Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other
reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other
reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any
purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user
may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order
would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to
distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT
DESIGN, IMPLEMENTATION, AND EVALUATION OF A
SHARED-MEMORY PARALLEL PROCESSING SYSTEM
(SMPPS)
by
Eric H. Staub
As technology reaches its limits of improvements in microprocessor processing speeds,
scientists and engineers have to find viable solutions to meet ever-increasing demands for
faster processing speed. One such solution is parallel processing. No longer does one
have to wait on sequential operations. A specific task can be splif in sub-tasks that can
run simultaneously, thus reducing the overall execution time of the task.

The design and implementation of these systems is crucial to the effectiveness of
parallel systems. A dual-processor SMPPS was designed and implemented in order to
demonstrate how multiple processors are a viable solution to increasing the speed of
computer processing. Parallel algorithms were developed for this system and were used
for performance analysis. The results show that SMPPS systems of a small scale can
result in very significant increases in speed for problems characterized by fine-grain

parallelism.

DESIGN, IMPLEMENTATION, AND EVALUATION OF A
SHARED-MEMORY PARALLEL PROCESSING SYSTEM
(SMPPS)

by
Eric H. Staub

A Thesis
Submitted to the Faculty of
New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of
Master of Science in Computer Engineering

Department of Electrical and Computer Engineering

January 1999

APPROVAL PAGE
DESIGN, IMPLEMENTATION, AND EVALUATION OF A
SHARED-MEMORY PARALLEL PROCESSING SYSTEM
(SMPPS)

Eric H. Staub

Dr. Sotirios G. Ziavras, Thesis Advisor Date

Associate Professor of Electrical and Computer Engineering, and Computer and
Information Science, NJIT

Dr. Solomon Rosenstark, Thesis Co-Advisor Date
Professor of Electrical and Computer Engineering, NJIT

Dr. Edwin Hou, Committee Member Date
Associate Professor of Electrical and Computer Engineering, NJIT

BIOGRAPHICAL SKETCH

Author: Eric H. Staub
Degree: Master of Science in Computer Engineering
Date: January 1999

Undergraduate and Graduate Education:

e Master of Science in Computer Engineering
New Jersey Institute of Technology, Newark, NJ, 1998

e Bachelor of Science in Computer Engineering
New Jersey Institute of Technology, Newark, NJ, 1997

Major: Computer Engineering

ACKNOWLEDGMENT

The author wishes to express sincere thanks to my two advisors, Dr. Ziavras and
Dr. Rosenstark, for their guidance, support, knowledge, and mentoring. I would also like
to thank Dr. Hou for serving as a committee member,

I would like to give a special thanks to Rosalie Gaddala for her friendship and
support throughout my academic career at NJIT and to Amy Sun who was an inspiration
for me over the last few months of my graduate work.

Most of all, I would like to thank my Mother ana the rest of my Family for the
love and support that has gotten me this far.

I would like to thank all of the Electrical and Computer Engineering Department
and all of the Faculty and Staff of NJIT that have been an integral part my academic
career at NJIT. I would like to thank the numerous students that I had the opportunity to
work and study with. [would like to thank the United States Air Force for giving me the
opportunity to become an officer to serve my country and the Air Force Institute of
Technology for giving me the opportunity to get my graduate degree at NJIT. I would
like to thank the AFROTC Detachment 490 Staff, past and present, for their guidance and
support while I have been at NJIT. Also, I would like to thank my brothers of Tau Delta
Phi Fraternity. And finally, I would like to thank Altera’s University Program for

supplying hardware and software for this project.

TABLE OF CONTENTS

Chapter Page
1 INTRODUCTION Lo 1
1.1 Parallel ProCeSSIME . ..ouiiiiiiiiiieeii et e, 1
1.1.1 Importance of Parallel Processing..........oovociviemiiciiiiaiiiiiiiiioe e 1
1.1.2 Classes of Parallel Processing.........ccccoooiiciiiieniiiiiiiiinii . 3
1.2 Existing Machines ..ot 4
1.2.1 MesSage-PaSSING ...cooviiiiiiiiiiiiie i 4
1.2.2 Shared-MemOryooiiiiiiiiiiiii e 6

2 IMPLEMENTING A SHARED-MEMORY PARALLEL PROCESSING
SYSTEM (SIMPPS) ..ottt e e e 10
2.1 ODBJEOIIVES 1ottt ettt ettt e 10
2.2 A Dual-Processor Shared-Memory Parallel Processing Systemo.cccoeeeeeee. 10
2.2.1 Meeting Design ObJECIVES ..oouuiiiiiiiiiiiciie i 10
2.2.2 THE DESIZI .oiieiiiiiiii et 11
2.2.3 Timer ConflUIation.ccoouiiveiiiiee et 22
3 IMPLEMENTATION OF PARALLEL ALGORITHMS ... 27
3.1 Matrix MultplCatION. ...oeitiiiiiii et 27
3.1.1 Demonstrating a [4x4], [8x8], and [16x16] with [4x4] MatriX................... 27

vi

TABLE OF CONTENTS
(Continued)

Chapter

4 PERFORMANCE EVALUATIONS

4.1 Matrix Multiplication

5 CONCLUSIONS

6 APPENDIX A - Diagrams

7 APPENDIX B - Programs

8 REFERENCES

vii

LIST OF FIGURES

Figure Page
1 Steps processors make to solve the equation g = (a+b)*(c+d) ...oocooerviviiii i 2
2 MIMD architecture (with shared-memory)cc.cooioiiiiiiiii e 4
3 Generic model of a message-passing multicomputer (M=Memory, P=Processor) 5
4 The UMA multiprocessor model (e.g., the Sequent Symmetry S-81) [P = Processor;
SM = Shared-Memory; /O = Input/Output J.....c..ooiiiiiii e 7
5 Two NUMA models for multiprocessor SYSEIMS ..o..oovuiieiiiiiiiieciiiie e 8
6 The COMA model of a multiprocessor (D: Directory, C: Cache, P: Processor; e.g.,
EE TSRAT) 1ottt ettt et 8
7 Address 10cation 0f AEVICES ..oveuuiiiriiiiiieiie et et 12
8 Differences between the 28C64 and the Atmel 28C256........ccccoviviiiiiiiiiiiii 13
9 Differences between the 6264 and the HM62256LP-12.......ccoioiiiiiiiiiii 14
10 Differences in the wiring of the 74LSI38... i, 14
11 Truth table for the shared-memory control 10giC....ccoiiiviiiiiiiiiiiii 21
12 Karnaugh Maps for the shared-memory control logic ... 22
13 Timer Interrupt Service Routine (written in assembly)occiviiiiiiii. 24
14 [4x4] Matrix Multiplication on a SINgle ProCesSOrovviiviiiiicieeieceeit e 28
15 [4x4] Matrix MUultipliCationcoueiiiiiiiii ot 28
16 Matrix-Multiplication Execution TImesc.coooiiiiiiiiiiiiiie e 29
17 [4x4] Matrix Multiplication on dual proCessorsccooieiiiiiiiiiiiie e 30
18 [4x4] Matrix Multiplication on dual processors using shared-memory..........cc..ooeeee. 31
16 Matrix-Multiplication Execution Times (Repeat)coccoociviiiiiiiiiiiiniiicc 34

viii

Diagram

LIST OF DIAGRAMS

Page
1 Dual-Processor Shared-Memory Block Diagram (1)cocooovvieveaniiini 37
2 Dual-Processor Shared-Memory Block Diagram (I1).....cccoooveeveeoiioni 38
3 Original Control Logic DEeSIZN oottt 39
4 1-2 DeMultipleXor LOZIC oottt 40
5 2-1 MultipleXor LOZIC ..ottt 41
6 Final Shared-Memory Control Logic Designcooooiiiviiiiiiiii i, 42
7 Default Symbol CTEST LOZIC. ..ot 43
8 TImer Control LOZIC .uvviiiiiii ittt 44
9 Flow-Chart I — One Processor Operation........c..cccovieiieruiieeoniiiiee e 45
10 Flow-Chart IT — Dual-Processor Operation.........ccccoviivviiiiniiiiiiiene e, 46
11 Flow-Chart III — Dual-Processor Operation using Shared-Memory..........cc.c.oooeeen 47

ix

CHAPTER 1

INTRODUCTION

1.1 Parallel Processing

1.1.1 Importance of Parallel Processing
Even with ever changing technology, industry is always looking for ways to improve
performance. Scientists are continually finding innovative ways to speed up the
processing power of computers. Still, we need faster and more effective ways to
accomplish a task. Now that advancements in technology are reaching their limits,
industry must look for a new way to keep up with the dé:mands. There is the old adage
that two minds are greater than one. This theory can be applied to computer processing.
With two processors, not only can more tasks be accomplished, but also tasks can be
accomplished faster.

For example, the simple task of {g = (a+b)*(c+d)} would take three steps (part a.
of Figure 1) on one computer. On a system with two processors, that same task would
take two steps (part b. of Figure 1). For simplicity sake, the time to pass information

between the processors is not considered.

(a)System with one processor.

Step 1: Processor A adds ‘a’ to ‘b’ and places value in ‘e’.
Step 2: Processor A adds ‘¢’ to ‘d’ and places value in ‘.
Step 3: Processor A multiplies ‘e’ and ‘f°, and places in ‘g’

(b)System with two processors.

Step 1: Processor A adds ‘a’ to ‘b’ and places value in ‘e’
Processor B adds ‘c’ to ‘d” and places value in ‘f.
Step 2: Processor A or B multiplies ‘e’ and ‘f*, and places in ‘g’.

Figure 1: Steps processors make to solve the equation g = (a+b)*(c-+d).

This is a 33% improvement in the time to accomplish a simple task. If the
additional processor gives a 33% increase, why not add another processor? In this simple
case the addition of more processors would not have any effect. This is because the task
is made up of three subtasks, one of which requires information from the previous two.
Even if the third processor was assigned the multiplication of ‘e’ and ‘f” it would not be
able to proceed until the additions were complete.

One might conclude that the improvement of processing time using multiple
processors is limited. Actually the limit only exists for a particular task. As the task
changes, the speedup factor changes. When multiple processor theory is applied to the
task of (a+b)*(c+d)*(e+f)*(g*h), the results are quite different. On one processor the
task will take seven steps. On a two-processor system it would take four steps. This is
over 40% decrease in processing time. On a four-processor system that same task would
take only three steps. This is over 50% decrease. If the task is applied to a five-processor
system, there is no improvement in processing time. Once again the processing time can

only be improved to a certain limit.

Another factor to consider is that adding a fourth processor only increased the
speedup by 10%. When one processor was added there was a gain of 40%, and only 10%
more when adding two additional processors. Also, during some of the steps, some of the
processors are not needed. Further complicating the matter is the movement of data
between processors. This transfer will take additional time that will decrease the overall
speedup of the system. Deciding what is the best possible design to obtain the best
possible results is a topic that will not be discussed in detail and will be left to
independent research. However, the focus of this paper will center on the design of a

shared-memory parallel dual-processor system and the timing results of running

algorithms on the system.

1.1.2 Classes of Parallel Processing

Before I get into the design of the system, I will discuss the different types of parallel
computing systems. As one might guess, parallel systems are designed in different ways.
In general, parallel systems are classified in to two major groups. The system I have
designed falls into the shared-memory class and the other class consists of message
passing systems. Each system has its pros and cons and the type of system needed 1s
basically dependent on the task that needs to be accomplished. How parallel computers
communicate with one another and how they share memory determines which one of the

two major classes of parallel computers the systems belong to.

Systems that are considered inherent parallel computers are those which operate
in the MIMD (multiple instruction stream over multiple data stream) mode. An example
of a MIMD system is shown in Figure 2. Since parallel computers must share
information, there has to be a way for them to access the shared information. In
multiprocessor shared-memory systems this is accomplished by placing information in
some variable and giving all systems access to that variable. In message-passing systems

the information is passed between computers by using an interprocessor communication

network.
Captions:
ES.’ IS
1/0 CU; | > | PU | 1s=1 ion Str
| nstruction Stream
< > DS
PU = Processing Unit
: : Shared : &
@ H Memory @ DS = Data Stream
DS
I/ CU, "‘ié—’ PU, [€«—» CU = Control Unit
IS

Figure 2: MIMD architecture (with shared-memory).

1.2 Existing Machines
1.2.1 Message-Passing
A system in the message-passing class consists of one or more multiple-computer
networks. These networks connect together computer nodes. The computer nodes
communicate information between one another through these networks. Hardware
routers usually handle this communication. An example of a message-passing

interconnection network is shown in Figure 3.

o

1

Message-Passing
Interconnection Network
(Mesh, Ring, Torus,
Hypercube, Cube-
Connected Cycle, Etc.)

)

m e
Lg_J 2

1

P

M

1

P

M

]

P

M

P

Figure 3: Generic model of a message-passing multicomputer (M=Memory, P=Processor).

Each network node is attached to a router. Based on the design and type of

protocols that the router uses, information is then sent between the computer nodes via

routing. This gives the designer the flexibility of creating multiple types of

communications between the networks. By changing how the networks interact, the

designer has the ability to use the same networks to accomplish numerous different tasks.

As with all technology, the scientist and engineer strive to improve the original

design. Message-passing systems are now in their third stage of development.

Development started in 1983 with systems like the Caltech Cosmic and the Intel iIPSC/1.

These systems were designed with software-controlled message-passing for the

hypercube architecture.

Over the years of 1988-1992, systems such as the Intel Paragon and the Parsys
SuperNode 1000 represented the next stage in the evolution of message-passing systems.
The systems incorporated routing messages via hardware, utilizing software for medium-
grain distributed computing, and using mesh-connected architectures.

The third stage of the development started in 1993 and consisted of machines that
placed processing and communication devices on the same chip. Systems such as the
MIT J-Machine and the Caltech Mosaic are based on this design.

Listed above are a few of the many systems that have been developed. Each
system has its own unique design.‘ What that design is and how each accomplishes its
message passing can be found in numerous technical notes and publications. These
systems were mentioned just to give a flavor of the type of systems and progression of

the development of message-passing systems.

1.2.2 Shared-Memory

Shared-memory systems consist of multiple-processors, each of which has its own private
memory, and information is shared through an independent memory that all of the
processors have the ability to access. As with message-passing systems, I will give a brief
description of shared-memory systems. [will briefly describe only three of the many
models of shared-memory systems. Many other models incorporate one or more features

of these three models.

The first model, Figure 4, is the uniform-memory-access (UMA). In this model
all processors have equal access to all memory. These systems are for multiple processes
for problems characterized by a high degree (that is fine-grain) parallelism. The system |

designed falls under this model.

11 rF1%eers
SYSTEM INTERCONNECTION
(Bus, Crossbar, Multistage Network)

I I I

1/0 SM;, ® 86 SM,

SHARED-MEMORY

Figure 4: The UMA multiprocessor model (e.g., the Sequent Symmetry S-81)
[P = Processor; SV = Shared-Memory; I/O = Input/Output].

The next model, Figure 5, is the non-uniform-memory-access (NUMA). NUMA
systems consist of groups of multiple-processors that are connected by interconnection
networks. There is local-shared-memory within each group and global-shared-memory
between the groups. These systems share memory based on the location of the memory in
relation to the processor needing access to that memory. Therefore, the access time to

memory is not uniformly distributed among the processors.

LEGENDS:

P: Processor

LM: Local Memory

GSM: Global Shared-
Memory

CSM: Cluster Shared-
Memory

CIN: Cluster Interconnection
Network

GSM

.

GSM

GLOBAL INTERCONNECTION NETWORK

LM,
|

o

inter-
Connection
Network

?

v

CSM

CSM

NID

cee[1] [T

CSM

P

CLUSTER 1

Figure 5: Twoe NUMA models for multiprocessor systems.

*

v
]
Q
@ 2 @
e @
@ @
el
CLUSTER N

The last model, Figure 6, I will discuss, is the cache-only memory access

(COMA). These systems are similar to NUMA systems, but the shared memories are

replaced with cache memories. Processors wanting to access memory in another

processor’s cache memory must do so through cache directories.

INTERCONNECTION NETWORK

D
|
C
l
P

D
|
C
|
P

D
1
C
|
P

Figure 6: The COMA mode! of a multiprocessor (D: Directory, C: Cache, P: Processor; e.g., the KSR-1).

Numerous different sources, including the Internet, can be found for further
information about parallel systems. This follow-on information is not necessarily needed
to understand the design of my shared-memory system or the results of testing algorithms

on that system.

CHAPTER 2
IMPLEMENTING A SHARED-MEMORY
PARALLEL PROCESSING SYSTEM
(SMPPS)

2.1 Objectives

There are three main objectives to this project. The first is the design of the shared-

memory parallel processing system. Next is the implementation of that system. The final

objective is the evaluation of the system for some algorithms.

2.2 A Dual-Processor Shared-Memory Parallel Processing System

2.2.1 Meeting Design Objectives
Since the evaluation of the system consisted of testing algorithms, I needed to design a
system that could be implemented within time and monetary constraints. This system
would have to show the effectiveness of running an algorithm on a parallel system as
opposed to running that same algorithm on a single processor system.

I chose to develop a system with two processors and a single shared-memory.
This would reduce the cost and complexity of the project. Also, it would help keep me
within the time and monetary constraints. The next step was to determine which
processor to use for the project.

I initially chose to use the TT TMS320C80 processor. The C80 processor consists
of four DSPs and one RISC processor. I spent the next month gathering information

about the C80. I considered how I would implement a system using two C80 processors

10

11

and what software would have to be developed to manage and test the interface between
the two processors. After carefully considering the options that the information I
collected presented to me, I determined that I would be unable to use the C80 for this
project. Using the C80 would not only be cost prohibitive, but the complexity of
implementing a dual processor system was extremely complex.

I then focused my attention on using TI’s C40. Even though the cost was quite
less, the complexity still remained quite high. After another month of investigations it
was determined that using the C40 was not a viable solution. This left the Motorola
68000 series micCroprocessor. The:se processors would be much more cost effective and
the complexity would be greatly reduced. Since I was familiar with this series of
microprocessor, I determined that it would be the most promising candidate for a dual-

processor system.

2.2.2 The Design

As an undergraduate, I was involved in many projects. The most significant was my
senior project. In this project I developed a control system for a constant-pressure
floodgate. I used the Motorola 68008 microprocessor as the control system processor. 1
used a micro-controller design that was developed by Dr. Rosenstark and is part of EE-
393, Electrical Engineering Lab III. The micro-controller design and specifications are
explained in detail in the EE-393 Lab Manual, ®osenstrk 198) The cyrrent version of the
Lab Manual has the new micro-controller, Motorola 68 EC000 microprocessor, in place

of the Motorola 68008 microprocessor.

Once 1t was determined what microprocessor I should be using, the project was
set in motion. The Electrical Engineering Laboratory III (EE 393 — Spring 98) was using
the last of the MC68008 to build micro-controllers. Since the discontinuation of the
processor, Dr. Rosenstark was seeking an alternative processor. The alternative was the
MC68ECO000. To test the feasibility of using this processor, Dr Rosenstark had one
student build a micro-controller with the MC68ECO000. The student was successful in
using MC68ECO000.

In order to accomplish the objectives I set, I needed to make modifications to the
micro-controller in the EE-393 Lab Manual. The micro-controller has its own memory,
which included DRAM and an EEPROM. The memory used in the EE-393 Lab Manual
was 28C64 EEPROM and 6264 DRAM. Since my design required a larger memory
space, I chose to use an ATMEL 28C256 EEPROM and a 62256 DRAM. This would
give me two blocks, each 8K bytes, of addressable memory. This change in address

space changed the addressing scheme of the micro-controller (see Figure 7).

28C64/6264 28C256/62256
EEPROM 0000 - 1FFF 0000 0000 — 0000 7FFF
Private Memory 2000 - 3FFF 0000 8000 — 0000 FFFF
Shared Memory N/A 0001 0000 — 0001 7FFF
Parallel Port 6000 0001 8000
Serial Port 4000 0002 0000
¥% A1l values are in HEX***

Figure 7: Address location of devices.

13

Another benefit of using these chips is that they are 28-pin packages. This would
allow me to use the original design while only changing two wires for each chip. The
additional wires are address lines A13 and A14. These lines will be connected to pins
that where originally no-connect pins on the EEPROM and will replace the nCE2 pin and

a no-connect pin of the DRAM. This is shown in Figure 8 and Figure 9.

e NC/ Vee (U] SO—
— | an aWE — BWE

—_— A7 NC — Ay N —
a6 A8 fr—— —_ as AB ——
it AS AG] i —— A3 AP
At 3 Y] M— —] as 'E% g At e
——d A3 &) NOE e —_— A3 E «~Y NOE e
——t a2 ﬁ AL | —e— —t A2 fmt g AlQ]———
—_— Al BCE| e P L < ACE| —me
et AD YO T | e et AQ 1 Ed
T [0 — — 1 woo YO 6] e
——1 101 vo 5} ——— 1 101 1O §] =
e YO 2 o R ol [0 2] 10 4] ——————
———1. Gnp G 3} = 1 GND o 3 ———e

T
EE 393 Design My Design

Figure 8: Differences between the 28C64 and the Atmel 28C256.

A 14

] NC/)
el A12 nWE
A7 aCEZ e
— o FAR) SU—
——1 A A8 —en o
——t AG p:‘ oY S
— AS P,
A AS pd A9
——el A4 1) F—— =)
r — w YY1 SE—
———— AT N BOE o A3 o1
ol o~ filo 7t SE—
A2 o ALQ) e A2 o A10
ACE| e
—— AQ PO T | ot e an Vo1
F Voo ve e — — oo YO 6] e
¥o1 LoL] =t YO 1 VY] E—
. voq — T Vo2 VO 4] —mmmmee
-t GND 1O 3 ——me GND vo3
EE 393 Design My Desi
Yy esign

Figure 9: Differences between the 6264 and the HM62256L.P-12.

Since I am using a larger address space, the address lines on the 7415138 will

have to change. Lines A13, A14, and A15 will be replaced with A15, A16, and A17 as

shown in Figure 10.

TS

N3
—_—] ALY Veo AlS VEC e
] AYS nO0 e AlG 800 e
e} ALS ﬁ [1io 1 S— A7 %0) PO S—
! BE} 5 702 |~ e A a O e
e 082 d 003 | e et 0E2 ot 203 | ee———
et E3 —~ 1O frmrrimimn rmmmrrnmend 3 E 03 e
] 807 O frmmmrn] w07 o33 SR,
e GND OB e —ommmd GND 106} ——r——

L
. .
EE 393 Design My Design

Figure 10: Differences in the wiring of the 74L.S138.

Now that the major design decisions were out of the way I started to build the
circuits around the microprocessor. I proceeded as far as possible with the parts that I
had acquired up to this point. I was having difficulties acquiring some of the important
components so I was unable to go any further. Due to lack of parts to complete the
microprocessors I decided to work on the control logic and the 2-1 Mux.

After spending some time designing the control logic I received most of the
components needed to finish the micro-controllers. After completing the first micro-
controller, I ran into difficulties interfacing with the computer. Since I was only having
trouble with communicating with the computer I started to build the second micro-
controller. Once I completed this micro-controller, I ran into the same difﬁculties. After
an exhaustive trouble shooting effort, I was only able to communicate with the computer
on a simple level. I was still unable to run the Monitor program. I then changed my
focus to the software and the assembler.

After more intense trouble shooting, Dr. Rosenstark and I determined that one of
the problems was created by my larger address space. Specifically the range from 8000H
to FFFFH. This problem was caused by the assembler when it sign extended. As a
solution we decided not to use this address range. I moved the private memory to 0001
0000H — 0001 7000H and moved the shared-memory to 0002 0000H — 0002 7FFF. This
solved some of the problems but I was still unable to get the monitor program to work.

While working on my project I was teaching EE393 over the second summer
session. These students were using the MC68EC000. These students were using the
smaller EPROMSs and RAMs. They did not have the communication problems that I was

having. This was very perplexing since it was the same program, except for the different

16

address scheme. Since I was able to communicate on a simple level it had to be a
software problem. After using some unique debugging, I determined that the James L.
Antonakos’ Assembler was assembling addresses that used the LEA command with an
offset of 6H. I also found another problem. The James L. Antonakos’ assembler creates
S1 records. This would not allow me to write a program to be loaded by the monitor in
my memory location since my addressing scheme was a long word.

At this point I tried using another assembler. I found that Paragon’s assembler
was able to assemble the program, and I was able to run the monitor program. This
created another problem. The Paragon assembler used S2 records in the Hex file. The
monitor was not able to load S2 files, so I would not be able to load a program into
memory.

Working with Dr. Rosenstark we came of with several solutions. The first was to
change the LEA commands to MOVEA.L commands. This solved most of the problems
but I would still be unable to use Antonakos’ assembler for files to be loaded into the
memory because my addressing scheme requires S2 records. Dr. Rosenstark’s changing
the monitor program to load S2 records solved this problem. Dr. Rosenstark has passed
this information on to James L. Antonakos and he is currently working on a solution.

I now had two fully working micro-controllers. Now it was time to start to work
on the shared-memory logic. For simplicity, I chose to make the shared-memory the
same type as the private-memory of the micro-controllers. This way I would be able to

use the same address and data bus as the micro-controllers.

17

The next step was o design the interface between the micro-controllers and the
shared-memory. My design called for single-port access of the memory. Also, access of
the shared-memory should not interfere with the independent processing of the other
processor unless both processors try to access the shared-memory at the same time. In
order to accomplish that, I needed to separate the address and data buses of the individual
processor while allowing access to those buses when shared-memory is accessed.

Diagram I in Appendix A shows the initial block diagram for the system. I
separated the address buses with 2-1 multiplexors and the data buses with bus-
transceivers. [used a bus-transceiver on the data bus because of the bi-directional nature
of the data bus. After further evaluation of my design I f;ulld that I had unnecessary
logic.

Diagram II in Appendix A shows that I removed two bus-transceiver blocks and
two 2-1 MUX blocks. The DRAM chip has an enable pin on it. This enable pin would
only be activated when a processor requires access to the shared-memory. This allowed
me to remove the MUX blocks. The bus-transceiver is bi-directional so it can be placed
in the direction of the shared memory while a processor is accessing its private memory.
Since the shared-memory is not enabled during this time, the data on the data lines of the
shared-memory chip is ignored. This allowed me to remove the bus-transceiver blocks.

Now that the design for the address and data bus was complete I needed to design
the shared-memory control logic. The problem that needed to be solved was how to
access the shared-memory with interrupting independent processing of the other

processor. I used one of the features of the MCG68ECO000 to build my design.

18

T used the MC68ECO00 A/S pin and the /DTACK pin. When an instruction is
executed the MC68 places a signal on the A/S pin. In order for the processor to continue
to the next instruction, a signal must be placed on the /DTACK pin. Once the state on the
/DTACK pin has gone from high to low and then back to high, the processor will
continue on to the next instruction. If the transition is not completed the processor will
not continue.

Since my design requires that a second processor wait till the first processor is
done when both processors try to access shared-memory, [can use these pins to my
advantage. In the EE 393 design the two pins are connected directly together. If I could
separate the pins during shared-memory access, [would have solved my problem. Now
that I had a possible solution to this problem, I had to consider the other chips that needed
to be controlled by this logic.

The shared-memory had to be enabled when accessed and whether the operation
is a read or write must be handled. The bus-transceiver on the data bus must be enabled
and the direction set. And finally the multiplexor on the address bus must be set
correctly. This design would require large amounts of logic and testing would become a
nightmare. Luckily, as part of my undergraduate work I used a software package by
Altera called MAX+plus II.

I decided to use ALTERA programmable chips for the control logic and the 2-1
Mux. Using the Altera chips would be much more cost effective and would reduce the
area required for the shared-memory system. Also these chips would allow flexibility in
the design of the logic. The design could be easily modified and reprogrammed onto the

chip.

19

MAX-+plus II can be used to design entire logic devices from those as simple a
gate to those as advanced as microcomputers. The designs can be created in text format
or 1n graphical format. Once the design is complete, it can be thoroughly tested. Ifit
does not meet the specifications needed, then it can be easily changed and tested again.
This eliminates the need to build the circuits, test them, and then throw them away
because they did not meet the specifications you had planned. Another advantage was
that the design could be placed on a single chip the size of a computer processor. Not
only would I save time and money, but also the space I needed for my control logic
would be reduced.

Diagram III in Appendix A shows one of the preliminary designs. The final
design for the most part was similar to this design. One of the features of MAX+plus II
that is very useful is the ability to create default symbols. This allows the use of the same
sub-design in multiple places. This became particularly useful when testing a specific
point of the design.

I used this feature in two places in my design. One place was the point that
became the focal point of fault with my original design. This will be explained as I
describe the final design of the control logic. The second place is the 1-2 de-multiplexor
I created. I would have had to create a third default symbol, but this symbol had already
been created. This was the 2-1 mulitplexor.

The 1-2 DEMUX is shown in Diagram IV in Appendix A. I created it using tri-
state buffers. This design allows one signal to be sent over a different line based on what
is selected by the select pin. The drawback to this design is the high ‘Z’ output that 1s

created when a line is not selected. This would be a problem when a processor 15

20

working with its own memory. Then the input to the shared-memory logic would be high
‘Z’. Since my design of this control logic requires a high or low signal to be present, I
had to come up with another solution.

The simple solution was an open-collector buffer. Since the chip that I will be
placing the design on does not support open-collector buffers in the design, I chose to
route the 1-2 DEMUX output out of the chip and then back into the chip via an input pin.
The signal would then go through the open-collector buffer and then back into the design
on the chip. This would require an additional chip. Since I had saved large amounts of
space by using the Altera chip, I didn’t mind adding one additional chip.

In order to save additional space, I chose to design the 2-1 multiplexors for the
address bus with the MAX+plus II software. Diagram V in Appendix A shows this
design. This would require the use of two Altera MAX EPM7128SL.C84-7 chips. Using
two MAX chips still required less space than using 2-1 multiplexor chips. After running
the control design through many simulations, I programmed the design into the second
MAX chip. I then proceeded to wire the chip into the micro-controller. Before I could
actually test the design, I had to wire the bus-transceivers for the data bus and the second
MAX chip, which has the 2-1 Multiplexors for the address bus.

Once the wiring was complete, I started testing the design. The design did not
work the way it was expected to. After days of testing and troubleshooting, I narrowed
the problem down to a specific area in the design. 1 removed this area from the design
and created a default symbol for this area. It is shown as default symbol ‘ctest’ in
Diagram VI in Appendix A. This would allow me to redesign and test the problem area

of the design.

21

After many days of testing and modifications, I determined that I would have to
redesign this portion of the control logic. Any modifications I made to the design would
either introduce a race condition into the logic or give total control of the shared-memory
to one processor. Just before starting from scratch, I asked Scott Margo, an NJIT
Electrical Engineering Ph.D. student what he thought might solve the problem. After
evaluating the design, he came to the same conclusion that I should start over from the

truth tables. The resulting truth table is shown in Figure 11.

Ain Bin Aout Bout A’out B’out
0 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 1 1 Invalid Invalid
0 1 0 0 0 1
0 1 0 1 0 1
0 1 1 0 0 1
0 1 1 1 Invalid Invalid
1 0 0 0 1 0
1 0 0 1 1 0
1 0 1 0 1 0
1 0 1 1 Invalid Invalid
1 1 0 0 1 0
1 1 0 1 0 1
1 1 1 0 1 0
1 1 1 1 Invalid Invalid

Figure 11: Truth table for the shared-memory control logic.

Using the Karnaugh Maps in Figure 12 (a) and (b) the following equations emerged:
A’out = (Ain /Bin)+(Ain /Bout)+(/Ain Bin /Aout /Bout)

B’out = (/Ain Bin)+(Bin /Aout Bout)

A’out B’out
00 0 0 00
01 0 0 01 i
11 0 0 11 0
10 0 0 10 0
(a) (b)

Figure 12: Karnaugh Maps for the shared-memory control logic.

The resulting logic is shown in Diagram VII in Appendix A.

I tested this design by running it through several simulations. The results of these
simulations were very promising. After compiling the control design with this new
design, I programmed it into the MAX chip. This began the testing phase of the new
control logic. I used the monitor program on each micro—contréller to manually access
the shared-memory. I was able to edit and display the shared-memory from both micro-
controllers. This confirmed that the hardware design was complete.

The next step was to write a program that used software semaphores to lock the
shared-memory. The program I wrote is in Appendix B. The program ran flawlessly on
both processors. Not only did the hardware design work, but also the software-controlled

locks were executing properly.

2.2.3 Timer Configuration

Before I could move on to the algorithms, I had to decide how I would track the
execution times. The most effective way is to interface directly with the micro-
controllers. This would allow the software to directly control the timer. Not only would

this be more efficient, but it would also produce more accurate times.

I chose the Intel 8253-5 programmable interval timer to accomplish the task of
timing the execution of the algorithms. The 8253 timer is a 24-pin dual in-line package
with three 16-bit counters, each with a count rate of up to 2 MHz. The timer has five
different modes of operation and four different ways of obtaining count values. I will be
using mode O, interrupt on terminal count, and will use ‘Read/Load least significant byte
first, then most significant byte’ for obtaining the count value. The timer counts down
from 2'%-1. This produces a 16-bit number.

The timer has an eight-bit data bus that can be easily interfaced with the micro-
controller’s eight-bit data bus. This data bus is used to read the count value in the count
register. As stated before this is done with two reads of the chip. The first read is stored
in one register and the second read is stored in another register. The final result is the
combination of the two values, which is a 16-bit number.

Once I completed the interface of the chip to the micro-controller, I conducted
preliminary tests on the timer chip. These tests were done to ensure the timer was
working properly. Even though I chose to operate the timers at 1.2 MHz, I noticed that
the timer was counting completely down several times. I was getting valid count values
but had no way of telling how many times the counter started over. This could cause a
problem when determining the speed up of the algorithms that I would be testing on the
project.

In order to solve this problem I had to find a way to track how many times the
counter reaches zero. This was one of the main reasons I chose to operate the timer in
mode 0. In mode O the timer would count down to zero, and once zero was reached a

high signal would be placed on the outl pin of the timer chip. Now I had a way to keep

track of how many times the timer reached zero. Of course, it was not as simple as I
thought.

Once the timer reached zero, the signal would be placed on the outl pin. The
timer would then continue to count down again. The problem with this is that the signal
on the outl pin was not reset. The only way to reset the outl pin was to reset the entire
timer and then restart the timer. This presented another problem. All of these actions
would take time. Even though it was a very small amount of time, it was still enough to
reduce the accuracy of the execution times of the algorithms.

The solution to this problem brought about the final-design for the interface of the
timer. Since the resetting of the timer would take time, I needed to halt the execution of
the algorithm while I was resetting the timer. I accomplished this by using the external
interrupts on the MC68ECO000.

Using the 68’s interrupts I could reset the timer and count the number of times the
timer reached zero. This was accomplished by adding an interrupt service routine to the
monitor program. The routine, which is written in assembly, 1s shown in Figure 13.

Using the interrupts also required some additional hardware design.

ORG $6300

; This is Interrupt #4 Sexrvice Routine

move.b #$44, ($§18000)

addi.l #%01, (ICNT) ; # times counter counts down
move.b #3530, (LCW) ; Initializes the counter to mode O
move.b #3%00, (WCL1LB) ; Loads the count value

move.b #5500, (WC1MB)

RTE

Figure 13: Timer Interrupt Service Routine (written in assembly).

While designing the hardware interface between the timer and micro-controller, I
developed a way to totally automate the resetting of the timer and the reading of the final
count value. This would require additional interrupts and logic for the interface. Aftera
few weeks of testing designs, I decided just to use the interrupt for the resetting of the
timer and keeping track of how many times the timer reached zero. I made this decision
based on the fact that these additional features of automation were not really necessary
and the fact that I would not be able to work out the bugs in the design in the time
allocated for the timer design.

Since I was not using automation for the stopping and reading of the timer, I had
to create a design that would allow the software to stop and read the timer. In the micro-
controller design the 741.S138 is used to select different chips. This 1s accomplished by
having three upper address lines connected to the 74LS138. By executing a read/write at
the address location specified by the address lines that are connected to the 74L.S138, a
particular chip will be enabled. Since I was not using all of the locations available on the
7415138, I decided to use it to help with the stopping and reading of the timer.

Now that my new design for the timer required additional logic, I decided to use
the MAX+plus II software. I designed the logic and then added it to the design for the
address bus multiplexors. This is shown in Diagram VIII in Appendix A. The logic
would allow for the interrupt for the tracking of the number of times the counter reaches
zero, the software-controlled stopping and reading of the timer.

The timer will be initialized and started by software-control. When the timer
reaches zero, the execution of the algorithm will be interrupted, a count variable will be

incremented, the timer will be reset and restarted, and then the execution of the algorithm

26

will resume. This will be done without any software-control. When the algorithm is
complete, software will stop the timer and read the count value. The software-control
will be additional lines of code that will be added to the code for the algorithms. This
code will not affect the results of the execution time of the algorithms. After running
several tests, I determined the design was sufficient to give effective timing results for the
algorithms I would be testing on the SMPPS.

This concluded the hardware design of the system. Now it was time to move on
to the development of the algorithms for the system. For this project I will be testing two

algorithms. The first will be matrix multiplication and the second would be parallel

sorting.

CHAPTER 3

IMPLEMENTATION OF PARALLEL ALGORITHMS

3.1 Matrix Multiplication
3.1.1 Demonstrating a [4x4], [8x8], and [16x16] with [4x4] Matrix
For the matrix-multiplication algorithm (MMA), I wanted to use several different sized
matrices to show the effective speed up of using a SMPPS. I would multiply two
matrices and place the results in a third matrix. The three matrix sizes I chose were 4x4,
8x8, and a 16x16. This would give me speed up values for simple matrix multiplication
that is time-consuming.

I would also produce results for computing the matrix-multiplication on one
processor and on the SMPPS. The multiplication of the matrices on the SMPPS would be
done in two different ways. One way would be just utilizing the two processors, and the
second would utilize the shared-memory. I will be expecting a speed up of almost two
for the dual processor system without shared data, and considerably less of a speed up for
the shared-memory implementation. This would be caused by the overhead involved in
using the SMPPS. The transfer of data through the shared-memory is considerably
slower than using registers of a single micro-controller. Ido, however, expect a
reasonable speed up over the single processor.

I will use 4x4 matrices to demonstrate the different ways I will do the matrix-
multiplication algorithm. I will be multiplying matrices A and B, and placing the results

in matrix C as shown in Figure 14.

27

28

Matrix A Matrix B Matrix C
Ace Ao Ap Ap Bow Bo Bp Ban Cowo Co Co
A An An A * |Bw Bn Bz Bz = ICo Cn Cp
Ax Axn An An B By Bxn Bxn Cxw Cy Cpn
A An An As By Bsi By Bs Cyp C3 Cp

Figure 14: [4x4] Matrix Multiplication on a single processor.

The operations required to compute Matrix C are shown in Figure 15,

Coo = (Aoo™Boo)t (Ao *Bio)+ (Apz*Bao)+ (Aos*Bao)
CO] (AOO*BO})+ (AOI*B11)+ (Aoz*BZk)+ (A03*B31)
Coz = (A0w*Bo2)t (Aor*Bi2)+ (Ap*Baz)+ (Aes™Baz)
Cos = (Acw™*Bos)* (Ao *Bia)+ (Aex*Bas)+ (Apz*Bais)

Cio = (A10*Boo)+ (A11*Bio)+ (A12*Bao)+ (A13*Bso)
Cii = (A10*Bo)*+ (A1*Bi)+ (A*Ban)+ (A13¥Bs)
Ciz = (A10*Bo2)t (An*Bio)+ (A12*Bn)+ (A13*Bs2)
Cis = (A10*Bos)*+ (A11*Bis)+ (A12*Bas)t (A13*Bss)

Ca = (A20¥Boo)+ (A21*Bio)t (A22*Bao)+ (A23*Bao)

Ca = (A20*Bo)*+ (A2*B1)+ (An*Ba)t (Ax*Bay)
Cyp = (AZQ*BO2)+ (AZI*B12)+ (Azz*Bzz)‘i‘ (A23*B32)
Cas = (A20™Bos)* (A21¥Bis)+ (A22*Bas)+ (Az*Bas)

Cso = (A30*Boo)t (A31*Big)+ (A3*Bag)+ (A33*Bso)
Cs1 = (A30*Bo)+ (A3 *Bi)+ (An*Bai)+ (Ass™*Bay)
Cs = (A30*Bo)+ (A3 *Bio)+ (An*Ba)t (A3s*Bs2)
Cs; = (A30*Boa)t (A3 *Bi3)+ (A3*Bas)+ (Ass™*Bas)

Figure 15: [4x4] Matrix Multiplication.

To obtain the execution time for running the algorithm on one processor, 1 gave -
the processor access to all of matrix A and matrix B. The program I developed for this
algorithm is in Appendix B. I started out by writing individual programs for each of the
three different sized matrices and each of the three different ways. While developing the
first few programs, it occurred to me that this might affect the results for the execution

times of the algorithm. What I needed was a program that accomplished the three

different types of matrix-multiplication on all three of the matrix sizes. Also, the
program must accomplish it with as little different overhead as possible.

As I developed the program, I would test it numerous times. I started to get count
values for the different matrices. The values I was getting were very close to the
speedups I expected. The problem I was having was that I could not get the program to
work exactly like I wanted it to. It would give me results for one matrix size and not the
others. As I made changes to correct the problem, another problem would be introduced.
Rather then spend tremendous amount of time on trying to resolve these problems. I
chose to continue with the writing of the thesis. Figure 16 shows the results of the

execution {imes.

Matrix Dual Processor
Size One Processor Dual Processor Using Shared-Memory
[4x4] Matrix 418 273 386
[8x8] Matrix 1909 1018 1493
[16x16] Matrix 12397 6219 8414

Figure 16: Matrix-Multiplication Execution Times (clock cycles).

The flowchart for the one-processor matrix multiplication algorithm is shown in

Diagram IX in Appendix A. In the program the micro-controller would have access to all

of matrix A and matrix B. The program would be loaded into the memory of one micro-

controller. The program is then started. After the program went through 1ts

initializations and loading of variables, the timer would start and it would simply

calculate the results for matrix C by the previously stated equations. Once the results

were calculated they were moved to shared-memory and the timer was stopped. The last

step of the program was to read the values in the timer.

30

The next step was the program that used two processors to do the matrix

multiplication. This was accomplished by giving Processor A access to the first half of

matrix A (half of the rows) and access to all of matrix B. Processor A computes the

results for the first half of the C matrix. Processor B was given access to the second half

of matrix A and all of matrix B. Processor B computes the results for the second half of

the C matrix. The dashed line in Figure 17 shows the separation for the 4x4 matrices:

Matrix A

A Au Ap A
Ao A Ap A

Azo AZI A22 A23

Ay Ay An Asxp

Bio
Bag

Boo

Big

Matrix B
Byy Bw
By Bn
By Ban
By Bax

Bos
Bis
B3
Bs;

Figure 17: [4x4] Matrix Multiplication on dual processors.

Matrix C

Coww Cou Cop
Cwo Ci Cp

Cw Cu Cxn

Cio Gz Cx

The flowchart for this program is shown in Diagram X in Appendix A. Since the

only difference between the program in each processor is what portion of matrix A is

accessible, I developed the program to load on the correct portion of the matrix that the

individual processor needed. I accomplished this by using a subroutine that required a

start and finish location for the values of the matrix. The start and finish locations were

determined by which processor was using the program. This was all controlled by the

settings placed in the beginning of the program. To gain a better understanding of what I

did, a review of the program in Appendix B will be necessary.

C03

Cys

23

C33

31

In order to obtain the most accurate times as possible, I chose to have the
processor control the start and stop of the timer. I accomplished this by using
semaphores. These semaphores would be used to signal the other processor when it
could continue with its operations. This would allow the initialization and loading of
variables by both processors without having to include these operations in the execution
times.

Processor A would start by loading its start values and then would enter into a
wait state. It would exit that Wait State when Processor B signaled that it had finished
loading variables and was now in its own wait state. Now Processor A would start the
timer, signal Processor B to start executing, and then start its own execution. Once
Processor A completed its execution it would check to see if Processor B was complete.
If Processor B were complete, Processor A would stop and read the count value of the
timer. Otherwise, Processor A would enter a wait state until Processor B completed its
execution.

The final program would give timing results for using shared memory as well as
the dual processors. The flowchart for this process is shown in Diagram XI in Appendix
A. In this program, both the A matrix and the B matrix are split up. The separation of

the matrices is shown in Figure 18.

Matrix A Matrix B Matrix C
[Aw Ao Ae Ag B Bou Bo Bo Mo Cu Co Ca
Ao A A A * By Bn Bp Ba = | Cio Cn__(z&_C_ﬁ_
Ao A A A | By T By B "Cx Ca Cu» Co
Ay An Axn Ap | By Bn Bn By | Co Csn Cn Csu |

Figure 18: [4x4] Matrix Multiplication on dual processors using shared-memory.

32

In this program, Processor A has access to the first half of matrix A and the first
half of matrix B. Processor A computes the results for the first half of the C matrix.
Processor B has access to the second half of matrix A and the second half of matrix B.
Processor B computes the results for the second half of the C matrix.

The difference between the program and the dual processor program is that each
processor does not have all of the data to complete the computations for the C matrix.
For instance, for Processor A to compute the value of Cqp it would need access to Byg and
B30. Since Processor B has access to these locations, the data in these locations must be
transferred to Processor A through the shared-memory. During the computation portion
of the program, each processor must finish the calculations that are possible and wait
until it is given the needed data.

I tried to develop the program in a fashion that would allow one processor to
make its possible calculations while the other processor was sending and receiving data
from the shared-memory. To ensure that a processor did not retrieve the data before it
was placed in shared-memory, I used the semaphores to place the processor into a wait
state until the required data was available. Once again, a better understanding can be
obtained by reviewing the program in Appendix B.

1 gave a description on how I implemented the different programs by showing
how it was done on a [4x4] matrix. I developed the program to compute the results for
the [8x8] matrix. To get the results for the [4x4] case, I added code to reduce the number
of loops in the matrix-multiplication routines. Iincreased the number of loops in the
matrix-multiplication routines to get the results for the [16x16]. In order to produce valid

timing results, I tried to do this in a way that makes the overall operation of the program

33

to remain the same for all size matrices. The theory of adding and subtracting loops was
sound, but the code to keep the operations the same became quite complex. This is what

is causing the delay in the development of a fully operational program.

CHAPTER 4

PERFORMANCE EVALUATIONS

4.1 Matrix Multiplication

As I stated earlier, I am getting consistent results from the current program. However, 1

am still unable to remove all of the bugs from the program to produce results for all of the

program operations. I noticed that overall the results I obtained do not change as I make

changes to the program. When I make changes to the program I am able to get results for

different size matrices. Several times [was able to get results for more than one size

matrix and the results were quite similar to the ones I was getting when I was only able to

produce results for one size matrix. Since I am getting results like I expected, I could

continue to troubleshoot the current program. With time, I expect to have all the

problems worked out of the program. The speedups, based on the results in Figure 16

arc:

Matrix Dual Processor
Size One Processor Dual Processor Using Shared-Memory
[4x4] Matrix 418 273 386
[8x8] Matrix 1909 1018 1493
[16x16] Matrix 12307 6219 8414

Figure 16: Matrix-Multiplication Execution Times (clock cycles).

34

CHAPTER 5

CONCLUSIONS

Based on the results I achieved with the matrix multiplication algorithm, I am concluding
that there 1s an overall effective speedup in using a SMPPS. Overall I would rate this
project as a success. I accomplished the first two objectives and made significant
progress on the third objective. This project gave me the opportunity to work on a
project from the design phase to the testing phase and the opportunity to apply the
knowledge I acquired while at NJIT as well as hone my engineering skills.

During the project, I conquered many hurdles and had the chance to have an
impact on the curriculum of undergraduate students. Many of the discoveries I made
while designing and implementing the micro-controller were beneficial to the EE 393
Lab. Teaching the EE 393 Lab over the summer session was equally rewarding. Not
only was I able to increase my understanding of the micro-controller, but I was enabled to
impart to the students the knowledge I had gained while working on the project.

The SMPPS project leaves the door open for future areas of study and research.
Basing a new system with more processors on this design would present an interesting
challenge. Also, developing more parallel algorithms for the system would present en

equally challenging obstacle. The possibilities that can be pursued are virtually limitless.

35

APPENDIX A

DIAGRAMS

Appendix A has the following diagrams:
Dual-Processor Shared-Memory Block Diagram (I)
Dual-Processor Shared-Memory Block Diagram (II)
Original Control Logic Design
1-2 DeMultiplexor Logic
2-1 Multiplexor Logic
Final Shared-Memory Control Logic Design
Default Symbol CTEST Logic
Timer Control Logic
Flow Chart I — One Processor Operation
Flow Chart II — Dual-Processor Operation

Flow Chart IIT — Dual-Processor Operation using Shared-Memory

36

Diagram 1

Dual-Processor Shared-Memory
Block Diagram (I)

§ — . S _
| Private """ R Private

| Memory _— v Shared — . Memany

| Procassor ; Memory | Processor
i A 8

'
f
| Lo l
A . ; _
......... o v : el
s .
RSt R | A S
) * 1 +
N
N o
f ¢ N : .
Dat | 21 _ 241 ‘s 24
a8 ‘-._-’ [a—— PR
Bus l MUX by X N Mux f . Mux
, . c
| .
— . — I
! S S S
[t 1]]
i 1] - t
l { 7 Mhrocessur ; : Proc;ssor
- 5 Control 138
| 138 Signals M
o 7 jemesemme e mam el
g
LY
I ¥
LY
A
I
lAddress
Bus
‘ """" Shared :
Memory i
Control !
Logic
! ‘
1) B x‘ ' o
I “ : X Processor
! Processor | B ; i —— 5
I | |
i !

37

38

Diagram 2

Dual-Processor Shared-Memory
Block Diagram (Ii)

Private + """ ' """ Private
themory Shared hamory
Processor
B8

l g :
©
Bgg | .
é §& § .
= l :
__...._...._..__..__I_ - 24 | _____:___L._____._...._..
l T i Mux : -
| .
| o l
| L.]
: I
| Lo |
‘ Processor * v Processor }
I " I B e o
+ Conlrol 1
_{ L= ‘ Signals s ! l
Datg8us ‘ . I
Address . T Addre.L
| Bus ! : Bus‘
l Shared
Memaory Datasee I
Conlrol R
I Logic i
I i
| | |
3 B : et —
i ! t
= E
Processor [“] ! . o Precessor -
I iy | B

39

Diagram 3

o 0

l e =l Xt
)
AT]

<AL T TR

T e

I

Diagram 4

. 1-2 DEMUX

i
M"J\ S0P fogmey 111

Brareg Merrorny Lo

N T TOE Mosters

STOUD
. A v
Kodora
4

e

e
1020, &

VST
—per |

40

B

BEE&

A}
Bt

a &

Zh

Bk

R &

Bk

By

&

g

AL
819

Abd
[E151

&7
877

A13
a1

Diagram 5

 — ... A—
2 Vs
s Y A)
et & y{— Ry
k3
LULTRUDER
t o-lme
P 0. U W 1 [g W 1]
4
WL TP TR
ey A ~
— i & PRI B e s 1
s
SULTPLEYER
3oy
oo A B
... 8 [i A B
kS
WU TPLEER
I breRee
s SHL_LLR A)
PR ., & # [B (= NI g, ST
5
ﬂm .
LT t ¢ BT 08
— 48
TULE SRR
“‘EE
. meul TL‘ = R
— el B LRI i L - I+ -
E—
[CURT =
" Armw
s BT] ARy OF
e B
MULTPIBER
reig FAL
[A
[~ B (I L e N ¢
g
MULTPLEER
it Ly " S
oo d A
T FH # R T S e O
g
RR N EEA
- 2ty
St A
e S I Vi 5 oo
TRUTREER
et 5 Aimus
RS S I PRI . B
3
W TRLERR
- FRlaidcd
| —— - A
-~ C-idid 5 ¥l DI ——y 43
S
MILTRLEES
i L AU ENSNI gy !
= sl ;B LT 5T e WY 513,
1 ‘5
WMULTPLEXER
2ieminx
vy A
B S s g
L 8

41

42

Diagram 6

Shared Memory
Control Logic

EER
* M wm_.
it

43

Diagram 7

L

nnny

AJS & IDTACK
Control Logic

Sk oS
< B ; B .
. £

o<,

wem D MW

e G

Diagram 8§

.
s‘_.__:,“‘,ﬂ
R %‘; 1}
i
|
Ll J
. R it
R e
s t ; Fact . m& a
T | e
[A8 it

5
i)

< W — T O S
G ot R - e A T T
i .
. e d i1 Zﬂ‘l%_‘ S - » w . -
wy - i B - | e e N G

w\p 0Kt) Bity

.;.1{ .. AR R

Matrix
Kultiplication
Algorithm

o
Onse Procassor

Diagram 9

e

Loud the Matrix
Multipliciton algonthm
on One Processor

Suarg
Program

Loading of Vanables
and Setiing of Starting Values

Stant Timer

Marix Muhiphicanon

i3

NO Matrix

Multiplication
complete?

Move Resulis
to

Shared Memory

Is
Koving Results
10 Shared Metrory
Complet?

Read Timer
Count Value

iVa

Diagram 10

Sant Trre Wbt
Yes o
Guer Seormpiuxs s Processy A
ﬁq;:mﬁ Cenred Seraghore?
Siort WetebeBhAgicokon:
} Creck ¥ Provesscr A
Checcd Roomear 8 | is uang Serd-Maroy:
s g SroeddaTay {

Crack i Program
kit F

s ProgamB
Foigwed?

Yes

R Tierer Qourd
Voo vt S

ol £nd Program

inShwesdlnoy

Yes

46

47

Diagram 11

Matrix-Muliiplication
Algor

for
Loud 184 Pregram DuakProcessor System Led bt Progum
inPronessct A using Shared-Memeory b &
l B Sort ko
Lot Vs g
Start Vs ioe Dttt o

m&ﬂﬂsﬁp
M S

s & Do
At
Yes
Cortirue vidy
Wyt
¥
Mbaggmm
)
o e
Aa Computsicrs i
Conpista?
Creckdf Processor A
s Ling Shwrest Mesrry
i
Yes |
bt s ProcemoA |
(sing Sevad-hhaTony? e
Qear Samiptre
© &

ek

R e o End Program
Sy

APPENDIX B

Programs

This is the program for a [4x4], [8x8], and [16x16] Matrix-Multiplication on One
Processor System, a Dual-Processor System, and a Dual-Processor System using Shared-
Memory.

48

i This is a Matrix Multiplication Algorithm

; PA: Processoxr A
; PB: Processor B

; PA[A1l Al2 Al3 Al4 A15 Al6 A1T7 A1lS
H PA[A21 A22 A23 A24 Al15 Al6 Al7 Als
i PA[A31 A32 A33 A34 Al15 Al6 Al7 AlS8
; PA[A41 A42 RA43 A44 A1IS5 Al6 Al17 AlLSB
; PB[A51 A52 AS53 A54 Al5 Al6 Al7 AlS
i PB[A61 A62 A63 A64 A15 Al6 Al7 AlS
; PB{ A71 A72 A73 A74 Al5 Al6 Al7 AlS
; PB{ AB1 A82 AB3 A84 Al5 Al6 Al7 A1lS

; PA[B11l Bl2 B13 Bl4 B15 B16 B17 B18
; PA[B21 B22 B23 B24 B25 B26 B27 B28
i PA[B31 B32 B33 B34 B35 B36 RB37 B38
; PA[B41 B42 B43 B44 B45 B46 B47 B48
; PB[B51 B52 B53 BS54 B55 B56 B57 BS5S8
; PB[B61l B62 B&63 B64 B65 B66 B&67 B68
; PB[B71 B72 B73 B74 B75 B76 B77 B78
; PB[B81 B82 B83 B84 B85 BB6 BS87 B8S

e ot bod Bt Lot ot R L

; Matrix Type (1)4x4, (2)8x8, {(4)1l6x1l6

MMT EQU $02

; Matrix Shared (0)NO, 1L ({YES)
MMTS EQU $01

; Matrix B Shared (0)NO, (1)YES
MMTSA EQU $00

; Program (0)A, (1)B

PROC EQU $00

; Matrix Starting Values

ASRT EQU $14000
BSRT EQU $14100
CSRT EQU 514200
LMAvVal EQU $03
LMBVal EQU S03
LMBVl1a EQU $02

; Moving Shared Memory (Start) (End)
MRVA EQU $14200
MRVEB EQU $14240

; Variable Eqguates

A0O BEQU $14000
AQ1 EQU $14001
AQ2 EQU $14002
AQ3 EQU $14003
AQ4 EQU $14004
AOS EQU $14005
nO6 EQU $14006
AO7 EQU $14007
AOS EQU $14008
AD0S .EQU $14009
AOA EQU $1400A

AQC
AQD
AQE
AQF
A10
All
AlZ
Al3
Al4
AlS5
Al6
Al7
AlS8
AlS
AlRn
AlB
AlC
AlD
AlE
AlF
A20
A21
A22
A23
A24
A25
A26
A27
A28
A29
A2n7
A2B
A2C
A2D
A2E
A2F
A30
A3l
A32
A33
A34
A35
A36
A37
A38
A39
A3A
A3B
A3C
A3D
A3E
A3F
A40
A4l
A42
RA43
Ad4

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
BEQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU

EQU
EQU
EQU
EQU

$1400C
$1400D
$1400E
$1400F
$14010
$14011
$14012
$14013
$14014
$14015
$14016
$14017
$14018
$14019
$1401A
$1401B
$1401C

$1401D

$1401E
$1401F
$14020
$14021
$14022
$14023
$14024
$14025
$14026
$14027
$14028
$14029
$1402A
$1402B
$1402C
$1402D
$1402E
$1402F
$14030
$14031
$14032
$14033
$14034
$14035
$14036
$14037
$14038
$14039
$1403A
$1403B
$1403C
$1403D
$1403E
$1403F
$14040
$14041
$14042
$14043
$14044

50

h45
A46
Ad7
A48
A4g
Ad4A
A4B
A4C
A4D
A4E
A4F
A50
AS51
AS52
A53
AS54
ASS5
Ab6
AB7
A5SB
A5S
AS5A
AS5SB
AS5C
AS5D
ABE
ASF
A60
A6l
AB2
AB3
A64
A65
A66
AG67
A68
A69
ABA
A6EB
A6C
A6D
A6E
A6F
AT70
A71
A72
A73
A4
A75
A76
AT77
A78
A79
AT7A
A7B
A7C
AT7D

EQU
EQU
EQU
EQU
EQU
BEQU
BEQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
BEQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
BEQU
EQU
EQU
BEQU
EQU
EQU
EQU
EQU
EQU

$14045
$14046
$14047
$14048
$140489
$1404A
$1404B
$1404C
$1404D
$1404E
$1404F
514050
$14051
$14052
$14053
$14054
$14055
$14056
$14057
$14058
$14059
$1405A
$1405RB
$1405C
$1405D
$1405E
$1405F
$14060
$14061
$14062
$14063
$14064
$14065
$14066
$14067
$14068
$14069
$1406A
$1406B
$1406C
$1406D
$1406E
$1406F
$14070
$14071
$14072
$14073
$14074
$14075
$14076
$14077
$14078
$14079
$1407A
$1407B
$1407C
$1407D

ATE
ATF
ABO
A8l
AB2
AB3
AB4
AB5
AB6
AB7
ABS
ABS
ABAa
ABEB
ABC
ABD
ABE
ABF
AS0O
A91
AS2
RA93
AS4
ASS
A%6
A97
ASS
AS9
ASA
ASB
ASC
ASD
ASE
ASF
AAO
ARl
AA2
AA3
AA4
AAS
ARG

ARS8
AAS

AB6

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU

EQU
EQU
EQU
EQU

$1407E
$1407F
$14080
$14081
$14082
$14083
$14084
£14085
$14086
$14087
$14088
$14089
$1408A
$1408B
$1408C
$1408D
$1408E

$1408F

$14090
$14091
$14092
514093
$14094
£14095
£14096
$14097
$14098
£14099
$1409A
$1409B
$1409C
$1409D
$1409E
$1409F
$140A0
$140A1
$140A2
$140A3
$140A4
$140A5
$140R6
$140A7
$140A8
$140A9
$140AA
$140AB
$140AC
$140AD
$140AE
$140AF
$140B0
$140B1
$140B2
$140B3
$140B4
$140BS5
$140B6

wn

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
BEQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
BEQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

-EQU

EQU
EQU
EQU

$140B7
$140B8
$140B9
$140BA
$140BB
$140BC
$140BD
$140BE
$140BF
$140C0
$140C1
$140C2
$140C3
$140C4
$140C5
$140C6
$140C7
$140C8
$140C9
$i40CA
$140CB
$140CC
$140CD
$140CE
$140CF
$140D0
$140D1
$140D2
$140D3
$140D4
$140D5
$140D6
$140D7
$140D8
$140D9
$140DA
$140DB
$140DC
$140DD
$140DE
$140DF
$140E0
$140E1
$140E2
$140E3
$140E4
$140E5
$140E6
$140E7
$140E8
$140E9
$140EA
$140EB
$140EC
$140ED
$140EE
$140EF

53

AF0Q
ARl
AF2
AF3
AF4
AFS
AF6
AF7
AFS8
AF9
AFA
AFB
AFC
AFD
AFE
AFF
BOO
B10O
B20O
B30
B40
B50
B60
B70
B8O
BSO
BAO
BBO
BCO
BDO
BEO
BFO
BO1
B1ll
B21
B31
B41l
B51
B61l
B71
B81
BS1
BA1
BB1
BC1
BD1
BE1
BF1
BO2
B12
B22
B32
B42
B52
B62
B72

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU

EQU
EQU
EQU
EQU

$140F0
$140F1
$140F2
$140F3
$140F4
$140F5
$140F6
$140F7
$140¥F8
$140F9
$140FA
$140FB
$140FC
$140FD
$140FE
$140FF

$14100
$14101
$14102
$14103
$14104
$14105
$14106
$14107
$14108
$14109
$1410A
$1410B
$1410C
$1410D
$1410E
$1410F
$14110
$14111
$14112
$14113
$14114
$14115
$14116
$14117
$14118
$14119
$1411A
$1411B
$1411C
$1411D
$1411E
$1411F
$14120
$14121
$14122
$14123
$14124
$14125
$14126
$14127

B82
BS2
BAZ2
BB2
BC2
BD2
BEZ2
BF2
BO3
B13
B23
B33
B43
B53
B6é3
B73
B8B83
B93
BA3
BB3
BC3
BD3
BE3
BF3
BO4
Bl4
B24
B34
B44
B54
B64
B74
B84
B94
BA4
BB4
BC4
BD4
BE4
BFr4
BO5
B15
B25
B35
B45
B55
BeS
B75
B85
BS5
BAS
BB5S
BCS
BD5
BES
BF5
BO6

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
BQU
BEQU
BEQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

‘EQU

EQU
EQU
EQU

$14128
$141289
$1412A
$1412B
$1412C
$1412D
$1412E
$1412F
$14130
$14131
$14132
$14133
$14134
$14135
$14136
$14137
$14138

$14138.

$1413Aa
$1413B
$1413C
$1413D
$1413E
$1413F
$14140
$14141
$14142
$14143
$14144
$14145
$14146
$14147
£14148
$14149
$1414A
$1414B
$1414C
$1414D
$1414E
$1414F
$14150
$14151
$14152
$14153
$14154
$14155
$14156
$14157
$14158
$14159
$14152
$1415B
$1415C
$1415D
$1415E
$1415F
$14160

B16
B26
B36
B46
B56
B66
B76
Bg86
BS6
BA6
BB6
BC6
BD6
BE6
BF6
BO7
B17
B27
B37
B47
B57
B&67
B77
B87
B97
BA7
BB7
BC7
BD7
BE7
BF7
BOS8
B18
B28
B38
B48
B58
B68
B78
B88
B98
BAS
BBS
BCs8
BDS8
BES
BF8
BOS
B1S
B29
B3S
B4S
B59
B69
B79
B89
B399

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

$14161
514162
$14163
$14164
$14165
514166
$14167
$14168
$14169
$1416A
$14168
$1416C
$1416D
$1416E
$1416F
$14170
$14171
514172
514173
$14174
$14175
$14176
$14177
$14178
$14178
$1417A
$1417B
$1417C
$1417D
$1417E
$1417F
$14180
$14181
$14182
$14183
$14184
$14185
$14186
$14187
$14188
$14189
$1418A
$1418B
$1418C
$1418D
$1418E
$1418F
$14190
$14191
$14192
$14193
$14194
$14195
$14156
$14197
$14198
$14199

BAS
BBS
BCS
BDS
BES
BFS
BOA
B1lA
B2A
B3a
B4A
B5A
Bea
B7A
B8A
BoA
BAA
BBA
BCA
BDA
BEA
BFA
BOB
B1B
B2B
B3B
B4B
B5B
B6B
B7B
B8B
B9B
BAB
BBB
BCB
BDB
BEB
BFB
BOC
B1C
B2C
B3C
B4C
B5C
B6C
B7C
B8C
BSC
BAC
BBC
BCC
BDC
BEC
BFC
BOD
B1D
B2D

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

‘EQU

EQU
EQU
EQU

$14135A
$1419B
$1419C
$1415D
$1413E
$1419F
$141A0
$141A1
$141A2
$141A3
$141h4
$141A5
$141A6
S141A7
$141A8
$141A9
$141AA
S141AB
$141AC
$141AD
$141AE
$141AF
$141B0O
$141B1
$141B2
$141B3
$141B4
$141B5
$141B6
$141B7
$141B8
$141BS
$141BA
$141BB
$141BC
$141BD
$141BE
$141BF
$141C0
$141C1
$141C2
$141C3
$141C4
$141C5
$141cCe
$141C7
$141C8
$141Cs
$141CA
$141CB
$141CC
$141CD
$141CE
$141CF
$141D0
$141D1
$141D2

B3D
B4D
B5D
B6D
B7D
B8D
BSD
BAD
BED
BCD
BDD
BED
BFD
BOE
B1lE
B2E
B3E
B4E
B5SE
B6E
B7E
B8E
BS9E
BAE
BBE
BCE
BDE
BEE
BFE
BOF
B1F
B2F
B3F
B4F
B5F
B6F
B7F
BgF
BOF
BAF
BBF
BCF
BDF
BEF
BFF
coo
Cco1
coz
co3
Cco4
Cos5
cos6
co7
cos
co9
CcoA

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU

EOU

EQU
EQU
EQU

$141D3
$141D4
$141D5
$141D6
$141D7
$141D8
$141D9
$141DA
$141DB
$141DC
$141DD
$141DE
$141DF
$141E0
$141E1
$141E2
$141E3
$141E4
$141E5
$141E6
$141E7
$141E8
$141E9
$141EA
$141EB
$141EC
$141ED
$141EE
$141EF
$141F0
$141F1
$141F2
$141F3
$141F4
$141F5
$141F6
$141F7
$141F8
$141F9
$141FA
$141FB
$141FC
$141FD
$141FE
$141FF

$14200
$14201
$14202
$14203
$14204
$14205
$14206
$14207
$14208
$14209
$1420A

COB
cocC
CoD
COE
COF
cio0
Ccl1l1
cl2
C13
Cl4
C15
Cleé
C17
c18
C1s
cla
CiB
cic
C1Dh
ClE
C1lF
c20
cz21
cz2
c23
C24
c25
C2e6
c27
cz2s
c29
C2Aa
C2B
cz2C
c2D
C2E
C2F
C30
c31
c32
C33
C34
C35
C3e6
Cc37
C38
C39
c3a
C3B
c3c
C3D
C3E
C3F
Cc40
cal
Cc42
C43

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

‘EQU

EQU
EQU
BEQU

$1420B
$1420C
$1420D
$1420E
$1420F
$14210
$14211
$14212
$14213
$14214
$14215
$14216
$14217
$14218
$14219
$1421A
$1421B
$1421C
$1421D
$1421E
$1421F
$14220
$14221
$14222
$14223
$14224
$14225
$14226
$14227
$14228
$14229
$1422A
$1422B
$1422C
$1422D
$1422E
$1422F
$14230
$14231
$14232
$14233
$14234
$14235
$14236
$14237
$14238
$14239
$1423A
$1423B
$1423C
$1423D
$1423E
$1423F
$14240
$14241
$14242
$14243

C44
Cc45
C46
c47
c48
cas
c4n
C4B
cacC
C4D
C4E
C4F
C50
C51
cs2
cs3
C54
C55
Cs56
Cc57
C58
C59
C5A
C5B
Cs5C
C5D
C5E
C5F
Ce0
c61l
c62
ce3
cée4
ce5
ce6
ce7
ce8
C69%
CeA
Cé6B
ceC
ceD
C6E
CeF
Cc70
C71
c72
Cc73
C74
C75
Cc76
c77
c78
c79
C7A
C7B
c7C

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

‘EQU

EQU
EQU
EQU

$14244
$14245
$14246
$14247
$14248
$14249
$1424A
$1424B
$1424C
$1424D
51424E
$1424F
$14250
$14251
$14252
$14253
$14254

$§14255°

$14256
$14257
$14258
$14259
$1425A
$1425B
$1425C
$1425D
$1425E
$1425F
$14260
$14261
$14262
$14263
$14264
$14265
$14266
$14267
$14268
$14269
$1426A
$1426B
$1426C
$1426D
$1426E
$1426F
$14270
514271
$14272
$14273
$14274
$14275
$14276
$14277
$14278
$14279
$1427A
$1427B
$1427C

60

C7D
C7E
C7F
Cc80
c81
C82
C83
C84
c8s
C86
c87
c88
C89
c8Aa
C8B
cs8cC
C8D
C8E
C8F
Ccso0
Cco1
cs2
C93
C94
Css
Cse6
cs87
cos
c99
csa
C9B
csc
CoD
CSE
CoF
CAQ
CAl
CA2
CA3
Ch4
CAS
CA6
CA7
CAB
CAS
CARQ
CAB
CAC
CAD
CAE
CAF
CBO
CB1
CB2
CB3
CB4
CBS

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

$1427D
$1427E
$1427F
$14280
$14281
$14282
$14283
$14284
$14285
$14286
$14287
$14288
$14289
$1428A
$1428B
$1428C
$1428D
$1428E
$1428F
$14290
$14291
$14292
$14293
$14294
$14295
$14296
$14297
$14298
$14299
$1429A
$1429B
$1429C
$1429D
$1429E
$1429F
$142AR0
$142A1
$142A2
$142A3
$142R04
$142A5
$14226
$142R7
$142A8
$142A9
$142AR
$142AB
$142AC
$142AD
$142AE
$142AF
$142B0
$142B1
$142B2
$142B3
$142B4
$142B5

61

CBé6
CB7
CB8
CBS
CBA
CBB
CBC
CBD
CBE
CBF
cCco
CCL
cc2
CC3
CC4
CCs
CCeé
cec7
CCsg
cce
CCA
cCcB
cce
CCh
CCE
CCF
CDO
CD1
Ch2
CD3
CD4
CD5
CDe6
CD7
CcD8
CD3
ChAa
CDB
cpc
CDD
CDE
CDF
CEO
CE1l
CE2
CE3
CE4
CES
CE®6
CE7
CES
CES
CEA
CEB
CEC
CED
CEE

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

$142B6
$142B7
$142RB8
$142B9
$142BA
$142BB
$142RBC
$142BD
$142BE
$142BF
$142C0
$142C1
$142C2
$142C3
$142C4
$142C5
$142Cs6
$142C7
$142C8
$142C9
$142CA
$142CB
$142CC
$142CD
$142CE
$142CF
$142D0
$142D1
$142D2
$142D3
$142D4
$142D5
$142D6
$142D7
$142D8
$142D9
$142DA
$142DB
$142DC
$142DD
$142DE
$142DF
$142E0
$142E1
$142E2
$142E3
$142E4
$142E5
$142E6
$142E7
$142E8
$142E9
$142EA
$142EB
$142EC
$142ED
$142EE

62

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

" EQU

EQU
EQU
EQU

$142EF
$142F0
$142F1
$142F2
$142F3
$142F4
$142F5
$142F6
$142F7
$142F8
$142F9
$142FA
$142FB
$142FC
$142FD
$142FE
$142FF

$28000
$28001
£28002
£28003
$28004
$28005
$28006
$28007
$28008
$28009
$2800A
$2800B
$2800C
$2800D
$2800E
$2800F
$28010
$28011
$28012
$28013
$28014
$28015
$28016
$28017
$28018
$28019
$2801A
$2801B
$2801C
$2801D
$2801E
$2801F
$28020
$28021
$28022
$28023
$28024
$28025
$28026

63

SA27
SA28
SA29
SAZA
SAZB
SAZ2C
SAZ2D
SAZE
SAZF
SA30
SA31
SA32
SA33
SA34
SA35
SA36
SA37
SA38
SA39
SA3A
SA3B
SA3C
SA3D
SA3E
SA3F
SA40
SA41
SA42
SA43
SA44
SA45
SA46
SA47
SA48
SA49
SA4A
SA4B
SAa4cC
SA4D
SA4E
SA4F
SAS0
SA51
SAbB2
SA53
SA54
SA55
SA56
SA57
SA58
SAS59
SALSA
SASB
SA5C
SA5D
SASE
SASF

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

T EQU

EQU
EQU
EQU

$28027
$28028
$28029
$2802A
$2802B
$2802C
$2802D
$2802E
$2802F
$28030
$28031
$28032
$28033
$28034
$28035
$28036
$28037
$28038
$28039
$2803A
$2803B
$2803C
$2803D
$2803E
$2803F
$28040
$28041
$28042
$28043
$28044
$28045
$28046
$28047
$28048
$28049
$2804R
$2804B
$2804C
$2804D
$2804E
$2804F
$28050
$28051
$28052
$28053
$28054
$28055
$28056
$28057
$28058
$28059
$2805A
$2805B
$2805C
$2805D
$2805E
$2805F

64

SAG0
SAG1
Shs2
SAGB3
SA64
SAg5
SAG6
SAE7
SA68
SA6S9
SA6A
SA6B
SA6C
SA6D
SAGE
SA6F
SA70
SA71
SA72
SA73
SAT74
SA75
SA76
SA7T7
SA78
SA79
SATA
SA7B
SA7C
SA7D
SATE
SATF
SAB0
SA81
SAB2
SA83
ShB84
SA85
SAB6
SAg7
SA88
SA8S%
SABA
SA8B
SA8C
SA8D
SAS8E
SAS8F
SAS0
SA91
SAS2
SAS3
SAS4
SA95
SA96
SAS7
SA98

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

- EQU

EQU
EQU
EQU

$28060
$28061
$28062
328063
$28064
$28065
$28066
$28067
$28068
$28069
$2806A
$2806B
$2806C
$2806D
$2806E
$2806F
$28070
$28071
$28072
$28073
$28074
$28075
$28076
$28077
$28078
$28079
$2807A
$2807B
$2807C
$2807D
$2807E
$2807F
$28080
$28081
$28082
$28083
$28084
$28085
$28086
$28087
$28088
$28089
$2808A
$2808B
$2808C
$2808D
$2808E
$2808F
$28090
$28091
$28092
$28093
$28094
$28095
$28096
$28097
$28098

65

SASS
SASA
SASB
SASC

ASD
SASE
SASF
SAAQ
SAAL
SAA2
SAR3
SAng
SAAS
SARG6
SART
SAAS8
SAAS
SAARA
SAARB
SAAC
SAAD
SARE
SAAF
SABO
SAB1
SAB2
SAB3
SAB4
SABS
SAB6
SAB7
SABSB
SABS
SABA
SABB
SABC
SABD
SABE
SABF
SACO
SAC1
SAC2
SAC3
SAC4
SACS
SAC6
SAC7
SACS
SACS
SACA
SACE
SACC
SACD
SACE
SACF
SADO
SAD1

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
BEQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
BEQU
BQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
BEQU
EQU
EQU
EQU
EQU
BEQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

$28099
$2809A
$2809B
$2809C
$2809D
$2809E
$2809F
$28040
$280a1
$280A2
$280A3
$280RA4
$280A5
$280A6
$280A7
$280A8
$280A9
$280AA
$280AB
$280AC
$280AD
S280AE
$280AF
$280B0
$280B1
$280B2
$280B3
$280B4
$280B5
$280B6
$280B7
$280B8
$280B9
$280BA
$280BB
$280BC
$280BD
$280BE
$280BF
$280C0
$280C1
$280C2
$280C3
$280C4
$280C5
$280C6
$280C7
$280C8
$280C9
$280CA
$280CB
$280CC
$280CD
$280CE
$280CF
$280D0
$280D1

66

SAD2
SAD3
SAD4
SADS
SAD6
SAD7
SADS
SADS
SADA
SADB
SADC
SADD
SADE
SADF
SAEOQ
SAE1
SAE2
SAE3
SAE4
SAES
SRAE6
SAE7
SAES
SAES
SAEA
SAEB
SAEC
SAED
SAEE
SAEF
SAFO
SAF1
SAF2
SAF3
SAF4
SAFS5
SAF6
SAF7
SAF8
SAF9
SAFA
SAFB
SAFC
SAFD
SAFE
SAFF

SBOO
SB10
SB20
SB30
SB40
SB50
SB&0
SB70
5B80O
SB90

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
BEQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
BEQU
BEQU
EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

$280D2
$280D3
$280D4
$280D5
$280D6
$280D7
$280D8
$280D9
$280DA
$280DB
$280DC
$280DD
$280DE
$280DF
$280E0
$280E1
$280E2
$280E3
$280E4
$280E5
$280E6
$280E7
$280E8
$280E9
$280EA
S280EB
$280EC
$280ED
$S280EE
$280EF
$280F0
$280F1
$280F2
$280F3
$280F4
$280F5
$280F6
$280F7
$280F8
$280F9
$280FA
$280FB
$280FC
$280FD
$280FE
$280FF

$28100
$28101
$28102
$28103
$28104
$28105
$28106
$28107
$28108
$28109

67

SBAO
SBBO
SBCO
SBDO
SBEO
SBFO
SBO1
SB11
SB21
SB31
SB41
SB51
SB61
SB71
SB81
SB91
SBA1l
SBB1
SBC1
SBD1
SBE1
SBF1
SB02
SB12
SB22
SB32
SB42
SB52
SB62
SB72
SB82
SB92
SBAZ
SBB2
SBC2
SBD2
SBEZ2
SBF2
SBO3
SB13
SB23
SB33
SB43
SB53
SB63
SB73
SB83
SB93
SBA3
SBR3
SBC3
SBD3
SBE3
SBF3
SBO4
SB1l4
SB24

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

$2810A
$28108
$2810C
$2810D
$2810E
$2810F
$28110
$28111
$28112
$28113
$28114
$28115
$28116
$28117
$28118
$281159
$2811A
$2811B
$2811C
$2811D
$2811E
$2811F
$28120
$28121
$28122
$28123
$28124
$28125
$28126
$28127
$28128
$28129
$2812A
$2812B
$2812C
$2812D
$2812E
$2812F
$28130
$28131
$28132
$28133
$28134
$28135
528136
$28137
$28138
$28139
$2813A
$2813B
$2813C
$2813D
$2813E
$2813F
$28140
$28141
$28142

68

SB34
SB44
SB54
SB64
SB74
SB84
SB94
SBA4
SBB4
SBC4
SBD4
SBE4
SBF4
SBOS
SB15
SB25
SB35
SB45
SB55
SB65
SB75
SB85
SBS5
SBAS
SBBS
SBC5
SBD5
SBES
SBF5
SBO6
SB16
SB26
SB36
SB46
SB56
SB66
SB76
SB86
SBS6
SBAG6
SBE6
SBCé6
SBD6
SBE6
SBF6
SBO7
SB17
SB27
SB37
SB47
SB57
SB67
SB77
5B87
SB97
SBA7
SBB7

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

$28143
$28144
$28145
$28146
$28147
$28148
$§28149
$2814A
$2814B
$2814C
$2814D
$2814E
$2814F
$28150
$28151
$28152
$28153
$28154
$28155
$28156
$28157
$28158
$28159
$2815A
$2815B
$2815C
$2815D
$2815E
$2815F
$28160
$28161
$28162
$28163
$28164
$28165
$28166
$28167
$28168
$28169
$2816A
$2816B
$2816C
$2816D
$2816E
$2816F
$28170
$28171
$28172
$28173
$28174
$28175
$28176
$28177
$28178
$28179
$2817A
$2817B

69

SBC7
SBD7
SBE7
SBF7
SBO8
SB18
SB28
SB38
SB438
SB58
SB68
SB78
SB88
SBS8
SBAS
SBBS8
SBCS
SBDS8
SBES8
SBF8
SBOS
SB19S
SB29
SB39
SB49S
SB59
8SB69
SB79
SB8S
SBSS
SBAS
SBBS
SBCS
SBDS
SBE9
SBF9
SBOA
SB1lA
SB2A
SB3A
SB4A
SB5A
SBEA
SB7A
SB8A
SBSA
SBAA
SBBA
SBCA
SBDA
SBEA
SBFA
SBOB
SB1B
SB2B
SB3B
SB4B

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
BEQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

$2817C
$2817D
$2817E
$2817F
$28180
$28181
$28182
$28183
$28184
$28185
$28186
$28187
$28188
$28189
$2818A
$2818B
$2818C
$2818D
$2818E
$2818F
$28190
$28191
$28192
$28193
$28194
$28195
$28196
$28197
$28198
$28199
$2819A
$2819B
$2819C
$2819D
$2819E
$2819F
$28140
$281A41
$281A2
$281A3
$281A84
§28145
$281R6
$281A7
$281A8
$281A9
$281AA
$281AB
$281AC
$281AD
$2B1AE
$281AF
$281B0
$281B1
$281B2
$281B3
$281B4

70

SB5B
SB6B
SB7B
SB8B
SBSB
SBAB
SBBB
SBCB
SBDB
SBEB
SBFB
SBOC
SB1C
SB2C
SB3C
SB4C
SB5C
SB6C
SB7C
SB8C
SBoC
SBAC
SBBC
SBCC
SBDC
SBEC
SBFC
SBOD
SB1D
SB2D
SB3D
SB4D
SB5D
SB6D
SB7D
SB8D
SBSD
SBAD
SBED
SBCD
SBDD
SBED
SBFD
SBOE
SB1lE
SB2E
SB3E
SB4E
SB5SE
SB6E
SB7E
SBEE
SBOE
SBAE
SBEE
SBCE
SBDE

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

$281B5
$281RB6
$281B7
$281B8
$281B9
$281BA
$281BB
$281BC
$281BD
$281BE
$281BF
$281C0
$281C1
5281C2
$281C3
$281C4
$281C5
$281C6
$281C7
$281C8
$281C9
$281CA
$281CB
$281CC
$281CD
$281CE
$281CF
$281D0
$281D1
$281D2
$281D3
$281D4
$281D5
$281D6
$281D7
$281D8
$281D9
$281DA
$281DB
$281DC
$281DD
$281DE
$281DF
$281E0
$281E1
$281E2
$281E3
$281E4
$281E5
$281E6
$281E7
$S281E8
$281E9
$281EA
$281EB
$281EC
$281ED

71

SBEE
SBFE
SBOF
SB1F
SB2F
SB3F
SB4AF
SBSF
SB6F
SB7F
SB8F
SBOF
SBAF
SBBF
SBCF
SBDF
SBEF
SBFF

SC00
SCo1
SCo2
SC03
5C04
S5CO05
SCoe6
SC07
SCo08
SCo09
sSCoa
SCOB
scoc
SCOD
SCOE
SCOF
SC10
S5C11
sC12
SC13
SCl4
SC15
SCle
sSC17
sC1s8
5Cl1l9
sCla
sCiB
sC1cC
SC1D
SC1E
SC1F
SC20
sC21
SC22
SC23
SC24
SC25

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

$281EE
$281EF
$281F0
$281F1
$281F2
$281F3
$281F4
$281F5
$281F6
$281F7
$281F8
$281F9
$281FA
$281FB
$281FC
$281FD
$281FE
$281FF

$28200
$§28201
$28202
528203
$28204
$28205
$28206
$28207
$28208
$28209
$2820A
$2820B
$2820C
$2820D
$2820E
$2820F
$28210
$28211
$28212
$28213
$28214
$28215
$28216
$28217
$28218
$28219
§28214
$2821B
$2821C
$2821D
$2821E
$2821F
$28220
$28221
$28222
$28223
$28224
§28225

8C26
8C27
sC28
5C293
SC2A
SC2B
scac
SC2D
SC2E
SC2F
SC30
SC31
SC32
SC33
SC34
SC35
SC36
SC37
SC38
SC38
s5C3Aa
SC3B
SC3C
SC3D
SC3E
SC3F
SC40
5C41
5C42
5C43
S5C44
S5C45
SC46
5Ca7
5C48
SC458
SC4n
SC4B
SC4cC
SC4D
SC4E
SC4F
SC50
SC51
SC52
SC53
SC54
S5C55
5C56
S5C57
5C58
5C59
SC5A
SC5B
SCsC
SC5D
SC5E

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

$28226
$28227
$28228
$28229
$2822a
$2822B
$2822C
$2822D
$2822E
$2822F
$28230
$28231
$28232
$28233
$28234
$28235
$28236
$28237
$28238
$28239
$2823A
$2823B
$2823C
$2823D
$2823E
$2823F
$28240
$28241
$28242
$28243
$28244
$28245
$282486
$28247
$28248
$28249
$2824A
$2824B
$2824C
$2824D
$2824E
$2824F
$28250
$28251
$28252
$28253
$28254
$28255
$28256
$28257
$28258
$28259
$2825A
$2825B
$2825C
$2825D
$2825E

73

SC5F
S5C60
sSC61
5C62
5C63
5C64
SCe5
SCe6
S5C67
SC68
SCe39
s5Cea
SCéB
5C6C
5CeD
SCe6E
SCé6F
8C70
sSC71
5C72
SC73
S5C74
SC75
SC76
5C77
SC78
5C79
SC7A
5C7B
sSC7C
SC7D
SC7E
SC7F
5C80
sC81
sSC82
5C83
SC84
5C85
s5C86
5C87
5C88
sC89
SC8A
SC8B
s5C8C
sSC8bh
SC8E
SC8F
SC90
SCs1
SC92
5C93
S5CS4
5C95
5CS6
5C97

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
BEQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

$2825F
$28260
$28261
$28262
$28263
$28264
$28265
$28266
$28267
$28268
$28269
$2826A
$28268
$2826C
$2826D
$2826E
$2826F
$28270
$28271
$28272
$28273
$28274
$28275
$28276
$28277
$28278
$28279
$2827A
$28278
$2827C
$£2827D
$2827E
$2827F
$28280
$28281
$28282
$28283
$28284
$28285
$28286
$28287
$28288
$28289
$2828A
$2828B
$2828C
$2828D
$2828E
$2828F
$28290
$28291
$28292
$28293
$28294
$28295
$28296
$28297

74

SCS8
5CSS
SCsAa
SCSB
SCSC
SC9Sb
SCSE
SCOF
SCAO
SCAl
SCaz2
SCA3
SCA4
SCAS5
SCA6
SCA7
SCAS8
SCA9
SCAA
SCAB
SCAC
SCAD
SCAE
SCAF
SCBO
SCB1
SCB2
SCB3
SCB4
SCB5
SCB6
SCB7
S5CB8
S5CB9S
SCBA
SCBB
SCBC
SCBD
SCBE
SCBF
SCco
sCC1
SCC2
SCC3
S5CC4
SCC5s
5CCé6
SCC7
SCC8
SCCo
SCCA
SCCB
SCCC
SCCD
SCCE
SCCF
SCDO

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
BEQU
EQU
EQU
BEQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

$28298
$2829%
$2823%A
$28298B
$2828C
$2829D
$2829E
$2829F
$282A0
$282A1
$282A2
$282A3
$282A4
$282A5
$282A6
$282A7
$282A8
$282A9
$282AR
$282AB
$282AC
$282AD
$282AE
$282AF
$282B0
$282B1
$282B2
$282B3
$282B4
$282B5
$282B6
$282B7
$282B8
$282B9
$282BA
$282BB
$282BC
$282BD
$282BE
$282BF
$282C0
$282C1
$282C2
$282C3
$282C4
$282C5
$282C6
$282C7
$282C8
$282C9
$282CA
$282CB
$282CC
$282CD
$282CE
$282CF
$282D0

75

SCD1
SCD2
SCD3
SCD4
SCD5
SChé
SCD7
SCD8
SCDS
SCDA
SCDB
SCDC
SCDD
SCDE
SCDF
SCEQ
SCE1
SCE2
SCE3
SCE4
SCES
SCE®6
SCE7
SCES8
SCES
SCEA
SCEB
SCEC
SCED
SCEE
SCEF
SCFO
SCFL
SCF2
SCF3
SCFr4
SCF5
SCF6
SCF7
SCF8
SCFS
SCFA
SCFB
SCFC
SCFD
SCFE
SCFF
; Semaphores
SML1A
SMLZA
SML1B
SML2B
SMLC
SM1S
SM2F
SM28

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU

" EQU

EQU
EQU
EQU

$282D1
$282D2
$282D3
$282D4
$282D5
$282D6
$282D7
$282D8
$282D9
$282DA
$282DB
$282DC
$282DD
$282DE
$282DF
$282E0
$282E1
$282E2
$282E3
$282E4
$282E5
$282E6
$282E7
$282E8
$282E9
$282EA
$282EB
$282EC
$282ED
$282EE
$282EF
$282F0
$282F1
$282F2
$282F3
$282F4
$282F5
$282F6
$282F7
$282F8
$282F9
$282FA
$282FB
$282FC
$282FD
$282FE
$282FF

$28300
$28301
$28302
$28303
$28304
$28305
$28306
$28307

76

LCw EQU $30003

WC1LB EQU $30000
WC1MB EQU $30000
RC1LB EQU $30000
RC1MB EQU $30000
GtRd EQU $8000

GtRda EQU $38000
ICNT EQU $17000

RCNT EQU $17004
; Matrix Control Equates
; Byte eguates

ACNT EQU $17010
MMWL EQU $17011
MMTA EQU $17012
LMASB EQU $17013
LMBSB EQU $17014
ZERO EQU $17015
PROCa EQU $17016
MMTSB EQU $17017
MMTSC EQU $17018
PrBa EQU $17019
PrBb EQU $17020
MMTB EQU $17021
; Word eqguates

BCNT EQU $17040
BSCNT EQU $17042
; Long Equates

MCSVB EQU $17050
LMAS EQU $17054
LMBS EQU $17058
ACRT EQU $1705C
BCRT EQU $17060
CCRT EQU $17064
ACRTa EQU $17068
BCRTa EQU $1706C
CCRTa EQU $17070
ACRTDb EQU $17074
BCRTDb EQU $17078
CCRTb EQU $1707C
ACRTcC EQU $17080
BCRTc EQU $17084
CCRTc EQU $17088
SD5 EQU $1708C
She EQU $17090
; Matrix A Load Values

LMAVA EQU $1708C
LMAVB EQU $1708%0
; Matrix B Load Values

LMBVA EQU $17070
LMBVEB EQU $17074
;ASCNT ’

;CSCNT

; CCNT

’

; Step Al

; Clearing of Registers

START

ORG

clr.
clr.
clr.
clr.
clr.
clr.
sub.
sub.
sub.
sub.
sub.

bt bl et el B bt bt et et ed

; Routine for clearing

MCO

r

move.
move.
BSR
move .
cmpi .
beg
move .
move .
BSR
move.
move .
BSR
move.
move .
BSR

et

; Matrix Load variable

LVA

Lval
LVAZ2

move.
move .
move .
move .
move .
move .
move .
move.
move .
move .
cmpi.
beg

move.
move .
bra

cmpi.
beqg

‘move.

bra
move .
move.

[ogi o2 o i o 2 o S i S SN SE S Y

oo

78

$10000

bo
D1
D2
D3
Da
D5
Al,Al
A2, A2
A3, A3
A4, A4
A5, AS

$14000-3140C0,$28000-$280C0,$28100-$28106

#$17000,A5
#$17100, Ad
MCLR

#PROC, (PROCaE)
#$01, (PROCa)
MCO
#$28000, A5
#$28300, A4
MCLR
#$28300,A5
#528308,24
MCLR
#$14000,A5
#$14300,R4
MCLR

#ASRT, (LMAVA)
#ASRT, (LMAVB)}
#ASRT, (LMAS)
#BSRT, (LMBVA)
#BSRT, (LMBVB)
#BSRT, (LMBS)
#LMBVAL, DO
#$00, (ZERO)
#MMTS, (MMTSC)
#MMTSA, (MMTSB)
#5501, (MMTSB)

LVA
#MMT, (MMTA)
#MMT, (MMTB)
LVB
#504, (MMTA)
LVA1l
#$01, (MMTA)
LVA2

#502, (MMTA)
#5501, (MMTB)

LM4

ILM4a

LM4al

LM4a2
LM4a3

LM4b

LM4bl

LMad

LM8

cmpi .

beqg

cmpi.

beqg

cmpi .

beq

cmpi .

beq

addi.
addi.
move.
move .
cmpi.

beg

addi.
move.

BRA

cmpi.

beg

addi.

bra

addi.
addi.
addi.
move .
addi.
move .

BRA

cmpi.

beg

addi.
addi.
move .
move .
addi.
addi.

bra

addi.
addi.
move.
move.
addi.
addi.
addi .
addi.
addi.
addi.
move .
move .
move.
move .

bra

cmpi .
‘beq

addi.
addi.
move.

o S S] = P o s i o Bl o o

o

[l i o 2 o S S S

Fl o 2 o 2 o S S OB SR SN SN SV o M o S SR =

o

ot

#501, (MMTA)
LMa

#3502, (MMTA)
LM8

#5504, (MMTA)
LM16

#S$01, (MMTB)
LM4b

#$04, (LMAS)
#5504, (LMBS)
#5504, (LMASB)
#5504, (LMBSB)
#3501, (MMTSC)
LM4a

#540, (LMAVB)
#0010, (BSCNT)
LM4a3

#3501, (PROCa)
ILM4al

#$20, (LMAVB)
ILM4az2

#$20, (LMAVA)
#5520, (LMAS)
#3540, (LMAVB)
#50010, (BSCNT)
#$40, (LMBVB)
#$20, (PrBb)
LMO

#501, (PROCa)
LM4b1l

#3508, (LMAS)
#5504, (LMBS)
#3508, (LMASB)
#$04, (LMBSB)
#$40, (LMAVB)
#580, (LMBVB)
LM4d

#$08, (LMAS)
#5508, (LMBS)
#508, (LMASB)
#508, (LMBSB)
#5540, (LMAVA)
#$04, (LMBVA)
#$40, (LMAS)
#$04, (LMBS)
#$80, (LMAVRE)
#$84, (LMBVB)
#LMBVla, DO
#%04, {PrBa)
#$40, (PrBb)
#$0010, (BSCNT)
LMO

#5301, (MMTB)
LM8Db
#$08, (LMAS)

#$08, (LMBS)
#508, (LMASR)

79

LM8a

LM8al

L.MB8az2
LM8a3

LM8b

LM8b1

LM8d

move.
cmpi.
beg

addi.
move.
BRA

cmpi.
beg

addi.
bra

addi.
addi.
addi.
move.
addi.
move.
BRA

cmpi .
beqg

addi.
addi.
move.
move.
addi.
addi.
bra

addi.
addi.
move .
move .
addi .
addi.
addi.
addi.
addi.
addi.
move .
move .
move .
move.
bra

o O - E e

e - AR

E 00D b bl b bd 2 OO

addi.
addi.
move .
move .
addi.
cmpi.

bne

move .
addi.

BRA

move.
cmpi.

" beqg

addi.

bra

move.

o2l i o i o S Sl 2

- g

#$08, (LMBSRB)
#3011, (MMTSC)
LM8a
#3580, (LMAVR)
#0040, (BSCNT)
LMB8a3
#5501, (PROCa)
LMBal
#540, (LMAVB)
LMBa?2
#$40, (LMAVA)
#$40, (LMAS)
#5580, (LMAVB)
#30020, (BSCNT)
#580, (LMBVB)
#3540, (PrBb)
LMO
#3501, (PROCa)
LM8b1
#510, (LMAS)
#508, (LMBS)
#5510, (LMASB)
#508, (LMBSRB)
#5580, (LMAVRB)
#$100, (LMBVB)
LM8d
#$10, (LMAS)
#510, (LMBS)
#$10, (LMASB)
#$10, (LMBSB)
#$80, (LMAVA)
#508, (LMBVA)
#$80, (LMAS)
#5508, (LMBS)
#4680, (LMAVB)
#5108, (LMBVB)
#LMBV1a, DO
#$08, (PrBa)
#580, (PrBb)
#50020, (BSCNT)
LMO

#508, (LMAS)

#$08, (LMBS)

#$08, (LMASB)

#$08, (LMBSB)

#$80, (LMBVB)

#MMTS, (ZERO)
s2

#50040, (BSCNT)

#580, (LMAVE)
53

#50020, {BSCNT)

#$01, (PROCa)
S2a

#5540, (LMAVB)

LMO

#540, (PrBb)

80

addi.l #3540, (LMAVA)
addi.l #$40, (LMAS)
addi.b #%$40, (LMASB)
addi.l #$80, (LMAVB)
;S3 bra LMO
LM16 addi.l #$00, (LMAS)
addi.l #3500, (LMBS)
addi.b #$00, (LMASB)
addi.b #$00, (LMBSB)
addi.l #$100, (LMBVB}
cmpi.b #MMTS, (ZERO)
bne S4
move.w $#$0100, (BSCNT)
addi.l $#$100, {(LMAVB)
move.b #3580, (PrBb)
BRA LMO

move.w $#350080, (BSCNT)
cmpi.b #501, (PROCa)
beqg S4a

addi.l #$80, (LMAVB)
move.b #$80, (PrBb)
bra LMO

S4a addi.l #$80, (LMAVA)
addi.l #$100, (LMAVB)
move.b #$80, (PrBb)

Loading Variables

LMO move.b #5500, (ACNT)
move.w H#S$00, (BCNT)
move.b #$00, {MMWL)
move.l #$00, {(ACRT)
move.l #3500, (BCRT)
move.l #$00, (CCRT)

Initializing the Counter
move.b #$30, (LCW)

Loading of Matrix Vvalue
BSR Lmat ; Testing
Matrix A
movea.l (LMAVA),6 A3
movea.l (LMAVE),6 A2
BSR LMA

Matrix B
movea.l (LMBVA),6 A3
movea .l (LMBVB) , 6 A2
BSR LMB

Check for Single Processor
cmpi.b #$01, (MMTSC)
bne sG

Check if Prog A or Prog B
cmpi.b #5011, (PROCa)
‘beg ASWT
Locking Semaphores
BSR LS

81

; Unlocking Semaphore
BSR

S

82

us

; Waiting for PB initialization

movea.l #SM1S,A3

BSR

’

; Routine to Start Time

SG BSR

; Starting Processor
clr.b
bra

; PB Initialization

ASWT clr.b

; Processor B Start

movea. 1

BSR

; Matrix Multiplication

; [Segment AO0]

1

B

; PA Only

SC

TSTR ; PA only
{sM23) ; PA only
SG1

{SM15) ;PB only
#SM2S, A3 ;PB Only
sC ;PB Only

5G1 move.l H#ASRT, {(ACRT)
move.l #BSRT, (BCRT)
move.l #CSRT, (CCRT)
clr.l D5
clr.1l D6
move.b (PrBa),D5
move.b (PrBb) , D6
cmpi.b #$01, (PROCa)
bne SAl

; Start Locations for Proc B
add.1l D6, (ACRT)
cmpi.b #$01, (MMTSB)
bne PBO
add.l D5, (BCRT)

PBO add.1l D6, (CCRT)
move.l (ACRT), (ACRTDb)
move. 1l {BCRT) , (BCRTDb)
move.l (CCRT), (CCRTb)
bra SA2

; Location Start for

7

SAl move .
move .
move .

SAa2 cmpl .
bne
cmpi .
bne

movea.l

BSR

Block Proc A

o e

b

clr.b

movea.l

adda.

1

(ACRT) , (ACRTa)
{BRCRT), (BCRTa)
(CCRT), (CCRTa)
#$01, (MMTSB)
PA

#501, (PROCa)
PA

(BCRT) ,AS
MTSM

(SML1A)

(BCRT) ,AS5

D&, A5

PA

PAO

PAl

BSR MTSM
clr.b (SML2A)
add .l D5, {(ACRTD)
movea.l (ACRTDb),24
movea.l (BCRT) , AS
movea.l (CCRT) , A3
BSR Block
movea.l (ACRTDb), A4
movea.l (BCRT),b A5
movea.l (CCRT),A3
adda.l Ds,AS5
adda.l D5,A3

BSR Block
sub.1 D5, (BCRTDb)
movea.l (BCRTbh),6AS
movea.l #SML1B,A3
BSR sC

BSR GFSM
movea.l (ACRT),An4
movea.l (BCRTb) ,AS
movea.l (CCRT),A3
BSR Block

add. 1l D6, {(BCRTDb)
movea.l (BCRTb),6 A5
movea.l #SML2B,A3
BSR SC

BSR GFSM
movea.l (ACRT),A4
movea.l (BCRTb), A5
movea.l (CCRT),A3
adda.l D5,A3

BSR Block

bra MMC

cmpi.b #$01, (PROCa)
beqg PAO
movea.l (ACRTa), A4
movea.l (BCRTa),6 A5
movea.l (CCRTa),A3
bra PAL
movea.l (ACRTDb), A4
movea.l (BCRTDb),AS
movea.l (CCRTh),A3
BSR Block

cmpi.b #$01, (MMTSB)
bne MMC
movea.l {(ACRT), A4
movea.l (BCRT),bAS
movea.l (CCRT),A3
adda.l Ds6,AS
adda.l D5,A3

BSR Block
movea.l (BCRT),bAS5

83

’
7

7

[Segment A9]

Checking SMLC

MMC

’

!

84

BSR MTSM

clr.b (sML1B)
move.l (BCRT), (BCRTa)
movea.l (BCRTa) ,AS5
adda.l D5,AS5

movea.l #SML1A,A3
BSR sC

BSR GFSM
movea.l (ACRT), 24
movea.l (BCRTa),bAS
movea.l (CCRT),A3
adda.l D5,R24
adda.l D5,AS

BSR Block
movea.l (BCRT),AS
adda.l D6,A5

BSR MTSM

clr.b {SML2B)
movea.l (BCRTa),AS5
adda.l D6,AS
adda.l D5,AS5

movea.l #SML2A,A3
BSR sC

BSR GFSM
movea.l (ACRT), R4
movea.l (BCRTa),AS5
movea.l (CCRT), A3

adda.l D5,Aa4
adda.l Dé6,AS
adda.l D5,AS
adda.l D5,A3
BSR Block
Semaphore
movea.l #SMLC,A3
BSR sc

Move Results to Shared Memory

Clearing SMLC

[Segment A10]

movea.l #CSRT,bAS

BSR MRTSM
Semaphore
clr.b (SMLC)

‘cmpi.b #$01, (PROCa)

beq DSWT
cmpi.b #3501, (MMTSC)
bne CSWT

; Checking if Processor 2 is finished
movea.l #SM2F,A3
BSR SC

; Routine to Stop Timer

CSWT BSR TSTP
bra ESWT

; Processor 2 is finsished

DSWT clr.b (SM2F)

; Routine to Get Time information

ESWT BRA ENDING

; Subroutines

TSTR move.b #$00, (WC1LLB)
move.b #3500, (WC1MB)
move.b #3500, (GtrR4)
RTS

TSTPA move.b #5501, (GtR4)
move.b #3503, (GtRda)
RTS

TSTP move.b #3501, {GtR4)
move.b $#$00, (LCW)
cir.1l D1
clr.1l D2

move.b (RC1LB),D1
move.b (RC1IMRB) ,D2
ASL #58,D2
add.l D2,D1
move.l D1, (RCNT)

RTS
;8C subi.b #$01,D7
H cmpi.b #$00,D7
; bne sC
sC TAS (A3)
BNE sSC
; clr.b (A3)
RTS
BLOCK move.l D5, (8D5)

move.l D6, (SD6)
movea.w (BSCNT) , A2
move.l A4, (ACRTc)
move.l A5, (BCRTc)
move .l A3, (CCRTc)
BLA BSR MMW

addi.b #5011, (MMWL)
move.b (MMTB) ,D3

cmp.b (MMWL) , D3
bne BLA

BLB ‘addi.w #3501,BCNT
cmpa.w (BCNT) , A2
beq BLEND

; move.w #$01,CCNT

85

MMW16

MMW8

MMW4

ADJALlG

ADJAOS8

ADJAC4

BLCNT

BLEND

MMW

addi.
adda.
cmpi .

beg

cmpi .

beqg

move .
cmpi.

beg
BRA

move .
cmpi.

beg

adda.

BRA

move.
cmpi .

beg

adda.

BRA

addi.
movea.l
move .

BRA

addi .
addi.
movea.l
movea.l
move .

BRA

addi.
addi.
movea .l
movea.l
movea.l
move.

BRA

movea.l
move.w

BRA

move.
move.
move .
move .
move .

RTS

move .
move .
move .
move.
move .
move .
move.
move .

mulu
mulu

U U

1

1

b

1

1

b

1
1

b

=g OU

cCoTooUouoouoU

#5501, ACNT
#301,A3
#5011, (MMWL)
MMW4
#5502, (MMWL)
MMWS8
#5500, MMWL
#$10, {ACNT)
ADJAl6
BLCNT
#$00, MMWL
#$08, (ACNT)
ADJAOS
#508,A5
BLCNT
#$00, MMWL
#5504, (ACNT)
ADJAO4
#$0C, A5
BLCNT
#$10, (ACRTC)
(BCRTC) , A5
#5500, (ACNT)
BLCNT
#510, (ACRTC)
#%$10, (CCRTC)
(BCRTC) ,AS
(CCRTc) ,A3
#3$00, (ACNT)
BLCNT
#5$10, (ACRTc)
#$10, (CCRTC)
(ACRTc) , A4
(BCRTc) , A5
(CCRTc) , A3
#$00, (ACNT)
BLCNT
(ACRTC) , A4
#$01, CCNT
BLA
#3500, MMWL
#$00,ACNT
#500, BCNT
{SD5) ,D5
(sD6) ,D6

(A4)+,D0
(A5)+,D1
(n4)+,D2
(A5)+,D3
(A4)+,D4
(A5)+,D5
(hd)+,D6
(A5) +,D7
D1,D0

D3,D2

86

MTSM

MT1

MT2

GFSM

add.b

mulu
mulu

add.b

add.
clr.

move.b

b
1

add.b
move.b

clr.
clr.
clr.
clr.
clr.
clr.
clr.

N

sub.1

RTS

clr.
clr.
clr.

1
1
1

move.b
move.b

movea.l
movea.l

adda.
adda.
move .,
addi.
move .
move .
cmpa .

bne

adda.
adda.
adda.
cmpa .

bne
sub.
sub.
sub.
sub.
RTS

clr.
clr.
clr.

move.b

= =]

1
1
1

(SR o SR WO R S

o b

move.b

movea.l
movea.l

adda.
adda.
move.
addi .
move.

e e

DO, D2
D5, D4
D7,D6
D4,D6
D6,D2
D5
(A3),D5
DS,D2
D2, (A3)
D1

D2

D3

D4

D5

D6

D7
A3,A3

DO

D1

D2
(PrBa),D1
(PrBb) ,D2
A5,A2

A5, A3
D1,A2

D2 ,A3
AS5,DO
#514000,D0
DO, Al
(A5)+, (A1) +
AS,A2

MT2
#$10,A2
#$0C,AL
#50C, A5
AS5,A3

MT1

Al,Al

A2 ,A2

A3 ,A3

A5, A5

DO

D1

D2

(PrBa) ,D1
(PrBb) ,D2
A5, A2

A5 ,A3
D1,A2
D2,A3
A5,DO
#$14000,D0
DO, Al

87

MT4

MT5

MRTSM

MT5a

MT5a2

MTS5a3

MT5a4

MT5a5

MT5a6

MTha7

MT5b

MTSh2

move .
cmpa .
bne

adda.
adda.
adda.
cmpa -
bne
sub.
sub.
sub.
sub.
RTS

bt

clr.1l

movea.l
movea.l

cmpi .
beqg
cmpi.
beg
cmpi .
beq
cmpi.
beg
cmpi.
beqg
adda .
bra
cmpi .
beqg
adda.
bra
adda.
adda.
adda.
move .
bra
cmpi.
beg
adda.
bra
adda.
adda.
adda .
adda. .
move .
bra
cmpi.
beg
cmpi.
beq
adda.
bra
cmpi .
beqg
adda.

O

b et e

b

b

et [

bt b e

88

(A1) 4+, (A5) +

A5, A2

MTS
#$10,A2
#$0C,a1
#50C, A5
A5,A3

MT4

Al,Al
A2,A2
A3,A3
AS5,AS

D1

A5,A2

A5, A3

#3501, (MMTA)
MT5a

#3502, (MMTAR)
MT5Db

#5044, (MMTA)
MTS5c

#$01, (MMTB)
MT5a5

#3501, (MMTSC)
MT5a2
#540,A3
MT5a4

#$01, (PROCA)
MT5a3
#$20,A3
MT5a4
#$20,A5
#540,A3
#5044, A2
#$04,D1
MT5d

#5501, (PROCa)
MT5a6
#$40,A3
MT5a7
#$40,A5
#540,A2
#$80,A3
#5508, A2
#$08,D1
MT5d

#$01, (MMTB)
MT5b5

#$01, (MMTSC)
MT5b2
#5580, A3
MT5b4

#$01, (PROCa)
MTS5b3

#5$40,A3

MT5b3

MT5b4

MTS5b5

MT5b6
MT5b7

MTS5c

MT5c2

MT5c¢3
MT5c4
MT5d

MT6

MT7

bra
adda.
adda.
adda.
move.
bra
cmpi.
beg
adda .1l
bra
adda.
adda.
adda.
adda.
move.
bra
cmpi.b
beqg
adda .l
bra
cmpi.b
beqg
adda.l
bra
adda.
adda.
adda.
move.

[R

o’

[gy Sy

fod ekt et

move .
addi.
move.
move .
cmpa.
bne

cmpi.
beg

adda.
adda.
adda.
cmpa.
bne
sub.
sub.
sub.
sub.
RTS

= fd et o H O ok

bt el b e

clr.b
cmpa .l
BNE
sub.1l
sub.1l
RTS

MTSb4
#540,A5
#$80,A3
#508,A2
#$08,D1
MT5d

#$01, (PROCa)
MT5b6

#$80, A3
MT5b7
#$80,A5
#$80,A2
#$100,A3
#S10,A2
#$10,D1
MTsd

#$01, (MMTSC)
MT5c2
#$100,A3
MT5c4

#501, (PROCa)
MT5c3
#$80,A3
MT5c4
#$80,A5
#$100,A3
#$10,A2
#$10,D1

A5,DO
#$14000, D0
DO, Al
(A5) +, (A1) +
A5, A2

MT7

#504, (MMTA)
MT7

#$10,A2
D1,Al
D1,A5

A5, A3

MT6

Al,Al

A2, A2

A3, A3
A5,AS

(AS)+
A4, A5
MCLR
A5, A5
A4, R4

move.b #$80, (SML1A)

89

LMAA
LMAB

LMAC

LMAE

LMB

LMBA

LMBB

LMBC

LMBE

‘

ENDING

move .
move.
move .
move.
move.
move .

RTS

move .

RTS

cmpa.

bne

cmpi.

beqg

cmpi.

beg
BRA

adda.
addi.

BRA

adda.
addi.
cmpa.

beqg

move.

BRA
RTS

cmpa.

bne

cmpi .

beqg

cmpi .

beg
BRA

adda.
addi.

BRA

adda.
addi.
cmpa.

beqg

move .,

BRA
RTS

Trap
END

- v ooy

[

#5$80, (SML2A) ;
#580, (SML1B) ;
#$80, (SML2B) ;

#580, (SM18)

#580, (BM2F)

#$80, (SM2S8)

#$00, (SMLC)
(LMAS) , A3
LMAC

#3508, (LMASB)
LMARZ
#$04, (LMASB)
LMAB

LMAC
#508,23
#5510, (LMAS)
LMAC
#50C, A3
#$10, (LMAS)
AZ,A3

LMAE

#LMAVal, (B3)+
LMA

(LMBS) , A3
LMBC

#508, (LMBSB)
LMBA

#5$04, (LMBSB)
LMBB

LMBC

#4508, A3
#$10, {LMBS)
LMBC

#$0C, A3
#3510, (LMBS)
A2, A3

LMBE

DO, (A3) +
LMB

#9
START

Pa
pa
PA
PA
PA
PA

Pa

only
only
only
only
only
only

only

90

REFERENCES

Rosenstark, Dr. Sol, 1998, Computer Construction Project and Experiments — EE 393.
Electrical Engineering Laboratory III. New Jersey: New Jersey Institute of Technology.

****The following references have been included as further reading to help witly ****
the understanding of the material, figures, and programs contained in this thesis.

Hwang, Kai, 1993, ADVANCED COMPUTER ARCHITECTURE. Parallelism,
Scalability, Programmability. New York: McGraw-Hill, Inc.

Antonakos, James L., 1996, THE 68000 MICROPROCESSOR: Hardware and Software
Principles and Applications. Third Edition. New Jersey: Prentice Hall.

Anon., 1992, M68000: Family Programmer’s Reference Manual. Arizona: Motorola
Literature Distribution.

Katz, Randy H., 1994, CONTEMPORARY LOGIC DESIGN. California: The
Benjamin/Cummings Publishing Company, Inc.

91

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Acknowledgment
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: Implementing a Shared-Memory Parallel Processing System(SMPPS)
	Chapter 3: Implementation of Parallel Algorithms
	Chapter 4: Performance Evaluations
	Chapter 5: Conclusions
	Appendix A: Diagrams
	Appendix B: Programs
	References

	List of Figures
	List of Diagrams

