Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use" that user may be liable for copyright infringement,

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select "Pages from: first page # to: last page #" on the print dialog screen

The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.

ABSTRACT

DESIGN, IMPLEMENTATION, AND EVALUATION OF A SHARED-MEMORY PARALLEL PROCESSING SYSTEM (SMPPS)

by Eric H. Staub

As technology reaches its limits of improvements in microprocessor processing speeds, scientists and engineers have to find viable solutions to meet ever-increasing demands for faster processing speed. One such solution is parallel processing. No longer does one have to wait on sequential operations. A specific task can be split in sub-tasks that can run simultaneously, thus reducing the overall execution time of the task.

The design and implementation of these systems is crucial to the effectiveness of parallel systems. A dual-processor SMPPS was designed and implemented in order to demonstrate how multiple processors are a viable solution to increasing the speed of computer processing. Parallel algorithms were developed for this system and were used for performance analysis. The results show that SMPPS systems of a small scale can result in very significant increases in speed for problems characterized by fine-grain parallelism.

DESIGN, IMPLEMENTATION, AND EVALUATION OF A SHARED-MEMORY PARALLEL PROCESSING SYSTEM (SMPPS)

by Eric H. Staub

A Thesis Submitted to the Faculty of New Jersey Institute of Technology in Partial Fulfillment of the Requirements for the Degree of Master of Science in Computer Engineering

Department of Electrical and Computer Engineering

January 1999

APPROVAL PAGE

DESIGN, IMPLEMENTATION, AND EVALUATION OF A SHARED-MEMORY PARALLEL PROCESSING SYSTEM (SMPPS)

Eric H. Staub

Dr. Sotirios G. Ziavras, Thesis Advisor	Date
Associate Professor of Electrical and Computer Engineering, and Computer and	
Information Science, NJIT	

Dr. Solomon Rosenstark, Thesis Co-Advisor Professor of Electrical and Computer Engineering, NJIT

Dr. Edwin Hou, Committee Member Associate Professor of Electrical and Computer Engineering, NJIT Date

Date

BIOGRAPHICAL SKETCH

Author:	Eric H. Staub
Degree:	Master of Science in Computer Engineering
Date:	January 1999

Undergraduate and Graduate Education:

- Master of Science in Computer Engineering New Jersey Institute of Technology, Newark, NJ, 1998
- Bachelor of Science in Computer Engineering New Jersey Institute of Technology, Newark, NJ, 1997

Major: Computer Engineering

-

ACKNOWLEDGMENT

The author wishes to express sincere thanks to my two advisors, Dr. Ziavras and Dr. Rosenstark, for their guidance, support, knowledge, and mentoring. I would also like to thank Dr. Hou for serving as a committee member.

I would like to give a special thanks to Rosalie Gaddala for her friendship and support throughout my academic career at NJIT and to Amy Sun who was an inspiration for me over the last few months of my graduate work.

Most of all, I would like to thank my Mother and the rest of my Family for the love and support that has gotten me this far.

I would like to thank all of the Electrical and Computer Engineering Department and all of the Faculty and Staff of NJIT that have been an integral part my academic career at NJIT. I would like to thank the numerous students that I had the opportunity to work and study with. I would like to thank the United States Air Force for giving me the opportunity to become an officer to serve my country and the Air Force Institute of Technology for giving me the opportunity to get my graduate degree at NJIT. I would like to thank the AFROTC Detachment 490 Staff, past and present, for their guidance and support while I have been at NJIT. Also, I would like to thank my brothers of Tau Delta Phi Fraternity. And finally, I would like to thank Altera's University Program for supplying hardware and software for this project.

v

TABLE OF CONTENTS

Ch	apte	r Page
1	INT	RODUCTION1
	1.1	Parallel Processing1
		1.1.1 Importance of Parallel Processing1
		1.1.2 Classes of Parallel Processing
	1.2	Existing Machines4
		1.2.1 Message-Passing
		1.2.2 Shared-Memory
2 SY	IM STE	PLEMENTING A SHARED-MEMORY PARALLEL PROCESSING EM (SMPPS)
	2.1	Objectives
	2.2	A Dual-Processor Shared-Memory Parallel Processing System10
		2.2.1 Meeting Design Objectives
		2.2.2 The Design
		2.2.3 Timer Configuration
3	IM	PLEMENTATION OF PARALLEL ALGORITHMS27
	3.1	Matrix Multiplication27
		3.1.1 Demonstrating a [4x4], [8x8], and [16x16] with [4x4] Matrix27

.

TABLE OF CONTENTS (Continued)

Ch	apter	Page
4	PERFORMANCE EVALUATIONS	34
	4.1 Matrix Multiplication	34
5	CONCLUSIONS	35
6	APPENDIX A - Diagrams	36
7	APPENDIX B - Programs	48
8	REFERENCES	91

.

LIST OF FIGURES

Fig	Page
1	Steps processors make to solve the equation $g = (a+b)^*(c+d)$ 2
2	MIMD architecture (with shared-memory)
3	Generic model of a message-passing multicomputer (M=Memory, P=Processor)5
4	The UMA multiprocessor model (e.g., the Sequent Symmetry S-81) [P = Processor; SM = Shared-Memory; I/O = Input/Output]7
5	Two NUMA models for multiprocessor systems
6	The COMA model of a multiprocessor (D: Directory, C: Cache, P: Processor; e.g., the KSR-1)
7	Address location of devices
8	Differences between the 28C64 and the Atmel 28C25613
9	Differences between the 6264 and the HM62256LP-1214
10	Differences in the wiring of the 74LS13814
11	Truth table for the shared-memory control logic
12	Karnaugh Maps for the shared-memory control logic
13	Timer Interrupt Service Routine (written in assembly)24
14	[4x4] Matrix Multiplication on a single processor
15	[4x4] Matrix Multiplication
16	Matrix-Multiplication Execution Times
17	[4x4] Matrix Multiplication on dual processors
18	[4x4] Matrix Multiplication on dual processors using shared-memory31
16	Matrix-Multiplication Execution Times (Repeat)

.

Dia	gram Page	9
1	Dual-Processor Shared-Memory Block Diagram (I)	7
2	Dual-Processor Shared-Memory Block Diagram (II)	3
3	Original Control Logic Design	€
4	1-2 DeMultiplexor Logic)
5	2-1 Multiplexor Logic	1
6	Final Shared-Memory Control Logic Design	2
7	Default Symbol CTEST Logic	3
8	Timer Control Logic	4
9	Flow-Chart I – One Processor Operation	5
10	Flow-Chart II – Dual-Processor Operation	6
11	Flow-Chart III – Dual-Processor Operation using Shared-Memory4	7

CHAPTER 1

INTRODUCTION

1.1 Parallel Processing

1.1.1 Importance of Parallel Processing

Even with ever changing technology, industry is always looking for ways to improve performance. Scientists are continually finding innovative ways to speed up the processing power of computers. Still, we need faster and more effective ways to accomplish a task. Now that advancements in technology are reaching their limits, industry must look for a new way to keep up with the demands. There is the old adage that two minds are greater than one. This theory can be applied to computer processing. With two processors, not only can more tasks be accomplished, but also tasks can be accomplished faster.

For example, the simple task of $\{g = (a+b)*(c+d)\}$ would take three steps (part a. of **Figure 1**) on one computer. On a system with two processors, that same task would take two steps (part b. of **Figure 1**). For simplicity sake, the time to pass information between the processors is not considered.

(a)System with one processor.

Step 1: Processor A adds 'a' to 'b' and places value in 'e'. Step 2: Processor A adds 'c' to 'd' and places value in 'f'. Step 3: Processor A multiplies 'e' and 'f', and places in 'g'.

(b)System with two processors.

Step 1: Processor A adds 'a' to 'b' and places value in 'e'. Processor B adds 'c' to 'd' and places value in 'f'.Step 2: Processor A or B multiplies 'e' and 'f', and places in 'g'.

Figure 1: Steps processors make to solve the equation g = (a+b)*(c+d).

This is a 33% improvement in the time to accomplish a simple task. If the additional processor gives a 33% increase, why not add another processor? In this simple case the addition of more processors would not have any effect. This is because the task is made up of three subtasks, one of which requires information from the previous two. Even if the third processor was assigned the multiplication of 'e' and 'f' it would not be able to proceed until the additions were complete.

One might conclude that the improvement of processing time using multiple processors is limited. Actually the limit only exists for a particular task. As the task changes, the speedup factor changes. When multiple processor theory is applied to the task of (a+b)*(c+d)*(e+f)*(g*h), the results are quite different. On one processor the task will take seven steps. On a two-processor system it would take four steps. This is over 40% decrease in processing time. On a four-processor system that same task would take only three steps. This is over 50% decrease. If the task is applied to a five-processor system, there is no improvement in processing time. Once again the processing time can only be improved to a certain limit. Another factor to consider is that adding a fourth processor only increased the speedup by 10%. When one processor was added there was a gain of 40%, and only 10% more when adding two additional processors. Also, during some of the steps, some of the processors are not needed. Further complicating the matter is the movement of data between processors. This transfer will take additional time that will decrease the overall speedup of the system. Deciding what is the best possible design to obtain the best possible results is a topic that will not be discussed in detail and will be left to independent research. However, the focus of this paper will center on the design of a shared-memory parallel dual-processor system and the timing results of running algorithms on the system.

1.1.2 Classes of Parallel Processing

Before I get into the design of the system, I will discuss the different types of parallel computing systems. As one might guess, parallel systems are designed in different ways. In general, parallel systems are classified in to two major groups. The system I have designed falls into the shared-memory class and the other class consists of message passing systems. Each system has its pros and cons and the type of system needed is basically dependent on the task that needs to be accomplished. How parallel computers communicate with one another and how they share memory determines which one of the two major classes of parallel computers the systems belong to.

Systems that are considered inherent parallel computers are those which operate in the MIMD (multiple instruction stream over multiple data stream) mode. An example of a MIMD system is shown in **Figure 2**. Since parallel computers must share information, there has to be a way for them to access the shared information. In multiprocessor shared-memory systems this is accomplished by placing information in some variable and giving all systems access to that variable. In message-passing systems the information is passed between computers by using an interprocessor communication network.

Figure 2: MIMD architecture (with shared-memory).

1.2 Existing Machines

1.2.1 Message-Passing

A system in the message-passing class consists of one or more multiple-computer networks. These networks connect together computer nodes. The computer nodes communicate information between one another through these networks. Hardware routers usually handle this communication. An example of a message-passing interconnection network is shown in **Figure 3**.

Figure 3: Generic model of a message-passing multicomputer (M=Memory, P=Processor).

Each network node is attached to a router. Based on the design and type of protocols that the router uses, information is then sent between the computer nodes via routing. This gives the designer the flexibility of creating multiple types of communications between the networks. By changing how the networks interact, the designer has the ability to use the same networks to accomplish numerous different tasks.

As with all technology, the scientist and engineer strive to improve the original design. Message-passing systems are now in their third stage of development. Development started in 1983 with systems like the Caltech Cosmic and the Intel iPSC/1. These systems were designed with software-controlled message-passing for the hypercube architecture. Over the years of 1988-1992, systems such as the Intel Paragon and the Parsys SuperNode 1000 represented the next stage in the evolution of message-passing systems. The systems incorporated routing messages via hardware, utilizing software for mediumgrain distributed computing, and using mesh-connected architectures.

The third stage of the development started in 1993 and consisted of machines that placed processing and communication devices on the same chip. Systems such as the MIT J-Machine and the Caltech Mosaic are based on this design.

Listed above are a few of the many systems that have been developed. Each system has its own unique design. What that design is and how each accomplishes its message passing can be found in numerous technical notes and publications. These systems were mentioned just to give a flavor of the type of systems and progression of the development of message-passing systems.

1.2.2 Shared-Memory

Shared-memory systems consist of multiple-processors, each of which has its own private memory, and information is shared through an independent memory that all of the processors have the ability to access. As with message-passing systems, I will give a brief description of shared-memory systems. I will briefly describe only three of the many models of shared-memory systems. Many other models incorporate one or more features of these three models.

The first model, **Figure 4**, is the uniform-memory-access (UMA). In this model all processors have equal access to all memory. These systems are for multiple processes for problems characterized by a high degree (that is fine-grain) parallelism. The system I designed falls under this model.

Figure 4: The UMA multiprocessor model (e.g., the Sequent Symmetry S-81) [P = Processor; SM = Shared-Memory; I/O = Input/Output].

The next model, **Figure 5**, is the non-uniform-memory-access (NUMA). NUMA systems consist of groups of multiple-processors that are connected by interconnection networks. There is local-shared-memory within each group and global-shared-memory between the groups. These systems share memory based on the location of the memory in relation to the processor needing access to that memory. Therefore, the access time to memory is not uniformly distributed among the processors.

Figure 5: Two NUMA models for multiprocessor systems.

The last model, **Figure 6**, I will discuss, is the cache-only memory access (COMA). These systems are similar to NUMA systems, but the shared memories are replaced with cache memories. Processors wanting to access memory in another processor's cache memory must do so through cache directories.

Figure 6: The COMA model of a multiprocessor (D: Directory, C: Cache, P: Processor; e.g., the KSR-1).

Numerous different sources, including the Internet, can be found for further information about parallel systems. This follow-on information is not necessarily needed to understand the design of my shared-memory system or the results of testing algorithms on that system.

CHAPTER 2

IMPLEMENTING A SHARED-MEMORY PARALLEL PROCESSING SYSTEM (SMPPS)

2.1 Objectives

There are three main objectives to this project. The first is the design of the sharedmemory parallel processing system. Next is the implementation of that system. The final objective is the evaluation of the system for some algorithms.

2.2 A Dual-Processor Shared-Memory Parallel Processing System

2.2.1 Meeting Design Objectives

Since the evaluation of the system consisted of testing algorithms, I needed to design a system that could be implemented within time and monetary constraints. This system would have to show the effectiveness of running an algorithm on a parallel system as opposed to running that same algorithm on a single processor system.

I chose to develop a system with two processors and a single shared-memory. This would reduce the cost and complexity of the project. Also, it would help keep me within the time and monetary constraints. The next step was to determine which processor to use for the project.

I initially chose to use the TI TMS320C80 processor. The C80 processor consists of four DSPs and one RISC processor. I spent the next month gathering information about the C80. I considered how I would implement a system using two C80 processors

10

and what software would have to be developed to manage and test the interface between the two processors. After carefully considering the options that the information I collected presented to me, I determined that I would be unable to use the C80 for this project. Using the C80 would not only be cost prohibitive, but the complexity of implementing a dual processor system was extremely complex.

I then focused my attention on using TI's C40. Even though the cost was quite less, the complexity still remained quite high. After another month of investigations it was determined that using the C40 was not a viable solution. This left the Motorola 68000 series microprocessor. These processors would be much more cost effective and the complexity would be greatly reduced. Since I was familiar with this series of microprocessor, I determined that it would be the most promising candidate for a dualprocessor system.

2.2.2 The Design

As an undergraduate, I was involved in many projects. The most significant was my senior project. In this project I developed a control system for a constant-pressure floodgate. I used the Motorola 68008 microprocessor as the control system processor. I used a micro-controller design that was developed by Dr. Rosenstark and is part of EE-393, Electrical Engineering Lab III. The micro-controller design and specifications are explained in detail in the EE-393 Lab Manual.^(Rosenstark 1998) The current version of the Lab Manual has the new micro-controller, Motorola 68EC000 microprocessor, in place of the Motorola 68008 microprocessor.

Once it was determined what microprocessor I should be using, the project was set in motion. The Electrical Engineering Laboratory III (EE 393 – Spring 98) was using the last of the MC68008 to build micro-controllers. Since the discontinuation of the processor, Dr. Rosenstark was seeking an alternative processor. The alternative was the MC68EC000. To test the feasibility of using this processor, Dr Rosenstark had one student build a micro-controller with the MC68EC000. The student was successful in using MC68EC000.

In order to accomplish the objectives I set, I needed to make modifications to the micro-controller in the EE-393 Lab Manual. The micro-controller has its own memory, which included DRAM and an EEPROM. The memory used in the EE-393 Lab Manual was 28C64 EEPROM and 6264 DRAM. Since my design required a larger memory space, I chose to use an ATMEL 28C256 EEPROM and a 62256 DRAM. This would give me two blocks, each 8K bytes, of addressable memory. This change in address space changed the addressing scheme of the micro-controller (see Figure 7).

	<u>28C64/6264</u>	<u>28C256/62256</u>
EEPROM	0000 - 1FFF	0000 0000 – 0000 7FFF
Private Memory	2000 - 3FFF	0000 8000 – 0000 FFFF
Shared Memory	N/A	0001 0000 – 0001 7FFF
Parallel Port	6000	0001 8000
Serial Port	4000	0002 0000
	All va	lues are in HEX

Figure	7:	Address	location	of	devices.
--------	----	---------	----------	----	----------

Another benefit of using these chips is that they are 28-pin packages. This would allow me to use the original design while only changing two wires for each chip. The additional wires are address lines A13 and A14. These lines will be connected to pins that where originally no-connect pins on the EEPROM and will replace the nCE2 pin and a no-connect pin of the DRAM. This is shown in **Figure 8** and **Figure 9**.

Figure 8: Differences between the 28C64 and the Atmel 28C256.

Figure 9: Differences between the 6264 and the HM62256LP-12.

Since I am using a larger address space, the address lines on the 74LS138 will have to change. Lines A13, A14, and A15 will be replaced with A15, A16, and A17 as shown in **Figure 10**.

Figure 10: Differences in the wiring of the 74LS138.

Now that the major design decisions were out of the way I started to build the circuits around the microprocessor. I proceeded as far as possible with the parts that I had acquired up to this point. I was having difficulties acquiring some of the important components so I was unable to go any further. Due to lack of parts to complete the microprocessors I decided to work on the control logic and the 2-1 Mux.

After spending some time designing the control logic I received most of the components needed to finish the micro-controllers. After completing the first micro-controller, I ran into difficulties interfacing with the computer. Since I was only having trouble with communicating with the computer I started to build the second micro-controller. Once I completed this micro-controller, I ran into the same difficulties. After an exhaustive trouble shooting effort, I was only able to communicate with the computer on a simple level. I was still unable to run the Monitor program. I then changed my focus to the software and the assembler.

After more intense trouble shooting, Dr. Rosenstark and I determined that one of the problems was created by my larger address space. Specifically the range from 8000H to FFFFH. This problem was caused by the assembler when it sign extended. As a solution we decided not to use this address range. I moved the private memory to 0001 0000H - 0001 7000H and moved the shared-memory to 0002 0000H - 0002 7FFF. This solved some of the problems but I was still unable to get the monitor program to work.

While working on my project I was teaching EE393 over the second summer session. These students were using the MC68EC000. These students were using the smaller EPROMs and RAMs. They did not have the communication problems that I was having. This was very perplexing since it was the same program, except for the different

address scheme. Since I was able to communicate on a simple level it had to be a software problem. After using some unique debugging, I determined that the James L. Antonakos' Assembler was assembling addresses that used the LEA command with an offset of 6H. I also found another problem. The James L. Antonakos' assembler creates S1 records. This would not allow me to write a program to be loaded by the monitor in my memory location since my addressing scheme was a long word.

At this point I tried using another assembler. I found that Paragon's assembler was able to assemble the program, and I was able to run the monitor program. This created another problem. The Paragon assembler used S2 records in the Hex file. The monitor was not able to load S2 files, so I would not be able to load a program into memory.

Working with Dr. Rosenstark we came of with several solutions. The first was to change the LEA commands to MOVEA.L commands. This solved most of the problems but I would still be unable to use Antonakos' assembler for files to be loaded into the memory because my addressing scheme requires S2 records. Dr. Rosenstark's changing the monitor program to load S2 records solved this problem. Dr. Rosenstark has passed this information on to James L. Antonakos and he is currently working on a solution.

I now had two fully working micro-controllers. Now it was time to start to work on the shared-memory logic. For simplicity, I chose to make the shared-memory the same type as the private-memory of the micro-controllers. This way I would be able to use the same address and data bus as the micro-controllers. The next step was to design the interface between the micro-controllers and the shared-memory. My design called for single-port access of the memory. Also, access of the shared-memory should not interfere with the independent processing of the other processor unless both processors try to access the shared-memory at the same time. In order to accomplish that, I needed to separate the address and data buses of the individual processor while allowing access to those buses when shared-memory is accessed.

Diagram I in Appendix A shows the initial block diagram for the system. I separated the address buses with 2-1 multiplexors and the data buses with bustransceivers. I used a bus-transceiver on the data bus because of the bi-directional nature of the data bus. After further evaluation of my design I found that I had unnecessary logic.

Diagram II in Appendix A shows that I removed two bus-transceiver blocks and two 2-1 MUX blocks. The DRAM chip has an enable pin on it. This enable pin would only be activated when a processor requires access to the shared-memory. This allowed me to remove the MUX blocks. The bus-transceiver is bi-directional so it can be placed in the direction of the shared memory while a processor is accessing its private memory. Since the shared-memory is not enabled during this time, the data on the data lines of the shared-memory chip is ignored. This allowed me to remove the bus-transceiver blocks.

Now that the design for the address and data bus was complete I needed to design the shared-memory control logic. The problem that needed to be solved was how to access the shared-memory with interrupting independent processing of the other processor. I used one of the features of the MC68EC000 to build my design.

17

I used the MC68EC000 A/S pin and the /DTACK pin. When an instruction is executed the MC68 places a signal on the A/S pin. In order for the processor to continue to the next instruction, a signal must be placed on the /DTACK pin. Once the state on the /DTACK pin has gone from high to low and then back to high, the processor will continue on to the next instruction. If the transition is not completed the processor will not continue.

Since my design requires that a second processor wait till the first processor is done when both processors try to access shared-memory, I can use these pins to my advantage. In the EE 393 design the two pins are connected directly together. If I could separate the pins during shared-memory access, I would have solved my problem. Now that I had a possible solution to this problem, I had to consider the other chips that needed to be controlled by this logic.

The shared-memory had to be enabled when accessed and whether the operation is a read or write must be handled. The bus-transceiver on the data bus must be enabled and the direction set. And finally the multiplexor on the address bus must be set correctly. This design would require large amounts of logic and testing would become a nightmare. Luckily, as part of my undergraduate work I used a software package by Altera called MAX+plus II.

I decided to use ALTERA programmable chips for the control logic and the 2-1 Mux. Using the Altera chips would be much more cost effective and would reduce the area required for the shared-memory system. Also these chips would allow flexibility in the design of the logic. The design could be easily modified and reprogrammed onto the chip. MAX+plus II can be used to design entire logic devices from those as simple a gate to those as advanced as microcomputers. The designs can be created in text format or in graphical format. Once the design is complete, it can be thoroughly tested. If it does not meet the specifications needed, then it can be easily changed and tested again. This eliminates the need to build the circuits, test them, and then throw them away because they did not meet the specifications you had planned. Another advantage was that the design could be placed on a single chip the size of a computer processor. Not only would I save time and money, but also the space I needed for my control logic would be reduced.

Diagram III in Appendix A shows one of the preliminary designs. The final design for the most part was similar to this design. One of the features of MAX+plus II that is very useful is the ability to create default symbols. This allows the use of the same sub-design in multiple places. This became particularly useful when testing a specific point of the design.

I used this feature in two places in my design. One place was the point that became the focal point of fault with my original design. This will be explained as I describe the final design of the control logic. The second place is the 1-2 de-multiplexor I created. I would have had to create a third default symbol, but this symbol had already been created. This was the 2-1 multiplexor.

The 1-2 DEMUX is shown in Diagram IV in Appendix A. I created it using tristate buffers. This design allows one signal to be sent over a different line based on what is selected by the select pin. The drawback to this design is the high 'Z' output that is created when a line is not selected. This would be a problem when a processor is working with its own memory. Then the input to the shared-memory logic would be high 'Z'. Since my design of this control logic requires a high or low signal to be present, I had to come up with another solution.

The simple solution was an open-collector buffer. Since the chip that I will be placing the design on does not support open-collector buffers in the design, I chose to route the 1-2 DEMUX output out of the chip and then back into the chip via an input pin. The signal would then go through the open-collector buffer and then back into the design on the chip. This would require an additional chip. Since I had saved large amounts of space by using the Altera chip, I didn't mind adding one additional chip.

In order to save additional space, I chose to design the 2-1 multiplexors for the address bus with the MAX+plus II software. Diagram V in Appendix A shows this design. This would require the use of two Altera MAX EPM7128SLC84-7 chips. Using two MAX chips still required less space than using 2-1 multiplexor chips. After running the control design through many simulations, I programmed the design into the second MAX chip. I then proceeded to wire the chip into the micro-controller. Before I could actually test the design, I had to wire the bus-transceivers for the data bus and the second MAX chip, which has the 2-1 Multiplexors for the address bus.

Once the wiring was complete, I started testing the design. The design did not work the way it was expected to. After days of testing and troubleshooting, I narrowed the problem down to a specific area in the design. I removed this area from the design and created a default symbol for this area. It is shown as default symbol 'ctest' in Diagram VI in Appendix A. This would allow me to redesign and test the problem area of the design. After many days of testing and modifications, I determined that I would have to redesign this portion of the control logic. Any modifications I made to the design would either introduce a race condition into the logic or give total control of the shared-memory to one processor. Just before starting from scratch, I asked Scott Margo, an NJIT Electrical Engineering Ph.D. student what he thought might solve the problem. After evaluating the design, he came to the same conclusion that I should start over from the truth tables. The resulting truth table is shown in **Figure 11**.

Ain	Bin	Aout	Bout	A'out	B'out
0	0	0	0	0	0
0	0	0	1	0	0
0	0	1	0	0	0
0	0	1	1	Invalid	Invalid
0	1	0	0	0	1
0	1	0	1	0	1
0	1	1	0	0	1
0	1	1	1	Invalid	Invalid
1	0	0	0	1	0
1	0	0	1	1	0
1	0	1	0	1	0
1	0	1	1	Invalid	Invalid
1	1	0	0	1	0
1	1	0	1	0	1
1	1	1	0	1	0
1	1	1	1	Invalid	Invalid

Figure 11: Truth table for the shared-memory control logic.

Using the Karnaugh Maps in Figure 12 (a) and (b) the following equations emerged:

A'out = (Ain /Bin)+(Ain /Bout)+(/Ain Bin /Aout /Bout)

B'out = (/Ain Bin)+(Bin /Aout Bout)

A'out	00	01	11	10		B'out	00	01	11	10
00	0	0	1		Í	00	0	1	0	0
01	0	0	- 0	<u> </u>		01	0	-1	1	0
11	0	0	0	1		11	0	$-\overline{1}$	0	0
10	0	0	1 - 1	<u> </u>	i [10	0	1	0	0
(a)				. Jaaran kanang kanang kanang		(b)		annold diamont specific fillents (

Figure 12: Karnaugh Maps for the shared-memory control logic.

The resulting logic is shown in Diagram VII in Appendix A.

I tested this design by running it through several simulations. The results of these simulations were very promising. After compiling the control design with this new design, I programmed it into the MAX chip. This began the testing phase of the new control logic. I used the monitor program on each micro-controller to manually access the shared-memory. I was able to edit and display the shared-memory from both microcontrollers. This confirmed that the hardware design was complete.

The next step was to write a program that used software semaphores to lock the shared-memory. The program I wrote is in Appendix B. The program ran flawlessly on both processors. Not only did the hardware design work, but also the software-controlled locks were executing properly.

2.2.3 Timer Configuration

Before I could move on to the algorithms, I had to decide how I would track the execution times. The most effective way is to interface directly with the micro-controllers. This would allow the software to directly control the timer. Not only would this be more efficient, but it would also produce more accurate times.

I chose the Intel 8253-5 programmable interval timer to accomplish the task of timing the execution of the algorithms. The 8253 timer is a 24-pin dual in-line package with three 16-bit counters, each with a count rate of up to 2 MHz. The timer has five different modes of operation and four different ways of obtaining count values. I will be using mode 0, interrupt on terminal count, and will use 'Read/Load least significant byte first, then most significant byte' for obtaining the count value. The timer counts down from 2^{16} -1. This produces a 16-bit number.

The timer has an eight-bit data bus that can be easily interfaced with the microcontroller's eight-bit data bus. This data bus is used to read the count value in the count register. As stated before this is done with two reads of the chip. The first read is stored in one register and the second read is stored in another register. The final result is the combination of the two values, which is a 16-bit number.

Once I completed the interface of the chip to the micro-controller, I conducted preliminary tests on the timer chip. These tests were done to ensure the timer was working properly. Even though I chose to operate the timers at 1.2 MHz, I noticed that the timer was counting completely down several times. I was getting valid count values but had no way of telling how many times the counter started over. This could cause a problem when determining the speed up of the algorithms that I would be testing on the project.

In order to solve this problem I had to find a way to track how many times the counter reaches zero. This was one of the main reasons I chose to operate the timer in mode 0. In mode 0 the timer would count down to zero, and once zero was reached a high signal would be placed on the out1 pin of the timer chip. Now I had a way to keep

track of how many times the timer reached zero. Of course, it was not as simple as I thought.

Once the timer reached zero, the signal would be placed on the out1 pin. The timer would then continue to count down again. The problem with this is that the signal on the out1 pin was not reset. The only way to reset the out1 pin was to reset the entire timer and then restart the timer. This presented another problem. All of these actions would take time. Even though it was a very small amount of time, it was still enough to reduce the accuracy of the execution times of the algorithms.

The solution to this problem brought about the final-design for the interface of the timer. Since the resetting of the timer would take time, I needed to halt the execution of the algorithm while I was resetting the timer. I accomplished this by using the external interrupts on the MC68EC000.

Using the 68's interrupts I could reset the timer and count the number of times the timer reached zero. This was accomplished by adding an interrupt service routine to the monitor program. The routine, which is written in assembly, is shown in **Figure 13**. Using the interrupts also required some additional hardware design.

```
ORG $6300
; This is Interrupt #4 Service Routine
move.b #$44,($18000)
addi.l #$01,(ICNT) ; # times counter counts down
move.b #$30,(LCW) ; Initializes the counter to mode 0
move.b #$00,(WC1LB) ; Loads the count value
move.b #$00,(WC1MB)
RTE
```

Figure 13: Timer Interrupt Service Routine (written in assembly).

While designing the hardware interface between the timer and micro-controller, I developed a way to totally automate the resetting of the timer and the reading of the final count value. This would require additional interrupts and logic for the interface. After a few weeks of testing designs, I decided just to use the interrupt for the resetting of the timer and keeping track of how many times the timer reached zero. I made this decision based on the fact that these additional features of automation were not really necessary and the fact that I would not be able to work out the bugs in the design in the time allocated for the timer design.

Since I was not using automation for the stopping and reading of the timer, I had to create a design that would allow the software to stop and read the timer. In the microcontroller design the 74LS138 is used to select different chips. This is accomplished by having three upper address lines connected to the 74LS138. By executing a read/write at the address location specified by the address lines that are connected to the 74LS138, a particular chip will be enabled. Since I was not using all of the locations available on the 74LS138, I decided to use it to help with the stopping and reading of the timer.

Now that my new design for the timer required additional logic, I decided to use the MAX+plus II software. I designed the logic and then added it to the design for the address bus multiplexors. This is shown in Diagram VIII in Appendix A. The logic would allow for the interrupt for the tracking of the number of times the counter reaches zero, the software-controlled stopping and reading of the timer.

The timer will be initialized and started by software-control. When the timer reaches zero, the execution of the algorithm will be interrupted, a count variable will be incremented, the timer will be reset and restarted, and then the execution of the algorithm
will resume. This will be done without any software-control. When the algorithm is complete, software will stop the timer and read the count value. The software-control will be additional lines of code that will be added to the code for the algorithms. This code will not affect the results of the execution time of the algorithms. After running several tests, I determined the design was sufficient to give effective timing results for the algorithms I would be testing on the SMPPS.

This concluded the hardware design of the system. Now it was time to move on to the development of the algorithms for the system. For this project I will be testing two algorithms. The first will be matrix multiplication and the second would be parallel sorting.

CHAPTER 3

IMPLEMENTATION OF PARALLEL ALGORITHMS

3.1 Matrix Multiplication

3.1.1 Demonstrating a [4x4], [8x8], and [16x16] with [4x4] Matrix

For the matrix-multiplication algorithm (MMA), I wanted to use several different sized matrices to show the effective speed up of using a SMPPS. I would multiply two matrices and place the results in a third matrix. The three matrix sizes I chose were 4x4, 8x8, and a 16x16. This would give me speed up values for simple matrix multiplication that is time-consuming.

I would also produce results for computing the matrix-multiplication on one processor and on the SMPPS. The multiplication of the matrices on the SMPPS would be done in two different ways. One way would be just utilizing the two processors, and the second would utilize the shared-memory. I will be expecting a speed up of almost two for the dual processor system without shared data, and considerably less of a speed up for the shared-memory implementation. This would be caused by the overhead involved in using the SMPPS. The transfer of data through the shared-memory is considerably slower than using registers of a single micro-controller. I do, however, expect a reasonable speed up over the single processor.

I will use 4x4 matrices to demonstrate the different ways I will do the matrixmultiplication algorithm. I will be multiplying matrices A and B, and placing the results in matrix C as shown in **Figure 14**.

Matrix A				Matrix B				Matrix C					
A ₀₀	A ₀₁	A ₀₂	A ₀₃		B ₀₀	B ₀₁	B_{02}	B ₀₃		C ₀₀	C ₀₁	C ₀₂	C ₀₃
A ₁₀	A_{11}	A ₁₂	A ₁₃	*	B ₁₀	B11	B ₁₂	B ₁₃	=	C ₁₀	C11	C_{12}	C ₁₃
A ₂₀	A_{21}	A ₂₂	A ₂₃		B ₂₀	B ₂₁	B ₂₂	B ₂₃		C ₂₀	C_{21}	C_{22}	C ₂₃
A ₃₀	A ₃₁	A ₃₂	A ₃₃		B ₃₀	B ₃₁	B_{32}	B ₃₃		C ₃₀	C_{31}	C ₃₂	C ₃₃

Figure 14: [4x4] Matrix Multiplication on a single processor.

The operations required to compute Matrix C are shown in Figure 15.

$C_{00} = (A_{00}*B_{00}) + (A_{01}*B_{10}) + (A_{02}*B_{20}) + (A_{03}*B_{30})$ $C_{01} = (A_{00}*B_{01}) + (A_{01}*B_{11}) + (A_{02}*B_{21}) + (A_{03}*B_{21})$	
$C_{02} = (A_{00} * B_{02}) + (A_{01} * B_{12}) + (A_{02} * B_{22}) + (A_{03} * B_{32})$	
$C_{03} = (A_{00} * B_{03}) + (A_{01} * B_{13}) + (A_{02} * B_{23}) + (A_{03} * B_{33})$	
$C_{10} = (A_{10}*B_{00}) + (A_{11}*B_{10}) + (A_{12}*B_{20}) + (A_{13}*B_{30})$	
$C_{11} = (A_{10}*B_{01}) + (A_{11}*B_{11}) + (A_{12}*B_{21}) + (A_{13}*B_{31})$	
$C_{12} = (A_{10} * B_{02}) + (A_{11} * B_{12}) + (A_{12} * B_{22}) + (A_{13} * B_{32})$	
$C_{12} = (A_{10} * B_{02}) + (A_{11} * B_{12}) + (A_{12} * B_{22}) + (A_{13} * B_{33})$	
$C_{20} = (A_{20}*B_{00}) + (A_{21}*B_{10}) + (A_{22}*B_{20}) + (A_{23}*B_{30})$	
$C_{21} = (A_{20}*B_{01}) + (A_{21}*B_{11}) + (A_{22}*B_{21}) + (A_{23}*B_{31})$	
$C_{22} = (A_{20} * B_{02}) + (A_{21} * B_{12}) + (A_{22} * B_{22}) + (A_{23} * B_{32})$	
$C_{22} = (A_{20} * B_{20}) + (A_{21} * B_{12}) + (A_{22} * B_{22}) + (A_{22} * B_{22})$	
$C_{23} = (11_{20} - D_{03})^{+} (11_{21} - D_{13})^{+} (11_{22} - D_{23})^{+} (11_{23} - D_{33})^{+}$	
$C_{20} = (A_{20} * B_{00}) + (A_{21} * B_{10}) + (A_{22} * B_{20}) + (A_{22} * B_{20})$	
$C_{30} = (\Lambda_{30} * B_{30}) + (\Lambda_{31} * B_{10}) + (\Lambda_{32} * B_{20}) + (\Lambda_{33} * B_{20})$	
$C_{31} = (A_{30} \cdot D_{01})^{\dagger} (A_{31} \cdot D_{11})^{\dagger} (A_{32} \cdot D_{21})^{\dagger} (A_{33} \cdot D_{31})^{\dagger}$	
$C_{32} = (A_{30} B_{02}) + (A_{31} B_{12}) + (A_{32} B_{22}) + (A_{33} B_{32})$	
$C_{33} = (A_{30}*B_{03}) + (A_{31}*B_{13}) + (A_{32}*B_{23}) + (A_{33}*B_{33})$	

Figure 15: [4x4] Matrix Multiplication.

To obtain the execution time for running the algorithm on one processor, I gave the processor access to all of matrix A and matrix B. The program I developed for this algorithm is in Appendix B. I started out by writing individual programs for each of the three different sized matrices and each of the three different ways. While developing the first few programs, it occurred to me that this might affect the results for the execution times of the algorithm. What I needed was a program that accomplished the three different types of matrix-multiplication on all three of the matrix sizes. Also, the program must accomplish it with as little different overhead as possible.

As I developed the program, I would test it numerous times. I started to get count values for the different matrices. The values I was getting were very close to the speedups I expected. The problem I was having was that I could not get the program to work exactly like I wanted it to. It would give me results for one matrix size and not the others. As I made changes to correct the problem, another problem would be introduced. Rather then spend tremendous amount of time on trying to resolve these problems. I chose to continue with the writing of the thesis. **Figure 16** shows the results of the execution times.

Matrix Size	One Processor	Dual Processor	Dual Processor Using Shared-Memory
[4x4] Matrix	418	273	386
[8x8] Matrix	1909	1018	1493
[16x16] Matrix	12397	6219	8414

Figure 16: Matrix-Multiplication Execution Times (clock cycles).

The flowchart for the one-processor matrix multiplication algorithm is shown in Diagram IX in Appendix A. In the program the micro-controller would have access to all of matrix A and matrix B. The program would be loaded into the memory of one microcontroller. The program is then started. After the program went through its initializations and loading of variables, the timer would start and it would simply calculate the results for matrix C by the previously stated equations. Once the results were calculated they were moved to shared-memory and the timer was stopped. The last step of the program was to read the values in the timer. The next step was the program that used two processors to do the matrix multiplication. This was accomplished by giving Processor A access to the first half of matrix A (half of the rows) and access to all of matrix B. Processor A computes the results for the first half of the C matrix. Processor B was given access to the second half of matrix A and all of matrix B. Processor B computes the results for the second half of the C matrix. The dashed line in **Figure 17** shows the separation for the 4x4 matrices:

Matrix A				Matrix B					Matrix C				
A ₀₀ A ₁₀	A ₀₁ A ₁₁	A ₀₂ A ₁₂	A ₀₃ A ₁₃	*	$\begin{array}{c} B_{00} \\ B_{10} \end{array}$	B ₀₁ B ₁₁	$\begin{array}{c} B_{02} \\ B_{12} \end{array}$	B ₀₃ B ₁₃	=	C ₀₀ C ₁₀	C ₀₁ C ₁₁	C ₀₂ C ₁₂	C ₀₃ C ₁₃
$\begin{array}{c} \overline{A_{20}} \\ A_{30} \end{array}$	A ₂₁ A ₃₁	A ₂₂ A ₃₂	A ₂₃ A ₃₃		${f B_{20}\ B_{30}}$	${f B}_{21} {f B}_{31}$	B ₂₂ B ₃₂	B ₂₃ B ₃₃		$\begin{bmatrix} C_{20} \\ C_{30} \end{bmatrix}$	C ₂₁ C ₃₁	C ₂₂ C ₃₂	C ₂₃ C ₃₃

Figure 17: [4x4] Matrix Multiplication on dual processors.

The flowchart for this program is shown in Diagram X in Appendix A. Since the only difference between the program in each processor is what portion of matrix A is accessible, I developed the program to load on the correct portion of the matrix that the individual processor needed. I accomplished this by using a subroutine that required a start and finish location for the values of the matrix. The start and finish locations were determined by which processor was using the program. This was all controlled by the settings placed in the beginning of the program. To gain a better understanding of what I did, a review of the program in Appendix B will be necessary.

In order to obtain the most accurate times as possible, I chose to have the processor control the start and stop of the timer. I accomplished this by using semaphores. These semaphores would be used to signal the other processor when it could continue with its operations. This would allow the initialization and loading of variables by both processors without having to include these operations in the execution times.

Processor A would start by loading its start values and then would enter into a wait state. It would exit that Wait State when Processor B signaled that it had finished loading variables and was now in its own wait state. Now Processor A would start the timer, signal Processor B to start executing, and then start its own execution. Once Processor A completed its execution it would check to see if Processor B was complete. If Processor B were complete, Processor A would stop and read the count value of the timer. Otherwise, Processor A would enter a wait state until Processor B completed its execution.

The final program would give timing results for using shared memory as well as the dual processors. The flowchart for this process is shown in Diagram XI in Appendix A. In this program, both the A matrix and the B matrix are split up. The separation of the matrices is shown in **Figure 18**.

Matrix A				Matrix B					Matrix C				
A ₀₀ A ₁₀	A ₀₁	A ₀₂ A ₁₂	A ₀₃ A ₁₃	*	$\begin{array}{c} \mathrm{B}_{00} \\ \mathrm{B}_{10} \end{array}$	B_{01} B_{11}	B_{02} B_{12}	B ₀₃ B ₁₃	=	C ₀₀ C ₁₀	$\begin{array}{c} C_{01} \\ C_{11} \end{array}$	C ₀₂ C ₁₂	C ₀₃ C ₁₃
A ₂₀ A ₃₀	$\begin{array}{c} A_{21} \\ A_{31} \end{array}$	A ₂₂ A ₃₂	A ₂₃ A ₃₃		${f B_{20}}\ {f B_{30}}$	$B_{21} B_{31}$	B ₂₂ B ₃₂	B ₂₃ B ₃₃		C ₂₀ C ₃₀	$\begin{array}{c} C_{21} \\ C_{31} \end{array}$	$\begin{array}{c} C_{22} \\ C_{32} \end{array}$	C ₂₃ C ₃₃

Figure 18: [4x4] Matrix Multiplication on dual processors using shared-memory.

In this program, Processor A has access to the first half of matrix A and the first half of matrix B. Processor A computes the results for the first half of the C matrix. Processor B has access to the second half of matrix A and the second half of matrix B. Processor B computes the results for the second half of the C matrix.

The difference between the program and the dual processor program is that each processor does not have all of the data to complete the computations for the C matrix. For instance, for Processor A to compute the value of C_{00} it would need access to B_{20} and B_{30} . Since Processor B has access to these locations, the data in these locations must be transferred to Processor A through the shared-memory. During the computation portion of the program, each processor must finish the calculations that are possible and wait until it is given the needed data.

I tried to develop the program in a fashion that would allow one processor to make its possible calculations while the other processor was sending and receiving data from the shared-memory. To ensure that a processor did not retrieve the data before it was placed in shared-memory, I used the semaphores to place the processor into a wait state until the required data was available. Once again, a better understanding can be obtained by reviewing the program in Appendix B.

I gave a description on how I implemented the different programs by showing how it was done on a [4x4] matrix. I developed the program to compute the results for the [8x8] matrix. To get the results for the [4x4] case, I added code to reduce the number of loops in the matrix-multiplication routines. I increased the number of loops in the matrix-multiplication routines to get the results for the [16x16]. In order to produce valid timing results, I tried to do this in a way that makes the overall operation of the program to remain the same for all size matrices. The theory of adding and subtracting loops was sound, but the code to keep the operations the same became quite complex. This is what is causing the delay in the development of a fully operational program.

CHAPTER 4

PERFORMANCE EVALUATIONS

4.1 Matrix Multiplication

As I stated earlier, I am getting consistent results from the current program. However, I am still unable to remove all of the bugs from the program to produce results for all of the program operations. I noticed that overall the results I obtained do not change as I make changes to the program. When I make changes to the program I am able to get results for different size matrices. Several times I was able to get results for more than one size matrix and the results were quite similar to the ones I was getting when I was only able to produce results for one size matrix. Since I am getting results like I expected, I could continue to troubleshoot the current program. With time, I expect to have all the problems worked out of the program. The speedups, based on the results in **Figure 16** are:

Matrix Size	One Processor	Dual Processor	Dual Processor Using Shared-Memory
[4x4] Matrix	418	273	386
[8x8] Matrix	1909	1018	1493
[16x16] Matrix	12307	6219	8414

Figure 16: Matrix-Multiplication Execution Times (clock cycles).

CHAPTER 5

CONCLUSIONS

Based on the results I achieved with the matrix multiplication algorithm, I am concluding that there is an overall effective speedup in using a SMPPS. Overall I would rate this project as a success. I accomplished the first two objectives and made significant progress on the third objective. This project gave me the opportunity to work on a project from the design phase to the testing phase and the opportunity to apply the knowledge I acquired while at NJIT as well as hone my engineering skills.

During the project, I conquered many hurdles and had the chance to have an impact on the curriculum of undergraduate students. Many of the discoveries I made while designing and implementing the micro-controller were beneficial to the EE 393 Lab. Teaching the EE 393 Lab over the summer session was equally rewarding. Not only was I able to increase my understanding of the micro-controller, but I was enabled to impart to the students the knowledge I had gained while working on the project.

The SMPPS project leaves the door open for future areas of study and research. Basing a new system with more processors on this design would present an interesting challenge. Also, developing more parallel algorithms for the system would present en equally challenging obstacle. The possibilities that can be pursued are virtually limitless.

APPENDIX A

DIAGRAMS

Appendix A has the following diagrams:

Dual-Processor Shared-Memory Block Diagram (I)
Dual-Processor Shared-Memory Block Diagram (II)
Original Control Logic Design
1-2 DeMultiplexor Logic
2-1 Multiplexor Logic
Final Shared-Memory Control Logic Design
Default Symbol CTEST Logic
Timer Control Logic
Flow Chart I – One Processor Operation
Flow Chart II – Dual-Processor Operation

Flow Chart III – Dual-Processor Operation using Shared-Memory

1-2 DEMUX

	Sharee Me	mary Logic	
COUPLAN	NUT COE	Mosters	
0286424	Kric H. St	0UD	
5 2 E 17 5		NUMBER CD	<u>د</u> م
DATE 7	30- 0-25-	1008 4	A
TUNEG	~ v141+	946128-00	

North Contraction and a second and a second and a second a second

ar;

APPENDIX B

Programs

This is the program for a [4x4], [8x8], and [16x16] Matrix-Multiplication on One Processor System, a Dual-Processor System, and a Dual-Processor System using Shared-Memory.

; This is a Matrix Multiplication Algorithm i ; PA: Processor A PB: Processor B ; ž PA[A11 A12 A13 A14 A15 A16 A17 A18] ; PA[A21 A22 A23 A24 A15 A16 A17 A18] ; PA[A31 A32 A33 A34 A15 A16 A17 A18] ; PA[A41 A42 A43 A44 A15 A16 A17 A18] ; PB[A51 A52 A53 A54 A15 A16 A17 A18] î PB[A61 A62 A63 A64 A15 A16 A17 A18] ; PB[A71 A72 A73 A74 A15 A16 A17 A18] ï PB[A81 A82 A83 A84 A15 A16 A17 A18] ; ï PA[B11 B12 B13 B14 B15 B16 B17 B18] ; PA[B21 B22 B23 B24 B25 B26 B27 B28] ; PA[B31 B32 B33 B34 B35 B36 B37 B38] i PA[B41 B42 B43 B44 B45 B46 B47 B48] ï PB[B51 B52 B53 B54 B55 B56 B57 B58] ; PB[B61 B62 B63 B64 B65 B66 B67 B68] ; PB[B71 B72 B73 B74 B75 B76 B77 B78] ; PB[B81 B82 B83 B84 B85 B86 B87 B88] ; ; Matrix Type (1)4x4,(2)8x8,(4)16x16 EQU \$02 MMT ; Matrix Shared (0)NO,1(YES) MMTS EQU \$01 ; Matrix B Shared (0)NO, (1)YES EQU \$00 MMTSA ; Program (0)A,(1)B EQU \$00 PROC ; Matrix Starting Values EQU \$14000 ASRT EOU \$14100 BSRT EQU \$14200 CSRT EQU \$03 LMAVal \$03 LMBVal EQU LMBVla EOU \$02 ; Moving Shared Memory (Start) (End) EQU \$14200 MRVA MRVB EQU \$14240 ; Variable Equates \$14000 EQU A00 \$14001 A01 EQU \$14002 A02 EQU EQU \$14003 A03 \$14004 EQU A04 \$14005 EQU A05 \$14006 A06 EQU EQU \$14007 A07 \$14008 EQU A08 \$14009 EQU A09 \$1400A EQU AOA \$1400B EQU AOB

AOC	EQU	\$1400C
AOD	EQU	\$1400D
AOE	EQU	\$1400E
AOF	EQU	\$1400F
A10	EQU	\$14010
AII	EOU	\$14011
A12	FOU	\$14012
213	FOU	\$14013
מות	EOU	\$14014
A14 A15	FOU	\$14015
ALD ALC	EQU	\$14016
ALD N17	EQU	\$14010 \$14017
AI/	EQU	\$14017 614010
AI8	EQU	\$14018
AI9	EQU	\$14019
AlA	EQU	\$1401A
Alb	EQU	\$1401B
AlC	EQU	\$1401C
A1D	EQU	\$1401D
Ale	EQU	\$1401E
Alf	EQU	\$1401F
A20	EQU	\$14020
A21	EQU	\$14021
A22	EOU	\$14022
A23	EOU	\$14023
A24	EOU	\$14024
A25	EOU	\$14025
A26	FOIL	\$14026
A20 A27	FOU	\$14027
720	ROII	\$14020 \$14000
720	EQU	\$14020 \$14020
A29 A2A	EQU	\$14029 ¢14020
AZA	EQU	\$1402A
A2B	EQU	\$1402B
AZC	EQU	\$1402C
AZD	EQU	\$1402D
A2E	EQU	\$1402E
A2F	EQU	\$1402F
A30	EQU	\$14030
A31	EQU	\$14031
A32	EQU	\$14032
A33	EQU	\$14033
A34	EQU	\$14034
A35	EQU	\$14035
A36	EQU	\$14036
A37	EQU	\$14037
A38	EQU	\$14038
A39	EOU	\$14039
АЗА	EOU	\$1403A
A3B	EOU	\$1403B
A3C	EOU	\$14030
A3D	EOU	\$14030
ABE	FOU	\$1403D
 A3F	EOI1	914035 614035
A40	EOII	91403E 614040
λ λ λ 1	,EQU	\$14040
MH1 N40	EQU	\$14041
A42	EQU	\$14042
A43	EQU	\$14043
A44	EQU	\$14044

A45	EQU	\$14045
A46	EQU	\$14046
A47	EQU	\$14047
A48	EQU	\$14048
A49	EQU	\$14049
A4A	EQU	\$1404A
A4B	EOU	\$1404B
A4C	EOU	\$1404C
A4D	EOU	\$1404D
A4E	FOU	\$1404E
A4F	EOU	\$1404F
350	FOU	\$14050
251	FOI	\$14051
752	EQU	\$140E2
AJ2 NEO	EQU	\$14052 \$14052
A53	EQU	\$14053 ¢14054
A54	EQU	\$14054
A55	EQU	\$14055
A56	EQU	\$14056
A57	EQU	\$14057
A58	EQU	\$14058
A59	EQU	\$14059
A5A	EQU	\$1405A
A5B	EQU	\$1405B
ASC	EQU	\$1405C
A5D	EQU	\$1405D
A5E	EQU	\$1405E
A5F	EQU	\$1405F
A60	EQU	\$14060
A61	EOU	\$14061
A62	EOU	\$14062
A63	EOU	\$14063
A64	EOU	\$14064
A65	EOU	\$14065
A66	EOII	\$14066
A67	FOII	\$14067
268	FOII	\$14069
769	EQU	\$14060
A09 ACA	EQU	\$14069 614067
ACA	EQU	\$1406A
AGB	EQU	\$1406B
ACC	EQU	\$14060
A6D	EQU	\$1406D
A6E	EQU	\$1406E
A6F	EQU	\$1406F
A70	EQU	\$14070
A71	EQU	\$14071
A72	EQU	\$14072
A73	EQU	\$14073
A74	EQU	\$14074
A75	EQU	\$14075
A76	EQU	\$14076
A77	EQU	\$14077
A78	EQU	\$14078
A79	EQU	\$14079
A7A	EOU	\$1407A
A7B	EOU	\$1407B
A7C	EOU	\$14070
270	ROIT	\$1407D
AID .	5Q0	ΥT40/D

A7E	EQU	\$1407E
A7F	EQU	\$1407F
A80	EQU	\$14080
A81	EQU	\$14081
A82	EOU	\$14082
A83	FOU	\$14083
284	FOU	\$14084
795	FOII	\$14085
A05	EQU	\$14086
A80	EQU	\$14007
A87	EQU	\$14007
A88	EQU	\$14088
A89	EQU	Ş14089
A8A	EQU	\$1408A
A8B	EQU	\$1408B
A8C	EQU	\$1408C
A8D	EQU	\$1408D
A8E	EQU	\$1408E
A8F	EQU	\$1408F
A90	EQU	\$14090
A91	EQU	\$14091
A92	EQU	\$14092
A93	EOU	\$14093
A94	EOU	\$14094
A95	EOU	\$14095
296	FOU	\$14096
297	FOII	\$14097
	FOU	\$14099
A90	EQU	\$14090
A99	EQU	\$14099 ¢14000
A9A	EQU	\$1409A
A9B	EQU	\$1409B
A9C	EQU	\$1409C
A9D	EQU	\$1409D
A9E	EQU	\$1409E
A9F	EQU	\$1409F
AA0	EQU	\$140A0
AA1	EQU	\$140A1
AA2	EQU	\$140A2
AA3	EQU	\$140A3
AA4	EQU	\$140A4
AA5	EQU	\$140A5
AA6	EQU	\$140A6
AA7	EOU	\$140A7
AA8	EOU	\$140A8
AA9	EOU	\$140A9
222	FOII	\$14000
	FOII	\$140AA
AAD	EQU	\$140AD
AAC	EQU	\$140AC
AAD	EQU	\$140AD
AAE	EQU DOLL	\$140AE
AAF	EQU	\$140AF
AB0	EQU	\$140B0
AB1	EQU	\$140B1
AB2	EQU	\$140B2
AB3	EQU	\$140B3
AB4	EQU	\$140B4
AB5	EQU	\$140B5
AB6	EQU	\$140B6

AB7	EQU	\$140B7
AB8	EQU	\$140B8
AB9	EQU	\$140B9
ABA	EQU	\$140BA
ABB	EQU	\$140BB
ABC	EOU	\$140BC
ABD	EOU	\$140BD
ABE	EOU	\$140BE
ABF	EOU	\$140BF
AC0	FOU	\$14000
AC1	FOU	\$14001
AC2	FOII	\$14002
ACS	FOIL	\$14003
AC4	FOU	\$14004
AC5	FOU	\$14005
ACE	FOII	\$14006
AC7	EQU	\$14007
ACR	EQU	\$14009
7C9	EQU	\$14000
ACJ ACA	EQU	\$140C9
ACA	EQU	\$140CA
ACD	EQU	\$140CB
ACC	EQU	\$140CC
ACD	EQU	\$140CD
ACE	EQU	\$140CE
ACF	EQU	\$140CF
ADU ADU	EQU	\$140D0
ADI	EQU	\$140D1
AD2	EQU	\$140D2
AD3	EQU	\$140D3
AD4	EQU	\$140D4
AD5	EQU	\$140D5
AD6	EQU	\$140D6
AD7	EQU	\$140D7
AD8	EQU	\$140D8
AD9	EQU	\$140D9
ADA	EQU	\$140DA
ADB	EQU	\$140DB
ADC	EQU	\$140DC
ADD	EQU	\$140DD
ADE	EQU	\$140DE
ADF	EQU	\$140DF
AE0	EQU	\$140E0
AE1	EQU	\$140E1
AE2	EQU	\$140E2
AE3	EQU	\$140E3
AE4	EQU	\$140E4
AE5	EQU	\$140E5
AE6	EQU	\$140E6
AE7	EQU	\$140E7
AE8	EQU	\$140E8
AE9	EQU	\$140E9
AEA	EQU	\$140EA
AEB	EQU	\$140EB
AEC	·EQU	\$140EC
AED	EQU	\$140ED
AEE	EOU	\$140EE
AEF	EQU	\$140EF

AF0	EQU	\$140F0
AF1	EQU	\$140F1
AF2	EQU	\$140F2
AF3	EQU	\$140F3
AF4	EQU	\$140F4
AF5	EOU	\$140F5
AF6	EOU	\$140F6
AF7	EOU	\$140F7
AF8	EOU	\$140F8
AF9	EOU	\$140F9
AFA	FOII	\$140FD
AFB	EOU	\$140FB
AFC	FOII	\$140FC
AFD	FOII	\$140PD
AFD AFD	EQU	SI40FD
AFE	EQU	\$140FE
Arr	EQU	ŞI40FF
, B00	FOIL	\$14100
B10	RON	¢14101
B10	EQU	\$14101 614100
220	EQU	\$14102 ¢14102
B30	EQU	\$14103
B40 DF0	EQU	\$14104
BSO	EQU	\$14105
860	EQU	\$14106
B70	EQU	\$14107
B80	EQU	\$14108
B90	EQU	\$14109
BAO	EQU	\$1410A
BBO	EQU	\$1410B
BC0	EQU	\$1410C
BDO	EQU	\$1410D
BEO	EQU	\$1410E
BFO	EQU	\$1410F
B01	EQU	\$14110
B11	EQU	\$14111
B21	EQU	\$14112
B31	EQU	\$14113
B41	EQU	\$14114
B51	EQU	\$14115
B61	EQU	\$14116
B71	EQU	\$14117
B81	EQU	\$14118
B91	EOU	\$14119
BA1	EOU	\$1411A
BB1	EOU	\$1411B
BC1	EOU	\$14110
BD1	EOU	\$14110
BEI	EOII	\$1411E
	FOU	\$14115
	FOU	\$14120
802	FOII	\$14121
222		414100
D22 D22	EQU	914142 611100
<u>∠</u> دو 40	EQU BOIT	\$14123
B42	нQU	\$14124
B52	EQU	\$14125
B62	EQU	\$14126
B72	EQU	\$14127

B82	EQU	\$14128
B92	EQU	\$14129
BA2	EQU	\$1412A
BB2	EQU	\$1412B
BC2	EQU	\$1412C
BD2	EOU	\$1412D
BE2	EOU	\$1412E
BE2	FOU	\$1412F
202	FOI	\$14130
כום	FOIL	\$14131
CTG	FOU	\$1/132
B23	EQU	914132 614133
B33	EQU	614133 V 4134
B43	EQU	\$14134 \$1413F
853	EQU	\$14135 614136
B63	EQU	\$14136
B73	EQU	\$14137
B83	EQU	\$14138
B93	EQU	\$14139
BA3	EQU	\$1413A
BB3	EQU	\$1413B
BC3	EQU	\$1413C
BD3	EQU	\$1413D
BE3	EQU	\$1413E
BF3	EQU	\$1413F
B04	EQU	\$14140
B14	EOU	\$14141
B24	EOU	\$14142
B34	EOU	\$14143
B44	FOII	\$14144
DII	EQU	\$14145
	EQU	\$14145 \$14146
D04	EQU	\$14140
B/4	EQU	\$14147
884	EQU	\$14148
894	EQU	\$14149
BA4	EQU	\$1414A
BB4	EQU	\$1414B
BC4	EQU	\$1414C
BD4	EQU	\$1414D
BE4	EQU	\$1414E
BF4	EQU	\$1414F
B05	EQU	\$14150
B15	EQU	\$14151
B25	EQU	\$14152
B35	EQU	\$14153
B45	EQU	\$14154
B55	EQU	\$14155
B65	EQU	\$14156
B75	EOU	\$14157
B85	EOU	\$14158
B95	EOU	\$14159
BA5	EOU	\$14152
BB5	EOU	\$1415B
BCS	FOU	41410D
202	- EQU	9141DC
כעם	EQU	91415D
DED	EQU DOU	\$1415E
BF5	EQU	\$1415F
B06	EQU	\$14160

B16	EQU	\$14161
B26	EQU	\$14162
B36	EQU	\$14163
B46	EQU	\$14164
B56	EOU	\$14165
B66	EOU	\$14166
B76	EOU	\$14167
B86	EOU	\$14168
B96	EOU	\$14169
BAG	FOU	\$1416D
BB6	EOU	\$1416B
BC6	FOU	\$14160
BD6	FOU	\$1416D
BE6	FOU	\$1416P
BF6	FOU	\$1416E
B07	FOII	\$14170
817	POU	\$14170
B27	EQU	914171 ¢14170
720	EQU	Ş⊥4⊥72
7 20	EQU	\$14173
D4 /	EQU	\$141/4
57 DC2	EQU	\$14175
B67	EQU	\$14176
B//	EQU	\$14177
B87	EQU	\$14178
897	EQU	\$14179
BA7	EQU	\$1417A
BB7	EQU	\$1417B
BC7	EQU	\$1417C
BD7	EQU	\$1417D
BE7	EQU	\$1417E
BF7	EQU	\$1417F
B08	EQU	\$14180
B18	EQU	\$14181
B28	EQU	\$14182
B38	EQU	\$14183
B48	EQU	\$14184
B58	EQU	\$14185
B68	EQU	\$14186
B78	EQU	\$14187
B88	EQU	\$14188
B98	EQU	\$14189
BA8	EQU	\$1418A
BB8	EQU	\$1418B
BC8	EQU	\$1418C
BD8	EOU	\$1418D
BE8	EOU	\$1418E
BF8	EOU	\$1418F
B09	EOU	\$14190
B19	EOU	\$14191
B29	EOU	\$14192
B39	EOU	\$14193
B49	EOU	\$14194
B59	EOU	\$14195
B69	EOU	\$14196
B79	EOU	\$14197
20 20 20	FOII	\$14198
202		\$1/100
לכם	μųu	ウエオエフフ

BA9	EQU	\$1419A
BB9	EQU	\$1419B
BC9	EQU	\$1419C
BD9	EQU	\$1419D
BE9	EQU	\$1419E
BF9	EQU	\$1419F
BOA	EQU	\$141A0
B1A	EOU	\$141A1
B2A	EOU	\$141A2
B3A	EOU	\$141A3
B4A	EOU	\$141A4
B5A	EOU	\$141A5
B6A	EOU	\$141A6
B7A	EOU	\$141A7
B8A	EOU	\$141A8
B9A	EOU	\$141A9
BAA	EOU	\$14100
BBA	FOU	\$141AB.
BCA	EOU	\$14100
BDA	EOU	\$141AD
BEA	EOU	\$141AF
BFA	FOU	¢141AE
BOB	EQU	\$141PO
סום	EQU	\$141DU \$141D1
מלם	EQU	\$141D1 \$141D2
מכם	EQU	Ş141B∠ ¢141D2
מנם	EQU	\$141B3
	EQU	\$141B4
מכם	EQU	\$141B5
BOB	EQU	\$141B6
B/B	EQU	\$141B7
BSB	EQU	\$141B8
BAB	EQU	\$141B9
BAB	EQU	\$141BA
BBB	EQU	\$141BB
BCB	EQU	\$141BC
BDB	EQU	\$141BD
BEB	EQU	\$141BE
BF.B	EQU	\$141BF
BOC	EQU	\$141C0
BIC	EQU	\$141C1
B2C	EQU	\$141C2
B3C	EQU	\$141C3
B4C	EQU	\$141C4
B5C	EQU	\$141C5
B6C	EQU	\$141C6
B7C	EQU	\$141C7
B8C	EQU	\$141C8
B9C	EQU	\$141C9
BAC	EQU	\$141CA
BBC	EQU	\$141CB
BCC	EQU	\$141CC
BDC	EQU	\$141CD
BEC	EQU	\$141CE
BFC	EQU	\$141CF
B0D	EQU	\$141D0
B1D	EQU	\$141D1
B2D	EQU	\$141D2

725		** · * ** *
B3D	EQU	\$141D3
B4D	EQU	\$141D4
B5D	EQU	\$141D5
B6D	EQU	\$141D6
B7D	EQU	\$141D7
B8D	EQU	\$141D8
B9D	EOU	\$141D9
BAD	EOU	\$141DA
BBD	EOU	\$141DB
BCD	FOU	\$141DC
BUD	FOIL	\$141DD
	ROU	\$141DD
	EQU	SI4IDE
BrD	EQU	ŞI4IDF
BUE	EQU	\$141E0
BIE	EQU	\$141E1
B2E	EQU	\$141E2
B3E	EQU	\$141E3
B4E	EQU	\$141E4
B5E	EQU	\$141E5
B6E	EQU	\$141E6
B7E	EQU	\$141E7
B8E	EQU	\$141E8
B9E	EOU	\$141E9
BAE	EOU	\$141EA
BBE	FOU	\$141FB
BCF	FOII	\$141EC
	EQU	\$141ED
	EQU	\$141ED
BEE	EQU	\$141EE
BFE	EQU	ŞI41EF
BOF	EQU	\$141F0
B1F	EQU	\$141F1
B2F	EQU	\$141F2
B3F	EQU	\$141F3
B4F	EQU	\$141F4
B5F	EQU	\$141F5
B6F	EQU	\$141F6
B7F	EQU	\$141F7
B8F	EQU	\$141F8
B9F	EOU	\$141F9
BAF	EOU	\$141FA
BBF	EOU	\$141FB
BCF	EOU	\$141FC
BDF	EOU	\$141FD
BEE	FOII	\$141FF
DEF	EQU	9141FB 6141PP
DFF	EQU	9T#TLL
;		614000
000	EQU	\$14200
C01	EQU	\$14201
C02	EQU	\$14202
C03	EQU	\$14203
C04	EQU	\$14204
C05	EQU	\$14205
C06	EQU	\$14206
C07	EQU	\$14207
C08	EQU	\$14208
C09	EOU	\$14209
COA	EOU	\$1420A
~~~~	~~~	

COB	EQU	\$1420B
COC	EQU	\$1420C
COD	EQU	\$1420D
COE	EQU	\$1420E
COF	EQU	\$1420F
C10	EQU	\$14210
C11	EQU	\$14211
C12	EQU	\$14212
C13	EQU	\$14213
C14	EQU	\$14214
C15	EQU	\$14215
C16	EQU	\$14216
C17	EQU	\$14217
C18	EQU	\$14218
C19	EQU	\$14219
C1A	EQU	\$1421A
C1B	EOU	\$1421B
C1C	EOU	\$1421C
C1D	EOU	\$1421D
CIE	EOU	\$1421E
ClF	EOU	\$1421F
C20	FOU	\$14220
C21	FOU	\$14221
C22	FOII	\$14222
C23	FOU	\$14223
C24	EOU	\$14223
C25	FOU	\$14224 \$14995
C25	EQU	\$14225
C20	EQU	\$14220 \$14227
C27	EQU	\$14227 \$14220
C20	EQU	\$14220
C23	EQU	\$14229 \$14220
COR	EQU	\$1422A
C2B	EQU	\$1422B
C2D	EQU	\$1422C
C2D	EQU	\$1422D
COR	EQU	\$1422E
C2F	EQU	\$1422F
C30	EQU	\$14230
031	EQU	\$14231
(32	EQU	\$14232
C33	EQU	\$14233
034	EQU	\$14234
C35	EQU	\$14235
C36	EQU	\$14236
C37	EQU	\$14237
C38	EQU	\$14238
C39	EQU	\$14239
СЗА	EQU	\$1423A
СЗВ	EQU	\$1423B
C3C	EQU	\$1423C
C3D	EQU	\$1423D
C3E	EQU	\$1423E
C3F	EQU	\$1423F
C40	·EQU	\$14240
C41	EQU	\$14241
C42	EQU	\$14242
C43	EQU	\$14243

C44	EQU	\$14244
C45	EQU	\$14245
C46	EQU	\$14246
C47	EQU	\$14247
C48	EOU	\$14248
C49	EOU	\$14249
C4A	EOU	\$14242
C4B	FOII	\$1424B
C10	FOU	\$1424D
CAD	ROU	\$1424C
C4D	EQU	\$1424D
C4E	EQU	\$1424E
C4F	EQU	\$1424F
050	EQU	\$14250
051	EQU	\$14251
C52	EQU	\$14252
C53	EQU	\$14253
C54	EQU	\$14254
C55	EQU	\$14255
C56	EQU	\$14256
C57	EQU	\$14257
C58	EQU	\$14258
C59	EQU	\$14259
C5A	EQU	\$1425A
C5B	EOU	\$1425B
C5C	EOU	\$1425C
C5D	EOU	\$1425D
CSE	EOU	\$1425E
CSE	EOU	\$1425E
CEO	FOU	\$14251
CGU	ROU	\$14200 \$14261
C61	EQU	\$14201 \$14200
C62	EQU	\$14262
063	EQU	\$14263
064	EQU	\$14264
C65	EQU	\$14265
C66	EQU	\$14266
C67	EQU	\$14267
C68	EQU	\$14268
C69	EQU	\$14269
C6A	EQU	\$1426A
C6B	EQU	\$1426B
CEC	EQU	\$1426C
C6D	EQU	\$1426D
C6E	EQU	\$1426E
C6F	EQU	\$1426F
C70	EQU	\$14270
C71	EQU	\$14271
C72	EOU	\$14272
C73	EOU	\$14273
C74	EOU	\$14274
C75	EOU	\$14275
C76	EOU	\$14276
C77	EOU	\$14277
C78	FOU	\$14278
C70		\$11070
C72		マエモム / フ ビコ A つ ワ ハ
	EQU	9142/A 61407D
	EQU DOL	⇒14∠/B
G4G	EQU	\$1427C

C7D	EQU	\$1427D
C7E	EQU	\$1427E
C7F	EQU	\$1427F
C80	EOU	\$14280
C81	EOU	\$14281
C82	EOU	\$14282
C83	FOU	\$14202 \$14202
C84	FOU	\$1420J
C85	EQU	Ş14204
CRE	EQU	\$14285
C97	EQU	\$14286
C87	EQU	\$14287
	EQU	\$14288
689	EQU	\$14289
CBA	EQU	\$1428A
C8B	EQU	\$1428B
C8C	EQU	\$1428C
C8D	EQU	\$1428D
C8E	EQU	\$1428E
C8F	EQU	\$1428F
C90	EQU	\$14290
C91	EQU	\$14291
C92	EQU	\$14292
C93	EOU	\$14293
C94	EOU	\$14294
C95	EOU	\$14295
C96	EOU	\$14296
C97	FOII	\$14097
C98	FOII	\$14277 \$14700
C90	ROII	\$14290
	EQU	\$14299 ¢14200
COR	EQU	\$1429A
C9B	EQU	\$1429B
	EQU	\$14290
C9D	EQU	\$1429D
C9E	EQU	\$1429E
C9F	EQU	\$1429F
CA0	EQU	\$142A0
CA1	EQU	\$142Al
CA2	EQU	\$142A2
CA3	EQU	\$142A3
CA4	EQU	\$142A4
CA5	EQU	\$142A5
CA6	EQU	\$142A6
CA7	EQU	\$142A7
CA8	EOU	\$142A8
CA9	EOU	\$142A9
CAA	EOU	\$142AA
CAB	EOU	\$142AB
CAC	EOU	\$142AC
CAC	FOU	\$142AD
CAD	EQU	\$142AE
CAE	EQU	9142AD 014775
CAF	EQU ROU	9142AF
CR0	FOU	9142BU
CB1	EQU	>142B1
CB2	EQU	\$142B2
CB3	EQU	\$142B3
CB4	EQU	Ş142B4
CB5	EQU	\$142B5
CB6	EQU	\$142B6
------------	------	---------
CB7	EQU	\$142B7
CB8	EQU	\$142B8
CB9	EQU	\$142B9
CBA	EQU	\$142BA
CBB	EOU	\$142BB
CBC	FOU	\$142BC
CBD	FOII	\$142BD
CDE	FOU	\$142BE
CDE	EQU	\$140PP
CBr	EQU	\$142Dr
000	EQU	\$142C0
CCI	EQU	\$142C1
CC2	EQU	\$142C2
CC3	EQU	\$142C3
CC4	EQU	\$142C4
CC5	EQU	\$142C5
CC6	EQU	\$142C6
CC7	EQU	\$142C7
CC8	EQU	\$142C8
CC9	EQU	\$142C9
CCA	EOU	\$142CA
CCB	EOU	\$142CB
CCC	FOU	\$14200
CCD	FOII	\$142CD
CCE	FOII	\$140CF
CCE	EQU	\$142CE
	EQU	\$142CF
CDU	EQU	\$142D0
CDI	EQU	\$142D1
CD2	EQU	\$142D2
CD3	EQU	\$142D3
CD4	EQU	\$142D4
CD5	EQU	\$142D5
CD6	EQU	\$142D6
CD7	EQU	\$142D7
CD8	EQU	\$142D8
CD9	EQU	\$142D9
CDA	EQU	\$142DA
CDB	EQU	\$142DB
CDC	EQU	\$142DC
CDD	EOU	\$142DD
CDE	EOU	\$142DE
CDF	EOU	\$142DF
CEO	EOU	\$142E0
CEI	FOU	\$142E1
CE2	FOIL	\$142E2
CE2	EQU	¢142E2
CES OP4	EQU	\$142E3
CE4	EQU	\$142B4
CE5	EQU	\$142E5
CE6	EQU	\$142E6
CE7	EQU	\$142E7
CE8	EQU	\$142E8
CE9	EQU	\$142E9
CEA	EQU	\$142EA
CEB	EQU	\$142EB
CEC	EQU	\$142EC
CED	EQU	\$142ED
CEE	EQU	\$142EE

CEF	EQU	\$142EF
CFO	EQU	\$142F0
CF1	EQU	\$142F1
CF2	EQU	\$142F2
CF3	EQU	\$142F3
CF4	EQU	\$142F4
CF5	EOU	\$142F5
CF6	EOU	\$142F6
CF7	EOU	\$142F7
CF8	EOU	\$142F8
CF9	EOU	\$142F9
CFA	EOU	\$142FA
CFB	EOU	\$142FB
CFC	EOU	\$142FC
CFD	EOU	\$142FD
CFE	EOU	\$142FE
CEE	EOU	\$142FF
	750	Y 1 1 2 1 1
, 0042	FOU	\$28000
5100	EOU	\$28001
SNO1 SDO2	FOU	\$28002
SA03	FOU	\$28003
SA03	FOII	\$28003
SA04 SA05	EQU	\$28004
SAUS	EQU	\$28005
CAUC CAU	EQU	\$28008
CAOO	EQU	\$28007 \$28007
CADO	EQU	\$20000 \$20000
CAOA	EQU	\$28009 \$28009
CLOP	EQU	\$2800A
SAUB	EQU	\$2800B
SAUC	EQU	\$2800C
SAUD	EQU	\$2800D
SAUE	EQU	\$2800E
SAUF	EQU	\$2800F
SALU	EQU	\$28010
SALL CA10	EQU	\$28011 ¢20012
SA12	EQU	\$28012
SAI3	EQU	\$28013
SAL4	EQU	\$28014 ¢20015
SA15	EQU	\$28015
SA16	EQU	\$28016
SAL /	EQU	\$28017
SAI8	EQU	\$28018
SA19	EQU	\$28019
SAIA	EQU	\$2801A
SAIB	EQU	\$2801B
SA1C	EQU	\$2801C
SAID	EQU	\$2801D
SAIE	EQU	\$2801E
SA1F	EQU	\$2801F
SA20	EQU	\$28020
SA21	EQU	\$28021
SA22	EQU	\$28022
SA23	EQU	\$28023
SA24	EQU	\$28024
SA25	EQU	\$28025
SA26	EQU	\$28026

SA27	EQU	\$28027
SA28	EQU	\$28028
SA29	EQU	\$28029
SA2A	EQU	\$2802A
SA2B	EQU	\$2802B
SA2C	EQU	\$2802C
SA2D	EOU	\$2802D
SA2E	EOU	\$2802E
SA2F	EOU	\$2802F
SA30	EOU	\$28030
SA31	EOU	\$28031
SA32	EOU	\$28032
SA33	EOU	\$28033
SA34	EOU	\$28034
SA35	EOU	\$28035
SA36	FOU	\$28036
5237	FOU	\$28037
SN38	FOIL	\$28038
2730	FOII	\$28030
	EQU	4200JJ
SAJA	ROU	\$2003A
SASE	EQU	\$2003D
SASC	EQU	\$2003C
SASD	EQU	\$2803D
SAJE	EQU	\$2803E
SASE	EQU	\$2803F
SA40	EQU	\$28040
SA41	EQU	\$28041
SA42	EQU	\$28042
SA43	EQU	\$28043
SA44	EQU	\$28044
SA45	EQU	\$28045
SA46	EQU	\$28046
SA47	EQU	\$28047
SA48	EQU	\$28048
SA49	EQU	\$28049
SA4A	EQU	\$2804A
SA4B	EQU	\$2804B
SA4C	EQU	\$2804C
SA4D	EQU	\$2804D
SA4E	EQU	\$2804E
SA4F	EQU	\$2804F
SA50	EQU	\$28050
SA51	EQU	\$28051
SA52	EQU	\$28052
SA53	EQU	\$28053
SA54	EQU	\$28054
SA55	EQU	\$28055
SA56	EQU	\$28056
SA57	EQU	\$28057
SA58	EQU	\$28058
SA59	EQU	\$28059
SA5A	EQU	\$2805A
SA5B	EQU	\$2805B
SA5C ·	EQU	\$2805C
SA5D	EQU	\$2805D
SA5E	EQU	\$2805E
SA5F	EQU	\$2805F

SA60	EQU	\$28060
SA61	EQU	\$28061
SA62	EQU	\$28062
SA63	EQU	\$28063
SA64	EQU	\$28064
SA65	EOU	\$28065
SA66	EOU	\$28066
SA67	EOU	\$28067
SA68	EOU	\$28068
SA69	FOU	\$28069
SAED	FOII	\$2806A
SAER	FOU	\$2806B
SACC	FOU	\$28060
SACC	FOU	\$2806C
SAOD SACE	EQU	\$2000D
SAGE	EQU	\$2000E
SACE	EQU	\$∠800r ¢20070
SA70	EQU	\$28070
SA71	EQU	\$28071
SA72	EQU	\$28072
SA73	EQU	\$28073
SA74	EQU	\$28074
SA75	EQU	\$28075
SA76	EQU	\$28076
SA77	EQU	\$28077
SA78	EQU	\$28078
SA79	EQU	\$28079
SA7A	EQU	\$2807A
SA7B	EQU	\$2807B
SA7C	EQU	\$2807C
SA7D	EQU	\$2807D
SA7E	EQU	\$2807E
SA7F	EQU	\$2807F
SA80	EQU	\$28080
SA81	EQU	\$28081
SA82	EQU	\$28082
SA83	EQU	\$28083
SA84	EQU	\$28084
SA85	EQU	\$28085
SA86	EOU	\$28086
SA87	EOU	\$28087
SA88	EOU	\$28088
SA89	EOU	\$28089
SA8A	EOU	\$2808A
SASB	EOU	\$2808B
SAGD	EOII	\$2808C
SAUC	FOI	\$2808D
CAOD	FOU	\$2808E
CACE	EQU	\$2808F
SAOF	EQU	\$28090
SA90	EQU	\$20020
SA91	EQU	\$20091 \$20091
SA92	EQU	\$20092 620092
SA93	EQU DOM	⇒∠8U33 ¢20004
SA94	EQU	3∠0U34 ¢2005
SA95	EQU	328095 600000
SA96	EQU	\$∠8096
SA97	EQU	\$28097
SA98	EQU	\$28098

SA99	EQU	\$28099
SA9A	EQU	\$2809A
SA9B	EQU	\$2809B
SA9C	EQU	\$2809C
SA9D	EQU	\$2809D
SA9E	EQU	\$2809E
SA9F	EOU	\$2809F
SAAO	EOU	\$280A0
SAAI	EOU	\$280A1
SAA2	EOU	\$280A2
SAA3	EOU	\$280A3
SAA4	EOU	\$280A4
SAA5	EOU	\$280A5
SAA6	EOU	\$280A6
SAA7	FOU	\$280A7
SAAS	EOU	\$28088
SAA9	EOU	\$28029
SADA	EOU	\$28022
SAAR	FOII	\$280AB
SAAC	FOU	\$280AD
SAAD	FOU	\$280AC
SAD SAD	FOIL	\$200AD
SAAL	FOII	\$280AB
SAAL	EQU	\$280AF
CAD1	EQU	\$200B0 \$200B1
CVD2	EQU	\$200B1
SAD2 CAD2	EQU	\$280 <u>6</u> 2
SADS CADA	EQU	\$280B3
SAB4 CADE	EQU	\$280B4
SABS	EQU	\$280B5
SABO	EQU	\$280B6
SAB7	EQU	\$280B7
SAB8	EQU	\$280B8
SABG	EQU	\$28089
SABA	EQU	\$280BA
SABB	EQU	\$280BB
SABC	EQU	\$280BC
SABD	EQU	\$280BD
SABE	EQU	\$280BE
SABF	EQU	\$280BF
SACO	EQU	\$280C0
SACI	EQU	\$280C1
SAC2	EQU	\$280C2
SAC3	EQU	\$280C3
SAC4	EQU	\$280C4
SAC5	EQU	\$280C5
SAC6	EQU	\$280C6
SAC7	EQU	\$280C7
SAC8	EQU	\$280C8
SAC9	EQU	\$280C9
SACA	EQU	\$280CA
SACB	EQU	\$280CB
SACC	EQU	\$280CC
SACD	EQU	\$280CD
SACE ·	EQU	\$280CE
SACF	EQU	\$280CF
SADO	EQU	\$280D0
SAD1	EQU	\$280D1

SAD2	EQU	\$280D2
SAD3	EQU	\$280D3
SAD4	EQU	\$280D4
SAD5	EQU	\$280D5
SAD6	EQU	\$280D6
SAD7	EQU	\$280D7
SAD8	EQU	\$280D8
SAD9	EOU	\$28009
SADA	EOU	\$280DA
SADB	EOU	\$280DB
SADC	EOU	\$280DC
SADD	EOU	\$280DD
SADE	EOU	\$280DE
SADF	EOU	\$280DF
SAE0	EOU	\$280E0
SAE1	EOU	\$28081
SAE2	EOU	\$280E2
SAE3	EOU	\$280E3
SAE4	EOU	\$280E4
SAE5	EOU	\$280E4 \$280E5
SAE6	EOU	\$280E5 \$280E6
SAE7	EOU	\$280E0 \$280E7
SAE8	EOU	\$200E7 \$200E7
SAE9	EOU	\$280E0 \$280E0
SAEA	FOU	\$200E9 \$200E7
SAEB	EQU	\$280EA \$280EB
SAEC	FOU	\$280ED
SAFD	FOU	\$200EC
SAFE	EQU	
SAFE	EQU	SZOUEE COROEE
SAED	EQU	\$280EF
SAFU SAFI	EQU	\$280F0
CVED	EQU	\$280F1
CAES	EQU	5280F2
CAF4	EQU	\$280F3
CAPE	EQU	\$280F4
SAFS	EQU	\$200F5
SAF0 SAF7	EQU	\$280F6
CAFO	EQU	\$280F7
CAPO	EQU	\$280F8
CAPA	EQU	\$280F9
CAED	EQU	\$280FA
SAFB	EQU	\$280FB
SAFC	EQU	\$280FC
SAFD	EQU	\$280FD
SAFE	EQU	\$280FE
SAFF	EQU	\$280FF
;	DOM	*~~*
SBOO	EQU	\$28100
SBIO	EQU	\$28101
2820	EQU	\$28102
2830	EQU	\$28103
584U	EQU	\$28104
2820	EQU	\$28105
5B60	EQU	\$28106
5870	EQU	\$28107
2880	EQU	\$28108
SB90	EQU	\$28109

SBA0	EQU	\$2810A
SBB0	EQU	\$2810B
SBC0	EQU	\$2810C
SBD0	EQU	\$2810D
SBE0	EOU	\$2810E
SBF0	EOU	\$2810F
SB01	EOU	\$28110
SB11	EOU	\$28111
SB21	EOU	\$28112
SB31	EOU	620112
SB41	FOU	\$20113 \$20114
SB51	FOU	\$2011E
SB61	FOU	520115 620116
SB71	FOII	\$20117 \$20117
SB81	FOU	\$20117 620110
SB91	FOU	\$20110
SBN1	FOU	\$28119
CDAL	EQU	\$2811A
CDC1	EQU	\$2811B
	EQU	\$28110
SBUI	EQU	\$2811D
SBEL	EQU	\$2811E
SBET	EQU	\$2811F
SB02	EQU	\$28120
SB12	EQU	\$28121
SB22	EQU	\$28122
SB32	EQU	\$28123
SB42	EQU	\$28124
SB52	EQU	\$28125
SB62	EQU	\$28126
SB72	EQU	\$28127
SB82	EQU	\$28128
SB92	EQU	\$28129
SBA2	EQU	\$2812A
SBB2	EQU	\$2812B
SBC2	EQU	\$2812C
SBD2	EQU	\$2812D
SBE2	EQU	\$2812E
SBF2	EQU	\$2812F
SB03	EQU	\$28130
SB13	EQU	\$28131
SB23	EQU	\$28132
SB33	EQU	\$28133
SB43	EQU	\$28134
SB53	EQU	\$28135
SB63	EOU	\$28136
SB73	EOU	\$28137
SB83	EOU	\$28138
SB93	EOU	\$28139
SBA3	EOU	\$2813A
SBB3	EOU	\$2813B
SBC3	EOU	\$28130
SBU3	EOU	\$2813D
CBES	ROII	\$2813E
נמםס.	EOII	\$2813F
CDL2	RUII	\$28140
	EQU	\$20140 \$20141
SD14	DQa	420141 600110
SB24	EQU	Ş∠814Z

SB34	EQU	\$28143
SB44	EQU	\$28144
SB54	EQU	\$28145
SB64	EQU	\$28146
SB74	EQU	\$28147
SB84	EQU	\$28148
SB94	EOU	\$28149
SBA4	EQU	\$2814A
SBB4	EOU	\$2814B
SBC4	EOU	\$2814C
SBD4	EOU	\$28140
SBE4	EOU	\$2814E
SBF4	EOU	\$2814F
SB05	EOU	\$28150
SB15	EOU	\$28151
SB25	FOII	\$28152
SB35	EOU	\$28153
SB45	FOU	\$28154
SB55	FOU	\$28155
SB65	FOIT	\$20100 \$20156
SB05 SB75	FOU	\$20150
CDSE	EQU	420137 620150
CDOE	EQU	\$20150 \$20150
CDVE	EQU	920159 600153
CDDE	EQU	\$2815A
0005	EQU	\$2015B
SBC5	EQU	\$28150
SBDS	EQU	\$2815D
SBE5	EQU	\$2815E
SBF5	EQU	\$2815F
SB06	EQU	\$28160
SB16	EQU	\$28161
SB26	EQU	\$28162
SB36	EQU	\$28163
SB46	EQU	\$28164
SB56	EQU	\$28165
SB66	EQU	\$28166
SB76	EQU	\$28167
SB86	EQU	\$28168
SB96	EQU	\$28169
SBA6	EQU	\$2816A
SBB6	EQU	\$2816B
SBC6	EQU	\$2816C
SBD6	EQU	\$2816D
SBE6	EQU	\$2816E
SBF6	EQU	\$2816F
SB07	EQU	\$28170
SB17	EQU	\$28171
SB27	EQU	\$28172
SB37	EQU	\$28173
SB47	EQU	\$28174
SB57	EQU	\$28175
SB67	EQU	\$28176
SB77	EQU	\$28177
SB87	EQU	\$28178
SB97	EQU	\$28179
SBA7	EQU	\$2817A
SBB7	EQU	\$2817B

SBC7	EQU	\$2817C
SBD7	EQU	\$2817D
SBE7	EQU	\$2817E
SBF7	EQU	\$2817F
SB08	EQU	\$28180
SB18	EQU	\$28181
SB28	EOU	\$28182
SB38	EOU	\$28183
SB48	EOU	\$28184
SB58	EOU	\$28185
SB68	EOU	\$28186
SB78	EOU	\$28187
SB88	EOU	\$28188
SB98	EOU	\$28189
SBA8	EOU	\$2818A
SBB8	EOU	\$2818B
SBC8	EOU	\$2818C
SBD8	EOU	\$2818D
SBE8	EOU	\$2818E
SBF8	FOU	\$2818F
SB09	EOU	\$28190
GRIG	EOU	\$28191
GR29	FOU	\$28192
6D30	FOII	\$28193
2P/9	FOII	\$28194
CBEQ	FOU	\$28195
9760	FOII	\$28196
0000	ROII	\$20120 \$20107
2019 2000	EQU	\$20100
CD00	EQU	\$20120 \$20100
	EQU	220122 20107
CDRO	ROU	\$2019A
SBB9	EQU	\$2819D
	EQU	\$2019C
	EQU	\$2019D
	ROU	\$2019E
	EQU	22012F
SBUA	EQU	\$201AU
SBIA	EQU	\$201A1
SBZA A	EQU	201A2
SBJA CD43	EQU	\$201A3
ODEN	EQU	5201A4 670175
ODCA ODCA	EQU	\$201A5 \$201A6
SBOA CDJA	EQU	\$201A0
	EQU	201A/
SBOA	EQU	\$281A0
SBAA	EQU	\$281A9
SBAA	EQU	\$281AA
SBBA	EQU	\$281AB
SBCA	EQU	\$28IAC
SBDA	EQU	\$281AD
SBEA	EQU	\$281AE
Alde	EQU DOM	Ş∠∀IAF
8086 8087	EQU	¢20123
2B1B	FOU	⇒28TRT
SB2B	EQU	\$281B2
283B	RÕN	\$281B3
SB4B	EQU	Ş281B4

SB5B	EQU	\$281B5
SB6B	EQU	\$281B6
SB7B	EQU	\$281B7
SB8B	EQU	\$281B8
SB9B	EQU	\$281B9
SBAB	EQU	\$281BA
SBBB	EQU	\$281BB
SBCB	EQU	\$281BC
SBDB	EQU	\$281BD
SBEB	EQU	\$281BE
SBFB	EQU	\$281BF
SB0C	EQU	\$281C0
SB1C	EQU	\$281C1
SB2C	EQU	\$281C2
SB3C	EQU	\$281C3
SB4C	EQU	\$281C4
SB5C	EQU	\$281C5
SB6C	EQU	\$281C6
SB7C	EQU	\$281C7
SB8C	EQU	\$281C8
SB9C	EQU	\$281C9
SBAC	EQU	\$281CA
SBBC	EQU	\$281CB
SBCC	EQU	\$281CC
SBDC	EQU	\$281CD
SBEC	EQU	\$281CE
SBFC	EQU	\$281CF
SBOD	EQU	\$281D0
SB1D	EQU	\$281D1
SB2D	EQU	\$281D2
SB3D	EQU	\$281D3
SB4D	EQU	\$281D4
SB5D	EQU	\$281D5
SB6D	EQU	\$281D6
SB7D	EQU	\$281D7
SB8D	EQU	\$281D8
SB9D	EQU	\$281D9
SBAD	EQU	\$281DA
SBBD	EQU	\$281DB
SBCD	EQU	\$281DC
SBDD	EQU	\$281DD
SBED	EQU	\$281DE
SBFD	EQU	\$281DF
SBOE	EQU	\$281EU
SBIE	EQU	\$281E1
SBZE	EQU	\$281E2
SB3E	EQU	\$201E3 \$201E4
SB4E	EQU	\$201£4 ¢201₽5
SBSE	EQU	\$281E5 \$281E6
SBOE	EQU	\$28187
	EOII	\$281E8
CBOE	EOU	\$281E9
SBAE	EOII	\$281EA
SBRF	EOU	\$281EB
SBCE	EOU	\$281EC
SBDE	EOU	\$281ED
فيد سد سد ب	-20	·,

SBEE	EQU	\$281EE
SBFE	EQU	\$281EF
SBOF	EQU	\$281F0
SB1F	EQU	\$281F1
SB2F	EQU	\$281F2
SB3F	EQU	\$281F3
SB4F	EOU	\$281F4
SB5F	EOU	\$281F5
SB6F	EOU	\$281F6
SB7F	EOU	\$281 87
SB8F	EOU	\$28188
SB9F	FOU	\$28189
SBAF	EOU	\$281FD
SBBF	EOU	\$281FB
SBCF	FOU	\$281FC
SBDF	FOI	\$281FD
SBEF	FOU	\$28155
SBEE	FOU	\$201FB \$281FF
	ЦQU	Ϋ́ς οτετ
, 5000	FOIL	\$28200
SCOL	EOU	\$28200
5001	FOU	\$28201
5002	FOU	\$28202
SC03	EQU	\$28203
2004 2005	EQU	\$28204 \$28205
3C03	EQU	\$28205 \$3830£
3C08	EQU	\$28200 \$28207
3007	EQU	\$∠0207 ¢20207
5008	EQU	\$28200 ¢28200
5009	EQU	\$20203 \$28207
CCOD	EQU	\$2820A
	EQU	\$2020D
SCUC	EQU	\$2820C
SCOD	EQU	\$2820D
SCUE	EQU	\$282VE
SCUF	EQU	3202VF 620210
SCIU	EQU	Ş∠6210 ¢29211
SCIL	EQU	\$20211 ¢20212
SC12	EQU	\$20212 620212
SCI3	EQU	\$28213
SC14	EQU	Ş∠0∠14 ¢2021⊑
SC15	EQU	\$28215 600016
SC16	EQU	\$28216
SC17	EQU	\$28217
SC18	EQU	\$28218
SC19	EQU	\$28219
SCIA	EQU	\$2821A
SC1B	EQU	\$2821B
SC1C	EQU	\$2821C
SCID	EQU	\$2821D
SC1E	EQU	\$2821E
SC1F	EQU	\$2821F
SC20	EQU	\$28220
SC21	EQU	\$28221
SC22	EQU	\$28222
SC23	EQU	\$28223
SC24	EQU	\$28224
SC25	EQU	\$28225

0000	DOIT	*****
5026	EQU	\$28226
SC27	EQU	\$28227
SC28	EQU	\$28228
SC29	FOU	528229
с С 2	FOU	¢20222
odop	DQU	JZOZZA
SC2B	EQU	\$2822B
SC2C	EQU	\$2822C
SC2D	EQU	\$2822D
SC2E	EOU	\$2822E
SC2F	FOU	S2822F
9030	FOU	\$20221
0001	EQU	\$20230
SC31	EQU	\$28231
SC32	EQU	\$28232
SC33	EQU	\$28233
SC34	EQU	\$28234
SC35	EOU	\$28235
9036	EOU	\$28236
0007	POU	\$20230 620237
5037	EQU	\$20237
SC38	EQU	Ş28238
SC39	EQU	\$28239
SC3A	EQU	\$2823A
SC3B	EOU	\$2823B
SC3C	EOU	\$28230
scap	FOU	¢2023C
3030	EQU	\$2823D
SC3E	EQU	\$2823E
SC3F	EQU	Ş2823F
SC40	EQU	\$28240
SC41	EQU	\$28241
SC42	EOU	\$28242
SC43	FOU	\$28243
0044	EQU	620240
5044	EQU	920244 20004F
SC45	EQU	\$28245
SC46	EQU	\$28246
SC47	EQU	\$28247
SC48	EQU	\$28248
SC49	EOU	\$28249
SCAD	FOU	\$28244
OCAD	POU	\$202111 \$2024B
SC4B	EQU	Ş∠624D
SC4C	EQU	\$2824C
SC4D	EQU	\$2824D
SC4E	EQU	\$2824E
SC4F	EQU	\$2824F
SC50	EOU	\$28250
SC51	EOU	\$28251
0051	EQU	¢20252
5052	EQU	\$202J2
SC53	EQU	\$28253
SC54	EQU	\$28254
SC55	EQU	\$28255
SC56	EQU	\$28256
SC57	EOU	\$28257
5C5 /	FOU	\$28258
3030	200 200	420220 620250
SC59	FOO	928207 6000
SC5A	EQU	\$2825A
SC5B	· EQU	\$2825B
SC5C	EQU	\$2825C
SC5D	EQU	\$2825D
SCSE	EOU	\$2825E
		7-0-0-

SC5F	EQU	\$2825F
SC60	EQU	\$28260
SC61	EQU	\$28261
SC62	EQU	\$28262
SC63	EOU	\$28263
SC64	EOU	\$28264
SC65	EOU	\$28265
SCEE	EOU	\$28266
5067	FOU	\$28267
SC67	FON	\$28269 \$28268
9069	FOU	\$20200 \$20260
	ROU	920209 6000cm
SCOA	EQU	\$2020A
	EQU	\$2020D
	EQU	\$2826C
SC6D	EQU	\$2826D
SCOE	EQU	\$2826E
SC6F	EQU	\$2826F
SC70	EQU	\$28270
SC71	EQU	\$28271
SC72	EQU	\$28272
SC73	EQU	\$28273
SC74	EQU	\$28274
SC75	EQU	\$28275
SC76	EQU	\$28276
SC77	EQU	\$28277
SC78	EQU	\$28278
SC79	EQU	\$28279
SC7A	EQU	\$2827A
SC7B	EOU	\$2827B
SC7C	EOU	\$2827C
SC7D	EOU	\$2827D
SC7E	EOU	\$2827E
SCAE	FOIT	\$2827F
SC80	FOII	\$28280
SC81	EON	\$28281
5C01	ROU	\$2020±
6002	EQU	\$20202 ¢20202
SC03	EQU	\$20203 \$20204
5084	EQU	\$28284 ¢20205
5085	EQU	\$28285 \$28285
5086	EQU	\$28286
SC87	EQU	\$28287
SC88	EQU	\$28288
SC89	EQU	\$28289
SC8A	EQU	\$2828A
SC8B	EQU	\$2828B
SC8C	EQU	\$2828C
SC8D	EQU	\$2828D
SC8E	EQU	\$2828E
SC8F	EQU	\$2828F
SC90	EQU	\$28290
SC91	EQU	\$28291
SC92	EQU	\$28292
SC93	EQU	\$28293
SC94 ·	EOU	\$28294
SC95	EOU	\$28295
SC96	EOU	\$28296
5097	EOU	\$28297
· · · · ·	$\sim \times \sim$	~~~~ /

SC98	EQU	\$28298
SC99	EQU	\$28299
SC9A	EOU	\$2829A
SC9B	EOU	\$2829B
SC9C	EOU	\$2829C
SC9D	EOU	\$2829D
SCAE	EOU	\$2829E
SCAF	FOU	\$2829F
SCAO	FOII	\$28220
SCAI	FOIL	\$28221
SCA2	FOII	\$282A2
SCAR	EQU	\$202A2
SCA	EQU	\$282AJ
2C75	EQU	202A3
SCAS	EQU	SZOZAJ SODODE
SCAO SCAO	EQU	9202A0
SCA7	EQU	\$202A/
SCAB	EQU	\$282A8
SCAS	EQU	\$282A9
SCAA	EQU	\$282AA
SCAB	EQU	\$282AB
SCAC	EQU	\$282AC
SCAD	EQU	\$282AD
SCAE	EQU	\$282AE
SCAF	EQU	\$282AF
SCB0	EQU	\$282B0
SCB1	EQU	\$282B1
SCB2	EQU	\$282B2
SCB3	EQU	\$282B3
SCB4	EQU	\$282B4
SCB5	EQU	\$282B5
SCB6	EQU	\$282B6
SCB7	EQU	\$282B7
SCB8	EQU	\$282B8
SCB9	EQU	\$282B9
SCBA	EQU	\$282BA
SCBB	EQU	\$282BB
SCBC	EQU	\$282BC
SCBD	EQU	\$282BD
SCBE	EQU	\$282BE
SCBF	EQU	\$282BF
SCC0	EQU	\$282C0
SCC1	EQU	\$282C1
SCC2	EQU	\$282C2
SCC3	EQU	\$282C3
SCC4	EQU	\$282C4
SCC5	EOU	\$282C5
SCC6	EOU	\$282C6
SCC7	EOU	\$282C7
SCC8	EOU	\$282C8
SCC9	EOU	\$28209
SCCA	EOU	\$282CA
SCCB	EOU	\$282CB
SCCC	EOU	\$28200
SCCD	EOU	\$282CD
SCCE	FOU	\$282CE
SCCF	FOIL	\$282CF
SCDO	FOU	\$282D0
	2VU	$\gamma \simeq \cup \simeq \cup \cup$

SCD1	EQU	\$282D1
SCD2	EQU	\$282D2
SCD3	EQU	\$282D3
SCD4	EQU	\$282D4
SCD5	EQU	\$282D5
SCD6	EQU	\$282D6
SCD7	EQU	\$282D7
SCD8	EQU	\$282D8
SCD9	EOU	\$282D9
SCDA	EOU	\$282DA
SCDR	EOU	\$282DB
SCDC	EOU	\$28200
SCDD	FOU	¢28200
SCDD	EQU	202DD 2020DD
SCDE	EQU	\$202DE \$202DE
SCDF	EQU	\$202DF \$202P0
SCEU	EQU	\$282EU
SCEI	EQU	\$282ET
SCE2	EQU	\$282E2
SCE3	EQU	\$282E3
SCE4	EQU	\$282E4
SCE5	EQU	\$282E5
SCE6	EQU	\$282E6
SCE7	EQU	\$282E7
SCE8	EQU	\$282E8
SCE9	EQU	\$282E9
SCEA	EQU	\$282EA
SCEB	EQU	\$282EB
SCEC	EQU	\$282EC
SCED	EQU	\$282ED
SCEE	EQU	\$282EE
SCEF	EOU	\$282EF
SCF0	EOU	\$282F0
SCF1	EOU	\$282F1
SCF2	EOU	\$282F2
SCF3	FOII	\$28253
SCF4	FOII	\$282FJ
CCEE	EQU	\$202F4
CCPC	EQU	9202F3 6000FC
3CF0	EQU	\$282F6
SCF /	EQU	\$282F7
SCF8	EQU	\$282F8
SCF9	EQU	\$282F9
SCFA	EQU	\$282FA
SCFB	EQU	\$282FB
SCFC	EQU	\$282FC
SCFD	EQU	\$282FD
SCFE	EQU	\$282FE
SCFF	EQU	\$282FF
i		
; Semaphores		
SML1A	EQU	\$28300
SML2A	EQU	\$28301
SML1B	EQU	\$28302
SML2B	EQU	\$28303
SMLC	EQU	\$28304
SM1S	EQU	\$28305
SM2F	EQU	\$28306
SM2S	EOU	\$28307
- /	~~~	4200V1

, T OP3	POIL	620002
	EQU	\$30003
WCILB	EQU	\$30000
WC1MB	EQU	\$30000
RC1LB	EQU	\$30000
RC1MB	EQU	\$30000
GtRd	EQU	\$8000
GtRda	EOU	\$38000
TCNT	EOU	\$17000
DONT	FOU	\$17004
	220	<i>41,001</i>
7		
i i Gauta		
; Matrix Contr	of Equate	25
; Byte e	quates	
ACNT	EQU	\$17010
MMWL	EQU	\$17011
MMTA	EQU	\$17012
LMASB	EQU	\$17013
LMBSB	EQU	\$17014
ZERO	EOU	\$17015
PROCa	EOU	\$17016
MMTGB	FOU	\$17017
MMTCC	FOU	\$17018
Daba	EQU	\$17010 ¢17010
PIBa	EQU	\$17019
PrBD	EQU	\$17020
MMTB	EQU	\$17021
; Word e	quates	
BCNT	EQU	\$17040
BSCNT	EQU	\$17042
; Long E	quates	
MCSVB	EQU	\$17050
LMAS	EQU	\$17054
LMBS	EOU	\$17058
ACRT	EOU	\$1705C
BCRT	EOU	\$17060
CCPT	FOU	\$17064
ACPTA	FOU	\$17069
DCDTA	EQU	\$17000
BCRIA GODT-	EQU	\$1706C
CCRTa	EQU	\$17070
ACRTB	EQU	\$17074
BCRTb	EQU	\$17078
CCRTb	EQU	\$1707C
ACRTC	EQU	\$17080
BCRTC	EQU	\$17084
CCRTC	EQU	\$17088
SD5	EQU	\$1708C
SD6	EOU	\$17090
: Matrix A Loa	d Values	
LMAVA	EOU	\$1708C
LMAVE	FOU	\$17000
· Matrix P Taa	d Valuer	911090
, MALLIX D LOA	u values	617070
LMDVD	EQU	\$17070
тыя A В	EQU	\$1707 <b>4</b>
; ASCNT	-	
;CSCNT		
; CCNT		

```
ORG
                          $10000
; Step Al
; Clearing of Registers
START
                 clr.l
                          DO
                 clr.l
                          D1
                 clr.l
                          D2
                 clr.l
                          D3
                 clr.l
                          D4
                 clr.l
                          D5
                 sub.l
                          A1, A1
                 sub.1
                          A2,A2
                 sub.1
                          A3, A3
                 sub.l
                          A4,A4
                 sub.l
                          A5,A5
ï
;
; Routine for clearing $14000-$140C0,$28000-$280C0,$28100-$28106
;
                          #$17000,A5
                 move.l
                 move.l
                          #$17100,A4
                 BSR
                          MCLR
                 move.b
                          #PROC, (PROCa)
                 cmpi.b
                          #$01, (PROCa)
                 beq
                          MC0
                 move.l
                          #$28000,A5
                 move.l
                          #$28300,A4
                 BSR
                          MCLR
                 move.l
                          #$28300,A5
                 move.l
                          #$28308,A4
                 BSR
                          MCLR
MC0
                          #$14000,A5
                 move.l
                 move.l
                          #$14300,A4
                 BSR
                          MCLR
; Matrix Load variable
                 move.l
                          #ASRT, (LMAVA)
                 move.l
                          #ASRT, (LMAVB)
                 move.l
                          #ASRT, (LMAS)
                          #BSRT, (LMBVA)
                 move.l
                          #BSRT, (LMBVB)
                 move.l
                 move.l
                          #BSRT, (LMBS)
                 move.b
                          #LMBVAL,D0
                 move.b
                         #$00,(ZERO)
                          #MMTS, (MMTSC)
                 move.b
                 move.b
                          #MMTSA, (MMTSB)
                 cmpi.b
                          #$01, (MMTSB)
                 beq
                          LVA
                 move.b
                          #MMT, (MMTA)
                 move.b
                          #MMT, (MMTB)
                 bra
                          LVB
LVA
                 cmpi.b
                          #$04,(MMTA)
                 beq
                          LVA1
                 move.b
                          #$01, (MMTA)
                 bra
                          LVA2
LVA1
                 move.b #$02,(MMTA)
                 move.b #$01,(MMTB)
LVA2
```

LVB	cmpi.b	#\$01,(MMTA)
	beq	LM4
	cmpi.b	#\$02,(MMTA)
	beq	LM8
	cmpi.b	#\$04,(MMTA)
	beq	LM16
LM4	cmpi.b	#\$01,(MMTB)
	beq	LM4b
	addi.l	#\$04,(LMAS)
	addi.l	#\$04,(LMBS)
	move.b	#\$04,(LMASB)
	move.b	#\$04,(LMBSB)
	cmpi.b	#\$01,(MMTSC)
	beq	LM4a
	addi.l	#\$40,(LMAVB)
	move.w	#\$0010,(BSCNT)
	BRA	LM4a3
LM4a	cmpi.b	#\$01,(PROCa)
	beq	LM4al
	addi.l	#\$20,(LMAVB)
	bra	LM4a2
LM4al	addi.l	#\$20,(LMAVA)
	addi.l	#\$20,(LMAS)
	addi.l	#\$40,(LMAVB)
LM4a2	move.w	#\$0010,(BSCNT)
LM4a3	addi.l	#\$40,(LMBVB)
	move.b	#\$20,(PrBb)
	BRA	LMO
LM4b	cmpi.b	#\$01,(PROCa)
	beq	LM4b1
	addi.l	#\$08,(LMAS)
	addi.l	#\$04,(LMBS)
	move.b	#\$08,(LMASB)
	move.b	#\$04,(LMBSB)
	addi.l	#\$40,(LMAVB)
	addi.l	#\$80,(LMBVB)
	bra	LM4d
LM4b1	add1.1	#\$08,(LMAS)
	add1.1	#\$08,(LMBS)
	move.b	#\$08, (LMASB)
	move.b	#\$08,(LMBSB)
	addi.i	#\$40, (LMAVA)
	addi.i	#\$04, (LMBVA)
	addi.i	#\$40, (LMAS)
	addi.i	#\$04,(LMBS) #\$00,(IMBID)
	addi.i	#\$80, (LMAVE)
	auui.i	#384, (LMBVB)
TMAA	move.b	#LMBVIA,DU
DM4Q	move.b	$\# \varphi U 4$ , (PIDa) $\# \varphi 4 0$ (Drpb)
	move.u	#940, (FIBD) #\$0010 (PCCNTR)
	hra	TWO
T.MQ	urd ampi b	שויוט #כ∩ו (אאידים)
01.10	.pea	TARP
	ned Page 1	4¢08 (IWVG)
	addi l	πγνο, (μπερ) #έρε (ΙΜΦε)
	auur.r	πγνυ, (цилор) #άлο (тилор)
	move.D	#900, (DPMSB)

	move.b	#\$08,(LMBSB)
	cmpi.b	#\$01,(MMTSC)
	beq	LM8a
	addi.l	#\$80,(LMAVB)
	move.w	#\$0040, (BSCNT)
	BRA	LM8a3
T.M8a	cmpi b	#\$01. (PROCa)
	bea	I.M8a1
	addi ]	HS40 (T.MAVB)
	hra	LMBa2
T.M8 > 1	addi l	#\$40 (T.MAVA)
hundar	addi l	H\$40 (LMAS)
	addi l	#\$40, (TWVMB)
TMODO	addi.i	#\$00,(DrAVD)
LMOa2	move.w	#0020, (BSCNI)
ымваз	addi.i	#\$80, (LMBVB)
	move.b	#\$40, (PrBD)
T 1401	BRA	LMO
d8MJ	cmpi.b	#\$01, (PROCa)
	beq	LM8D1
	addi.l	#\$10,(LMAS)
	addı.l	#\$08,(LMBS)
	move.b	#\$10,(LMASB)
	move.b	#\$08,(LMBSB)
	addi.l	#\$80,(LMAVB)
	addi.l	#\$100,(LMBVB)
	bra	LM8d
LM8b1	addi.l	#\$10,(LMAS)
	addi.l	#\$10,(LMBS)
	move.b	#\$10,(LMASB)
	move.b	#\$10,(LMBSB)
	addi.l	#\$80,(LMAVA)
	addi.l	#\$08,(LMBVA)
	addi.l	#\$80,(LMAS)
	addi.l	#\$08,(LMBS)
	addi.l	#\$80,(LMAVB)
	addi.l	#\$108,(LMBVB)
	move.b	#LMBVla,D0
LM8d	move.b	#\$08,(PrBa)
	move.b	#\$80, (PrBb)
	move.w	#\$0020, (BSCNT)
	bra	LMO
;LM8	addi.l	#\$08,(LMAS)
i	addi.l	#\$08, (LMBS)
;	move.b	#\$08, (LMASB)
;	move.b	#\$08, (LMBSB)
;	addi.l	#\$80.(LMBVB)
;	cmpi.b	#MMTS. (ZERO)
;	bne	S2
:	move w	#\$0040 (BSCNT)
;	addil	#\$80. (LMAVR)
, ;	BRA	S3
, :S2		#\$0020 (BGCNT)
	cmpi h	#\$01 (DDOCa)
	. Pea	HOUL, (FRUCA)
	bey addi i	υζα μάλυ (τωντιν)
	auu1.1	на́а∩'(пын∧р) тмо
i . 60 p	pra	
;52d	move.b	#Ş4U,(PrBb)

;	addi.l	#\$40,(LMAVA)
;	addi.l	#\$40,(LMAS)
;	addi.b	#\$40,(LMASB)
;	addi.l	#\$80,(LMAVB)
; \$3	bra	LMO
LM16	addi.l	#\$00,(LMAS)
	addi.l	#\$00, (LMBS)
	addi.b	#\$00. (LMASB)
	addi.b	$\pm$ \$00 (LMBSB)
	addi l	#\$100 (LMRVR)
	cmpi h	#MMTC (2EDO)
	bne	AMMIS, (ZERO)
	move w	
	addi l	#\$0100, (BDCN1) #\$100 (LMAVE)
	move b	$\#$ $\varphi$ $\psi$
	ענפיטוו	#\$80, (PIBD)
C 4	BRA	
54	move.w	#50080, (BSCNT)
	Clipt.D	# SOL, (PROCA)
	beq	54a
	addi.1	#\$80,(LMAVB)
	move.b	#\$80,(PrBb)
	bra	LMO
S4a	addi.l	#\$80,(LMAVA)
	addi.l	#\$100,(LMAVB)
	move.b	#\$80,(PrBb)
; Loading Variab	oles	
LMO	move.b	#\$00, (ACNT)
	move.w	#\$00, (BCNT)
	move.b	#\$00,(MMWL)
	move.l	#\$00, (ACRT)
	move.l	#\$00, (BCRT)
	move.l	#\$00, (CCRT)
: Initializing t	the Count	ier
,	move.b	#\$30.(LCW)
;		
; Loading of Mat	rix Valı	1e
;	BSR	Lmat : Testing
: Matrix A		
	movea.l	(IMAVA) A3
	movea l	(LMAVR) A2
	RCD	T.MA
	DOR	201111
· Matrix B		
, MACLIN D	movea l	(LMRVA) A3
	movea.1	(LMBVR) A2
	DCD	
	DOR	DI-ID
i Chook for Sinc	le Broge	a c c o r
; CHECK IOL SING	gre proce	4601 (MMTCC)
	Cmpr.D	#301, (MM13C)
	Dire	56
i Obserla if Da		D
; Uneck if Prog	A OF Pro	уу в #čo1 (прод-)
	cmp1.b	#ŞUI, (PROCa)
- 1 ·	peq	ASWT
; Locking Semaph	lores	T 0
	BSR	ЪS
i		

; Unlocking Semaphores BSR US ; Waiting for PB initialization movea.l #SM1S,A3 ; PA Only BSR SC ; ; Routine to Start Time SG BSR TSTR ; PA only ; Starting Processor B clr.b (SM2S) ; PA only bra SG1 ; ; PB Initialization ASWT clr.b (SM1S) ; PB only ; Processor B Start movea.l #SM2S,A3 ; PB Only SC BSR ; PB Only ; ; Matrix Multiplication ; [Segment A0] ; SG1 move.l #ASRT, (ACRT) move.l #BSRT, (BCRT) move.l #CSRT, (CCRT) clr.l D5 clr.l D6 move.b (PrBa),D5 move.b (PrBb),D6 cmpi.b #\$01,(PROCa) bne SAl ; Start Locations for Proc B add.l D6, (ACRT) cmpi.b #\$01,(MMTSB) bne PB0 add.l D5, (BCRT) PBO add.l D6, (CCRT) move.l (ACRT), (ACRTb) move.l (BCRT), (BCRTb) move.l (CCRT), (CCRTb) bra SA2 ; Location Start for Block Proc A ; SA1 move.l (ACRT), (ACRTa) move.l (BCRT), (BCRTa) move.l (CCRT), (CCRTa) SA2 cmpi.b #\$01,(MMTSB) bne PA cmpi.b #\$01,(PROCa) bne PA movea.l (BCRT),A5 BSR MTSM clr.b (SML1A) movea.l (BCRT),A5 adda.l D6,A5

	BSR clr.b add.l movea.l movea.l	MTSM (SML2A) D5,(ACRTb) (ACRTb),A4 (BCRT),A5 (CCRT),A3
	BSR movea.l movea.l adda.l adda.l BSR sub.l movea.l	Block (ACRTb),A4 (BCRT),A5 (CCRT),A3 D6,A5 D5,A3 Block D5,(BCRTb) (BCRTb),A5
,	movea.l BSR	#SML1B,A3 SC
;	BSR movea.l movea.l BSR add.l movea.l	GFSM (ACRT),A4 (BCRTb),A5 (CCRT),A3 Block D6,(BCRTb) (BCRTb),A5
1	movea.l BSR	#SML2B,A3 SC
;	BSR movea.l movea.l adda.l BSR	GFSM (ACRT),A4 (BCRTb),A5 (CCRT),A3 D5,A3 Block
PA	cmpi.b beq movea.l movea.l movea.l bra	#\$01, (PROCa) PA0 (ACRTa),A4 (BCRTa),A5 (CCRTa),A3 PA1
PAO	movea.l movea.l	(ACRTb),A4 (BCRTb),A5 (CCRTb),A3
PA1	BSR Bloc cmpi.b bne movea.l movea.l adda.l adda.l BSR movea.l	k #\$01,(MMTSB) MMC (ACRT),A4 (BCRT),A5 (CCRT),A3 D6,A5 D5,A3 Block (BCRT),A5

```
BSR
                         MTSM
                 clr.b (SML1B)
                 move.l (BCRT), (BCRTa)
                 movea.l (BCRTa),A5
                 adda.l D5,A5
ï
                 movea.l #SML1A,A3
                 BSR
                         SC
;
                 BSR
                         GFSM
                 movea.l (ACRT),A4
                 movea.l (BCRTa),A5
                 movea.l (CCRT),A3
                 adda.l D5,A4
                 adda.l D5,A5
                 BSR
                         Block
                 movea.l (BCRT),A5
                 adda.l D6,A5
                 BSR
                         MTSM
                 clr.b
                         (SML2B)
                 movea.l (BCRTa),A5
                 adda.l D6,A5
                 adda.l D5,A5
i
                 movea.l #SML2A,A3
                 BSR
                         SC
;
                 BSR
                         GFSM
                 movea.l (ACRT),A4
                 movea.l (BCRTa),A5
                 movea.l (CCRT),A3
                 adda.l D5,A4
adda.l D6,A5
adda.l D5,A5
                 adda.l D5,A3
                 BSR
                         Block
;
;
; [Segment A9]
ï
; Checking SMLC Semaphore
                 movea.l #SMLC,A3
MMC
                 BSR
                         SC
;
; Move Results to Shared Memory
                 movea.l #CSRT,A5
                 BSR
                         MRTSM
ï
; Clearing SMLC Semaphore
                 clr.b (SMLC)
;
; [Segment A10]
;
                 `cmpi.b #$01,(PROCa)
                 beg
                         DSWT
                 cmpi.b #$01,(MMTSC)
                 bne
                         CSWT
```

; Checking if Processor 2 is finished movea.l #SM2F,A3 BSR SC ï ; Routine to Stop Timer BSR CSWT TSTP ; bra ESWT ; ; Processor 2 is finsished DSWT clr.b (SM2F) ; Routine to Get Time information ESWT BRA ENDING ; ; ; Subroutines TSTR move.b #\$00,(WC1LB) move.b #\$00,(WC1MB) move.b #\$00,(GtRd) RTS TSTPA move.b #\$01,(GtRd) move.b #\$03,(GtRda) RTS TSTP move.b #\$01,(GtRd) move.b #\$00,(LCW) clr.l D1 clr.l D2 move.b (RC1LB),D1 move.b (RC1MB),D2 ASL #\$8,D2 add.l D2,D1 move.l D1, (RCNT) RTS ; ;SC subi.b #\$01,D7 cmpi.b #\$00,D7 i bne SC ï SC TAS (A3) BNE SCclr.b (A3) ; RTS ; BLOCK move.l D5,(SD5) move.l D6, (SD6) movea.w (BSCNT),A2 move.l A4, (ACRTc) move.l A5, (BCRTc) move.l A3, (CCRTc) BLA BSR MMW addi.b #\$01,(MMWL) move.b (MMTB),D3 (MMWL),D3 cmp.b bne BLA BLB addi.w #\$01,BCNT (BCNT),A2 cmpa.w beq BLEND move.w #\$01,CCNT ;

	addi.b adda.l cmpi.b beq cmpi.b beg	#\$01,ACNT #\$01,A3 #\$01,(MMWL) MMW4 #\$02,(MMWL) MMW8
MMW16	move.b cmpi.b beq BRA	#\$00,MMWL #\$10,(ACNT) ADJA16 BLCNT
MMW8	move.b cmpi.b beq adda.l BRA	#\$00,MMWL #\$08,(ACNT) ADJA08 #\$08,A5 BLCNT
MMW4	move.b cmpi.b beq adda.l BRA	#\$00,MMWL #\$04,(ACNT) ADJA04 #\$0C,A5 BLCNT
ADJA16	addi.l movea.l BRA	<pre>#\$10, (ACRTc) (BCRTc), A5 #\$00, (ACNT) BLCNT</pre>
ADJA08	addi.l addi.l movea.l movea.l move.b BRA	<pre>#\$10, (ACRTc) #\$10, (CCRTc) (BCRTc), A5 (CCRTc), A3 #\$00, (ACNT) BLCNT</pre>
ADJA04	addi.l addi.l movea.l movea.l movea.l move.b BRA	#\$10, (ACRTc) #\$10, (CCRTc) (ACRTc), A4 (BCRTc), A5 (CCRTc), A3 #\$00, (ACNT) BLCNT
BLCNT ;	movea.l move.w BRA	(ACRTc),A4 #\$01,CCNT BLA
BLEND	move.b move.b move.w move.l RTS	#\$00,MMWL #\$00,ACNT #\$00,BCNT (SD5),D5 (SD6),D6
; MMW	move.b move.b move.b move.b move.b move.b move.b move.b mulu mulu	(A4) +, D0 (A5) +, D1 (A4) +, D2 (A5) +, D3 (A4) +, D4 (A5) +, D5 (A4) +, D6 (A5) +, D7 D1, D0 D3, D2

7	add.b mulu mulu add.b clr.l move.b clr.l clr.l clr.l clr.l clr.l clr.l clr.l clr.l clr.l clr.l clr.l clr.l clr.l clr.l clr.l	D0, D2 D5, D4 D7, D6 D4, D6 D6, D2 D5 (A3), D5 D5, D2 D2, (A3) D1 D2 D3 D4 D5 D6 D7 A3, A3
/ MTSM	clr.l clr.l clr.l move.b move.b movea.l movea.l	D0 D1 D2 (PrBa),D1 (PrBb),D2 A5,A2 A5,A3
MT1	adda.l adda.l move.l addi.l move.l move.b cmpa.l bne	D1,A2 D2,A3 A5,D0 #\$14000,D0 D0,A1 (A5)+,(A1)+ A5,A2 MT2
MT2	adda.1 adda.1 cmpa.1 bne sub.1 sub.1 sub.1 sub.1 RTS	#\$10,A2 #\$0C,A1 #\$0C,A5 A5,A3 MT1 A1,A1 A2,A2 A3,A3 A5,A5
; GFSM	<pre>clr.l clr.l move.b movea.l movea.l adda.l adda.l adda.l addi.l move.l</pre>	D0 D1 D2 (PrBa),D1 (PrBb),D2 A5,A2 A5,A3 D1,A2 D2,A3 A5,D0 #\$14000,D0 D0,A1

MT4	move.b	(A1)+, (A5)+
	cmpa.l	A5,A2
	bne	MT5
	adda.l	#\$10,A2
	adda.l	#\$0C,A1
	adda.l	#\$0C,A5
MT5	cmpa.l	A5.A3
	bne	МТ4
	sub l	רמ רמ
	sub l	D2 D2
	sub 1	22 23 23
	sub l	A5 A5
	PTS	110 / 110
•	1010	
, MDTYCM	clr l	וח
Incion	movea ]	A5. A2
	movea.1	N5, N2
	cmpi b	4501 (MMTTA)
	beg	MTES
	ampi h	
	bed.	HOUZ, (PHILA)
	beq ampi b	4404 (MMTD)
	Cmpr.D	HOU4, (MMIA)
MITIC	Ded	HIDC (MMMDD)
MISA	Culpr.D	HOUL, (MMID)
	Ded ampi p	MIDED (MMTCC)
	Cmpi.b	HŞUI, (MMISC)
	peq	MISa2
	adda.1	#\$40,A3
VEC. 0	Dra	M15a4
MT5a2	cmpi.p	#\$01, (PROCa)
	peq	MT5a3
	adda.1	#\$20,A3
	bra	MT5a4
MT5a3	adda.1	#\$20,A5
	adda.1	#\$40,A3
M15a4	adda.1	#\$04,A2
	move.1	#\$04,D1
	bra	MT5d
MT5a5	cmp1.b	#\$01,(PROCa)
	beq	MT5a6
	adda.l	#\$40,A3
	bra	MT5a7
MT5a6	adda.l	#\$40,A5
	adda.l	#\$40,A2
	adda.l	#\$80,A3
MT5a7	adda.l	#\$08,A2
	move.l	#\$08,D1
	bra	MT5d
MT5b	cmpi.b	#\$01,(MMTB)
	beq	MT5b5
	cmpi.b	#\$01,(MMTSC)
	beq	MT5b2
	adda.l	#\$80,A3
	bra	MT5b4
MT5b2	cmpi.b	#\$01,(PROCa)
	beq	MT5b3
	adda.l	#\$40,A3

	bra adda l	MT5b4		
MISDS	adda l	#\$40,AJ #\$80 b3		
MTTELA	adda l	#\$00,A3 #\$08 &2		
M120D4	move l	#\$08 D1		
	hra	MT5d		
MTSDS	cmpi.b	#\$01 (PROCa)		
MI JJJJ	bea	MT5b6		
	adda.l	#\$80.A3		
	bra	MT5b7		
MT5b6	adda.l	#\$80,A5		
	adda.l	#\$80,A2		
	adda.l	#\$100,A3		
MT5b7	adda.l	#\$10,A2		
	move.l	#\$10,D1		
	bra	MT5d		
MT5c	cmpi.b	#\$01,(MMTSC)		
	beq	MT5c2		
	adda.l	#\$100,A3		
	bra	MT5c4		
MT5c2	cmpi.b	#\$01,(PROCa)		
	beq	MT5c3		
	adda.l	#\$80,A3		
	bra	MT5c4		
MT5c3	adda.l	#\$80,A5		
	adda.l	#\$100,A3		
MT5c4	adda.l	#\$10,A2		
	move.l	#\$10,D1		
;	_			
MT5d	move.l	A5,D0		
	addi.l	#\$14000,D0		
	move.l	D0,A1		
MT6	move.b	(A5) +, (A1) +		
	cmpa.1	A5, A2		
	bne	MT7		
	Cmpi.b	#\$04,(MMTA)		
	peq	MT7		
	adda.1	#\$10,A2		
	adda.1	DI,AI		
MITT	adda.l	DI,AS		
M11 /	Cmpa.1	A5, A3		
	Dile	MID		
	Sub.1	AL,AL		
	sub.l	AZ, AZ		
	sub.l	AS, AS		
		AD, AD		
;	ICL D			
i				
MCLR	clr.b	(A5)+		
	cmpa.l	A4.A5		
	BNE	MCLR		
	sub.l	A5,A5		
	sub.1	A4,A4		
	RTS			
;				
LS	move.b #	\$\$80,(SML1A) ;	PA	only

	move h	#\$80,(SML2A)	;	PA	only
	move b	#\$80 (SMT.1B)		PΑ	only
	move.b	#\$80 (SML2B)		PΔ	only
	move.b	#\$80, (SMU2D)	1	rA nx	only
	move.b	#\$80, (SMIS)	i	PA	onry
	move.b	#\$80,(SM2F)	i	PA	only
	move.b	#\$80,(SM2S)	;	PA	only
	RTS				
i					
US	move.b	#\$00,(SMLC)	;	PA	only
	RTS				
;					
LMA	cmpa.l	(LMAS),A3			
	bne	LMAC			
	cmpi.b	#\$08,(LMASB)			
	beg	LMAA			
	cmpi b	#\$04 (LMASB)			
	hea	LMAR			
	род	IMAC			
ፕ እፋን ን	DRA DRA				
LMAA	adda.i	#208,A3 #228 (INDO)			
	add1.1	#\$10,(LMAS)			
	BRA	LMAC			
LMAB	adda.1	#\$0C,A3			
	addi.l	#\$10,(LMAS)			
LMAC	cmpa.l	A2,A3			
	beq	LMAE			
	move.b	#LMAVal,(A3)-	ł		
	BRA	LMA			
LMAE	RTS				
;					
LMB	cmpa.l	(LMBS),A3			
	bne	LMBC			
	cmpi.b	#\$08,(LMBSB)			
	beq	LMBA			
	cmpi.b	#\$04. (LMBSB)			
	bea	LMBR			
	BRA	LMBC			
LMBA	adda l	#\$08 N3			
	addi l	#\$10 (TMPC)			
	BDA	туто, (шыра) Тмрс			
LMBB	adda 1				
	addi 1	$\#$ $\varphi$ $U$ $C$ $A$			
LMBC	auul.l	#9TO'(TWR2)			
Hime.	Cmpa.1	AZ,A3			
	ped	LMBE			
	move.b	DU, (A3) +			
רו כינא ז	BRA	LMB			
TWRE	RTS				
i					
;					
ENDING	Trap	#9			
	END	START			

.

## REFERENCES

Rosenstark, Dr. Sol, 1998, Computer Construction Project and Experiments – EE 393: Electrical Engineering Laboratory III. New Jersey: New Jersey Institute of Technology.

****The following references have been included as further reading to help with **** the understanding of the material, figures, and programs contained in this thesis.

Hwang, Kai, 1993, ADVANCED COMPUTER ARCHITECTURE: Parallelism, Scalability, Programmability. New York: McGraw-Hill, Inc.

Antonakos, James L., 1996, *THE 68000 MICROPROCESSOR: Hardware and Software Principles and Applications*. Third Edition. New Jersey: Prentice Hall.

Anon., 1992, *M68000: Family Programmer's Reference Manual*. Arizona: Motorola Literature Distribution.

Katz, Randy H., 1994, *CONTEMPORARY LOGIC DESIGN*. California: The Benjamin/Cummings Publishing Company, Inc.