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ABSTRACT

REDUCTION OF PEAK TO AVERAGE POWER RATIO IN OFDM
AND OFDM-CDMA SYSTEM

by
Jie Cheng

High Peak to Average Power Ratio is a main problem in Orthogonal Frequency

Division Multiplexing(OFDM) system and Orthogonal Frequency Division Multi-

plexing - Code Division Multiple Access (OFDM-CDMA) system. Considering a

compensated High Power Amplifier(HPA), in order to keep linearity for amplifi-

cation, Input Back-Off(IBO) of the HPA has to be increased for handling a high

PAPR. Higher IBO will make HPA less efficient. Additionally, a signal with high

PAPR will suffer clipping when PAPR is larger than IBO of the HPA. Clipping can

cause the distortion of the signal and deteriorate the performance of the system.

Reduction of PAPR is a main issue for OFDM and OFDM-CDMA application. In

this thesis, some coding schemes are discussed to reduce PAPR. Of all possible code

words for transmission, some code words with lower PAPR are chosen for trans-

mission. Some redundancies are added to the end of the original code words to form

these lower PAPR code words, though the net bit rate will decrease as a tradeoff.

To reduce PAPR block coding scheme and cyclic coding scheme are discussed first.

An odd parity bit is added as a redundancy bit. Also the code rate is 3/4. A

novel block coding scheme with bit position control is discussed, where the position

of the redundancy bit in the original code words is chosen by a feedback selection.

For multiuser application, OFDM-CDMA is discussed. Walsh-Hadard(WH) and

Complementary(CP) and Gold code sequences are used as the spreading sequences.

These coding schemes used in OFDM system are also used before spreading to reduce

PAPR in OFDM-CDMA system.
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CHAPTER 1

INTRODUCTION

In this thesis, Reduction of Peak to Average Power Ratio(PAPR) in OFDM and

OFDM-CDMA system is discussed.

Multicarrier transmission scheme such as OFDM ( Orthogonal Frequency Division

Multiplexing) has been proposed for many different types of systems such as DAB

(Digital Audio Broadcasting) and radio LANs(Local Area Networks). [1, 2] The

principle of multicarrier transmission is simple, that is, instead of transmitting at a

high transmission rate on a single carrier, transmitting at a low transmission rate

on multiple carriers, at the same time, the net bit rate is not changed. In OFDM

to a Serial to Parallel converter, a block of N data bits is converted into a parallel

form with the time duration Td NTb. Therefore, the transmission rate is decreased

carrier modulation. A block of data is mapped into each subcarrier. Subcarriers are

orthogonal to each other while the frequency spectrum overlaps.

The mobile communication channel can be classified using coherent bandwidth Bx

and the coherent time Tx . The relation between the coherent bandwidth and the

coherent bandwidth, then the transmitted signal will suffer frequency selective

fading. In OFDM system, the transmitted rate Rd is decreased enough to be suffi-

ciently less than the coherent bandwidth Bx , so the channel can be assumed as a

frequency non-selective channel, that is, non-time dispersive channel. In addition,

the time duration Td is less than the coherent time Tx , so the doppler spread is

ignored. The channel is no time selective or non-frequency dispersion channel.

However, one of the main disadvantages of OFDM system is high Peak to Average

1
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Power Ratio(PAPR). Considering symbols with BPSK modulation, when the phase

of different subcarriers is the same, the different subcarrier components of the

signal will be added together to a peak value, so high PAPR is produced. It

can be calculated that the peak power value for N subcarriers is N2 , and PAPR

for N subcarriers is N. High PAPR will highly deteriorate the efficiency of the

High Power Amplifier(HPA). There are two typical models for HPA in this thesis.

One is Travelling Wave Tube Amplifier(TWTA), the other is Solid State Power

Amplifier(SSPA). Using predistortion technique to compensate for the nonlinearity

of HPA, HPA can be assumed a compensated linear HPA. That is, when the peak of

the signal is lower than the saturation amplitude of HPA, it keeps linearity; otherwise,

the amplitude of the signal is clipped to the saturation amplitude. Clipping causes

signal distortion and spectral spreading. In OFDM system, because of high PAPR,

Input BackOff(IBO) of HPA has to be increased to alleviate the clipping effect.

However, high IBO will make HPA less efficient.

Many schemes have been proposed to reduce PAPR in OFDM system. Among these

is scheme which uses amplitude limiting at the point of generation [3] or coding

[3, 4, 5, 6]. Amplitude limiting leads to an increase of the bit error rate(BER),

while coding schemes will decrease the net bit rate. Block coding scheme, proposed

by A.E.Jones [4, 7], is suitable when the number of subcarriers is small. Golay

complementary sequences have been proposed recently in [8, 9, 10]. The main

problem for this scheme is that the rate ( in the order of /n(N)/N) becomes small

when the number of N of the subcarriers is large. In the traditional block coding

scheme, one odd parity bit is added at the end of the code word, thus only part of all

possible code words are used for OFDM modulation. Simulation results show that

when the number of subcarriers N is small, this is an effective method, however,

when N is large, only little PAPR reduction is obtained. In this thesis, a novel

block coding scheme with bit position control is used for the PAPR reduction. It
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results in an improvement in PAPR reduction. With this scheme, first the code

word is divided into small blocks of code words. Then the odd parity bit for each

small code word is produced. That is with in this scheme, the odd parity bit can

be inserted in any position of the code word instead of the end of the code word.

It would be shown that inserting the redundancy bit into different position of the

original code word can produce different PAPR. A Code Word Selector is used to

select a specific code word with the lowest PAPR for transmission. Clearly the

position information of the odd parity bits are also transmitted as side information

for decoding. The simulation results show that this novel block coding scheme can

reduce PAPR significantly better than these using previous block coding schemes.

OFDM-CDMA(Orthogonal Frequency Division Multiplexing - Code Division Multiple

Access) is another interesting field for multicarrier application [11, 12]. OFDM-

CDMA is a combination of DS-CDMA and OFDM. Therefore OFDM-CDMA

inherits all the bad traits as well as good traits from their parents. OFDM-CDMA

also suffer the high PAPR problem. For N subcarrier system, PAPR is also N as in

single user case.

DS-CDMA(Direct Sequence-CDMA) is a method to share spectrum among multiple

simultaneous users and it can exploit frequency diversity using RAKE receivers.

However, in a time dispersive channel, high intersymbol interference (ISI) will

deteriorate the system performance with a large spread factor N. Unlike DS-

CDMA, OFDM-CDMA applies spreading sequences in frequency domain. The

original information becomes spread in frequency domain directly. As a result of

this, the signal can overcome the time delay spread of the time dispersive channel.

In this thesis, Walsh-Hadamard(WH), complementary(CP) sequences and gold code

are used for spreading sequences. In OFDM-CDMA system, spreading sequences

are used to distinguish data from different users. Using OFDM modulation, each

chip of the spreading sequence is mapped to different subcarrier. Compared with
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OFDM, OFDM-CDMA spreads an information bit over many subcarriers, so it can

make use of information contained in sound subcarriers through the fading channel

to recover the original symbol.

This thesis is organized as follows. In Chapter 2, an OFDM system model is discussed

first. PAPR in OFDM system is defined and some characteristics of PAPR are also

discussed. Some block coding schemes are used for PAPR reduction. Finally a novel

block coding scheme with bit position control is proposed and some simulation results

are given for comparison. In Chapter 3, the communication channel is classified

and discussed. The characteristics of the channel are also discussed. In Chapter 4,

OFDM-CDMA system model is discussed and PAPR reduction using the previously

proposed block coding schemes and the novel block coding with bit position control

in OFDM-CDMA system is simulated and compared.



CHAPTER 2

ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING

2.1 Introduction

Orthogonal Frequency Division Multiplexing(OFDM), a special form of Multi-

Carrier Modulation(MCM) with densely spaced subcarriers and overlapping spectra

was patented in the U.S. in 1970 [13]. OFDM abandoned the use of steep bandpass

filters that completely separated the spectrum of individual subcarriers,which is

commonly applied in Frequency Division Multiple Access(FDMA) systems. In

OFDM system, the serial input data are first passed through a serial-to-parallel

converter. the parallel data are mapped into each subcarrier. Thus, they become

the frequency domain symbols. To get the time domain data again, an Inverse

Discrete Fourier Transform or its fast version, IFFT, is applied. These subcarriers

are orthogonal to each other while the frequency spectrum overlaps. The frequency

spacing between the subcarrier is minimum in OFDM. This gives OFDM high

spectral efficiency. OFDM also has some disadvantages, such as sensitivity to

frequency offset and high Peak to Average Power Ratio(PAPR). In this chapter,

the PAPR in OFDM system is discussed and some coding techniques for PAPR

reduction are proposed.

2.2 OFDM System Model

The OFDM system model is shown in figure 2.1. The encoder is used to choose

the possible code words with lower PAPR. IFFT block is used for multicarrier

modulation. For transmission, High Power Amplifier(HPA) has to be included. In

order to reduce the influence of the nonlinearity of HPA, the predistortion block is

also included in this system. Thus, HPA for the transmitted signal can be considered

as a compensated HPA [14, 15]. In the receiver, FFT block is used for multicarrier

5
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demodulation. The decoder and the detector are also included for the recovery of

the transmitted signal.

Figure 2.1 Block Diagram of OFDM System

2.2.1 Transmitter Model

In OFDM transmitter shown in figure 2.2 , the input data is a serial sequence

d(0), d(1), . . . , d(N-1) with the time duration Td. After a serial to parallel converter,

that block data is converted into a parallel form with time duration NTd . In Figure

2.2, the encoder is not included. Each symbol of one data block is mapped to

the corresponding carrier. Thus, they become frequency domain symbols, that is,

s(0), s(1),.. , s(N — 1). After a parallel to serial converter and D/A converter, the

output of the transmitter is

where the input data d(n) is modulated by Binary Phase Shift Keying(BPSK), and it

is assumed to be either 1 or —1 with the same probability. fn is the carrier frequency

for d(n) and Nn is the initial phase of the nth carrier. For simplicity, the initial phase
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Figure 2.2 Block Diagram of OFDM Transmitter

2.2.2 Receiver Model

Suppose the channel model in time domain is h(n) , correspondingly, in the form in

frequency domain, we have

Ignoring the noise influence, the discrete form of the received signal r(n) can be

expressed as (see Figure 2.3)



Figure 2.3 Block Diagram of OFDM Receiver

8

Then a detector is used to estimate the transmitted data. After that, a parallel to

serial converter is used to get the resultant serial sequence b.

Where (p) is the Gaussian noise. The receiver model is shown in 2.3.
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2.3 Peak to Average Power Ratio in OFDM System

2.3.1 Definition

OFDM, like other forms of multicarrier modulation system, has a main disadvantage,

high peak to average power ratio(PAPR) of the transmitted signal S(t) [16, 17].

PAPR of a signal is a very important parameter, because it determines the input

backoff factor of the amplifier to avoid clipping and spectral regrowth.

Here, the definition of PAPR [4] is

where S(t) is given in Equation (2.1).

2.3.2 Analysis of PAPR in OFDM

In this section, some characteristics of PAPR defined in Equation (2.8) are discussed.

1. First it is shown that the average power of the signal s(t) is the length of the

code word N. In fact, by definition the average power of the signal 8(t) is
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Consider d(n) is a BPSK symbol, so |d(n)|=1 when t Є [0,T], and T = NTd,

thus

The average power of the signal S(t) is
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Thus, the amplitude is the same for c and c. Using Equation (2.8) The PAPR

is also the same for c and

3. If for the code word c is [co , c 1 , • • • , cN-1], the order of these bits from the first bit

to the last bit is reversed, then the resultant code word is c is [c N-1 , • • •,c1,c0 ].

It can be proved that c and ĉ have the same PAPR.

For code word ĉ, the amplitude is
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If the power spectrum S(f) of the signal S(t) in Equation (2.1) is a constant,

then the peak power of the signal S(t) is the same as the average power of the

signal S(t). The ideal PAPR is reached, that is, PAPR = 1.

2.4 High Power Amplifier

The nonlinear High Power Amplifier(HPA) can be modeled as a memoryless device

[15]. The complex baseband input signal of the HPA can be expressed by the

The nonlinear distorted signal at the output of the HPA is

The AM/AM conversion (amplitude nonlinearity) R(t) = f(r(t)) describes the

nonlinear function between the input and output amplitude. The AM/PM conversion(phase

The following are two types of HPA: Travelling Wave Tube Amplifier(TWTA) and

Solid State Power Amplifier(SSPA), which are commonly used in the literature.

2.4.1 Travelling Wave Tube Amplifier(TWTA)

The AM/AM conversion function of the TWTA [15] is
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Here, the input and the output amplitude are normalized by the saturation amplitude

Aclip. The AM/AM conversion and the AM/PM conversion of the TWTA are shown

in Figure 2.4.

Figure 2.4 Diagram of Normalized AM/AM Conversion for Travelling Wave Tube
Amplifier

2.4.2 Solid State Power Amplifier(SSPA)

The AM/AM conversion function of the SSPA [15] is

The Amplitude/Amplitude(AM/AM) conversion of the SSPA is shown in Figure 2.5.

Here, the SSPA produces no phase distortion.
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Figure 2.5 Diagram of Normalized AM/AM Conversion for Solid State Power
Amplifier

2.4.3 Input and Output Back-offs

The non-linear distortions of HPA depend strongly on the input back-off(IBO) and

the output back-off(OBO) [15], which are defined as

2.5 Predistortion Techniques

To make better use of the available HPA power, some compensation techniques can

be used at the transmitter side.
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amplified signal. Since the HPA is non-linear device, the resulting output will be

be inserted in baseband before the HPA in order that the HPA output y(t) is as

close as possible to the original signal z(t). The procedure is shown is Figure 2.6.

Figure 2.6 Diagram of HPA with Predistortion

2.5.1 TWTA

In order to cancel the non-linearity of TWTA, the inversion of the TWTA equation

(2.17) and equation (2.18) lead to the following equations:

2.5.2 SSPA

In order to cancel the non-linearity of TWTA, the inversion of the TWTA equation

(2.19) and equation (2.20) lead to the following equations:
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2.5.3 The Compensated HPA

From Figure 2.6, if r (t) and OM in Equation (2.17) and (2.18) are substituted by

Equation (2.23) and (2.24), we can get

and

We can get the same results with SSPA. Considering the saturation amplitude of

HPA is normalized by A clip , so the compensated HPA is presented as

where z(t) is the signal that has to be amplified and y(t) is the amplified signal.

Aclip is the saturation amplitude of HPA. When |z(t)| is larger than A clip, the signal

is clipped, so Aclip is also called the clipping level of HPA. A compensated HPA is

shown in Figure 2.7.

2.6 Clipping Effects

After a compensated High Power Amplifier, the signal is clipped. Here, the power

of the clipping noise and the probability that the signal amplitude is greater than

the clipping level A clip are discussed [18]. If the total power of the unclipped and

undistorted OFDM signal is 2a 2 , the input back-off(IBO) can be represented as

Following the approximation approach in [18], the real and imaginary parts of

N—point IFFT output samples have mutually independent Gaussian probability

distribution function(pdf) with zero mean and variance a 2 . Therefore the amplitude
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Figure 2.7 Block Diagram of a compensated HPA

of the OFDM signal x has a Rayleigh distribution and its phase is uniformly

distributed. that is

Because the maximum amplitude of the OFDM signal is limited to A chip, the power

of the clipped portion is

The relation between IBO and the signal-to-clipped-noise ratio is expressed in Figure

2.8. In order to get the output power of the HPA, first calculate the probability of



Figure 2.8 Diagram of Signal-to-Clipping Noise Ratio Versus IBO

the amplitude of the signal x greater than Aclip. That is

The output power of the HPA consists of two parts: one is that of the original signal

which amplitude is under Aclip , (2σ 2 — Pclip ), the other is that of the clipping level

Aclip . So the total power output, Ptot after clipping is

18

Substituting for Pclip from Equation (2.32) and using Equation (2.34), we get
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Figure 2.9 OBO Versus IBO

Using Equation (2.37) and Equation (2.30), we get the relation between OBO and

IBO

Which is depicted in Figure 2.9.

The clipping effect on the Signal to Noise Ratio(SNR) versus Bit Error Rate(BER) in

by the noise power o-2 . The length of the code word is N = 8. The clipping level is

N2 = 64, there is no clipping effect actually, which is shown by the curve without

clipping. With lower clipping level in a compensated HPA, the transmitted signal

will suffer higher distortion, so BER is higher. In order to decrease BER with the

same SNR for a compensated HPA with lower clipping level, some coding techniques

are discussed in the next section.
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Figure 2.10 Bit Error Rate Versus SNR with Different Clipping Level(N=8)

2.7 Coding Techniques

In order to minimize PAPR of the OFDM signal, coding scheme is commonly used.

In this section, first, several coding techniques are discussed. Then, a new coding

scheme is proposed and compared with other schemes.

2.7.1 Linear Block Coding

A block code consists of a fixed-length vector is called code word [19, 20]. The length

N of the a code word is the number of the elements in the vector. The elements of

a code word are selected from an alphabet of q elements. Considering symbols with

BPSK modulation, the alphabet consists of two elements, {0, 1} . Because the input
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block code word is random, there are 2 N possible code words. Different code word

have different PAPR for the OFDM signal. These code words with lower PAPR are

the ones that are preferred for transmission. Coding schemes are used to eliminate

the codewords with higher PAPR.

From 2 N possible code words in a binary block code of length N, only M = 2K

code words (K < N) are selected to form a code. That is, a block of K information

bits is mapped into a code word of length N. The resultant block code is called a

(N, K) code. The ratio KIN = R is defined as the rate of the code. K bits are

the information bits and N — K bits are the redundancy bits. The tradeoff for the

reduction of PAPR is the decrease of the net bit rate.

A simple odd parity code was proposed by Dr. A. E. Jones [4]. From Equation (2.1)

the output of the transmitter is

For the number of carriers N is 4, the envelope power of the OFDM for all possible

code words is given in Figure 2.11. Using one bit Odd Parity Coding technique, the

three-bit information code word can be converted into four-bit code word. Obviously

only the code words with lower PAPR should be chosen for transmission. Table 2.1

gives the look-up table for this one odd parity method.

Using Odd Parity coding, the resultant envelope power for all possible information

code words is plotted in Figure 2.12.

The PAPR for all possible four-bit code words is
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Figure 2.11 Envelope Power for All Possible Code Words (N=4)

There is a 3.55dB PAPR reduction for this 3/4 rate code, but the expense is an

increase in bandwidth for the same net data rate and a reduction in the energy per

Block coding scheme is simple for application, but not so effective in reducing PAPR

when the number of carriers N increases. This can be shown in Table 2.2.

Table 2.1 Odd Parity Code



Figure 2.12 Envelope Power for All Possible Code Words (K=3,N=4)

Table 2.2 PAPR Reduction with Block Coding

2.7.2 Cyclic Coding Scheme (Subblock Coding Scheme)

In this section, a difficult coding scheme is discussed. It was proposed by D.Wulich

[21]. Though it is called cyclic coding scheme, but actually it is just an improvement

to block coding scheme. Hence it is also called subblock coding scheme [22].

OFDM as a Multi-carrier modulation, can be represented (not in baseband

equivalent) as:

23
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Table 2.3 Cyclic Coding

25

used, then Equation (2.53) is satisfied. This scheme can be shown in Table 2.3. If

changing it with 1, then Table 2.3 is the same as Table 2.1.

Actually, cyclic coding scheme can be described as: first separate a code word with

length 3L into L code words with a length 3, then apply the block coding scheme to

these L code words respectively. This is why the cyclic coding scheme is also called

the subblock coding scheme. The resultant code word has a length 4L. The code
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rate is 3/4.

The simulation of PAPR reduction with this cyclic coding method is shown in the

Table 2.4. The second column is the PAPR without coding, the third column is the

PAPR with cyclic coding and the fourth column is the PAPR reduction. It can be

seen this scheme is much better than the block coding scheme compared with Table

2.2.

Table 2.4 PAPR with Cyclic Coding

2.7.3 A Novel Subblock Coding Scheme with Bit Position Control

Using the block coding and the subblock coding techniques can reduce the PAPR in

OFDM system. However, for the block coding schemes, when the length N of the

code word becomes larger, the PAPR reduction decreases rapidly.

In order to further reduce PAPR when the carrier number N is large, some modifi-

cations are suggested for block coding method. we will also use the assumption

N = 4L, where L = 1, 2, . . . , oo.

1. First using a Serial-to-Parallel converter, the input data is converted into a

code word which is expressed

The length of the code word d is 3L. Separating the code word d into some

subblocks and then use odd parity coding method to get the redundancy bit.

This procedure is shown in Figure 2.13. The resultant code word c can be
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expressed as

Figure 2.13 Block Diagram of A Subblock Coding Encoder

3. Before transmission, a feedback scheme is used to choose the code word with

the lowest PAPR for transmission. PAPR of the code word c is found in PAPR
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calculator. Bit position control block is used to change the position of P n( 1) in

the block 4(1), dn (2), dn (3). As a result, different code words are produced in

the bit position encoder. Different PAPR for different code words are compared

in the code word selector, then the code word with the lowest PAPR is recorded

and chosen for transmission. The system need a lot of comparison. It need

compare totally 4 N/4 times to get the desired code word. Therefore, when N is

a large number, we need to find some method to reduce the system complexity.

The position information of Pn (1) is also transmitted as side information so

the receiver can decode the information. This procedure is illustrated in Figure

2.14.

Figure 2.14 Block Diagram of A Novel Subblock Coding Scheme with Bit Position
Control

The simulation of PAPR reduction with this novel block coding scheme with bit

position control is shown in the Table 2.5. The second column is the PAPR without

coding, the third column is the PAPR with this new coding scheme and the fourth

column is the PAPR reduction. It can be seen this scheme is much better than the

cyclic(subblock) coding scheme compared with Table 2.4.
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Table 2.5 PAPR with the Novel Coding

2.8 Simulation Results

In this section, the simulation results of an OFDM system with PAPR reduction

is discussed. Here assuming the subcarrier number is N = 8, and the length of

the input code word is L = 6. The code rate is 3/4 without considering the side

information.

2.8.1 PAPR Reduction Using A Novel Coding Scheme with A Specific
Code Word

Here, an example is given to show the PAPR reduction using this novel block coding

scheme is better than subblock coding scheme. Because the code words produced

with this new coding scheme include the code word produced with the subblock

coding scheme, this new coding scheme has at least the same PAPR reduction as the

subblock coding scheme. In fact, this new coding scheme is much better than the

subblock coding scheme. The payoff is the intensive calculation used for choosing

the lowest PAPR for transmission.

The code word A without coding scheme is 000000. The code word B with subblock

coding scheme is 00010001. The code word C with this novel coding scheme is

00010010. The instantaneous power of code word A,B and C in one time duration

is shown in Figure 2.15, Figure 2.16 and Figure 2.17. From these figures we can see

that be PAPR is lowest for the novel block coding scheme with position bit control.



Figure 2.15 Diagram of the Envelope Power of the Code Word 000000
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Figure 2.16 Diagram of the Envelope Power of the Code Word 00010001

Figure 2.17 Diagram of the Envelope Power of the Code Word 00010010
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2.8.2 Peak Power Effect

The PAPR can be evaluated by the peak power of the transmitted signal, because the

average power is a constant number N. The effect on the peak power with different

coding schemes is plotted in Figure 2.18. If we generate random code words, then

we will get different peak power x for different code words. x-axis represents a

fixed power value X and y-axis represents the probability when the peak power x

is larger than X. Derived from this figure, the signal peak power is 64 without

coding scheme, which can be calculated theoretically. The theoretical peak power

is N2 = 64(N = 8). Using subblock coding scheme, the peak power is reduced to

27.7. Using block coding with bit position control scheme, the peak power is reduced

to 19.4. So it can be concluded that this new novel scheme can reduce the PAPR

significantly.

Figure 2.18 Diagram of Probability Distribution Function of OFDM Signal
Amplitude x



Figure 2.19 Block Diagram of BER Versus SNR Using A Novel Block Coding
Scheme with Bit Position Control

2.8.3 Bit Error Rate Improvement

The BER of the OFDM system is plotted in Figure 2.19. The clipping level is 10dB

for a compensated HPA. The clipping level is the saturation power of HPA. The

length of the code word for IFFT modulation is N = 8. It can be seen that if we

only use subblock coding for PAPR reduction, the PAPR is reduced somewhat, but

BER for the same SNR only improve slightly. When bit position control is added

in the subblock coding, BER improves substantially, BER versus SNR curve in this

case is quite close to the theoretical curve.



CHAPTER 3

COMMUNICATION CHANNEL

The signal at the output of the transmitter will go through a propagation channel

before reaching the receiver. The original transmitted signal will suffer different

frequency and amplitude variation in different channel models. Here three channel

models are discussed.

3.1 Characterization of Multipath Channel

Because the natural and man-made objects are in the immediate vicinity of the

mobile stations, no direct line-of-sight(LOS) path exists between the base station(BS)

and mobile station(MS) antenna. As a consequence of reflections, scattering and

diffraction, the received signal has different directions and different delays. This

property is called multipath propagation [23].

Consider the transmission of the band-pass signal is

where u(t) is the real low-pass signal , fc is the carrier frequency. Assuming that

there are multiple propagation paths, the received bandpass signal can be expressed

in the form

where an (t) and Tn (t) are the amplitude attenuation factor and the time delay of the

nth path for the received signal respectively.

Substituting for s(t) from Equation 3.1 into Equation 3.2 , the result is

33



Thus, the equivalent lowpass received signal is

From Equation 3.4 , the channel can be modeled by a time-variant linear filter having

the complex low-pass impulse response

where c(τ ;t) is the channel response at time t to an impulse applied at time t — T,

and b(•) is the dirac delta function.

Considering the addition of white Gaussian noise n(t) , the received signal is

3.1.1 Gaussian Non-fading Channel

If the channel is assumed to corrupt the transmitted signal by only the addition

of white Gaussian noise, that is, there is only LOS component in the receiver, the

channel is called Additive White Gaussian Channel(AWGN) channel.

The probability density function of the Gaussian variable x is

where p, is the mean and a' is the variance of the random variable x.

3.1.2 Rayleigh Fading Channel

When considering the transmission of an unmodulated carrier and the composite

received signal consists of a large number of path components, the received complex

low-pass signal r(t) = rI (t) + j rQ (t) can be modeled using central limit theorem as a
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complex Gaussian random process. This means the channel impulse response c(τ ;t)

is a complex Gaussian random process in the variable t.

In the absence of a LOS, rI (t) and r (t) have zero-mean. The envelope |c( τ; t)| has a

Rayleigh distribution at any time t and th phase of c(τ ;t) has a uniform distribution

in the interval(0,2π ). The channel is called to be a Rayleigh fading channel.

The probability density function of the Rayleigh fading variable r (t) is

3.1.3 Ricean Fading Channel

For a multipath fading channel containing a LOS component, the received signal

will include both a LOS component and other multipath components. The real and

image part of the received signal, r j (t) and r (t) have non-zero mean. The envelope

|c(τ;t)| has a Ricean distribution at any timet,and The channel is called to be a

Ricean fading channel. Ricean fading is often observed in microcellular applications.
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The probability density function of the Ricean fading variable r (t) is

where s 2 is the non-centrality parameter, which represents the power of the LOS

component. The parameter a2 is the power of the scattered components. 10 (.) is the

zero order Bessel function. Here, a Rice factor K is defined as

which is ratio of the power of the LOS component to the power of the scattered

component. When K = 0, that means there is no LOS component, Ricean fading

channel will turn into Rayleigh fading channel. When K = oo, that means there is

only the LOS component and no multipath components, Ricean fading channel will

turn into Gaussian non-fading channel.

The mean and variance of the Ricean fading variable r [23] are

3.2 Classification of Channels

The impulse response of mobile radio channel exhibits time delay and doppler

spreading. Time delay results in time dispersion and frequency-selective fading .

Doppler spreading results in frequency dispersion and time-selective fading. These

two cases are discussed below [24].

3.2.1 Time Dispersion and Frequency Selective Fading Channel

The coherence bandwidth B, of the channel is related to the multipath spread T

Multipath spread describes the time spread of the received signal in the time domain
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because of the multipath effect. The relation between B, and T is

If the bandwidth Bx of the transmitted signal is sufficiently less than the coherent

bandwidth Be of the channel, all frequency components of the transmitted signal will

receive approximately the same attenuation, there is no frequency selective fading,

and the channel is termed frequency non-selective.

Otherwise, if Bx is larger than Be , the frequency components at the edge of the

spectrum will be attenuated differently, hence there is a frequency selective fading,

and the channel is frequency selective.

3.2.2 Frequency Dispersion and Time Selective Fading Channel

The coherence time /lc of the channel is related to the the Doppler spread Bch that

is

If the duration time Tx of the transmitted signal is sufficiently less than the coherent

time T, of the channel, The signal will pass through the channel before any significant

change in its characteristics. The channel can be considered as time invariant, thus,

the channel can be called as a time non-selective channel. In the frequency domain,

the bandwidth of the signal is much larger than the Doppler spread, so the influence

of the Doppler spread is ignored. The channel is also called no frequency dispersion

channel.

Otherwise, if Tx is larger than TT , the characteristics of the channel will change

while the signal is going through the channel. The channel is time variant and the

signal suffer time selective fading. The channel can be considered as a time selective

channel.

When Tx is very large, the Doppler spread of the signal becomes large relative to
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the signal's bandwidth. The received spectrum of the signal will be able to observe

distinct widening, and the channel is also called frequency dispersion channel.



CHAPTER 4

OFDM-CDMA

Multicarrier modulation or orthogonal frequency division multiplexing(OFDM) has

drawn a lot of attention in the field of mobile communications. This is mainly because

of the need to transmit high data rate in the narrow-band wireless communication

systems. Code Division Multiple Access(CDMA) is a multiplexing technique where

many users can simultaneously and asynchronously access a channel by modulation

and spreading their information. The combination of OFDM with CDMA (OFDM-

CDMA) [11, 12] is an interesting method for the mobile communication systems.

OFDM-CDMA also inherits the disadvantage of the OFDM system, high PAPR. In

this chapter, OFDM-CDMA model is discussed first, then some methods are used to

reduce PAPR in OFDM-CDMA.

4.1 OFDM-CDMA System Model

The whole OFDM-CDMA system model with coding technique is illustrated in [11,

12] Figure 4.1. For simplicity, only one user case is shown here.

The downlink OFDM-CDMA system consists of three parts, that is, the transmitter

at the base station, the mobile channel and the receiver at the mobile station. These

three parts will be discussed in detail in the following section.

4.2 Transmitter model

The transmitter model [11, 12] is illustrated in Figure 4.2. In this model, the IFFT

operator is used for multicarrier modulation. The input data dk (i) is assumed to be

a binary antipodal signal, where k = 1, 2, • • • , K. Here, dk (i) denotes the i bit of a

serial to parallel converting sequence for the user k. dk (i) is assumed to be either 1

39



40

Figure 4.1 Block Diagram of OFDM-CDMA System Model

or -1 with the same probability. The transmitter can be expressed in the following

steps.

1. A serial input data sequence from the user k is

where P(t) is a rectangular pulse with the bit time duration Td and Pk is the

power of the user k.

After a one-to-M Serial to Parallel Converter, the input data can be written as

a vector dk = [dk (1), dk (2), • • • , dk (M)] before the encoder block. The element

of dk , dk (m) can be expressed as

where Tb = M x Td. Thus the duration of the input data are spread to overcome

the delay spread of the channel, and the net bit rate is unchanged, as M bits

are transfered simultaneously during Tb.
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Figure 4.2 Block Diagram of OFDM-CDMA Transmitter Model

2. The encoder in Figure 4.1 uses coding techniques discussed in chapter 2 to

encode the input data dk (m), m = 1, 2, • • • , M. Because of the addition of

the redundancy, the output vector of the encoder bk is larger than dk; bk=

[bk (1), bk (2), • • • , bk (N)], whose length is N > M. The element of b k , bk (n) can

be expressed as
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Figure 4.3 Diagram of Waveforms of the Signal

I. Using different spreading codes, different output, x k from different users can

be summed for transmission. The output of the sum can expressed as a vector

5. Before the multicarrier modulation, each chip of the signal has to be spread in

the time domain to be the bit time Tb. A one-to-L serial to parallel converter

is used for this purpose. The output of the converter can be expressed as a

vector

6. In order to scramble the symbols to achieve independent fading by the channel.

A N-input block interleaver with depth L is used. A block interleaver formats
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Figure 4.4 Block Diagram of Block Interleaver

the data in rectangular array of N rows and L columns. Each row of the

array constitutes a code word of length L. This interleaver is illustrated in

Figure 4.4 . The symbols are read out column-wise and transmitted over the

channel. In order to recover the data at the receiver, a deinterleaver is used .

The deinterleaver stores the data in the same rectangular array format, but it

 is read out row-wise, one code word at a time. The output of the interleaver

can be expressed as a vector

7. The IFFT of size LN modulates each data onto different frequency carriers.

The modulated signal at each frequency bin, S(m'), used for transmission is
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8. Converting the discrete version of the modulated signal into a continuous

version, we get for the transmitted signal 8(t);

4.3 Channel Model

Using the channel models discussed in Chapter 2, we establish the channel model

for OFDM-CDMA system. If the the time duration Tb = M x Td of the transmitted

signal is much smaller than the coherent time 7', of the channel, then the channel can

be assumed as a time-invariant channel and the doppler shift is ignored. After OFDM

the coherent bandwidth B, of the channel. Each Different subcarrier will suffer

independent fading and the channel is assumed as a non-frequency selective channel.

4.4 Receiver model

The receiver scheme is illustrated in Figure 4.5. 	 If we consider one time duration

Tb for the received signal, then the receiver can be expressed in the following steps.

1. The input signal at the receiver, R(t) is
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Figure 4.5 Block Diagram of OFDM-CDMA Receiver Model for User kk

where * denotes convolution, h(t) is the channel impulse response function and

n(t) denotes the additive white Gaussian noise with zero mean and variance

a2

2. At the serial to parallel block, the received signal is sampled and converted

into a parallel form. The output can be expressed as

Where h(p) is the sampled channel impulse response. Substituting S (p) with

Equation(4.10), R(p) is
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3. Using the similar mathematical derivation method from Equation (2.4) to

Equation (2.5) in Chapter 2, R(p) can be expressed as

at the subcarrier frequencies given in Equation (4.12).

4. To demodulate the signal, the FFT transformation is used. The output is a

Where n = 1, 2, • • • , N, 1 = 1, 2, • • • , L and u = 0, 1, • • • , N L — 1. (u) is the

additive white Gaussian noise with zero mean and variance σ2u.
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5. The vector r has to be deinterleaved after FFT block. The resultant vector for

this operation is a vector

Considering Rayleigh fading channel effect, the second item in Equation (4.21) can't

be cancelled by despreading. Some modification has to be made in the receiver to



48

cancel the multiuser interference. Here a conventional decorrelator [25] is used in the

simulation, which will be discussed using the matrix notation in the following section.

The resultant z from the decorrelator can be used to estimate the transmitted bit.

4.5 Matrix Notation of OFDM-CDMA Model

In the last section, the OFDM-CDMA system was presented in regular mathematic

notation. In order to simulate the whole system with all users clearly we turn to the

matrix notation. The reason for the matrix notation is that we can use computer to

simulate OFDM-CDMA system much easier.

The matrix of the power of different users can be expressed as a KN x KN

diagonal matrix. That is
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Where PK can be expressed as

For total K users, there are K different user-specific sequence Ck. The length

of the sequence is L. The user-specific sequence c can be expressed as

Then from the matrix c, a new matrix of the spreading sequence can be

expressed as

2. After the spreader, the output N-parallel and L-serial symbols from different

users are added together correspondingly, then the resultant vector i is

That is

Because of the deinterleaver at the receiver, the effect of the interleaver on the

transmitted signal is ignored. Therefore, after a serial to parallel converter, the

resultant signal vector is also i.
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3. The channel frequency response H' (n,l) can be expressed as a matrix H. that

From Equation (4.20), it can be seen that at the receiver, the vector Y can be

expressed as

4. From Equation (4.21), the estimation of the received bit b' can be expressed as

a vector b', that is
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5. In order to cancel the multiuser interference, a conventional decorrelator is used

here. First, a cross-correlation matrix Q is defined as

In order to separate the interference from other users completely, The inverse

matrix of Q is used for decorrelation. That is the estimation of the transmitted

bit is

4.6 Spreading Sequence

In order to separate the bits from different user, spreading sequences are used. Here,

two orthogonal sets of sequences are discussed.

4.6.1 Walsh-Hadamard(WH) Sequence

The Walsh-Hadamard sequences can be recursively obtained by



52

4.6.2 Complementary(CP) Sequence

where IL denotes the L x L identity matrix, so the matrix given above is orthogonal,

and each row is composed of Golay binary complementary sequence.

4.7 Simulation of PAPR Reduction in OFDM-CDMA System

In OFDM-CDMA system, High PAPR is also a main disadvantage. Here, coding

schemes discussed in Chapter 2 will be used in OFDM-CDMA system. The spreading

sequence is used with WH,CP and Gold code. Gaussian non-fading channel and

Rayleigh fading channel are used in the simulation. It can be seen that a better

performance is achieved when using these methods, especially the block coding

scheme with bit position control.
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4.7.1 Simulations with Walsh-Hadamard Sequence and Complementary
Sequence as the Spreading Sequence in Gaussian channel

In this simulation, Walsh-Hadamard sequence and Complementary Sequence are used

as the spreading sequence. The length of the WH sequence and the CP sequence is

L = 8, and the length of the code word after the encoder is N = 8, thus the number

of the multicarriers is totally 64. The largest user number which is determined by

L can be 8. Because there are 64 multicarriers, the largest PAPR is 64 when only

one user is considered. More users could increase PAPR. The clipping level is 10dB.

When the amplitude of an OFDM signal is larger than 10dB, the amplitude will

be clipped to 10dB before transmission. The phase of the signal keeps unchanged.

Thus the clipping distortion will be produced. In these simulations,we chose the

number of users k = 4. The channel is Gaussian non-fading channel. Because of the

orthogonality of the spreading sequences, there is no multiuser interference.

Figure 4.6 Block Diagram of BER Versus SNR in OFDM-CDMA with WH
Spreading Sequence

It is shown in Figure 4.6 and Figure 4.7 that for the same SNR, BER is lower
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for the block coding scheme with bit position control. This is due to the PAPR

reduction effect. This curve is very near to the theoretical curve without HPA

clipping influence. BER for the same SNR using subblock coding scheme is lower

than BER with HPA clipping and without any coding scheme, but larger than BER

with the block coding scheme having bit position control. Therefore, the novel block

coding scheme has a better performance in OFDM-CDMA system compared with

previously proposed block coding scheme.

Figure 4.7 Block Diagram of BER Versus SNR in OFDM-CDMA with CP Spreading
Sequence

4.7.2 	 Simulations with Gold Code as the Spreading Sequence in
Gaussian Channel

We use the same conditions as the last section for simulations except for implementing

Gold code as the spreading sequence. That is N = 8 and K = 4, clipping level

is 10dB and the length of the Gold code is L = 7. Because the Gold code is not

orthogonal, there exists multiuser interference. A conventional decorrelator to cancel
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the multiuser interference in the simulation.

Different coding schemes are also used in the simulation. The results are shown in

Figure 4.8. It is shown that the block coding scheme using bit position control has

a better system performance even though the multiuser interference exists.

Figure 4.8 Block Diagram of BER Versus SNR in OFDM-CDMA with Gold Code

4.7.3 	 Simulations with Gold Code as the Spreading Sequence in
Rayleigh Fading Channel

In this simulation, we use Rayleigh fading channel. Gold code is used as the spreading

sequence. The length of the Gold code is L = 7. N = 8 and K = 4 and the clipping

level is 10dB. Clearly there exists multiuser interference. Here we use a conventional

decorrelator to cancel the multiuser interference. Simulation results are shown in

Figure 4.9. It is shown that using Rayleigh fading channel, the block coding scheme
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using bit position control has a better system performance than previously proposed

block coding scheme.

Figure 4.9 Block Diagram of BER Versus SNR in OFDM-CDMA through Rayleigh
Channel

4.7.4 BER Improvement Comparison in different Channels

In this section, BER improvement with the new coding scheme is compared between

Gaussian non-fading channel and Rayleigh fading channel. After comparing the

simulation results from Section 4.7.2 and Section 4.7.3, It is shown in Figure 4.10

that BER improvement in Rayleigh fading channel is better than that in Gaussian

channel.



Figure 4.10 Block Diagram of BER Improvement
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CHAPTER 5

CONCLUSION

In this thesis, reduction of Peak to Average Power Ratio in OFDM and OFDM-

CDMA system is discussed.

In OFDM system, a compensated High Power Amplifier linear plus clipping is used

in the simulation. Clipping effect is also considered in the performance evaluation.

When the new block coding with bit position control is used, PAPR is reduced signif-

icantly compared to other block coding schemes, suggested previously in literatures.

In fact, using previously proposed block coding schemes for the same signal to noise

ratio, the bit error rate can't be improved much compared with BER without coding.

However, with the novel block coding scheme, BER can be decreased significantly

almost to level obtained without clipping. This is due to the less clipping distortion

when PAPR is reduced.

In OFDM-CDMA system, the orthogonal or non-orthogonal spreading sequences

are used to distinguish data from different users. Gaussian channel and Rayleigh

channel are used as the channel model. OFDM-CDMA also inherits the high PAPR

disadvantage from OFDM modulation. The coding schemes discussed in OFDM

system are also used in OFDM-CDMA. The spreading sequences are chosen as

Walsh-Hadamard, Complementary or Gold code sequences. The code words are

encoded before spreading. It can be seen that coding schemes can also reduce PAPR

in OFDM-CDMA despite the fact that spreading processes change the actual code

words for OFDM modulation. With the novel block coding scheme performance is

significantly better than with previously proposed block coding schemes no matter

WH, CP or Gold code sequences are used.
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