, also known as the outer cone, has the

characteristic of a diffusion flame. In this region, additional oxygen used for

combustion diffuses into the flame from the environment. This additional

oxygen facilitates further conversion of the CH4 and CO to CO2 and I120.
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8.1.2.4 Entrainment Expression

If the flame is re-examined as a two-zone flame, then by necessity, the

expression that accounts for entrainment i.e., mass transfer, of species form

the surroundings needs to be re-examined also. It has already been

acknowledged that the expression for air entrainment presented in chapter 5

of this thesis was a coarse first approximation. It is postulated that no mass

transfer of species occurs in the pre-mixed region of the flame. Instead mass

transfer of species occurs in the diffusion section of the flame. The inclusion

of mass transfer in the flame code would be effectively "turned off' until a

HAB equal to the location of the interface between the outer and inner zone

was reached. Then, the inclusion of mass transfer of species from the

surroundings would be "turned on" in the code.

Experimentation of accounting for mass transfer of species from the

surroundings, according to the above description, has already begun using a

perfectly stirred reactor (PSR) code. Indeed, it has even been taken one step

further from the above discussion in that mass transfer of species from the

flame to the surroundings is also included e.g., the mass transfer driving force

of CO2 concentration is positive in the direction of the flame to the

surroundings. The results show that the total mass flow rate in the flame

changes only slightly from the initial mass flow rate. However, even though

these results are preliminary, they clearly indicate the original expression

used for entrainment needs to be critically re-examined and revised.
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8.1.2.5 Sodium Ion Reactions

Re-examination of the sodium ion to atom conversion suggests that aqueous

NaNO3 solution aspirated into the flame does not produce Na+ which then is

directly converted to Na as suggested. Instead, elevated gas temperatures

causes water evaporation which then produces a solid sodium ionic

compound. Pyrolosis of this solid compound then produces sodium atoms.

Therefore, the three sodium ion reactions presented in table 6.6 in chapter 6

should be removed the reaction mechanism.

8.1.2.6 Two-Dimensional Flame

In order to accept the initial hypothesis that these flames could be accurately

simulated with a one-dimensional (1-D) model, one would also have to

assume perfect transverse mixing across the flame. A 1-D flame such as this

would produce profiles similar to those observed in a flat flame. This 1-D

model ignored the two visible zones of the slotted flame.

However, for this study, the species produced at the flame front (e.g.

CO), begin to diffuse inwards towards the interior of the premixed zone and

outwards towards the diffusion zone. As a result, horizontal concentration

profiles are created. Therefore, a 1-D simulation is unrealistic and a 2-D

simulation (horizontal as well as vertical) is required. This lateral diffusion

pathway of the stable species is described by figure 8.16.
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Figure 8.16 Schematic of Horizontal Diffusion Pathway
for Stable Species

In accordance with Fick's law, the diffusion of a given species, such as

CO, is dependent upon the following relationship:



224

where J is the mass flux of the species; Co and C1 are its concentrations at the

flame front and just outside the flame front, as indicated in figure 8.17; D is

the diffusion coefficient and Ax is the distance between the positions at which

the concentrations Co and C1 are measured.

Figure 8.17 depicts the hypothetical local concentrations of CO for a

finite element of the reaction zone for flames with and without sodium. Note

that Co > {C1 with Na} > {C1 w/o Na}.

Figure 8.17 Local Concentration Gradients of CO for Finite Element
of Reaction Zone for Flames With and Without Sodium



225

The presence or absence of sodium in the flame thus affects the local

concentration gradient, which in turn affects the diffusion flux, which

ultimately affects the concentration profiles.

The CO produced at the flame front has the potential to diffuse in two

directions:

• inward towards the inner core

• outwards towards the diffusion region

According to Fick's law (eq. 8.17), the driving force that governs the rate and

direction of diffusion of CO is the magnitude of the concentration gradient,

which is proportional to - AC = Co - C 1 . Assuming that the concentration of

CO produced at the flame front, Co, is approximately equal for flames with

and without sodium, the driving force is therefore dependent upon C1, the

amount of CO that remains in the diffusion region or the inner core after CO

is converted to CO2. The deviation in the value of Ci is dependent upon

whether or not sodium is present in the flame. Therefore, one of the following

two concentration profiles may exist:

1. Sodium Free Flame

Relative to the inner core, there is greater conversion of CO to CO2 on the

diffusion side of the reaction zone due to the greater availability of oxygen

and free radicals in the diffusion region. This conversion of CO to CO2

creates a CO sink just outside the reaction region. The difference between

the CO concentration at the reaction zone and the CO concentration just
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outside the reaction zone creates the driving force for mass transfer of CO,

i.e. the flux. Since the CO sink created by the conversion of CO to CO2 is

different in the diffusion region compared to the inner core, the flux of CO

into each region was is different. This difference in diffusion rates away

from the reaction zone for a sodium free flame is illustrated in figure 8.18.

Figure 8.18 Relative Diffusion Rates of CO Away from
the Flame Front—Sodium Free Flame

It is clear from the above figure that a considerable amount of the CO

(and the resulting CO2) diffuses outward from the flame front towards the

outer region of the flame in a sodium free flame. Since stable species

sampling occurred along the centerline of the flame, relatively lower



227

amounts of CO and CO2 would be measured (figures 6.18 and 6.19—data

only).

2. Sodium is Present in the Flame

In the diffusion region just outside the reaction zone, the sodium reactions

inhibit oxygen utilization by competing with CO for available OH. As a

result, the rate of the CO to CO2 conversion is retarded in the presence of

sodium and the driving force for the mass transfer of CO towards the

diffusion region is decreased relative to the sodium free flame. The

relative diffusion rate of CO away from the reaction zone in a flame that

has been inhibited by sodium is illustrated in figure 8.19.

Figure 8.19 Relative Diffusion Rates of CO Away from
Flame Front—Flame Inhibited by Sodium
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In the case of the flame that has been inhibited by sodium, there is

decreased driving force for the CO towards the diffusion region, relative to

the sodium free flame. However, since stable species sampling occurred

along the centerline of the flame, relatively larger amounts of CO and CO2

would be measured (figures 6.18 and 6.19—data only).

As stated earlier, the effect of modified air entrainment did not

manifest itself in the stable species and temperature profiles equally. This

theory forms the working hypothesis that explains the significant

difference between the CO and CO2 profiles that was not evident in the

temperature profiles.

8.1.2.7 Sodium—Chlorine Reaction Subset

A review of the reactions that accounted for the interactions between sodium and chlorine

(Appendix D—Part I) showed that further examination of the rate constants of these

reactions was necessary. The re-evaluated rate constants for the sodium—chlorine

interactions can be found in Appendix D (Part II).

For all but two of the reactions, the pre-exponential factors, A, and the

activation energies, Ea, used to calculate the rate constants were estimated

from Evans-Polanyi relationships of ΔHrxn. versus E. (energy of activation).

Evans, Polanyi and Eyring are considered to be responsible for the present

formulation of the equilibrium theory of reaction rates known as transition

state theory (TST) (79). This method proposes that every molecule A that

reacts does so by being excited to some state A# at an energy E#, the critical
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energy for the reaction. A# will then have the configuration that corresponds

to a maximum in its potential energy. This configuration is referred to as the

transition state. In addition to the Evans-Polanyi estimations, data from the

literature (KIST Kinetics DataBase, Tabulations of Kerr and Moss, Benson)

for generic systems (see Appendix D, Part II) were utilized to estimate the

rate constants.

Somewhat more rigorous calculations were required to estimate the

rate constants in the case of two of the sodium-chlorine reactions—

specifically NaO + 	 NaCl + OH and NaO2 + HCl→NaCl +HO2. It

should be noted that for this work, the rate constant, k, was expressed in the

following manner:

In these two cases, semi-empirical molecular orbital methods (MO)

PM3 in the MOPAC 6.0 package were used to estimate thermodynamic

parameters for the specific reaction systems (reactants, transition states

and/or pre-encounter complexes and products). Systematic MO calculation

studies have shown that these calculation methods provide correct

fundamental vibrational frequencies and moments of inertia (from calculated

molecular structures), leading to reliable results of entropies and heat

capacities (77). The predicted entropies and heat capacities were therefore

used directly with the packaged software, AFACT, to estimate a value for the
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pre-exponential factors, A, and the temperature exponent, n, for each

reaction.

Note: The results of these calculations for the parameters A and n along with

sample output from AFACT are also presented in Appendix D (Part II and

III).

The following table lists the thermodynamic properties for the

transition states/pre-encounter complexes for these two reaction systems:

NaOHCl Pre-encounter Complex for NaO + HCl →NaCl + OH

NaOOHCl Pre-encounter Complex for NaO2 + HCl → NaCl + HO2

It should be noted that a transition state was sought for each of these

reactions but none were found. Instead, pre-encounter complexes were

located. Quite simply, the difference between pre-encounter complexes and

transition states can be described in the following manner: pre-encounter

complexes have minimum energy in all directions while transition states

have minimum energy in all directions but one.
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Table 8.1 Ideal Thermodynamic Gas Phase Properties;
AHf298 (kcal,mol), S298 (cal/mol-K), and Cp(T)
(cal/mol-K), 300K < T < 1500K

Species TNaOHCl TNaOOHCl

HF(298) -132 -151.96
S(298) 75.06 74.03
CP300 15.37 15.36
CP400 15.60 16.51
CP500 15.75 17.49
CP600 15.88 18.32
CP800 16.19 19.59
CP1000 16.49 20.51
CP1500 17.05 21.89

The PM3 semi-empirical molecular orbital calculations (MOPAC PM3)

were not considered reliable for enthalpy calculations however. Instead, the

total energy of the reactants, products and the pre-encounter complexes, were

calculated using high level ab initio methods. Two model chemistries were

employed using the Gaussian package (85). The G2 (Gaussian 2) method

(82,83) uses combinations of large basis sets and various theoretical methods

that account for increasing degrees of electron correlation to make an

accurate estimate of the free energy of formation of a particular molecule.

The errors associated with G2 estimates are typically 1-3 kcal/mol. The

second method is based on density functional theory (DFT) (86). Electron

correlation is evaluated using exchange and correlation functionals. For the

calculations presented below, the B3LYP functional (Becke 3 parameter

exchange functional and the Lee-Yang-Parr correlation functional) is used

(81), together with a large basis set 6-311G(3df,2dp) to evaluate the energy.
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The molecular geometry is found using the smaller 6-31G(d) basis set. The

errors associated with this method are also typically 1-3 kcal/mol (80).

Gaussian 98 is capable of predicting many properties of molecules and

reactions including: molecular energies and structures, energies and

structures of transition states, and bond and reaction energies (80). B3LYP

and Gaussian 2 (G2) are effective tools for computing the total energies of

molecules at their equilibrium geometries. The total energy of the molecule,

i.e. the Gibbs free energy of formation ΔGr0 , is then used to determine 	 ,

the free energy change of the reaction itself.

Tables 8.2(a) and 8.2(b) list the total energies (calculated and

published) for all of the species in the previously described reactions.

TABLE 8.2(a): Calculated Total Energiesa,b for Species in Reaction
Schemes

Species G2 at
298 le

B3LYP/
6-311

at 298 le

B3LYP/
6-311

at 1500 le

NaO -236.94 -237.45 -237.57

HCl -460.36 -460.81 -460.91
NaCl -621.70 -622.58 -622.70

OH -75.66 -75.73 -75.83

NaO2 -312.06 -312.64 -312.78

H02 -150.75 -150.91 -151.03

NaOHCl n/a -698.34 -698.51

NaClOHO n/a -773.47 -773.66

NaO2HCl n/a -773.52 -773.71
a Total energy calculations based on G2 theory. Units in Hartrees.
b Total energy calculations based on the geometries optimized at
B3LYP/6-3 11 level of theory. Units in Hartrees.
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TABLE 8.2(b): Published Total Energies. for Species
in Reaction Schemes

Species Literature
at 298 Ka

Literature
at 1500 Ka

NaO 14.65 4.02

HCl -22.78 -24.81

NaCl -48.12 -55.80

OH 8.19 3.86

NaO 2 n/a n/a

HO 2 3.45 16.98

NaOHCl n/a n/a

NaClOHO n/a n/a

NaO2HCl n/a n/a

a "JANAF Thermochemical Tables, 3rd Edition." J. Phy. And
Chem. Ref. Data vol 14 . Units in kcal/mol

The total energies were then used to compute the free energies of reaction for

the NaO+HCl and NaO2+HCl exchange reactions. Literature values provide

the necessary information to check the theoretical G2 and B3LYP estimates.

The results are presented in Table 8.3. The estimates of the AG, using B3LYP

at 298K and 1500K are —33.9 and —33.5 kcal/mol respectively. The estimates

from the JANAF table thermochemistry are —31.8 and —31.1 kcal/mol,

respectively (78). Thus the B3LYP calculations are within —2 kcal/mol of the

experimental results. The B3LYP results correctly predict a small

temperature effect.
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Reaction Series 298 K 298 Kb 298 KG 1500 Ka 1500 K'

NaO+HCl=NaOHCl -51.57 -21.93

NaO+HCl=NaCl+OH -33.94 -39.23 -31.80 -33.55 -31.15

NaO 2+HCl=NaO 2HCl -43.38 -13.52

NaO 2+HCl=NaClOHO -11.06 12.33

NaO 2+HCl=NaCl+HO 2 -26.17 -23.28 -32.12

a from B3LYP/6-311 theory
b from G2 theory

"JANAF Thermochemical Tables, 3rd Edition." J. Phy. and Chem. Ref. Data, vol. 14

Table 8.4 outlines the estimated values of the bond lengths and bond angles

for all of the reactants, pre-encounter complexes and products involved in the

previously described reactions. It should be noted that literature values were

available for comparison for the bond lengths of the reactants and products.

In addition, the literature value of the 1 -1O2 bond angle was also available. It

is seen that the results compared quite favorably.
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a Distances in angstroms and angles in degrees.
b from G2 theory.

c

 from "JANAF Thermochemical Tables, 3rd Edition." J. Phy. and Chem. Ref. Data, vol 14
d Dihedral angle

The free energies of reaction at 298 and 1500 K were used to construct

potential energy diagrams for the NaO + HCl and NaO2 + HCl reactions.

These can be seen in figures 8.20 and 8.21, respectively. It should be noted
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that extensive searches using B3LYP/6-31G(d) model chemistry produced no

transition states for either reaction. However, pre-encounter optimums were

found for both reactions. Therefore the reaction is assumed to proceed

without passing through a transition state.

For the reaction, NaO + HCl = NaCl + OH at 298K, the pre-encounter

complex, NaOHCl is 17.9 kcal/mol below the products (Fig. 8.20a), indicating

a slow reaction rate. However, at 1500K the minimum disappears (Fig. 8.20b)

and the reaction is favored throughout.

Figure 8.20(a) Potential Energy Diagram forNaO + HCl
at 298 K
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Figure 8.20(b) Potential Energy Diagram for NaO + HCl
at 1500 K

The following observations were made from figures 8.20a and 8.20b:

• The reaction is exothermic.

• A stable pre-encounter complex exists. However, there is no evidence of

the existence of a transition state i.e., one was not found

• Comparison of the reaction at 298 K and 1500 K indicates that the pre-

encounter complex has strong temperature dependence ( ≈-51 kcal/mol vs.

≈-22kcal/mol, respectively). However, AG °, does not (-33.9421 kcal/mol vs.

—33.5462 kcal/mol, respectively).



• The pre-encounter complex for the NaO + HCl reaction lies below the

reactants. Therefore, the activation energy, E a, is assumed zero with

respect to the estimation of the reaction rate constant.

For the reaction, Na02 + HCl = NaCl + H02 at 298K, there are two

pre-encounter complexes, NaClOHO and NaO2HCl. The latter is 17.2

kcal/mol below the products, again suggesting that the reaction would be

slow at room temperature, since this barrier must be crossed. However, at

1500K, NaO2HCl is above the products and the reaction is favored

throughout.
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Figure 8.21(a) Potential Energy Diagram for Na02 + HCl
at 298 K



Figure 8.21(b) Potential Energy Diagram for NaO2 + HCl
at 1500 K

Examination of figures 8.21a and 8.21b resulted in the following

observations:

• The reaction is exothermic.

• There is evidence of two different pre-encounter complexes, namely

NaClOHO and NaO2HCl. As with the previous reaction, there is no

evidence of the existence of a transition state i.e., one was not found.

• NaO2HCl is more energetically favored at 298 K relative to NaClOHO.

Therefore, it is reasonable that the dominant pre-encounter complex at

298 K would be NaO2HCl.

110
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• From an energetically stable perspective, it is unlikely that the pre-

encounter complex NaClOHO would form at 1500K.

• As with the NaO + HCl reaction, all of the viable pre-encounter complexes

lie below the reactants for the NaO2 + HCl reaction. Therefore, the

activation energy, Ea, is assumed zero with respect to the estimation of

the reaction rate constant.

Therefore the theoretical calculations support the importance of both

reactions. Each are found to be thermodynamically favored at 1500K by —30

kcal/mol.

A pictorial description of both reaction pathways outlined in the

potential energy diagrams may be seen in figures 8.22-8.23.



Figure 8.22 Pictorial Description of Reaction Pathway for
NaO + HCl ---> NaOHCl—> NaCl + OH
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Figure 8.23(a) Pictorial Description of Reaction Pathway for
Na02 + HCl NaClOHO NaCl + H02
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Figure 8.23(b) Pictorial Description of Reaction Pathway for
Na02 + HCl NaOOHCl NaCl + H02
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8.2 Work in Progress and Recommendations for Future Work

While the 1-D model of these flames provided some utility and appeal, the

data, upon even closer scrutiny, warrant a more sophisticated modeling

approach. Such an effort, centering on development of a 2-D simulation,

represents a next generation for this research. Work is in progress on both

semi-quantitative (less complex) and 2-D (more complex) options to simulate

these flames.

8.2.1 Horizontal Stable Species Profiles

It has been established in section 8.1.2 that the slotted flame used in this

study would be better modeled as a two-dimensional (2-D) flame, i.e.,

horizontal as well as vertical. It is therefore desirable to re-assemble the

experimental apparatus and collect horizontal stable species profiles, e.g.,

CH4, CO, and CO2, for the CH4/Air and CH4/CH3Cl/Air flames with and

without Na at (1)=1.86.

8.2.2 Model the Slotted Flame as Two-Zone Flame

For the duration of this study, this flame has been described as a premixed

flame that experienced entrainment of air. Upon further evaluation of the

results of this study, an alternative description of this flame as a premixed

inner core surrounded by a secondary diffusion region has been postulated. In

other words, the inner core has access only to the oxygen that has been fed to
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the burner and experiences little or no entrainment of outside air while the

outer mantle has access to whatever oxygen remains from the original feed as

well as oxygen that diffuses into the flame from the surroundings. The

existing 1-D CHEMKIN code can be easily modified for semi-quantitative

simulation. The entrainment constant is set to zero from zero HAB to a point

roughly corresponding to the upper end of the inner core. Then the constant

is set directly to its non-zero value for air entrainment. In this way, some

semblance of the 2-zone nature of these flames is recognized.

8.2.3 Modeling Slotted Flame as Two-Dimensional

The Chemkin Premixed flame code used to model the slotted flame in this

study had the capability to model one-dimensional (1-D) flames only. An

alternative flame code known as KIVA has been identified and will be

evaluated regarding the capability of modeling 2-D slotted flames. KIVA3V,

the latest and most advanced version of KIVA, is a transient, three-

dimensional, multiphase, multicomponent code for the analysis of chemically

reacting flows with sprays and has been under development at the Los

Alamos National Laboratory for the past several years. The range of validity

of the code extends from low speeds to supersonic flows for both laminar and

turbulent regimes. Arbitrary numbers of species and chemical reactions are

allowed. Although specifically designed for performing internal combustion
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engine calculations, the modularity of the code should allow modifications for

simulating the 2-D slotted flames of this study.

8.2.4 Alternative Sodium Hydrocarbon Reaction Mechanisms

The sodium reaction mechanism that was used to model the sodium-methane

interactions in this study was developed by Schoefield et al in 1984 (18). A

more recent (1999) sodium-hydrocarbon reaction set has been developed by

Zamansky et al. (36). This reaction set will be investigated in the re-modeling

efforts. In addition, the entire sodium-chlorine reaction subset used to model

the sodium-chlorinated hydrocarbon interactions will be re-evaluated.
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Sample Output File—Premix.out

The following output file is for the conditions outlined below:

1. CH4/Air/Na Flame

2. 4)=1.86

PREMIX: One-dimensional steady premixed laminar flame code
CHEMKIN-II Version 2.55d, January 1995
DOUBLE PRECISION

CKLIB: Chemical Kinetics Library
CHEMKIN-II Version 4.5, January 1995
DOUBLE PRECISION

TRANLIB: Multicomponent transport library,
CHEMKIN-II Version 3.8, January 1995
DOUBLE PRECISION

WORKING SPACE REQUIREMENTS
PROVIDED 	 REQUIRED

LOGICAL 200 193
INTEGER 11000 10259
REAL 2300000 2050564
CHARACTER 100 89



KEYWORD INPUT

/ flame configuration, burner stabilized with specified temperature
BURN
/ENRG
TGIV
/ in the event of a Newton failure, take 100 timesteps of 1.E-6
TIME 100 5.00E-4
/ begin on a uniform mesh of 6 points
NPTS 6
/ definition of the computational interval
XEND 3.0
XSTR 0.0
/XCEN 0.16
/WMIX 0.10
/ pressure and inlet mass flow rate
PRES 1.0 (atmospheres)
/FLRT (g/cm**2-sec)
FLRT 0.005
/ adaptive mesh criteria
GRAD 0.4
CURV 0.9
/ unreacted mole fractions
MOLE
REAC CH4 1.5465E-01 0.0
REAC O2 1.5688E-01 0.2
REAC N2 6.2749E-01 0.8
REAC NA+ 2.1944E-05 0.0
REAC H2O 6.0955E-02 0.0
/ estimated products
PROD CO2 0.01
PROD H2O 0.19



PROD O2 	 0.1
PROD N2 	 0.7
/ estimated intermediate mole fractions
INTM CO 	 1.0E-2
INTM H2 	 3.6E-3
INTM CH2O 1.5E-3
INTM C2H6 1.0E-3
INTM C2H2 3.7E-4
INTM C2H4 1.8E-3
INTM CH3 	 7.2E-4
INTM CH2 	 2.0E-7
INTM CH2S 2.0E-8
INTM C2H3 2.2E-6
INTM C2H 2.9E-8
INTM C2H5 8.9E-7
INTM CH2CO 3.2E-5
INTM HCCO 2.8E-5
INTM OH 	 5.2E-4
INTM H 	 1.0E-4
INTM O 	 8.8E-5
INTM HO2 	 2.1E-4
INTM H2O2 1.8E-5
INTM HCO 2.2E-6
INTM CH3O 3.2E-5
INTM NAO 3.0E-5
INTM NAO2 3.0E-5
/ tolerances for the Newton iteration
ATOL 1.E-9
RTOL 1.E-4
/ tolerances for the time step Newton iteration
ATIM 1.E-9
RTIM 1.E-4



/ print control
PRNT 1
/ given temperature profile
TEMP .0 560.
TEMP .254 886.
TEMP .381 1574.
TEMP .508 1594.
TEMP .635 1622.
TEMP .762 1581.
TEMP 1.016 1481.
TEMP 1.27 1359.
TEMP 1.524 1211.
TEMP 1.778 1148.
TEMP 2.0 1000.
TEMP 3.0 800.
/TRANSPORT OPTION TAKING THERMAL DIFF USION
/TDIF
/read the solution from restart file
USTG
RSTR
/ASEN
END



TWOPNT: TWO-POINT BOUNDARY VALUE PROBLEM SOLVER,
VERSION 2.22D OF FEBRUARY 1994 BY DR. JOSEPH F. GRCAR.

DOUBLE PRECISION
PERMIT MESH REFINEMENT

TWOPNT: INITIAL GUESS:



IN,
CA
CA?



53 2.3625 9.275E+02 2.358E+00 3.704E-04 1.986E-34 1.026E-06 1.958E-13 3.535E-06 1.847E-12 1.058E-12 3.535E-06
54 2.3812 9.238E+02 2.333E+00 3.719E-04 1.218E-34 1.021E-06 1.731E-13 3.515E-06 1.796E-12 9.812E-13 3.515E-06
55 2.4000 9.200E+02 2.308E+00 3.735E-04 8.916E-35 1.016E-06 1.530E-13 3.496E-06 1.748E-12 9.086E-13 3.496E-06
56 3.0000 8.000E+02 1.663E+00 4.295E-04 -8.974E-25 1.016E-06 1.530E-13 3.496E-06 1.748E-12 9.086E-13 3.496E-06

X OH CH O CH3 C2H6 CH4 CH3O 	 CH2OH C2H3 CH2
1 .0000 1.276E-10 2.634E-22 4.715E-14 2.572E-07 1.844E-05 1.414E-01 2.038E-09 1.462E-15 5.023E-14 2.802E-16
2 .1500 3.295E-10 6.454E-22 1.204E-13 8.226E-07 7.802E-05 1.131E-01 8.067E-09 5.742E-15 1.973E-13 8.822E-16
3 .1875 1.055E-09 3.054E-20 5.778E-13 1.608E-06 1.270E-04 1.062E-01 2.435E-08 3.363E-14 1.077E-12 5.525E-15
4 .2250 3.707E-09 1.295E-18 3.246E-12 3.304E-06 2.130E-04 9.911E-02 8.059E-08 2.017E-13 6.540E-12 3.628E-14
5 .2625 1.577E-08 1.113E-16 3.748E-11 7.894E-06 3.580E-04 9.167E-02 2.903E-07 1.567E-12 5.031E-11 3.578E-13
6 .3000 1.053E-07 5.837E-14 1.560E-09 2.405E-05 5.837E-04 8.369E-02 9.202E-07 2.317E-11 6.464E-10 8.188E-12
7 .3187 2.263E-07 7.401E-13 8.030E-09 4.176E-05 7.250E-04 7.945E-02 1.423E-06 7.698E-11 1.920E-09 3.780E-11
8 .3375 4.164E-07 6.404E-12 3.186E-08 7.139E-05 8.776E-04 7.501E-02 1.899E-06 2.216E-10 4.941E-09 1.610E-10
9 .3563 6.952E-07 3.940E-11 9.691E-08 1.231E-04 1.022E-03 7.036E-02 2.190E-06 5.816E-10 1.170E-08 6.274E-10
10 .3656 8.994E-07 8.826E-11 1.563E-07 1.623E-04 1.081E-03 6.797E-02 2.264E-06 9.517E-10 1.798E-08 1.203E-09
11 .3750 1.172E-06 1.842E-10 2.407E-07 2.101E-04 1.130E-03 6.552E-02 2.264E-06 1.563E-09 2.754E-08 2.208E-09
12 .3797 1.337E-06 2.619E-10 2.930E-07 2.331E-04 1.151E-03 6.429E-02 2.260E-06 1.972E-09 3.383E-08 2.877E-09
13 .3844 1.457E-06 3.100E-10 3.275E-07 2.513E-04 1.173E-03 6.305E-02 2.368E-06 2.319E-09 3.910E-08 3.431E-09
14 .3937 1.676E-06 3.874E-10 3.837E-07 2.744E-04 1.220E-03 6.051E-02 2.769E-06 2.951E-09 4.970E-08 4.356E-09
15 .4031 1.927E-06 4.766E-10 4.471E-07 2.913E-04 1.262E-03 5.792E-02 3.184E-06 3.664E-09 6.255E-08 5.357E-09
16 .4125 2.208E-06 5.784E-10 5.187E-07 3.058E-04 1.296E-03 5.525E-02 3.607E-06 4.495E-09 7.800E-08 6.521E-09
17 .4219 2.528E-06 6.971E-10 6.005E-07 3.193E-04 1.322E-03 5.253E-02 4.051E-06 5.486E-09 9.656E-08 7.922E-09
18 .4312 2.895E-06 8.373E-10 6.952E-07 3.321E-04 1.339E-03 4.975E-02 4.527E-06 6.685E-09 1.189E-07 9.638E-09
19 .4500 3.822E-06 1.203E-09 9.350E-07 3.563E-04 1.340E-03 4.402E-02 5.603E-06 9.945E-09 1.784E-07 1.440E-08
20 .4594 4.419E-06 1.444E-09 1.089E-06 3.679E-04 1.324E-03 4.109E-02 6.223E-06 1.219E-08 2.176E-07 1.772E-08
21 .4687 5.138E-06 1.737E-09 1.274E-06 3.791E-04 1.297E-03 3.813E-02 6.908E-06 1.502E-08 2.649E-07 2.192E-08
22 .4781 6.017E-06 2.094E-09 1.497E-06 3.898E-04 1.259E-03 3.514E-02 7.672E-06 1.864E-08 3.223E-07 2.727E-08
23 .4875 7.109E-06 2.534E-09 1.770E-06 4.000E-04 1.209E-03 3.214E-02 8.528E-06 2.332E-08 3.918E-07 3.416E-08
24 .4969 8.486E-06 3.078E-09 2.106E-06 4.094E-04 1.147E-03 2.915E-02 9.491E-06 2.947E-08 4.761E-07 4.305E-08
25 .5062 1.024E-05 3.753E-09 2.525E-06 4.173E-04 1.076E-03 2.619E-02 1.057E-05 3.760E-08 5.778E-07 5.452E-08



26 .5156 1.244E-05 4.490E-09 3.017E-06 4.210E-04 9.950E-04 2.327E-02 1.191E-05 4.789E-08 6.946E-07 6.849E-08
27 .5250 1.530E-05 5.355E-09 3.624E-06 4.218E-04 9.059E-04 2.043E-02 1.344E-05 6.150E-08 8.309E-07 8.607E-08
28 .5437 2.410E-05 7.565E-09 5.319E-06 4.161E-04 7.057E-04 1.506E-02 1.683E-05 1.046E-07 1.160E-06 1.359E-07
29 .5625 3.942E-05 1.021E-08 7.842E-06 3.959E-04 4.974E-04 1.035E-02 1.993E-05 1.802E-07 1.508E-06 2.063E-07
30 .5813 6.452E-05 1.237E-08 1.129E-05 3.547E-04 3.103E-04 6.556E-03 2.115E-05 2.946E-07 1.701E-06 2.818E-07
31 .6000 1.014E-04 1.275E-08 1.555E-05 2.916E-04 1.683E-04 3.797E-03 1.924E-05 4.231E-07 1.557E-06 3.242E-07
32 .6187 1.482E-04 1.076E-08 2.032E-05 2.153E-04 7.828E-05 2.012E-03 1.462E-05 5.002E-07 1.107E-06 2.992E-07
33 .6375 1.989E-04 7.340E-09 2.513E-05 1.410E-04 3.098E-05 9.847E-04 9.206E-06 4.708E-07 6.064E-07 2.174E-07
34 .6563 2.469E-04 4.145E-09 2.940E-05 8.240E-05 1.045E-05 4.521E-04 4.846E-06 3.569E-07 2.620E-07 1.266E-07
35 .6750 2.854E-04 1.988E-09 3.229E-05 4.357E-05 3.070E-06 1.986E-04 2.215E-06 2.233E-07 9.265E-08 6.079E-08
36 .6938 3.127E-04 8.500E-10 3.358E-05 2.141E-05 8.110E-07 8.502E-05 9.161E-07 1.211E-07 2.812E-08 2.536E-08
37 .7125 3.297E-04 3.386E-10 3.358E-05 1.003E-05 1.984E-07 3.592E-05 3.563E-07 5.950E-08 7.645E-09 9.666E-09
38 .7312 3.383E-04 1.290E-10 3.266E-05 4.540E-06 4.583E-08 1.504E-05 1.332E-07 2.729E-08 1.914E-09 3.482E-09
39 .7500 3.389E-04 4.583E-11 3.097E-05 1.938E-06 9.043E-09 6.016E-06 4.662E-08 1.145E-08 3.977E-10 1.151E-09
40 .7875 3.036E-04 7.535E-12 2.463E-05 4.943E-07 8.758E-10 1.463E-06 9.315E-09 2.469E-09 3.673E-11 1.851E-10
41 .8250 2.544E-04 1.182E-12 1.809E-05 1.260E-07 8.159E-11 3.676E-07 1.975E-09 4.922E-10 2.994E-12 3.053E-11
42 .9000 1.724E-04 8.042E-14 9.589E-06 1.998E-08 4.197E-12 5.999E-08 2.428E-10 4.618E-11 1.061E-13 2.709E-12
43 1.0500 7.398E-05 3.023E-15 2.708E-06 3.176E-09 2.605E-13 1.172E-08 3.542E-11 2.478E-12 2.662E-15 1.645E-13
44 1.2000 2.350E-05 1.587E-16 5.569E-07 8.544E-10 6.113E-14 5.290E-09 1.177E-11 1.701E-13 1.956E-16 1.477E-14
45 1.5000 2.592E-06 1.373E-18 4.055E-08 1.565E-10 2.559E-13 3.906E-09 3.254E-12 2.456E-15 2.766E-17 5.398E-16
46 1.8000 3.912E-07 1.276E-20 4.231E-09 3.531E-11 5.440E-13 3.383E-09 7.029E-13 6.593E-17 4.078E-18 3.766E-17
47 1.9500 1.228E-07 3.182E-22 7.503E-10 1.431E-11 5.817E-13 3.185E-09 2.714E-13 7.477E-18 1.079E-18 5.622E-18
48 2.1000 5.402E-08 1.980E-23 2.067E-10 6.754E-12 5.428E-13 3.013E-09 1.075E-13 1.518E-18 3.900E-19 1.342E-18
49 2.1750 3.930E-08 6.458E-24 1.226E-10 4.758E-12 5.098E-13 2.934E-09 6.767E-14 7.956E-19 2.565E-19 7.464E-19
50 2.2500 2.956E-08 2.187E-24 7.654E-11 3.519E-12 4.729E-13 2.859E-09 4.512E-14 4.530E-19 1.713E-19 4.383E-19
51 2.3250 2.218E-08 7.491E-25 4.814E-11 2.669E-12 4.377E-13 2.790E-09 3.105E-14 2.663E-19 1.149E-19 2.600E-19
52 2.3438 2.057E-08 5.704E-25 4.266E-11 2.488E-12 4.298E-13 2.774E-09 2.824E-14 2.330E-19 1.040E-19 2.272E-19
53 2.3625 1.906E-08 4.343E-25 3.782E-11 2.320E-12 4.223E-13 2.758E-09 2.572E-14 2.041E-19 9.422E-20 1.986E-19
54 2.3812 1.765E-08 3.304E-25 3.348E-11 2.164E-12 4.153E-13 2.743E-09 2.345E-14 1.790E-19 8.541E-20 1.734E-19
55 2.4000 1.632E-08 2.498E-25 2.953E-11 2.017E-12 4.087E-13 2.729E-09 2.137E-14 1.569E-19 7.750E-20 1.509E-19
56 3.0000 1.632E-08 2.510E-25 2.953E-11 2.017E-12 4.087E-13 2.729E-09 2.137E-14 1.569E-19 7.750E-20 1.509E-19

X CH2S C2H4 C2H CH2O C2H5 C2H2 CH2CO C C4H2 C3H3



1 .0000 8.130E-18 1.563E-05 1.909E-19 2.611E-05 2.223E-12 2.389E-06 8.194E-08 5.838E-24 6.130E-12 3.997E-18
2 .1500 2.560E-17 6.176E-05 7.389E-19 1.020E-04 9.351E-12 9.319E-06 3.606E-07 1.622E-23 3.439E-11 1.930E-17
3 .1875 1.762E-16 9.762E-05 6.215E-18 1.592E-04 4.473E-11 1.466E-05 5.996E-07 5.988E-29 6.500E-11 4.805E-16
4 .2250 1.251E-15 1.584E-04 5.574E-17 2.543E-04 2.332E-10 2.367E-05 1.030E-06 6.346E-28 1.293E-10 8.752E-15
5 .2625 1.349E-14 2.587E-04 7.041E-16 4.067E-04 1.415E-09 3.848E-05 1.780E-06 1.484E-24 2.597E-10 1.630E-13
6 .3000 3.447E-13 4.157E-04 2.113E-14 6.331E-04 8.360E-09 6.173E-05 3.020E-06 1.706E-20 5.101E-10 2.752E-12
7 .3187 1.607E-12 5.240E-04 9.074E-14 7.762E-04 1.556E-08 7.823E-05 3.907E-06 1.081E-18 7.161E-10 1.492E-11
8 .3375 7.052E-12 6.574E-04 3.268E-13 9.387E-04 2.655E-08 9.931E-05 5.027E-06 3.625E-17 1.007E-09 6.330E-11
9 .3563 3.019E-11 8.178E-04 1.054E-12 1.115E-03 4.438E-08 1.263E-04 6.417E-06 6.675E-16 1.414E-09 2.340E-10
10 .3656 6.183E-11 9.072E-04 1.883E-12 1.207E-03 5.752E-08 1.424E-04 7.222E-06 2.407E-15 1.676E-09 4.367E-10
11 .3750 1.211E-10 1.001E-03 3.353E-12 1.300E-03 7.376E-08 1.604E-04 8.105E-06 7.747E-15 1.988E-09 7.538E-10
12 .3797 1.619E-10 1.049E-03 4.443E-12 1.347E-03 8.260E-08 1.701E-04 8.573E-06 1.350E-14 2.165E-09 9.544E-10
13 .3844 1.937E-10 1.098E-03 5.309E-12 1.395E-03 9.091E-08 1.801E-04 9.061E-06 1.790E-14 2.357E-09 1.178E-09
14 .3937 2.395E-10 1.195E-03 6.980E-12 1.491E-03 1.074E-07 2.013E-04 1.010E-05 2.664E-14 2.797E-09 1.692E-09
15 .4031 2.831E-10 1.291E-03 9.119E-12 1.589E-03 1.247E-07 2.241E-04 1.121E-05 3.892E-14 3.318E-09 2.329E-09
16 .4125 3.294E-10 1.385E-03 1.184E-11 1.685E-03 1.432E-07 2.483E-04 1.240E-05 5.593E-14 3.934E-09 3.142E-09
17 .4219 3.812E-10 1.474E-03 1.531E-11 1.778E-03 1.630E-07 2.740E-04 1.367E-05 7.982E-14 4.660E-09 4.198E-09
18 .4312 4.408E-10 1.557E-03 1.976E-11 1.867E-03 1.845E-07 3.009E-04 1.500E-05 1.138E-13 5.510E-09 5.584E-09
19 .4500 5.929E-10 1.698E-03 3.286E-11 2.026E-03 2.329E-07 3.579E-04 1.783E-05 2.328E-13 7.632E-09 9.693E-09
20 .4594 6.919E-10 1.751E-03 4.240E-11 2.090E-03 2.604E-07 3.870E-04 1.928E-05 3.361E-13 8.928E-09 1.277E-08
21 .4687 8.123E-10 1.788E-03 5.484E-11 2.142E-03 2.901E-07 4.160E-04 2.074E-05 4.892E-13 1.040E-08 1.678E-08
22 .4781 9.605E-10 1.808E-03 7.116E-11 2.178E-03 3.224E-07 4.444E-04 2.217E-05 7.195E-13 1.206E-08 2.196E-08
23 .4875 1.145E-09 1.808E-03 9.273E-11 2.197E-03 3.573E-07 4.713E-04 2.355E-05 1.071E-12 1.390E-08 2.854E-08
24 .4969 1.378E-09 1.787E-03 1.214E-10 2.197E-03 3.950E-07 4.959E-04 2.484E-05 1.616E-12 1.590E-08 3.675E-08
25 .5062 1,672E-09 1.741E-03 1.598E-10 2.174E-03 4.349E-07 5.171E-04 2.598E-05 2.470E-12 1.801E-08 4.664E-08
26 .5156 2.009E-09 1.671E-03 2.081E-10 2.126E-03 4.758E-07 5.335E-04 2.694E-05 3.703E-12 2.017E-08 5.802E-08
27 .5250 2.422E-09 1.575E-03 2.715E-10 2.053E-03 5.171E-07 5.439E-04 2.764E-05 5.572E-12 2.227E-08 7.055E-08
28 .5437 3.578E-09 1.310E-03 4.650E-10 1.824E-03 5.879E-07 5.427E-04 2.811E-05 1.277E-11 2.586E-08 9.669E-08
29 .5625 5.194E-09 9.793E-04 7.754E-10 1.495E-03 6.117E-07 5.041E-04 2.691E-05 2.782E-11 2.719E-08 1.130E-07
30 .5813 6.893E-09 6.395E-04 1.174E-09 1.108E-03 5.485E-07 4.248E-04 2.365E-05 5.160E-11 2.466E-08 1.052E-07
31 .6000 7.779E-09 3.563E-04 1.492E-09 7.325E-04 4.035E-07 3.155E-04 1.850E-05 7.362E-11 1.817E-08 7.319E-08
32 .6187 7.073E-09 1.678E-04 1.501E-09 4.335E-04 2.365E-07 2.023E-04 1.253E-05 7.563E-11 1.038E-08 3.666E-08



33 .6375 5.078E-09 6.717E-05 1.169E-09 2.330E-04 1.098E-07 1.116E-04 7.276E-06
34 .6563 2.935E-09 2.324E-05 7.245E-10 1.156E-04 4.088E-08 5.377E-05 3.665E-06
35 .6750 1.404E-09 7.127E-06 3.706E-10 5.385E-05 1.265E-08 2.333E-05 1.648E-06
36 .6938 5.850E-10 1.993E-06 1.652E-10 2.396E-05 3.403E-09 9.421E-06 6.847E-07
37 .7125 2.233E-10 5.210E-07 6.732E-11 1.036E-05 8.291E-10 3.646E-06 2.711E-07
38 .7312 8.073E-11 1.292E-07 2.592E-11 4.385E-06 1.878E-10 1.377E-06 1.045E-07
39 .7500 2.685E-11 2.727E-08 9.126E-12 1.764E-06 3.580E-11 4.893E-07 3.804E-08
40 .7875 4.171E-12 2.870E-09 1.644E-12 4.180E-07 3.104E-12 1.062E-07 8.532E-09
41 .8250 6.490E-13 2.818E-10 3.027E-13 9.982E-08 2.528E-13 2.587E-08 2.185E-09
42 .9000 5.037E-14 1.482E-11 3.262E-14 1.454E-08 9.935E-15 5.069E-09 4.603E-10
43 1.0500 2.441E-15 8.026E-13 2.416E-15 2.213E-09 3.718E-16 1.337E-09 1.279E-10
44 1.2000 1.725E-16 1.268E-13 2.385E-16 7.454E-10 4.535E-17 6.734E-10 6.667E-11
45 1.5000 4.103E-18 2.450E-13 6.921E-18 4.728E-10 5.372E-17 4.177E-10 4.037E-11
46 1.8000 1.972E-19 2.653E-13 3.940E-19 3.971E-10 3.346E-17 3.297E-10 2.984E-11
47 1.9500 2.157E-20 2.229E-13 6.332E-20 3.717E-10 1.562E-17 3.035E-10 2.656E-11
48 2.1000 4.171E-21 1.681E-13 1.748E-20 3.482E-10 7.041E-18 2.835E-10 2.432E-11
49 2.1750 2.150E-21 1.416E-13 1.067E-20 3.370E-10 4.877E-18 2.745E-10 2.337E-11
50 2.2500 1.168E-21 1.166E-13 6.734E-21 3.266E-10 3.436E-18 2.664E-10 2.253E-11
51 2.3250 6.399E-22 9.437E-14 4.236E-21 3.171E-10 2.402E-18 2.590E-10 2.178E-11
52 2.3438 5.478E-22 8.943E-14 3.759E-21 3.148E-10 2.190E-18 2.572E-10 2.160E-11
53 2.3625 4.692E-22 8.476E-14 3.334E-21 3.126E-10 1.997E-18 2.555E-10 2.143E-11
54 2.3812 4.015E-22 8.035E-14 2.954E-21 3.105E-10 1.821E-18 2.539E-10 2.127E-11
55 2.4000 3.423E-22 7.621E-14 2.615E-21 3.085E-10 1.659E-18 2.523E-10 2.112E-11
56 3.0000 3.423E-22 7.621E-14 2.615E-21 3.085E-10 1.659E-18 2.523E-10 2.112E-11

5.513E-11 4.560E-09 1.325E-08
2.989E-11 1.591E-09 3.593E-09
1.265E-11 4.660E-10 7.740E-10
4.524E-12 1.216E-10 1.410E-10
1.462E-12 2.980E-11 2.295E-11
4.443E-13 7.247E-12 3.467E-12
1.245E-13 1.767E-12 4.274E-13
1.187E-14 4.265E-13 2.280E-14
1.036E-15 2.216E-13 1.119E-15
2.455E-17 1.391E-13 2.968E-17
1.710E-19 8.916E-14 1.112E-18
1.724E-21 6.682E-14 1.160E-19
9.569E-23 4.773E-14 3.318E-21
8.886E-28 3.802E-14 9.038E-23
1.664E-30 3.439E-14 6.524E-24
2.250E-32 3.175E-14 7.768E-24
4.098E-33 3.060E-14 6.616E-25
-6.628E-33 2.957E-14 2.292E-25
-5.570E-28 2.864E-14 1.143E-25
-3.400E-32 2.842E-14 7.640E-26
5.193E-35 2.821E-14 -3.815E-26
4.174E-35 2.800E-14 -5.976E-25
2.722E-35 2.780E-14 -3.634E-24
2.731E-35 2.780E-14 -4.840E-24

X C3H2 C4H3 O2 H HO2 H2 H2O CO2
1 .0000 1.449E-20 7.308E-13 1.580E-01 1.070E-13 3.271E-07 1.592E-03 5.756E-02 4.826E-05
2 .1500 6.028E-20 4.110E-12 1.599E-01 1.493E-13 1.114E-06 2.637E-03 5.079E-02 1.942E-04
3 .1875 3.606E-19 7.781E-12 1.595E-01 1.163E-12 1.900E-06 3.003E-03 5.070E-02 3.097E-04
4 .2250 2.507E-18 1.550E-11 1.584E-01 9.436E-12 3.438E-06 3.417E-03 5.172E-02 5.079E-04
5 .2625 2.169E-17 3.117E-11 1.563E-01 1.247E-10 6.459E-06 3.880E-03 5.415E-02 8.384E-04
6 .3000 5.195E-16 6.125E-11 1.530E-01 5.896E-09 1.203E-05 4.383E-03 5.820E-02 1.361E-03

CO HCO
2.123E-04 9.328E-13
7.269E-04 3.622E-12
1.079E-03 1.450E-11
1.632E-03 6.409E-11
2.481E-03 3.337E-10
3.722E-03 2.187E-09



7 .3187 4.749E-15 8.577E-11 1.507E-01 2.909E-08 1.549E-05 4.649E-03 6.090E-02 1.725E-03 4.534E-03 4.684E-09
8 .3375 4.566E-14 1.199E-10 1.480E-01 1.112E-07 1.782E-05 4.927E-03 6.408E-02 2.177E-03 5.499E-03 8.796E-09
9 .3563 3.516E-13 1.666E-10 1.448E-01 3.271E-07 1.779E-05 5.217E-03 6.776E-02 2.733E-03 6.634E-03 1.534E-08
10 .3656 8.940E-13 1.958E-10 1.430E-01 5.203E-07 1.714E-05 5.367E-03 6.977E-02 3.057E-03 7.269E-03 2.026E-08
11 .3750 2.123E-12 2.295E-10 1.411E-01 7.926E-07 1.619E-05 5.517E-03 7.191E-02 3.414E-03 7.951E-03 2.674E-08
12 .3797 3.211E-12 2.480E-10 1.401E-01 9.681E-07 1.569E-05 5.592E-03 7.302E-02 3.607E-03 8.309E-03 3.058E-08
13 .3844 4.059E-12 2.678E-10 1.390E-01 1.076E-06 1.611E-05 5.667E-03 7.416E-02 3.810E-03 8.678E-03 3.408E-08
14 .3937 5.770E-12 3.113E-10 1.368E-01 1.261E-06 1.803E-05 5.817E-03 7.655E-02 4.252E-03 9.458E-03 4.150E-08
15 .4031 8.050E-12 3.602E-10 1.344E-01 1.472E-06 2.008E-05 5.966E-03 7.909E-02 4.744E-03 1.029E-02 5.019E-08
16 .4125 1.105E-11 4.145E-10 1.319E-01 1.710E-06 2.222E-05 6.113E-03 8.178E-02 5.293E-03 1.118E-02 6.025E-08
17 .4219 1.503E-11 4.741E-10 1.291E-01 1.984E-06 2.451E-05 6.256E-03 8.461E-02 5.903E-03 1.213E-02 7.191E-08
18 .4312 2.033E-11 5.388E-10 1.262E-01 2.302E-06 2.700E-05 6.394E-03 8.760E-02 6.581E-03 1.313E-02 8.545E-08
19 .4500 3.679E-11 6.811E-10 1.197E-01 3.113E-06 3.269E-05 6.647E-03 9.403E-02 8.155E-03 1.528E-02 1.195E-07
20 .4594 4.934E-11 7.547E-10 1.162E-01 3.637E-06 3.602E-05 6.755E-03 9.745E-02 9.065E-03 1.642E-02 1.408E-07
21 .4687 6.612E-11 8.283E-10 1.125E-01 4.264E-06 3.974E-05 6.847E-03 1.010E-01 1.007E-02 1.760E-02 1.657E-07
22 .4781 8.861E-11 8.993E-10 1.087E-01 5.025E-06 4.393E-05 6.920E-03 1.047E-01 1.117E-02 1.881E-02 1.947E-07
23 .4875 1.188E-10 9.648E-10 1.046E-01 5.955E-06 4.870E-05 6.969E-03 1.085E-01 1.238E-02 2.004E-02 2.286E-07
24 .4969 1.594E-10 1.022E-09 1.004E-01 7.101E-06 5.416E-05 6.990E-03 1.124E-01 1.371E-02 2.126E-02 2.684E-07
25 .5062 2.137E-10 1.066E-09 9.599E-02 8.521E-06 6.042E-05 6.977E-03 1.164E-01 1.515E-02 2.247E-02 3.147E-07
26 .5156 2.798E-10 1.094E-09 9.148E-02 1.018E-05 6.834E-05 6.926E-03 1.205E-01 1.672E-02 2.364E-02 3.679E-07
27 .5250 3.633E-10 1.103E-09 8.687E-02 1.221E-05 7.767E-05 6.831E-03 1.245E-01 1.842E-02 2.474E-02 4.289E-07
28 .5437 5.962E-10 1.059E-09 7.750E-02 1.769E-05 1.001E-04 6.494E-03 1.327E-01 2.220E-02 2.663E-02 5.724E-07
29 .5625 8.949E-10 9.386E-10 6.836E-02 2.526E-05 1.256E-04 5.935E-03 1.404E-01 2.645E-02 2.783E-02 7.223E-07
30 .5813 1.121E-09 7.626E-10 6.007E-02 3.403E-05 1.482E-04 5.163E-03 1.471E-01 3.103E-02 2.800E-02 8.153E-07
31 .6000 1.062E-09 5.686E-10 5.320E-02 4.176E-05 1.606E-04 4.246E-03 1.524E-01 3.577E-02 2.694E-02 7.858E-07
32 .6187 7.038E-10 3.943E-10 4.807E-02 4.597E-05 1.592E-04 3.305E-03 1.560E-01 4.041E-02 2.473E-02 6.330E-07
33 .6375 3.177E-10 2.618E-10 4.466E-02 4.561E-05 1.460E-04 2.456E-03 1.579E-01 4.471E-02 2.173E-02 4.283E-07
34 .6563 1.014E-10 1.725E-10 4.267E-02 4.182E-05 1.258E-04 1.767E-03 1.585E-01 4.848E-02 1.845E-02 2.492E-07
35 .6750 2.433E-11 1.160E-10 4.175E-02 3.608E-05 1.044E-04 1.252E-03 1.581E-01 5.161E-02 1.528E-02 1.282E-07
36 .6938 4.803E-12 8.074E-11 4.157E-02 3.002E-05 8.509E-05 8.845E-04 1.572E-01 5.408E-02 1.247E-02 6.032E-08
37 .7125 8.468E-13 5.828E-11 4.190E-02 2.453E-05 6.894E-05 6.305E-04 1.559E-01 5.595E-02 1.011E-02 2.678E-08
38 .7312 1.430E-13 4.356E-11 4.258E-02 1.988E-05 5.585E-05 4.562E-04 1.544E-01 5.728E-02 8.177E-03 1.144E-08



39 .7500 2.267E-14 3.362E-11 4.350E-02 1.601E-05 4.520E-05 3.358E-04 1.527E-01 5.817E-02 6.640E-03 4.577E-09
40 .7875 2.672E-15 2.290E-11 4.584E-02 9.743E-06 3.238E-05 1.995E-04 1.494E-01 5.886E-02 4.560E-03 1.018E-09
41 .8250 9.174E-16 1.701E-11 4.844E-02 5.708E-06 2.404E-05 1.246E-04 1.461E-01 5.876E-02 3.242E-03 2.275E-10
42 .9000 3.445E-16 1.187E-11 5.381E-02 2.199E-06 1.497E-05 5.971E-05 1.398E-01 5.732E-02 1.939E-03 2.920E-11
43 1.0500 8.030E-17 8.695E-12 6.368E-02 4.793E-07 9.020E-06 2.449E-05 1.288E-01 5.332E-02 1.137E-03 3.077E-12
44 1.2000 1.698E-17 7.447E-12 7.221E-02 1.044E-07 6.824E-06 1.413E-05 1.194E-01 4.951E-02 8.697E-04 5.712E-13
45 1.5000 1.149E-18 6.419E-12 8.540E-02 7.314E-09 4.861E-06 1.019E-05 1.049E-01 4.341E-02 7.241E-04 6.567E-14
46 1.8000 1.250E-19 5.693E-12 9.577E-02 5.558E-10 2.965E-06 8.827E-06 9.342E-02 3.861E-02 6.384E-04 9.696E-15
47 1.9500 3.431E-20 5.377E-12 1.003E-01 6.962E-11 2.185E-06 8.349E-06 8.838E-02 3.649E-02 6.026E-04 2.771E-15
48 2.1000 1.350E-20 5.093E-12 1.045E-01 1.582E-11 1.648E-06 7.950E-06 8.382E-02 3.457E-02 5.707E-04 1.110E-15
49 2.1750 9.327E-21 4.959E-12 1.064E-01 9.002E-12 1.439E-06 7.774E-06 8.169E-02 3.367E-02 5.558E-04 7.702E-16
50 2.2500 6.688E-21 4.832E-12 1.082E-01 5.112E-12 1.268E-06 7.616E-06 7.970E-02 3.282E-02 5.418E-04 5.496E-16
51 2.3250 4.800E-21 4.711E-12 1.099E-01 2.888E-12 1.125E-06 7.477E-06 7.785E-02 3.202E-02 5.287E-04 3.928E-16
52 2.3438 4.406E-21 4.682E-12 1.103E-01 2.499E-12 1.092E-06 7.445E-06 7.742E-02 3.183E-02 5.256E-04 3.604E-16
53 2.3625 4.042E-21 4.653E-12 1.107E-01 2.163E-12 1.061E-06 7.415E-06 7.700E-02 3.164E-02 5.226E-04 3.305E-16
54 2.3812 3.706E-21 4.626E-12 1.111E-01 1.871E-12 1.031E-06 7.387E-06 7.660E-02 3.146E-02 5.198E-04 3.031E-16
55 2.4000 3.395E-21 4.600E-12 1.114E-01 1.619E-12 1.002E-06 7.360E-06 7.622E-02 3.129E-02 5.170E-04 2.777E-16
56 3.0000 3.395E-21 4.600E-12 1.114E-01 1.619E-12 1.002E-06 7.360E-06 7.622E-02 3.129E-02 5.170E-04 2.777E-16

X HCCO HCCOH H2O2 N2
1 .0000 2.551E-13 3.383E-08 3.622E-06 6.411E-01
2 .1500 7.491E-13 9.964E-08 1.239E-05 6.724E-01
3 .1875 3.575E-12 1.386E-07 1.721E-05 6.788E-01
4 .2250 1.559E-11 1.953E-07 2.354E-05 6.845E-01
5 .2625 8.823E-11 2.757E-07 3.012E-05 6.895E-01
6 .3000 1.079E-09 3.849E-07 3.158E-05 6.939E-01
7 .3187 3.194E-09 4.523E-07 2.741E-05 6.958E-01
8 .3375 8.676E-09 5.297E-07 2.051E-05 6.976E-01
9 .3563 2.197E-08 6.181E-07 1.315E-05 6.992E-01
10 .3656 3.420E-08 6.671E-07 1.017E-05 7.000E-01



11 .3750 5.233E-08 7.196E-07 7.865E-06 7.007E-01
12 .3797 6.363E-08 7.472E-07 7.087E-06 7.011E-01
13 .3844 7.127E-08 7.759E-07 6.668E-06 7.014E-01
14 .3937 8.228E-08 8.369E-07 6.607E-06 7.022E-01
15 .4031 9.440E-08 9.030E-07 6.843E-06 7.029E-01
16 .4125 1.080E-07 9.742E-07 7.148E-06 7.035E-01
17 .4219 1.232E-07 1.051E-06 7.455E-06 7.042E-01
18 .4312 1.402E-07 1.133E-06 7.751E-06 7.049E-01
19 .4500 1.808E-07 1.313E-06 8.292E-06 7.063E-01
20 .4594 2.049E-07 1.410E-06 8.543E-06 7.070E-01
21 .4687 2.321E-07 1.512E-06 8.780E-06 7.077E-01
22 .4781 2.630E-07 1.618E-06 9.006E-06 7.084E-01
23 .4875 2.984E-07 1.727E-06 9.224E-06 7.092E-01
24 .4969 3.395E-07 1.838E-06 9.443E-06 7.099E-01
25 .5062 3.873E-07 1.950E-06 9.688E-06 7.107E-01
26 .5156 4.380E-07 2.062E-06 1.006E-05 7.116E-01
27 .5250 4.963E-07 2.171E-06 1.050E-05 7.125E-01
28 .5437 6.463E-07 2.373E-06 1.139E-05 7.144E-01
29 .5625 8.364E-07 2.528E-06 1.205E-05 7.165E-01
30 .5813 1.014E-06 2.587E-06 1.206E-05 7.189E-01
31 .6000 1.075E-06 2.483E-06 1.112E-05 7.214E-01
32 .6187 9.467E-07 2.182E-06 9.349E-06 7.239E-01
33 .6375 6.791E-07 1.734E-06 7.179E-06 7.265E-01
34 .6563 4.012E-07 1.257E-06 5.078E-06 7.289E-01
35 .6750 1.992E-07 8.497E-07 3.434E-06 7.312E-01
36 .6938 8.662E-08 5.507E-07 2.285E-06 7.332E-01
37 .7125 3.442E-08 3.512E-07 1.530E-06 7.350E-01
38 .7312 1.290E-08 2.247E-07 1.041E-06 7.367E-01
39 .7500 4.409E-09 1.458E-07 7.210E-07 7.382E-01
40 .7875 7.655E-10 7.631E-08 4.402E-07 7.408E-01
41 .8250 1.365E-10 4.586E-08 2.987E-07 7.430E-01
42 .9000 1.427E-11 2.652E-08 1.664E-07 7.469E-01



43 1.0500 1.155E-12 1.849E-08 9.611E-08 7.530E-01
44 1.2000 1.626E-13 1.588E-08 9.579E-08 7.579E-01
45 1.5000 1.459E-14 1.378E-08 2.067E-07 7.656E-01
46 1.8000 2.705E-15 1.226E-08 3.324E-07 7.715E-01
47 1.9500 8.152E-16 1.160E-08 4.974E-07 7.742E-01
48 2.1000 3.605E-16 1.100E-08 6.098E-07 7.766E-01
49 2.1750 2.676E-16 1.072E-08 6.488E-07 7.777E-01
50 2.2500 1.984E-16 1.045E-08 6.794E-07 7.787E-01
51 2.3250 1.463E-16 1.021E-08 7.047E-07 7.797E-01
52 2.3438 1.354E-16 1.015E-08 7.105E-07 7.799E-01
53 2.3625 1.253E-16 1.010E-08 7.160E-07 7.801E-01
54 2.3812 1.159E-16 1.004E-08 7.214E-07 7.803E-01
55 2.4000 1.072E-16 9.992E-09 7.265E-07 7.805E-01
56 3.0000 1.072E-16 9.992E-09 7.265E-07 7.805E-01

TWOPNT: LOG OF THE BOUNDARY VALUE PROBLEM SOLVER.

ACTIVITY
START

NEWTON

REFINE
NEWTON

LOG10 LOG10 MAX POINTS

	

MAX NORM CONDITION 	 STEPS
RESIDUAL 	 NUMBER 	 JACOBIANS 	 REMARK

56

	

-8.65 	 39.51 	 54 	 8

	

-.28 	 57 	 NEW MESH

	

-4.65 	 39.81 	 18 1

REFINE 	 57



TWOPNT: FINAL SOLUTION:



27 .5156 1.596E+03 2.387E+01 2.094E-04 5.790E-14 3.007E-06 3.706E-07 7.190E-06 4.390E-11 2.283E-08 7.577E-06
28 .5250 1.598E+03 2.388E+01 2.094E-04 2.771E-14 2.981E-06 3.728E-07 7.134E-06 4.369E-11 2.351E-08 7.528E-06
29 .5437 1.602E+03 2.390E+01 2.092E-04 6.783E-15 2.936E-06 3.711E-07 7.021E-06 4.340E-11 2.388E-08 7.421E-06
30 .5625 1.606E+03 2.392E+01 2.090E-04 1.598E-15 2.894E-06 3.652E-07 6.914E-06 4.319E-11 2.360E-08 7.312E-06
31 .5813 1.610E+03 2.396E+01 2.087E-04 3.878E-16 2.854E-06 3.574E-07 6.812E-06 4.299E-11 2.297E-08 7.206E-06
32 .6000 1.614E+03 2.400E+01 2.084E-04 1.068E-16 2.815E-06 3.488E-07 6.713E-06 4.276E-11 2.213E-08 7.103E-06
33 .6187 1.618E+03 2.404E+01 2.080E-04 4.000E-17 2.777E-06 3.388E-07 6.618E-06 4.230E-11 2.114E-08 7.002E-06
34 .6375 1.621E+03 2.406E+01 2.078E-04 2.306E-17 2.740E-06 3.230E-07 6.535E-06 4.147E-11 1.997E-08 6.904E-06
35 .6563 1.615E+03 2.395E+01 2.087E-04 1.726E-17 2.704E-06 2.938E-07 6.474E-06 4.183E-11 1.858E-08 6.809E-06
36 .6750 1.609E+03 2.385E+01 2.096E-04 1.454E-17 2.669E-06 2.644E-07 6.417E-06 4.162E-11 1.716E-08 6.717E-06
37 .6938 1.603E+03 2.375E+01 2.105E-04 1.273E-17 2.635E-06 2.374E-07 6.360E-06 4.125E-11 1.581E-08 6.627E-06
38 .7125 1.597E+03 2.365E+01 2.115E-04 1.129E-17 2.601E-06 2.134E-07 6.302E-06 4.082E-11 1.453E-08 6.540E-06
39 .7312 1.591E+03 2.354E+01 2.124E-04 1.007E-17 2.569E-06 1.920E-07 6.243E-06 4.036E-11 1.336E-08 6.456E-06
40 .7500 1.585E+03 2.344E+01 2.133E-04 8.983E-18 2.538E-06 1.730E-07 6.183E-06 3.986E-11 1.228E-08 6.374E-06
41 .7875 1.571E+03 2.322E+01 2.154E-04 7.076E-18 2.478E-06 1.400E-07 6.066E-06 3.924E-11 1.040E-08 6.217E-06
42 .8250 1.556E+03 2.298E+01 2.176E-04 5.485E-18 2.421E-06 1.132E-07 5.949E-06 3.870E-11 8.822E-09 6.069E-06
43 .9000 1.527E+03 2.251E+01 2.221E-04 3.136E-18 2.316E-06 7.530E-08 5.722E-06 3.784E-11 6.463E-09 5.798E-06
44 1.0500 1.465E-1-03 2.155E+01 2.321E-04 6.308E-19 2.136E-06 3.430E-08 5.305E-06 3.766E-11 3.706E-09 5.336E-06
45 1.2000 1.393E+03 2.044E+01 2.446E-04 4.114E-20 1.983E-06 1.429E-08 4.938E-06 3.881E-11 2.077E-09 4.947E-06
46 1.5000 1.225E+03 1.792E+01 2.790E-04 1.678E-23 1.745E-06 2.372E-09 4.348E-06 6.572E-11 7.115E-10 4.345E-06
47 1.8000 1.133E+03 1.654E+01 3.023E-04 7.628E-26 1.557E-06 5.995E-10 3.874E-06 7.746E-11 3.031E-10 3.871E-06
48 1.9500 1.033E+03 1.506E+01 3.319E-04 1.516E-28 1.475E-06 2.316E-10 3.666E-06 1.948E-10 1.888E-10 3.663E-06
49 2.1000 9.800E+02 1.427E+01 3.503E-04 2.425E-30 1.401E-06 9.294E-11 3.476E-06 2.482E-10 1.206E-10 3.475E-06
50 2.1750 9.650E+02 1.405E+01 3.559E-04 6.446E-31 1.367E-06 6.452E-11 3.388E-06 2.451E-10 9.629E-11 3.387E-06
51 2.2500 9.500E+02 1.382E+01 3.617E-04 1,647E-31 1.335E-06 4.445E-11 3.305E-06 2.421E-10 7.768E-11 3.304E-06
52 2.3250 9.350E+02 1.360E+01 3.676E-04 4.027E-32 1.306E-06 3.029E-11 3.228E-06 2.388E-10 6.304E-11 3.228E-06
53 2.3438 9.313E+02 1.354E+01 3.692E-04 2.809E-32 1.300E-06 2.745E-11 3.210E-06 2.377E-10 5.981E-11 3.210E-06
54 2.3625 9.275E+02 1.349E+01 3.707E-04 1.954E-32 1.293E-06 2.487E-11 3.192E-06 2.366E-10 5.677E-11 3.193E-06
55 2.3812 9.238E+02 1.343E+01 3.722E-04 1.355E-32 1.287E-06 2.251E-11 3.176E-06 2.355E-10 5.390E-11 3.176E-06
56 2.4000 9.200E+02 1.338E+01 3.738E-04 9.368E-33 1.281E-06 2.036E-11 3.160E-06 2.344E-10 5.119E-11 3.161E-06
57 3.0000 8.000E+02 9.638E+00 4.298E-04 4.957E-23 1.281E-06 2.036E-11 3.160E-06 2.344E-10 5.119E-11 3.161E-06



X OH 	 CH 	 O 	 CH3 C2H6 	 CH4 	 CH3O CH2OH C2H3 	 CH2
1 .0000 2.672E-10 2.006E-24 8.477E-15 1.791E-07 4.499E-05 1.310E-01 4.447E-09 2.124E-15 1.836E-13 9.070E-17
2 .1500 5.533E-10 3.974E-24 1.738E-14 4.463E-07 1.441E-04 9.666E-02 1.347E-08 6.387E-15 5.494E-13 2.230E-16
3 .1875 1.565E-09 2.704E-22 8.926E-14 9.233E-07 2.068E-04 8.702E-02 4.116E-08 3.566E-14 2.574E-12 1.352E-15
4 .2250 4.971E-09 1.774E-20 5.527E-13 1.998E-06 3.011E-04 7.650E-02 1.385E-07 1.987E-13 1.368E-11 1.014E-14
5 .2625 2.007E-08 6.314E-18 1.584E-11 5.483E-06 4.379E-04 6.482E-02 5.313E-07 1.782E-12 1.008E-10 1.892E-13
6 .3000 1.566E-07 4.904E-14 1.758E-09 2.107E-05 6.176E-04 5.225E-02 1.657E-06 4.753E-11 1.643E-09 1.628E-11
7 .3187 4.452E-07 1.593E-12 1.710E-08 4.351E-05 7.106E-04 4.570E-02 2.625E-06 2.242E-10 6.517E-09 1.656E-10
8 .3375 1.065E-06 2.726E-11 1.055E-07 8.871E-05 7.879E-04 3.898E-02 3.406E-06 9.559E-10 2.201E-08 1.263E-09
9 .3563 2.425E-06 2.675E-10 4.179E-07 1.824E-04 8.144E-04 3.211E-02 3.572E-06 4.313E-09 7.026E-08 7.124E-09
10 .3656 3.875E-06 7.302E-10 7.565E-07 2.600E-04 7.915E-04 2.866E-02 3.541E-06 1.023E-08 1.285E-07 1.603E-08
11 .3750 6.299E-06 1.798E-09 1.292E-06 3.562E-04 7.419E-04 2.523E-02 3.363E-06 2.449E-08 2.301E-07 3.407E-08
12 .3797 7.947E-06 2.756E-09 1.644E-06 4.017E-04 7.123E-04 2.354E-02 3.272E-06 3.642E-08 3.000E-07 4.762E-08
13 .3844 9.626E-06 3.514E-09 1.975E-06 4.357E-04 6.854E-04 2.187E-02 3.563E-06 4.966E-08 3.734E-07 6.152E-08
14 .3937 1.365E-05 5.204E-09 2.735E-06 4.740E-04 6.367E-04 1.855E-02 4.812E-06 8.231E-08 5.520E-07 9.413E-08
15 .4031 1.991E-05 7.706E-09 3.854E-06 4.986E-04 5.762E-04 1.533E-02 6.463E-06 1.368E-07 8.130E-07 1.444E-07
16 .4125 3.014E-05 1.134E-08 5.510E-06 5.150E-04 4.982E-04 1.226E-02 8.577E-06 2.332E-07 1.188E-06 2.241E-07
17 .4219 4.685E-05 1.622E-08 7.884E-06 5.201E-04 4.051E-04 9.426E-03 1.100E-05 4.014E-07 1.680E-06 3.450E-07
18 .4312 7.325E-05 2.184E-08 1.110E-05 5.075E-04 3.050E-04 6.927E-03 1.322E-05 6.740E-07 2.208E-06 5.094E-07
19 .4406 1.125E-04 2.682E-08 1.521E-05 4.717E-04 2.101E-04 4.838E-03 1.442E-05 1.059E-06 2.591E-06 6.961E-07
20 .4500 1.663E-04 2.935E-08 2.024E-05 4.119E-04 1.312E-04 3.202E-03 1.399E-05 1.498E-06 2.620E-06 8.538E-07
21 .4594 2.333E-04 2.820E-08 2.623E-05 3.342E-04 7.378E-05 2.008E-03 1.194E-05 1.854E-06 2.234E-06 9.186E-07
22 .4687 3.084E-04 2.362E-08 3.320E-05 2.502E-04 3.723E-05 1.197E-03 8.952E-06 1.970E-06 1.594E-06 8.550E-07
23 .4781 3.843E-04 1.726E-08 4.083E-05 1.725E-04 1.688E-05 6.834E-04 5.925E-06 1.793E-06 9.572E-07 6.854E-07
24 .4875 4.534E-04 1.111E-08 4.839E-05 1.101E-04 6.924E-06 3.765E-04 3.512E-06 1.411E-06 4.922E-07 4.758E-07
25 .4969 5.106E-04 6.414E-09 5.493E-05 6.596E-05 2.604E-06 2.020E-04 1.902E-06 9.806E-07 2.220E-07 2.905E-07
26 .5062 5.541E-04 3.398E-09 5.977E-05 3.756E-05 9.120E-07 1.062E-04 9.627E-07 6.169E-07 9.002E-08 1.594E-07
27 .5156 5.849E-04 1.689E-09 6.278E-05 2.053E-05 2.994E-07 5.484E-05 4.605E-07 3.588E-07 3.332E-08 8.026E-08
28 .5250 6.050E-04 7.820E-10 6.417E-05 1.068E-05 8.564E-08 2.724E-05 2.075E-07 1.931E-07 1.054E-08 3.681E-08
29 .5437 6.188E-04 1.900E-10 6.309E-05 3.285E-06 1.071E-08 7.972E-06 4.840E-08 5.941E-08 1.508E-09 8.702E-09
30 .5625 6.146E-04 4.588E-11 5.971E-05 1.015E-06 1.286E-09 2.372E-06 1.130E-08 1.758E-08 2.035E-10 2.018E-09
31 .5813 6.006E-04 1.136E-11 5.538E-05 3.191E-07 1.531E-10 7.241E-07 2.697E-09 5.171E-09 2.692E-11 4.837E-10



32 .6000 5.807E-04 2.951E-12 5.070E-05 1.030E-07 1.842E-11 2.278E-07 6.635E-10 1.540E-09 3.592E-12 1.246E-10
33 .6187 5.563E-04 8.333E-13 4.582E-05 3.434E-08 2.266E-12 7.430E-08 1.696E-10 4.692E-10 4.972E-13 3.578E-11
34 .6375 5.260E-04 2.751E-13 4.073E-05 1.190E-08 2.903E-13 2.531E-08 4.632E-11 1.466E-10 7.503E-14 1.177E-11
35 .6563 4.871E-04 1.152E-13 3.571E-05 4.290E-09 4.015E-14 9.078E-09 1.511E-11 4.645E-11 1.375E-14 4.488E-12
36 .6750 4.477E-04 6.586E-14 3.093E-05 1.622E-09 6.016E-15 3.434E-09 5.557E-12 1.534E-11 3.403E-15 1.972E-12
37 .6938 4.101E-04 4.718E-14 2.667E-05 6.444E-10 9.759E-16 1.368E-09 2.434E-12 5.314E-12 1.182E-15 9.747E-13
38 .7125 3.753E-04 3.792E-14 2.297E-05 2.682E-10 1.700E-16 5.726E-10 1.331E-12 1.932E-12 5.271E-16 5.273E-13
39 .7312 3.435E-04 3.201E-14 1.979E-05 1.158E-10 3.080E-17 2.491E-10 8.952E-13 7.306E-13 2.707E-16 3.048E-13
40 .7500 3.145E-04 2.754E-14 1.708E-05 4.954E-11 4.436E-18 1.075E-10 6.910E-13 2.742E-13 1.496E-16 1.844E-13
41 .7875 2.642E-04 2.057E-14 1.286E-05 1.332E-11 -3.939E-20 2.955E-11 5.116E-13 5.720E-14 5.573E-17 7.841E-14
42 .8250 2.223E-04 1.524E-14 9.753E-06 3.622E-12 -1.876E-19 8.253E-12 4.004E-13 1.215E-14 2.281E-17 3.609E-14
43 .9000 1.606E-04 8.031E-15 5.869E-06 5.662E-13 -6.875E-20 1.365E-12 2.440E-13 1.204E-15 5.239E-18 9.913E-15
44 1.0500 8.992E-05 1.410E-15 2.495E-06 7.344E-14 -2.664E-20 2.027E-13 5.836E-14 7.029E-17 6.090E-19 1.352E-15
45 1.2000 4.910E-05 8.245E-17 1.067E-06 1.441E-14 -1.407E-20 4.765E-14 4.979E-15 6.203E-18 8.540E-20 2.048E-16
46 1.5000 1.579E-05 2.893E-20 2.777E-07 3.503E-15 1.604E-19 1.551E-14 1.562E-17 3.365E-19 2.983E-21 1.012E-17
47 1.8000 6.482E-06 1.165E-22 9.122E-08 1.416E-15 3.280E-18 7.975E-15 1.617E-18 4.409E-20 5.646E-22 9.873E-19
48 1.9500 3.859E-06 1.219E-24 6.791E-08 8.325E-16 2.902E-18 4.598E-15 1.025E-18 1.292E-20 -1.835E-22 3.901E-19
49 2.1000 2.404E-06 2.029E-25 4.321E-08 6.316E-16 -9.281E-17 1.026E-15 5.670E-19 6.210E-21 -4.670E-21 1.521E-19
50 2.1750 1.907E-06 9.048E-26 3.227E-08 9.315E-16 -3.688E-16 5.651E-17 6.570E-19 7.666E-21 -1.211E-20 9.179E-20
51 2.2500 1.529E-06 4.254E-26 2.446E-08 9.861E-16 -8.302E-16 4.207E-16 3.197E-19 8.095E-21 -2.372E-20 5.768E-20
52 2.3250 1.234E-06 2.074E-26 1.880E-08 -3.269E-16 -1.240E-15 1.922E-15 -1.283E-18 4.682E-21 -3.551E-20 3.735E-20
53 2.3438 1.169E-06 1.731E-26 1.760E-08 -1.106E-15 -1.249E-15 2.342E-15 -1.610E-18 2.820E-21 -3.758E-20 3.349E-20
54 2.3625 1.108E-06 1.445E-26 1.649E-08 -2.091E-15 -1.169E-15 2.729E-15 -2.210E-18 6.645E-22 -3.902E-20 3.004E-20
55 2.3812 1.050E-06 1.206E-26 1.545E-08 -3.201E-15 -1.017E-15 3.076E-15 -2.894E-18 -1.478E-21 -3.988E-20 2.697E-20
56 2.4000 9.963E-07 1.006E-26 1.449E-08 -4.329E-15 -8.300E-16 3.388E-15 -3.728E-18 -3.320E-21 -4.026E-20 2.423E-20
57 3.0000 9.963E-07 1.006E-26 1.449E-08 -4.329E-15 -8.300E-16 3.388E-15 -3.728E-18 -3.320E-21 -4.026E-20 2.423E-20

X CH2S C2H4 C2H CH2O C2H5 C2H2 CH2CO C C4H2 C3H3
1 .0000 9.986E-19 4.588E-05 8.245E-19 7.407E-05 6.698E-12 1.911E-05 7.466E-07 1.355E-25 3.289E-10 1.939E-16
2 .1500 2.455E-18 1.382E-04 2.436E-18 2.216E-04 2.133E-11 5.684E-05 2.486E-06 2.986E-25 1.366E-09 6.998E-16
3 .1875 2.126E-17 1.935E-04 1.819E-17 3.076E-04 8.679E-11 7.920E-05 3.623E-06 1.727E-29 2.204E-09 3.590E-14
4 .2250 1.879E-16 2.742E-04 1.475E-16 4.309E-04 4.063E-10 1.117E-04 5.364E-06 4.492E-29 3.660E-09 7.819E-13



5 .2625 3.626E-15 3.885E-04 2.071E-15 6.002E-04 2.457E-09 1.575E-04 7.946E-06 1.273E-24 6.099E-09 1.523E-11
6 .3000 3.055E-13 5.394E-04 1.186E-13 8.087E-04 1.585E-08 2.180E-04 1.149E-05 2.539E-20 9.896E-09 2.432E-10
7 .3187 2.922E-12 6.298E-04 7.815E-13 9.171E-04 3.003E-08 2.551E-04 1.365E-05 7.987E-18 1.252E-08 1.274E-09
8 .3375 2.513E-11 7.308E-04 4.116E-12 1.019E-03 5.361E-08 2.983E-04 1.606E-05 8.723E-16 1.582E-08 4.976E-09
9 .3563 1.839E-10 8.381E-04 1.988E-11 1.098E-03 9.726E-08 3.500E-04 1.868E-05 3.646E-14 2.001E-08 1.665E-08
10 .3656 4.750E-10 8.866E-04 4.537E-11 1.124E-03 1.323E-07 3.795E-04 2.003E-05 1.920E-13 2.254E-08 2.939E-08
11 .3750 1.141E-09 9.259E-04 1.035E-10 1.141E-03 1.751E-07 4.108E-04 2.138E-05 8.681E-13 2.539E-08 4.835E-08
12 .3797 1.673E-09 9.389E-04 1.534E-10 1.145E-03 1.975E-07 4.262E-04 2.203E-05 1.764E-12 2.692E-08 6.018E-08
13 .3844 2.169E-09 9.463E-04 2.031E-10 1.147E-03 2.233E-07 4.412E-04 2.265E-05 2.821E-12 2.852E-08 7.338E-08
14 .3937 3.186E-09 9.421E-04 3.243E-10 1.144E-03 2.847E-07 4.683E-04 2.379E-05 6.376E-12 3.185E-08 1.037E-07
15 .4031 4.675E-09 9.074E-04 5.270E-10 1.123E-03 3.604E-07 4.894E-04 2.471E-05 1.478E-11 3.523E-08 1.381E-07
16 .4125 6.982E-09 8.378E-04 8.734E-10 1.076E-03 4.476E-07 5.006E-04 2.528E-05 3.477E-11 3.832E-08 1.734E-07
17 .4219 1.043E-08 7.317E-04 1.448E-09 9.975E-04 5.296E-07 4.973E-04 2.533E-05 7.971E-11 4.052E-08 2.023E-07
18 .4312 1.504E-08 5.948E-04 2.318E-09 8.832E-04 5.746E-07 4.741E-04 2.461E-05 1.678E-10 4.090E-08 2.145E-07
19 .4406 2.014E-08 4.423E-04 3.443E-09 7.380E-04 5.520E-07 4.272E-04 2.286E-05 3.064E-10 3.840E-08 2.012E-07
20 .4500 2.423E-08 2.965E-04 4.558E-09 5.773E-04 4.579E-07 3.579E-04 1.993E-05 4.646E-10 3.247E-08 1.622E-07
21 .4594 2.558E-08 1.777E-04 5.214E-09 4.217E-04 3.232E-07 2.747E-04 1.602E-05 5.696E-10 2.399E-08 1.098E-07
22 .4687 2.338E-08 9.505E-05 5.061E-09 2.887E-04 1.934E-07 1.916E-04 1.174E-05 5.585E-10 1.519E-08 6.165E-08
23 .4781 1.844E-08 4.565E-05 4.165E-09 1.862E-04 9.865E-08 1.216E-04 7.813E-06 4.396E-10 8.223E-09 2.872E-08
24 .4875 1.262E-08 1.991E-05 2.946E-09 1.138E-04 4.357E-08 7.076E-05 4.752E-06 2.835E-10 3.862E-09 1.126E-08
25 .4969 7.628E-09 8.008E-06 1.834E-09 6.622E-05 1.704E-08 3.835E-05 2.677E-06 1.547E-10 1.614E-09 3.802E-09
26 .5062 4.158E-09 3.015E-06 1.032E-09 3.697E-05 6.051E-09 1.967E-05 1.418E-06 7.424E-11 6.169E-10 1.137E-09
27 .5156 2.087E-09 1.069E-06 5.370E-10 1.987E-05 1.976E-09 9.628E-06 7.136E-07 3.248E-11 2.196E-10 3.066E-10
28 .5250 9.583E-10 3.308E-07 2.552E-10 1.016E-05 5.559E-10 4.416E-06 3.358E-07 1.298E-11 6.852E-11 6.774E-11
29 .5437 2.266E-10 4.773E-08 6.639E-11 3.020E-06 6.546E-11 1.131E-06 8.886E-08 2.293E-12 1.039E-11 5.858E-12
30 .5625 5.262E-11 6.692E-09 1.704E-11 9.004E-07 7.322E-12 2.969E-07 2.404E-08 3.954E-13 1.741E-12 4.765E-13
31 .5813 1.260E-11 9.321E-10 4.544E-12 2.739E-07 8.089E-13 8.260E-08 6.913E-09 6.964E-14 4.202E-13 3.853E-14
32 .6000 3.227E-12 1.309E-10 1.311E-12 8.586E-08 9.004E-14 2.517E-08 2.195E-09 1.289E-14 1.850E-13 3.228E45
33 .6187 9.136E-13 1.877E-11 4.251E-13 2.794E-08 1.022E-14 8.706E-09 7.967E-10 2.604E-15 1.225E-13 2.995E-16
34 .6375 2.934E-13 2.787E-12 1.583E-13 9.521E-09 1.204E-15 3.516E-09 3.379E-10 6.143E-16 9.319E-14 3.797E-17
35 .6563 1.072E-13 4.367E-13 6.581E-14 3.425E-09 1.555E-16 1.665E-09 1.667E-10 1.823E-16 7.058E-14 9.624E-18
36 .6750 4.529E-14 7.357E-14 3.126E-14 1.314E-09 2.165E-17 9.067E-10 9.342E-11 7.405E-17 5.464E-14 4.754E-18



37 .6938 2.167E-14 1.382E-14 1.653E-14 5.436E-10 3.263E-18 5.509E-10 5.772E-11 3.795E-17 4.322E-14 3.083E-18
38 .7125 1.142E-14 3.117E-15 9.472E-15 2.457E-10 5.303E-19 3.627E-10 3.832E-11 2.202E-17 3.481E-14 2.175E-18
39 .7312 6.454E-15 9.337E-16 5.756E-15 1.220E-10 9.053E-20 2.530E-10 2.681E-11 1.354E-17 2.846E-14 1.589E-18
40 .7500 3.830E-15 3.706E-16 3.644E-15 6.572E-11 1.279E-20 1.835E-10 1.948E-11 8.563E-18 2.356E-14 1.182E-18
41 .7875 1.569E-15 1.319E-16 1.656E-15 2.940E-11 1.532E-22 1.097E-10 1.159E-11 3.587E-18 1.672E-14 6.798E-19
42 .8250 6.964E46 5.765E-17 8.042E-16 1.637E-11 -3.158E-22 6.996E-11 7.364E-12 1.530E-18 1.215E-14 3.982E-19
43 .9000 1.781E-16 1.636E-17 2.384E-16 7.998E-12 -1.060E-22 3.475E-11 3.629E-12 3.023E-19 7.252E-15 1.556E-19
44 1.0500 2.092E-17 2.794E-18 3.432E-17 2.767E-12 -3.331E-23 1.299E-11 1.346E-12 1.089E-20 3.444E-15 3.084E-20
45 1.2000 2.649E-18 5.595E-19 5.017E-18 9.166E-13 -1.448E-23 5.248E-12 5.406E-13 1.360E-22 1.691E-15 5.274E-21
46 1.5000 8.166E-20 2.356E-19 1.372E-19 1.826E-13 1.639E-22 1.203E-12 1.050E-13 1.358E-24 2.969E-16 9.099E-23
47 1.8000 5.789E-21 3.168E-18 9.986E-21 5.777E-14 2.232E-21 4.110E-13 3.166E-14 -3.489E-25 8.674E-17 2.558E-24
48 1.9500 1.544E-21 2.249E-18 1.666E-21 3.146E-14 -3.156E-21 2.419E-13 1.591E-14 -6.432E-30 2.783E-17 1.159E-25
49 2.1000 4.709E-22 -9.400E-17 4.362E-22 2.019E-14 -8.188E-20 1.608E-13 9.891E-15 -6.742E-35 1.066E-17 8.743E-27
50 2.1750 2.636E-22 -3.574E-16 2.498E-22 1.711E-14 -2.305E-19 1.339E-13 8.079E-15 4.395E-36 6.663E-18 2.764E-27
51 2.2500 1.534E-22 -9.428E-16 1.478E-22 1.513E-14 -4.283E-19 1.142E-13 6.796E-15 -9.595E-33 4.447E-18 1.050E-27
52 2.3250 9.176E-23 -1.824E-15 8.945E-23 1.263E-14 -5.863E-19 9.917E-14 5.834E-15 -7.312E-28 3.096E-18 4.229E-28
53 2.3438 8.063E-23 -2.050E-15 7.895E-23 1.144E-14 -5.967E-19 9.587E-14 5.624E-15 -2.568E-31 2.821E-18 3.341E-28
54 2.3625 7.089E-23 -2.254E-15 6.977E-23 9.800E-15 -5.846E-19 9.277E-14 5.427E-15 -7.424E-35 2.573E-18 2.665E-28
55 2.3812 6.235E-23 -2.432E-15 6.174E-23 7.813E-15 -5.577E-19 8.986E-14 5.243E-15 1.161E-37 2.347E-18 2.137E-28
56 2.4000 5.487E-23 -2.589E-15 5.469E-23 5.698E-15 -5.259E-19 8.711E-14 5.070E-15 9.963E-38 2.138E-18 1.708E-28
57 3.0000 5.487E-23 -2.589E-15 5.469E-23 5.698E-15 -5.259E-19 8.711E-14 5.070E-15 9.963E-38 2.138E-18 1.708E-28

X C3H2 	 C4H3 	 O2 	 H 	 HO2 	 H2 	 H2O 	 CO2 	 CO 	 HCO
1 .0000 1.454E-18 1.338E-11 1.524E-01 1.921E-14 9.697E-07 2.067E-03 6.564E-02 1.335E-03 1.216E-03 3.738E-12
2 .1500 4.582E-18 5.569E-11 1.445E-01 2.436E-14 2.550E-06 2.983E-03 7.164E-02 4.087E-03 3.213E-03 1.112E-11
3 .1875 2.136E-17 8.995E-11 1.392E-01 1.490E-13 4.036E-06 3.265E-03 7.703E-02 5.762E-03 4.278E-03 3.999E-11
4 .2250 1.175E-16 1.495E-10 1.316E-01 1.147E-12 6.682E-06 3.569E-03 8.471E-02 8.233E-03 5.744E-03 1.596E-10
5 .2625 8.459E-16 2.492E-10 1.211E-01 2.623E-11 1.142E-05 3.891E-03 9.493E-02 1.177E-02 7.704E-03 7.981E-10
6 .3000 1.320E-14 4.038E-10 1.079E-01 6.894E-09 1.981E-05 4.216E-03 1.073E-01 1.648E-02 1.016E-02 5.093E-09
7 .3187 9.625E-14 5.079E-10 1.004E-01 6.372E-08 2.595E-05 4.378E-03 1.142E-01 1.932E-02 1.157E-02 1.185E-08
8 .3375 1.150E-12 6.330E-10 9.214E-02 3.840E-07 2.893E-05 4.544E-03 1.214E-01 2.251E-02 1.310E-02 2.390E-08



9 .3563 1.272E-11 7.772E-10 8.329E-02 1.510E-06 2.585E-05 4.710E-03 1.290E-01 2.607E-02 1.475E-02 4.644E-08
10 .3656 3.920E-11 8.507E-10 7.865E-02 2.753E-06 2.391E-05 4.787E-03 1.329E-01 2.800E-02 1.559E-02 6.706E-08
11 .3750 1.104E-10 9.201E-10 7.389E-02 4.781E-06 2.183E-05 4.854E-03 1.368E-01 3.003E-02 1.644E-02 9.642E-08
12 .3797 1.800E-10 9.499E-10 7.148E-02 6.185E-06 2.072E-05 4.880E-03 1.388E-01 3.108E-02 1.686E-02 1.138E-07
13 .3844 2.484E-10 9.747E-10 6.904E-02 7.494E-06 2.235E-05 4.900E-03 1.408E-01 3.216E-02 1.727E-02 1.344E-07
14 .3937 4.306E-10 1.007E-09 6.406E-02 1.063E-05 2.897E-05 4.918E-03 1.448E-01 3.444E-02 1.806E-02 1.865E-07
15 .4031 7.432E-10 1.010E-09 5.898E-02 1.536E-05 3.793E-05 4.896E-03 1.488E-01 3.686E-02 1.879E-02 2.603E-07
16 .4125 1.266E-09 9.818E-10 5.387E-02 2.251E-05 4.997E-05 4.822E-03 1.527E-01 3.942E-02 1.940E-02 3.645E-07
17 .4219 2.072E-09 9.203E-10 4.883E-02 3.284E-05 6.506E-05 4.679E-03 1.566E-01 4.211E-02 1.984E-02 5.011E-07
18 .4312 3.119E-09 8.284E-10 4.400E-02 4.653E-05 8.177E-05 4.452E-03 1.602E-01 4.491E-02 2.003E-02 6.550E-07
19 .4406 4.119E-09 7.131E-10 3.955E-02 6.254E-05 9.726E-05 4.137E-03 1.634E-01 4.777E-02 1.987E-02 7.885E-07
20 .4500 4.565E-09 5.847E-10 3.565E-02 7.852E-05 1.084E-04 3.742E-03 1.661E-01 5.063E-02 1.929E-02 8.540E-07
21 .4594 4.094E-09 4.561E-10 3.242E-02 9.149E-05 1.131E-04 3.292E-03 1.682E-01 5.344E-02 1.829E-02 8.225E-07
22 .4687 2.906E-09 3.399E-10 2.990E-02 9.904E-05 1.112E-04 2.823E-03 1.697E-01 5.609E-02 1.692E-02 7.042E-07
23 .4781 1.627E-09 2.448E-10 2.807E-02 1.003E-04 1.041E-04 2.370E-03 1.706E-01 5.853E-02 1.529E-02 5.395E-07
24 .4875 7.309E-10 1.732E-10 2.685E-02 9.612E-05 9.394E-05 1.959E-03 1.709E-01 6.070E-02 1.356E-02 3.738E-07
25 .4969 2.720E-10 1.224E-10 2.612E-02 8.834E-05 8.272E-05 1.603E-03 1.709E-01 6.257E-02 1.183E-02 2.373E-07
26 .5062 8.715E-11 8.738E-11 2.579E-02 7.889E-05 7.183E-05 1.307E-03 1.706E-01 6.413E-02 1.021E-02 1.401E-07
27 .5156 2.485E-11 6.332E-11 2.576E-02 6.928E-05 6.173E-05 1.066E-03 1.701E-01 6.540E-02 8.755E-03 7.772E-08
28 .5250 5.915E-12 4.663E-11 2.596E-02 6.022E-05 5.294E-05 8.726E-04 1.694E-01 6.641E-02 7.476E-03 4.034E-08
29 .5437 5.559E-13 2.777E-11 2.688E-02 4.515E-05 3.939E-05 6.019E-04 1.677E-01 6.771E-02 5.450E-03 1.200E-08
30 .5625 5.674E-14 1.754E-11 2.820E-02 3.371E-05 2.958E-05 4.280E-04 1.657E-01 6.835E-02 3.984E-03 3.528E-09
31 .5813 8.559E-15 1.161E-11 2.976E-02 2.523E-05 2.240E-05 3.131E-04 1.637E-01 6.851E-02 2.932E-03 1.063E-09
32 .6000 2.782E-15 7.971E-12 3.145E-02 1.896E-05 1.705E-05 2.348E-04 1.617E-01 6.835E-02 2.179E-03 3.367E-10
33 .6187 1.588E-15 5.635E-12 3.321E-02 1.428E-05 1.302E-05 1.796E-04 1.596E-01 6.797E-02 1.637E-03 1.147E-10
34 .6375 1.074E-15 4.091E-12 3.500E-02 1.073E-05 1.003E-05 1.394E-04 1.576E-01 6.745E-02 1.245E-03 4.291E-11
35 .6563 7.159E-16 3.053E-12 3.680E-02 7.983E-06 8.332E-06 1.091E-04 1.557E-01 6.682E-02 9.598E-04 1.814E-11
36 .6750 4.855E-16 2.332E-12 3.858E-02 5.937E-06 6.908E-06 8.607E-05 1.537E-01 6.614E-02 7.489E-04 8.531E-12
37 .6938 3.364E-16 1.816E-12 4.035E-02 4.431E-06 5.736E-06 6.841E-05 1.518E-01 6.542E-02 5.915E-04 4.411E-12
38 .7125 2.377E-16 1.439E-12 4.208E-02 3.328E-06 4.782E-06 5.476E-05 1.500E-01 6.469E-02 4.725E-04 2.462E-12
39 .7312 1.710E-16 1.158E-12 4.378E-02 2.516E-06 4.005E-06 4.413E-05 1.482E-01 6.394E-02 3.814E-04 1.455E-12
40 .7500 1.248E-16 9.443E-13 4.544E-02 1.915E-06 3.370E-06 3.577E-05 1.464E-01 6.320E-02 3.108E-04 8.964E-13



41 .7875 6.954E-17 6.652E-13 4.863E-02 1.145E-06 2.500E-06 2.417E-05 1.431E-01 6.173E-02 2.153E-04 3.936E-13
42 .8250 4.002E-17 4.872E-13 5.167E-02 6.990E-07 1.900E-06 1.656E-05 1.398E-01 6.032E-02 1.532E-04 1.880E-13
43 .9000 1.560E-17 3.056E-13 5.728E-02 2.894E-07 1.209E-06 8.472E-06 1.339E-01 5.767E-02 8.764E-05 5.744E-14
44 1.0500 3.566E-18 1.867E-13 6.689E-02 6.906E-08 6.981E-07 3.016E-06 1.236E-01 5.308E-02 4.232E-05 1.036E-14
45 1.2000 8.582E-19 1.435E-13 7.501E-02 1.662E-08 4.757E-07 1.147E-06 1.150E-01 4.920E-02 2.465E-05 2.035E-15
46 1.5000 4.229E-20 1.224E-13 8.763E-02 7.732E-10 3.373E-07 3.302E-07 1.013E-01 4.320E-02 1.485E-05 1.706E-16
47 1.8000 4.613E-21 1.084E-13 9.758E-02 7.195E-11 1.950E-07 1.567E-07 9.051E-02 3.847E-02 1.096E-05 2.595E-17
48 1.9500 8.589E-22 1.024E-13 1.019E-01 6.090E-12 1.573E-07 1.200E-07 8.580E-02 3.639E-02 9.709E-06 8.763E-18
49 2.1000 1.995E-22 9.703E-14 1.059E-01 1.221E-12 1.270E-07 9.929E-08 8.153E-02 3.451E-02 8.802E-06 3.646E-18
50 2.1750 9.755E-23 9.451E-14 1.077E-01 7.199E-13 1.145E-07 9.189E-08 7.957E-02 3.363E-02 8.425E-06 2.442E-18
51 2.2500 5.156E-23 9.212E-14 1.094E-01 4.241E-13 1.042E-07 8.608E-08 7.775E-02 3.281E-02 8.098E-06 1.709E-18
52 2.3250 2.864E-23 8.988E-14 1.110E-01 2.496E-13 9.570E-08 8.147E-08 7.610E-02 3.204E-02 7.813E-06 1.202E-18
53 2.3438 2.466E-23 8.934E-14 1.114E-01 2.184E-13 9.379E-08 8.047E-08 7.572E-02 3.186E-02 7.748E-06 1.082E-18
54 2.3625 2.127E-23 8.882E-14 1.117E-01 1.912E-13 9.198E-08 7.952E-08 7.535E-02 3.169E-02 7.685E-06 9.579E-19
55 2.3812 1.836E-23 8.832E-14 1.120E-01 1.674E-13 9.026E-08 7.863E-08 7.500E-02 3.153E-02 7.626E-06 8.350E-19
56 2.4000 1.583E-23 8.785E-14 1.124E-01 1.465E-13 8.864E-08 7.780E-08 7.467E-02 3.137E-02 7.570E-06 7.211E-19
57 3.0000 1.583E-23 8.785E-14 1.124E-01 1.465E-13 8.864E-08 7.780E-08 7.467E-02 3.137E-02 7.570E-06 7.211E-19

X HCCO HCCOH H2O2 N2
1 .0000 2.124E-13 2.387E-07 7.284E-06 6.461E-01
2 .1500 4.914E-13 5.537E-07 1.923E-05 6.763E-01
3 .1875 2.426E-12 7.024E-07 2.468E-05 6.826E-01
4 .2250 1.069E-11 8.947E-07 3.116E-05 6.885E-01
5 .2625 8.305E-11 1.137E-06 3.722E-05 6.941E-01
6 .3000 2.511E-09 1.424E-06 3.712E-05 6.994E-01
7 .3187 9.856E-09 1.581E-06 2.914E-05 7.019E-01
8 .3375 3.350E-08 1.748E-06 1.763E-05 7.043E-01
9 .3563 1.033E-07 1.928E-06 7.990E-06 7.067E-01
10 .3656 1.778E-07 2.027E-06 5.071E-06 7.079E-01
11 .3750 2.989E-07 2.136E-06 3.246E-06 7.091E-01
12 .3797 3.762E-07 2.193E-06 2.702E-06 7.097E-01
13 .3844 4.375E-07 2.252E-06 2.468E-06 7.102E-01



14 .3937 5.476E-07 2.373E-06 2.562E-06 7.114E-01
15 .4031 7.022E-07 2.497E-06 2.846E-06 7.127E-01
16 .4125 9.269E-07 2.622E-06 3.199E-06 7.139E-01
17 .4219 1.236E-06 2.741E-06 3.557E-06 7.152E-01
18 .4312 1.610E-06 2.838E-06 3.841E-06 7.165E-01
19 .4406 1.976E-06 2.883E-06 3.962E-06 7.178E-01
20 .4500 2.218E-06 2.834E-06 3.858E-06 7.192E-01
21 .4594 2.241E-06 2.654E-06 3.530E-06 7.206E-01
22 .4687 2.017E-06 2.338E-06 3.045E-06 7.219E-01
23 .4781 1.614E-06 1.930E-06 2.500E-06 7.233E-01
24 .4875 1.149E-06 1.498E-06 1.982E-06 7.246E-01
25 .4969 7.342E-07 1.105E-06 1.544E-06 7.258E-01
26 .5062 4.271E-07 7.837E-07 1.199E-06 7.269E-01
27 .5156 2.290E-07 5.406E-07 9.333E-07 7.280E-01
28 .5250 1.119E-07 3.657E-07 7.362E-07 7.290E-01
29 .5437 2.968E-08 1.783E-07 4.902E-07 7.309E-01
30 .5625 7.625E-09 9.145E-08 3.491E-07 7.325E-01
31 .5813 1.998E-09 5.015E-08 2.627E-07 7.340E-01
32 .6000 5.595E-10 2.959E-08 2.058E-07 7.354E-01
33 .6187 1.746E-10 1.879E-08 1.652E-07 7.367E-01
34 .6375 6.250E-11 1.281E-08 1.356E-07 7.379E-01
35 .6563 2.553E-11 9.303E-09 1.192E-07 7.391E-01
36 .6750 1.188E-11 7.142E-09 1.046E-07 7.402E-01
37 .6938 6.151E-12 5.743E-09 9.167E-08 7.413E-01
38 .7125 3.455E-12 4.799E-09 8.051E-08 7.423E-01
39 .7312 2.061E-12 4.138E-09 7.093E-08 7.433E-01
40 .7500 1.283E-12 3.658E-09 6.272E-08 7.442E-01
41 .7875 5.722E-13 3.061E-09 5.051E-08 7.460E-01
42 .8250 2.759E-13 2.691E-09 4.146E-08 7.478E-01
43 .9000 8.337E-14 2.309E-09 2.960E-08 7.509E-01
44 1.0500 1.374E-14 2.005E-09 1.892E-08 7.562E-01
45 1.2000 2.509E-15 1.832E-09 1.408E-08 7.607E-01



46 1.5000 1.118E-16 1.610E-09 1.816E-08 7.678E-01
47 1.8000 1.170E-17 1.437E-09 1.751E-08 7.734E-01
48 1.9500 2.621E-18 1.362E-09 3.397E-08 7.758E-01
49 2.1000 8.790E-19 1.294E-09 4.114E-08 7.780E-01
50 2.1750 5.498E-19 1.262E-09 4.199E-08 7.791E-01
51 2.2500 3.569E-19 1.233E-09 4.190E-08 7.800E-01
52 2.3250 2.376E-19 1.207E-09 4.142E-08 7.808E-01
53 2.3438 2.148E-19 1.200E-09 4.129E-08 7.810E-01
54 2.3625 1.946E-19 1.195E-09 4.115E-08 7.812E-01
55 2.3812 1.764E-19 1.189E-09 4.101E-08 7.814E-01
56 2.4000 1.602E-19 1.184E-09 4.088E-08 7.816E-01
57 3.0000 1.602E-19 1.184E-09 4.088E-08 7.816E-01

TWOPNT: SUCCESS. BOUNDARY VALUE PROBLEM SOLVED.
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When the necessary modifications were incorporated into the Sandia Premixed Flat

Flame code, new executable files were created to simulate all variations of flame types

seen in this study. The two files that vary from case to case are Chem.inp and Premix.inp.

The input file, Chem.inp, varies according to each flame type, e.g. CH4/Air,

CH4/CH3Cl/Air etc., since this file contains the reaction mechanism. The input file,

Premix.inp, varies not only as a function of flame type, but also from case to case within

each flame type, e.g. CH4/Air (4) = 1.29), CH4/Air (4) = 2.48) etc. This input file contains

the reactant mole fractions as well as the corrected temperature profile for that case. Each

of these items is unique to each case. This study simulated 25 different cases.

Once the required input files were in place, the following procedure was followed

to run the model:

• the CHEMKIN Interpreter, Chem. exe, is executed (this is done by double-clicking

the filename when in WindowsTM). Chem.exe requires Chem.inp and Tran.dat

• the binary file, Chem.bin is created

• the transport property fitting program, Tran.exe, is executed. Tran.exe requires the

newly created Chem.bin and Tran.dat.

• the binary file, Tran.bin, is created. Note that an empty Tran.bin needs to be in place.

Tran.exe does not create a new Tran.bin but rather rewrites an old Tran.bin.

• the main Fortran program, Premix.exe, is executed using the recently created

Chem.bin, Tran.bin and Premix.inp as inputs. The user is prompted to supply the

entrainment constant used in the mass flow rate expression (real number format is

required)
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• two new files are created

• Premix.out contains the results that are used for analysis against the experimental data

• Save.bin is used as a restart file to run the same program again, if better convergence

is required.

• Save.bin is renamed Rest.bin if it is to be used as a restart file.
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REACTION	 A	 n	 E.	 Source

CH+0=HCO++E 	 5.75E15 	 0. 	 0. 	 a

!SAME AS CH+0=CO+H

HCO++E=H+CO 	 1.0E13 	 0. 	 0. 	 a

NA+M=NA++E+M 	 4.7E5 	 0. 	 120. 	 a

NA + 112O = NAOH + H 	 1.8E13 	 0.5 44400.

NA + O2 + M = NAO2 + M 	 7.3E19 	 -1. 0.

NA + OH + M = NAOH + M 2.5E19 	 -1. 0.

NAO2 + H = NA + 11O2 	 1.2E12 	 0.5 0.

NA+OH=NAO+H 	 1.2E13 	 0.5 43800.

NAO + OH = NA + H02 	 1.8E11 	 0.5 0.

NA + 02 = NAO + O 	 1.2E13 	 0.5 59300.

NAOH + O = NA + HO2 	 2.4E9 	 0.5 8400.

NAO2 + H = NAO + OH 	 4.2E12 	 0.5 0.

NAO2 + O = NAO + O2 	 6.0E10 	 0.5 0.

NAO2 + OH = NAO + HO2 	 1.2E11 	 0.5 28750.

NAOH + H = NAOH + 0 	 1.2E11 	 0.5 0.

NAO2 + OH = NAOH + O2 	 1.8E10 	 0.5 0.

NAOH + OH = NAO + H2O 	 6.0E12 	 0.5 0.

NAOH + H = NAO + H2 	 4.2E13 	 0.5 14000.

NAOH + O = NAO + OH 	 1.2E13 	 0.5 16000.

NAOH + O2 = NAO + HO2 	 1.2E13 	 0.5 67800

a. Developed in this work (section 6.4.1).

b. Taken from Hynes, Steinberg and Schoefleld (18)

Reaction Rate Constant: k = A Tn exp(-Ea / R Pr); Units: K, second, cm 3, cal/mol.
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PART I (Original Sodium—Chlorine Reactions)

Parameter Value Source

ΔHR -30.8 kcal/mole Calculated from Hf (35,71,72)

E. 3.5 kcal/mole
Assumed to be half E a of analogous reaction:
CH3Cl+ H ---> HCl+ CH3

kf 3.01E10 cm3/mole-s NIST Database (69)

A 1.1E13 cm3/mole/s
Calculated from k f = A exp( E a / RT);

where R=1.987 cal/mole•K, T=298K

Parameter Value Source

ΔHR -31.98 kcal/mole Calculated from Hf (35,71,72)

Ea +2.0 kcal/mole Small barrier assumed

A 1.69E14 cm3/mole/s KIST Database (69)

kf
Calculated from k f = A exp(– E a / RT);
where R=1.987 cal/mole.K,T=298K
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Parameter Value Source

ΔHR +16.1 kcal/mole Calculated from Hf (35,71,72)

Ea +16.1 kcal/mole Assumed Ea=AHR

A 1.0E14 cm3/mole/s
Assume equal to A from analogous reaction:
Cl + C3H8→H Cl+ n-C3H7

kf
Calculated from k f = A exp(-Ea / RT);
where R=1.987 cal/mole•K, T=298K

Parameter Value Source

ΔHR -5.79 kcal/mole Calculated from Hf (35,71,72)

Ea +2.0 kcal/mole Small barrier assumed

A 1.39E14 cm3/mole/s NIST Database (69)

kf
Calculated from kf = A exp( Ea / RT);

where R=1.987 cal/mole•K, T=298K
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Part II (Re-evaluated Sodium—Chlorine Reactions)
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Part III (AFACT Output)
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