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ABSTRACT

AN INTEGRATED MEMBRANE-BASED CHROMATOGRAPHIC PROCESS
FOR BIOMOLECULE ISOLATION AND PURIFICATION

by
Xiaoping Dai

Biomolecules obtained from fermentation and cell-culture processes are present in low

concentrations in a complex medium/broth. For intracellular products, cells are first

harvested. Subsequently, cell lysis and homogenization are undertaken to produce a

homogenate. The biomolecules are next separated from the cell debris by lysate

clarification. For extracellular products, the biomolecules are separated from the whole

cells by clarification. The overall yield is reduced with each additional step. As the cost

of bioseparation process accounts for 50-80% of the final product cost, innovations in and

improvement of bio-downstream processing are greatly needed.

In this research, a cyclic process integrating a commercially available hollow fiber

ultrafiltration (UF) cartridge and chromatographic resin beads was developed to reduce

the number of devices and steps in bioseparation. This device consisted of ion exchange

beads carefully packed on the shell side of a hollow fiber UF module. Loading of proteins

on the beads on the shell side was carried out for a period of 10 - 30 minutes from the UF

permeate on the shell side produced from a tube-side feed containing protein mixtures in

buffer or in a cellular suspension. The eluent was next introduced either from the shell-

side inlet or tube-side inlet. The chromatographic fractions were collected from the shell-

side outlet. Continuous cyclic processes were also studied by repeatedly loading, washing

and eluting protein(s) without applying cleaning agents to the membrane cartridge at the

beginning of each cycle except the first one. A yeast-based cellular suspension containing



a binary protein mixture was also applied to this device. The target proteins were

recovered and purified successfully by the continuous cyclic process.

A general mathematical model has been developed to predict pressure, flow rate

and flux profiles in a bead-filled UF/MF hollow-fiber membrane module. The model was

studied for a variety of operational modes in such modules, e.g., UF/MF, permeate flow

control, Starling flow, elution, backflushing, etc. By using this model, preliminary

mathematical descriptions for protein loading and elution behaviors in the bead-filled

device have also been developed.
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CHAPTER 1

BACKGROUND

1.1 Introduction

Biomolecules (e.g., interferons, hormones, immunoglobulins, growth factors, DNAs)

obtained from fermentation and cell-culture processes are present in low concentrations

in a complex medium/broth containing various combinations of cells, cell fragments,

lysed cells, colloidal materials, etc. For intracellular products, cells are first harvested.

Subsequently, cell lysis and homogenization are undertaken to produce a homogenate.

The biomolecules are next separated from the cell debris by lysate clarification. For

extracellular products, the biomolecules are separated from the whole cells by

clarification. Therefore biomolecule recovery from a fermentation broth is complicated

by the large number of dissolved substances and suspended particles present in the broth.

Most bioseparation processes involve the following steps: removal of insolubles

by either filtration or centrifugation, isolation of products using either adsorption or

solvent extraction, purification (via chromatography and precipitation) and polishing via

crystallization, or spray drying and lyophilization (Belter, Cussler and Hu 1988). The

number of sequential operations needed for the purification contributes significantly to

the overall costs of the downstream process. The overall yield is reduced with each

additional step (van Reis, Leonard, Hsu and Builder 1991). The devices involved in these

processes are complex as well. As the performance of the bioseparation is responsible for

50-80% of the final product cost, innovations in and improvement of bio-downstream

processing that reduce the overall number of steps, increase yield and productivity along

1
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with a reduction in the complexity of the downstream processing flowsheets are greatly

needed (Sofer and Hagel 1997a; Harrison 1994).

1.2 Previous Technologies for Process Integration

A number of strategies have been suggested previously for downstream process

integration. In one strategy, specialized adsorbent beads/particles or membranes are

employed. Nigam, et al. (1988) have suggested using specially prepared adsorbents

consisting of small, porous adsorbent particles such as chromatography beads entrapped

within a reversible hydrogel matrix (e.g. agarose, diameter of the beads is 1.2-1.4 mm,

adsorbent content is 35%), or adsorbent particles encapsulated within a thin (50-100 µm)

hydrogel membrane (e.g. calcium alginate, size of spherical capsule is 1.3 mm, adsorbent

content is 60-65%). The pore size of the hydrogel can be tailored such that the desired

product in the crude extract can readily diffuse through the hydrogel matrix or membrane

to the adsorbent. Colloidal contaminants are completely excluded from contacting the

adsorbent particles (Figure 1.1). The authors recovered recombinant β-lactamase from

unclarified broths and homogenates using these immobilized adsorbents.

Expanded bed adsorption (EBA) is a recently developed new unit operation that

recovers proteins from crude feed-stock in a single pass operation without prior

clarification (McCormick 1993; Thömmes, Halfar, Lenz and Kula 1994; Chang and

Chase 1996; Diehl 1998; Finette, Baharin, Mao and Hearn 1998). In this technology, a

suitable stationary phase is fluidized in a mobile phase with the liquid feed stream

directed upwards. Elution can be carried out either in the upward direction or downward

direction (Figure 1.2). The EBA is a tool in the initial phase of downstream processing.
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STREAMLINER adsorbent is a matrix developed by Amersham Pharmacia Biotech

(Uppsala, Sweden and Piscataway, NJ) for expanded bed adsorption. The beads consist

of a porous 6% or 4% highly cross-linked agarose as the basic structure. Most beads have

a particle size range 100-300 µm with a mean particle size of 200 µm. To provide

fluidization characteristics suitable for using the matrix to capture protein from the whole

fermentation broth, inert crystalline quartz particles are incorporated into the basic bead

structure. This ensures a rapid separation of the matrix from the surrounding liquid phase.

Ion exchange or affinity ligands are covalently attached to the base matrix (Amersham

Pharmacia Biotech 1999a; Thömmes 1999). The adsorbents exhibit a Gaussian like

distribution of particle size and particle density which allow the beads to find their

suitable position in the column to reduce the axial dispersion in the expanded bed (Figure

l.2) (Amersham Pharmacia Biotech 1999b).

However, the expanded bed design does not allow for complete removal of viable

cells for some applications; the eluate was found to have viable cells to the extent of

0.01% of that of the applied feedstock (Chang and Chase 1996). Dilution or nuclease

pretreatment of the feedstocks are needed before application to the bed for high biomass

containing feedstocks (Chang and Chase 1996; Shiloach and Kaufman 1999). Further,

successful operation of the expanded bed depends on achieving a stable bed where the

mixing in the column is very limited. Achieving a stable bed was found to be difficult

when dealing with intracellular products (Johansson, Jagerstern and Shiloach 1996).
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a 	 b

Figure 1.1 Small, porous adsorbent particles encapsulated within a thin hydrogel
membrane (a) or the adsorbent particles entrapped within a reversible hydrogel matrix (b)
(Nigam, Sakoda and Wang 1988).

Figure 1.2 Expanded bed adsorption and elution. (a) Adsorption. (b) Upward elution. (c)
Downward elution

In membrane adsorption processes (Figure 1.3), ligands are grafted on the

surfaces of pores in microporous or macroporous membranes; biomolecule adsorption is

achieved by convecting the filtered broth through the pores (Thömmes and Kula 1995;

Zeng and Ruckenstein 1999). This idea was introduced as a technology especially suited
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for large-scale processes. It can be operated either in dead-end mode or in crossflow

mode. This process has the integrative aspects of _capture and purification steps with the

possibility of processing large amounts of product in a comparatively short time.

Membrane-based adsorption can be generally distinguished from particle-based

adsorption by the fact that the interaction between a solute (protein) and a matrix

(immobilized ligand) does not take place in the dead-ended pores of a particle, but mainly

in the through-pores of a membrane. Binding capacity is reached by using membranes of

sufficient internal surface area, yielding configurations of very large diameter to height

ratios (d/h). Reduced pressure drop in membrane adsorption process allows increased

flow rates and productivity. Without pore diffusion as the limiting step in packed bed

adsorption, membrane adsorption separates molecules on the basis of different binding

kinetics, and not just sorption equilibrium isotherms of the species.

Figure 1.3 Schematic for membrane adsorption processes
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One major problem facing this technique is the limited capacity of individual

membranes along the liquid filtration path compared with that of chromatography beads

as the specific surface area available for the ligands of these membranes is lower.

Introducing a three dimensional ligand layer may overcome this problem to obtain similar

capacity per unit volume to that of conventional adsorbents. However, these three

dimensional ligand spheres compromise the superior mass transfer capability of

membrane adsorption process.

Perfusion chromatography technology was introduced in 1989 (PerSeptive

Biosystems Inc. 1996). It is a hybrid between conventional particulate resins and

membrane adsorbents, as the new porous materials allow partial convective flow through

the beads. But there are still interparticulate and intraparticulate voids remaining in a

packed bed in this kind of chromatography. In addition, perfusion chromatography does

not allow unclarified solution to be applied to the column as the particles and debris may

lead to fouling of the beads.

Many of these aforementioned techniques require specially designed and costly

adsorbents and unusual operational conditions in expanded/fluidized beds to

accommodate the presence of an unclarified broth. More often than not, the specially

designed bead may not have the required ligands for separating certain biomolecules in

solutions. This is certainly true for membrane adsorption process as well. Further,

perfusion chromatography technology can not be used for an unclaified broth or a

homogenate yet.
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Besides these aforementioned techniques with specialized adsorbents/membranes,

aqueous two-phase system could be directly used for unclarified fermentation broths or

homogenates. Particles and product biomolecules may be partitioned into opposite phases

under appropriate conditions. After the phase disengagement, the product is enriched in

an aqueous environment of much reduced particle concentration. This technique has the

advantage of integrating clarification, concentration and partial purification, but phase

separation can be slow because of high viscosity and small density differences and there

is no separation of different molecules in the product phase (Subramanian 1998).

Microfiltration/Ultrafiltration-based cell-protein separation or lysate clarification

is being increasingly employed in small as well as large-scale harvesting of protein (van

Reis, Leonard, Hsu and Builder 1991) and other biomolecules. Further, a wide variety

of adsorbent beads or chromatographic matrix particles are commercially available and

routinely used for biomolecule fractionation and purification. An efficient integration of

these functions in one device using commercially available and commonly utilized

microfiltration/ultrafiltration membranes and adsorbent beads is highly desirable.

Employing this overall strategy, some work has been carried out. For example,

adsorbent beads are added to a mixture consisting of the target biomolecule and

impurities to allow adsorption of the target biomolecule onto the beads (Byers, Isacoff

and Naples 1991); then the suspension is circulated through the lumen of hollow fiber

membranes. This allows impurities to permeate through the membrane to the shell space.

The product has to be recovered next from the adsorbent with another membrane

filtration process. This technique still has to contend with the broth debris and the

adsorbent particle interaction; further, running beads through the membrane fiber bore is
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not a very desirable operational mode. Another example is the work by Davis (1990). An

affinity bead-containing stream is circulated through one side of the membrane where the

adsorbent has a dimension larger than that of the pores; feed containing different

materials including the product is flowing in the second side of the membrane whereby

certain biomolecules become bound to the adsorbent upon passing through the membrane

to the first side and get separated. For this technique, a separate elution device or process

is needed to remove the bound molecules from the beads.

Molinari et al. (1990) employed a hollow fiber membrane device with affinity

beads or ion exchangers on the shell side. They circulated the feed through the fiber bore

and operated the shell side in Starling flow (by having very low effective permeation

rate) (Starling 1896). They continued this process for 5-7 hours; the permeate showed

considerable activity of the target compound after one hour. Afterwards, the bioproduct

was recovered by elution from the shell side beads. No chromatography was involved in

this study. The beads packed on the shell side were used as adsorbent particles in an

adsorbent bed. The long loading time resulted in breakthrough of the target protein

through the adsorbent bed into the permeate (Figure 5 on page 576 shows breakthrough

beyond 1 hour and continuing till 7 hours). As a result, ion exchange-based purification

of the enzyme achieved via elution was limited. For example, they achieved only a 2.3—

fold purification of carboxylesterase in the eluate compared with the feed solution.

1.3 New Technique in This Work

It is clear from the above that there is no study of a process for direct chromatographic

purification of protein mixtures from a fermentation broth or a homogenate. An
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investigation employing commercially available membrane ultrafiltration devices and

chromatographic media was undertaken in this dissertation to separate binary protein

mixtures from a clear feed solution or a cellular suspension.

The device consisted of ion exchange beads carefully packed on the shell side of a

hollow fiber UF module. Loading of proteins on the stationary phase on the shell side

was carried out for a short period (e.g., less than 30 minutes) from the UF permeate on

the shell side produced from a tube-side feed containing protein mixtures in buffer or in a

cellular suspension. The eluent was next introduced either from the shell-side inlet or

tube-side inlet; the chromatographic fractions were collected from the shell-side outlet.

The resolution of the proteins obtained for systems studied in one-run process from clean

solutions containing several binary mixtures will be described in this dissertation.

Continuous cyclic processes have also been developed by repeatedly loading, washing

and eluting single protein and multiple protein mixtures without applying cleaning agents

to the membrane cartridge at the beginning of each cycle except the first one. The extent

of mixture separations and the yields in such, processes were studied. A yeast-based

cellular suspension containing a protein mixture was also applied to this device to recover

and purify target proteins by the continuous cyclic process.

This cyclic process-based device integrates clarification, concentration and

chromatographic purification of biomolecules and may be adopted for large-scale

processing easily. It is suitable for both extracellular and intracellular products. The

details of the process concept and device will be presented in the next chapter. The

experimental details are provided in Chapter 3. The results for the performance of the

integrated device are illustrated in Chapter 4.
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A general mathematical model has been developed in Chapter 5 for the prediction

of pressure, flow rate and solvent flux profiles in an ultrafiltration/microfiltration hollow-

fiber membrane module whose shell side is filled with beads. The model was studied for

a variety of operational modes in such modules, e.g., ultrafiltration/microfiltration,

permeate flow control, Starling flow, elution and backflushing, etc. The model can

predict the nature of the transmembrane pressure (TMP) profile and the solvent flux

profile in situations that are quite different, namely, conventional ultrafiltration and

Starling flow (Starling 1896). By using this model, preliminary descriptions for protein

loading and elution behaviors in the bead-filled device have also been developed in

Chapter 6.



CHAPTER 2

THE PROCESS CONCEPT AND THE DEVICE

2.1 The Process Concept and the Device

As stated in Chapter 1, microfiltration/ultrafiltration-based processes are currently used

for cell-protein separation (extracellular products) or lysate clarification (intracellular

products) in small- or large-scale harvesting of bioproducts. Many adsorbent beads or

chromatographic matrix particles are commercially available and routinely used for

biomolecule fractionation and purification. In this work, a new cyclic process concept has

been developed by integrating the membrane filtration process and chromatographic

purification process in a new apparatus assembled by combining a membrane module and

chromatography beads.

A commercially available hollow fiber ultrafiltration cartridge is employed in this

research (microfiltration cartridge can also be used). The hollow fiber cartridge (e.g., for

ultrafiltration (UF)) may be chosen based on the molecular weight cut off (MWCO) or

the pore size compared with the size of the targeted product(s) to be separated from the

feed. Although the flux through the membrane is also an important consideration, the

presence of shell-side beads tends to reduce the solvent flux significantly. The effective

flux should be in the allowable/recommended range for the beads employed on the shell

side for chromatographic applications. Appropriate adsorbent beads are carefully packed

on the shell side of the hollow fiber cartridge (Figure 2.1a). Through the lumen of the

fiber, the feed solution is allowed to flow for a defined period of time, say, 5 — 30 min.

The feed solution may be a lysate for intracellular products or a fermentation broth for

extracellular products. The feed solution pressure everywhere on the lumen side is greater

11
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than that on the permeate (shell) side; permeate appearing through the membrane

everywhere on the shell side flows out in the same direction as the feed solution and

leaves the shell side via an outlet. No Starling flow (Starling 1896) is involved.

During this period of filtration-cum-loading in chromatography, bioproducts (e.g.,

DNAs, proteins) in the feed solution smaller than the membrane pores will go through the

pores under appropriate transmembrane pressure (TMP) and then get partitioned onto the

adsorbent under proper conditions (e.g. pH and ionic strength, etc.) (Figure 2.1a). The

particles, cell debris, proteins, etc. which are larger than the pores are rejected by the

membrane and are concentrated in the retentate stream. The conditions must be such that

any bioproduct appearing on the shell side gets adsorbed on the shell side beads during

this loading or feeding step. During the loading time, the bed was not allowed to be

saturated. For those beads close to the fibers, there should be diffusion of proteins into

the beads. For those beads relatively far away from the fibers, there may be surface

adsorption of proteins on the beads. The permeate was monitored to assure that the

protein products do not breakthrough into the permeate stream leaving the shell side. For

columns in traditional ion exchange chromatography for protein purification, less than

30% of the beads' dynamic capacity is recommended (Sofer and Hagel 1997b) for

loading purposes. Further the dynamic capacity is usually lower than that of the available

resin capacity. These provide useful estimates for the loading time. In addition there is an

additional length of column at the permeate outlet (Figures 2.1a, 2.1b and 2.1c) to

provide a safety factor for preventing protein breakthrough.
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Figure 2.1a Configuration of the device containing membrane and adsorbent beads
during filtration-cum-loading

Figure 2.1b Configuration of the device containing membrane and adsorbent beads
during chromatographic elution
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Figure 2.1c Alternative configuration of the device containing membrane and
adsorbent beads during chromatographic elution

After the feed solution flow into the fiber lumen is stopped, the column can be

washed by the starting buffer, and then elution of the bioproduct adsorbed on the shell-

side beads is initiated by introducing the eluent. The eluent may be introduced on the

shell side as shown in Figure 2.lb (which is called the shell-side elution) or through the

fiber lumen inlet as shown in Figure 2.lc (which is called the tube-side elution). During

this elution step, in the configuration of Figure 2.1b, both ends of the fiber lumen are kept

closed; in the configuration of Figure 2.1c, the retentate end of the feed fiber lumen and

the shell side inlet of Figure 2.lb are kept closed. The elution process is continued until

the respective product peaks emerge from the permeate side outlet end. The duration of

the elution step may vary widely and could run as long as 40 — 90 minutes or longer if it

is not optimized.
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After the elution is over, the bed could be regenerated using a specific

regeneration buffer (e.g., NaCl solution in the starting buffer) followed by reequilibration

with the starting buffer. Then the cyclic process of loading-elution-reequilibration or

loading-elution-regeneration-reequilibration is initiated again.

The loading of the feed solution on the adsorbent beads in this process is quite

different from that in an axial flow (conventional) chromatography column or radial

chromatography column. In axial flow columns, loading takes place at the column top.

Here loading occurs all along the length of the bed next to the fiber. Then it spreads out

radially as well as axially further away from each fiber.

In addition to combining several downstream steps such as clarification,

concentration and purification into one device, this cyclic filtration-adsorption-

chromatography process may possess several unique characteristics, such as elimination

of Starling flow, membrane fouling reduction, higher product recovery, modular unit

facilitating scale-up, etc. These will be elaborated in the discussion section.

This process concept and device differ from those of Molinari et al. (1990) in a

number of important aspects. First, the bed of resin beads packed on the shell side of the

module was used as a chromatographic column for elution chromatography in this study.

Thus the time used for loading was controlled and the permeate was monitored so that no

breakthrough could take place. On the other hand, breakthrough during loading was

routine in Molinari et al.'s work (1990). As a result, the extent of purification of

carboxylesterase in their study was only 2.3 fold compared to that in the feed. In the

present study, two separate peaks are obtained repeatedly in the eluent fractions as will be

shown later in the results. Second, to ensure the above outcome, an additional amount of
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resin beads has been packed at the permeate outlet port on the shell side. These resin

particles used as an extended section of the chromatographic bed were kept in place by a

21 µm polyester mesh. This extended section, which can be made longer if necessary,

serves several purposes. First, it catches protein molecules which may come out from the

shell-side permeate exit due to the direct loading of proteins from the tube side to the

shell side at the bottom of the module. Second, it helps in the separation of different

species especially when the extended section is longer. Molinari et al. (1990) did not have

any such section; their permeate ports on the shell side were packed with fiberglass.

Third, the permeate flow rate was restricted in Molinari et al. (1990) to a low value (e.g.

0.67 ml/min) during the protein binding step by adopting Starling flow (Starling 1896).

No Starling flow is involved in the present study and the system was operated with

whatever permeate flow rate produced naturally in the system under the operating

conditions. Fourth, the eluent in Molinari et al. (1990) was introduced through one of the

ports in the shell space and taken out through the other port (Figure 2 and the write-up on

page 577 in their paper, shell-side elution shown in Figure 2.lb in this Chapter). Study of

eluent introduction through the tube-side inlet and its withdrawal through the shell-side

outlet has been primarily conducted in this research. This has several important and

possible beneficial features to be discussed later.

2.2 Other Engineering Applications with Similar Device Configurations

2.2.1 Hollow-Fiber Bioreactor (HFBR)

Hollow-fiber bioreactors (HFBRs) have been used extensively to immobilize mammalian

cells on the shell side (the extracapillary space (ECS)) for the production of diagnostic
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and therapeutic proteins. Substrate-containing solution flows through the tube side to

supply nutrients and to remove metabolic wastes. There is no permeate flow at all. Fluid

enters the ECS over an upstream portion of the reactor and then returns downstream to

the fiber lumen creating a Starling flow as modeled by other authors (Heath, Belfort,

Hammer, Mirer, and Pimbley 1990; Taylor, Piret, and Bowen 1994; Patkar, Koska,

Taylor, Bowen and Piret 1995; Koska, Bowen and Piret 1997). HFBRs thus provide a

low-shear environment for the immobilized cells and permit months of continuous

production, for example, antibodies. High-molecular-weight products can be

concentrated within the ECS in an ultrafiltration HFBR.

2.2.2 Hollow-Fiber Trickle Bed (HFTB)

Trickle beds are widely employed to carry out multiphase catalytic chemical reactions.

Introducing hollow fibers to catalyst bed by packing the catalyst on the shell side and

having the gas flow in the fiber bore and liquid flow in the shell-side bed independently,

can reduce channeling, flooding and incomplete loading in a Hollow-Fiber Trickle-Bed

Reactor (Yang and Cussler 1987).

2.2.3 Integrated Bioreactor-Separator

An integrated bioreactor-separator concept was introduced by Frank and Sirkar (1985).

This integrated bioreactor-separator consists of a hollow fiber fermentor with yeast

immobilized on wood chips on the shell side. The substrate is introduced on the shell side

containing suspended wood chips and yeast. The lumen may be supplied with air or

oxygen to improve the yeast cell growth and provide 02 supplement as well as remove
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CO2 through the fiber exit. A solvent that may wet the membrane pores can also be

supplied to the hollow fiber lumen to continuously remove the ethanol and CO2 (due to

the chemical potential gradient) as well as other inhibitory end products, e.g. acetic acid,

lactic acid, etc. from the broth. Chopped microporous hollow-fiber-based cell

immobilization technique was established by Shukla et al. (1989) thereafter to develop a

high cell density on the shell side. This process was modeled by Frank (1986) and Kang

et al. (1990).

2.2.4 Packed Bed Hollow-Fiber Reactor (PBHR)

The principle of the packed bed hollow fiber reactor (PBHR) and its use for aqueous-

organic two-phase biocatalysis has been described by Vaidya et al. (1993); it is similar to

that of the Integrated Bioreactor-Separator discussed above. The shell side of the hollow

fiber membranes was packed with microporous particles bearing enzyme. A bicontinuous

system was formed with reactants, supplied through the shell and the fiber lumen,

forming an interface at pore mouth on the fibers, which allowed one of the reactants

and/or the products preferentially to be dissolved in either organic phase or aqueous

phase. The PBHR can reduce channeling, avoid emulsification which complicates

downstream separation and offer a high area of interfacial contact between the two

phases. Rosell et al. (1996) used a PBHR for esterification of dodecanol and decanoic

acid in hexane. Lipase from Candida rugosa, immobilized on microporous polypropylene

particles and packed in the shell side of the reactor, was used to catalyze the reaction.

Substrate solution containing the reactants was recirculated through the packed bed at a

certain flow rate. Appropriate saturated salt solution was pumped through the
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microporous hollow fiber bores which can remove the water generated by the reaction in

the organic phase under the proper water activity gradient. Thus water activity in the

organic phase could be maintained at a certain level.

2.2.5 Hollow-Fiber Adsorber (HFA)

Pan and McMinis (1992) invented a hollow-fiber adsorber (HFA) which can be applied

to adsorption processes. Minute adsorber particles were held in either the shell space or

the fiber bore of microporous hollow-fiber membranes, with the gas stream flowing

through the other side and maintaining good contact between the gas stream and the

adsorbent. Separation occurs primarily by selective adsorption on the adsorbents and not

by selective permeation through the fiber wall. The HFA offers the following advantages:

low pressure drop; reduction of particle attrition; choice of fine particles which reduce the

intraparticle mass-transfer resistance with large specific external areas; uniform contact

of gas with adsorbents, reducing channeling and adsorbent dead-spacing problems; use of

fast PSA cycles to enhance the process capacity (Feng, Pan, McMinis, Ivory and Ghosh

1998; Gilleskie, Parkar and Cussler 1995).



CHAPTER 3

EXPERIMENTAL MATERIALS AND
EXPERIMENTAL METHOD DEVELOPMENT

3.1 System Selection

3.1.1 Chromatography Beads

Ion exchange chromatography separates molecules based on differences in their

accessible surface charges. It can be used for any charged molecule that is soluble in

aqueous systems. Ion exchange-based elution chromatography is employed in this study

to demonstrate the technique because it is widely used in the separation of proteins; the

relatively mild binding and elution conditions allow high protein recovery with intact

biological activity. Most protein separation schemes involve one or more ion exchange

steps. It plays a critical role in the purification of many proteins, antibodies, nucleic acids,

and to a lesser extent peptides.

Sepharose Fast Flow ion exchangers are a good choice for separation of crude

mixtures early in the purification schemes and preferred for separation of larger

biomolecules (Pharmacia Biotech Catalog 1996). DEAE Sepharose Fast Flow beads from

Amersham Pharmacia Biotech (Piscataway, NJ) were chosen for this study. They are

weak anion exchangers based on agarose beads having an optimized highly cross-linked

bead structure with a particle size range of 45-165 gm; the mean particle size is 90 gm,

which provides the media greatly improved physical and chemical stability compared to

Sepharose CL-6B based ion exchangers. This stability allows the gel to be used at the

higher flow rates that is required for many separations as well as meeting the throughput

and CIP (cleaning-in-place) requirement of process scale chromatography. Table 3.1

20
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provides details of DEAE Sepharose Fast Flow anion exchangers selected (Pharmacia

Biotech Catalog 1996). The functional groups of the beads are shown in Figure 3.1.

Table 3.1 Details of DEAE Sepharose Fast Flow anion exchangers (Pharmacia Biotech
1996)

Available capacity 100 mg/ml for α-Lactalbumin

Particle size range (pm) 45 - 165

Approximate mean particle size (pm) 90

Bead form Spherical, diameter 45-165 pm in wet
form

Bead structure 6% cross-linked agarose

pH stability (long term) 3 - 12

pH stability (short term) 1 - 14

Chemical stability Stable in 1 M NaOH, 70% ethanol, etc.

Physical stability Negligible volume variation due to
changes in pH or ionic strength

Max. flow rate (cm/h) 750

Max. operating pressure (psi) 42

Autoclavable With Cl- as counter ions, at 121 °C, pH 7
for 30 min

Antimicrobial agent 20% ethanol

Figure 3.1 Functional group-oriented structure of DEAE (diethylaminoethyl-) Sepharose
Fast Flow media
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3.1.2 Membrane Module

Hollow fiber membrane cartridge used in this study was UFP-100-E-4A (A/G

Technology Corporation, Needham, MA). It is an ultrafiltration membrane cartridge

having a nominal membrane area 0.042 m2; the membrane has a molecular weight cut off

(MWCO) of 100,000. Table 3.2 provides details of UFP-100-E-4A cartridges (A/G

Technology Corporation 1997a) used in this research.

Table 3.2 Details of the hollow fiber cartridge UFP-100-E-4A

Length
cm

0.D.
cm

I.D.
cm

Fiber
No.

Fibers Pure water
permeation
parameter

m/Pa.s

Material Length
cm

0.D.
mm

I.D.
mm

Module
1

36.20 1.90 1.524 50 Poly-
sulfone

25.4 1.6 1.0 6.086x10-10

Module
2

36.20 1.90 1.524 50 Poly-
sulfone

25.4 1.6 1.0 1.439 x10 -9

The fiber lumen diameter of 1.0 mm is suited for application to feeds with

moderate suspended solid content and moderate viscosity. E. coli, mammalian cells, yeast

cells and blood products can be treated in this cartridge. Figure 3.2 shows the cartridge

configuration. Two permeate ports are on the same side. If the cartridge is installed in the

system provided by the company (e.g., Quixstand TM Benchtop system), standard

standoffs and 0-rings are available for the connections. The cartridge is autoclavable.

Two identical modules have been used in the study. Pure water permeation

parameters for both modules were determined as shown in the last column of Table 3.2.

The permeation fluxes are quite different with a significantly higher flux for module 2

although the modules are apparently similar. Module 1 was used for all the experiments



23

with protein mixtures in clean feeds. Module 2 was used for experiments with a

simulated yeast-based broth.

Figure 3.2 Configuration of the hollow fiber cartridge UFP-100-E-4A

3.1.3 Model Proteins

Hemoglobin (Hb, MW 64677 (Dickerson and Geis 1969), Lot 16H9315), bovine serum

albumin (BSA, MW 66430 (Hirayama, Akashi, Furuya and Fukuhara 1990), Lot

99F00191), myoglobin (Mb, MW 17566 (Darbre, Romero-Herrera and Lehmann 1975),

Lot 96H7035), β -lactoglobulin MW 35500 (Townend, Weinberger and Timasheff

1960), Lot 100H8185) and β -lactalbumin (α -LA, MW 14175 (Vanaman, Brew and Hill

1970), Lot 76H7130 and Lot 98H7003) were chosen as model proteins and purchased

from Sigma (St. Louis, MO). These proteins were selected due to their differences in pI

values. The pI values for Hb, BSA, Mb, β-LG and a-LA are respectively 6.8 (Lehninger
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1975), 4.7 (Longsworth and Jacobsen 1949), 7.3 (Radola 1973), 5.3 (Kaplan and Foster

1971) and 4.2-4.5 (Kronman and Andreotti 1964).

3.1.4 Other Materials and Instruments

All other chemicals and materials were obtained commercially and were of the highest

available quality. Tris-HCl (20 mM) at pH 8.5 was used as the starting buffer unless

otherwise specified. All protein solutions were prepared using the starting buffer. Elution

buffers were prepared by adding different amounts of NaCl to the starting buffer.

For the simulated broth, the yeast strain (NRRLY-12636), Saccharomyces

cerevisiae, was purchased from the United States Department of Agriculture (Peoria, IL).

For YM medium broth, yeast extract, malt extract, peptone and glucose were obtained

from Sigma (St. Louis, MO). A G24 Environmental Incubator Shaker (New Brunswick

Scientific Co., Inc., Edison, NJ) was used for the yeast cell culture and batch protein

adsorption experiments.

A model U-2000 (Hitachi, Danbury, CT) UV-vis spectrophotometer was used to

measure the protein concentration and the optical density of yeast suspension. Quartz

cuvets (S-10C) (Sigma, St. Louis, MO) having a 10 mm path length were used in the

spectrophotometer. The pumps used in filtration, washing, elution, regeneration and

cleaning were Masterflex Model 7518-60 and Model 7518-10 (Cole Parmer, Chicago,

IL). An IEC Clinical Centrifuge (International Equipment Co., Needham HTS, MA) was

used to centrifuge all the samples wherever needed.
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3.2 Experimental Methods

3.2.1 Pretreatment of the New Cartridges

Ultrafiltration (UF) membrane cartridges purchased from the company were supplied

pretreated with a glycerol solution within the pore structure to prevent drying of the

membrane. This solution must be thoroughly rinsed from the cartridge prior to use (A/G

Technology Corporation 1997b). To enhance glycerol removal and maximize initial

water flux, the cartridge was soaked in a 50:50 by volume mixture of ethanol : water

overnight to replace the air in the module. Then the module was rinsed with clean water

according to New Cartridge Rinsing Procedure  recommended by the company to remove

the alcohol.

New Cartridge Rinsing Procedure: 

(1) Rinse with clean warm (up to 50°C) water for 90 minutes, adjust the permeate flow

rate to around 20 ml/min and retentate flow rate to about 2 ml/min.

(2) Discharge both retentate and permeate to drain.

3.2.2 Cleaning of the Cartridges

Cleaning was performed at 5 psi tube-side outlet pressure and temperature of 40 - 50°C.

Soaking the membrane overnight improves the effectiveness of the cleaning cycle. For

protein products either in clean feed or in whole broth, 0.5 M NaOH is recommended as

the cleaning agent. The procedure recommended is as follows:

(1) Flush with clean water, buffer or saline solution at 40 - 50 °C.

(2) Circulate 0.5 M NaOH at 50 °C for 30-60 min.

(3) Flush with clean water.
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Up to 0.5 M NaOH circulated for 30-60 minutes or up to 70% ethanol in water

could be used for sanitization of the cartridges.

3.2.3 Storage of the Cartridges

OF cartridge must be stored wet. For short-term storage up to 2 weeks, only water

wetting is used after proper cleaning. For long term storage up to 1 month, 0.l M NaOH

or 30% ethanol in water are used. For storage longer than 1 month, the membrane should

be periodically checked to be certain that it remains wetted.

3.2.4 Preparation, Regeneration and Cleaning of the Chromatographic Resin

DEAE Sepharose Fast Flow ion exchange media were supplied preswollen in 20%

ethanol prior to use. The ethanol solution was decanted. The beads were washed and

equilibrated with the starting buffer.

Regeneration was normally performed by washing the column with a high ionic

strength buffer followed by re-equilibrating in starting buffer. A solution of 1.0 - 2.0 M

NaCl was used in all experiments for regeneration. The UV absorbance was monitored to

determine if bound substances have been completely washed out.

For cleaning-in-place (CIP) to remove ionically bound proteins, precipitated

proteins, hydrophobically bound proteins and lipoproteins, and strongly hydrophobically

bound proteins, lipoproteins and lipids respectively, 2.0 M NaCl, 1.0 M NaOH and 70%

ethanol can be used. A solution containing 0.5-1.0 M NaOH is good for sanitization. The

same solution was used in all the experiments for cleaning of the beads whenever needed

in this study. After the CIP, the beads were equilibrated with the starting buffer before

use.



27

3.2.5 Packing the Shell Side of the OF Cartridge

Packing beads on the shell side was the first critical step in this experimental research.

Unlike the bead packing technique in traditional chromatography, no standard procedures

can be followed and no standard devices can be adopted. Column packing technique for

DEAE Sepharose Fast Flow beads suggested by the company is shown in Figure 3.3

(Amersham Pharmacia Biotech: Instruction for Fast Flow Media).

The packing method developed in this study is shown in Figure 3.4. The ethanol

solution from the bottle containing the beads was decanted. The beads were washed and

equilibrated with the starting buffer. The membrane cartridge was cleaned and soaked in

the starting buffer before packing. The dilute bead suspension was pumped from the

shell-side inlet while the shell-side outlet was blocked by a 21 µm polyester mesh

(Spectrum, Houston, TX) to hold the beads and let the buffer pass through. This packing

was continued until the shell side was full of beads. The beads were equilibrated with the

starting buffer. The tube-side openings were kept closed during this operation. The device

is shown in Figure 2.la. This resulted in 20 ml and 20.5 ml DEAE Sepharose Fast Flow

anion exchange beads packed in module 1 and module 2 respectively. The experimental

setup for all filtration-cum-loading as well as elution steps is shown in Figure 3.5.



Figure 3.3 Schematic for column packing suggested by Amersham Pharmacia Biotech
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Figure 3.4 Method used for packing the beads on shell side of the HF cartridge
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Figure 3.5 Schematic of the apparatus for hollow-fiber membrane-based filtration-
loading-chromatography process

To check if the packed resin bed was functioning as a chromatographic column,

l.0 ml binary protein mixture (e.g., Mb and ß-LG; BSA and Hb) was loaded onto the bed

from the shell-side inlet in initial experiments. The elution was then conducted with a

stepwise change of NaCl concentration in the starting buffer from shell-side inlet (shell-

side elution). Fractions were collected and assayed for the protein concentrations.

3.2.6 Development of the Cleaning Protocol for the Integrated Device

Cleaning protocols need to be developed for the integrated device by combining the

protocols for membrane and chromatography beads. Conditions selected must be

effective for both parts without any harm to the membrane and the chromatography

beads.
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3.2.6.1 Use of NaOH: Alkalis are effective cleaning agents for many biological/organic

foulants. They work by mechanisms including neutralization of acidic materials (e.g.

fatty acids and humic acids), saponification (hydrolysis) of fat and oil, and

dispersion/emulsification of colloidal material. Caustic soda (NaOH) is the simplest

alkaline cleaner. It is a very effective saponification agent, and it is one of the most

alkaline of different alkali cleaners due to its complete dissociation into Na+ and 011"

(Zeman and Zydney 1996a).

The membrane in the UF hollow fiber membrane cartridge (A/G Technology) is

made of polysulfone having a MWCO of 100,000. In their operating guide (A/G

Technology Corporation 1997b), the manufacturer recommends customers use 0.5 M

NaOH at 40-50°C to clean the membranes in the processes of cell culture, fermentation

broth, enzymes, juice clarification and protein products, etc. The shear rate is 4000-8000

-1sec with about 5 psi transmembrane pressure. Also, 0.5 M NaOH can be used for

sanitization of the cartridge. A concentration of 0.l M is recommended for use for storage

(up to 1 month) of the UF cartridges.

Coincidentally, sodium hydroxide is widely accepted for cleaning, sanitizing and

storing chromatography media and systems because of its efficacy, low cost and ease of

detection, removal and disposal. NaOH has been shown to be effective in removing

proteins and nucleic acid from chromatography media. It can saponify fats and dissolve

precipitated proteins. It also has the ability to inactivate several viruses, bacteria, yeasts

and molds (Amersham Pharmacia Biotech 1998).

For the DEAE Sepharose Fast Flow beads bought from Pharmacia Biotech, a high

ionic strength buffer (e.g. starting buffer containing 1.0 - 2.0 M NaCl) is used as the
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regeneration solution. But some denatured proteins or lipids may not be eluted in the

regeneration procedure. NaOH can be used to remove precipitated proteins,

hydrophobically bound proteins and lipoproteins (Amersham Pharmacia Biotech:

Instructions for Fast Flow Media).

3.2.6.2 Developing a Protocol for Cleaning of the Integrated Device: Membrane

cleaning is an essential component of nearly all membrane processes. All membranes will

foul during operation, causing the membrane performance (flux and/or selectivity) to

decline with time even if other operating conditions and fluid properties remain constant

(Zeman and Zydney 1996b).

Traditionally, the indicator for most of the membrane cleaning process is the

recovery of the permeate flux, say, the pure water flux after the cleaning will go up to 90-

100% of the original level (Sirkar and Prasad 1986). But sometimes the flux is not very

sensitive to gel layer formation or membrane fouling, especially when very dilute feeds

with smaller molecule products are treated (e.g. in some ultrafiltration application),

unless the process runs a reasonably long time. This is also valid for the case (no matter

what feeds have been treated) when the membrane is not completely cleaned but the

permeate flux seemed to have been recovered on the basis of the clean water flux.

For the integrated membrane-based chromatography device of this study, the

situation is more complicated. The flux is generally lower compared to that from the

membrane itself under the similar conditions. This makes the traditional indicator for

membrane cleaning even more insensitive. Moreover, it was found that after performing

the cleaning protocol shown in Figure 3.6, water fluxes went back to the original level;
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but for some of the batches, there was still some absorbance reading at 280 nm by

spectrophotometer for the fractions taken from the blank elution with 1.0 M NaCl after

cleaning.

Figure 3.6 Initial cleaning method based on membrane and beads cleaning protocols

One difference in the protocols between traditional membrane cleaning methods

and the integrated device cleaning method is that we could not use very high permeate

flux. This high flux wash in the membrane cleaning cycle can flush a lot of fouling

residuals (produced by the cleaning agent in chemical cleaning method) out of the

membrane. Further, the influence of the chromatographic beads packed on the shell side

needs to be considered as well. In this study, DEAE-Sepharose Fast Flow beads were

used. This kind of beads can adsorb molecules with negative charges. The polysulfone
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membrane has a pI value of 3.6 (Zeman and Zydney 1996, Bellara, Cui and Pepper

1997); it adsorbs positively charged molecules in the NaOH cleaning process, e.g., water

rinse step if there are still some impurities left in the column. In this case, no matter what

is left after the treatment with NaOH, both charged molecules are to be adsorbed in the

cartridge and the high permeate flux could not be used to flush the dissolved and

decomposed molecules out.

One solution proposed here is to "regenerate" the device with 1.0 - 2.0 M NaCl

after the NaOH treatment in the cleaning cycle - blank elution. The improved cleaning

protocol is shown in Figure 3.7. In this way, both charged, dissolved and decomposed

molecules can be made to flow out of the cartridge. In order to ensure the full cleaning of

the device, NaOH can be used to treat the membrane again after "regeneration" (or blank

elution) until no absorbance at 280 nm (or say, no "ghost" peak) is detected during the

next blank elution step. Reasonably low absorbance could also be the criterion for the

cleaning based on the time and solution consumptions.



Figure 3.7 Cleaning protocol developed for the integrated device

34
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3.2.7 Experimental Methods

3.2.7.1 One Cycle Experiment: For one-cycle-based filtration-cum-loading-cum-

chromatography experiments of interest, 100 - 400 ml solution of either one protein or a

protein mixture was directly loaded from the tube-side inlet; the permeate and the

retentate could be recycled if necessary (Figure 3.5). The tube-side pressure was higher

than that of the shell side to maintain a certain transmembrane pressure. Elution was

carried out as shown in Figure 3.5 either from the shell side (corresponding to Figure

2.1b) or from the tube side (corresponding to Figure 2.1c) with NaCl in the starting

buffer, using either isocratic or stepwise fashion. Fractions were collected and assayed for

the protein concentrations. The whole cartridge was cleaned according to the cleaning

protocol shown in Figure 3.7.

3.2.7.2 Cyclic Process: For cyclic processes where many cycles were run continuously

without the NaOH-based module cleaning, there were three types of experiments. First, a

cyclic process was carried out using a clean feed (i.e., without cells) containing

myoglobin in module 1. 250 ml (0.027-0.029 mg/ml) of myoglobin solution was directly

loaded from the tube-side inlet for 12 min at a flow rate of about 200 ml/min under an

average transmembrane pressure * of 2.4 psi; the retentate was recycled (Figure 3.5).

Tube-side elution was carried out with 0.5 M NaCl in 20 mM Tris-HCl (pH 8.5) at a flow

rate of 2.2-2.5 ml/min. Fractions were collected every 2.5 minutes and assayed for the

protein concentration. Displacement of the eluent was conducted after elution with

*

 Average transmembrane pressure in this dissertation = sum of TMP @ the beginning of
the module length and TMP @ the end of the module length divided by 2.
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starting buffer to take eluent out of the bed by using tube-side elution operation mode for

4-5 bed volumes followed by using shell-side elution operation mode for the same

volume of buffer. A new cycle was then carried out after the displacement of the eluent

with the starting buffer. In this manner as many cycles as necessary were conducted.

After the experiment was over, the whole cartridge was cleaned by using the cleaning

protocol shown in Figure 3.7.

In the second type of cyclic process, a binary protein mixture was employed. 150

ml (0.029-0.034 mg/ml) of a protein mixture solution was directly loaded from the tube-

side inlet of module 1 for 10 min at a flow rate of about 200 ml/min under an average

transmembrane pressure of 3.1 psi; the retentate was recycled (Figure 3.5). Tube-side

elution was carried out with 0.05 M NaCl in 20 mM Tris-HCl (pH 8.5) for 55 minutes

followed by 1.0 M NaCl for 45 minutes at a flow rate of 2.3-2.6 ml/min. After fractions

were collected every 2.5 minutes and assayed for the protein concentrations, the device

was treated following the same protocols mentioned earlier for a multi-cycle process for a

single protein and it was continued for many cycles. After the experiment, the whole

cartridge was cleaned by the same cleaning protocol previously mentioned (Figure 3.7).

In the third type of cyclic process, a yeast suspension was employed to simulate a

fermentation broth. One loopful of cells was transferred from agar slope into 50-60 ml

YM medium broth, which was prepared by dissolving 3 g yeast extract, 3 g malt extract,

5 g peptone and 10 g glucose in 1L water, autoclaving glucose solution and other

ingredients in solution separately, and then mixing them before use. Cells were cultured

for 20-24 hours until the optical density at 540 nm was in the range of 2.080-2.495. Cells

were washed 3 times with water by centrifuging at 3000g for 3 minutes each time before
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being diluted to 200 ml in the starting buffer. Then 0.038-0.043 mg/ml Mb and 0.037-

0.042 mg/ml a-LA were added to the yeast suspension. For this suspension, the optical

density reading at 540 nm was in the range from 1.264 to 1.400, corresponding to a cell

concentration about 0.5 g/L (Kang 1989).

The above yeast—based synthetic broth was directly loaded from the tube-side

inlet of module 2 for 12 min at a flow rate of about 200 ml/min under an average

transmembrane pressure of 3.0 psi as the retentate was recycled. Tube-side elution was

carried out with 0.05 M NaCl in 20 mM Tris-HCl (pH 8.5) for 45 minutes followed by

0.5 M NaCl for 55 minutes with an average flow rate of 2.5 ml/min. Fractions were

collected every 2.5 minutes and assayed for the protein concentrations. The bed could be

then regenerated by using 1.0 M NaCl in starting buffer for 4-5 bed volumes in tube-side

elution operation mode if necessary. Displacement of the eluent was conducted after

elution or regeneration with the starting buffer to remove the remaining cells and eluent

out of the system by shell-side back flushing for 4-5 bed volumes (through the tube-side

outlet), tube-side flushing for 2-4 bed volumes (shell-side and tube-side outlets open),

followed by tube-side elution operation mode flushing for 4-5 bed volumes. A new cycle

of operation was then carried out after reequilibration with the starting buffer. When the

cyclic process was over after multiple cycles, the cartridge was cleaned and stored

following the protocol shown in Figure 3.7.

3.2.7.3 One Cycle-Based Experiments with the Additional Extended Section on the

Permeate Outlet: As stated in Chapter 2, to ensure the separation effect in the shell-side

bed, an additional amount of resin beads was packed at the permeate outlet port on the
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shell side. These resin particles used as an extended section (ES) of the bed were kept in

place by the 2111 polyester mesh. There was a fixed ES on the permeate outlet on the

module; for some of the experiments, an additional ES bed was packed over the fixed ES

for module 1. The dimensions of the ES beds are shown in Table 3.3.

Table 3.3 Dimensions of the extended sections on the permeate outlets

I.D. of the ES
cm

Length of the ES
cm

Percentage of beads
in the ES *

Fixed ES for both
modules

0.7 l.7 3.27

Additional ES for
module 1

0.85 2.3

_

6.12

_
Fixed ES +

Additional ES
for module 1

9.20

*Based on total volume of beads packed on the shell-side bed and the ES bed.

The experimental method is similar to that in section 3.2.7.l, namely, "One cycle

experiment" for a clean feed solution:

3.2.8 Measurement of Protein Concentrations

The concentrations of Hb, Mb, BSA, β-LG and a-LA were determined by measuring the

absorbance at 430 nm (or 410 nm) and 280 nm. Standard calibration curves for various

proteins are provided in Equations 3.l-3.7.

(1) Hemoglobin:

@ 280 nm: Concentration(µg/ml) = 382.7 x absorbance — 0.162	 (3.1)

Linear range: 0 — 200 µg/ml.



In a binary protein mixture, concentrations of Hb and Mb were directly measured

at 430 nm and 410 nm using their standard curves. The concentrations of BSA, ß-LG and

a-LA in a binary protein mixture were obtained using the method of Sokol, Hana and

Albrecht (1961) by subtracting the corresponding 280 nm absorbances of Hb and Mb

(calculated with their standard curves at 280 nm from their concentrations obtained at

430 nm and 410 nm) from the absorbance of the mixture (e.g., a mixture of Hb and BSA

and a mixture of Mb and a-LA) at 280 nm. Sample calculations are illustrated in Figure

3.8.
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This method is based on the assumption that the absorption coefficient of each

protein in the mixture does not change, which is very close to reality especially when the

protein concentration is low. For proteins in the study in a cellular suspension, the

absorbances of protein fractions were measured at 280 nm.

Figure 3.8 Schematic of the calculation method for determining protein concentrations in
a binary mixture of Mb and a-LA

3.2.9 Adsorption Equilibrium

Equilibrium adsorption is a classical technique for characterizing the interactions

involved in adsorption. The equilibrium adsorption studies were carried out in a manner

similar to the procedure described by Chase (1984), Boyer (1991) and Noriega et al.

(1997) but modified to correspond to the present situation. Known volumes of the

adsorbent were prepared by allowing a suspension of the adsorbent to settle in a

graduated cylinder for 48 hours. The operating systems were prepared by adjusting the

buffer volume to that of the settled adsorbent to obtain a 75:25 (v/v) suspension.
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Adsorption equilibrium studies were carried out in the G24 Environmental Incubator

Shaker (New Brunswick Scientific Co., Inc, Edison, NJ) at room temperature. 1.0 — 2.0

ml of a 75:25 (v/v) suspension was added to flasks containing various amounts of protein

of interest with or without certain concentrations of NaCl in 20 mM Tris-HCl buffer, pH

8.5, in a final volume of 50 ml. The flasks were shaken at 200 rpm in the Shaker.

Samples (2.5 ml) were removed and centrifuged (4000-5000g, 1-l.5 min) and the

supernatants were assayed for protein concentrations at 280 nm. Each adsorption

experiment was carried out until no appreciable change was observed.



CHAPTER 4

RESULTS AND DISCUSSIONS

Experimental results will be presented and discussed in this Chapter. First, conditions for

eluting a single protein using the shell-side packed bed of this system (Figure 3.5) will be

addressed for the basis of separation for binary protein mixtures. Then the results of

experiments for the separation of binary protein mixtures on the shell-side bed will be

discussed. These results could be used as tests for the performance of the shell-side

packed bed as a chromatographic column. Next, the results of tube-side filtration-based

experiments using clean feed solutions will be presented in two categories: shell-side

elution (according to Figure 2.1b) and tube-side elution (according to Figure 2.1c). These

experiments will be illustrated using a binary protein mixture in a clean solution for one

cycle of loading-and-elution. In the type of experiments that follows, a similar

experiment will be carried out continuously for many cycles using a clean feed solution

for a single protein and then for a protein mixture. Then, in the next series of

experiments, a yeast-based simulated fermentation broth is employed, a synthetic protein

mixture is added to this broth, the solution is filtered and the proteins are separated by

elution chromatography. This cyclic process is carried out repeatedly using the simulated

feed broth to explore the behavior of the integrated device and process. The effects of the

extended section on the permeate port of the shell side will be discussed thereafter. The

results of the adsorption isotherms from batch experiments will be presented at the end of

this Chapter.

42
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4.1 Preliminary Investigation of the Experimental Methods

Several proteins were used as model proteins for this study. Initial experiments were

carried out using a single protein in a clean feed solution in order to find out the buffer

conditions for the elution of these proteins. Shell-side inlet loading was employed in

most of the initial experiments unless otherwise mentioned. Binary mixtures of model

proteins were utilized thereafter to check if the shell-side bed was performing as a

chromatographic column. Beads were positively charged, and the model proteins were

negatively charged at the buffer pH of 8.0 or 8.5 in all experiments presented in this

Chapter.

4.1.1 Myoglobin

The first experiment was carried out by loading about 0.45 ml of a l.0 mg/ml myoglobin

(Mb) sample on the shell-side bed from the shell-side inlet. Elution was performed by

pumping 0.025 M NaCl in the starting buffer (pH 8.0) at a flow rate of 1.60 ml/min.

Fractions were taken every 3 min for the assay of Mb concentrations. Figure 4.1 shows

the result. Over 90 % of the Mb was recovered * .

The second experiment was performed in a similar manner. About 0.80 ml of a

l.0 mg/ml Mb sample was loaded on the shell-side bed from the shell-side inlet. Elution

was performed by a stepwise change of NaCl in the starting buffer (pH 8.0) at a flow rate

of l.61 ml/min: (1) 0.05 M NaCl for 60 minutes, (2) 0.1 M NaCl for 30 minutes and (3)

0.5 M NaCl for 40 minutes. Fractions were taken every 3 min for the assay of Mb

concentrations. Figure 4.2 shows the elution profile. About 93.0 % of the Mb was eluted

*

 Recovered protein % was calculated by the sum of protein amount in each fraction
(concentration x volume in each fraction) divided by the total amount of protein loaded.
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out during first 60 minutes elution, 3.0 % of Mb was eluted out in the 2 nd step elution and

2.0 % was recovered in the last elution step. The total protein recovered in the three steps

was about 99.0 % of the protein in the feed.

From these two experiments, it became clear that an ionic strength of 0.025 or

0.05 M NaCl in the starting buffer is strong enough for the elution of Mb out of the shell-

side bed in this device.

Figure 4.1 Shell-side elution for Mb with 0.025 M NaCl in the starting buffer (pH 8.0)
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Figure 4.2 Shell-side elution for Mb with a 3 stepwise changes of NaCl concentration in
the starting buffer (pH 8.0)

4.1.2 ß-Lactoglobulin

About 0.20 ml of a 2.40 mg/ml ß-lactoglobulin (ß-LG) solution was loaded on the shell-

side bed from the shell-side inlet. Elution was performed by a stepwise change of NaCl in

the starting buffer (pH 8.0) at a flow rate of l.74 ml/min: (l) 0.05 M NaCl for 54

minutes; (2) 0.5 M NaCl for 50 minutes. Fractions were taken every 4.5 min for the assay

of ß-LG concentrations. Figure 4.3 shows the protein concentration profile. It can be seen

that 0.05 M NaCl is not effective for elution of β-LG.
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Figure 4.3 Shell-side elution for ß-LG with a stepwise change of NaCl concentration in
the starting buffer (pH 8.0)

The second experiment was carried out by loading about 0.20 ml of a 2.40 mg/ml

ß-LG solution on the shell-side bed from the shell-side inlet. Elution was performed by a

stepwise change of NaCl in the starting buffer (pH 8.0) at a flow rate of 1.78 ml/min: (l)

0.l M NaCl for 60 minutes; (2) 0.5 M NaCl for the next 48 minutes. Fractions were taken

every 4.5 min for the assay of ß-LG concentrations. Figure 4.4 illustrates the protein

concentration profile during elution; the profile indicates that 0.l M NaCl can only elute

part of the ß-LG out of the bed.
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Figure 4.4 Shell-side elution for ß-LG with a stepwise change of NaCl concentration in
the starting buffer (pH 8.0)

A similar experiment was carried out at pH 8.5 by loading about 0.50 ml of a l.2

mg/ml ß-LG sample on the shell-side bed from the shell-side inlet. Elution was

performed by a stepwise change of NaCl in the starting buffer (pH 8.5) at a flow rate of

1.89 ml/min: (l) 0.05 M NaCl for 60 minutes; (2) 0.5 M NaCl for the next 44 minutes.

Fractions were taken every 3.0 min for the assay of ß-LG concentrations. Figure 4.5

shows the protein concentration profile during elution. It can be seen that 0.5 M NaCl can

elute ß-LG out of the bed at pH 8.5.
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Figure 4.5 Shell-side elution for ß-LG with a stepwise change of NaCl concentration in
the starting buffer (pH 8.5)

Tube-side loading of ß-LG onto the shell-side bed was carried by pumping 300

ml of a 44.3 µg/ml β-LG solution in the starting buffer (pH 8.0) through the hollow fiber

lumen at an average TMP about 2.5 psi. Since the molecular weight of ß-LG is smaller

than the molecular weight cut off (MWCO) of the membrane, ß-LG can partially pass

through the pores of the membrane under the TMP and get adsorbed onto the beads at pH

8.0. Shell-side elution was implemented using 0.5 M NaCl in the starting buffer at a flow

rate of 2.l ml/min. Figure 4.6 illustrates the eluted concentration profile. About 90 % of

the loaded protein were recovered.
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Figure 4.6 Shell-side elution for tube-side ß-LG loading using 0.5 M NaCl in the starting
buffer (pH 8.0)

4.1.3 BSA

About 0.60 ml of a 1.60 mg/ml BSA sample was loaded on the shell-side bed from the

shell-side inlet. Elution was performed by a stepwise change of NaCl in the starting

buffer (pH 8.0) at a flow rate of 1.82 ml/min: (l) 0.05 M NaCl for 51 minutes; (2) 0.1 M

NaCl for 27 minutes; (3) 0.2 M NaCl for 50 minutes. Fractions were taken every 3 min

to measure the protein concentrations. Figure 4.7 shows the protein concentration profile
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during elution. It can be seen that 0.05 M and 0.1 M NaCl can not fully elute BSA from

the beads.

Figure 4.7 Shell-side elution for BSA with a stepwise change of NaCl concentration in
the starting buffer (pH 8.0)

4.1.4 α-Lactalbumin

Tube-side loading of α-LA onto the shell-side bed was carried out by pumping 200 ml of

a 47.9 µg/ml α-LA solution in the starting buffer (pH 8.5) through the fiber bore under an

average TMP of 3.1 psi at a flow rate of 200 ml/min. Only the retentate was recycled.

The molecular weight of a-LA is smaller than the MWCO of the membrane: it can pass

through the membrane pores under a certain TMP. Tube-side elution was adopted in a
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stepwise fashion: (l) 0.05 M NaCl in starting buffer for 45 minutes; (2) 0.5 M NaCl in

starting buffer for 50 minutes at a flow rate of 2.54 ml/min. Figure 4.8 shows the

concentration profile during elution. About 94 % of the loaded protein was recovered.

Figure 4.8 also illustrates that 0.05 M NaCl could not elute a-LA properly from the

beads. Only about 2.5 % of the protein was eluted in the first elution step.

Figure 4.8 Tube-side elution using a stepwise change of NaCl concentration in the
starting buffer (pH 8.5) for tube-side loading of a-LA
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4.1.5 Separation of Binary Protein Mixtures Using Shell-Side Loading

The binary protein mixture of Mb and ß-LG is one pair of model proteins studied. A

sample consisting of 1.0 ml of a mixture of Mb (0.7 mg/ml) and ß-LG (0.7 mg/ml) was

loaded directly onto the shell-side bed. Based on the results from sections 4.1.1 and 4.1.2,

a stepwise change in elution buffer was carried out with 0.05 M NaCl in 20 mM Tris-HCl

(pH 8.0) for the first 60 minutes, and with 0.5 M NaCl for the following 40 minutes. The

eluent flow rate was 1.65 ml/min. Figure 4.9 shows the chromatogram of the eluted

proteins. The first peak is of Mb due to the weak interaction between the beads and Mb.

The second peak is of ß-LG; the interaction between the beads and this protein was

stronger. The good separation achieved indicated that the packed beads in the shell side

were working well as an anion exchanger; further, the packed bed column with the fibers

was an effective axial flow chromatographic column. The peak shape for ß-LG is quite

similar to that obtained by Luo and Hsu (1997) in packed bed chromatography with

DEAE-Sepharose beads in a bed which was l.5 cm in diameter and 22.0 cm in length.

The elution of ß-LG could have been initiated earlier by an earlier introduction of 0.5 M

NaCl.

BSA and hemoglobin (Hb) are another chosen pair of proteins for a binary

mixture. The first experiment employed 0.2 M NaCl in the starting buffer (pH 8.0) to

elute 1.0 ml sample of 0.75 mg/ml Hb and 0.63 mg/ml BSA loaded from the shell-side

inlet. Fractions were taken every l.5 minutes. The movement of Hb band could be

observed during the elution for Hb and BSA as the housing shell of the cartridge is semi-

transparent. Figure 4.10 shows the poor separation illustrating that isocratic elution using

0.2 M NaCl at pH 8.0 is not efficient for the separation of these two proteins.
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Figure 4.9 Separation of Mb and ß-LG for shell-side loading using shell-side elution
with a stepwise change of NaCl concentration (pH 8.0)

Improved separation of Hb and BSA was achieved by shell-side elution using a

stepwise change of NaCl concentration in the starting buffer for the shell-side loading of

the protein sample mixture. A sample consisting of an 1.0 ml mixture of about 0.6 mg/ml

Hb and 0.65 mg/ml BSA was loaded directly on the shell-side bed from shell-side inlet.

Elution was performed by using 0.05 M NaCl in the starting buffer (pH 8.0) for 50

minutes followed by 0.2 M NaCl in the starting buffer (pH 8.0). Fractions were taken

every 1.5 minutes. Figure 4.11 illustrates the protein concentration profile during the
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stepwise change elution. A higher resolution was achieved compared with that of Figure

4. 1 O.

Figure 4.10 Poor separation of Hb and BSA for shell-side loading with a shell-side
elution using 0.2 M NaCl (pH 8.0)
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Figure 4.11 Improved Separation of Hb and BSA for shell-side loading with a shell-side
stepwise elution (pH 8.0)

In this Section 4.l, experimental results have been presented for the preliminary

investigation of the experimental conditions using the integrated device including mainly

shell-side loading and shell-side elution of the protein samples as well as a small part of

results for tube-side loading of the feed and tube-side elution. Further explorations of this

technique using the integrated device will be discussed in the following sections.
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4.2 One Cycle-Based Process of Filtration-cum-Loading-cum-Chromatography

One cycle-based process of tube-side filtration-cum-loading-cum-chromatography

experiments was conducted using clean feed solutions of a binary protein mixture. The

first experimental result presented in this section is the separation of Hb and BSA. An

aqueous solution of 0.030 mg/ml.Hb and 0.033 mg/ml BSA in the starting buffer (pH 8.0)

was pumped through the hollow fiber bores. Full recycle was performed to return both

permeate and retentate to the reservoir (Figure 3.5); the process was stopped before

detecting any of the poorly adsorbed protein (Hb) on the permeate side. Filtration-cum-

loading was run in this fashion for 12 minutes at a permeate flow rate of 9.l ml/min -

13.6 ml/min (Figure 2.1a). Since the molecular weights of Hb and BSA are smaller than

the MWCO of the membrane, both Hb and BSA can partially pass through the pores of

the membrane under the transmembrane pressure. The red color of Hb could be seen

during this loading operation from the outside of the cartridge which showed that Hb

passed through the pores. A 3-stepwise change elution method based on the previous

results was carried out next from the shell side (corresponding to Figure 2.1b): first (l)

with 0.05 M NaCl in 20 mM Tris-HCl (pH 8.0, 42 min), then (2) with 0.1 M NaCl in 20

mM Tris-HCl (pH 8.0, 27 min), followed by (3) elution with 0.2 M NaCl in 20 mM

Tris-HCl (pH 8.0, 60 min) at a flow rate of 1.845 ml/min. Figure 4.12 illustrates the separation

achieved. Two separate peaks were obtained with a small amount of overlap in the

middle. The peak widths are reasonable. There does not appear to be much band

broadening.
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Figure 4.12 Separation of Hb and BSA for tube-side loading of feed by using a shell-side
3 stepwise change elution (pH 8.0).

Similar experiments were performed with a binary protein mixture of Mb and

ß-LG. Initial experiments showed that the starting buffer at pH 8.0 was not good for the

loading of Mb on the beads. Mb "leaking" was detected in the permeate during very early

stage of tube-side loading operation. Only part of Mb was loaded on the shell-side bed. In

order to achieve a better adsorption of Mb onto the beads on the shell-side, a buffer pH of

8.5 was chosen for Mb-related experiments. Like most experiments discussed in Section

4.l, separation for a shell-side loading of a binary protein mixture of Mb and ß-LG using

shell-side elution was tried first. An 1.0 ml sample of l.2 mg/ml Mb and 1.1 mg/ml ß-LG
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was loaded onto the shell-side bed from the shell-side inlet. The bed was washed with

starting buffer (pH 8.5) for 30 minutes at a flow rate of 1.78 ml/min, neither Mb nor

ß-LGwas washed out during this step, showing that both proteins were adsorbed well on

the beads under the buffer pH at 8.5. Then 0.05 M NaCl in the starting buffer (pH 8.5)

was used for the elution followed by 0.5 M NaCl in the starting buffer (pH 8.5) at a flow

rate of 1.66 ml/min. Two separate peaks were obtained; the first one is of Mb and second

one is of ß-LG (Figure 4.13). Over 90 % of the proteins were recovered.

Figure 4.13. Separation of Mb and ß-LG for shell-side loading with a shell-side elution
(pH 8.5)
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Based on this result, a series of experiments for separation of Mb and ß-LG were

conducted to study different operating modes and conditions for the integrated device.

Four hundred ml of aqueous solution of around 0.030 - 0.032 mg/ml Mb and 0.029 —

0.037 mg/ml ß-LG in the starting buffer was pumped through the fiber bores for 12 - 15

minutes. The average transmembrane pressure was around 2.7 psi at a permeate flow rate

of 5 ml/min. In this case, both Mb and ß-LG can pass through the membrane pores. A

stepwise elution method was carried out first with 0.05 M NaCl in 20 mM Tris-HCl (pH

8.5) for about 90 minutes, followed by 0.5 M NaCl in 20 mM Tris-HCl (pH 8.5) for

about 40 minutes at a flow rate of around 2.7 ml/min, either from the tube side or the

shell side of the hollow fiber module. Figures 4.14 and 4.15 illustrate the results for tube-

side elution and shell-side elution respectively. Two separate peaks were obtained in each

of the two elution modes. For the elution mode from shell side, sharper peaks could be

obtained, while for the elution from tube side, somewhat shorter retention times were

observed. Yields of the separations shown in Figures 4.14 and 4.15 are summarized in

Table 4.l.

Comparison of the eluted peaks indicated in Figures 4.14 and 4.15 show that the

shell-side elution peaks have a sharper separation than those from tube-side elution.

Possible explanations for this observation follows:

1. Tube-side elution is likely to desorb small amounts of proteins adsorbed on the

membrane surface and pore surfaces. The introduction of these desorbed proteins on

the shell side may broaden the peaks.

2. Tube-side elution introduces eluent into the bed along its whole length. The stationary

phase near the column top is subjected to a certain volume of mobile phase flow. The



60

stationary phase further down the column is subjected to a larger volume of mobile

phase flow. The stationary phase near the bottom of the column is subjected to the

largest volume of mobile phase flow. Thus, in this configuration, there is a spectrum

of mobile phase volumes as well as a spectrum of stationary phase volumes for a

given partition coefficient of the sorbed species. As a result, the effective retention

time is probably reduced and the band somewhat broadened in the tube-side elution

vis-à-vis the shell-side elution.

Figure 4.14 Separation of Mb and ß-LG for tube-side loading by using tube-side elution
(pH 8.5)
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Figure 4.15 Separation of Mb and ß-LG for tube-side loading by using shell-side elution
(pH 8.5)

To optimize the elution conditions, 400 ml of an aqueous solution of around 0.031

mg/ml Mb and 0.032 mg/ml ß-LG in the starting buffer was pumped through the fiber

bores without retentate and permeate recycle for 11 minutes. The average transmembrane

pressure was around 2.8 psi at a permeate flow rate of 5.6 ml/min. The stepwise elution

method was modified to reduce the elution time, first with 0.05 M NaCl in 20mM

Tris-HCl (pH 8.5) for 50 minutes instead of more than 90 minutes, then followed by 0.5 M

NaCl in 20mM Tris-HCl (pH 8.5) for 38 minutes at a flow rate of around 2.85 ml/min,
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which was carried out from the shell side of the hollow fiber module. Figures 4.16 shows

the result. Good separation was obtained with a much shorter elution time compared with

that of the experiment shown in Figure 4.15. Yet the bandwidth of each peak in Figure

4.16 is almost identical to that in Figure 4.15.

Figure 4.16 Separation of Mb and ß-LG for tube-side loading by using shell-side elution
for a reduced elution time (pH 8.5)

A similar reduction in elution time can also be achieved in tube-side elution

processes. Figure 4.17 illustrates the separation of Mb and ß-LG from 400 ml of a

mixture of Mb (0.031 mg/ml) and ß-LG (0.037 mg/ml) via tube-side elution. In this
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experiment, 0.05 M NaCl was used in the standard eluent for 52 minutes, followed by 0.5

M NaCl for 40 minutes. Even though the elution took much less time here compared to

that in Figure 4.14, the peaks and the peak shapes are almost identical in these figures. It

also appears that one could cut down the time even further provided one accepts a

somewhat higher impurity level of Mb in the ß-LG fraction.

Figure 4.17 Separation of Mb and ß-LG for tube-side loading by tube-side elution for a
reduced elution time (pH 8.5)

Figures 4.14 to 4.17 illustrate results of chromatographic separations carried out

from one-time loading of the shell-side beads from a tube-side filtration-based feed. How
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would this device and process behave if such a process is carried out repeatedly? For

practical application of this device, a repetitive process would be needed since as Table 1

shows the amount of protein recovered in the eluent fraction in one cycle in this case

varies between 3-12 % of the amount present in the feed. While different devices, designs

and operating conditions can increase this fractional recovery considerably (as shown

later in the simulated yeast broth experiments), multiple cycles are needed in general.

Table 4.1 Yields from the filtration-loading-chromatography experiments for separation
of Mb and ß-LG

Elution Tube-side Shell-side Tube-side Shell-side
Mode elution elution elution elution

(shown in (shown in (shown in (shown in
Figure 4.14) Figure 4.15) Figure 4.17) Figure 4.16)

Proteins Mb ß-LG Mb ß-LG Mb ß-LG Mb ß-LG
Yield based on

protein removed
from feed
solution*

98.9% 95.5% 98.9% 92.3% 100.0% 98.6% 96.6% 96.0%

Yield based on
total protein in

feed**
11.0% 5.1% 11.7% 4.2% 10.9% 3.1% 10.9% 4.4%

*Dividing the total recovered protein amount from the elution fractions in one cycle by
the amount of protein removed from the feed solution in one cycle.
**Dividing the total recovered protein amount from the elution fractions in one cycle by
the total amount of protein present in the feed solution.

4.3 Cyclic Processes

4.3.1 A Cyclic Process for a Solution Containing a Single Protein

Figure 4.18 illustrates the peaks for Mb in a 10-cycle process. The feed in this case had

only Mb at a concentration of 0.027 —0.029 mg/ml. Two hundred and fifty ml of the feed

solution was pumped through the fiber lumen at a flow rate of about 200 ml/min under an
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average TMP of about 2.4 psig for each cycle with retentate recycle. Tube-side elution

was performed by using 0.5 M NaCl in the starting buffer (pH 8.5) at a flow rate of 2.2 —

2.5 ml/min. The peak shapes in different cycles are essentially identical in this 10-cycle

process. Any reduction or increase in the peak height may be ascribed to fluctuations in

the permeate flux level in that cycle as shown in the Figure. The multi-step process

carried out continuously in a cyclic fashion to load-elute-reequilibrate for a single protein

in a feed demonstrates that a large volume of feed can be handled successfully over a

period of time.

Figure 4.18 Cyclic process for recovery of a single protein Mb in a clean feed (pH 8.5)

4.3.2 A Cyclic Process for a Protein Mixture Present in a Clean Feed

In the set of experiments to be presented now, the feed was a mixture of Mb and a-LA.

The feed had both Mb and a-LA at a concentration range of 0.028 —0.030 mg/ml. One

hundred and fifty ml feed solution was pumped through the tube side at a flow rate of 200

— 250 ml/min under an average TMP of about 3.l psig for each cycle with retentate
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recycle. Tube-side stepwise elution was performed by first using 0.05 M NaCl in the

starting buffer (pH 8.5) for 55 minutes, then changing to 1.0 M NaCl in the starting

buffer (pH 8.5). Elution flow rate was in the range of 2.3 — 2.6 ml/min. As shown in

Figure 4.19, the repeated process of loading-elution-reequilibration successfully yielded

in each cycle a clean and identical separation of two peaks of Mb and a-LA (in each case

the second peak). Any reduction or increase in the peak height or area in a given cycle

can easily be correlated with a reduction or increase in the filtration flux in that cycle as

shown in the Figure. Thus although the fractional recovery of proteins in the feed per

cycle in this device is somewhat low, multiple and repetitive cycles are easily carried out.

No deterioration in performance was observed as the number of cycles were increased

(Figure 4.19 has 12 cycles).

Figure 4.19 Cyclic separation process for mixtures of Mb and a—LA in a clean feed (pH
8.5)
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4.3.3 A Cyclic Process for a Protein Mixture in a Simulated Yeast Broth

Every experiment described so far employed ultrafiltration of a clean solution of a single

protein or a protein mixture from the tube side to load the proteins on the shell-side

beads. The results described next in Figure 4.20 employed a mixture of Mb and a-LA in

a yeast suspension simulating a fermentation broth. For this experiment module 2 was

used. Figure 4.20 first shows the absorbance reading when the cellular suspension was

passed; the small peaks are due to particular proteins present in the suspension. Then the

system was regenerated using l.0 M NaCl and reequilibrated with the starting buffer.

Afterwards, a protein mixture in a clean solution without any cells was loaded. The

elution of this tube-side loaded protein mixture of Mb and a-LA came out in two distinct

peaks between 150-240 minutes (as shown on the right hand side of Figure 4.20). The

bed was next regenerated and then the simulated yeast broth containing a mixture of Mb

and a-LA (about 0.04 mg/ml respectively) was introduced from the tube side. The

loading-elution-(regeneration)-reequilibration steps are as described in the Figure. This

process was cyclically repeated six times. Any difference between the runs 1-3 and 4-6

are due to the additional step 7 (shown in the Figure 4.20) explored from runs 4-6. What

is however clear is that the cyclic process studied before with clean solutions can be also

implemented from a simulated broth system. The cyclic process output and the device

behavior appear to be repeated. Recoveries of Mb and a-LA from the feed in each cycle

were about 30% and 20% respectively.



Figure 4.20 Cyclic process for separation Mb and a—LA in yeast suspensions using module 2 (pH 8.5)
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The above results indicate that the integrated cyclic process can be implemented

over many cycles for binary protein mixture separation via elution chromatography.

Futher, the basic objective of this integrated process and single device, namely,

chromatographic separation of a protein mixture from a cellular broth (among others) is

achievable. There are a number of other aspects of this one device-based process which

are worthy of further exploration. One of them concerns the rate of protein transmission

through the membrane in the integrated device vis-à-vis the same membrane without any

beads on the shell side. For example, the protein transmission rate (mg/min.m 2) of Mb

obtained for membrane module 2 without shell-side beads at a feed concentration of

about 0.030 mg/ml in a clean solution and a transmembrane pressure difference of 4 psi

was found to be 2.14 mg/min.m 2 (see Table 4.2). For the same protein, the protein

transmission rate is considerably higher using this integrated device (e.g. about 5.16

mg/min.m2) under an average TMP of 3.0 psi. It must be due to a higher protein

concentration difference across the membrane since the beads on the shell side act as a

sink for the protein in the permeate.

Table 4.2 Comparison of protein (myoglobin) transmission in module 2 without beads
and with beads at a feed flow rate of 200 ml/min
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Table 4.2 Comparison of protein (myoglobin) transmission in module 2 without beads
and with beads at a feed flow rate of 200 ml/min (Continued)

*Experiment without beads was carried out by using a clean solution containing only
myoglobin; the data for experiment with beads were from a cyclic process using a
protein mixture in a yeast suspension.

* Dividing the total recovered protein amount from elution peak by permeate volume.
***Mass transfer rate = permeate concentration x permeate volume / (loading time x

membrane area)

4.4 Effects of Higher Protein Concentration in Feed and the Extended Section

The concentration level of proteins used in each of the above experiments for tube-side

loading (Figure 4.12 and Figures 4.14 - 4.20) varied between 0.027 mg/ml - 0.037 mg/ml.

Can the particular device being studied be used to process feeds containing higher protein

concentrations? Figure 4.21 illustrates the separation of Mb and a-LA present in the feed

at concentration levels of 0.14 mg/ml and 0.137 mg/ml respectively. This is about 5 times

larger than those in all of the earlier experiments employing 15 minutes tube-side

loading. Tube-side stepwise elution method was used by pumping 0.05 M NaCl in the

starting buffer (pH 8.5) for 45 minutes followed by 0.5 M NaCl in the starting buffer (pH

8.5) at a flow rate of 2.58 ml/min. The peak shapes and the peak separations in this one-

cycle experiment are similar to those of Figure 4.19. A low level of a-LA was detected

along with the Mb peak. This suggests that for higher feed concentration levels either the

local bed volume is to be increased vis-à-vis the fiber membrane surface area or that an

additional length of a column needs to be provided at the end of the permeate outlet

beyond the current length.
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Figure 4.21 Separation of Mb and a-LA for higher protein concentrations (pH 8.5)

A similar experiment was performed by using module 1 with an additional

extended section (Table 3.3). The total volume of the beads in both fixed and additional

ES was about 9.2 % of the total volume of beads packed in module 1. Concentration

levels similar to those in the above experiment were adopted by adding 0.150 mg/ml Mb

and 0.156 mg/ml a-LA in 200 ml of feed. The loading time was 30 minutes instead of 15

minutes. The same elution method was used at a flow rate of 2.52 ml/min. Figure 4.22

provides the experimental result. Protein concentration profiles during elution show

higher amounts of proteins recovered compared with those in Figure 4.21. Detailed

comparisons of the two experiments are provided in Table 4.3.
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Figure 4.22 Separation of Mb and a-LA for tube-side loading of higher protein
concentrations using the additional ES (Table 3.3) (pH 8.5)

From Table 4.3, it can be seen that although the additional ES lowered the TMP

as well as the flux for similar experimental conditions, doubling the loading time did not

increase the extent of protein "leaking" much (see "ABS @ 280 nm for the total

permeate"). The averaged amount of recovered proteins in the permeate is similar for

both cases but slightly higher for the case with the additional ES using longer loading

time.
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In order to further explore the function of the ES, additional sets of experiments

were carried out with even higher protein concentrations in the feed. In this set of

experiments, 200 ml of mixture of Mb (0.568 mg/ml) and a-LA (0.522 mg/ml) was

loaded through tube-side filtration-loading. This is about 20 times larger than those in the

earlier experiments employed in tube-side loading. The loading times for the two

experiments were different: 15 minutes for the experiment without the additional ES and

30 minutes for the experiment with the additional ES. Similar stepwise elution method

was adopted for both experiments by using 0.05 M NaCl in the starting buffer (pH 8.5)

for 50 minutes followed by 0.5 M NaCl in the starting buffer (pH 8.5) for 50 minutes.

Elution flow rate was 2.5 — 2.6 ml/min. Fractions were taken every 2.5 minutes and

assayed for protein concentrations. Figure 4.23 shows the elution profiles for both cases.

Detailed results are also provided in Table 4.3.

Similarly, it can be seen that the extent of protein leaking ("ABS @ 280 nm for

the total permeate" (Table 4.3)) with the additional ES for 30 minutes loading is even

lower than that without the additional ES for half of the loading time. Again, although the

additional ES lowered the TMP as well as the flux for similar experimental conditions,

the total recovered protein for the experiment with the additional ES is more than double

that without the additional ES. The averaged amount of recovered protein in the permeate

was also much higher for the experiment with the additional ES.
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Figure 4.23 Effects of the additional ES (Table 3.3) at the permeate port on the
separation for higher concentrations of Mb and a-LA (pH 8.5)

It is also useful to note here that the level of concentration of an individual protein

eluted in a given fraction in all experiments is similar to its concentration level in the feed

solution. That is expected in the elution chromatographic technique adopted here.

Increasing the loading time may increase this concentration level to some extent in the

present situation. If one were to adopt bed saturation as practiced in affinity adsorption

processes, one can achieve a much higher concentration in the eluent at the cost of
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substantial leakage through the permeate exit and a reduction in the resolution of the two

proteins.

Table 4.3 Comparison of the effect of the ES in Figures 4.21-4.23

Feed protein concentration
0.277 - 0.306 mg/ml

Feed protein concentration
1.04 -l.09 mg/ml

Figure 4.21
w/o additional

ES

Figure 4.22
with additional

ES

Solid line in
Figure 23

w/o additional
ES

Dotted line in
Figure 23

with additional
ES

Percentage of
beads in the ES

3.27 % 9.20 % 3.27 % 9.20 %

Total feed
concentration

0.277 mg/ml 0.306 mg/ml 1.09 mg/ml l.04 mg/ml

Loading flow
rate

200 ml/min 200 ml/min 200 ml/min 200 ml/min

Loading time 15 min 30 min 15 min 30 min
Average TMP

@ loading
—3.l psig —2.8 psig —3.1 psig —2.8 psig

Average
permeate flow

rate
5.95 ml/min 4.92 ml/min 6.39 ml/min 5.08 ml/min

Total permeate
volume

89.2 ml 147.5 ml 96 ml 152 ml

ABS @ 280 nm
for the total

permeate
0.002 0.003 0.0065 0.004

Total recovered
protein for the

run
7.55 mg 13.3 mg 30 mg 78 mg

Average
amount of

proteins in the
permeate

0.085 mg/ml 0.090 mg/ml 0.31 mg/ml 0.51 mg/ml
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4.5 Possible Advantages of this Integrated Process

There are many possible advantages of this integrated device and process. They are

summarized as follows:

1. The process and the device proposed above clearly allows an integration of three

major steps in bioseparations, namely, removal of insolubles, isolation and

chromatographic purification in one device and in one cyclic process; further, the

bioproduct may be extracellular or intracellular (after cell disruption).

2. There are major improvements in the process of microfiltration (MF) or ultrafiltration

(UF) in such a configuration.

a. Due to the presence of the beads on the shell side, the flow pressure drop in the

permeate stream is increased significantly. As a result, it becomes easier to

maintain a constant transmembrane pressure (TMP) along the module length.

Maintenance of constant TMP is highly desirable (van Reis, Leonard, Hsu and

Builder 1991). The possibility of reverse filtrate flow at the feed outlet region is

easily eliminated.

b. The loss of filtration flux that develops with time can be substantially reduced

since the feeding step which involves the filtration of the cellular broth or the

homogenate, lasts for a short time, e.g., 5 - 30 minutes. The advantages of

operation in the initial period are obvious: the gel/fouling layer is not allowed to

develop significantly on the membrane; the flux levels remain high. Further,

elution from the shell-side inlet can even loosen and reduce the gel/fouling layer

to some extent as it acts as a pseudo-backpulse. In the next cycle, the
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unconsolidated deposit will be swept away to a great extent at the beginning of

the cycle.

c. Introducing the eluent through the fiber bore will allow one to desorb any

valuable product lost by adsorption on the fiber lumen membrane surface or pore

surface. This will directly lead to an increased yield.

d. Although the flux is reduced a lot due to the beads packed on the shell side, the

protein transmission rate is increased considerably.

3. Unless the permeate side pressure drops are excessive (which can develop under

unusual conditions), most commercially available beads can be used in such a

device/process. They need to withstand a small pressure drop (e.g., 2 - 8 psi) on the

shell side which most beads are capable of. The vast majority of conventional hollow

fiber membrane-based UF and MF devices could be utilized in this process. The fiber

dimensions may vary from 100 gm ID to 2000 gm ID or higher. The adsorbent beads

can have any functionality and structure and dimensions of 5 pm or upwards. Further,

flat membrane-based devices may be easily adopted to this end.

4. Hollow fiber membrane modules can be cleaned-in-place (CIP) or sanitized by an

appropriate sequence of cleaning solutions (van Reis, Leonard, Hsu and Builder

1991). The adsorbent particles may be subjected to a CIP procedure (Chang and

Chase 1996). One has to ensure that the two procedures are reasonably compatible.

5. Membrane units employed for MF or UF are modular. Hence, the device for the

proposed process containing adsorbents will also be modular. This will substantially

reduce the problem of scale up; more than one packed hollow fiber module may be

used in parallel operation to treat higher feed flow rates. Correspondingly, if steady
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state feeding of the fermentation broth is desired, a number of units may be used in

parallel so that at least one unit will always be in the filtration-cum-loading mode.

This is illustrated in Figure 4.24 for several example cases.

Figure 4.24a Schematic for continuous cyclic process using three integrated devices in
parallel. Loading time = Elution time = Re-equilibration time = One time unit

Figure 4.24b Schematic for continuous cyclic process using four integrated devices in
parallel. Loading time = 1/2 Elution time = Re-equilibration time = One time unit
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Figure 4.24c Schematic for continuous cyclic process using five integrated devices in
parallel. Loading time = 1/3 Elution time = Re-equilibration time = One time unit

From Figure 4.24, it can seen that depending on the specific requirements for a

process, i.e., different time needed for different stages of operation, a continuous cyclic

process for several modules in parallel can be carried out. For example, Figure 4.24a

describes a process having only three stages in each cycle, namely, loading, elution and

re-equilibration in which loading time = elution time = re-equilibration time = one time

unit. In this case, if one has three modules in parallel, there is always one module in the

loading mode, one module in the elution mode and the third one in re-equilibration mode.

In other words, all three operations (loading, elution and re-equilibration) are

continuously running from module to module without interruption until some specific

goals are achieved, e.g., the whole broth volume is treated. The process can be controlled

by an automatic program designed for the system. Similarly for the case in Figure 4.24b,

if loading time = —
1 

elution time = re-equilibration time = one time unit, 4 modules can
2
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be put in parallel to carry out a continuous process. There is always one module in four in

the loading stage, two modules in elution stage and the fourth one in re-equilibration

stage. For the case in Figure 4.24c, if loading time = —

1 
elution time = re-equilibration

3

time = one time unit, 5 modules can be put in parallel to carry out a continuous process.

This figure illustrates that no matter what kind of specific requirements on operation time

for different stages are needed for product purification, a continuous cyclic process can

be easily designed; further the scale-up of the process is also relatively easy and

convenient.

4.6. Adsorption Isotherm of the Model Proteins

Equilibrium adsorption experiments were carried out for proteins used most often in this

dissertation: Mb, a-LA and ß-LG. The experimental methods for equilibrium adsorption

have been described in Chapter 3. It was found that adsorption of Mb on DEAE

Sepharose Fast Flow beads could reach equilibrium within 15 minutes. Figure 4.25 shows

typical experimental results for the isotherm relationship between concentrations in the

liquid phase and the solid phase. Concentration in solid phase is calculated by eq 4.1:

Where Co is the initial protein concentration of liquid phase, q * and C * are equilibrium

concentrations for solid and liquid phases, respectively, and g is the void fraction

assumed for the bead bed settled in the graduated cylinder after 48 hours.
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Figure 4.25 Adsorption isotherm for Mb on DEAE Sepharose Fast Flow beads (pH 8.5)

If one assumes that Langmuir isotherm is valid, then

Where qm is the maximum adsorption capacity and Kd is the dissociation constant. This

equation can be written in the following double-reciprocal plot form (useful for the

experimental data obtained with the protein(s) at low concentration(s) (Mao and Hearn

1996)):
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Alternatively, a semireciprocal plot (provides more weight to the data obtained at higher

adsorbate concentrations (Mao and Hearn 1996)) can be developed:

Additionally, the Scatchard plot (nonlinear Scatchard plots are indicative for adsorption

away from Langmuir behavior (Mao and Hearn 1996)):

When the protein concentration in the liquid is low, a linear relationship can be used.

The analysis for isotherm of Mb adsorption on DEAE Sepharose Fast Flow beads

using eqs 4.4 and 4.5 is shown in Figure 4.26. Double reciprocal plot is not shown in

Figure 4.26 because it does not give the intercept value which provides the information

on qm . Results in Figure 4.26 show that the adsorption isotherm of Mb on the beads is

quite close to the Langmuir adsorption type. The maximum adsorption capacity of Mb on

DEAE Sepharose Fast Flow beads is 31.1 mg/ml according to Scatchard plot without

considering the void fraction 6. If Є  = 0.3 is considered, the maximum adsorption capacity

of Mb on the beads is 44.46 mg/ml according to the Scatchard plot.
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Figure 4.26 Scatchard plot and semireciprocal plot for the isotherm of Mb adsorption on
DEAE Sepharose Fast Flow beads using the data in Figure 4.25 without considering E

Results of the measurements of the adsorption isotherm of ß-LG on DEAE

Sepharose Fast Flow beads are shown in Figure 4.27. It took much longer time for the

adsorption of ß-LG on the beads to reach equilibrium. The experiment needed to be

continued overnight. Results shown in Figure 4.27 are a typical set of data from 24 hours

adsorption. Solid phase concentrations were calculated by eq 4.1. Figure 4.28 provides

the regression results using eqs 4.3, 4.4 and 4.5 showing that the adsorption equilibrium
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is essentially Langmuir type and the three methods yield very close values of q m which

from the Scatchard plot yields qm = 115 mg/ml. Similarly if the void fraction E = 0.3 is

considered, the maximum adsorption capacity of ß-LG adsorption on the beads is 164.2

mg/ml according to Scatchard plot.

Figure 4.27 Adsorption isotherm of ß-LG on DEAE Sepharose Fast Flow beads (pH 8.5)
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Figure 4.28 Analysis for the isotherm of ß-LG adsorption on DEAE Sepharose Fast Flow
beads using the data in Figure 4.27 without considering the void fraction s
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A similar approach was used for adsorption of a-LA on DEAE Sepharose Fast

Flow beads. The adsorption isotherm is shown in Figure 4.29. It took less than one hour

for the adsorption of a-LA on the beads to reach equilibrium. Solid phase concentrations

were calculated by eq 4.l. Figure 4.30 provides the regression results using eqs 4.3, 4.4

and 4.5; the figures show that by the method of Scatchard plot the adsorption equilibrium

deviates considerably from Langmuir type although the three methods give very close

values of qm  (qm = 76.6 mg/ml from the Scatchard plot). Similarly if Є = 0.3 is

considered, the maximum adsorption capacity of a-LA adsorption on the beads is 109.4

mg/ml according to the Scatchard plot.

Freundlich isotherm (eq 4.7) was also employed to describe the adsorption of a-

LA on the beads:

The result is shown in Figure 4.31 where Freundlich isotherm is used to describe a-LA

adsorption on the beads. If the first two sets of data in the low concentration range are

neglected, a linear relationship can be obtained for ln q * with ln C * . The value of K = 79.0

for the case without considering the void fraction e and K = 112.8 for the case assuming Є

= 0.3. These values are quite close to qm values from Langmuir type analysis. The

available capacity of DEAE Sepharose Fast Flow beads for a-LA is 100 mg/ml which

was determined under conditions using 50 mM Tris-HCl .at pH 8.3 (Amersham

Pharmacia Biotech 1995) (void fraction of the bed is not indicated in the information).
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Thus, the values of gm for a-LA obtained in this study are close to that indicated by the

manufacturer of the beads.

Figure 4.29 Adsorption isotherm of a-LA on DEAE Sepharose Fast Flow beads (pH 8.5)
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Figure 4.30 Analysis for the adsorption isotherm of a-LA on DEAE Sepharose Fast
Flow beads using the data in Figure 4.29 without considering the void fraction c



89

Figure 4.31 Freundlich isotherm relationship for a-LA adsorption on DEAE Sepharose
Fast Flow beads (pH 8.5)
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4.7. Concluding Remarks

This Chapter presented the experimental results of this research for different operations

using the integrated device: these include one cycle operation with different combinations

of loading and elution modes as well as cyclic operation of this process with clean feeds

or with a yeast suspension using tube-side elution (Table 4.4). Several binary protein

mixtures have been separated through these processes via this device. At this point,

mathematical descriptions are needed to help us further understand and efficiently use

this integrated process.

Table 4.4 Different combinations of the operating modes presented in this Chapter using
the integrated device

One cycle operation Cyclic operation
Shell-side loading

+
Shell-side elution

X

Shell-side loading
+

Tube-side elution
Tube-side loading

+
Shell-side elution

X

Tube-side loading
+

Tube-side elution
X X



CHAPTER 5

PRESSURE AND FLUX PROFILES IN THE INTEGRATED DEVICE

5.1 Introduction

Hollow fiber membranes are extensively employed in a variety of bioseparation

processes, e.g., ultrafiltration, microfiltration, reverse osmosis, etc. Adsorbents and

chromatographic resin beads are also widely used in downstream processing. In this

study, two hollow fiber ultrafiltration cartridges were packed on the shell side with

chromatographic resin beads. Such devices and the corresponding separation methods

integrate feed broth clarification by the microfiltration/ultrafiltration membrane with

bioproduct purification by the shell-side resin beads either as an adsorbent or as a

stationary phase in elution chromatography. The potential attractiveness of such

integrated bioseparation devices needs to be evaluated and compared against traditional

sequential processing. A first step in this direction involves the determination of pressure

and flux profiles in the integrated devices.

In this study, the flow patterns in tube-side elution-based processes are such that

any permeate, produced from the tube-side feed or eluent, flows out through the regular

shell-side permeate outlet (Figure 2.1). There is no Starling flow. On the other hand, the

flow pattern in Molinari et al. (1990) (Figure 5.1) is dominated by the highly restricted

flow through the shell-side permeate outlet during the solute loading stage which causes a

considerable amount of permeate to come back to the retentate stream; there is therefore

Starling flow to some extent. The flow situation in Molinari et al. (1990) is also quite

close to that in hollow-fiber bioreactors (HFBRs) in which mammalian cells are

immobilized on the shell side (the extracapillary space (ECS)) and the substrate-

91
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containing solution flows through the tube side. However, there is one difference,

namely, there is no permeate flow at all in HFBRs and there is pure Starling flow as

modeled by a number of investigators (Heath, Belfort, Hammer, Mirer, and Pimbley

1990; Taylor, Piret, and Bowen 1994; Patkar, Koska, Taylor, Bowen and Piret 1995;

Koska, Bowen and Piret 1997).

Figure 5.1 Configuration of the device containing membrane and adsorbent beads during
filtration-cum-loading in Molinari et al. (1990)

There are other engineering applications where beads are located on the shell side

of microporous hollow fiber module with the fluid phase introduced through the fiber

bore. For example, Pan and McMinis (1992) described a hollow-fiber adsorber (HFA)

that can be applied to adsorption processes. Minute adsorbent particles were held in either

the shell space or the fiber bore of the microporous hollow-fiber membranes, with the gas

stream flowing through the other side and maintaining good contact between the gas
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stream and the adsorbent. Separation occurs primarily by selective adsorption on the

adsorbents and not by selective permeation through the fiber wall. As mentioned in

Chapter 2, the HFA offers many attractive advantages such as low pressure drop;

reduction of particle attrition; choice of fine particles; uniform contact of gas with

adsorbents; use of fast PSA cycles to enhance the process capacity (Feng, Pan, McMinis,

Ivory and Ghosh 1998; Gilleskie, Parkar and Cussler 1995).

This Chapter is focused on developing pressure profiles and solvent flux profiles

in bead-filled hollow fiber microfiltration/ultrafiltration devices for different operational

modes. First, the operation modes for which the feed is flowing in the fiber bore and the

permeate goes out from the shell-side outlet will be discussed. Since some other types of

operations such as shell-side elution and backflushing were also performed in this

research, the operation modes for introducing the eluent (shell-side elution) or buffer (for

backflushing) from the shell-side inlet will be discussed at the end of this Chapter. Due to

the presence of the ES packed at the permeate outlet port on the shell side (Figures 2.1),

pressure profiles and solvent flux profiles will be developed and discussed for this

configuration as well.

5.2 Feed Introduced from the Fiber Bore

5.2.1 Theory

An analysis of the integrated device will be provided to develop quantitative estimates of

length-wise profiles of flow rates, fluxes and transmembrane pressures in the bead-filled

hollow fiber modules; emphasis will be placed on how these are interrelated for different

modes of operations of such devices. Only steady state operation is considered. The
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configurations of the devices are shown in Figures 2.l and 5.1. For the process of

filtration, the feed is assumed to be pure water so that the permeation velocity or volume

flux Jvz (m3/m2 .s) through the membrane at any axial location z is given by

Where A is the pure water membrane permeation parameter (m/Pa.s). The feed is flowing

in the tube side of the module; the local volumetric flow rate in tube side, QFZ (m3/s), is

such that

where No is the number of fibers inside the module and di is the I.D. of the fiber lumen.

The total mass balance for the flow distribution in the hollow fiber module at any

location z in the module is

where Qpz is the local volumetric permeate flow rate in the shell side and QFO is the

volumetric feed flow rate at the tube-side inlet (z = 0). Integrating eq 5.2, the following

expression for QFz is obtained:
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Here parameters A and B are assumed not to change along the module length. Therefore,

by differentiating eq 5.l and combining with eqs 5.11 and 5.12, one gets

and by differentiating eq 5.15 again, a second-order differential equation is obtained as

Equation 5.18a provides the local permeation flux profile in the module during filtration

operation. By substituting eq 5.18a into eq 5.11, and rearranging, one gets
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Equations 5.20a and 5.22a are the solutions for pressure profiles in tube side and shell

side respectively for known boundary conditions, namely, PFO, PPL and QFO•

Substituting eq 5.18a into eqs 5.4a and 5.4b, the flow rates in both sides can be

obtained via the following expressions:
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Equations 5.24a and 5.24b provide the flow rates at the end point of the tube side and the

shell side of the module during filtration. Total permeate collected at the permeate port

could be calculated by eq 5.24b. The average velocities at any location z in both sides

could be obtained by dividing eqs 5.23a and 5.23b by the cross-sectional areas of tube

side and shell side, respectively.

5.2.1.1 Constants Al and A2: To use the model, constants Al and A2 have to be

determined first based on the specific experimental conditions. This will be considered

under several categories.

Case 1: The permeate flows out through the bead-filled shell-side permeate outlet without

any restriction — conventional filtration

For this case, the feed flow rate (QFO), the feed inlet pressure (PFO) and the permeate exit

pressure (PFL) (which is the atmospheric pressure) are the known boundary conditions.

Expressions for Aland A2 which are given below can be obtained by solving the group of

eqs 5.18b, 5.18c, 5.20b and 5.22b:
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Substituting eqs 5.25 and 5.26 into eqs 5.20a, 5.22a, 5.23a, 5.23b and 5.18a, the pressure,

flow rate and flux profiles for a particular filtration-loading operation of a specific bead-

filled hollow fiber membrane module can be obtained.

Case 2: Permeate flow control

In this case, the permeate exit pressure PPL is unknown; however, the permeate flow rate

Qpi, has a fixed value. Feed flow rate (QFO) and feed inlet pressure (PFO) are the other

known boundary conditions. Solving eqs 5.18b, 5.18c, 5.20b, 5.22b, and 5.24b, one gets

Substituting eqs 5.25 and 5.27 into eqs 5.20a, 5.29, 5.23a, 5.23b and 5.18a, the pressure,

flow rate and flux profiles for a particular permeate flow control-based filtration-loading

operation (fixed QPL) of a specific bead-filled hollow fiber membrane module will be

obtained.
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There are two special cases in this category: (i) Starling flow without permeate

flow at all (QPL = 0) which is actually the case of HFBRs as stated in the Section 5.l - the

permeate side outlet is closed to achieve Starling flow only; and (ii) the tube-side elution

situation (QPL = QFO) which was studied extensively in the experimental part of this

dissertation. Expressions of Al for the two cases are, respectively,

However, the boundary condition for tube-side elution is different; instead of a known

tube-side feed pressure (PFO), the permeate exit pressure (PpL) which is atmospheric is

used. Therefore the shell-side pressure profile and shell-side inlet pressure (Ppo) can be

obtained by substituting eqs 5.25 and 5.30b into eq 5.22a and 5.22b. The corresponding

The pressure profile in the fiber lumen is obtained by the substitution of eqs 5.25, 5.30b

and 5.31 into eq 5.20a. Flux and flow rate distributions can be obtained by substituting

eqs 5.25, 5.30b into eqs 5.18a, 5.23a and 5.23b.

It is clear from above that the permeate flow rate could be controlled at a

particular point by varying appropriate parameters.

5.2.1.2 Applying the Model to a Module Having an Extended Section at the

Permeate Outlet: In the study of this dissertation, a short extended section (ES) is
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packed with resin particles at the permeate outlet port on the shell side (Figure 2.l and

Table 3.3). The particles are kept in place by a 21 gm polyester mesh. The solutions

obtained above need to be modified to include the effects of the ES on the module

operation.

In the case of the ES, if one neglects the outlet mesh resistance, PPL (at z = L) can

be related to the atmospheric pressure. Use Blake-Kozeny equation (Bird, Stewart and

Lightfoot 1960) for PE, the local pressure in the ES:

where uE is the superficial velocity in the ES bed (obtained by dividing the total permeate

flow rate by the cross-sectional area in the ES). Equation 5.32a can be rewritten as

follows:

where SE is the cross-sectional area of the ES. Integrate eq 5.32b from 0 to zE

corresponding to Pin, and PE:

This prescribes the pressure profile in the ES of the hollow fiber module. At z E = LE

(length of the ES), eq 5.33a leads to
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Since the same beads are used in the shell-side bed and the ES bed, one can assume that

all the characteristics of the shell-side bed and the extended bed are the same; therefore

combining eqs 5.14, 5.32c and 5.34a, one gets

Write eq 5.34b as follows

Here 4 is the ratio of the cross-sectional areas of the shell-side bed over the ES bed. In

one case studied in this dissertation, module 1 has an additional ES packed over the fixed

ES (Table 3.3). 13 / for the two ES can be obtained from the sum of B ps for the fixed ES

(I3/ 1 ) and the additional ES (3/2).

For the pressure and flux profiles of the filtration-loading operation in the module

with the extended section, constants Al and A2 should be obtained first. Here consider

only case 1 in Section 5.2.l.1 where all of the permeate flows out through the bead-filled

shell-side permeate outlet and none comes back to the reject solution leaving the fiber

bore exit. Substitution of eq 5.24b into eq 5.33b leads to
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A2 is not changed in this case (see eq 5.25).

Therefore one can substitute eqs 5.25 and 5.37 into eqs 5.20a, 5.22a, 5.23a, 5.23b

and 5.18a to get the pressure, flow rate and flux profiles for both shell side and tube side

of the module with an ES. Same boundary conditions are applied as for case 1 in Section

5.2.1.1. Eq 5.33a could be used to describe the pressure profile in the ES. Flow rate in the

ES is the total permeate flow rate QPL. The superficial velocity uE can be obtained by

dividing QPL by the cross-sectional area SE.

5.2.1.3 Estimation of the Parameters A and B: In order to use the equations describing

the pressure and flux profiles, two important parameters are needed: A, the membrane

permeation parameter and B, the composite parameter for the bed reflecting the size of

beads, void fraction, fiber number and dimensions, module housing size, and the fluid.

Since the beads packed on the shell side are on the side of membrane back support and

contact the porous backing, resistance is added to the convection of the fluid through the

porous backing of the membrane. Thus the permeation rate (via the observed parameter

A) is expected to decrease to some extent from that corresponding to the case of fibers-

only situation without beads. Even if the same beads were packed for the same type of

modules, the packing effect may be different (as will be seen later).
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To obtain the values of the parameters A and B, experiments need to be done at

particular values of the tube-side inlet pressure (PF0) and shell-side inlet pressure (Ppo).

For this problem, the relevant set of equations is as follows:

The boundary conditions (which can be experimentally measured) are:

The ES is considered here since a module having an ES was used to measure A

and B. A similar method can be used to determine these two parameters for a module

without an ES. Trial and error was used to get A and B. Starting from eq 5.12, one has

Substituting eq 5.38 into eq 5.11 leads to
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Integrate equation 5.40: PF varies from PH to PFL, z varies from 0 to L and Pp varies from

PPO to PPL. Rearrange and obtain:

An algorithm for programming based on the above equation group is given in

Figure 5.2. By following this procedure, a Qbasic program is written to get the values of

parameters A and B based on the experimentally measured data. For those modules

without an ES, 13/ = 0, PPL Patm; then parameters A and B can be obtained following the

same procedure in Figure 5.2.

5.2.2 Experimental Methods

The experimental setup is described in Figure 3.5. To determine parameters A and B for

the empty/bead-filled module, starting buffer was pumped through the fiber lumen at a

certain feed flow rate and tube-side feed pressure. The shell-side inlet pressure and the

permeate flow rate were measured during the filtration. The permeate port on the shell

side was open to the atmosphere. Other experiments were run in a similar manner.
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Figure 5.2 Program algorithm for determination of the parameters A and B

5.2.3 Results and Discussions

5.2.3.1 Parameters A and B for the Device: It was found experimentally that the

observed permeation rate parameter A was increased gradually with an increase of TMP

at the same feed flow rate QF0. A possible reason is that the increased TMP and the

increased flux pushes the beads further away from the porous support side of the
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membrane which actually decreases the extra resistance encountered by the solvent flow

due to the beads. For this calculation, the value of A was assumed to be constant along

the module length. Values of the lumped parameter B were however, reasonably constant

as a function of TMP for both modules which shows that the shell-side beds of both

modules were essentially unaffected by the range of fluxes studied. Changes of A and B

values with an increase in TMP are shown in Figure 5.3 for both modules 1 and 2 for an

ES of ID 0.70 cm and length l.7 cm at room temperature. Table 5.1 provides the

averaged values for A and B for the TMP range of 2.0 - 4.0 psig which was used for

loading in most of the experiments performed for this dissertation.

Table 5.1 Averaged A and B values and related information for modules 1 and 2 packed
with DEAE Sepharose Fast Flow Beads

A, m/Pa.s B, Pa.s/m3
Awithout beads

Void Fraction,
E

Awith beads

Module 1 l.857x10-1° 4.724x10" 3.27 0.325

Module 2 3.225x10-1° 3.003x1011 4.77 0.362

The length-averaged value of the permeation rate parameter A was reduced by

about 3.27 and 4.77 times for modules 1 and 2 respectively compared to those without

beads packed on the shell side (Table 3.2); this is to be expected. However, experiments

using proteins in feed solution interestingly indicate that the protein transmission rate was

increased due to the presence of the beads packed on the shell side (Table 4.2). Values of

B are different for the two modules as well. Void fractions for the shell-side beds can be

estimated from the B values by eq 5.14 to be 0.325 for module 1 and 0.362 for module 2.
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Figure 5.3 The effect of TMP on the parameters A and B. Average TMP = {(PFO + PFL) -
(PP0 +PPL)}/2

5.2.3.2 Simulations for Case 1- Conventional Filtration without any Restriction in

the Permeate Outlet: In the experiments carried out, due to the pumping limitations,

only 200-300 ml/min feed flow rate (QF0) was adopted; typically a feed inlet pressure of 7

psig was used. Figure 5.4 illustrates the simulation results for module 1 with the fixed ES

(Table 3.3) using the above conditions. Values of A and B in Table 5.1 for module 1 were

utilized. The solvent flux profile changes with the TMP profile. As the TMP increases,

the solvent flux increases. Similarly, Figure 5.5 shows such a result using values of A and

B in Table 5.l for module 2. Flux for module 2 is higher than that of module 1 as module
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2 has a higher A value, however, higher flux will cause higher shell-side pressure drop.

From these two cases, it can be seen that due to the low feed flow rate used, tube-side

pressure is essentially unchanged along the module length. Figure 5.6 shows a similar

simulation result for module 1 with both fixed ES and the additional ES (Table 3.3).

Comparing the results in Figures 5.4 and 5.6, lower flux and more uniform TMP are

obtained for that with two ESs. The simulation results for the above three cases are quite

close to the experimental data shown in Table 5.2.

Table 5.2 Comparison of the experimental data and the simulation results

QPL, ml/min PPO,psig PFL, psig
Experi-
mental

Calculated Experi-
mental

Calculated Experi-
mental

Calculated

Module
1 with

fixed ES
6.39 6.57 5.95 6.00 6.9 6.87

Module
1 with 2

ESs
5.08 5.34 6.00 6.18 6.9 6.87

Module
2 with

fixed ES
10 - 10.85 10.75

I
6.15 6.12 6.9 6.87

The experimental data shown in Table 5.2 are from the experiments for higher

protein concentrations (20 times, see Figure 4.23 and Table 4.3) and for the yeast

suspensions which are detailed in Chapter 4.
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Figure 5.4 Simulation of the profiles for pressure, flow rate and flux. A = 1.857 x 10 -1u
m/Pa.s, B = 4.724 x 10 11 Pa.s/m3 . Feed flow rate QFO = 250 ml/min. Feed inlet pressure
PFO = 7.0 psig. Module 1 (Table 3.2) with the fixed ES (Table 3.3).
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Figure 5.5 Simulation of the profiles for pressure, flow rate and flux. A = 3.225 x 10 -1°
m/Pa.s, B = 3.003 x 10 11 Pa.s/m3 . Feed flow rate QFO = 250 ml/min. Feed inlet pressure
PFO 7.0 psig. Module 2 (Table 3.2) with the fixed ES (Table 3.3).
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Figure 5.6 Simulation of the profiles for pressure, flow rate and flux. A = 1.857 x 10 -10
m/Pa.s, B = 4.724 x 10 11 Pa.s/m3 . Feed flow rate QFO = 250 ml/min. Feed inlet pressure
PFO = 7.0 psig. Module 1 (Table 3.2) with the fixed ES and the additional ES (Table 3.3).
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In order to describe the uniformity of the transmembrane pressure profile, here a

new parameter — uniformity factor a, is defined by eq 5.42.

The range of this parameter is 0-1: the lower the a, the more uniform the transmembrane

pressure profile. The values of the uniformity factor a for the simulation results in

Figures 5.4, 5.5 and 5.6 are 0.8062, 0.8270 and 0.8039 respectively, which show very

low uniformity of TMP profiles. The major reason for this is that the low feed flow rates

were adopted in these studies. If much higher feed flow rates, e.g., 5000 ml/min, are used,

the situation will be quite different. Figures 5.7 and 5.8 show such results for module 1

with and without the fixed ES using 5000 ml/min feed flow rate at a feed inlet pressure 7

psig. Comparing the two results in Figures 5.7 and 5.8, the transmembrane pressure

profile is less uniform along the module length but the flux is increased without an ES.

The values of a for the two cases are 0.4886 and 0.5864 respectively. This shows

agreement with the results in Figure 5.4 and 5.6: the longer the ES, the more uniform the

TMP and the lower the permeate flow rate. Further, by the comparison of the results in

Figures 5.4 and 5.7, it can be seen that increasing feed flow rate from 250 ml/min to 5000

ml/min does increase the TMP uniformity considerably based on a change of a from

0.8062 to 0.4886. The influence of the feed flow rate on TMP uniformity will be

discussed in detail later in this Section.
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Figure 5.7 Simulation of the profiles for pressure, flow rate and flux. A = 1.857 x 10 -10

m/Pa.s, B = 4.724 x 10 11 Pa.s/m3 . Feed flow rate QFO = 5000 ml/min. Feed inlet pressure
PFO = 7.0 psig. Module 1 (Table 3.2) with the fixed ES (Table 3.3).
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Figure 5.8 Simulation of the profiles for pressure, flow rate and flux. A = 1.857 x 10 4°
m/Pa.s, B = 4.724 x 10 11 Pa.s/m3 . Feed flow rate QFO = 5000 ml/min. Feed inlet pressure
PFO = 7.0 psig. Module 1 (Table 3.2) without the fixed ES (Table 3.3).
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Similar systematic simulations were carried out using different values of various

parameters influencing a. Figure 5.9 illustrates the effects of a change in A on the

permeate flow rate and the uniformity factor a when B value is 4.724 x 10 11 Pa.s/m3 for a

feed flow rate of 5000 ml/min at a feed inlet pressure of 7 psig. It was found that, as the

permeation rate parameter A is increased, the solvent flux is increased, the TMP and

TMP uniformity are decreased. This conclusion is consistent with that shown in Figures

5.4 and 5.5 but with different B values. The ES on the permeate port increases the TMP

uniformity but decreases the flux. Note that the values of the parameter A for OF

membranes are usually in the range of 10 -11 -10-9 m/Pa.s (Ho and Sirkar 1992).
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Figure 5.9 Effect of A value on the uniformity factor a and the permeate flow rate. B =
4.724 x 10 11 Pa.s/m3 . Feed flow rate QF0 = 5000 ml/min. Feed inlet pressure PH = 7.0
psig. Module 1 (Table 3.2) with and without the fixed ES (Table 3.3).

Figure 5.10 shows the effects of a change in B on the uniformity factor a and the

permeate flow rate when A value is 1.857 x 10-1° m/Pa.s using the same conditions as

above. Increasing B will decrease the TMP and the flux. However, it is very interesting to

see that there is a minimum in a with an increase of B in the lower range of Bs. This

implies that at a certain low value of B (say, B #), one can achieve the highest level of

uniformity in the TMP profile. The TMP nonuniformity increases on both sides of B # .

The a value for B close to 0 corresponds to the situation for the hollow fiber membrane

module without any beads packed on the shell side. One can conclude that filling beads
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on the shell side with B less than B # or larger than B # in a certain range can get more

uniform TMP profile with a different flux value. The effect of ES is also shown in Figure

5.10. The presence of an ES can shift the curve of a as a function of B to a higher value

of B# even though the starting a value remains the same corresponding to B being 0 i.e.

no beads packed on the shell side. At a certain value of B, say B c, same TMP uniformity

can be obtained for both with and without an ES but with a lower permeate flow rate for

the situation with an ES. The presence of an ES increases the TMP uniformity factor a

with B before B C and then decreases the TMP uniformity factor a after B c .

It can be expected that increasing the feed flow rate QFO will shift B# to a higher

value and change the curve shape to some extent. Figure 5.11 provides such a result using

the conditions as in Figure 5.10 but for a higher feed flow rate QFO of 7000 ml/min. In

this case, a for B = 0 is higher than that in the Figure 5.10, demonstrating that increasing

the feed flow rate actually decreases the TMP uniformity for the ordinary

ultra/microfiltration operations and this is more prominent especially when the feed flow

rate is higher. It can be seen that the effect of ES is considerable, it not only shifts the a

profile to the right side but also lowers a significantly leading to a more uniform TMP

profile at higher B values. The B values for the shell-side bed can be calculated by eq

5.14 if the particle diameter and void fraction s of the bed are known. Table 5.3 provides

some values of the ECS hydraulic conductivities (m 2) for the porous medium in HFBRs

and their corresponding B values for module l. These are typical values when the

cultures are approaching the end.
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Figure 5.10 Effect of B value on the uniformity factor a and the permeate flow rate. A =
l.857 x 10 0 m/Pa.s. Feed flow rate QF0 = 5000 ml/min. Feed inlet pressure PF0 = 7.0
psig. Module 1 (Table 3.2) with and without the fixed ES (Table 3.3).
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Figure 5.11 Effect of B value on the uniformity factor a and the permeate flow rate. A =
l.857 x 10 -10 m/Pa.s. Feed flow rate QF0 = 7000 ml/min. Feed inlet pressure PF0 = 7.0
psig. Module 1 (Table 3.2) with and without the fixed ES (Table 3.3).

Table 5.3 Representative B values from literature for cells and tissues in ECS of HFBRs

Porous media
in ECS

Hydraulic
conductivity (m2)

Source Corresponding B
(Pa.s/m) values for

module 1
Red blood cells 7x10-15~3xl0 -18 Zydney, Saltzman and

Colton 1986
1.08x10 15-2.52x10 18

Rat tissue 6.4xl0 -18~3lx10 -18 Swabb, Wei and
Gullion 1974

l.18x10 18~2.44x10 17

Tissue 1x10-18
Apelblat, Katzir-
Katchalsky and
Silberberg 1974

7.5528x10 18
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Figure 5.12 shows the influence of the feed flow rate QFO on a and the permeate

flow rate QPL using A = l.857 x 10 -10 m/Pa.s, B = 4.724 x 10 11 Pa.s/m3 and a feed inlet

pressure of 7 psig. One can see that QPL decreases monotonically with an increase of QFO .

Similarly, there is another minima type of behavior of a with an increase of QFO. This

means that at a certain QFO (QF0# ), one can achieve the highest level of uniformity in the

TMP profile. The TMP uniformity increases with QFO increase before QF0# , then

decreases after QFO# . Therefore choosing QFO in a certain range can get a more uniform

TMP profile. For example, as mentioned before, the TMP uniformity increases a lot (a

change from 0.8062 to 0.4886) due to the increase in feed flow rate from 250 ml/min to

5000 ml /min (compare the results in Figures 5.4 and 5.7). This is a case where QFO is less

than QFO . The effect of an ES is also shown in Figure 5.12. The presence of an ES can

shift the curve as well but when QFO is low, the values of a in the two cases remain close.

Similarly, the same level of uniformity of TMP can be obtained with and without an ES

at a certain value of QFO, say QF0c, but with a lower permeate flow rate for the situation

with an ES. Unlike the ES effect on a as a function of B value, ES increases the TMP

uniformity before QFOC and then decreases the TMP uniformity after QFOc •
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Figure 5.12 Effect of feed flow rate QFO on the uniformity factor a and the permeate flow
rate. A = 1.857 x 10-10 m/Pa.s. B = 4.724 x 10 11 Pa.s/m3 . Feed inlet pressure PF0 = 7.0
psig. Module 1 (Table 3.2) with and without the fixed ES (Table 3.3).

5.2.3.3 Simulation for Case 2 - Permeate Flow Control: No ES exists in the module in

this case since other applications did not utilize or need this extended section. However it

is not difficult to include ES in the simulation. Figure 5.13 provides the simulation results

for the case of a restricted permeate flow rate. The conditions are similar to those shown

in Figure 5.8, namely, 5000 ml/min feed flow rate at a feed inlet pressure 7 psig.

Permeate flow rate was restricted to 4 ml/min in this case. The TMP profile is more

uniform with the uniformity factor a being 0.3641 compared with that of 0.5864 in
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Figure 5.8 without the restriction of the permeate flow due to the lowered flux, which

reduces the pressure drop in the shell side bed. Figure 5.14 shows similar results but for

an even more restricted permeate flow rate of QPL = 1 ml/min. There is Starling flow to

some extent near the end of the module: the permeate comes back to the tube side. This

case is similar to that in the study by Molinari, et al. (1990). Figure 5.15 provides the

results of Starling flow only for similar operating conditions except there is no permeate

flow at all. The flow situation in the case corresponds to that in hollow-fiber perfusion

bioreactors (HFBRs). TMP profile is symmetrical along the module length; so is the flux

profile. Typical B values are provided in Table 5.3 for porous media on the shell side in

HFBRs. From these simulations, it can be concluded that using this model one can

control the permeate flow rate such that Starling flow is actually prevented.

Considering the tube-side elution situation used in this work, Figure 5.16 shows

the simulation results for an elution flow rate of 2.5 ml/min. The ES is supposed to be

present here. The calculated tube-side inlet pressure is 2.63 psi which is quite close to the

experimental values of 2.7 psi. Figure 5.16 also illustrates the pressure, flux and flow rate

profiles in the module. Flow rate profiles in both sides are symmetrical to each other.
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Figure 5.13 Simulation of the profiles for pressure, flow rate and flux for a fixed
permeate flow rate QPL= 4 ml/min. A = 1.857 x 10 0 m/Pa.s, B = 4.724 x 10 11 Pa.s/m3 .
Feed flow rate QFO = 5000 ml/min. Feed inlet pressure PFO + = 7.0 psig. Module 1 (Table
3.2) without the fixed ES (Table 3.3).
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Figure 5.14 Simulation of the profiles for pressure, flow rate and flux for some extent of
Starling flow (QPL = 1 ml/min). A = l.857 x 10 -10 m/Pa.s, B = 4.724 x 10 11 Pa.s/m3 . Feed
flow rate QFO = 5000 ml/min. Feed inlet pressure PFO + = 7.0 psig. Module 1 (Table 3.2)
without the fixed ES (Table 3.3).
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Figure 5.15 Simulation of the profiles for pressure, flow rate and flux with no permeate
flow rate (Starling flow). QPL = 0. A = 1.857 x 10-10 m/Pa.s, B = 4.724 x 1011 Pa.s/m3.
Feed flow rate QF0 = 5000 ml/min. Feed inlet pressure PF0 = 7.0 psig. Module 1 (Table
3.2) without the fixed ES (Table 3.3).
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Figure 5.16 Simulation of the profiles for pressure, flow rate and flux in tube-side
elution. A = 1.857 x 10 40 m/Pa.s, B = 4.724 x 10 11 Pa.s/m3 . Elution flow rate QF0 = 2.5
ml/min. Module 1 (Table 3.2) with the fixed ES (Table 3.3).
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5.3 Feed Introduced from the Shell-Side Inlet

Besides the descriptions of different operational modes using the integrated device for

which the feed is introduced from the tube-side inlet, there are some other situations such

as shell-side elution and backflushing (Figure 5.17). Some other researchers also use

shell-side inlet of a hollow fiber module as the feed port and tube-side outlet as the

permeate exit. Therefore it is necessary to develop a similar model describing this kind of

operational situations.

Figure 5.17 Schematic for the operation of shell-side elution (a) and backflushing (b)

5.3.1 Theory

An analysis similar to that in Section 5.2.l will be provided briefly in this Section. First a

general solution will be developed for the description of using shell-side inlet as the feed

port and tube-side outlet as the permeate exit. Then two special operations will be
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considered: (i) shell-side elution and (ii) backflushing. Quantitative estimates of

lengthwise profiles of flow rates, fluxes and transmembrane pressures will be developed.

Same set of symbols will be used to describe the behaviors at different positions in a

hollow fiber module except using subscript T for the tube side and subscript S for the

shell side (Figure 5.17). Correspondingly, the permeation velocity or volume flux Jvz

(Figure 5.17) through the membrane at any axial location z is given by

The local volumetric flow rate in the tube side QTz (m3/s) is described by

The total mass balance for the flow distribution in the hollow fiber module at any

location z in the module is

Qso is the volumetric feed (or eluent and buffer) flow rate at the shell-side inlet (z = 0).

Integrating eq 5.44, an expression for QTZ is obtained:

Combine with eq 5.45

The pressure drop inside each fiber is described by the Hagen-Poiseuille flow law:

where µF is the viscosity of the feed (or eluent, buffer), and Q s; is the volumetric flow rate

in a single fiber, which can be expressed by



Substitute eq 5.48 into eq 5.47

For pressure drop in the shell-side bed, Blake-Kozeny equation (Bird, Stewart and

Lightfoot 1960) for a packed bed is used:

Rewrite eqs 5.49 and 5.50 appropriately and get the following three governing equations:
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Here parameters A and B are assumed not to change along the module length. Therefore,

by differentiating eq 5.43 and combining with eqs 5.51 and 5.52, one obtains
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and by differentiating eq 5.55 again, a second-order differential equation is obtained as

follows:

The solution of eq 5.56 has the same form as that of eq 5.18a but with different

expressions of A1 and A2.

Equation 5.58a provides the local permeation flux profile in the module during shell-side

elution or backflushing. Substituting eq 5.58a into eq 5.51, and rearranging, one gets

Integrate from z = 0 to z

Substitute eq 5.58a into eq 5.52, and rearrange:



Integrating from z to L leads to

Equations 5.60a and 5.62a are the solutions for pressure profiles in tube side and shell

side respectively for known boundary conditions, namely, Qso, Pso and Pm (related to

atmospheric pressure). PT() in eq 5.60a can be obtained from Pso in eq 58b.

Substituting eq 5.58a into eqs 5.46a and 5.46b, the flow rates in both sides can be

obtained via the following expressions:
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Equations 5.64a and 5.64b provide the flow rates at the end point of the tube side and the

shell side of the module. The average velocities at any location z in both sides could be
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obtained by dividing eqs 5.63a and 5.63b by the cross-sectional areas of tube side and

shell side, respectively.

5.3.2 Constants Aland A2

Constants Al and A2 have to be determined first based on the specific experimental

conditions. This will be discussed under the following two categories.

Case 1: Shell-side elution (Qso = QSL)

For this case, the eluent flow rate from the shell-side inlet (Qso), the eluent exit flow rate

(QsL) and the shell-side exit pressure at z = L (PS L) (which is related to the atmospheric

pressure) are the known boundary conditions. Expressions for Al and A2 which are given

below can be obtained by solving the group of eqs 5.58b, 5.58c, 5.60b, 5.62b and 5.64b:

Because of the presence of the ES, the relationship in eq 5.33b can be used to relate PSL

to the atmospheric pressure

Substituting eqs 5.65, 5.66 and 5.67 into eqs 5.62a and 5.62b, the pressure profile in the

shell side of the module and Pso can be obtained. Substituting Pso into eq 5.58b, PR) has

the following expression:
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Substituting eqs 5.65, 5.66 and 5.68 into eq 5.60a, pressure profile in the tube side of the

module can be obtained. Profiles of flow rates can be developed by substitution of eqs

5.65 and 5.66 into eqs 5.63a and 5.63b. Velocity profiles can be obtained by dividing the

flow rates by the cross-sectional areas of shell side and tube side, respectively.

Case 2: Backflushing

Two kinds of problems will be discussed. (i) Only part of the feed goes out from the tube-

side outlet; the rest goes out from the shell-side exit. (ii) All the feed goes out from the

tube-side exit (Qn,=-Qso)•

For the first kind of problem, the related group of equations is eqs 5.58b, 5.58c,

5.60b, 5.62b, 5.64a and 5.67 by considering the ES. Known conditions are Psi, (which is

related to the atmospheric pressure), Qso and QTL=l/n Qso and n>l. Six unknowns,

namely, Q SL, PSO, PTO, PTL,Al, A2can be obtained by solving the above group of

equations. Expressions of A l and A2 (same as that for shell-side elution) are following:

Procedures similar to those used for solving the shell-side elution problem can be

followed to get the profiles of flow rates, pressures and flux.

For the second kind of problem, same group of equations is related by considering

the ES and the boundary conditions are PTL (which is the atmospheric pressure), Qso and

with n = 1 instead of n > 1 for QTL=1/n Qso. In this case, the expression for A l becomes
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and that for A2 remains unchanged. The problem can be solved following the same

procedure. Therefore problem (ii) is just a special case for problem (i). In fact, shell-side

elution is also a special case for problem (i) with QTL = 0 (n= oo for QTL=l/n Qso). If there

is no ES at the shell-side outlet, just set 13 /=0 by using above solutions.

5.3.3 Results and Discussions

5.3.3.1 Simulation Results for Shell-Side Elution: For the shell -side elution

configuration used in this dissertation, Figure 5.18 shows the simulation results for an

elution flow rate of 2.5 ml/min for module 1 having a fixed ES. Here A = 1.857 x 10-10

m/Pa.s and B = 4.724 x 10 11 Pa.s/m3 are used. The calculated shell-side inlet pressure is

3.27 psi which is close to the experimental values of 3.5-3.6 psi. Figure 5.18 also

illustrates the pressure, flux and flow rate profiles in the module. Both TMP and flux

profiles are symmetrical along the module length; there is Starling flow in this case. From

the flow rate profiles, one can directly observe the change of eluent flow rate along the

module length; some of the eluent goes into the tube side from the upper part of the

module and comes back to the shell side at the bottom of the module.
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Figure 5.18 Simulation of the profiles for pressure, flow rate and flux in shell-side
elution. A = l.857 x 10 -10 m/Pa.s, B = 4.724 x 10 11 Pa.s/m3 . Elution flow rate Qs0 = 2.5
ml/min. Module 1 (Table 3.2) with the fixed ES (Table 3.3).
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5.3.3.2 Simulation Results for Backflushing: For backflushing used to clean the

module, the configuration where the tube-side outlet is open and the shell-side outlet is

closed will be simulated. Figure 5.19 provides the results for a backflushing flow rate of

5 ml/min. The buffer entered from the shell-side inlet and goes out from the tube-side

outlet. The flow rates in the shell side and the tube side are symmetrical to each other.

Results of simulations for the other situation discussed before, namely, the

situation where flow rate control is used to keep the tube-side outlet flow rate at a fixed

value (QTL = 1/n Qso, n>l and n ≠ ∞), are provided in Figure 5.20 using the same

conditions as above but with QTL = 4.0 ml/min (n=5/4). Both TMP and flux become

negative at the bottom of the module (Starling flow). Flow rate profiles in both sides are

symmetrical to each other.
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Figure 5.19 Simulation of the profiles for pressure, flow rate and flux in backflushing
with tube-side outlet open and shell-side outlet closed. A = 1.857 x 10 40 m/Pa.s, B =
4.724 x 10 11 Pa.s/m3 . Backflushing flow rate Qso = 5.0 ml/min. Module 1 (Table 3.2)
with the fixed ES (Table 3.3).
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Figure 5.20 Simulation of the profiles for pressure, flow rate and flux in backflushing for
fixed QTL = 4.0 ml/min by using Qso = 5.0 ml/min, A = 1.857 x 10 4° m/Pa.s, B = 4.724 x
10 11 Pa.s/m3 . Module 1 (Table 3.2) with the fixed ES (Table 3.3).
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5.4. Concluding Remarks

The model discussed in this Chapter can be applied to different operating modes of a

bead-filled UF/MF hollow fiber membrane module. Pressure and flux profiles for

different operating modes are predicted by the model for appropriate boundary

conditions. Parameters A and B which are specific for a particular membrane module can

be easily determined by the method proposed here. A parametric study of the uniformity

of TMP shows that this model can provide a good tool for process design directed to

achieving improved operation for diverse applications. Other operational modes such as

backflushing and shell-side elution can also be described following a similar procedure.

For all problems discussed in this Chapter, one can observe that as long as one knows the

appropriate boundary conditions, the unknowns can be obtained by solving the related

group of equations. The model discussed in this Chapter can be used as the basis for

developing a more complicated model to describe the chromatographic behaviors for the

integrated device. Those applications employing similar device configurations may also

employ the model developed here to predict the pressure and flux profiles to facilitate the

design of the process and the operating conditions.



CHAPTER 6

PRELIMINARY MODELING STUDY FOR THE DESCRIPTION OF LOADING
AND ELUTION BEHAVIORS IN THE INTEGRATED DEVICE

6.1 Preliminary Remarks

In the development of a chromatographic system for bioseparation, it is important to

design an efficient system having minimum capital and operating cost and maximum

throughput. To better understand, optimize and scale up the process, the process should

be accurately modeled (Subramanian 1998b). The production rate of conventional OF or

MF membrane module is generally likely to be different from that of a chromatographic

column. It is desirable to have each part of the device - membranes and the packed bed

operated close to their designed capacities. This may require a somewhat special design

of the hollow fiber modules, perhaps with fewer fibers in a given shell volume. Therefore

it is important to develop a mathematical model for the cyclic filtration-loading-elution

based chromatographic purification of a binary protein mixture in the bead-filled hollow

fiber membrane device. One would like to know from the solution of the governing

equations what should be the duration of the feeding step for a given feed flow rate and

feed concentration without having much protein breakthrough at the permeate exit. One

would also like to know during the elution step the retention time and the band height and

width of each product peak, in fact, the complete peak profile. To achieve this objective,

here a clean cell-free feed is assumed. Further, an ultrafiltration membrane is used. The

main part of this Chapter will develop a mathematical model for the description of

concentration profiles in both liquid and solid phases on the shell-side bed as well as the

breakthrough curve at the permeate exit in the loading step and present the simulation

141



142

results. The preliminary description for the elution behaviors by a modified model will be

provided briefly at the end of this Chapter.

6.2 Assumptions Used in the Model

In the development of the model proposed here, two basic assumptions are made:

1) Steady state ultrafiltration behavior with a bead-filled shell side is employed to model

the time-dependent protein breakthrough behavior on the shell side during the loading

step;

2) The "free-surface model" of Happel (1959) is employed so that one can model the

whole device of N0 fibers as a collection of individual fibers each having associated with

it a given shell-side volume with no interaction between the corresponding volumes of

the adjacent fibers (Gill 1973; Karoor 1993) (Figure 6.l).

Additional assumptions are:

3) Extent of concentration polarization is limited for the dilute feed solutions and

permeable proteins;

4) No axial (z-direction) dispersion on the tube-side;

5) Liquid in plug flow on the shell side;

6) Constant rejection R1 / of an individual protein species i along the fiber length;

7) The behavior for each species may be modeled independently.

8) Local equilibrium exists between Cip and Cis where Cip is the mobile phase protein

concentration and C is is the lumped protein concentration on the stationary phase.

9) Constant feed concentration, no retentate recycle.
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10) The osmotic pressures on both sides of the membrane will be neglected since the

protein concentration in the feed is low. Solutions from Chapter 5 for the profiles of the

axial velocities and pressures on both the feed side and the permeate side will be utilized.

11) Extended section at the permeate exit will not be considered in this Chapter.

Figure 6.1 Schematic of the unit cell around any hollow fiber surrounded by a "free
surface" in the cell model

6.3 Equivalent Radius of Free Surface

To determine the equivalent radius of free surface, it is considered that the relative

volume of adsorbents surrounding a single fiber is the same as the relative volume of the

total adsorbents surrounding all hollow fibers in the module (Happel 1959). Therefore,

one has
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where C ipz and Cift are the local concentrations of species i in the permeate and the feed

on the opposite sides of the fiber wall. In fact, Ri" is a function of feed and permeate

concentrations, TMP and the membrane characteristics, e.g. permeation parameter, A,

etc. In the present work, Ri" is assumed to be a constant when feed concentration Cif0 and

TMP are fixed. Then
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where QFZ can be calculated by eq 5.23a. QFO and Cis are known boundary conditions.

When Ri/ = 1, nothing can pass through the membrane pores, total amount of species i

will not change along the membrane length and it gets concentrated.

When Ri' = 0, the membrane has no rejection for the solute, therefore feed side

concentration is not going to change, therefore one has:
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6.5 Mass Balance of Species i in the Permeate on the Shell Side

Unlike the situation in traditional chromatography column, the process studied in the

integrated device is different. First, the velocity along the module length is not constant

due to the presence of a permeation-based flux. Secondly, in the shell-side bed, there are

biomolecules coming from upstream of the chromatographic column as well as

biomolecules coming from the tube side of the cartridge (Figure 6.2).

Figure 6.2 Schematic of the species flow pattern in the shell-side bed of the integrated
device by using free surface model

To develop the governing equation for mass balance in the shell-side bed, the

column is modeled as an one-dimensional system with the void fraction being constant

throughout the bed. Here an elemental length of Az is analyzed (Figure 6.2). Besides the

axial convection and dispersion terms, there is an extra source coming from the tube side

with the permeate flux (Eq 6.5). Therefore the mass balance in the Az section is

following:
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where Dieffis the effective axial dispersion coefficient of species i. SF is the cross-

sectional area outside a hollow fiber in one unit cell by applying the "free surface model",

and

The basic difference between equation 6.19 and the conventional

chromatographic/packed bed models lies in the extra source term on the right hand side

and a z-dependent axial superficial velocity u p through the bed (shell side). From eq 5.9a,

one gets:
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6.6 Estimation of the Parameters

Due to the porous backing of the membrane, the "dispersion model" (Levenspiel 1972)

for determining c and the axial dispersion coefficient D ieff  in the traditional column could

not be used here. However, the bed void fraction c can be estimated by Kozeny-Blake

equation (Bird, Stewart and Lightfoot 1960) for a packed bed from the B values

determined from experimental data. Results are provided in Table 5.1. For the estimation

of Diem Yamamoto (1983a and 1983b) found that Dieff /11i is constant regardless of flow

rate and the type of gel particles and solutes, and is a unique function of the particle size

of gel. Here ui is the interstitial velocity in the packed bed. So Dieff /u i would remain

constant despite any change in ionic strength. Luo and Hsu (1997) obtained the Dieff for

DEAE Sepharose CL-6B ion exchanger to be 0.235 cm 2/min (3.917 x 104 m2/s). The

experimental conditions in Luo and Hsu are shown in Table 6.l. The value of Dieff is

7.83 x 104m for the beads used in their study. The resin bead employed in this study is

DEAE Sepharose Fast Flow media which has the same size distribution as that of DEAE

Sepharose CL-6B ion exchanger. Therefore it can be assumed that the ratio of Dieff /uip in

this study is equal to that of Luo and Hsu (1997), i.e., 7.83 x 10 4 m (Table 6.1); therefore

the following equation can be adopted:
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Other empirical correlations for dispersion coefficient are given by Chung and Wen

(1968), Gunn (1987), Hejimanek and Schneider (1993) and Koch and Brady (1985).

Table 6.1 Experimental conditions in Luo and Hsu (1997)

For the adsorption process, the solvent is not adsorbed. Therefore the mass

balance of the mobile phase is not considered here. The adsorption kinetics are assumed

to be very fast and can be represented by an equilibrium isotherm. This is close to the real

situations for Mb and a-LA. It takes less than 15 min and one hour for the adsorption of

Mb and a- LA to achieve equilibrium. Further linear isotherm is assumed because the

protein concentration in the liquid phase of the shell-side bed is low. According to eq 4.6

The solute rejection, Ri", assumed to be constant along the length although TMP

may not be constant. Estimation of Ri 's from the experimental data is made in the
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following way. Use the method in Table 4.2 to get the ratio of (permeate

concentration)/(feed concentration) first, then use eq 6.3 to obtain an estimate of Cm

is used instead of Cifz since the module length (0.254 m) is not long. Results are shown in

Table 6.2. Average values are taken for the cyclic processes.

Table 6.2 Estimated from the experimental data

The results in the above table are estimated from the experiments with the fixed

ES (Table 3.3); the ES has the function of capturing biomolecules exiting from the

permeate outlet. So it is expected that the actual value of Ri / is somewhat higher than

those in Table 6.2. This will be adjusted in the simulations.

6.7 Boundary Conditions and Initial Conditions

The boundary conditions for equations 6.12 and 6.21 are as follows:
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For the shell-side bed, Danckwerts boundary conditions (Danckwerts 1953) are employed

by assuming that the mass transport outside the column is caused by convection only.

Therefore,

However the shell-side bed is unlike the traditional chromatographic column, there is no

flow in z-direction at z = 0, which is u iP |z=0 ; therefore, eq 6.26a becomes

At the permeate exit, the concentration in the liquid phase will not change after the

solvent leaves the shell-side outlet, thus one can write:

6.8 Solution Procedure

There are a variety of methods such as finite difference, orthogonal collocation and

method of lines available for the numerical solution of PDEs in time and spatial

dimensions. The technique of method of lines is adopted here. In this method, only the
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spatial gradients are discretized by finite difference equations thus reducing the system of

PDEs to a coupled system of ODEs in the time domain (Brian, Zwiebel and Artigue

1987)

Following Brian et al. (1987), the effective chromatographic column length on the

shell-side bed in the axial direction has been discretized into NB points as shown in

Figure 6.3. Equation 6.21 can be transformed to NB ordinary differential equations in the

time domain by the following procedure.

Figure 6.3 Axial grid for finite difference approximation of the spatial derivatives.

First, Dieff is assumed to be a constant throughout the column corresponding to the

average velocity in the shell-side bed. With the previous assumption of linear isotherm

between the liquid phase and the solid phase, Eq 6.21 can be written as:
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QPz, Jvz and Cifz can be calculated by eqs 5.23b, 5.18a and 6.12, respectively. Therefore

eq. 6.29b can be written as

Now the finite difference formulas for the liquid phase on the shell-side bed are as

follows:

For m = 0, five point forward differences lead to

For m = 1 through NB, three point central differences are used for the second order term

and upwind differences are used for the convective term; therefore

and

From the finite difference formulas shown above, eq 6.31 can be rewritten at each

axial location m, 1 m NB, as follows

For m = 1, the partial differential equation in finite difference form becomes
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difference approximation of this boundary condition leads to the following unstable

condition, if central difference formula is used

However, the protein concentration in the liquid phase does not change after point NB,

therefore it is assumed that

The equations to be solved are summarized in Table 6.3.



Table 6.3 Summary of ODEs for liquid phase on the shell-side bed
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The resulting ordinary differential equations in time domain for the shell-side bed

have been solved using IMSL subroutine, IVPRK; the program was run in the mainframe

computer, VAX/VMS environment. The computer code was written in Fortran 77. The

liquid phase protein concentration in each differential section was obtained from the

solution of the ODEs mentioned above. The adsorbed amount of protein in each section

was then calculated using the equilibrium constant and the solid phase volume of the

differential section.
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6.9 Results and Discussions

6.9.1 Effects of Axial Dispersion

As shown in eq 6.22, the axial dispersion coefficient changes with the change of velocity.

In the ordinary differential equations developed above, it is assumed that D ieff is a

constant. Figure 6.4 shows the effects of different D ieff on the breakthrough curve of Mb.

The parameters used in the simulation are shown in Table 6.4. The module dimensions

are provided in Table 3.2. No ES is considered here.

Figure 6.4 Effect of Dieff on the simulation result for the breakthrough curve of Mb
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Table 6.4 Parameters utilized in the simulation of Figure 6.4

Feed flow rate QFO, ml/min 200

Feed Inlet pressure PFO, psi 7.0

Linear equilibrium coefficient, KMb 43.43

Feed inlet concentration Cm, mg/ml 0.568

Rejection factor R1 / 0.6

Void fraction e 0.325

A, m/Pa.s 1.857 x 10-1°

B, Pa.s/m3 4.724 x 10 11

Permeate exit pressure Atmospheric pressure

Loading time, min 360

Axial dispersion coefficient, Dieff, m2/s 0 and 1 x 104

In Figure 6.4, the solid line shows the breakthrough curve for the ideal case which

has no axial dispersion. The dashed line provides the breakthrough curve for the situation

which has considerable axial dispersion (Dieff = 1 x 104 m2/s). It is seen that the effect of

axial dispersion is not very important for the breakthrough behavior. The total adsorbed

amounts of the protein are quite similar for both cases for six hours' loading. It is obvious

that the ES will reduce the breakthrough to some extent. Figure 6.5 shows the

concentration profiles in both tube and shell sides under the same conditions as those in

Table 6.4 except that the loading time is 15 minutes. There is little difference between the

two cases having no axial dispersion and having considerable axial dispersion. Therefore

the assumption for the constant D ieff is reasonable for the prediction of loading and

breakthrough behaviors. In the following simulations, D iefffor average mobile phase

velocity in the shell-side bed will be adopted by calculation from eq 6.22.
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Figure 6.5 Effect of the axial dispersion on the simulation for concentration profiles in
both tube and shell sides

6.9.2 Comparison of the Simulation and the Experimental Results

Simulations for loading behaviors using feed concentration of 0.568 mg/ml for Mb are

shown in Figure 6.6. All the parameters in Table 6.4 were used except R1", loading time

and Dieff. The conditions selected were those in the experiment of higher feed protein

concentrations with only a fixed ES using module 1 (Figure 4.23, solid line and Table
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4.3). Loading time was 15 minutes in the experiment. Ri / was assumed to be 0.625. D ieff

was calculated by eq 6.22 by using the average superficial velocity u p (which is

In the simulation, a constant feed concentration was used as the boundary

condition (eq. 6.25). From Figure 6.6, it can be seen that the tube-side concentration is

increased along the module length due to a partial rejection of the protein by the

membrane and its profile does not change with an increase in loading time. In the

experiment actually conducted, the retentate was recycled. In addition, no ES was

considered in the simulation. Therefore the adsorbed amount of protein should be less

than the experimentally recovered amount of protein if it is assumed that all of the protein

can be recovered by elution. The total adsorbed amount of Mb is 23.25 mg from the

simulation which is somewhat less than the experimental value, which was 24.1 mg. At

the permeate exit, Mb concentrations from simulation are 7.3 - 74.6 µg/ml corresponding

to the loading time of 1 — 15 minutes. The optical absorbance reading at 280 nm was

0.002 (Table 4.3) for the total permeate of 89.3 ml. If it is assumed that all of the

"leaking" protein was Mb, this absorbance reading is equivalent to 1.064 µg/ml by using

eq 3.3 which is equivalent to the total amount of Mb in the permeate being 95 pig. At this

point, one can conclude that adding the ES at the permeate exit can reduce the

breakthrough and increase the yield. The corresponding pressure, flux and flow rate

profiles are shown in Figure 6.7. It is seen that with the increase of TMP along the
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module length, the flux increases and the concentrations on the shell-side bed increase. It

can be expected that a uniform TMP profile will produce a more uniform loading

concentration profile on the shell-side bed.

Figure 6.6 Simulation results for a feed concentration of 0.568 mg/ml for Mb on
concentration profiles and breakthrough curve
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Figure 6.7 Simulation of the profiles for pressure, flow rate and flux. A = 1.857 x 10 -1°
m/Pa.s, B = 4.724 x 10 11 Pa.s/m3 . Feed flow rate QFO = 200 ml/min. Feed inlet pressure
PFO = 7.0 psig. Module 1 (Table 3.2) without ES.
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Similarly, adsorption of a-LA was also simulated as shown in Figure 6.8. Here

the following values were adopted: Ri/ =0.92; KLA=31099; feed concentration Co = 522

µg/ml. Other parameters utilized here were same as those for Mb simulation in Figure

6.6. Tube-side concentration increases along the module length and does not change with

the loading time. Concentration profiles for both liquid and solid phases on the shell-side

bed change with a change of the TMP and flux. The total amount of adsorbed protein

from simulation is 5.78 mg; the recovered amount from the experiment was 5.8 mg. The

concentration in the liquid phase is quite low due to the high value of KLA = 31099. So

are the concentrations at the permeate exit. Much more amount of protein is adsorbed on

the beads due to the higher value of KLA. Breakthrough concentrations were also reduced

considerably and it can be assumed that there was no "leaks" at the permeate exit.
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Figure 6.8 Simulation results for a feed concentration of 0.522 mg/ml for a-LA on
concentration profiles and breakthrough curve
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Similar simulations have been done for lower feed concentrations. Profiles are not

shown here but the results are provided in Table 6.5. The same set of Ri/s used in the

above simulations are adopted for module 1. Total adsorbed amounts of proteins from the

simulation are more than the experimentally recovered amounts of proteins when feed

concentrations are in the range of 30 µg/ml. A possible reason is that the driving force in

mass transfer increases when the feed concentration increases, the beads on the shell side

can quickly adsorb the protein molecules passing through the membrane pores within the

capacity of the beads and leave a very low liquid phase concentration for either low or

high feed concentration. The lower is the feed concentration, the lower is the mass

transfer driving force. Therefore the value of R1 / may vary.

Appropriate Ri's are assumed for the simulation for module 2. Results are also

provided in Table 6.5. Module 2 has a higher pure water permeation rate (Table 3.2 and

Table 5.1). This may cause lower Ri 's compared to those of module 1.

Table 6.5 Comparison of the experimental data and the simulation results
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6.9.3 Effect of the Water Permeation Parameter A

Figure 6.9 shows the effects of the parameter A on the total amount of protein adsorbed

and the breakthrough curve. Parameters utilized in the simulation are the same as those in

Table 6.4 except A was varied.

Figure 6.9 Effect of parameter A on the breakthrough curve and adsorbed amount of
protein. piety = 0 m2/s. R; =0.6
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From Figure 6.9, it is seen that the higher the value of A, the earlier the

breakthrough since more protein molecules pass through the membrane pores with the

higher solvent flux. However, the total adsorbed amount of protein first increases with

the increase of A and then decreases slowly after a certain value of A. Higher permeation

rate brings in higher solvent flux as well as solute flux which leads to more adsorbed

biomolecules on the beads. But, an even the higher solvent flux increases the pressure

drop on the shell-side bed which reduces the TMP, correspondingly, the solvent flux and

solute flux will decrease which can reduce the amount of protein adsorbed on the beads.

6.9.4 Effect of the Feed Flow Rate

The effect of the feed flow rate was also studied. Comparison is provided in Figure 6.10.

For a feed flow rate of 2000 ml/min, more uniform tube-side concentration profile can be

obtained compared to that of 200 ml/min feed flow rate although the amount of adsorbed

protein decreases about 7% due to higher pressure drop in the tube side which lowers the

TMP. Concentrations at the permeate exit are reduced due to the same reason. Lower

TMP decreases the solvent and solute fluxes. However, a higher feed flow rate can offer

higher wall shear rate on the membrane surfaces which can reduce gel layer formation

and improve the flux. Also an increased feed flow rate in a certain range can increase the

uniformity of the TMP profile (Figure 5.12). Therefore one can improve the feed flow

rate within the biomolecule's shear tolerance as long as the pressure drop in the tube side

is not excessive.
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Figure 6.10 Effect of feed flow rate on the breakthrough curve and concentration profiles
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6.10 Preliminary Study of the Tube-Side Elution

The physical situation in the tube-side elution is similar to that in the loading operation

except no biomolecules are introduced from the tube side to the shell-side bed. Therefore

eq 6.15 becomes

This is the equation for the traditional chromatographic/packed bed. However,

there is one difference — unlike regular columns, u p varies here along the length. It is

assumed here that the equilibrium is instantly established when the eluent is introduced

from the tube side to the shell-side bed. For the stepwise elution utilized for the

separation of the binary mixture in this dissertation, it is also assumed that the lower

NaCl concentration (e.g. 0.05 M NaCl) in the starting buffer can not elute the

difficult-to-elute protein from the beads (e.g. α-LA, ß-LG and BSA). The same procedure can be

used to solve eq 6.43 except for a different initial condition for Cip. The concentration

profiles on the shell-side bed at the end of the loading step obtained from the previous

program can be used as the initial condition in each Az section for the elution simulation.

A Fortran 77 program was written by modifying the previous program for the loading

step calculation.

Results for the separation of the binary mixture of Mb and a-LA using stepwise

change elution method (0.05 M NaCl to 0.5 M NaCl) are provided in Figure 6.11. The
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experimental data of 2.5 min fraction concentrations from the experiment (see Figure

4.23) are also shown in the Figure. Initial condition was from the previous loading

simulation for Mb and a-LA (see Figures 6.6 and 6.8). Parameters utilized here were

flow rate of 2.5 ml/min was used and there was no protein present in the eluent. PH is not

a boundary condition for the simulation (see Chapter 5, tube-side elution part in Section

5.2.1). Dieff was calculated by eq 6.22 by using the average superficial velocity up (which

Both equilibrium constants KMb and KLA were assumed to be 0.1 based on over

90% recovery of proteins from the beads by using 0.05 M and 0.5 M NaCl in the starting

buffer as the eluent to elute these two components from the shell-side bed. Fifty minutes

were used as the elution times for the two proteins.

For a coarse estimation of the retention time for a given protein, three factors need

to be considered. First, a small length of tubing was connected to each of the feed inlet

and the permeate exit ports. The inside volume of the tubing was about 7.0 ml for the one

connected to the permeate exit and was about 10.9 ml for the one connected to the feed

inlet. The times needed to replace the fluid in the feed inlet and the permeate port tubing

elution flow rate of 2.5 ml/min. Secondly, the time needed to replace tube-side fluid can
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be estimated by dividing the tube-side volume (can be calculated by module dimension

from Table 3.2) by the average flow rate in the tube-side which is about

the time needed to replace the fluid in the shell-side bed and the ES bed. A rough

estimation for the average time needed to replace the fluid in the shell-side bed and the

ES bed is made as follows:

For Mb elution performed in the experiment shown in Figure 6.11, the fluid in the feed

inlet tubing and the tube side was replaced before the elution was initiated. Therefore the

total estimated retention time needed in addition for Mb is 8.1 minutes. The

corresponding additional total retention time estimated for a-LA is 20.0 min. If these

retention times are added to the calculated values and plotted in Figure 6.11, the predicted

retention times appear to be quite close to the experimental retention times. The

difference between the estimated and experimental retention time for a-LA may be

caused by the presence of the lower ionic strength eluent in the bed before the higher

ionic strength eluent was introduced.

It is seen from Figure 6.11 that both liquid and solid phase concentrations are

quite low for the two proteins. However, the elution profiles from the simulations deviate

somewhat from the experimental data shown in the Figure 6.11. The possible reasons are:

(1) the desorption by the eluent did not reach equilibrium instantly; there were some
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resistances such as film mass transfer, pore diffusion and adsorption kinetics presented in

the process which were not considered in the simulation; (2) the concentration of the

eluent did not instantly reach its original concentration in the entire shell-side bed;

therefore concentration gradient was present in the column: this also makes the

assumption for instant equilibrium not valid; (3) assumption for value of K = 0.1 is not

accurate; (4) the protein adsorbed on the ES bed was not considered. One can conclude

that the mass balance of eluent in the column should be considered for a more accurate

description in the future study. The adsorption equilibrium at different NaCl

concentrations in the starting buffer should also be obtained experimentally for the proper

simulation of the elution behaviors. However, it is seen in Figure 6.11 that the model can

predict the sharp front and tailing to some extent in the elution. The peak shape of a-LA

from the simulation is quite similar to that from the experiment.
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Figure 6.11 Simulation for concentration profiles on the shell-side bed and elution
profiles for Mb and a-LA in tube-side elution and comparison with the experimental data
(Figure 4.23)
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6.11 Concluding Remarks

In this Chapter, a preliminary study has been carried out to develop a mathematical

model for the prediction of the chromatographic behavior of the integrated device.

Numerical solutions have been obtained for several typical cases by solving the

governing equations using the Method of Lines. The model can reasonably describe the

concentration profiles and breakthrough behavior in the loading step. From the simulation

study, one can conclude that (1) the axial dispersion is not important for the loading

behavior in the integrated device; (2) the higher is the feed concentration, the higher is

the mass transfer driving force, the lower is the solute rejection by the membrane, the

more protein is loaded by the shell-side bed; (3) effect of the permeation parameter of the

membrane on loading is complex: the higher is the A, the quicker is the breakthrough; the

amount of protein adsorbed changes with an increase of A, first it increases and then it

slowly decreases; (4) a higher feed flow rate benefits filtration-loading but should be

controlled within the shear tolerance for either biomolecule or cells in the feed. Further

study needs to be done to improve the model utility by considering the effect of various

factors such as resistances present in the process of chromatography (adsorption), mass

balance for the eluent as well as the effect of the extended section packed on the permeate

exit.



CHAPTER 7

CONCLUDING REMARKS AND RECOMMENDATIONS

Hollow fiber ultrafiltration cartridges have been successfully packed on the shell side

with DEAE Sepharose Fast Flow anion exchange beads for the separation of mixtures of

biomolecules via an integrated filtration-cum-loading-cum-chromatography process.

Several binary mixtures of proteins were separated using either shell-side elution or tube-

side elution via this device. Continuous cyclic processes were also studied by repeatedly

loading, washing and eluting single protein and binary protein mixtures in either a clean

feed or a yeast suspension without applying cleaning agents to the membrane cartridge at

the beginning of each cycle except the first one. Good separations and stable yields were

obtained. Since proteins are routinely separated from cellular broths or homogenates by

microfiltration or ultrafiltration, these results suggest the following: 1) it is possible to

separate mixtures of proteins effectively and efficiently by a cyclic process in one device

using an integrated filtration-cum-loading-cum-chromatography process in a bead-filled

membrane system from a fermentation broth or a lysate; 2) one may be able to scale up

the process by putting a few large modules in parallel; 3) hollow fiber membrane-based

modules appear to be quite suitable for such processes. Using the same concept, other

simple geometrical configurations of devices could be designed easily and used for

biomolecule separation.

A general mathematical model for the prediction of pressure, flow rate and flux

profiles in a bead-filled UF/MF hollow-fiber membrane system has been developed. The

model was studied for a variety of operational modes in such modules, e.g., conventional

UF/MF, permeate flow control, Starling flow, elution, and backflushing, etc. The model

174
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predicts successfully the nature of the transmembrane pressure profile and the solvent

flux profile in situations that are quite different, namely, conventional ultrafiltration and

Starling flow. By using this model, preliminary mathematical descriptions for protein

loading and elution behaviors in the bead-filled device have also been developed.

However, the results in this dissertation were obtained only from ultrafiltration

modules packed with DEAE Sepharose Fast Flow ion exchanger. An investigation using

a microfiltration module is necessary since microfiltration is widely used for the

application of fermentation broth clarification and concentration. Controlling the flux in

any MF module packed with beads within the allowed range for chromatographic resin

on the shell-side bed will be a critical subject for the future study. Further, other

chromatographic resins can be employed in the integrated device such as perfusion

chromatography beads which may decrease the shell-side pressure drop and lead to a

more uniform TMP for the same conditions used in this dissertation. Perfusion beads also

allow a higher flow rate than the ordinary beads which may be compatible with the

solvent flux from a MF module. Hydrophobic chromatography beads can also be adopted

since many real feed solutions such as the fermentation broth, have significant

conductivities. Higher ionic strength is generally used as loading condition in the

hydrophobic chromatography. Therefore the step of dilution can be eliminated before

loading the feed onto the bed.

More work needs to be done for a more accurate mathematical description of the

chromatographic behaviors in the integrated device. Mass transfer resistances such as

film mass transfer, pore diffusion and adsorption kinetics should be considered in the

modeling to improve the utility of the model. For the elution, mass balance of the eluent
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needs to be considered and the relationship between the ionic strength and the

equilibrium constant needs to be obtained experimentally in the future study.
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