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ABSTRACT

A METHODOLOGY FOR
COMPONENT-BASED SYSTEM INTEGRATION

by
Yongming Tang

Component-based software based on software architectures is emerging to be the next

generation software development paradigm. The paradigm shifts the development focus

from lines-of-codes to coarser-grained components and the interconnections among them.

It consists of system architecture design, architecture description, component search and

system integration from components to generate a software system.

However, one of the bottlenecks in this paradigm is the integration of the

individual components into the overall system. In this dissertation a methodology for

component-based system integration is proposed. It is based on an architectural

aggregation view, a component model, flowgraphs and cyclomatic complexity. We

introduce this view, model, and new ways to compute cyclomatic complexity based on

flowgraphs.

The methodology makes use of Jackson diagram to represent the detailed design of

a system and decomposes the system into components and aggregations. An aggregation

is a set of components glued together by one connector, and is represented as a

flowgraph. Then an aggregation flowgraph is decomposed into prime flowgraphs called

prime connections. An Implementation Description Language (IDL) is introduced to

represent the aggregations and components. Finally a system synthesis mechanism is

proposed that is responsible for translating prime connections, embedding functional

units into them, and composing aggregations and the integrated system from them.



 
 
 
 
 
 
 
 
 
 
 
 
 
 



A METHODOLOGY FOR

COMPONENT-BASED SYSTEM INTEGRATION

by
Yongming Tang

A Dissertation
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

Department of Computer and Information Science

January 1999



Copyright ©  1999 by Yongming Tang
ALL RIGHTS RESERVED



APPROVAL PAGE

A METHODOLOGY FOR
COMPONENT-BASED SYSTEM INTEGRATION

Yongming Tang

Dr. Murat M. Tanik, Dissertation Advisor 	 Date
Professor of Electrical and Computer Engineering, UAB, Alabama

Dr. Franz J. Kurfess, Dissertation Co-advisor	 Date
Assistant Professor of Computer and Information Science, NJIT

Dr. Dao Chuang Hung, Committee Member 	 Date
Associate Professor of Computer and Information Science, NJIT

Dr. Donald H. Sebastian, Committee Member 	 Date
Professor of Industrial and Manufacturing Engineering, NJIT

Dr. Ali H. Dogru, Committee Member 	 Date
Associate Professor of Computer Science, METU, Turkey



BIOGRAPHICAL SKETCH

Author:	 Yongming Tang

Degree:	 Doctor of Philosophy

Date:	 January 1999

Undergraduate and Graduate Education:

• Doctor of Philosophy in Computer Science,
New Jersey Institute of Technology, Newark, NJ, 1999

• Master of Science in Computer Science,
Northwest University, Xi'an, P. R. China, 1987

• Bachelor of Science in Computer Science,
Northwest University, Xi'an, P. R. China, 1982

Major:	 Computer Science

Presentations and Publications:

Yongming Tang, Ali H. Dogru, and Murat M. Tanik,
"Cyclomatic Complexity Based on Cubic Flowgraphs,"
Proceedings of the Third Conference on Integrated Design and Process
Technology, Berlin, Germany, IDPT Vol. 4, pp. 82-85, July 6-9, 1998.

Yongming Tang and Hua Hua,
"Hypermedia-based Structured Modeling,"
Presented as a Poster to the Seventh ACM Conference on Hypertext, Washington
DC, March 16-20, 1996.

Yongming Tang,
"PRAPS: A Problem Representation System for Automatic Programming,"
Journal of Northwest University, Xi'an, P. R. China, Vol. 24, No. 3, pp. 203-206,
1994.

iv



To my beloved family



ACKNOWLEDGMENT

I owe a deep gratitude to my dissertation advisor, Dr. Murat M. Tanik, and my

dissertation co-advisor, Dr. Franz J. Kurfess, for their academic support. They are not

only an endless source of information, insights and intuition on research issues, but also a

source of encouragement, confidence and reassurance. I would never have made it

without them. Special thanks are given to Dr. Ali H. Dogru, for his invaluable assistance,

insights and cooperation on earlier work of the dissertation.

I would like to thank the other members of my dissertation committee, Dr. Dao

Chuang Hung, Dr. Donald H. Sebastian and Dr. Peter Ng, for actively participating in my

committee. All of them have given me bright insights and excellent comments on an

earlier draft of the dissertation.

I would also like to give my heartfelt thanks to my wife, Meihua Chen, and my

daughter, Di Tang. It would have been impossible for me to complete this dissertation

without their support and patience. I am especially thankful to them for understanding

and tolerating my unusual working way these years.

vi



TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION 	 1

1.1 Objective   2

1.2 A Blueprint of the Methodology  3

1.3 An Outline of the Dissertation 	 5

1.4 Summary 	 8

2 FLOWGRAPHS AND CUBIC GRAPHS 	 9

2.1 Flowgraphs 	 9

2.1.1	 Program Flowcharts  10

2.1.2	 Program Flowgraphs  10

2.1.3	 Structured Flowgraphs 	 12

2.1.4	 Regular Expressions for Flowgraphs 	 15

2.2 Cubic Graphs  17

2.2.1	 Definitions  18

2.2.2	 Properties   19

2.2.3	 Decomposition and Composition of Cubic Graphs 	 20

2.2.4	 Prime Cubic Graphs   21

2.3 Cubic Flowgraphs 	 22

2.3.1	 The Decomposition and Composition of Cubic Flowgraphs 	 23

2.4 Summary 	 27

3 SOFTWARE ARCHITECTURES  29

3.1	 Definitions   29

vi i



TABLE OF CONTENTS
(Continued)

Chapter

3.2

3.3

3.4

Page

Software Architectural Styles 	 34

Architectural Views 	 35

Architecture Description Languages  	 38

3.4.1	 Requirements for ADLs   39

3.4.2	 Classification Framework for ADLs 	 40

3.5 Summary     42

4 COMPONENT-BASED SOFTWARE  44

4.1 What Is a Component? 	 44

4.2 Requirements on Components in Software Libraries   45

4.3 Component Representation and Retrieval 	 47

4.4 Component-Based Development 	 48

4.5 Evaluation, Analysis and Management of Component-based Software 	 51

4.5.1	 What Problems Need to Be Solved? 	 51

4.5.2	 Some Proposed Solutions 	 54

4.6 Summary 	 55

5 CYCLOMATIC COMPLEXITY AND CUBIC FLOWGRAPHS 	 57

5.1 Cyclomatic Complexity of Programs 	 58

5.2 Computing Cyclomatic Complexity Based on Cubic Flowgraphs 	 61

5.3 Computing Cyclomatic Complexity Based on Decomposition of Cubic
Flowgraphs  64

5.4 Summary 	 67

viii



TABLE OF CONTENTS
(Continued)

Chapter Page

6 FUNDAMENTALS FOR THE METHODOLOGY 	 68

6.1 An Aggregation View on Software Architectures  68

6.1.1	 Aggregation View   69

6.1.2	 Demonstration by Examples 	 72

6.2 Component Model  78

6.3 Summary   80

7 SYSTEM REPRESENTATION AND DECOMPOSITION 	 83

7.1 Conversion of Jackson Diagrams to Flowgraphs   84

7.2 Aggregation Flowgraph Decomposition 	 88

7.3 Applications  90

7.3.1	 The KWIC System 	 90

7.3.1.1	 Solution 1 - Pipes and Filters 	 	  90

7.3.1.2	 Solution 2- Main Program/Subroutine 	 92

7.3.2	 The ECC System 	 95

7.4 Summary 	 100

8 SYSTEM IMPLEMENTATION DESCRIPTION 	 	  102

8.1 Prime Connections 	 102

8.2 Implementation Description Framework 	 105

8.3 Implementation Description Language 	 108

8.4 Summary   122

ix



TABLE OF CONTENTS
(Continued)

Chapter	 Page

9 SYSTEM INTEGRATION 	 124

	

9.1 An Outline of System Integration    125

9.2 Preliminary Issues 	 129

	

9.2.1 Parsing IDL Descriptions   129

9.2.2 Creating the System Table 	  130

9.2.3 Creating the Aggregation Table.. 	  132

9.2.4 Retrieving Components and Creating Component Tables 	  133

	

9.3 System Synthesis    134

9.4 Summary 	 140

10 CONCLUSION AND FUTURE WORK 	 142

	

10.1 Summary of Results   143

10.1.1 Cyclomatic Complexity 	  143

10.1.2 Software Architectures as Aggregations 	  144

	

10.1.3 Component Model   145

	

10.1.4 System Representation and Decomposition     146

10.1.5 Implementation Description Language 	  147

	

10.1.6 System Integration Mechanism   147

10.2 Features of the Methodology 	 ... 149

10.3 Future Work 	  151

10.3.1 Supporting Tools 	  152

	

10.3.2 Component-based Programming Languages   153



TABLE OF CONTENTS
(Continued)

Chapter	 Page

10.3.3 Studies of Interactions among Components 	  154

10.4 Epilogue 	  155

APPENDIX A THE GRAMMAR OF IDL  	 156

APPENDIX B CONVERSION OF CUBIC GRAPHS INTO FLOWGRAPHS 	 161

REFERENCES  	 186

xi



LIST OF TABLES

Table Page

3.1 Classification framework for ADLs (adapted from [49])  41

3.2 ADLs with their architectural modeling features 	 42

5.1 A program example  59

5.2 Independent circuit sets 	 	  60

5.3 Independent program path sets 	 61

6.1 The definitions for inputs and output of the ECC system 	 75

8.1 An aggregation description framework  106

8.2 A component description framework 	 107

8.3 A system description template 	 109

8.4 An aggregation description template 	 109

8.5 A prime connection description template 	 109

8.6 A component description template   110

9.1 A system table template 	 131

9.2 A system table of solution 1 for the KWIC 	 131

9.3 A system table of solution 2 for the KWIC   131

9.4 A system table for the ECC 	 131

9.5 An aggregation table template  132

9.6 Aggregation table for Aggregation Process in Figure 8.9 	 133

9.7 Aggregation table for Aggregation ECC in Figure 8.11    133

9.8 Aggregation table for Aggregation Initialize in Figure 8.12 	 	  133

9.9 A component table template 	 	  134

xi i



LIST OF FIGURES

Figure Page

1.1 A view of a component-based software system 	 4

1.7 An approach for system integration  5

2.1 Flowchart nodes and their shapes  10

2.2 A program flowchart   11

2.3 A program flowgraph  12

2.4 Program control structures and their cubic flowgraphs and cubic graphs 	 13

2.5 A mixed program control structure, its cubic flowgraph and cubic graph  14

2.6 Three control flowgraphs and their regular expressions 	 15

2.7 Cubic graphs   18

2.8 A cubic flowgraph  22

2.9 A cubic graph 	 23

2.10 A cubic flowgraph with named vertices 	 24

2.11 Decomposition process of a cubic flowgraph 	 25

2.12 Prime cubic flowgraphs  26

3.1 Two architectures 	 35

5.1 A program control graph  60

5.2 A cubic flowgraph of the program in Table 5.1 	 63

5.3 The decomposition results of the cubic flowgraph in Figure 5.2 	 66

6.1 A system architecture based on subsystems and modules 	 69

6.2 A structure of a component-based system   70

6.3 A decomposition of the structure in Figure 6.2 	 71



LIST OF FIGURES
(Continued)

Figure Page

6.4 A component-based system structure for KWIC   73

6.5 Another component-based system structure for KWIC 	 74

6.6 ECC data flow diagram (adapted from [71]) 	 76

6.7 A component-based system structure for ECC 	 77

6.8 A component model 	 79

6.9 Aggregation pyramid of software architectures  80

6.10 A development model for component-based software systems  81

7.1 A Jackson Diagram 	 84

7.2 The Flowgraph of the Jackson Diagram in Figure 7.1 	 85

7.3 Implicit nodes in the Jackson Diagram 	 87

7.4 Jackson Diagrams and their prime flowgraphs 	 88

7.5 A solution with pipes/filters for the KWIC   91

7.6 A Jackson Diagram for the KWIC with pipes/filters 	 91

7.7 A flowgraph for the KWIC with pipes/filters.. .. . 	 92

7.8 A solution for the KWIC with main program/subroutine  93

7.9 Jackson Diagram for the KWIC system with main program/subroutine 	 94

7.10 Flowgraph for the KWIC system with main program/subroutine 	 94

7.11 Aggregation Jackson Diagrams and flowgraphs 	 94

7.12 A decomposition of the non-prime flowgraph 	 95

7.13 A Jackson Diagram for the ECC system  96

7.14 The flowgraph for the ECC system 	 97

xiv



LIST OF FIGURES
(Continued)

Figure Page

7.15 Aggregation ECC: Jackson Diagram and flowgraph   98

7.16 Aggregation Maintain: Jackson Diagram and Flowgraph 	 98

7.17 Aggregation Initialize: Jackson Diagram and flowgraph 	 99

7.18 Aggregation Adjust: Jackson Diagram and flowgraph 	 99

7.19 Prime flowgraphs contained in aggregation Initialize 	 100

7.20 Prime flowgraphs contained in aggregation Adjust  100

8.1 Prime connections and their regular expressions 	 105

8.2 An IDL description for the KWIC with pipes/filters style 	 111

8.3 IDL description for component Input in the KWIC with pipes/filters. 	 112

8.4 IDL description for component Shift in the KWIC with pipes/filters 	 112

8.5 IDL description for component Sort in the KWIC with pipes/filters 	 113

8.6 IDL description for component Output in the KWIC with pipes/filters 	 113

8.7 IDL system description for the KWIC with main program/subroutine 	 114

8.8 IDL description for aggregation KWIC with main program/subroutine 	 114

8.9 IDL description for aggregation Process with main program/subroutine 	 115

8.10 An IDL system description for the ECC system 	 116

8.11 The IDL description for aggregation ECC 	 116

8.12 The IDL description for aggregation Initialize 	 117

8.13 The IDL description for aggregation Adjust 	 118

8.14 The IDL description for aggregation Maintain  119

8.15 The IDL description for component Current 	 119

xv



LIST OF FIGURES
(Continued)

Figure Page

8.16 The IDL description for component Desired  	 ... 120

8.17 The IDL description for component Last  120

8.18 The IDL description for component Brake 	 121

8.19 The IDL description for component Throttle 	 121

9.1 The functional units and their dependency relationships 	 126

9.2 System integration   128

9.3 System synthesis process flowchart  138

9.4 The synthesis process for solution 2 of the KWIC system 	 139

9.5 Two possible aggregation queues for the ECC system 	 139

xvi



CHAPTER 1

INTRODUCTION

The demands for software systems have never stopped since computers have been widely

used. At the same time the tremendously increased demands make the size and

complexity of software systems growing rapidly. The expansion of software dimensions

leads to much trouble to software production, for example, exceeded budgets, missed due

date, poor performance, high maintenance cost, etc. Although the software engineering

community has developed many methodologies, techniques and tools to try to resolve the

problems, a breakthrough still has not been achieved. Recently an emerging software

development style, component-based software with software architecture, holds great

potential for overcoming some of these problems. This style focuses on the reuse of

software components and changes the software development style from line by line

coding to system integration from well-defined components. This style usually implies

that software development starts with software architecture design, then buys the COTS

(Commercial Off The Shelf) components, and finally integrates the whole system from

the COTS. In fact, one of the ideal objectives of this style is to search the required

components and to do the system integration automatically. The latter is really a

motivation of this dissertation, and the work in this dissertation focuses on automatic

system integration. As an introductory chapter, Section 1.1 shows the motivation of this

work for component-based system integration and the objectives of this work. Section

1.2 sketches our approach for the objectives. Section 1.3 outlines the contents in this

dissertation. In Section 1.4, the topics discussed in this chapter are summarized.



1.1 Objective

An ideal component-based software paradigm suggests that a software system be

automatically built through semantics-driven component search and system integration

[58]. It also suggests that the required components in a system may be coded in any

languages, may be developed in any environments and may run on any platforms [58].

The former means that the real automation of development of a component-based

software system must be based on the semantics of the components and the system. The

latter means that the system may be a heterogeneous system because it is not necessary

for all components to be written in the same language, to be compiled by the same

compiler or to run on same platform.

For the second one, we can say that it is not a major challenge any more because

the problem has been largely solved by middleware, such as the Common Object Request

Broker Architecture (CORBA), the Distributed Component Object Model (DCOM), etc.

However, the first one is still a bottleneck for the applications of component-based

software [18]. In other words, we can say that there are two bottlenecks, one is

semantics-driven component search and the other one is system integration. In this

dissertation, we work on the component-based system integration.

The component-based software paradigm requires the system design to be a set of

components glued together by connectors. In reality, components are the abstractions of

functionality while connectors are the abstractions of interactions among the components.

The detailed design for a component-based software system is really to design

implementation algorithms for connectors because it is assumed that the components are

already implemented. Generally speaking, component-based system integration starts



immediately after the detailed design of a system is done and the expected components

are ready.

The objective of this dissertation is to present a methodology for component-based

system integration. The methodology suggests a diagrammatic way to represent the

detailed design, presents a method to decompose the design, proposes a language to

describe the design, and finally proposes a synthesis mechanism to accomplish the

system integration task. The author does not propose a semantics-driven method for

component search because it is beyond the system integration aspect. But the author

proposes a component model and a component description language in order to search

the expected components in a system.

1.2 A Blueprint of the Methodology

As the author mentioned before, a component-based software system looks like a set of

components, a set of connectors and a number of interconnections among connectors.

The interactions among the components are abstracted to be connectors. All the

interconnections among the connectors represent the configuration or topology of a

system. Such an overall structure of the system can be drawn as a diagram shown in

Figure 1.1. The diagram suggests us a view of a component-based software system. This

view is that a component-based system consists of connectors and a connector consists of

components. This view is called an aggregation view. An aggregation is really a set of

components connected by one connector. A composite component en facto is a body in

which there is one connector that connects a number of components. For a large system,

the view can be extended to decompose a system into subsystems. Therefore, an

aggregation could be a composite component, a subsystem or a system.
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Figure 1.1 A view of a component-based software system

This view implies a special relationship between a system and a number of

connectors and between a connector and a number of components. It is essentially a

containing relationship. This view creates a base for our methodology. We decompose a

software architecture into aggregations based on this view. Then we represent each

aggregation as a Jackson Diagram [27], convert the diagram to a flowgraph called

aggregation flowgraph (see Chapters 2 and 7) and decompose each aggregation

flowgraph into prime flowgraphs called prime connections (see Chapter 8) that are the

elementary unit for system integration. Aggregations are also the description unit in our

implementation description language (see Chapter 8). Finally the integrated system is

also considered as an aggregation. Therefore, the concept of an aggregation plays a very

important role in our approach for the methodology of component-based system

integration. The ideas illustrated above are summarized in Figure 1.2.



ystem
Architecture

map	 integratedecompose

search	 return

Figure 1.2 An approach for system integration

1.3 An Outline of the Dissertation

There are ten chapters and two appendices in this dissertation. Besides this chapter, the

introduction, this dissertation contains nine more chapters. Chapters 2, 3, and 4 cover the

background knowledge about flowgraphs, software architectures and component-based

software. Chapter 5 presents new ways to compute the cyclomatic complexity of a

program based on flowgraphs. The new ways are applied in our methodology. Chapters

6, 7, 8, and 9 introduce our methodology for component-based system integration.

Chapter 10 serves as conclusions for the dissertation. In Appendix A, the definition of

implementation description language in Extended Backus-Naur Form (EBNF) is listed.

Appendix B introduces the conversion of a cubic graph to cubic flowgraphs. All the

chapters are outlined in the rest of this section.

5

Chapter 2 is a survey of flowgraphs, cubic graphs and the relationship between

flowgraphs and cubic graphs.	 We focus on the structured flowgraphs, their
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representation, regular expressions and the decomposition and composition of

flowgraphs. The features of flowgraphs are used in our methodology. Chapter 3

explores related work to our methodology on software architectures. The survey includes

definitions, software architecture styles, architectural views, and architecture description

languages. Chapter 4 discusses component-based software. The definitions for

components, components in software libraries, component representation and search,

component-based development, and the evaluation, analysis and management of

component-based software are surveyed.

Chapter 5 focuses on the cyclomatic complexity of programs. The current

computing methods are surveyed. Then we introduce new methods for computing the

cyclomatic complexity based on cubic flowgraphs and prove two theorems about the new

methods. We also compare the new methods with the current methods. The new

methods are applied in our methodology for computing how many prime flowgraphs are

included in an aggregation flowgraph before decomposing the aggregation flowgraph into

prime ones.

Chapter 6 examines software architectures in terms of aggregate relationships

among the system, subsystems, connectors and components. We call the relationships

aggregations. We conclude that a component-based software system is a set of

aggregations that belong to system level, subsystem level and connector level. The

aggregation relationship is abstracted as a software architectural view, the aggregation

view. This view plays a very important role in the integration methodology. We also

propose a component model for specifying a component. This model is very

comprehensive for the representation of a component in a software library. A modified
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version of the component model can also be used for component search. To enhance the

introduction and explanation of the methodology, the Key Word in Context (KWIC)

problem and the Embedded Cruise Control (ECC) problem are discussed. The two

problem examples are used through Chapter 6 to Chapter 9 to show how the methodology

is applied.

Chapter 7 explains why Jackson Diagrams are used to represent a system and its

aggregations. Then it is discussed how a component-based software system is represented

with Jackson Diagrams and flowgraphs based on the aggregations. The conversion of a

Jackson Diagram to a flowgraph is also discussed. Furthermore we discuss how an

aggregation flowgraph is decomposed into prime flowgraphs. These principles are

demonstrated by using the problem examples, KWIC and ECC.

Chapter 8 starts with an introduction of prime connections for prime flowgraphs.

A framework for system implementation description is proposed in this chapter. The

framework covers the system skeleton including a system and all its aggregations, and

components. Then we propose a language for system implementation description. The

description templates for a system, an aggregation and a component are introduced. A

number of description examples are used to enhance the description framework.

The system integration is discussed in Chapter 9. We provide a system synthesis

mechanism for system integration. The mechanism makes use of a parser, a component

manager, and a synthesizer to accomplish the system integration based on system

descriptions, aggregation descriptions and component descriptions.

In Chapter 10 our methodology is summarized. A number of characteristic

features of the methodology is emphasized by comparing our work with some related
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work. We also review the contributions made in this work. Finally we explore the future

research directions based on this dissertation.

1.4 Summary

This chapter serves as an introduction to the whole work in this dissertation. The

objectives and motivations of the work are introduced. Because we are going to propose

a methodology for component-based system integration, the main ideas of the

methodology are sketched as a blueprint. Then the main contents in other chapters are

briefly discussed.

Based on the objectives and motivations introduced in Section 1.1, the primary

task of this work is to propose a methodology, in order to integrate a software system

from components automatically. This is a difficult task because system integration is a

bottleneck of software system development [72]. The proposed methodology takes the

'divide and conquer' strategy to handle system integration. The division method is based

on the decomposition theory of flowgraphs. The conquering method is based on

architectural aggregation view. From this point of view, the detailed design of a system

is represented in an implementation description language, then it is decomposed into

aggregations, and at last, the aggregations are composed from prime connections.



CHAPTER 2

FLOWGRAPHS AND CUBIC GRAPHS

In this chapter, flowgraphs and cubic graphs are surveyed because of some useful

features they have. One of the most important features is the regular expression

representation of flowgraphs. In other words, every flowgraph has a regular expression, a

foil la' representation for the flowgraph. The other feature is the decomposition and

composition of flowgraphs. Since the latter one has a root in cubic graphs, cubic graphs

are also discussed. The decomposition is used for dividing an entity into smaller ones.

The composition is used for integrating an entity from some parts. They all are used as

theoretic tools in our integration methodology. For example, flowgraphs are used for the

representation of aggregations. Section 2.1 introduces flowgraphs, how to create a

flowgraph, a special kind of flowgraphs, structured flowgraphs and their representation,

regular expressions. Cubic graphs and some of their properties are discussed in Section

2.2. Finally the relationships between flowgraphs and cubic graphs are explored in

Section 2.3.

2.1 Flowgraphs

When we design a traditional structured program, we often use a diagrammatic

representation for an algorithm and then write a program according to the representation.

We call this representation a program flowchart. A flowgraph is a variation of a

flowchart. A flowgraph is a strongly connected directed graph. A flowchart is not a

graph because two lines can be joined to become one line without a node. Their

definitions are introduced in this section.

9
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2.1.1 Program Flowcharts

Flowcharts have been introduced as a tool for programming. A flowchart consists of

several geometrical shapes that are connected by directed edges. There are two

distinguished shapes, the begin node and end node in a flowchart. The other shapes may

be input nodes, output nodes, process nodes, and decision-making nodes in a flowchart.

The different geometrical shapes for flowchart nodes are shown in Figure 2.1.

Nodes

Begin, End

Process

Decision

Shapes  

Figure 2.1 Flowchart nodes and their shapes

The input, output and process nodes represent basic functional statements in a

program. For the sake of convenience, we assume that the input and output nodes are

also represented as process nodes because they are special processes in programs. Two

edges in a flowchart may join together to be one edge. Figure 2.2 shows a typical

flowchart example, which does not necessarily represent a meaningful program. The

lowercase letters represent input, output and processes. The uppercase letters represent

decision-making conditions.

2.1.2 Program Flowgraphs

A flowgraph is a strongly connected directed graph with decision vertices, junction

vertices, process vertices, and a distinguished arc from ending vertex to starting vertex
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[61]. The vertices except junction vertices are the same as in the original flowcharts. But

there are no explicit begin and end vertices. The junction vertices are the junction points

indicated by (*) in Figure 2.2 where two branches are joined to one branch. We color

decision vertices black and leave junction vertices white in order to distinguish them

from each other. The two types of vertices are represented as circles.

Figure 2.2 A program flowchart
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The junction vertices convert a flowchart to a flowgraph. The distinguished arc

makes a flowgraph strongly connected. These are the significant differences between a

flowchart and a flowgraph. Basically a junction point in a flowchart originates a

decision-making node because the branches would be definitely joined somewhere.

Therefore it is natural for us to introduce junction vertices. There are four junction points

in the example flowchart. The sample flowgraph shown in Figure 2.3 is converted from

Figure 2.2.

Figure 2.3 A program flowgraph

2.1.3 Structured Flowgraphs

Currently, many popular programming techniques are based on the structured

programming style. This style requires that a programmer design a program using just

three structures: sequential structure, selective structure and repetitive structure. The

primary structure is the sequential one. Each structure has exactly one entry and one exit.

The structures can be used to compose a large program sequentially or nestedly. The

typical structures are shown in Figure 2.4. If a program flowgraph represents a structured

program, we call the flowgraph a structured flowgraph.
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Figure 2.4 Program control structures and their cubic flowgraphs and cubic graphs

The flowcharts, cubic flowgraphs and cubic graphs of the three control structures

are drawn in Figure 2.4. The cubic graphs are discussed in Section 2.2. A cubic

flowgraph discussed in Section 2.3 is a flowgraph in which all the process nodes are

removed. The n in Figures 2.4 and 2.5 is the number of nodes in a cubic flowgraph. A

cubic flowgraph with n=0, n=l, and n=2 is named P 0 , P I and P, respectively as shown in

Figures 2.4 and 2.5, where the P 0 and P are degenerate cases.

Based on the structured programming idea, every program is built on the three

structures. Just like the program example in Figure 2.2, the whole structure of the

program is a sequential one containing a selective structure and a repetitive structure. In

the repetitive structure there are another selective structure and repetitive structure. The
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embedding is sequential or nested. The flowgraph in Figure 2.3 is a structured

flowgraph.

Figure 2.5 A mixed program control structure, its cubic flowgraph and cubic graph

We note that a structured program is composed of these three structures. The

composition is sequential or nested. And we also note that a structured program can be

decomposed into program segments that are based on the three basic structures. Besides

standard control structures, a mixed control structure is often used in some programming

languages. The structure can relate to program segments such as a loop structure with an

exceptional break statement as shown in Figure 2.5. Although this structure violates the

structured programming criteria, it is commonly used in some languages like C, C++, and

Java. Thus it is considered as a special control structure here. The structure also has a

flowchart, a cubic flowgraph and a cubic graph respectively shown in Figure 2.5.
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2.1.4 Regular Expressions for Flowgraphs

Regular expressions are used to represent languages that are recognized by finite state

automata. Here we use regular expressions to represent the computation set of any

program flowgraph. It means that a program flowgraph corresponds to a regular

expression. Actually the correspondance is an application of the algebra of regular

expressions. The definitions for the algebra of regular expressions and the regular

language λ (α ) used here are based on the work in [62].

The algebra of regular expressions is defined over an alphabet E with

distinguished elements 0 and 1. It is closed under the three binary operations, sum,

product and star where sum stands for selection structure, product for sequential structure

and star for repetitive structure as shown in Figure 2.6:

Figure 2.6 Three control flowgraphs and their regular expression
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Based on the definition of the algebra of regular expressions above, the regular

language can be defined. For each regular expression a over the alphabet E, the

language 2(a) represented by a is defined.
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2.2 Cubic Graphs

Generally a graph is defined as a set of vertices V and a set of edges E which are lines

and are used to connect the vertices [23]. Our notations here follow [61]. A graph has a

representation, G=(V, E). The vertices connected by an edge are called end-points of the

edge. If the end-points of an edge are the same, the edge is called a self-loop. If more

than one edge have the same end-points, the edges are parallel. The parallel edges are

different edges. A graph is a simple graph if there are no self-loop and parallel edges. A

graph is a multi-graph if parallel edges are allowed. Each vertex v in V has a degree, the

number of edges incident with v, written deg(v). There is a relationship between the

number of edges and the sum of degrees of vertices in a graph as shown below; here we

let |E| be the number of edges, VI be the number of vertices and n=|V|:
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The introduction of general graphs serves the purpose of introducing cubic graphs. The

relationship above implies important properties of cubic graphs, which are described in

Section 2.2.2. Cubic graphs are a special kind of graphs. Besides the common properties

of general graphs, a cubic graph has its own properties. In this section we discuss the

definition and properties of a cubic graph. The discussion of cubic graphs is to explore

their relationships to program flowgraphs.

2.2.1 Definitions

In order to show the properties of cubic graphs four definitions are introduced. One is

about cubic graphs and the other three are about the connectivity of a cubic graph. The

first three definitions used here follow Prather's work in [61]. We introduce Definition 4

for a comprehensive understanding of the connectivity of cubic graphs. Based on the

connectivity, we will survey a theory for decomposition and composition of cubic graphs

[61]. Here multi-graphs are allowed. Graph G is a doubly connected cubic graph.

Graphs G and G2  are triply connected. Graph G  is singly connected. In fact, graph G

is the composition of graphs G 2 and G . The examples of cubic graphs are shown in

Figure 2.7.

Figure 2.7 Cubic graphs
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Definition 1

For a graph G=(V, E), if each vertex in V has degree 3, then the graph is a cubic graph.

Definition 2

A cubic graph is doubly connected if exactly two edges need to be removed in order to

disconnect the graph.

Definition 3

A cubic graph is triply connected if at least three edges need to be removed in order to

disconnect the graph.

Definition 4

A cubic graph is singly connected if exactly one edge needs to be removed in order to

disconnect the graph.

2.2.2 Properties

For any graph, the number of edges is equal to half of the sum of each vertex's degree, as

mentioned before. The relationship implies two properties for a cubic graph summarized

below because every vertex in a cubic graph has degree 3:

1) Every cubic graph has an even number of vertices represented as 2n (n=0,1,2, ...).

2) Every cubic graph with 2n vertices has 3n edges (n=0,1,2, ...).

Generally a cubic graph is connected or consists of a number of connected

components. The connectivity can be divided into three kinds according to Definitions 2,

3 and 4. Those are singly connected, doubly connected and triply connected. Therefore a

property related to connectivity of cubic graphs is concluded below:
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3) Every cubic graph is singly connected, doubly connected, or triply connected.

2.2.3 Decomposition and Composition of Cubic Graphs

The decomposition of a cubic graph means dividing the cubic graph into at least two

cubic graphs. The essence of the decomposition is to remove some edges from a given

cubic graph and to add some edges to decomposed components such that the original

graph is disconnected and the resulted components are kept to be cubic graphs. The

composition of two cubic graphs means combining two cubic graphs into one cubic

graph. The two cubic graphs are arbitrary cubic graphs. But the composed cubic graph

must be doubly connected because one edge is removed from each original cubic graph

and two new edges are added to connect the cubic graphs such that the composed graph is

a cubic graph.

Now we discuss the decomposition of cubic graphs. We will limit the discussion

to doubly and triply connected cubic graphs because singly connected cubic graphs have

no corresponding program flowgraphs according to the strong connectivity of a

flowgraph. Here are the steps for decomposition and composition [61].

Decomposition steps:

a. Choose two edges and remove them such that the graph is disconnected.

b. Add one edge to each component such that the component is still a cubic graph.

Composition steps:

a. Choose one edge from each given cubic graph and remove it;
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b. Add two new edges such that one end vertex of each new edge is a vertex in a

graph and another end vertex of the new edge is in another graph and the resulting

graph is still a cubic graph.

According to the assumption and the steps we conclude that if a cubic graph is

doubly connected, then the graph can be at least decomposed into two cubic graphs and if

a cubic graph is triply connected, then the graph can not be decomposed into two cubic

graphs. Let us examine an example of decomposing and composing a cubic graph in

Figure 2.7. When we decompose a cubic graph, we need to identify two edges in the

given cubic graph, for example, the edges (U , U ) and (V , V 2) in G. Remove the

edges and add the edges (U , V 1 ) and (U 2' V 2) to the graph. In this way the original

graph G is decomposed into two cubic graphs G 1 and G 2 . When we compose a cubic

graph from two cubic graphs, we also need to identify two edges, one from one cubic

graph and one from the other. For example, edge (U , V ) in G 2  and edge (U2 , V 2) in

G . Remove the edges and connect the two graphs from U to U., and from V1 to V 2•

We get a new cubic graph G that is the composition of G 2  and G 1 .

2.2.4 Prime Cubic Graphs

The decomposition rules discussed in Section 2.2.3 can be used to classify all the cubic

graphs into two kinds. One is the decomposable cubic graphs and the other is the non-

decomposable cubic graphs. Based on this observation, here is a definition [61] for the

two kinds of cubic graphs. The definition implies that, for a given cubic graph, either it is

a prime one or it is composed of at least two prime cubic graphs. A doubly connected
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cubic graph.

In fact, a cubic graph is either a prime one or can be composed from several prime

ones. This is why we particularly discuss prime cubic graphs. When the theory of cubic

graphs is applied to flowgraphs, a prime cubic flowgraph stands for a non-decomposable

program segment, such as the cubic flowgraphs for three program control structures in

Figures 2.4 and 2.5.

Definition 5

A cubic graph is a prime cubic graph if it is non-decomposable; otherwise, it is a non-

prime cubic graph.

Figure 2.8 A cubic flowgraph

2.3 Cubic Flowgraphs

If all the process vertices in a flowgraph are eliminated and the two adjacent arcs around

a process vertex are replaced by one arc with the same direction, a new flowgraph is

obtained (Figure 2.8). Such a flowgraph has an interesting property that each vertex has

degree 3. A decision vertex has indegree 1 and outdegree 2. A junction vertex has

indegree 2 and outdegree 1. This kind of flowgraph is called a cubic flowgraph [61].
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Figure 2.9 A cubic graph

A cubic flowgraph is a special kind of cubic graph. If we ignore the color of each

vertex and the orientation on each edge, the cubic flowgraph is a general cubic graph.

Figure 2.9 shows the cubic graph derived from the cubic flowgraph in Figure 2.8. As we

discussed in Section 2.1, a structured program has a unique flowgraph. If the process

nodes in a program flowgraph are ignored, it is a cubic flowgraph that corresponds to a

cubic graph. The conversion from flowgraphs to cubic graphs suggests that the

properties of cubic graphs can be applied to flowgraphs. The most important one is the

application of decomposition and composition of cubic graphs to flowgraphs. It indicates

a way for programmers to compose a large program from some smaller programs. This

section explores the various aspects of decomposition and composition for cubic

flowgraphs and then for programs.

2.3.1 The Decomposition and Composition of Cubic Flowgraphs

Before we discuss the details of decomposition and composition of cubic flowgraphs, the

connectivity of cubic flowgraphs needs to be discussed. There are doubly connected

cubic flowgraphs and triply connected cubic flowgraphs. The definitions are as same as

the definitions of doubly connected and triply connected cubic graphs. There are cubic

graphs that are singly connected. However, no flowgraph is singly connected because of

the strong connectivity.
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The decomposition and composition of cubic flowgraphs follow the same steps as

the decomposition and composition of a cubic graph, in addition to considering the

orientations of the removed arcs and added arcs. The added arcs will maintain the

incident decision vertex with indegree 1 and outdegree 2 and the incident junction vertex

with indegree 2 and outdegree 1.

Figure 2.10 A cubic flowgraph with named vertices

An example cubic flowgraph is shown in Figure 2.8. Figure 2.10 is a copy of the

cubic flowgraph in which the vertices are named and the decision nodes are colored light

gray, instead of black. First, let us decompose the cubic flowgraph. The cubic flowgraph

is doubly connected. It is decomposable in terms of the decomposition of cubic graphs.

Now what we need to do is to choose two arcs and remove them such that it is

disconnected.
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Figure 2.11 Decomposition process of a cubic flowgraph

For example, choose arc (B, C) and then arc (D, A) must be chosen because only

this combination can disconnect the graph. After removing the two arcs, the graph is

disconnected into two parts. Then one arc needs to be added to each component such that

it is still a cubic flowgraph. In this way an arc from vertex B to vertex A is added to

component 1 as a distinguished arc and an arc from vertex D to vertex C is added to

component 2 as a distinguished arc too. The decomposition process is shown in Figure

2.1 1 .
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In the figure, the components are marked as before adding arcs and after adding

arcs. The added arcs are distinguished arcs because they start with the ending vertex and

end with the starting vertex in their components. Clearly, after adding arcs, component 1

is a triply connected cubic flowgraph and cannot be decomposed and component 2 is still

a doubly connected cubic flowgraph and can be decomposed again. The decomposition

can continue until no more doubly connected cubic flowgraphs exists. The final

decomposition results from component 2 are shown in Figure 2.12.

Figure 2.12 Prime cubic flowgraphs

The final decomposed results are five prime cubic flowgraphs. They belong to

three program control structures. It indicates that a structured program is really

composed from the three control structures and can be decomposed into the three control

structures. On the other hand, the decomposition does not change the properties of

structured programs.

The above decomposition process actually implies the composition process that is

the reverse of the decomposition. We simply remove arc (B, A) from component 1 and

arc (D, C) from component 2. Then an added arc links vertex B to vertex C. The other

added arc links vertex D to vertex A. As a result, the two cubic flowgraphs in Figure

2.11 are composed into the cubic flowgraph in Figure 2.10. It is noteworthy that the

added arcs must not violate the properties of a cubic flowgraph.
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Based on decomposition and composition of cubic flowgraphs, we can also define

a cubic flowgraph as a prime cubic flowgraph if it is non-decomposable; otherwise it is a

non-prime cubic flowgraph. In fact, the composition of cubic flowgraphs follows the

same rules as the composition of structured programs from the three fundamental

structures with sequential or nested composition. Therefore the decomposition and

composition of cubic flowgraphs do not change the properties of structured programs.

2.4 Summary

Flowgraphs, cubic graphs and cubic flowgraphs are discussed in this chapter. Simply

speaking, the topics related to the integration methodology for component-based

software systems proposed in this dissertation are surveyed. Flowgraphs are surveyed in

Section 2.1. Cubic graphs are surveyed in Section 2.2. Cubic flowgraphs are surveyed in

Section 2.3, in which the relationships between flowgraphs and cubic graphs are

explored. The main topics of flowgraphs, cubic graphs, and cubic flowgraphs are

summarized in this section.

Traditionally a flowchart is used to represent a computer program. A flowgraph is

a variation of a flowchart. It is also used to represent a computer program. However, the

difference between a flowgraph and a flowchart is that a flowgraph is a directed graph,

but a flowchart is not a graph. In Section 2.1, the definitions for a flowchart and a

flowgraph are introduced. The relationships between them are explored, and it is

discussed how to convert a flowchart to a flowgraph. We also introduce structured

flowgraphs for structured programs and a formal representation, regular expressions, for

flowgraphs. It is indicated that each flowgraph has a regular expression based on three

program control structures and process nodes in a program.
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In Section 2.2, based on the definition of a general graph, we introduce the

definition of a cubic graph. The properties of cubic graphs are explored. We also discuss

how to decompose a cubic graph into other cubic graphs and how to compose a cubic

graph from other cubic graphs respectively. If a cubic graph is decomposable or non-

decomposable, a cubic graph can be called a prime cubic graph or a non-prime cubic

graph respectively. The decomposability of a cubic graph determines if a cubic graph is

singly connected, doubly connected, or triply connected.

Section 2.3 focuses on cubic flowgraphs. We discuss how to produce a cubic

flowgraph from a general flowgraph. How the decomposition and composition theory of

cubic graphs is applied to cubic flowgraphs is discussed in order to decompose a program

into some program segments or compose a program from other programs. The

decomposition and composition of cubic flowgraphs plays an important role in our

methodology.



CHAPTER 3

SOFTWARE ARCHITECTURES

Generally each software system has an architecture. It consists of functional modules and

the interactions among the modules. System analysts draw a diagram to represent the

architecture with boxes for modules and lines for the interactions. The study of software

architectures now is attracting more attention from academia, government and industries.

The topics studied currently include definitions for software architectures; software

architecture styles; architecture-based development and supporting tools; software

architecture description and architecture description languages; formalization of software

architectures; domain-specific software architectures. The primary motivation for the

software community to study software architectures is to solve problems such as

unsatisfactory quality, high costs, late delivery, low reliability, and low productivity, that

have not been resolved yet with the current software development paradigms. In this

chapter a survey is supplied for the main topics of software architectures. We survey

them because they are the fundamentals of our methodology for component-based system

integration.

3.1 Definitions

An architecture generally consists of a partitioning strategy and a coordination strategy

[14].	 The partitioning strategy is used to divide a whole system into separate

components.	 The coordination strategy expresses the interactions among the

components. What is a software architecture? Based on the general definition for an

architecture, we examine the definitions for a software architecture. Although there is no

29
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universally accepted definition for software architecture, it does not mean that we do not

have any definition candidates for software architectures. There have been many

definitions for software architectures, from previous work. The representative definitions

are discussed here. Then we propose our own definition for software architectures at the

end of this section. They almost imply everything for software architectures. They

supply us with a comprehensive view on software architectures.

A definition from [4] indicates that a software architecture is the structure or

structures of a program or computing system composed of components and the

relationships among them, with the exposed properties of those components. The

properties could involve provided services, performance characteristics, fault handling,

shared resource usage, and so on. They make it convenient to build a composite

component or integrate systems from other components. First of all, the definition

implies that architecture defines the interface of components including behavior

descriptions. Then it implies that a component could be anything, such as an object, a

process, a library, a database or a commercial product. It also implies that a software

system must have an architecture if it is composed of components and relations among

them.

Another definition for software architectures was given by Garlan and Shaw [19].

It emphasizes designing and specifying the overall system structure. The structural issues

are gross organization and global control structure; protocols for communication,

synchronization, and data access; assignment of functionality to design elements;

physical distribution; composition of design elements; scaling and performance; and
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selection among design alternatives. The system design does not focus on algorithms and

data structures of the computation.

Hayes-Roth's definition [26] clearly claims that a software architecture, in reality,

is composed of functional components with the description of their behaviors and

interfaces and the interconnections among the components. A similar definition is found

in [21], but an additional aspect considers principles and guidelines governing their

design and evolution over time. In contrast to the definitions mentioned above, a

definition from [7] emphasizes the importance of system stakeholders requirement

statements and their satisfaction by components, connections and constraints in a system.

Kruchten's definition enhances the importance of choosing a proper architectural style in

order to satisfy the major functionality and performance requirements, e.g., scalability

and availability [39]. The definition given by Abowd [1] suggests that all the life-cycle

issues of a software architecture should be covered.

Software architectures can be examined from different angles. The observation

from each angle is a view of software architectures like we will discuss in Section 3.3.

Here is a definition supplied in [68] that summarizes four views. The conceptual view on

software architecture is the description of system in terms of its major design elements

and the relationships among them. The modular view on interconnection covers two

orthogonal structures: functional decomposition and layers. The runtime view illustrates

the dynamic structure of a system. The implementation view focuses on how the source

code, binaries, and libraries are organized in the development environment.

Perry and Wolf introduced a definition for software architectures by classifying the

architectural elements into processing elements, data elements and connection elements
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[60]. The processing elements are components that perform transformations on the data

elements. The connection elements are the glue that connects every element of the

architecture together. The data elements are the information that needs to be processed.

The connection elements could be procedure calls, shared data, messages, and so on.

Perry and Wolf used water polo as an example to show that the swimmers are the

processing elements, the ball is the data element, and the water is the connection element

that glue the ball and the swimmers together. Such a situation can also be applied to polo

and soccer. "They all have a similar 'architecture' but differ in the 'glue' — that is, they

have similar elements, shapes and forms, but differ mainly in the context in which they

are played and in the way that the elements are connected together." The examples imply

that the connecting elements are key factors in distinguishing one software architecture

from another and play an important role in deciding the characteristics of a particular

architecture or architectural style. In addition to the elements, an architecture includes

properties, that are constraints on architectural elements, and relationships, that determine

how the elements interact.

Moriconi defined that a software architecture is represented using the concepts:

component, interface, connector, configuration, mapping, architectural style [53]. A

component is defined as an object with independent existence, such as, a module,

process, procedure, or variable. An interface is a typed object that is a logical point of

interaction between a component and its environment. A connector is a typed object

relating either interface points or components. A configuration means a collection of

constraints that embed objects into a specific architecture. A mapping represents a

relation between the vocabularies and the formulas of an abstract and a concrete
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architecture. The architectural style is composed of a vocabulary of design elements, a

set of well-formedness constraints that must be satisfied by any architecture expressed in

the style, and a semantic interpretation of the connectors. A noteworthy viewpoint in this

definition is that "the semantics of components is not considered part of an architecture,

but the semantics of connectors is."

The definitions surveyed above imply that the kernel of software architectures is

the overall structural issues of software systems, not the choices of algorithms and data

structures of computation. The structural issues include common architectural elements:

components, connectors, overall structures, constraints on components and connectors,

the life-cycle issues and all the requirements of the whole system, such as, performance,

scalability, availability, evolution. The components are abstracted from modules. The

connectors are abstracted from the interactions among the modules and define

communication protocols for the interactions. The overall structures are defined as

system configurations or topologies [49].

Therefore we define that a software architecture is simply a topology or separate

topologies consisting of independent components and connectors. Basically a connector

is used to connect at least two components in the topologies. The connectors are the

abstractions of interactions among components. The most important thing in the

definition is the independence of the components. The independence means that any

component is independent of a software architecture even if components are the design

results of a system. In other words, a component can be used in many software

architectures that is the reusability of components. This is also the significant difference

between a traditional development and architecture-based development.
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3.2 Software Architectural Styles

Many engineering disciplines have their own design styles. Every software system is

actually built on an organizational style. Software architectural styles are the organization

patterns of software systems. The typical examples for the patterns are client-sever

systems, hierarchical organization for main program and subroutines, pipe-filter systems,

and so on. The styles fall into four main groups: object-oriented architectures including

information hiding; state-based architectures; feedback-control architectures; and

architectures for real-time systems [66].

The styles are pipes and filters, data abstraction and object-oriented organization,

event-based implicit invocation, layered system, repositories, interpreters, process

control, distributed processes (client-server organization), main program/subroutine

organizations, domain-specific software architectures and state transition systems

[64][66]. It is possible for designers to combine some of the styles into one system. The

combination produces many mixed styles called heterogeneous architectures. The

classification of architectural styles focuses on the properties of components and

connectors in each style. For example, the components are filters and the connectors are

pipes in the style of pipes and filters. If we focus on the topologies of software

architectures, the architectural styles could be hierarchies or networks.

One of the goals of exploring architectural issues is to facilitate component-based

software development. Besides the independence of components, we find that connectors

play an important role in software. For example, in Figure 3.1 the two architectures have

the same components, but different connectors. Therefore they are different architectures

even if they belong to the same styles. The boxes are components and arrows are
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connectors. Actually connectors have some important properties in a software

architecture. One of them is that the topology of an architecture is determined by its

connectors as shown in Figure 3.1. Furthermore, the architectural styles imply that all the

components and connectors can be divided into different groups. Thus we can classify the

components and connectors into different types so that they can be generalized. Some

types for components and connectors can be found in [36].

Figure 3.1 Two architectures

3.3 Architectural Views

Architectural views provide us with different ways to observe, study and understand a

software architecture. The views combined together reflect all the properties of a

software architecture. Clements and Northrop indicated several views [12] that are

conceptual view, module view, process view, and physical view. Soni, Nord and

Hofmeister defined software architectures in terms of four views that are called

conceptual architecture, module interconnection architecture, execution architecture and

code architecture [68]. These architectures are different views on software architectures.

Shaw also defined software architectures based on four views [66]. Shaw named the

views structural models, framework models, dynamic models and process models.
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Although the terms are different, they actually provide us with different ways to analyze

and understand software architectures. For the sake of consistency, we use views in this

dissertation. The views based on the previous work mentioned above are summarized in

this section.

The conceptual, or logical, architectural view defines a picture of the functional

requirements of a system. It is a useful tool for the communication between system

analysts and domain experts because it does not refer to any implementation decisions

and instead focuses on the fact that software architecture consists of components,

connections between those components, plus the configuration of whole system,

architectural styles, constraints, semantics, rationale, and systematic properties. An

informal representation for the view traditionally has been the block-line diagram. But

currently the formal representation is a software architecture description language that

facilitates the description of an architecture's components and connectors.

The module, or development, view is a product of refining the functional

requirements to functional modules. It can be considered as the organization of actual

software modules or subsystems that could include some modules with closed

relationships and the interdependencies among the modules and the subsystems. Its

primary characteristic is the tight coupling to the implementation. For a system

architecture, the modules or subsystems are the usable candidates for components, while

the interdependencies are the proper candidates for connectors.

If the conceptual and module views are considered to be utilized for representing

the static aspects of a system, the process, or coordination, view emphasizes the runtime

behavior of the system. Since the dynamic properties of a system are usually processes,
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the view can also be called a process model of the system. Therefore the structural

components and connectors in the view appear as processes. The view is useful to serve

as a tool for evaluating, analyzing and managing the system's performance.

The physical view serves as the mapping of software onto hardware. If a hardware

platform is chosen, software must be partitioned into processes that are executed on the

platform. Whether the platform is a centralized computing environment or distributed

computing environment, since physical configurations can vary depending upon the

system is in test or deployment, the mapping of the software onto the hardware needs to

be flexible and should have as little impact on the actual code as possible. It focuses on

the real construction of the architecture, and the steps involved in the construction.

The framework view focuses on the structure of the whole system and often refers

to specific domains or problem classes. For example, the framework view may be

domain-specific software architectures, CORBA or CORBA-based architecture models

and domain-specific component repositories. In fact, the framework view is a concrete

application of a conceptual view to specific domains.

Clearly the views categorized as static views include conceptual view, module

view and framework view, and dynamic views include process view and physical view.

Each of these views provides a different perspective of same system. The conceptual

view, module view and framework view show the static system structure, while the

process and physical views give us the dynamic or runtime system structure. Although

the views represent different system structural perspectives, the elements of one view

have potential correspondences to the elements of other views. These views do not

exclude each other. Put together, they are a consensus view of software architecture.
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The views are very useful for domain experts, system designers and system

implementers. The different-level views can supply them with communicating and

understanding guidelines to finally construct a software system.

3.4 Architecture Description Languages

Usually system analysts use a diagram with boxes and lines to informally represent

software architectures such as the two diagrams in Figure 3.1. The diagrammatic

representation sometimes does not make sense and is very ambiguous because the boxes

and lines cannot express the overall architectural properties, such as the semantics of

components and connectors, their properties and the behavior of the whole system [10].

In addition, software architecture based development requires formal modeling notations,

analysis and development tools that operate on architectural specifications [49]. If we

can semantically describe a software architecture, we are actually close to reaching our

goal: the automatic composition of a system from components. This section is designated

to survey the issues related to requirements for architecture description languages

(ADLs), candidates for ADLs, and what is an ideal ADL. The ADLs are actually

designed for software architectures. Therefore an ADL should be comprehensive enough

to cover everything involved in the definition of software architectures. The definitions

surveyed in Section 3.1 directly suggest what must be covered in an ADL. In other

words, what are the requirements an ADL must satisfy. First of all, we analyze the

requirements.
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3.4.1 Requirements for ADLs

ADLs are formal languages used for depicting or describing the architecture of a software

system. As discussed before, an architecture for a software system consists of

components, connectors representing the interactions among the components, and the

configuration of the system. It is clear that a software architecture is a high-level

abstraction of structural and behavioral issues related to a system, and does not focus on

the algorithmic details of computations. The description of a software architecture serves

as a bridge between a system design and system implementation based on architectural

styles. Thus an appropriate ADL plays an important role in architecture based

development. In order to design an ADL, it is absolutely necessary to understand the

requirements of ADLs. This section emphasizes the requirements. The requirements are

introduced here in terms of what an ADL should do.

• Describe the high-level structure of the overall application rather than the

implementation details of any specific source module [77].

• Explicitly model components, connectors and their configurations [49].

• Provide tool support for architecture-based development and evolution [49].

• Describe the semantics of components and connectors [64] [49].

• Have appropriate syntactic and semantic elements for software architectures. The

elements could be components, operators that are interconnection mechanisms, or

patterns that are compositions in which code elements are connected in a particular

way [64].

Support types of elements and constraints for a system or parts of it [49].
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• Support reusability of components, connectors and architectural patterns; support

heterogeneity for combining multiple and heterogeneous architectural descriptions

[64].

This requirements list illustrates the various aspects of what constitutes an ADL.

Medvidovic and Taylor presented a definition for ADLs. The definition says that an

ADL must describe components, connectors and their configurations and supply tool

support for architecture-based development and evolution [49].

3.4.2 Classification Framework for ADLs

In addition, according to the definitions of software architectures in Section 3.1, an ADL

should also describe the constraints on components, connectors, and the whole systems,

and types of components and connectors. Medvidovic and Taylor present a classification

framework [49] for ADLs introduced here in Table 3.1. Although the existing ADLs are

in progress, the framework can be considered as a tool to evaluate them.

Is there any ADL that meets the requirements? It is hard to answer the question

because the proposed ADLs at least partially meet the requirements. Rapide [42] models

component interfaces and their externally visible behavior. Wright formalizes the

semantics of architectural connections and architectural styles [2]. The UniCon system

can compile architectural descriptions and modules into executable code [52]. The

Aesop System emphasizes the explicit encoding and uses a lot of architectural styles [20].

Various domain-specific software architecture languages support architectural

specification referred to a specific application domain [76]. Other ADLs have been

proposed, for example, MetaH [78], LILEANNA [75], ArTek [74], C2 [50][48][47],
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Darwin [43][44], and SADL [54], though they only satisfy partial requirements in the

framework. This is not surprising because the development of ADLs is still in its

infancy.

Table 3.1 Classification framework for ADLs (adapted from [49])
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Nevertheless, the previous work benefits us and helps us find what a

comprehensive ADL must carry out. Based on the work of Medvidovic and Taylor [49],

we use a table to show the architectural features of some existing ADLs (Table 3.2). In

this table, only the architecture modeling features in the framework are shown. "√ " is

used to indicate that an ADL has that feature. "N/A" is used to indicate that we do not

know if the ADL has that feature.

Table 3.2 ADLs with their architectural modeling features

3.5 Summary

In this chapter, we surveyed a number of main topics in the fields of software

architectures. They are definitions for software architectures, software architectural
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styles, architectural views, and architectural description languages. These main topics are

summarized in this section.

In Section 3.1, various definitions for software architectures are discussed. These

definitions show a comprehensive framework for software architectures. The framework

covers components, connectors, configurations or topologies of software architectures.

Software architectural styles are surveyed in Section 3.2. In this section, different

architectural styles are introduced based on previous work on software architectures. The

observations on software architectures from different angles are called architectural

views. A number of views are discussed in Section 3.3. Architecture description

languages are one of the main research fields of software architectures. The related

topics to ADLs are introduced in Section 3.4. The topics are the requirements for ADLs,

a framework for ADLs, and the features the current existing ADLs have.



CHAPTER 4

COMPONENT-BASED SOFTWARE

Recently a paradigm has been emerging to develop software systems by using reusable

building blocks. This paradigm is component-based software. Simply speaking,

component-based software represents a development method for assembling software

systems from components [57]. Sometimes it is also called component-based

development, component-based software engineering, or componentware. Whatever it is

called, it really makes the software community begin to shift the development focus from

lines-of-code to coarser-grained components and their interconnections. A definition for

component is "a unit of computation or a data store."` However, this definition is

too general to bridge the gap between the concept and component-based software. In this

chapter, we survey the previous work on definitions of components and address other

issues related to component-based software.

4.1 What Is a Component?

Components are used in many different ways and in many fields. The term, component,

has been used for many years in the software community. Now the term is involved in

component-based software. Obviously any discussion of the topic must answer the

question, what is a component? We have collected some definitions for components.

Brown and Short define a component to be an independently deliverable set of

reusable services [9]. This definition focuses on reusable services and independent

delivery. Clearly the independent delivery guarantees the reusability of a component. It

means that a component should be unaware of the context. A similar one to the

44
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definition of Brown and Short is found in [37]. Krieger and Adler define software

components as reusable building blocks for creating software systems. Such components

feature themselves with semantically meaningful application or technical services. An

important property implied in the two definitions is reusability. This property is also

emphasized in [6].

A definition given in [5] simply indicates that a component is a fragment of a

software module — a piece of a program, a subroutine, an object, one or more statements

written in any language. It emphasizes the heterogeneity of components and the varied

granularity of components. According to [1], components are characterized as active,

computational entities of a system and they involve internal computation and external

communication with the rest of the system in order to accomplish tasks. Bronsard et al

define a component as a significant functional unit of a system with any granularity and

reusability [8]. In addition, they emphasize the composite feature of a component.

The definitions explicitly indicate that a component is a unit of computation; its

granularity is varied; it must be reusable, independent, and context-unaware; it has its

intention and extension. The intention is its implementation or functional specification.

The extension is its exposed interfaces for other components to access it. The revealed

essences of a component are very important for further work on component-based

software.

4.2 Requirements on Components in Software Libraries

Usually independently developed components are organized in a library called software

library or component repository. It is called a catalog in [28]. Software libraries are
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repositories where software components are stored and searched [51]. Jazayeri claims

that components must meet four requirements if they are organized in software libraries

so that the components can be reused widely [28]. The requirements refer to taxonomy,

genericness, efficiency, and comprehension of components. They are discussed in the

rest of this section.

First, components in a catalog must form a systematic taxonomy. This

requirement is based on the experiences of some failed and successful existing software

libraries. The software libraries must be organized to closely relate to well-defined

domains of functionality, rather than collections of loosely related, or worse, unrelated,

components. The components in a software library must be semantically classified into

different catalogs such that each catalog supports a related set of concepts from a domain.

Second, components should be as generic as possible. A motivation for

component development is to reduce the size and complexity of software systems. For a

component library, it is better to use fewer components to support the same functionality

than to use more components. To make it possible to have fewer components means that

each component must be usable in several contexts, that is, it must make minimal

assumptions about the context in which it is used. These kinds of components are generic

components. A typical implementation for a generic facility is a C++ template. When a

generic component is designed, we need to generalize all the common properties from the

semantic-related specific components.

Third, components should be as efficient as possible. Basically a generic

component is not an efficient one. So this requirement seems to contradict with the
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previous one. However, when a generic component is used, it will be instantiated or

specialized to meet a system's functional and performance requirements.

Fourth, catalogs must be comprehensive. A problem with a component catalog is

that if a system designer will not find the needed components, he will stop using the

catalog. Therefore, component vendors must try to do their best to keep the catalogs

comprehensive.

4.3 Component Representation and Retrieval

The representation of components is necessary no matter where the components are. The

components in an application architecture are represented in an ADL. However, if a

component is located in a software library, how is the component represented? If the

components are represented in a specific way, the retrieval of the components heavily

depends on the way it is represented.

Mili et al. claim that the components must be represented as formal specifications

that describe their functional properties {51]. Because such specifications may be

arbitrarily abstract, they allow us to focus the description on those properties of the

components that are most relevant in a retrieval operation. The formal specification is

based on a logical description of the semantics of the software components. The formal

specification form Mili et al use is the relational specification.

Zaremski and Wing also claim that the representation of software components

must be formal specification [81]. They use Larch/ML [80], a Larch interface language

for the ML programming language, to specify ML functions and ML modules. Larch

provides a "two-tiered" approach to the specification [25].
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Besides the representation of the semantic properties of a component, the syntactic

properties and environmental properties need to be represented. The syntactic properties

are interfaces' names, the number of arguments for each interface, and the data types of

the arguments. The environmental properties include the working platforms,

programming languages, and compilers.

Component retrieval is similar to database query. But here it means to get some

software components from a software library. The key issue of component retrievals is

the semantic match indicating that two components are semantically equivalent. This is

why we need a formal specification for component representation.

Another issue is the retrieval algorithm. Zaremski and Wing use a theorem prover

because their specification language is based on first order logic. Mili et al. classify the

current algorithms into four broad families: AI-based algorithms; hypertext-based

algorithms; library science/information science algorithms; and formal specification-

based algorithms [51]. Mili et al. use a formal specification-based algorithm.

However, the algorithm Zaremski and Wing use is limited for the situation in

which components are functions or modules (a collection of functions) and the algorithm

Mili et al. use processes the situation in which components are functions. Hence, the

algorithms need to be improved for any types of components.

4.4 Component-Based Development

Component-based development (CBD) has roots in modular systems, structured design,

and most recently in object-oriented systems. The techniques aim at encouraging large

systems to be developed and maintained easily by reducing the complexity of the original



49

problems. Component-based development actually extends the ideas, and moves the

development focus from the programming of code to the assembly of an application from

the well-defined pieces of code called components. In this way the software development

consists of components selection, evaluation, and assembly processes where the

components are acquired from a diverse set of sources, and used together with locally-

developed software to construct a complete application [9]. Clearly this view on

component-based software development is not complete enough because we cannot

separate the paradigm from software architectures. Just as we have justified before, the

independence of components and the dominant role of connectors of software

architectures characterize the paradigm as a distinguished one from traditional paradigms.

Therefore, when we examine a methodology of the paradigm, it will be judged primarily

on these two characteristics. This is also why some proposed methodologies focus on the

interdependencies among components. In fact, after an architecture is designed,

component integration including component selection, evaluation and assembly is the key

step for the success of a system.

In addition, component-based software is proposed to solve a software problem,

that is, how is a software system designed and implemented from components? The

components may be from different vendors, written in different parts of the world,

implemented in different languages, run on different platforms, automatically searched

and connected into one application. The "automatically" implies semantics-driven

component search and integration. A solution for the problem will lead to an automatic

production of software systems, even for distributed and heterogeneous applications.

This is the ideal target of CBD, and also a difficult task. Currently there is no such
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methodology to try to catch the ideal target. The methodology proposed in this

dissertation partially meets the requirements. Most existing development methods focus

on designing or selecting software architectures and proposing architecture description

languages that are surveyed in Chapter 3. The primary motivation of these methods is to

standardize architectural styles, the types of components and the types of connectors. In

fact, the ADLs represent the main characteristics of the methods. Since the ADLs can be

grouped into implicit configuration languages, in-line configuration languages and

explicit configuration languages [49], the methodologies can be distinguished as different

categories. Some of the methodologies are surveyed here.

Dellarocas proposes an approach for integrating software components in [15][16].

This approach is based on coordination theory that is used to model the interdependencies

among components. The activities involved in the approach are almost fully consistent

with our observations for integrating components. But the approach is weak on

component integration based on arbitrary interconnections and semantics-driven

component search.

Formalizing connectors is helpful for automatic semantics-driven component

integration. Some related work has been discussed by Shaw et al. [67], and Abowd et al.

[1][2]. This work is limited to some existing types of connectors. For example, UniCon

only supports a number of built-in connectors. Furthermore, generating code from ASL

leads to poor efficiency of software production.

A project conducted at Andersen Consulting, Component-Based Software

Engineering (CBSE), focuses on integrating components [57]. The central part of the

project is a component-based Architecture Specification Language (ASL). The ASL is
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used to describe component interfaces, components, bindings and configurations. Based

on descriptions, component-based software development takes a plug-and-play style.

However, the methodology does not explicitly describe or abstract the interactions among

components as first-class connectors. Such a drawback is caused by the methodology's

component model. The component model classifies the interfaces of a component into

provided interfaces and required interfaces [57] [8]. The provided interfaces are the

services or capabilities that a component supplies to other components. The required

interfaces are the services that a component has to receive from other components in

order to accomplish its own functionalities. The model still couples the components

tightly together, and they lack independence. This property contradicts the general

objectives of component-based software.

4.5 Evaluation, Analysis and Management of Component-based Software

Although component-based software ideally and theoretically promises the software

developers a bright future for building software systems, there is still skepticism on the

development paradigm. As we surveyed before, component-based software development

has two centers: component development and architecture design. Up to now there are

no complete metrics for developers to evaluate, analyze and manage such a system,

though there are some methods, such as scenario-based analysis for software architecture.

In this section, a brief survey is given to address these evaluation and management issues.

4.5.1 What Problems Need to Be Solved?

Component-based development has obvious characteristics, such as the separation of

component development and the whole system development even though the properties
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of components in a system need to be described. Here we list the problems that need to

be solved by metrics for components, whole systems and architectures.

Takeshita described some problems in [69]. The problems are around components

and a whole system. Here they are simply introduced. The problems refer to metrics and

risks of component-based software engineering. Vickers classified the risks of CBSE to

five areas and indicated where metrics might be useful [79]. We summarize their

conclusions here.

The following problems need to be solved when developing components. What

measurements are to be used for the size and complexity of components? How to

measure the size and complexity of components? What makes up the quality of a

component? What measurements are to be used for quality of a component? How to find

out the quality of components? How to estimate the workload to produce components for

CBSE? How to price components for CBSE? How will developers and/or distributors

charge their customers for the use of their components? What measurements should be

used to record and display the total usage of a component?

For a component-based software system, a component-based software engineer

needs to answer the following questions. What measurements are to be used for the size

and complexity of a completed application? How to measure the size and complexity of

completed application programs? How to estimate the workload to put together

components to produce completed application programs? What determines the quality of

a completed application program? How to find out the quality of a completed application

program? How to price completed application products using CBSE? In addition, when

a component-based software system is developed, what risks must be taken? What are
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potential mistakes a system designer may make? Is there sufficient technical support?

What are the difficulties in management in an enterprise? All these problems must be

solved in order for component-based software engineering to be a mature discipline.

Generally there are two types of risk knowledge, generic risk knowledge which applies to

all CBSE projects, and project-specific risk knowledge [79]. They are:

• CBSE risk areas,

• CBSE risk management techniques,

• Risk severity ratings,

• Risk relationships,

• Risk consequences,

• Risk warning signs,

• Component usage profiles,

• Specific project risks,

• Risk monitoring criteria, and

• Risk status.

Moreover, there exist some problems around software architectures. A typical

problem is how to obtain the expected system properties. The properties of a software

system can be run-time properties and non-run time properties. The run-time properties

include performance, behavior, communication patterns, and so on. The non-run time

properties include maintainability, portability, reusability, adaptability, extensibility,

scalability, ease of use, predictability and learnability that are also called quality
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attributes. The run-time properties are addressed by many ADLs [12]. The non-run time

quality attributes are analyzed with a proposed method, scenario-based analysis, in [30].

Scenarios are brief narratives of expected or anticipated use of a system from both

development and end-user viewpoints.

4.5.2 Some Proposed Solutions

As can be seen in Section 4.5.1, component-based software faces many risks. This is

why some developers and users are skeptical towards the component-based software

development style. As the supporters of component-based software, we have to find

solutions for the problems. It is necessary to propose a comprehensive methodology for

component-based software engineering.

One of the solutions is the Risk Analysis and Management (RAM) model in [40].

RAM is a structured process for controlling risks. Risk analysis is supposed to address

the identification of risks, the estimation of risks and the evaluation of risks. After the

analysis, risk management figures out the selection and implementation of risk

management techniques, and the monitoring of their effectiveness during the project.

The results or knowledge from risk analysis are stored in a risk repository. The risk

management will apply some techniques on the stuff in the repository. The techniques

could be pre-risk, which means preventing risks before they become problems, or post-

risk, which means figuring out the impact that the risks have.

To solve the problems around software architectures, a solution was proposed in

[29]. The technique, deriving software architectures from quality attributes, sets the

quality attributes of systems first and then derives a software architecture step by step
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such that the architecture has the desired quality attributes. This is really a choice for a

component-based software engineer.

4.6 Summary

A survey on component-based software is done in this chapter. The surveyed topics

include the definitions for components, requirements of software libraries, component

representation and retrieval, component-based software development, and the metrics of

component-based software engineering. These topics are related to development

methodologies of component-based software systems. The main contents of each topic

are summarized in this section.

A number of definitions of components is surveyed in Section 4.1. Generally a

component is defined as a unit of computation. Its granularity is varied. It must be

reusable, independent, and context-unaware.

For software libraries, some requirements are summarized in Section 4.2. One of

these requirements is a consistent systematic taxonomy for all components. The

components in software libraries should be as generic and efficient as possible. A

software library should be comprehensive.

Component representation and retrieval are surveyed in Section 4.3. It is indicated

that a component in a software library must be represented in a formal specification

language. For a designed component in an application, it also must be described in a

formal specification language so that the behaviors of a component can be matched when

it is searched from software libraries. Furthermore, the retrieval of components from
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software libraries must be based on formal specifications so as to obtain an expected

component. Signature match is inadequate to match the behaviors of two components.

Several existing methods for component-based software system development are

explored in Section 4.4. These methods focus on architectural styles and architecture

description languages. They are weak on system integration from varied components and

connectors, and component search.

In order to propose a comprehensive methodology for component-based software

system development, the necessary metrics for component-based software are surveyed

in Section 4.5. A lot of problems around component-based software and software

architectures are summarized. Besides the problems, some risks component-based

software engineers need to evaluate and analyze are introduced. At last, a number of

potential solutions is discussed.



CHAPTER 5

CYCLOMATIC COMPLEXITY AND CUBIC FLOWGRAPHS

Cyclomatic complexity has been utilized before in McCabe's work [45] as a tool for the

evaluation of computer programs. Such a measure could be used in the estimation of the

number of testing paths in a program, if the program should be tested for all the execution

paths. Since a program can practically be represented as a directed graph (e. g. program

control graph [45]), it is reasonable to apply cyclomatic complexity to programs because

the concept, cyclomatic complexity, actually originated from the concept cyclomatic

number in graph theory. When we study the cyclomatic complexity of programs, we find

that if a program is converted to a cubic flowgraph, the cyclomatic complexity of

programs can also be computed. The method implies a solid and theoretic way for the

computation of cyclomatic complexity. In this chapter, the essence of the method is

discussed.

On the other hand, cubic graphs are structures that can be decomposed into

elementary cubic graphs. Utilizing this property, programs can be converted to cubic

graphs and their structures can be analyzed with respect to the composition of the

corresponding elementary cubic graphs. In addition to this potential use in structural

analysis, other benefits of transforming programs to cubic graphs have been exploited.

The inherent relation between specific cubic flowgraph nodes and the decision-making

points in a program rendered the cubic graphs as a good candidate for calculating

cyclomatic complexity.

The research achieved similar results to those of an existing method [45] for

calculating the cyclomatic complexity. Also it is easy to observe the preservation of the

57
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calculated complexity in the corresponding collection of elementary cubic graphs. Such

a collection constitutes the decomposition of the program.

In this chapter, a brief survey of the existing method for calculating cyclomatic

complexity is given. Cubic flowgraphs and computing cyclomatic complexity through

cubic flowgraphs are explained. Finally the decomposition of cubic flowgraphs and their

relation to cyclomatic complexity are demonstrated.

5.1 Cyclomatic Complexity of Programs

McCabe introduced a way to calculate cyclomatic complexity of a program [45]. This

method is especially valuable for structured programs [55]. A structured program is

assumed to have one entry point and one exit point. In order to test a program, the

number of paths included between the entry and the exit points needs to be known.

Every path may need to be tested. McCabe has also indicated in [45] that, it is possible to

determine the correctness of a program if a limited number of paths is tested. Each

program has a limited number of primary paths and other paths are a linear combination

of the primary paths. The details of calculating cyclomatic complexity based on the

mentioned method are explained below, considering structured programs.

Every program can be represented by a flowchart. A flowchart can be converted

into a directed graph, called a program control graph by McCabe. The corresponding

directed graph has two distinguished nodes: an entry node and an exit node. Every node

in this directed graph can be reached from the entry node and every node can reach the

exit node. Nodes in this graph either represent a decision-making condition or a

statement. If an imaginary edge from the exit node to the entry node is added to this

graph, a strongly connected directed graph is obtained. Representing programs as graphs



59

helps in the application of graph theoretical aspects to obtaining software engineering

tools. One such tool is the cyclomatic number of a graph. If v(G) is used to represent the

cyclomatic number of a graph G, then

v(G)=e—n+p,

where e edges, n nodes and p connected components are included in the graph G.

Based on McCabe's work [45], the cyclomatic number of a strongly connected

graph G is equal to the maximum number of linearly independent circuits. From the

linearly independent circuits, the independent primary paths of a strongly connected

graph can be produced. The idea can be demonstrated in an example in the form of a

program shown in Table 5.1. Figure 5.1 shows a strongly connected directed graph G

converted from the program in Table 5.1. The statements in the program are a, b, c, d, e,

f, g, h, and x. The decision-making conditions are A, B, C, and D.

Table 5.1 A program example
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Figure 5.1 A program control graph

The cyclomatic number of G is v(G)=17-13+1=5 because there are 17 edges

including the edge from the exit node to the entry node, 13 nodes and only one connected

component in G. So the maximum number of linearly independent circuits is 5. There

are four linearly independent circuit sets listed in Table 5.2 where the size of each set is

5.

Table 5.2 Independent circuit sets

Therefore, any one of these sets (B1, B2, B3, or B4) is a primary basis for all

circuits in the graph G and paths through G. The circuits and paths in the graph can be
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expressed as a linear combination of circuits in any one of these sets. For example, if we

take B1 as basis, the circuit (aAcdBefCDxa) can be expressed as (aAbdBefCDxa)-

(aAbdBxa)+(aAcdBxa). An algorithm for computing cyclomatic complexity of a

program can be found in [73]. Based on the linearly independent circuit sets, there are

corresponding linearly independent program path sets as listed in Table 5.3.

Table 5.3 Independent program path sets

After the maximum number of linearly independent paths of a program is known,

program testing can be done based on the primary paths. The maximum number of

linearly independent paths is referred to as the cyclomatic complexity of a program, v(G).

Detailed information can be found in [45] for cyclomatic complexity, with the basic set

of properties given below:

1) v(G) is equal to or greater than 1.

2) Inserting or deleting functional statements to G does not affect v(G).

3) In fact, v(G) is just determined by decision-making conditions and v(G)=n+1,

where n is the number of decision-making conditions in a program.

5.2 Computing Cyclomatic Complexity Based on Cubic Flowgraphs

Every program can be converted to a cubic flowgraph. A cubic flowgraph is a strongly

connected directed graph. The cyclomatic number of a cubic flowgraph can be computed

similar to that of a normal strongly connected directed graph. But a cubic flowgraph is a
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special strongly connected directed graph. Based on the properties of cubic flowgraphs,

the following theorem is used for computing the cyclomatic number of a cubic

flowgraph.

Theorem 1

If a cubic flowgraph G has 2n(n=0, 1, 2,...) nodes, then its cyclomatic number is:

v(G) =n+1 .

Proof:

It is assumed that e edges and m nodes are in a cubic flowgraph. A cubic flowgraph is

known to be a strongly connected directed graph. Consequently the number of connected

components in the graph is 1. Cyclomatic number of G has been defined in [45] as:

v(G)=e-m+ 1

On the other hand, the graph is a cubic flowgraph with 2n nodes. So it must have 3n

edges meaning that e=3n and m=2n. Then

v(G)=3 n-2n+ 1

and finally,

Remarks:

Generally the n in a cubic flowgraph can be interpreted as the number of decision nodes.

Every decision node corresponds to a junction node. For n decision nodes there are n

junction nodes, accounting for the total 2n nodes. The application of Theorem 1 to the

program in Table 5.1, whose cubic flowgraph is shown in Figure 5.2, yields v(G)=5.
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The result verifies Theorem 1. Therefore Theorem 1 has a corollary concluded as

below.•

Figure 5.2 A cubic flowgraph of the program in Table 5.1

Corollary 2

The cyclomatic number of a cubic flowgraph is the number of decision nodes plus one. ▪

Remarks:

The corollary suggests a simple way to compute the cyclomatic number of a cubic

flowgraph. If we have a cubic flowgraph, we do not need to count how many nodes and

arcs in it; we just need to count how many decision nodes it has. Then the cyclomatic

number of a cubic flowgraph is the number of decision nodes plus one. ▪

As discussed before, each program corresponds to a cubic flowgraph and the

flowgraph does not change the semantics of the program. Thus the cyclomatic number of

a cubic flowgraph is also the cyclomatic complexity of its original program. This is

concluded in Corollary 3.
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Corollary 3

The cyclomatic complexity of a program is equal to the cyclomatic number of its cubic

flowgraph. ▪

Remarks:

When the cyclomatic complexity of a program is computed, Corollary 3 supplies us with

an easy way to do that. Clearly converting a program to a cubic flowgraph is easier than

converting it to a program control graph. Therefore, this method is better than the

previous ones. ▪

5.3 Computing Cyclomatic Complexity

Based on Decomposition of Cubic Flowgraphs

In this section, prime cubic flowgraphs and the relationship between the prime cubic

flowgraphs of a program and the cyclomatic complexity of the program are discussed.

Prime cubic flowgraphs are the results of decomposition of cubic flowgraphs. We have

concluded that there are three prime cubic flowgraphs, Po, P1 (two forms) and P2 as

shown in Figures 2.4 and 2.5.

Therefore, a conclusion is reached that every structured program can be

decomposed into prime cubic flowgraphs. A relationship between the decomposition of a

program and its cyclomatic complexity is concluded in Theorem 4.

Theorem 4

The cyclomatic complexity of a program is

v(G)=N +2 *N2+ 1,

where NI and N2 are the numbers of PI and P2 in a program respectively.
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Proof:

In the calculation of cyclomatic complexity of a program, Po, Pi and P 2 in the

decomposed collection of prime cubic flowgraphs contribute 0, 1 and 2 respectively to

the complexity. Let No be the number of P0s in the program. Let N 1 be the number of

P i s in the program. Let N2 be the number of P2 s in the program. If the cubic flowgraph

of the program has 2n nodes, then

Remarks:

The theorem can be very useful for a large program if the cyclomatic complexity of the

program needs to be calculated. The decomposition of the program in Table 5.1 suggests

as an example that N 0=1, N1=2 and N2= 1 . Thus v(G)=5. The result can be verified by

the decomposition of the cubic flowgraph in Figure 5.2. The decomposition results are

shown in Figure 5.3.



Figure 5.3 The decomposition results of the cubic flowgraph in Figure 5.2

Any program can be represented by a flowchart. A flowchart can be converted to a

cubic flowgraph, by following the given rules. When the graph concept "cyclomatic

number" is applied to a cubic flowgraph, the same results are achieved as McCabe did in

[45]. Besides the conclusion in this theorem, we note that each flowgraph has and only

has one prime flowgraph, P o . As the result of this observation, the I in v(G)=N1+N 2 *2+ I

can be interpreted as the number of Po. If the mixed control structure corresponding to

prime cubic flowgraph P, is removed and replaced by standard program control

structures, then there are only two prime cubic flowgraphs, Po and P I . Under this

situation, v(G)=N1+1 according to Theorem 4. Clearly the v(G) is really the number of

prime flowgraphs. Therefore, the result can be concluded as a corollary of Theorem 4.

Corollary 5

The cyclomatic complexity of a standard structured program is equal to the number of

prime flowgraphs in the program. ▪

Remarks:

The corollary is a very useful result if a real structured program is decomposed into prime

flowgraphs. For example, before we are going to decompose a flowgraph of such a

program, we can know how many prime flowgraphs are included in it through the

computation of its cyclomatic complexity. The corollary is applied in our methodology

for system, subsystems and connectors decomposition (see Chapter 7). ▪
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5.4 Summary

This chapter explored the relationships between cubic flowgraphs and cyclomatic

complexity of computer programs. The research results are concluded in Theorem 1,

Corollary 2, Corollary 3, Theorem 4 and Corollary 5. These conclusions suggest a new

way to compute cyclomatic complexity of computer programs.

Based on cubic flowgraphs, the cyclomatic number of a program is equal to the

cyclomatic number of its cubic flowgragh, while the cyclomatic number of a cubic

flowgragh is the number of decision nodes plus one. For a standard structured program,

its cyclomatic complexity is equal to the number of prime flowgraphs in it. The results

can be used to analyze a program and the entities with similar structures as programs,

such as software system architectures.



CHAPTER 6

FUNDAMENTALS FOR THE METHODOLOGY

The survey of software architectures and component-based software in Chapters 3 and 4

suggests development steps for component-based software engineering. Roughly

speaking, the steps consist of software architecture design, component search, and system

integration. In fact, architectural design is to define desired components, connectors for

the interactions among the components and configurations. Since the implementation

details of components are not considered, we just need to design the details for

connectors. Therefore the integration methodology is used immediately after the detailed

design of connectors. On this point, what a system needs is the implementation. The

methodology focuses on the implementation of a component-based software system. It is

based on two fundamentals, an aggregation view on software architectures and a

component model. Thus Section 6.1 provides the view, classifies the aggregations into

system aggregations, subsystem aggregations and connector aggregations based on the

view and demonstrates the view by a number of problem examples. Since the

components are the elementary functional units in component-based software system,

Section 6.2 introduces a component model for component search from software library.

Section 6.3 summarizes our view and component model.

6.1 An Aggregation View on Software Architectures

For a large system, when it has been designed, the system traditionally consists of some

subsystems, while a subsystem consists of modules. For example, Figure 6.1 is a typical

system level diagram. The lines in the diagram mean containing, such as, a system

68
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contains subsystems, and subsystems contain modules. In a similar way, a component-

based software system can be divided into subsystems, but a subsystem actually consists

of atomic or composite components. In this section, an aggregation view on software

architectures is introduced. Then a number of problem examples are used to verify the

view.

Figure 6.1 A system architecture based on subsystems and modules

6.1.1 Aggregation View

In a component-based software system, the functionalities are distributed among

components according to the architectural views. A component can be a function, a

module, a package, or an entire system. Generally a component-based system consists of

components and the interconnections among components. The interconnections are

abstracted as connectors. A component could be atomic or composite. A composite

component consists of other components connected by at least one connector. Hence, a

traditional subsystem or system can be considered as a composite component in terms of

component-based style.

Moreover, architecture-based system design focuses on the interconnections and

the functional descriptions of components instead of the details of components. For
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example, the diagram in Figure 6.2 shows a typical structure of a component-based

system. The structures of a component-based system may not be hierarchical if one

functional unit is contained in more than one other functional unit. In this dissertation, it

is assumed that when a structure of a component-based system is drawn, a functional unit

is allowed to be repetitive. This assumption makes the structures hierarchical.

Figure 6.2 A structure of a component-based system

The hierarchical structures of component-based systems illustrate that all the

leaves are components. These components can be called atomic ones because they are

the results of architecture design and are searched from software libraries. For such a

particular system, we do not care that they are originally atomic or composite in software

libraries. The other nodes in the hierarchical structures are connectors, subsystems and

system. These nodes can also be considered as components according to the general

definition of a component. In fact, for a particular system, they are absolutely composite

components. For example, a decomposition of the structure in Figure 6.2 produces a

number of composite components shown in Figure 6.3.
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Clearly a composite component at least includes a connector that connects a

number of components. For a system like the example in Figure 6.2, a subsystem is a

composite component, while an entire system is also a composite component. The

system and subsystem nodes serve as connectors. For the sake of convenience, we call

such a composite component an aggregation. The aggregations are a natural

decomposition of system's functionalities. Such decomposition suggests a way for the

final system integration. In this way, the system integration starts with the

implementation of the lowest level, then the higher levels, and finally up to the highest

level. As the example in Figure 6.3, we implement the aggregations 5, 6, 7, and 8, then

aggregations 4, 3, and 2, finally the aggregation 1.

Figure 6.3 A decomposition of the structure in Figure 6.2

Such aggregation relationships are helpful to control the complexity of a system

because the system can be decomposed into pieces in terms of the relationships. For

example, the system in Figure 6.2 contains eight such relationships and can be



7 -)

decomposed into eight pieces shown in Figure 6.3. Obviously the aggregations can be on

system level, on subsystem level or on connector level. Therefore, the aggregations can

be classified into system aggregations, subsystem aggregations and connector

aggregations in terms of their root nodes. Every aggregation could include an atomic

component. We define this kind of architectural view as aggregation view. Our

methodology makes use of the view to decompose a software architecture into various

levels aggregations.

We have discussed architectural views in Section 3.3. Aggregation view, in

reality, is another expressive way for module view because the module view is the results

of refining the functional requirements to functional modules. The architectures under

this view are tightly coupled to implementation. Using aggregation view means a natural

division of a system architecture. The divided units under aggregation view can be de

facto considered as functional modules. The granularity of the modules can be a system,

a subsystem, or a connector.

6.1.2 Demonstration by Examples

Now two real problem examples, the Key Word in Context (KWIC) problem and the

Embedded Cruise Control (ECC) problem, are examined under the aggregation view.

We use the examples to demonstrate the architectural view used in the integration

methodology. The two examples are also used through the rest of this dissertation for the

purpose of demonstrating the integration methodology.

The KWIC problem was proposed by Parnas [59]. He stated the problem as

follows:
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The KWIC [Key Word in Context] index system accepts an ordered set of lines; each line is

an ordered set of words, and each word is an ordered set of characters. Any line may be

"circularly shifted" by repeatedly removing the first word and appending it at the end of the

line. The KWIC index system outputs a listing of all circular shifts of all lines in

alphabetical order.

Before the problem is examined in terms of aggregation view, the requirements

analysis based on component-based software style must be done. The problem statement

suggests that the input and output of a desired system are a set of text lines. The set of

text lines is the data elements that need to be processed. The main processing elements

are to circularly shift a text line word by word and to sort all the lines in alphabetic order.

In addition, we should consider how to process the input and output of the system.

Figure 6.4 A component-based system structure for KWIC

Considering the independence and reusability of components, the input and output

should be separated from the main processing elements. Therefore, for this system, it has

four components, input, circular shift, sort and output. The next problem is how to

coordinate the components in order to complete the tasks. Generally the coordination

among components is abstracted as connectors. For this system, an architecture is shown

in Figure 6.4 in which the node KWIC serves as the connector. One connector is used to
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coordinate the four components. This design is an intuitive and natural one. It just

focuses on solving the problem.

The KWIC is a relatively small system. The whole structure can be considered as

one aggregation. The aggregation includes four components. The aggregation structure

can be implemented in varied ways according to different component types and connector

types [64] [15]. On the other hand, considering the enhancement for reusability of

potential components, especially some new composite components, the above

aggregation structure can be improved to be a two levels structure shown in Figure 6.5.

Figure 6.5 Another component-based system structure for KWIC

This new structure contains a composite component in which a connector connects

the two components, shift and sort. In this situation, the new composite component may

be reused elsewhere. The structure in Figure 6.5 contains two aggregations, one with the

root node, KWIC, and the components Input and Output, and a connector, Connector, and

another with the root node, Connector and the components Shift and Sort. Obviously the

structure in Figure 6.4 and the structure in Figure 6.5 represent different design decisions.

In other words, different design decisions will lead to different system structures, and

perhaps different sets of aggregations. But one thing is common. It is that all the leaves
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in such a structure are components. Those components are the results of primary design

and need to be searched.

Table 6.1 The definitions for inputs and output of the ECC system

Input
System on-off

"System on" means that the ECC maintains the speed

of the car.

Engine on-off
"Engine on" means that the engine is running. 	 The

ECC system can only be active if the engine is on.

Wheel pulse A pulse per revolution of the wheel.

Accelerator
A value indicating how far the accelerator has been

pressed.

Brake
When brake is pressed, it is on. 	 The ECC system

releases speed control when on.

Increase/decrease
Increase or decrease the maintained speed such that

the ECC holds at the new speed.

Resume
The ECC system resumes the last maintained speed.

It is applicable only if the ECC system is on.

Clock Timing pulse per millisecond.

Output Throttle A value for the engine throttle setting.

As an example, the cruise control system has been used in many software

engineering books. Tanik and Chan used it to demonstrate informally the inception and

specification of a system that results in a formal representation of the design abstractions

[71]. They describe the following problem:

The ECC system controls the speed of a vehicle equipped with an electronic fuel-injection

system; it regulates the speed of the vehicle to a desired value as long as the speed remains

uninterrupted by the pressing of the brake pedal; the system is operational only if it is

enabled by the on state of the system's on-off switch and only if the engine is running;
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when the system is switched on, it immediately begins maintaining the current speed unless

it reacts to the pressing of increase or decrease switches or of the accelerator pedal.

The inputs for the ECC system are System on-off, Engine on-off, Wheel pulse,

Accelerator, Brake, Increase/decrease, Resume and Clock. The output of the ECC is

Throttle. The definitions of the inputs and output are summarized in Table 6.1.

To solve the problem, we need to analyze the requirements, and then refine the

requirements to the system's functionalities. If we use a component-based software style,

the functionalities are distributed to several components. Tanik and Chan elaborated the

problem statement to a data flow diagram in order to analyze the functionalities of the

ECC system [71]. It is adapted here as shown in Figure 6.6.

Figure 6.6 ECC data flow diagram (adapted from [71])

The data flow diagram of the ECC system implies five processing elements, that is,

Calculate current speed, Calculate desired speed, Set last speed, Set brake state, and

Calculate throttle setting. For each processing element, it has its own inputs and output.
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The five processing elements can be intuitively considered as components. Since the

inputs and output of each component are simple values, we are not going to design them

as separate components. Instead, they are supposed to be prepared by connectors. Such a

design decision produces a component-based software architecture as shown in Figure

6.7. This is a preliminary design. The design details are discussed in Chapter 7.

However, it needs to be indicated that the whole system is executed only when the ECC

system is on.

Figure 6.7 A component-based system structure for ECC

The implementation of the connector in the ECC architecture is relatively simple

or complex dependent on what coordination protocols are used. The data flow diagram

indicates that the four components in this connector aggregation can be executed

synchronously or asynchronously. A properly selected protocol for the interactions is a

key factor for the system. On the other hand, the interactions can be implemented

sequentially. Perhaps this is a way to simplify complex situations.

The solutions here for these two problems are preliminary designs. After the types

of all the components are chosen, the detailed designs for the problems need to be
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explored. In fact, such detailed designs for component-based systems are the designs of

connectors. Generally architectural styles are selected. Then coordination protocols for

connectors are determined. The final design results depend on the combinations of

architectural styles and the coordination protocols. Those considerations for the two

problems are discussed in Chapter 7.

6.2 Component Model

We have to propose a component model in order to integrate a system from components.

This component model is used for the component search. It is based on the previous

work surveyed in Chapter 4. A component generally consists of interface and

implementation while only the interface of a component is exposed to the outside or a

client of a component. In order to search for a required component in a software library,

the interface needs to be defined as delicate as possible. A component interface consists

of type, methods, events, properties, constraints and semantic specifications for methods

and events' methods. The type information in this model indicates what kind of a

component is. For example, the component is a server or a filter. The methods and

events reflect the functional services provided by a component. The specifications

embody the behaviors of the methods and events. The properties show the clients of a

component what are the runtime contexts of the component. The constraints express

some conditions that need to be satisfied when a component is invoked. The component

model we propose is shown in Figure 6.8.

In the methodology we propose an implementation description language. Besides

the description of aggregations, all the components involved in a system are also



79

described based on the component model. The descriptions of components are employed

for search.

Figure 6.8 A component model

The component model is a comprehensive one because it covers all the required

features of an ordinary component. If a software library is to be built, each component in

the software library must consist of these features. It is a basic requirement for a

software library because users of components always want to know everything about a

component. On the other hand, if a component is designed in an application, it is not

necessary for the designer to explore all the features in the model. A required component

in an application needs to be searched. Therefore, the information collected for

component search is the type, methods, events and their semantics that is represented in a

formal specification language. When an expected component has been obtained from a

software library, all the information for the component included in the model is provided

by the vendor of the component.
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6.3 Summary

We conclude that a component-based system is a set of aggregations and components.

These aggregations belong to three levels: system aggregation, subsystem aggregation

and connector aggregation. The implementation of system aggregation is based on

subsystem aggregations. The implementation of subsystem aggregations is based on

connector aggregations. The implementation of connector aggregations is based on

components, while the components need to be searched from software libraries or to be

bought from component vendors. The relationship among the aggregations is shown in

Figure 6.9 which looks like an aggregation pyramid. Our work is to propose a

methodology for constructing such a pyramid.

Figure 6.9 Aggregation pyramid of software architectures

Our methodology begins to build the base of the pyramid, then the middle layer,

and finally the top. In other words, the implementation of a whole system starts with the

component search, the implementation of connector aggregations, then subsystem

aggregations, and finally system aggregation. Each aggregation corresponds to a
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flowgraph that is used to represent the implementation details for it. The flowgraph

representation is discussed in Chapter 7.

It is noteworthy that the decomposition of software architectures to aggregations

takes advantages of component-based software because an aggregation is actually a

functional unit. From the decomposition, we can really see the shadow of functional

decomposition in traditional structured analysis and design. However, component-based

software engineering gets rid of considering the algorithms and data structures of

components. In this way, we only pay attention to the implementation of connectors.

Based on our approach for system integration, a general component-based software

development methodology could consist of requirements analysis, architecture design,

architecture description, architecture decomposition to components and aggregations,

component search, aggregation construction, system test and system maintenance. The

development model is shown in Figure 6.10.

Figure 6.10 A development model for component-based software systems
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The development model for component-based software system implies an

important advantage, that is, handling requirements changes more easily. The reason is

that the elementary functionalities of a system are distributed among the components. If

some functionalities have to be changed, only the corresponding components are

replaced. If some new functionalities need to be added, we search some new components

to meet the requirements and insert them into the system.



CHAPTER 7

SYSTEM REPRESENTATION AND DECOMPOSITION

In the previous chapter, an aggregation view was proposed. We claim that our

methodology for system integration would be based on this view and is applied after the

detailed system design. In order to generate an executable system automatically or semi-

automatically from the detailed designs, each aggregation needs to be represented in a

language. As the result of detailed design, every aggregation corresponds to an

implementable algorithm, even if the algorithm is simply composed of several

assignment statements. The algorithms embody the internal interaction relationships

among the parts in aggregations. Moreover the algorithms are actually the

implementations of connectors according to our aggregation view.

In addition, our methodology suggests that the algorithms be expressed with

structured programming style. In other words, the three program control structures are

used to express the detailed design of the algorithms. The graphical language used for

the representations of the algorithms is Jackson Diagram [27]. The concrete steps in the

methodology are to represent the algorithms by using Jackson Diagrams and then to

convert the Jackson Diagrams to structured flowgraphs that were introduced in Chapter 2.

We employ Jackson Diagrams since they are generally built on aggregations of

related modules and each aggregation in it is explicit. Jackson Diagrams are also

represented based on the three program control structures. We use the structured

flowgraphs since each structured flowgraph can be decomposed into some prime

83
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flowgraphs of a sequential, selective or repetitive structure. The structured flowgraph of

an aggregation is called an aggregation flowgraph.

In Section 7.1, we discuss how to convert a Jackson Diagram into a structured

flowgraph; how to decompose an aggregation flowgraph is discussed in Section 7.2. The

Jackson Diagram representation, the conversion of Jackson Diagrams to flowgraphs and

the flowgraph decomposition are demonstrated in Section 7.3 with the two problem

examples, KWIC and ECC.

7.1 Conversion of Jackson Diagrams to Flowgraphs

Aggregations are classified into three kinds, system aggregations, subsystem

aggregations and connector aggregations. After the decomposition of a software system

architecture to aggregation sets, the detailed design of each aggregation is represented as

a Jackson Diagram. Then Jackson Diagrams are converted into structured flowgraphs.

Figure 7.1 A Jackson Diagram

A Jackson Diagram traditionally consists of modules drawn as boxes [27]. For

example, a Jackson Diagram is shown in Figure 7.1. The boxes are connected through

lines to form a hierarchy. There are three kinds of boxes: plain boxes, circle boxes and

asterisk boxes. The root box must be a plain box. A line from a parent to children means
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that the parent contains the children while a plain box child means sequential, a circle box

child means selective and an asterisk box child means repetitive. The three different

kinds of boxes are actually the three program control structures.

Figure 7.2 The Flowgraph of the Jackson Diagram in Figure 7.1

A common property of Jackson Diagrams and flowgraphs is that they use three

program control structures. The only difference is that they use different notations in a

diagram. Figure 7.1 is a Jackson Diagram while Figure 7.2 is the corresponding

flowgraph. We suppose that the diagram in Figure 7.1 represents an aggregation. Module

A consists of modules BI, B2, and B3 that are executed sequentially. Module B1
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consists of components C1 and C2, one of them is executed based on a selection

condition. Module B2 contains module C3 and uses it repeatedly if a condition is true.

Module B3 contains module C4 and uses it repeatedly if a condition is true. Module C3

selectively executes one of components D1 and D2 in terms of a condition.

Thus module A with B1, B2, and B3 is a sequential structure. Module BI with C1

and C2, and module C3 with D1 and D2 are selection structures. Module B2 with C3 and

module B3 with C4 are repetitive structures. For a selection structure or a repetitive

structure, the condition is implied in parent node of this structure. For a sequential

structure in Jackson Diagrams it is drawn as a sequential prime flowgraph. For a

selection structure in Jackson Diagram it is drawn as a selection prime flowgraph. For a

repetitive structure in Jackson Diagram it is drawn as a repetitive prime flowgraph. Then

we follow the order of the structures in the Jackson Diagram and compose the prime

flowgraph to a general flowgraph according to the composition steps for flowgraphs

introduced in Chapter 2. The Jackson Diagram example in Figure 7.1 has been converted

to a structured flowgraph shown in Figure 7.2.

It is noteworthy that a non-leaves box in a Jackson Diagram implies a prime

flowgraph. Furthermore, the condition for a selection or a repetition in a Jackson

Diagram is implied in a parent node within a selective or repetitive structure. But the

condition for a selection or a repetition is represented explicitly as a decision node in a

flowgraph. The leaves in the Jackson Diagram are the explicit process nodes that are

actually elementary functional units in an aggregation flowgraph.

According to the properties of the Jackson Diagram and the rules of creating a

flowgraph, we got a flowgraph shown in Figure 7.2. It consists of decision nodes,
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junction nodes and functional unit nodes. The nodes, A, B1, B2, B3 and C3 are implied

in the flowgraph. The implicit correspondences between the Jackson Diagram and the

flowgraph are shown in Figure 7.3.

Figure 7.3 Implicit nodes in the Jackson Diagram



88

7.2 Aggregation Flowgraph Decomposition

As we have discussed in Section 7.1, an aggregation can be represented as an aggregation

flowgraph. In order to generate executable code for an aggregation, it is very helpful for

us to decompose the flowgraph into prime flowgraphs. Basically it is very useful if we

know how many prime flowgraphs are included in a flowgraph before we are going to do

the decomposition.

Figure 7.4 Jackson Diagrams and their prime flowgraphs
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In Chapter 5, we conclude in Corollary 5 that the cyclomatic complexity of a

standard structured flowgraph equals the number of prime flowgraphs in the flowgraph.

Since each aggregation flowgraph is a standard structured flowgraph, we can compute its

cyclomatic complexity. If we know the number of prime flowgraphs, it is easy for us to

perform the decomposition. Now let us check the aggregation flowgraph in Figure 7.2.

The cyclomatic complexity of the flowgraph is 5 because it has 4 decision nodes.

Therefore, it has 5 prime flowgraphs. The 5 prime flowgraphs and their corresponding

Jackson Diagrams are shown in Figure 7.4.

We decompose an aggregation flowgraph into some prime flowgraphs according

to the decomposition steps introduced in Chapter 2. However, when we decompose an

aggregation flowgraph into prime flowgraphs, some new rules must be followed.

Generally a program module has its run-time contexts: some variables need to be

initialized, some values need to be prepared, or a return value needs to be saved

somewhere. Since each prime flowgraph contains a set of functional units, the units have

their own run-time contexts that make the prime flowgraph have its own contexts.

Therefore when an aggregation flowgraph is decomposed into prime flowgraphs, the

prime flowgraphs and their contexts can not be separated.

This is the integrity of a prime flowgraph. Any decomposition must not violate the

integrity rule. In other words, the decomposition must keep a prime flowgraph and its

contexts together. In addition, we also need to name each prime flowgraph. For

example, each prime flowgraph in Figure 7.2 has its name shown as in Figure 7.3.
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7.3 Applications

We have introduced two problem examples, KWIC and ECC, in the previous chapter.

The preliminary designs for the problems have been done there. This section focuses on

the detailed designs. Through using the two examples, how to represent a system in

Jackson Diagrams and flowgraphs, and how to decompose a system into prime

flowgraphs are demonstrated. The studies of the problem examples enhance our

methodology for component-based system integration.

7.3.1 The KWIC System

Shaw and Garlan provided four solutions for the KWIC problem [64]. They solved the

problem based on four architectural styles. The styles are main program/subroutine with

shared data, abstract data types, implicit invocation, and pipes/filters. Dellarocas gave

nine solutions for the KWIC problem [15]. The nine solutions used two types of

components, filters and servers. Moreover, three architectural styles were employed.

The styles are pipes/filters, main program/subroutine and implicit invocation. Here two

solutions are proposed based on pipes/filters and main program/subroutine styles

respectively with filter and server component types.

7.3.1.1 Solution 1 - Pipes and Filters: This solution takes the pipes/filters architectural

style and assumes that all the components are filters, typically the UNIX filters. Based

on the analysis done in Chapter 6, the components, input, shift, sort and output, are

filters. Generally a filter reads data from a pipe, processes them, and then writes them to

a pipe. The whole process in a pipe/filter system works similarly to a pipeline. A pipe is

usually implemented as sequential byte stream, such as a file, especially a sequential file.
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Figure 7.5 A solution with pipes/filters for the KWIC

Since the pipes/filters architectural style is used, we have to assume that all the

lines in the KWIC system input are shifted and each line contains the number of words

that need to be shifted. Based on this assumption, the input component reads a sequential

file and writes it to a pipe. Then the shift component receives the file and reads each line

and the number of shifted words, shifts the line and writes the line back to the file. After

shifting all the lines, the shift component writes the file to the next pipe. Furthermore,

the sort component gets the file, sorts it and writes it to the next pipe. Finally the output

component reads the file and outputs it. The pipes/filters architecture for the KWIC

system is shown in Figure 7.5. Here the preliminary design shown in Figure 6.4 is used.

Clearly the components in the architecture are executed sequentially. The

architecture can be represented as a Jackson Diagram shown in Figure 7.6. It contains

only one aggregation. The aggregation flowgraph is shown in Figure 7.7. The

aggregation flowgraph is already a prime flowgraph.

Figure 7.6 A Jackson Diagram for the KWIC system with pipes/filters
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Figure 7.7 A flowgraph for the KWIC with pipes/filters

7.3.1.2 Solution 2 - Main Program/Subroutine: In this section we propose another

solution for the KWIC system. The solution takes main program/subroutine as

architectural style. In addition, we assume that the input, sort and output components are

filters, and the shift component is a server. Considering the reusability of new composite

components produced in the system, we use the preliminary design shown in Figure 6.5.

In order to increase the flexibility of the system, it is assumed that the shift

component shifts one line of text each time it is called. This assumption makes it

possible that selected lines are shifted. Moreover, the shift component is fed one line of

text a time. It means that the shift component as a server communicates with others at the

level of lines of text. All the components are subroutines and all the connectors serve as

main programs because of the main program/subroutine style. Combining the

discussions above, the whole system is a main program and has an architecture as shown

in Figure 7.8.
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Figure 7.8 A solution for the KWIC with main program/subroutine

Since the input and output components are filters, the main program uses them as

in a pipes/filters system. In other words, the main program needs to build such a

pipes/filters environments for the filters. The oval shape in the architecture represents the

connector in Figure 6.5. The connector contains two components, one is a server and

another is a filter. The external circumstances of the connector require it to be a filter.

But the internal structure requires it to be implemented slightly different from a real filter.

First of all, the connector needs to read from a pipe. It also needs to separate the byte

stream into lines of text that are fed to the shift component line by line. Then it has to

organize the shifted lines as a byte stream so that the sort component, a filter, can read

data from the stream. Finally the sort component writes the sorted result to a pipe. On

the other hand, if more than one line needs to be shifted, the shift component would be

called repetitively by the connector.

As we discussed before, the implementation details are represented as a Jackson

Diagram shown in Figure 7.9. The Jackson Diagram can be converted to a flowgraph

according to the conversion rules discussed in Section 7.1. Figure 7.10 shows the

flowgraph.
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Figure 7.10 Flowgraph for the KWIC system with main program/subroutine

Figure 7.11 Aggregation Jackson Diagrams and flowgraphs

The Jackson Diagram in Figure 7.9 suggests that there be two aggregations.

According to the architectural aggregation view, the Jackson Diagram can be
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decomposed into two aggregations, a system aggregation and a process aggregation. The

two aggregations have their own flowgraphs. One of the aggregation flowgraphs is a

prime flowgraph. The other is a non-prime flowgraph. The aggregation Jackson

Diagrams and flowgraphs are shown in Figure 7.11. Figure 7.12 shows the

decomposition of the non-prime flowgraph.

Figure 7.12 A decomposition of the non-prime flowgraph

7.3.2 The ECC System

In Chapter 6, the requirements analysis and a preliminary design are explored for the

ECC system. The preliminary design is summarized in Figure 6.7. This section focuses

on the detailed design. The details are represented as a Jackson Diagram (Figure 7.13)

that will be converted to a flowgraph. The resulted flowgraph will be decomposed into

aggregation flowgraphs that are furthermore decomposed into prime flowgraphs, if

possible.

The preliminary design in Chapter 6 indicates that there are five components and a

connector in the ECC system. A solution proposed here uses the main

program/subroutine architectural style and assumes that the type of all the components is

server. A component of the server type is fed with inputs and returns the results to

requestors. As we discussed in Chapter 6, the ECC system works only if it is on. The

Figure 7.13 shows the working details of the ECC system. First of all, the ECC system is

set to be on by the vehicle driver. When it is on, the system starts to calculate the values
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for the initial throttle setting. Then the system will maintain the on state. If one of the

arguments changes, the ECC system adjusts the throttle setting. The ECC system

releases the speed control only if the brake pedal is pressed or the brake is in on state.

Figure 7.13 A Jackson Diagram for the ECC system

Our methodology requires that a Jackson Diagram be decomposed into

aggregations. Each aggregation is represented as a flowgraph. For a small-scale system,

it is useful to draw a flowgraph for a system Jackson Diagram because the flowgraph can

indicate how many prime flowgraphs are included in the whole system. For a large-scale

system, it usually contains lots of components. The flowgraph for such a system is too

complex. Therefore, the system is represented as a Jackson Diagram that is furthermore

decomposed into aggregations. After decomposition, each aggregation is still represented

as a Jackson Diagram. Then the aggregation Jackson Diagrams are converted to

flowgraphs. These aggregation flowgraphs are decomposed into prime flowgraphs.

These ideas are demonstrated here through exploring the ECC system. The flowgraph of
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the Jackson Diagram of the ECC system is shown in Figure 7.14. Both the Jackson

Diagram in Figure 7.13 and the flowgraph in Figure 7.14 imply that there are four

aggregations. Each of them is already a prime flowgraph or consists of a number of

prime flowgraphs.

Figure 7.14 The flowgraph for the ECC system
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The aggregations in the ECC system are the results of decomposition of the

Jackson Diagram in Figure 7.13 or the flowgraph in Figure 7.14. These aggregations

correspond to prime flowgraphs or can be decomposed into prime flowgraphs. The

Jackson Diagram and flowgraph of each aggregation is shown in Figures 7.15, 7.16, 7.17,

and 7.18. In Figure 7.14 the names of components are abbreviated to one word. For

example, Current represents Calculate Current Speed; Desired represents Calculate

Desired Speed; Last represents Set Last Speed; Brake represents Set Brake State; Throttle

represents Calculate Throttle Setting. The short names are also used in Figures 7.17 and

7.18.

Figure 7.15 Aggregation ECC: Jackson Diagram and flowgraph

Figure 7.16 Aggregation Maintain: Jackson Diagram and Flowgraph



Figure 7.17 Aggregation Initialize: Jackson Diagram and flowgraph
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Figure 7.18 Aggregation Adjust: Jackson Diagram and flowgraph
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The aggregation flowgraphs in Figures 7.16 and 7.17 are prime flowgraphs.

However, the aggregation flowgraphs in Figures 7.15 and 7.18 are non-prime flowgraphs.

They can be decomposed to a number of prime flowgraphs. It is really easy to do the

decomposition as long as the decomposition rules introduced in Chapter 2 are followed.

The decomposition results are shown respectively in Figure 7.19 and Figure 7.20. Figure

7.19 contains the prime flowgraphs from Figure 7.15. Figure 7.20 contains the prime

flowgraphs from Figure 7.18.

Figure 7.19 Prime flowgraphs contained in aggregation Initialize

Figure 7.20 Prime flowgraphs contained in aggregation Adjust

7.4 Summary

The decomposition is an efficient way to control the complexity of a large-scale software

system. In fact, the component-based software paradigm is proposed to attack the

problems a large-scale software system faces. Based on the promise of component-based

software system, we proposed an aggregation view on software architecture in Chapter 6.

The examples we explored so far are the important proofs for the aggregation

architectural view. Therefore, how to make the view feasible to a large-scale software
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system is the next task for our proposed methodology. Fortunately we verified the

usefulness of Jackson Diagrams and flowgraphs. In this chapter, it is proposed to

represent a system architecture as a Jackson Diagram and convert the Jackson Diagram to

a flowgraph. The activities involved in the graphical representation are summarized in

this section.

As we mentioned before, our methodology starts with the detailed design of a

system. Then the detailed design is represented as a Jackson Diagram. The Jackson

Diagram explicitly expresses how many aggregations are included in the system. Then

the Jackson Diagram is converted into a flowgraph that will be used for the final

composition of a system from the aggregations. The Jackson Diagram is further

decomposed into aggregations on different levels. The aggregations are represented as

aggregation flowgraphs that are decomposed into prime flowgraphs if possible.
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SYSTEM IMPLEMENTATION DESCRIPTION

A component-based software system is a set of different-level aggregations and some

independently deliverable components in terms of aggregation view. The only difference

between different-level aggregations is the granularity of functional units. If the

granularity of functional units is ignored, they all can be considered as aggregations of

functional units. Since every aggregation has a flowgraph for its detailed design, the

flowgraph definitely indicates how the functional units in it work together interactively.

We call the interactive relationship of the functional units in an aggregation an

interconnection of them. Since a flowgraph can be decomposed into some prime

flowgraphs, it means that the interconnection consists of some prime flowgraphs. We

call such a prime flowgraph a prime connection. We discuss the prime connection, and

what should be included in a prime connection in Section 8.1. A system implementation

description framework including a component description framework is proposed in

Section 8.2. Section 8.3 introduces an Implementation Description Language (IDL). The

work in this chapter is summarized in Section 8.4.

8.1 Prime Connections

An aggregation flowgraph can be decomposed into some prime flowgraphs as mentioned

before. The prime flowgraph could be a sequential structure, selection structure or

repetitive structure. Such a structured flowgraph can be represented as a regular

expression to show the relationship among the involved functional units. Each prime

flowgraph consists of a set of subsystems, connectors, components or other prime

102
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flowgraphs that are connected through a sequential relationship, a selective relationship

or a repetitive relationship. We define a connection within a prime flowgraph a prime

connection. Simply speaking, a prime flowgraph is a prime connection. For instance, the

prime flowgraphs in Figures 7.7, 7.11, 7.12, 7.15, 7.16, 7.17, 7.19 and 7.20 are prime

connections because they are already one of the three program control structures.

In addition, we note that a functional unit in a prime connection could be a

component, an aggregation, or other prime connections. We define a prime connection as

a pure prime connection if it only includes components. Otherwise, it is a virtual prime

connection. However, the prime connections and the aggregations in a prime connection

play the same role as the components in it do. For example, the prime flowgraphs in

Figures 7.7, 7.12, 7.16 and 7.20 are pure prime connections because they contain only

components. Instead, the prime flowgraphs in Figures 7.15, 7.17, 7.19 and the first prime

flowgraph. in Figure 7.11 are virtual prime connections. In the rest of this section, we

discuss what should be included in a prime connection.

In terms of the definition of a prime connection, a prime connection is a prime

flowgraph. A flowgraph could consist of decision node, junction node and process

nodes. The decision and junction nodes correspond to a logical condition and process

nodes correspond to components, aggregations or other prime connections. Only the

selective and repetitive structures have logical conditions with their necessary

prerequisites. However, since a prime connection is just a syntactic unit and not a

semantic unit, its run-time environment depends on the components and aggregations in

it.
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Now the internal environment of a prime connection is explored. There are

process nodes in a prime connection. The process nodes may be components,

aggregations or other prime connections. Together with the components and

aggregations are their execution contexts. For example, if a component's method is

called, what data need to be prepared, what values need to be passed to the method or

what requirements need to be met before a component or a composite component is

invoked. For a subsystem or a connector, in fact, they are aggregations. Hence, their

execution contexts also mean what need to be prepared in advance before they are

invoked. Furthermore, the context of a component or an aggregation can be divided into

context before the execution and context after execution. They are called pre-context and

post-context respectively.

However, if a prime connection is included in other prime connections, it is not

necessary to define its contexts again in them because it is already done elsewhere.

Therefore we conclude that a prime connection contains components or aggregations

with their pre-contexts and post-contexts, a branching condition with its prerequisites,

structural type, structural relationship expressed in a regular expression, and other prime

connections. In addition, a prime connection could be pure or virtual. We abstract it as a

type for a prime connection to indicate that it is a pure one or a virtual one.

Now we analyze an aggregation example in Figure 7.18. The aggregation

flowgraph has been decomposed into four prime flowgraphs shown in Figure 7.20.

Actually there are four prime connections. They are shown here in Figure 8.1 with

names for each prime connection and their regular expressions. Clearly the prime

connections, Adjust_1, Adjust_2, and Adjust_3, are pure prime connections, but the
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prime connection Adjust is a virtual one because the first three contain only the

components and the last one contains other prime connections. In addition, it is

necessary to name each prime connection in an aggregation.

Figure 8.1 Prime connections and their regular expressions

8.2 Implementation Description Framework

The analysis of an aggregation and prime connections in previous section suggests that

the aggregation description be the kernel of a component-based software system in terms

of our view. If an aggregation can be described completely, there are no problems for us

to describe the whole system. Basically an aggregation has a number of prime
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connections which include type, structural type, structural relationship, logical condition

with its prerequisites, components or aggregations with their pre-contexts and post-

contexts, and other prime connections. Therefore, an implementation description

framework for an aggregation enhances that an aggregation consists of a set of prime

connections. The framework is shown in Table 8.1.

Table 8.1 An aggregation description framework

A complete framework should not miss the description of components. Here we

discuss what framework could be used for the description of components, especially the

interfaces of the components. Although components are the smallest-grain functional

units, when we design a component-based system, the required components need to be

searched. Thus it is necessary to describe a component interface. We have proposed a

component model in Chapter 6. That model is a comprehensive one. The complete

information in the model is used for components in a software library. This model

implies a component description framework shown in Table 8.2. It is just used for
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component search. An IDL must also provide some mechanism to describe components

for search. The IDL we propose in the next section covers the component description.

Table 8.2 A component description framework

The interfaces of a component generally consist of type, methods, and events. The

type information in the framework indicates what the type of a component is. For

example, the component is a server or a filter. The methods and events reflect the

functional services provided by a component. Furthermore, for a method, its type,

signature, and specifications need to be described. The type of a method means the data

type of its return value. The signature of a method includes the name of the method, and

arguments together with their names and data types. Since a component may consume a

number of events and also generates a number of events, in this framework, we classify

the events to be consumed events and generated events. For a consumed event, generally

it corresponds to a piece of program. The behavior of the program needs to be specified.

The specifications embody the behaviors of the methods and events. We propose to

describe specifications for methods and events in two ways, informal specification and
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formal specification. The informal specification serves to system designers. The formal

specification serves for component search.

8.3 Implementation Description Language

A component-based software system is generally considered as a four-level architecture,

system level, subsystem level, connector level and component level. The four levels

correspond to system aggregation, subsystem aggregations, connector aggregations and

components in terms of our aggregation view. If a system is integrated from components

automatically or semi-automatically, it is necessary to describe the detailed design for

connectors, subsystems, and system and to specify the details of components. The

specification of components is used for searching the required components.

This section introduces an Implementation Description Language that covers the

specifications of components and aggregations that could be connector aggregations,

subsystem aggregations or system aggregation. In the language, the implementation

description starts from the top level, system aggregation, down to subsystem

aggregations, then connector aggregation, and finally components. In this way the

description covers the whole entities from root level to leaves in a software system

architecture based on our aggregation view. But these different-level aggregations are

not explicitly called system aggregation, subsystem aggregations or connector

aggregations in the language; instead they are simply called aggregations. Since each

aggregation has a unique name, we use their names to distinguish them. Therefore, a

system consists of components and aggregations, and an aggregation consists of prime

connections. The implementation description templates of a system, an aggregation and a

prime connection are given in Table 8.3, Table 8.4 and Table 8.5 respectively. The syntax
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of the IDL is specified using the Extended Backus-Naur Form (EBNF). The details of the

IDL can be seen in Appendix A.

Table 8.3 A system description template

Table 8.4 An aggregation description template

Table 8.5 A prime connection description template

Table 8.3 indicates that a system consists of a number of aggregations and

components. Table 8.4 shows that an aggregation contains a number of prime

connections. The contents of a prime connection are described in Table 8.5. It illustrates
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that a prime connection includes the type of the prime connection, the structural

organization of the prime connection, the structural relationship among the functional

units and other prime connections, logical condition with its prerequisite for a selective

relationship or a repetitive relationship, components, aggregations and other prime

connections.

Table 8.6 A component description template

When a component-based software system is to be built, the required components

need to be searched. Hence, in a comprehensive IDL, a component must be described. A

description framework for a component is proposed in Section 8.2. In terms of the

framework, an IDL description template for a component is shown in Table 8.6.

The formal specification is used in the IDL to describe the prerequisite of a logical

condition, the pre-contexts and the post-contexts of a component and an aggregation in a

prime connection, and the behaviors of a method or a consumed event. In this IDL, a

formal specification language is not proposed. We leave it open and let a system
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on formal specification languages was done by Cooke, et. al. [13]. We are not going to

analyze and evaluate the formal specification languages again in this dissertation.

Figure 8.2 An IDL description for the KWIC with pipes/filters style

The examples we discussed before can be described in the IDL. In Chapter 6, two

problem examples are analyzed according to the aggregation view. The examples are the

KWIC and ECC systems. Two solutions are provided for KWIC. One solution is

provided for ECC. For the solution 1 of KWIC, its IDL descriptions for the system is

shown in Figure 8.2(a) and the IDL descriptions for aggregation and prime connection

are shown in Figure 8.2(b) in which each of the components has no pre-contexts and
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post-contexts. It uses the pipes/filters architectural style and its components are filters.

The whole system includes one aggregation.

All the components in this solution can also be described in the IDL. Figure 8.3

shows the description for component Input. Figure 8.4 shows the description for

component Shift. Figure 8.5 shows the description for component Sort. Figure 8.6

shows the description for component Output. For those components, they are filters and

they do not have any consumed events and generated events.

Component Input {

Type filter;

Method {
Type File;

Signature Input(File Kword);
Informal specification "Read a file from an input device

and write it to a pipe.";

Formal specification;

}

}

Figure 8.3 IDL description for component Input in the KWIC with pipes/filters

Component Shift {

Type filter;
Method {

Type File;
Signature Shift(File Kword);

Informal specification "Read a file from a pipe, shift each text
line and write it to a pipe.";

Formal specification;

}

Figure 8.4 IDL description for component Shift in the KWIC with pipes/filters



omponent Sort {
Type filter;
Method {

Type File;

Signature Sort(File Kword);

Informal specification "Read a file from a pipe, sort text lines
into alphabetic order and write it to a pipe.";

Formal specification;

}

Figure 8.5 IDL description for component Sort in the KWIC with pipes/filters

omponent Output {
Type filter;*

Method {
Type File;
Signature Output(File Kword);
Informal specification "Read a file from a pipe

and write it to another pipe.";
Formal specification;

}

Figure 8.6 IDL description for component Output in the KWIC with pipes/filters

Moreover, solution 2 is provided based on the main program/subroutine style. In

this solution, the component shift is a server. The Jackson Diagram for the solution is

shown in Figure 7.9. Here we use the IDL to describe the KWIC system, aggregations

and prime connections. The system description is shown in Figure 8.7. Figures 8.8 and

8.9 are the IDL descriptions for aggregations, KWIC and Process.
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System KWIC {

Aggregation KWIC, Process;

Component Input, Shift, Sort, Output;

}

Figure 8.7 IDL system description for the KWIC with main program/subroutine

Aggregation KWIC {

Prime connection KWIC {

Type virtual;

Structural type sequential;

Structural relationship (Input)(Process)(Output);

Component Input {

Pre-context;

Post-context;

}

Component Output {

Pre-context;

Post-context;

}

Aggregation Process {

Pre-context;

Post-context;

}

}

};
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Figure 8.8 IDL description for aggregation KWIC with main program/subroutine
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Aggregation Process {

Prime connection Process_1 {

Type pure;

Structural type repetitive;

Structural relationship 1*Shift;

Logical condition current_shifted_line < expected_shifted_line;

Component Shift {

Pre-context;

Post-context;

Prime connection Process_2 {

Type virtual;

Structural type sequential;

Structural relationship (Process_1)(sort);

Component Sort {

Pre-context;

Post-context;

Prime connection Process_1;

}

};

Figure 8.9 IDL description for aggregation Process with main program/subroutine

We have proposed a solution for the ECC system in Chapter 7. Here the IDL is

used to describe the ECC system, the contained aggregations, prime connections and the

components. There are four aggregations in the ECC system. Since the ECC system is a

relatively large system, the system description and aggregation descriptions are

separately written down. Each aggregation description is also written separately.



System ECC {
Aggregation ECC, Initialize, Maintain, Adjust;
Component Current, Desired, Last, Brake, Throttle;

}

Figure 8.10 An IDL system description for the ECC system

Aggregation ECC {

Prime connection ECC_1 {

Type virtual;
Structural type selective;
Structural relationship Initialize+Exit;

Logical condition system_on;

Component Exit {
Pre-context;
Post-context;

};
Aggregation Initialize {

Pre-context;

Post-context;

J 5

};
Prime connection ECC_2 {

Type virtual;

Structural type sequential;

Structural relationship (ECC_ 1)(Maintain);
Aggregation Maintain {

Pre-context;

Post-context;

a;
Prime connection ECC_1;
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Figure 8.11 The IDL description for aggregation ECC
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The aggregations in the ECC system are ECC, Initialize, Adjust and Maintain. The

system description in the IDL is shown in Figure 8.10. Then the aggregations with their

prime connections are described. The IDL descriptions for the four aggregations are

shown in Figures 8.11, 8.12, 8.13, and 8.14 respectively.

Aggregation Initialize {

Prime connection Initialize {

Type pure;

Structural type sequential;

Structural relationship (Current)(Desired)(Brake)(Throttle);

Component Current {

Pre-context;

Post-context;

Component Desired {

Pre-context;

Post-context;

};

Component Brake {

Pre-context;

Post-context;

};

Component Throttle {

Pre-context;

Post-context;

}

};

Figure 8.12 The IDL description for aggregation Initialize



Aggregation Adjust {

Prime connection Adjust {

Type virtual;

Structural type sequential;

Structural relationship (Adjust_1)(Adjust_2)(Adjust_3)(Throttle);

Component Throttle {

Pre-context;

Post-context;

;
Prime connection Adjust_I, Adjust_2, Adjust_3;

Prime connection Adjust_1 {

Type pure;

Structural type selective;

Structural relationship Last+ I;

Logical condition resume_on;

Component Last {

Pre-context;

Post-context;

Prime connection Adjust_2 {

Type pure;

Structural type selective;

Structural relationship Desired+1;

Logical condition change_on;

Component Desired {

Pre-context;

Post-context;

1
Prime connection Adjust_3 {

Type pure;

Structural type selective;

Structural relationship Brake+l;

Logical condition Brake_on;

Component Brake {

Pre-context;

Post-context;

Figure 8.13 The IDL description for aggregation Adjust
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Aggregation Maintain {

Prime connection Maintain {

Type virtual;

Structural type repetitive;

Structural relationship Adjust* 1;

Logical condition system on;

Aggregation Adjust {

Pre-context;

Post-context;

1

Figure 8.14 The IDL description for aggregation Maintain

Component Current {

Type server;

Method {

Type int;

Signature calculate_current (int pulse, int tick);

Informal specification "Calculate current speed of a vehicle.";

Formal specification;

}
1
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Figure 8.15 The IDL description for component Current
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Component Desired {

Type server;

Method {

Type int;

Signature Desired_current (int system_on, int change);

Informal specification "Calculate desired speed of a vehicle.";

Formal specification;

1

Figure 8.16 The IDL description for component Desired

Component Last {

Type server;

Method {

Type;

Signature set last_speed (int resume);

Informal specification "Set the previous speed of a vehicle.";

Formal specification;

Figure 8.17 The IDL description for component Last

The IDL component descriptions are shown from Figure 8.15 to Figure 8.19. Here

we assume that each component has just one method and the assigned arguments and

their date types. These assumptions are the intuitive results, instead of designed results.

They are used here to serve as a demonstration of the IDL descriptions. Several Boolean
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variables, system_on, resume_on, brake_off, and change on, are introduced in these

aggregation descriptions.

Component Brake {

Type server;

Method {

Type;

Signature set_brake_state (int brake_on);

Informal specification "Set brake state.";

Formal specification;

}

}

Figure 8.18 The IDL description for component Brake

Component Throttle {

Type server;

Method {

Type int;

Signature calculate_throttle 0;

Informal specification "Calculate throttle setting.";

Formal specification;

}

Figure 8.19 The IDL description for component Throttle
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8.4 Summary

In this chapter, firstly we introduce a new concept, prime connections, based on prime

flowgraphs. Since our methodology relies on the aggregation architectural view and an

aggregation can be represented as a flowgraph, it is reasonable to decompose a flowgraph

into prime flowgraphs. The composition theory for structured programs based on cubic

graphs suggests that it be possible to compose a software system from components. This

is why we use the concept of a prime connection. Then we discuss the description

framework for systems, aggregations, prime connections and components. These

frameworks can be considered as models for systems, aggregations, prime connections

and components. An Implementation Description Language (IDL) is proposed to

integrate a software system from components. The IDL is also applied to the KWIC and

ECC systems. The systems, aggregations, prime connections and components are

specified in the IDL. The results in this chapter are the further improvements on our

methodology for component-based system integration. In the next chapter, the final

system integration will be discussed. In fact, the system integration is tightly based on

the work in this chapter.

The architectural description for a software system is an important research aspect

in the software architecture community. In this chapter, we propose an implementation

description language based on the concept of a prime connection. If a general

architecture description language is used to describe the issues on the system design

level, the IDL we proposed is used to describe the system issues on the system

implementation level. The IDL is a significant part of the integration methodology

because it is a base for automatic or semi-automatic system integration from components.
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The purpose of introducing prime connection and the description framework for systems,

aggregations, prime connections and components is to propose the language. Based on

this point of view, our work in this chapter focuses on the language.



CHAPTER 9

SYSTEM INTEGRATION

System integration is the last step of our methodology. Generally system integration

means to integrate a software system from components in terms of a component-based

software style. In our methodology, system integration does not only mean that, but also

means the translation of the IDL descriptions into source code written in a high level

programming language, such as C, C++, or JAVA, and so on. In this chapter, the

activities for system integration in our methodology are provided.

These activities may be component search, prime connection translation and

composition. This integration step accepts the system implementation description in IDL

as input. Then it separates component descriptions from the aggregation descriptions and

search for them. After getting all the components, the methodology embeds the

components into proper prime connections and translates the prime connections into a

program segment coded in a high level programming language. As soon as the pure

prime connections are translated, the virtual prime connections are translated. When the

translations of prime connections in an aggregation are done, the aggregation is built. In

Section 9.1 we introduce an outline of our approach to system integration. Section 9.2

discusses a number of preliminary issues for system synthesis. A synthesis mechanism

including translation and composition is introduced in Section 9.3. The work in this

chapter is summarized in Section 9.4.
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9.1 An Outline of System Integration

The general ideas for system integration in our methodology are explored in this section.

Simply speaking, the system integration in the methodology is to produce a software

system represented in a high level programming language. In order to achieve this goal,

we have proposed the aggregation view, component model, system representation

approach, system decomposition approach and an IDL. Now the starting point for system

integration are the IDL descriptions of a system. For example, the IDL descriptions from

Figures 8.2 to 8.6, the IDL descriptions from Figures 8.7 to 8.9, and the IDL descriptions

from Figures 8.10 to 8.19.

As we discussed in Chapter 8, the system descriptions consist of system

description, aggregation descriptions and component descriptions. Such a description

organization implies the primary activities involved in the system integration. Generally

the integration process goes through components, pure prime connections, virtual prime

connections, aggregations, and finally system. In order to make the activities clear, it is

necessary to analyze description examples, such as the descriptions for KWIC shown in

Figures 8.7, 8.8 and 8.9 in which a solution for KWIC is proposed. There are two

aggregations, three prime connections, and four components in the solution. The

dependencies among these functional units are shown in Figure 9.1.

The dependency relationship diagram in Figure 9.1 clearly indicates that the steps

for system integration are to obtain the functional units in the following order:

components, pure prime connections, virtual prime connections and aggregations. Thus

the activities involved in system integration are to obtain components, to obtain pure
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prime connections, to obtain virtual prime connections, and to obtain aggregations. How

to perform these activities is the major topic in this chapter.

Figure 9.1 The functional units and their dependency relationships

The activity of obtaining components is usually called component search. The

proposed component model in Chapter 6 and the component description part of the 1DL

in Chapter 8 serve the component search. In our methodology, the component search

approaches are not proposed as we claimed in Chapter 1. Two approaches are surveyed

in Chapter 4. The interested readers may reference the work in [51] and [81]. Actually

the component search from a software library is still a critical research topic in the fields

of component-based software. Our methodology organizes the component descriptions

and sends them to a search engine that is a part of a software library.

The activities for obtaining pure prime connections include embedding the

required components into the pure prime connections, and translating the IDL

descriptions of the pure prime connections into source code written in a high level

programming language. In fact, the embedding is done during the translation in our

methodology. The translation will be based on the information provided in the IDL
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descriptions. The information contains structural type and relationship and the names

and contexts of components. The activities for obtaining virtual prime connections are

similar to the activities for obtaining pure prime connections except for the embedding of

aggregations and other prime connections.

It is noteworthy that for a system, there is always a corresponding aggregation that

has the same name as the system. We used to call the aggregation a system aggregation.

Actually when the aggregation is integrated from the functional units contained in it, the

whole system is done. Furthermore, the system aggregation always contains a prime

connection. This prime connection is always the last prime connection to be built, for

example, the prime connection KWIC in Figure 8.8, the prime connection ECC_2 in

Figure 8.11. Why does there exist a phenomenon like this? This is de facto the result of

our system decomposition approach. Hence, in order to obtain an aggregation, we just

need to create all the prime connections included in the aggregation and to know which

one is the last prime connection.

Clearly the activities for system integration are to accept the IDL descriptions, to

separate the component descriptions for search, to schedule the translation of prime

connections, and to compose aggregations from their prime connections. In order to

perform the activities, first of all, the descriptions need to be parsed to make these

descriptions syntactically correct. Secondly, the component descriptions are separated

and sent to search the corresponding components. After all the components are obtained,

the pure prime connections are translated into program segments coded in a high level

programming language. The components required by a pure prime connection are

embedded into the program segment during the translation. Then virtual prime
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connections are translated into program segments. At the same time, the required

components, prime connections or aggregations are embedded into the program

segments.

Figure 9.2 System integration

In reality, the embedding of prime connections or aggregations into a prime

connection is the composition of flowgraphs. When the last prime connection has been

translated, the whole aggregation is ready for being embedded into a subsystem or

system. If the aggregation is the system aggregation, then the whole system is done.

Therefore, those activities can be classified to be preliminary issues, translation and

composition summarized in Figure 9.2. Their details are discussed in the rest of this

chapter.
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9.2 Preliminary Issues

The preliminary issues included in system integration are the parsing of IDL system

descriptions, the separation of the component descriptions, the creation of component

tables, and the creation of schedule tables for each aggregation. The tables are stored in a

table pool. The translations and compositions of aggregations depend on these issues.

We discuss the issues here to indicate how the issues assist the translations and

compositions.

9.2.1 Parsing IDL Descriptions

The IDL descriptions are stored as text files. All the descriptions can be saved either in

one file or in a number of files. For instance, an aggregation description can be organized

in a file; the description of all components can be organized in a file; or the whole

descriptions are organized in one file. All these situations are allowed in the

methodology. When system integration starts, the IDL descriptions for system,

aggregations and components are input. Then the component descriptions are separated

from the other descriptions if the descriptions of whole system are organized in one file.

Moreover, the descriptions for system and aggregations and the descriptions for

components are respectively parsed according to the syntax of the IDL. It suggests that a

parser for the IDL be built.

We suppose that we have the parser already. The parser accepts the description

files as inputs. If the descriptions of a system are stored in a number of files, the file

containing the system description should be parsed first. After the parser is invoked with

a description file, it makes the first scan on the file to find any syntax errors. If the parser
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finds any syntax errors in a description, it reports them, stops the scanning and exits.

Then the syntax errors need to be fixed. When the errors are fixed, the parser is invoked

again to repeat the first scan. Such steps may need to be repeated until no more syntax

errors are found. Once there are no more syntax errors in the descriptions, the parser

makes the second scan to create the system and aggregation tables, and sends the

component descriptions for component search and the creation of the component table

that is discussed in Section 9.2.4.

9.2.2 Creating the System Table

The information related to translation and composition is saved in system, aggregation

and component tables. For a system table, the table has the same name as the system. It

records the names and statuses of the aggregations included in the system, and the source

code for each aggregation. The names of the aggregations are taken from the IDL

description of the system. The status of each aggregation is used to indicate whether an

aggregation is already translated or not. This table entry will be used for scheduling of

translations of prime connections and other aggregations. After an aggregation has been

translated, its source code is written into a file and the file name is entered into source

field. A system table template is shown in Table 9.1 in which it is assumed that there is

one aggregation. The table entry for the name field is the name of an aggregation. The

table entry for the status field is 'yes' or no'. The 'yes' means that the aggregation is

ready for embedding or composition. The 'no', instead, means that the aggregation is not

ready. The table entry for the source field is the file name of source code for the

aggregation.
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Table 9.1 A system table template

Some system table examples are introduced here. We have described the solutions

for the KWIC and ECC systems in IDL in Chapter 8. We know that two solutions are

provided for the KWIC system and one solution is provided for the ECC system. In

solution 1 for the KWIC system, there is one aggregation. Its system table is shown in

Table 9.2. In solution 2 for the KWIC system, there are two aggregations. Its system

table is shown in Table 9.3. In the solution for the ECC system, there are four

aggregations. Its system table is shown in Table 9.4. All the example tables are initial

ones. It means that they are just created by the parser. The value, N/A, means that the

source code for an aggregation is not available.

Table 9.2 A system table of solution 1 for the KWIC

Table 9.3 A system table of solution 2 for the KWIC

Table 9.4 A system table for the ECC
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9.2.3 Creating the Aggregation Table

After the parser creates the system table for a system, it will create the aggregation table

as we mentioned before. We introduce the aggregation table now. An aggregation

generally consists of prime connections. Thus the table entries in this table are related to

prime connections. The information could be the name of a prime connection, its type,

included components, aggregations, prime connections and source code for the prime

connection. A table template for an aggregation is shown in Table 9.5. We assume that a

typical prime connection contains three components, two aggregations and four other

prime connections in this template.

Table 9.5 An aggregation table template

The name field records the name of a prime connection. The type field indicates

that the prime connection is a pure or virtual one. The status field is used to show

whether the prime connection is already translated or not. The component field records

the names of components included in the prime connection. Similarly, the aggregation

and prime connection fields are used to show how many aggregations and other prime

connections included in the prime connections and the table entries are their names. The

table entries for component field, aggregation field and prime connection field could be

empty. The source field records the source code for a prime connection. The number of

rows in an aggregation table depends on how many prime connections are contained in

the aggregation.
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Table 9.6 Aggregation table for Aggregation Process in Figure 8.9

Table 9.7 Aggregation table for Aggregation ECC in Figure 8.11

For example, the aggregation in Figure 8.9 has a table shown in Table 9.6 and the

aggregation in Figure 8.11 has a table shown in Table 9.7. A typical aggregation table is

shown in Table 9.8 in which there are no aggregations and other prime connections,

instead of one prime connection. This original aggregation is shown in Figure 8.12. In

Table 9.8, we use Agg. to represent Aggregation, Prime to represent Prime connection

and Src to represent Source because of space limitations.

Table 9.8 Aggregation table for Aggregation Initialize in Figure 8.12

9.2.4 Retrieving Components and Creating Component Tables

After the component descriptions are parsed successfully, they are fed to a component

manager. The component manager sends each component description to search. Our

methodology requires that the criterion for comparing two components be to match the

semantics of them and those needed components must be ready before proceeding to

system synthesis. The search results are returned to the component manager and stored
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in a component pool. Then the manager creates a component table for each component

and stores the table in a table pool.

A component table contains the designated name from system design, the real

name from software library, the constraints, the properties, the interface description, and

the location information of implementation of a component. When a component is

embedded into a prime connection, the system synthesizer uses the information in the

table to perform the embedding correctly. A component table template is shown in Table

9.9. Every component has its own table entry.

Table 9.9 A component table template

9.3 System Synthesis

When the system integration proceeds to system synthesis, all the required components

are already stored in a component pool and their component tables are in a table pool. A

system synthesizer is designed to do the system synthesis. Now the synthesizer chooses

an unfinished aggregation from the system table and will translate the IDL aggregation

into a source aggregation. A source aggregation is an aggregation written in a high level

programming language. During the translation, the needed functional units by the

aggregation are embedded into it. The functional units can be components, other

aggregations or prime connections. In fact, the translation is done just based on each
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prime connection in an aggregation. A source aggregation is the result of composition

from its prime connections. The synthesis details are discussed below.

The dependency relationships shown in Figure 9.1 imply that, to produce source

aggregations, a better way is to arrange all the aggregations in a system into a queue

based on the properties of their prime connections. The proposed synthesizer follows this

strategy. At first, the synthesizer picks the system table from table pool to examine how

many aggregations are included in the system. If the system contains only one

aggregation, such as the KWIC system in Figure 8.2(a), the synthesizer goes to translate

each prime connection, embed required functional units and compose the aggregation.

Otherwise, the synthesizer picks an aggregation table from the table pool to check if

those prime connections in the aggregation are pure. If they are, the aggregation is put in

an aggregation queue. If they are not, the prime connections are checked one by one to

see if a virtual prime connection contains other aggregations. If not, the aggregation is

also put in the aggregation queue. Otherwise, the synthesizer will furthermore check if

those aggregations are already in the aggregation queue. If they are, the aggregation is

put in the aggregation queue, too. Otherwise, the synthesizer postpones inserting the

aggregation into the aggregation queue and picks another aggregation table to repeat the

above procedure until all the aggregations are inserted into the aggregation queue. The

synthesizer basically inserts aggregation names into the queue.

Once the synthesizer finds that there is only one aggregation in the system or all

the aggregations have been inserted into the aggregation queue, it starts to translate an

unfinished pure prime connection from the unique aggregation or the first aggregation in

the queue. The translation will be done based on the structural type, the structural
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relationship and the functional units with their contexts. The structural type suggests a

program control structure to be selected, such as a sequential, a selective, or a repetitive

structure. After choosing a program control structure, the structural relationship is used

to organize each functional unit into the program control structure.

Since the functional units in a pure prime connection are components, the pre-

context of a component is translated first and embedded into the control structure

program segment. Then the synthesizer will read in the information from the component

table, such as, its constraints, properties, interface descriptions and implementation

location. The constraints are some conditions that need to be satisfied before the

invocation of the component. The properties embody the materials related to run-time

environments, such as platform, operating system, and so on. The synthesizer will

compare the information with the run-time environments of the expected system. If they

are not same, it needs to choose an invocation method to the component, for example,

using a middleware, such as CORBA, DCOM, etc. Otherwise, the component is

embedded directly. The interface descriptions are used to determine how the methods in

the component are invoked. The implementation location tells the synthesizer where the

component can be accessed. After embedding the component, the post-context is

translated.

After a pure prime connection has been translated, the status of the prime

connection in the aggregation table is changed to be 'yes' and the source code is written

back to the source field in the table. Then the synthesizer checks the aggregation table

again to see if there is any other pure prime connection that is still not ready. If it is, it

translates the pure prime connection following the steps illustrated above. If not, the
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synthesizer goes to choose a virtual prime connection that is not translated, the translation

steps for a virtual prime connection are similar to the steps for a pure prime connection

except embedding a functional unit. If the functional unit is a component, the synthesizer

does the same thing as for a pure prime connection. If the functional unit is an

aggregation, the pre-context of the aggregation is translated first. Then the source

aggregation is simply embedded. Moreover, the post-context is translated. If the

functional unit is a prime connection, the source code of the prime connection is directly

embedded. For an aggregation, the synthesizer repeats the steps described above until all

prime connections are translated. While the translation of the last prime connection is

done, the source aggregation for the whole aggregation is produced. The synthesizer will

change the aggregation's status in the system table to be 'yes' which means that the

aggregation is ready to be used, and write the source aggregation to the aggregation's

source field. Then the synthesizer deletes the aggregation from the aggregation queue

and takes the new first aggregation in the queue to repeat the above procedure until the

aggregation queue is empty. In fact, the source aggregation for the last aggregation is the

source code for the whole system. Finally the synthesizer writes the source code for the

system to a text file. For a general system, the system synthesis process expressed above

can be represented in a flowchart as shown in Figure 9.3.

The system synthesis can be applied to our problem examples. For solution 1 of

the KWIC system, the aggregation queue will not be created because it has only one

aggregation. The source aggregation can be produced directly by translating its included

prime connection. During the translation, the components Input, Shift, Sort and Output

are embedded into the source code of the prime connection.
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Figure 9.3 System synthesis process flowchart

For solution 2 of the KWIC system, it has two aggregations, KWIC and process.

The two aggregations are inserted into the aggregation queue in which Process is the first

and KWIC is the second. The synthesizer first picks the aggregation Process, to produce

a source aggregation for it. Then the aggregation KWIC is selected. The synthesis

details are shown in Figure 9.4. The prime connection Process_1 is translated first. Then

it is inserted into prime connection Process_2 while it is translated. After that, the whole

aggregation Process is embedded into prime connection KWIC, while it is translated.

Finally the whole system is produced at the time the aggregation KWIC is done.



Figure 9.4 The synthesis process for solution 2 of the KWIC system

Figure 9.5 Two possible aggregation queues for the ECC system

The ECC system has four aggregations. According to the conditions for queuing

the aggregations, the aggregation queue can be Figure 9.5(a) or Figure 9.5(b). Actually

the synthesizer creates one of them randomly. For the final system, they are not different.

Suppose that the synthesizer creates the aggregation queue in Figure 9.5(a). It translates

the prime connections in aggregation Initialize and produces a source aggregation for the

aggregation Initialize. Then the source aggregations are produced for aggregations

Adjust and Maintain. Finally the aggregation ECC that is the whole ECC system is

produced.

139
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9•4 Summary

In this chapter, a system integration mechanism is introduced. Generally the mechanism

is realized through parsing IDL descriptions, searching components, creating component

tables, aggregation tables and a system table, and synthesizing the whole system by

translating prime connections, embedding components and composing aggregations. The

whole system integration uses a parser, a component manager, a synthesizer, an

aggregation pool, a table pool and a component pool. The functionality of the parser,

component manager and synthesizer is summarized below. The pools are storage spaces

in computer memory.

A parser is designed to parse the IDL descriptions for the system, aggregations and

components. It also creates system table and aggregation tables that are stored in the

table pool. The parsed system and aggregation descriptions are stored in the aggregation

pool.

The system integration needs a component manager to handle the requirements of

searching, storing and managing components. The component manager accepts the

parsed component descriptions in IDL. It sends the descriptions out for search one by

one. The returned results are stored in the component pool. For each found component,

the component manager creates a table for it and stores it in the table pool.

A synthesizer, at last, is designed to accomplish the system synthesis. It creates an

aggregation queue, in order to efficiently translate the aggregations into source

aggregations that are written in a high level programming language. When the queue is

built, the synthesizer takes the first aggregation from the queue and chooses an unfinished

prime connection to translate it. The strategy for the translation of prime connections is



141

to first translate all pure prime connections, and then the virtual prime connections. A

required functional unit, such as a component, an aggregation, or another prime

connection, is embedded into the source code of a prime connection while it is being

translated. Once the source code of a prime connection is produced, the synthesizer

changes its status in its aggregation table. The same thing is done for an aggregation

while the source aggregation is being produced. When the source aggregation of the last

aggregation is produced, the whole system has been synthesized already. Finally the

source code for the system is written to a file.



CHAPTER 10

CONCLUSION AND FUTURE WORK

So far a methodology for component-based system integration has been proposed. The

primary motivation for the methodology is to automatically produce a component-based

software system from independently developed components. If the detailed design of a

system is done and all the required components are ready, the integration methodology

can be applied to automatically synthesize a software system. The chief activities for the

system integration are graphically representing and decomposing a system, describing the

system in the IDL, parsing the system descriptions and searching components, and

synthesizing the system.

The first activity means representing the detailed design of a system with a Jackson

Diagram, decomposing the Jackson Diagram to aggregations that are still represented

with Jackson Diagrams, converting the Jackson Diagrams to flowgraphs that are called

aggregation flowgraphs, and decomposing the aggregation flowgraphs into prime

flowgraphs called prime connections. The second activity represents the results of the

first activity. The results include the system, its aggregations and components that are

described in the IDL. The third one means parsing the descriptions, and searching the

required components. The produced results from the activity are system, aggregation and

component tables stored in table pool and the IDL system and aggregations stored in

aggregation pool. The last one means synthesizing aggregations from prime connections

and functional units that are included in the aggregations. The synthesis is performed

through translating each prime connection into source code written in a high level

programming language, and embedding the included functional units. The functional

1 42
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units can be components, other aggregations, or other prime connections. Actually an

aggregation is composed from its prime connections based on the composition theory of

flowgraphs. This is why an aggregation needs to be represented as a flowgraph in a

previous stage. Although this dissertation is designated to propose the integration

methodology, the research work furthermore includes the study of cubic graphs,

flowgraphs, and computing cyclomatic complexity of a program based on flowgraphs

because some knowledge of them is applied in our methodology.

The main research results involved in this dissertation are summarized Section

10.1. The features of the methodology are described in Section 10.2. Then the future

research directions are discussed in Section 10.3.

10.1 Summary of Results

This dissertation contains comprehensive surveys of research topics related to the

proposed methodology, and a number of research results included in the methodology.

The surveyed research topics are cubic graphs, flowgraphs, cubic flowgraphs, software

architectures, and component-based software. Theses surveyed topics are not

summarized here. We merely summarize the research results in this dissertation. The

results reported here are novel and original, and to the best of our knowledge have not

published before.

10.1.1 Cyclomatic Complexity

The research work began with the study of the relationships between cyclomatic

complexity and flowgraphs. As we surveyed in Chapter 5, cyclomatic complexity is a

measure value for computer programs. This value is used to count how many paths
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included in a program need to be tested. Furthermore, since the cyclomatic complexity is

from a concept, cyclomatic number, of graph theory, it is reasonable to connect the

cyclomatic complexity to a graph. In our work, we use flowgraphs because any program

can be represented as a flowgraph in which its properties are kept unchanged. Typically

we use cubic flowgraphs of programs to compute their cyclomatic complexity because

every flowgraph has a unique cubic flowgraph in which the properties of the original

flowgraph are kept unchanged except for ignoring the process nodes with degree 2.

Based on these conditions, we have developed new ways to compute the

cyclomatic complexity of computer programs. These new ways are expressed in

Theorem 1, Corollary 2, Corollary 3, Theorem 4, and Corollary 5 in Chapter 5. The final

conclusions are that the cyclomatic complexity of a program is equal to the cyclomatic

number of its cubic flowgraph and the cyclomatic complexity of a standard structured

program is equal to the number of prime flowgraphs in the program.

In order to compute cyclomatic complexity of a program, the number of decision-

making conditions in the program has to be counted because the cyclomatic complexity

of the program is the number plus one [27]. In contrast to this method, our new ways are

accurate and unambiguous if a cubic flowgraph of a program is created. In addition, it is

easier to create a cubic flowgraph of a program than to create a program control graph.

10.1.2 Software Architectures as Aggregations

The aggregation view on software architectures is one of research results in this work. A

software system consists of a number of components and the interactions among the

components in terms of a component-based software style. The interactions are
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abstracted as connectors. Therefore, for a general large system, the system can be

decomposed into subsystems, while a subsystem can be decomposed into connectors.

Each connector connects a number of components. Such a containing relationship

between a system and its subsystems, a subsystem and its connectors, a connector and its

components is actually an aggregate relationship because this relationship means more

than simply containing. An aggregate relationship is called an aggregation in our work.

Such a perspective of software architectures is called an aggregation view.

We have surveyed other architectural views in Chapter 3. These views are

conceptual view, module view, process view, physical view and framework view. None

of them provides a clear way to decompose a large-scale system into small-scale

functional units in order to implement the system. Aggregation view, however, does not

only provide a way to decompose a system into aggregations, but also provide a way to

recognize composite components in an existing system and to organize composite

components in a new system when it is designed. Moreover, the aggregation view can be

applied to describe functional units with different granularity.

10.1.3 Component Model

Another research result in this work is a component model. It can be used for dealing

with components in software libraries and for component search. The comprehensive

component model covers the type of a component, constraints and properties of a

component, methods and events that are services provided by a component, and the

behavioral specifications for the methods and events.
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This component model is based on the previous work surveyed in Chapter 4. One

of the advantages of this model is that it describes every aspects of a general component.

It can be used to represent a component in a software library and to describe a component

that needs to be searched.

10.1.4 System Representation and Decomposition

In this work, Jackson Diagrams are used to provide a graphical representation for a

system and its aggregations because an aggregation is explicitly expressed in Jackson

Diagrams. When a system is represented with a Jackson Diagram, it is easy to

decompose the system into aggregations. Then flowgraphs are applied to represent each

aggregation in order to decompose an aggregation into prime flowgraphs. A prime

flowgraph in a system is called a prime connection. Thus these representations enhance

the aggregation view on software architectures.

A software system is composed of aggregations, while an aggregation is composed

of prime connections in terms of the aggregation view. We also propose a decomposition

strategy for prime connections, namely the integrity decomposition strategy to avoid the

division of contexts of a prime connection. A prime connection is distinguished as a pure

one or virtual one in order to translate them into source code conveniently.

The strategies for system representation and decomposition proposed here enhance

the aggregation view and the application of decomposition and composition theory of

flowgraphs. The strategies hold a potential for the automation of the decomposition.

Furthermore, it is easy to learn, understand and apply these strategies.
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10.1.5 Implementation Description Language

An implementation description language (IDL) is proposed based on the aggregation

view and component model. The IDL can be used to describe a system to indicate what

aggregations and components are included in the system. The descriptions of

aggregations and components are also covered by the IDL. The purpose of describing an

aggregation is to synthesize it from its prime connections. The purpose of describing a

component is to search the component from a software library.

The IDL is a prototype of future component-based programming languages. It

serves as an intermediary tool between architecture description languages and current

programming languages. An obvious feature of the IDL is that it focuses on the

interactions or interdependencies of components.

10.1.6 System Integration Mechanism

The last result is a system integration mechanism. It is designed to accomplish the final

integration mission for a component-based software system. The mechanism is actually

an integrated environment including a parser, a component manager and a synthesizer.

The parser is designed to parse a system description, aggregation descriptions and

component descriptions. When no more syntax errors are found, the parser forwards the

component descriptions to the component manager for component search, and creates

system and aggregation tables. The component manager accepts syntactically correct

component descriptions, separates them and sends them to a separable search engine one

by one. The returned components are stored in a component pool and a component table

is created for each component. The synthesizer sorts the aggregations into an order and
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inserts the names of the aggregations into a queue according to the dependency

relationships among the aggregations. Then the aggregations in the queue are translated

one by one into source aggregations written in a high level programming language until

the queue is empty.

An ideal integration mechanism is based on semantics-driven composition.

Currently it is hard to develop such a mechanism because there is no a comprehensive

way to represent the semantics of a component and a system so that a computer can

understand the representations. The proposed integration mechanism does not attack the

semantics-driven composition directly. It is based on the composition theory of

flowgraphs and successfully accomplishes the integration mission.

Although the work primarily concentrates on component-based software system

integration, the theoretic bases are also explored. The theoretic work combined with the

integration mechanism constitutes this complete methodology. The contributions made

in this work are described below:

• Computing the cyclomatic complexity based on cubic flowgraphs;

• A view on software architectures called aggregation view;

• A comprehensive component model;

• Decomposing a software architecture into aggregations;

• Representing the aggregations as flowgraphs and decomposing the aggregation

flowgraphs into prime connections;
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• Around the aggregations, prime connections and components, proposing an

implementation description language, IDL; and,

• A system synthesis mechanism.

10.2 Features of the Methodology

As we surveyed in Chapter 4, the existing component-based software development

methodologies are centered on architecture description languages. These methodologies

largely consist of requirements analysis, functionalities refinement, software architecture

selection or design, architecture description, and code production from the description.

Although they are different in details, these methodologies have as a common property

their dependence on the types of components, the types of connectors or interaction

protocols, and architectural styles.

Our methodology focuses on system integration from components. In other words,

it is developed to aid the implementation of a software system with a component-based

style. It accepts the design results produced in any methodology, and then represents the

design details in its own way based on an aggregation view. Hence, there is no

contradiction or conflict between existing methodologies and our methodology, it is a

complementary to others. For our methodology, it does not require that the interactions

among components must be implemented with any existing communication protocols

bound to specific architectural styles. It accommodates both existing communication

protocols and newly developed communication protocols. In addition, the IDL

introduced in this dissertation serves as an implementation description so that it is easily
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translated into current high level programming languages. Therefore, our methodology

offers itself with flexibility, practical utility, effectiveness, and applicability.

Flexibility means that our methodology does not confine itself to any special

software architectural styles. There are no prerequisites on the types of components and

the types of connectors. It accepts the design results with any architectural styles, any

types of components, and any types of connectors.

Practical utility hints that the methods used in the methodology are practical and

easy to learn and apply. For example, it is easy to understand and apply the aggregation

view, graphical representations, and the IDL. It is not necessary for system designers or

software architects to know the details of the integration mechanism.

Effectiveness indicates that our methodology can be used to solve any integration

problems for a component-based software system effectively. No matter what software

architectural styles and types of components and connectors the detailed design of a

system is based on, it can be expressed as a set of aggregations according to aggregation

view, and be represented in the IDL. It can also be synthesized from components and

translated into a chosen high level programming language.

Applicability means that our methodology is suitable for component-based

software system integration because it does not contradict other component-based

software development methodologies, but also complements them for the automatic

production of a component-based software system. The existing development

methodologies are weak in the integration step since the current architecture description

languages are too abstract to catch the design details. Our methodology overcomes this
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drawback and provides a way to bridge the gap between the current architecture

description languages and current high level programming languages.

Since the current architecture description languages do not describe the

implementation details of a system, most of them make use of connectors to catch the

interactions between or among components. It means that the supported connectors in an

ADL must be well-defined to include the interactive information. This is why they only

support pre-defined types of connectors. Our IDL focuses on the interactions of

components without any limitations on the types of connectors. It accepts any

descriptions in ADLs and converts these descriptions into its own descriptions based on

the detailed design of a system. In addition, most current programming languages use

three program control structures. These structures are supported by our IDL. Therefore,

it is easier to translate the IDL descriptions into a high-level programming language

programs.

These features make our methodology different from existing methodologies when

integrating software systems from components. With these features, our methodology

has the potential to overcome one of the bottlenecks, system integration. Although the

composition of prime connections is not a semantics-based composition, it keeps the

semantics of each aggregation unchanged.

10.3 Future Work

The methodology that is proposed in this dissertation still needs to be improved despite

the important features mentioned in Section 10.2. Improvements are possible on

supporting tools for the whole methodology, the current IDL as a prototype for
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component-based programming languages, and the studies of interactions among the

components. These three future research directions are related each other. Actually the

last one is more important than the first two because it can serve as a base to

automatically compose or integrate a software system from components. It aims to

overcome the weaknesses of current high level programming languages because they

embed the interactions in each component so that the reuse of components becomes

harder and harder. This section focuses on these future research directions.

10.3.1 Supporting Tools

One of the future directions is to develop a set of tools to support the whole process of the

methodology. The set of supporting tools consists of a tool for decomposing software

architectures into aggregations and for converting Jackson Diagrams to flowgraphs, a tool

for decomposing an aggregation into prime connections and for describing aggregations

in the IDL, and a tool for describing components in the IDL. The details of the tools are

discussed one by one here.

Our methodology suggests that the detailed design of a system be represented as a

Jackson Diagram. While a Jackson Diagram expresses an aggregation explicitly, we

represent the Jackson Diagram as a tree in which a non-leaves node with its children is an

aggregation. Clearly it is possible to design a tool that accepts a tree as its input, and

computes each subtree in the tree that consists of a non-leaves node and all its children.

The tool is responsible for decomposing a Jackson Diagram into aggregations. The

Jackson Diagram is really the system architecture. After the decomposition, each

aggregation is still represented as a two-level Jackson Diagram. Then the tool converts

each aggregation into an aggregation flowgraph.
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At present, each aggregation is represented as a flowgraph. The decomposition of

a flowgraph into a number of prime flowgraphs can be done by a tool based on the

decomposition theory discussed in Chapter 2. This tool can also be extended to describe

each prime connection in the aggregation, and the whole aggregation in the IDL

according to the properties of each prime connection and the syntax of the IDL. The tool

may work interactively by accepting some input from a user.

The next tool is for describing components included in a system. The tool

provides an interactive working environment for a user to input the required information

of a component. Then the IDL description for a component is produced. Combined with

the parser, component manager and synthesizer of the methodology, these tools can make

the whole integration process automatic.

10.3.2 Component-based Programming Languages

An observation on the methodology and the IDL is whether it is possible to have a

language in which a system, its aggregations and components are described and that can

be compiled into executables directly. Obviously the current IDL cannot be used to serve

the purpose because the descriptions of contexts of a functional unit and the behavioral

specifications of a component are not covered by the current IDL. Do current

architecture description languages serve the purpose? It is partially possible, but not

totally because current architecture description languages are used to represent high level

abstraction of software architectures. The details of rich interactions among components,

however, usually cannot be described in them.
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Therefore, an emerging trend in component-based software engineering is to

develop component-based programming languages. Such languages focus on the

specification of interactions among the components while the components are binary

executables. They have explicit mechanisms for describing interactions, instead of

implying the interactions in components like the current programming languages. They

use components as same as a statement the current programming languages use. Such a

language is defined as a component-based programming language. The development of

such a language is one of the future research directions of this work.

10.3.3 Studies of Interactions among Components

It is important to know the type and properties of interactions between components in

order to automatically produce software systems from components, especially to develop

component-based programming languages. If we had known all these interactions, we

could classify them into different types according to their properties. For each type, its

details may be defined in advance if there were no interactive types we do not know. In

fact, we just know a few of them. This is why studying interactions among components

is one of the future research directions in the work.

Since the separation of components from their interactions is a fundamental

requirement for components to be reused, studying interactions among components is the

most important step towards the ideal objective of component-based software, that is,

automated composition of components. Therefore, for the future work proposed in

Section 10.3, the last future research direction is a base for the first two.
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10.4 Epilogue

The research results in this dissertation are summarized in Section 10.1. The features of

this proposed methodology are introduced in Section 10.2. The future research directions

are discussed in Section 10.3. This section serves as an epilogue of the whole

dissertation.

The component-based system integration is a critical field in component-based

software engineering. It is drawing more and more attentions from the software

engineering community. In this dissertation a methodology for component-based system

integration is proposed. This methodology chiefly consists of system representation and

decomposition, system description and component search, and system integration.

During the development of the methodology, the research results obtained include new

ways to compute cyclomatic complexity of a program, an aggregation view of software

architectures, a component model, a system representation and decomposition

mechanism, an implementation description language and a system integration

mechanism. This methodology can be applied to accomplish component-based system

integration automatically.



APPENDIX A

THE GRAMMAR OF IDL

The syntax of IDL is specified in an Extended Backus-Naur Form (EBNF). The EBNF

specification consists of a collection of rules or productions. Each production consists of

a non-terminal symbol and an EBNF expression separated by a special meta-symbol sign

(::=) and terminated with a period (.). The non-terminal symbol is a "meta-identifier",

and the EBNF expression is its definition. The meta-symbols used in the EBNF

expression is summarized the table below. Then the syntax productions are listed.

System description ::= System <system name>

Aggregation <aggregation name>{`,' <aggregation name>) ;'

Component <component name>{`,' <component name>}';'
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Aggregation description ::= Aggregation < aggregation name>' {'

{<Prime connection>';'}

Prime connection ::= Prime connection <prime connection name> '
{'

Type ('pure' 'virtual')';'

Structural type ('sequential' 'selective' I 'repetitive')';'

Structural relationship <regular expression>';'

Logical condition <boolean expression> [with

Prerequisite '{'<prerequisite specification>'}'] ';'

{Component <component name>

[Pre-context {'<specification for pre-context>'}'';']

[Post-context '{'< specification for post-context>'}";']

{Aggregation <aggregation name>'{'

[Pre-context '}'<specification for pre-context>'}'';']

[Post-context	 < specification for post-context>'}'';']

[Prime connection <prime connection name list>';']



system name ::= <identifier>.

aggregation name ::= <identifier>.

component name ::= <identifier>.

prime connection name ::= <identifier>.

prime connection name list ::= <prime connection name>{, <prime connection name>

Component ::= Component <component name> f'

Type <component type> ';'

{Method '{'

Type <data type>';'

Signature <method name>'('<argument list>')'';'

Informal specification { '<text>' } " ;' t

Formal specification '<behavior specification>'}";'

c } , }

{ Consumed event <event name> '{'

Informal specification '{'<text>'}";' t

Formal specification '{'< behavior specification>'}';'

4 } , }

[Generated event <event name list';']

1 58

}

t No definition for text that is default to be English.



It is left open for users.
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APPENDIX B

CONVERSION OF CUBIC GRAPHS INTO FLOWGRAPHS

We have discussed how to convert a flowchart into a flowgraph and how to convert a

flowgraph into a cubic flowgraph and finally a cubic graph in Chapter 2. Here we

discuss how to convert a cubic graph to flowgraphs. This conversion can produce prime

program control structures that may not structured.

B.1 Conversion Methods

The generation of flowgraphs from a cubic graph is discussed in this section. Since each

vertex in a cubic graph has degree 3, every cubic graph G has an even number of vertices.

Let us assume that a cubic graph has 2n vertices where n can be 0, I, 2, .... Thus the cubic

graph has 3n edges.

A cubic flowgraph is a strongly connected digraph with two kinds of vertices:

decision vertices and junction vertices. First of all, we select half of the vertices in a

given cubic graph as decision vertices colored black. The rest of the vertices are the

junction vertices, left white. If a cubic graph has 2n vertices, then there are

(2n)!/((n!)*(n!)) new cubic graphs with half black vertices and half white vertices. We

call the graphs black-white cubic graphs. For each black-white cubic graph, we need to

test whether there is a chromatic circuit in it because if there is such a circuit, the cubic

graph can not produce a flowgraph [61]. A chromatic circuit is a cycle on which all the

nodes have same color. The black-white cubic graphs including a chromatic circuit are

removed.
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For each black-white cubic graph, we need to convert it into a direct graph. We

start to add orientations to a black-white cubic graph from three edges incident to a black

vertex. The three edges are one-in and two-out. Therefore there are three situations. If we

number the three edges as 1, 2, 3, we have three situations shown in Figure B.1.

IN	 OUT	 OUT
OUT	 IN	 OUT
OUT	 OUT	 IN

Figure B.1 A black node's in-out combinations

Generally each black vertex has the three situations. But actually if two vertices

are adjacent, the situations of second vertex are dependent on the first one's. We take one

situation for the black vertex to process. Then we proceed with all other black vertices.

Finally we process all the white vertices. For each white vertex, there are three situations

shown in Figure B.2 because each white vertex has two-in and one-out.

IN	 IN	 OUT
IN	 OUT	 IN
OUT	 IN	 IN

Figure B.2 A white node's in-out combinations

The above procedure is repeated until all the situations are processed. During the

converting procedure, we note that more than one directed black-white cubic graph can

be produced from a black-white cubic graph. After all the directed black-white cubic

graphs are generated, we check the isomorphism among them. It is not necessary to keep

all the direct black-white graphs. We just keep one from each isomorphic group. Now
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we can generate flowgraphs from the remaining directed black-white graphs by picking

one arc as the special arc from End vertex to Begin vertex.

B.2 Demonstration by an Example

If a cubic graph has 2n vertices, then (2n)!/((n!)*(n!)) black-white cubic graphs are

produced from it. Generally a black-white cubic graph can lead to several flowgraphs.

For example, for the cubic graph G , with 4 vertices in Figure 2.6, there are 6 black-white

cubic graphs (Figure B.3) from the graph, each of which can produce 24 direct black-

Figure B.5 Produced cubic flowgraphs



1 64

Figure B.4 shows 4 direct black-white cubic graphs produced from the first black-

white cubic graph in Figure B.3. In this way there are 144 flowgraphs. Figure B.5 shows

6 flowgraphs produced from the direct black-white cubic graph (1) in Figure B.4.

B.3 Black-white Cubic Graphs and Digraphs

When we implemented the procedure above in a Java program, we found that if two

black-white cubic graphs are isomorphic, they will produce the same flowgraph. In fact,

the 6 black-white cubic graphs from a cubic graph with 4 vertices are isomorphic.

Another observation is that a black-white cubic graph can produce isomorphic directed

black-white cubic graphs. In the example mentioned above, all the directed black-white

cubic graphs are isomorphic. Therefore there is one useful directed black-white cubic

graph. At last we get 6 flowgraphs (Figure B.5) from the directed black-white cubic

graph. The observations are concluded as two propositions.

Proposition 1

If two black-white cubic graphs are isomorphic, the directed

black-white cubic graphs produced from them are isomorphic.

Proposition 2

If two directed black-white cubic graphs are isomorphic, the

flowgraphs produced from them are isomorphic.

The two propositions are very important when we produce flowgraphs from a

cubic graph because we just need to keep the non-isomorphic black-white cubic graphs

and the non-isomorphic directed black-white cubic graphs.



BA Conversion Program in Java

Source Codes File 1: cubic_test.java

import java.io.*;

public class cubic test 
{

public static void main( String args[] ) throws I0Exception

{

int data[][];

cubic c;

data = new int[4][5];

c = new cubic();

for (int i=0; i<data.length; i++)

for (int j=0; j<data[i].length; j++)

data[i][j]=0;

for (int i=0; i<data.length; i++)

for (int j=0; j<data.length; j++)

{

System.out.print("Enter A Value for Graph in Position "+i+","+j+":");

System.out.flush();

data[i] [j]=System.in.readO;
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System.in.skip(1);

data[i][j]=data[i] [j]-48;

}

c. SetGraph(data);

System.out.println(" The Original Graph:");

c.GetGraph();

System.out.println("

c.BlackWhiteG();

}

Source Codes File 2: cubic.java

import java.io.*;

public class cubic {

private int graph[][];

private int base[][];

private int first digraph;

public cubic()

{
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graph= new int[4][5];



for (int i=0; i<graph.length; i++)

for (int j=0;j<graph[i].length; j++)

base= new int[4][5];

for (int i=0; i<base.length; i 	 I)

for (int j=0;j<base[i].length; j++)

base[i][j]=0;

first_digraph=0;

}

public void SetGraph(int element[][])

{

for (int i=0; i<element.length; i++)

for (int j=0;j<element[i].length; j++)

graph[i][j]=element[i][j];

}

public void CopyGraph(int element [][])

{

for (int i=0; i<graph.length; i++)
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for (int j=0;j<graph[i].length; j++)



element[i][j]=graph[i][j];

}

public void GetGraph()

{

for (int i=0; i<graph.length; i++)

{

for (int j=0; j<graph[illength; j++)

{

System.out.print(graph[i][j]+" ");

System.out.flush();

1.
1

System.out.println();

}

}

public void BlackWhiteG()

int NumNodes=graph.length;

int copy[][], number=0;

copy = new int[graph.length][graph.length+1];
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CopyGraph(copy);

for (int i=0; i<NumNodes-1; i++)

for (int j=i+1; j<NumNodes; j++)

{

if (i-0) number=j;

if (i==1 && j==2) number=4;

if (i==1 && j==3) number=5;

if (i==2 && j==3) number=6;

SetGraph(copy);

graph[i][4]=1;

graph[j][4]=1;

System.out.println("Number "+number+" Black-White Graph:");

GetGraph();

System.out.println("	 u);

Digraph(i,j);

}

SetGraph(copy);
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public void Digraph(int black1, int black2)



int copy HO ;

int mark= 1 ;

copy = new int[graph.length][graph.length+1];

CopyGraph( copy );

for (int situations=1; situations<4; situations++)

{

if (situations== 1)

{

for (int j=0; j<graph.length; j++)

if (graph[black 1 ][j]=-1 && mark== 1 )

{

mark=2;

graph[black1][j]=0;

graph[j][black1]=1;

}

else if (graph[black1][j]==1 && mark==2)

graph[j][black1]=0;

ProduceDigraph(black 1 ,black2);
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SetGraph(copy);

mark=1;

;

if (situations 2)

{

for (int j=0; j<graph.length; j++)

if (graph[black1][j]==1 && mark==1)

{

graph[j][black1]=0;

mark=2;

}

else if (graph[black1][j]==1 && mark==2)

mark=1;

graph[black1][j]=0;

graph[j][black1]=1;

;

ProduceDigraph(black1,black2);

SetGraph(copy);
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mark=2;

if (situations==3)

for (int j=0; j<graph.length; j++)

if (graph[black 1 ][j]==1 && mark!=0)

{

mark--;

graph[j][black1]=0;

}

else if (graph[black1][j]==1 && mark==0)

{

graph[black1][j]=0;

graph[j][black1]=- 1;

ProduceDigraph(black1,black2);
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public void ProduceDigraph(int bl, int b2)

{

int i=0, j=0, count=0, first=0, second=0, indicator[];

int dup[]{],w1=0,w2=0, count_w 1 =0,count_w2=0,index_w1=0,index w2=0;

dup = new int [graph.length][graph.length+1];

indicator = new int [graph.length];

CopyGraph(dup);

for (i=0; i<graphiength; i++)

indicator[i]=0;

for (j=0; j<graph.length; j++)

if (graph[b2][j]==1) indicator[j]=1;

for (i=0; i<graph.length; i++)

if (indicator[i]!=0) count++;

if (count==3){

for (i=0; i<graph.length; iii)

if (indicator[i]==1 && i==b 1) indicator[i]=0;

for (i=0; i<graph.length; i++)

if (indicator[i]==1 && first==0) first=i;

else if (indicator[i]==1) second=i;
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graph[b2] [first]=0;

graph[first][b2]=1;

graph[second][b2]=0;

for (j=0; j<graph.length; j++) // Begin to Process White Nodes
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degree[d]=0;

for (int i=0; i<graph.length; i++)

for (int j=0; j<graph.length; j++)

if( digraph [i][j]==1 ) degree[i]++;

for (k2=0; k2<graph.length; k2++)

if (degree [k2]==1 && pl==999) pl=k2;

else if (degree[k2]==1) p2=k2;

if (pl!=0) {

for (k3=0; k3<graph.length+1; k3++)

hold=digraph[p1][k3];

digraph[pl][k3]=digraph[0][k3];

digraph[0][k3]=hold;

}

for (k3=0; k3<graph.length; k3++)

{

hold=digraph[k3][p1];

digraph[k3] [pl]=digraph[k3] [0] ;

digraph[k3][0]=hold;
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int cpy[][], mark=0, k1 O, k2=0, k=0, hold=0;

int original[][];

original = new int [graph.length][graph.length+1];

cpy = new int [graph.length][graph.length+1];

CopyGraph(original);

rearrange(original);

CopyGraph(cpy);

rearrange(cpy);

for (k 1 =0 ; k 1 <graph.length; k I++) {

for (k2=0; k2<graph.length; k2++)

if (base[k1][k2]!=cpy [k1][k2])
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for (k=0; k<graph.length+1; k++) {

hold=cpy[2][k];

cpy[2][k]=cpy[3][k];

cpy[3][k]=ho1d;

};

for (k=0; k<graph.length; k++) {

hold=cpy[k][2];

cpy[k][2]=cpy[k][3];

cpy[k][3]=hold;

,

for (k1=0; kl<graph.length; kl++)

for (k2=0; k2<graph.length; k2++)

if (base[k1][k2]!=cpy[k1][k2])

{

rnark=1;

break;

}
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if (rnark==1) break;

}
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};

if (mark!=0) {

mark=0;

for (k 1=0; kl<graph.length; k 1 ++)

for (k2=0; k2<graph.length+1; k2++)

cpy[k1][k2]=original[k1][k2];

for (k=0; k<graph.length+1; k++) {

hold=cpy [0] [k];

cpy[0][k]=cpy[1][k];

cpy[l][k]=hold;

};

for (k=0; k<graph.length; k++) {

hold=cpy[k][0];

cpy[k][0]=cpy[k][1];

cpy[k][1]=hold;

for (k1=0; kl<graph.length; kl++) 
{

for (k2=0; k2<graph.length; k2++)

if (base[k1 ][k2]!=cpy[k1 ][k2])
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