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ABSTRACT

OODINI 2.0: AN ENHANCED GRAPHICAL SCHEMA
REPRESENTATION

FOR
OBJECT-ORIENTED DATABASES

by
Kamil Shahab

The graphical representation of object-oriented database (OODB) schemas is useful for

The designers and users of a database system. The aim of our project was to enhance the

existing version of OOdini, an interactive graphical tool for editing OODB schema. The

new features include interactive modification and description of objects in the schema.

Data structures for representing classes and attributes have been altered to incorporate

object/data types as well as a descriptive string. The software has been implemented

using ObjectMaker, a toolkit to design your own methodology using the ObjectMaker

Extension Language.
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CHAPTER

1 INTRODUCTION TO OODINI

1.1 Introduction

The graphical representation of database schemata has been a useful tool for the

designers and users of database systems. Such a tool is no longer viewed simply as a

convenience, but as a necessity. Our research group at NJIT developed a comprehensive

graphical notation called OOdini for the representation of OODB schemata. The OOdini

notation is based on a set of mnemonic icons that can be composed in an incremental and

intuitive way.

The group created a graphical schema editor called OOdini, which allows users to

interactively create and manipulate OODB schemata. This version was implemented in

the X Windows/OSF Motif environment. In this report, we will present the complete set

of notations supported by OOdini and the new implementation of OOdini 2.0. The

OOdini notation incorporates a wide variety of symbols including those for classes,

attributes, methods, user-defined and constraint relationships, part-whole relationships,

ownership relationships, and semantic relationships---enough to support a diverse group

of object-oriented data models. The OOdini 2.0 system that creates and manipulates

such graphical schemata is discussed. This system, besides offering constraint-based

editing of the aforesaid schema representation, will provide for conversion into an

abstract OODB schema language, thus making OOdini an effective OODB graphical

interface.



In this chapter, a quick introduction to OOdini is given. Some background on

object-oriented database modeling is covered, and the importance of interactive graphical

schema is emphasized.

1.2 Background

The designer of an object-oriented database schema is faced with a number of challenges.

The foremost among these is the need to create and organize a large number of object

classes. The designer must ensure that each class contains the attributes and methods

necessary to describe its objects. The classes must also be connected with the appropriate

relationships, which convey semantic information and allow for the retrieval of relevant,

remote data. To accomplish these tasks, the designer needs a solid grasp of the overall

structure of the database.

1.3 Motivation

For the user of an OODB, the requirement of understanding the overall structure may be

felt even more intensely. Having not built the database's conceptual model, the user must

be provided with a means for becoming acquainted.

The problem of comprehending the structure of a database is not unique to

OODBs, but due to the rich modeling capabilities of such systems, this task becomes

more difficult. A medium-sized OODB typically comprises hundreds to thousands of

classes. Remembering the names of just a few dozen of these and the interconnections

between them may be almost impossible.



Consider, also, the need to devise path methods1, 2,3, which are used to retrieve

information about a given class stored in other remote classes.

Usually a path method is composed of a sequence of relationships. The seemingly

simple task of creating such a sequence can be complicated if the designer or user is only

vaguely familiar with the 'surrounding landscape.' In order to construct such methods

effectively, a general view of the OODB is needed.

With all this in mind, our research group designed a graphical language for the

representation of OODB conceptual schemata, a language useful to both schema designer

and user alike. The language includes symbols for classes, attributes, methods, user-

defined and constraint relationships, part-whole relationships, ownership relationships,

and semantic relationships (such as role-of and category-of) a wide enough variety to

satisfy a diverse group of object-oriented data models.

1.4 Previous Work

One of the goals of the latest generation of database management systems (dbmss),

including oodbs, is overcoming the problems of representing, storing, and manipulating

highly complex data entities4,5. among these are speech signals, cad/cam drawings, and

images. invariably, these kinds of data require some form of graphical display. Hence,

many oodbs such as ode 6 ' 7 and 0 2 8 support the graphical display of data. however, this

type of graphical representation is not the one considered in this paper. our concern is a

graphical representation of the database schema, which can be employed as a data

definition language9 .
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The usefulness of the graphical representation of knowledge-base schemata has

long been acknowledged. Early on, the knowledge representation community recognized

the importance of graphical aides. Semantic Nets10,11 are invariably presented in a

graphical form. Conceptual Graphs 12 and Conceptual Dependencies 13 both employ

graphical formalisms. Even frames have been given a pictorial form 13.

In the database community, there are a number of data models that present

schemata in diagrammatic fashion. Perhaps none of these is more prevalent than the

Entity-Relationship (ER) model 14,15,16. In fact, this graphical language is often used as a

diagramming device for other data models such as the relational (e.g., Schemadesign 17).

Another semantic data model with a graphical schema representation is Galileo 18 , for

which a schema editor Sidereus19 has been built.

Other models that are readily depicted graphically include IFO 20 , which is related

to the Functional Model 21 . SNAP 22 , developed by the originators of IFO, is a system that

provides this graphical support. GOOD 23 , an object data model also related to the

Functional Model, uses a graphical formalism as a basis for its definition.

Within the OODB community, some system designers have considered the

graphical representation of the class hierarchy. Among these systems are Ode, Iris 24 , O 2 ,

and Ontos 25 . Unfortunately, the class hierarchy relates only a limited part of the

interrelations between classes. Kim 26 presents a notation that he calls a schema graph that

captures the normal class hierarchy as well as the class-composition hierarchy. The

Object-Oriented Entity-Relationship Mode1 27 , an object-oriented extension of the ER

model, uses a diagram derived from the ER model. Of late, there has appeared a

graphical representation language and editor for GemStone28.
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However, our representation accommodates a larger number of schema constructs

in that we graphically represent methods, different generic relationships, and constraint

relationships.

In the area of object-oriented modeling and design, there exists a graphical

notation that complements the Object Modeling Technique (OMT) 29. While not

specifically aimed at object-oriented databases (but rather object-oriented systems in

General), it can be employed to describe database schemata.

As with OODBs, object-oriented programming languages (OOPLs) can greatly

benefit from graphical representations. The designers of Eiffel have introduced some

graphical conventions in 30 . These conventions constituted a portion of a larger graphical

formalism that was under development. As was alluded to by the author, the formalism

will focus mainly on aspects unique to OOPLs, such as class preconditions, post-

conditions, and invariants.

31
, Kappel and Schrefl combine the approaches of both fields by presenting

object/behavior diagrams for OODBs. Since they are presenting the object diagram in

the context of behavior diagrams, they have chosen to represent class interconnections

with symbols inside the class construct rather than with connecting arrows.

1.5 General Approach

Following32 , the characteristics of OODB systems are the notions of objects and classes.

A class can be regarded as a container for objects that are similar in their structure and

semantics in the application. To describe the structure and semantics of objects, the class

uses four kinds of properties:
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1. Attributes - values of a given data type.

2. User-defined relationships - named references to other classes. Note that we will

drop the qualification and refer to these simply as relationships when there is no

possibility of confusion (cf. semantic relationships below).

3. Methods - operations which can be applied to instances of a given class.

4. Semantic relationships - similar to relationships in that they are references to other

classes; however, these are system-defined, while relationships are user-defined.

The basis for our graphical language is the labeled, directed graph, where both

vertices and edges are labeled. The vertex labels allow us to represent the different kinds

of classes (see Section 1.5.1 below). Similarly, the edge labels permit the representation

of the various semantic and user-defined relationships, and path methods. In many

OODBs, relationships are "buried in pointers," i.e., viewed simply as pointer-type

attributes. We follow the approach that emphasizes the importance of relationships. By

clearly displaying these class interconnections, our representation provides better

expressive power and enhanced readability.

In designing this language, we have taken into account the mnemonic value of the

graphical icon. Historical precedents also influenced the choice of symbols. Certain

symbols were chosen because of the close correspondence between some object-oriented

concepts and those in earlier data models.

Another major factor was our desire to see the graphical representation used as a

pencil-and-paper device. The task of constructing a large database schema is an arduous

one. Advances often occur away from any computer workstation. The ability to quickly
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jot down ideas on paper at such times is a great advantage. Also, some people prefer to

do their own designing away from the computer. A notation that permits hand-written

diagrams is bound to be of greater utility than one that does not (Witness the great

popularity of the ER model). The simplicity of our symbols readily lends itself to this

purpose.

The graphical schema representation presented herein has gone through several

stages of modification as a result of its use in applications such as: building

telecommunication schemata at Bellcore 50 , modeling a university environment 33,34, and

modeling purchasing department' s . The current version, derived from these

experiences ; has proven to be both expressive and easily learnable.

The rest of this report is organized as follows. Classes and attributes are

discussed in Section 1.5.1. Semantic relationships and User-defined relationships are

considered in Sections 1.5.2 and 1.5.3 respectively, while part-whole relationships and

ownership relationships are presented in and Section 3.1.

Methods are presented in Section 1.5.4, followed by the ObjectMaker Toolkit and

Extension Language in 5.1.

1.5.1 Classes and Attributes

We follow the ER practice and represent an object class as a rectangle with its name

printed inside. The attribute names reside inside the class in the form of a list Figure 1.1.



File Edit View Insert Database Tools Window Help
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Figure 1.1 Sample University Database
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An attribute can be further classified as essential, meaning that its value must be

non-nil. In this case, a special character is added to the end of the attribute name inside

the class.

In addition to a simple class, our system is capable of representing composite

classes obtained from other classes by some type of constructor:

1. The set constructor.

The set constructor is used to obtain a class whose instances are sets of instances

of another class. For example, the class alumni of Figure 1.1 is obtained by applying the

set constructor to the class alumnus. Such a class might have an instance representing the

set of all alumni who have made a donation to the school.

The graphical representation of a set class is a rectangle with a thick border. The

thick border is used to convey the multiplicity of sets and their non-atomic nature.

To summarize, the symbol we use for an object class is a rectangle. Set classes

are represented using rectangles with thick borders.

1.5.2 Semantic Relationships

As mentioned above, we use the term semantic relationship to refer to a connection

between classes which, due to its generality and importance, is system-defined (or, in

other words, is a modeling primitive of the system).

The most important semantic relationship is subclass (is_a), which enables the

expression of specialization and the creation of a class hierarchy. This hierarchy normally

forms the skeleton of an application, and its comprehension is essential to an overall
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intuitive understanding. Thus, in any graphical representation, the hierarchy must be

emphasized. For this reason, we have chosen to specify subclass as a heavy line directed

from the specialized class (subclass) to the more general class (superclass). As we shall

see, user-defined relationships are represented using thin arrows; therefore, subclass is

duly highlighted, and its hierarchy is readily apparent on even the most cursory

inspection. To further emphasize the hierarchy, we encourage the placement of a

subclass below its superclass.

In the case where the subclass specialization is in a different context from that of

the superclass, we call the generic relationship role-of t ' 2 ' 3 The graphical representation

for role-of retains the heavy arrow of subclass; however, the line is not solid, but a dot-

dash pattern. The mnemonic device employed here is borrowed from the world of maps.

There, the boundary between any two territorial units, such as states or countries, is

defined using a dot-dash pattern. In our case, we denote the crossing of the boundary

between contexts.

Another semantic relationship that we represent is part-of, which is used to

connect a part of a complex or assembled (real-world) object to its integral object. In the

next chapter, the entire part-whole relationship will be discussed in great detail.

1.5.3 User-defined Relationships

A relationship is a named, user-defined connection directed from one class to another.

Since it can be viewed as a pointer, we draw it as a labeled arrow from its class of

definition to the target class. The arrow is thin as compared with the heavy arrows of the

hierarchical generic relationships.
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Often an application requires a relationship from a class A to a class B, as well as

its converse. This situation is handled using a pair of arrows pointing in opposite

directions. One should contrast this approach with the ER model, where a relationship is

bi-directional and given an 'existence' of its own, complete with its own attributes. In

OODBs, a relationship is typically defined as a property of one class, acting as a

reference to another class.

The ER model supports one-to-many or what we call multi-valued relationships.

The object-oriented approach supports multi-valued relationships in two different ways.

The first is a multi-valued relationship connection, which indicates that an instance of one

class can be related to any number of instances of the class to which the relationship is

directed. An example of this is the relationship between the classes section and student,

where a given section can have many students. We have chosen to represent the multi-

valued relationship as a dual-lined arrow. This choice emphasizes the multiplicity of the

relationship, just as in the case of the set-constructed class (cf. Section 1.5.1).

The second alternative is to define a set class. In this case, creating a set class at

the 'many end' and directing an ordinary single-valued relationship to it captures the

multi-valued relationship. Consider a related example: a student can be in many sections.

Using the set alternative, we create a new class sections, defined with respect to section.

We then create a single-valued relationship from student to sections. In this way, we

have related a single student with many sections. Here, however, we are required to

explicitly group the section objects into a set.

While the two approaches are basically equivalent, the usefulness of the set class

alternative becomes apparent when trying to model relationships with cardinality
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constraints. Assume that we are trying to model the interrelations between courses,

instructors, and students. We first define the classes course, instructor, and student.

Because there are a number of sections offered for each course, we also need a class

section. Now assume the following constraints:

1. At most r sections of a given course can be offered in a semester.

2. An instructor may teach no more than s sections in a given semester.

3. A student may take at most t sections per semester.

We could model this situation by having relationships from each of the three

classes course, instructor, and student to a set class sections, defined with respect to

section. Sections would be given the attribute number to maintain the cardinality of an

instance, as well as an attribute maximum that would hold the maximum cardinality.

This latter attribute would be set at instantiation time to an appropriate value (e.g., to r if

the set were to consist of the sections of a particular course). The method to add an

instance of section to a given instance of sections would then check the current

cardinality and deny any request that would violate the prescribed maximum.

These cardinality constraints could alternatively be enforced by each of the two

classes course, instructor, and student individually. Placing two additional attributes,

numberofSections and maxNumberofSections, in each of the three classes can do this.

These attributes play the same roles that the attributes number and maximum did in the

class sections above. Next, multi-valued relationships are established between each of the

classes and section. Lastly, each class is equipped with methods to monitor the

constraints.
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There are a number of reasons why this is not as elegant a solution as the former.

First, the multi-valued relationships do not convey information about the required

cardinality constraints. The set alternative makes the structure of the model more

meaningful — more semantic. Second, the cardinality constraint is really a characteristic

of the set of sections associated, for example, with a given course, not of the course itself.

Hence, this constraint should be defined as a property of sections rather than course.

Finally, placing the two attributes and the corresponding 'watchdog' method in sections,

instead of repeating them three times eliminates redundant specifications.

Constraint relationships are those which impose additional semantic constraints

on the participating classes. In general, a constraint relationship requires two aspects of

definition; the static or state definition which imposes constraints on the database at any

fixed instant of time; and the dynamic or transient definition which expresses the

behavior that it implies in the context of change (i.e., the creation, deletion, and update

semantics). The dynamic aspect of any constraint relationship is required to maintain the

constraints imposed by the static aspect.

We have chosen to represent two types of constraint relationships, essential and

dependent, though more could be added in the future. Both of these relationships are

normally used to maintain referential integrity 9 .

An essential relationship is one which must always refer to an existent object (i.e.,

which may not have a nil value). Its creation semantics is such that the referent class of

the relationship must have instances before any instances of the source class can be

created. The update semantics is; the relationship cannot be assigned a value of nil.
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Finally, the deletion of an instance of the referent class is forbidden if there exist

instances of the source class which refer to it.

To represent an essential relationship, we place a small circle behind the head of

the arrow representing such a relationship. This symbol was chosen to maintain

consistency with respect to the rest of the graphical representation, as essential attributes

are also denoted by the addition of a circle at the end of the attribute name. Hence, adding

a circle to an attribute name or relationship consistently expresses essentiality. In Figure

1.2, we see the essential relationship.



Figure 1.2 Regular Relationships and Regular Relationship Expansions

15
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A dependent relationship is identical to an essential relationship except for the

deletion semantics: Assume that the class A has a dependent relationship to class B; if an

instance a of A refers to an instance b of B, and b is deleted, then a is also (automatically)

deleted. Thus, the existence of an instance of A is dependent on the existence of an

instance of B. We represent a dependent relationship as a double-headed arrow (either

single-lined or dual-lined). The double head of the arrow emphasizes the "stronger"

connectivity of this type of relationship. In Figure 1.2, we see the dependent relationship.

1.5.4 Methods

We distinguish between two types of methods in OODBs: path methods and local

methods. As their name implies, local methods operate strictly locally to an object; i.e.,

no remotely accessed data is used in their operation. Local methods can be divided into

selectors/mutators (also referred to as readers/writers) and derived attributes 29 . A selector

(mutator) method simply reads (writes) a given attribute. Selectors and mutators do not

require separate graphical representations. The symbol representing the attribute they

operate on is sufficient.

Derived attributes are very similar to the selectors of attributes. These methods

derive values from one or more attributes through some computation. An example of a

derived attribute is the 'available' method of the set class sections. This method

computes the available 'room' in a given set by subtracting the attribute number from the

attribute maximum. Derived attributes require a unique symbol at the end of their name

in the list. The reason for our choice is that a derived attribute can be viewed as a hybrid

of an attribute and path method. In Figure 1.3, we see the derived attribute.
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Figure 1.3 Classes and Attributes



Figure 1.4 Expansions of Classes and Attributes
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A path method is an operation (defined on a class) comprising a chain of classes

connected by semantic relationships and/or user-defined relationships. In general, a path

method cm be concatenated with mathematical operations. However, these need not be

represented graphically and are omitted from our discussion. The symbol employed for

path methods is a dashed, thin-lined arrow pointing from the class defining the method to

the remote class it accesses (i.e., ends in). The reason for the choice of this symbol is as

follows. ['he function of a path method is similar to that of a relationship: Each is used to

retrieve relevant information from another class. We therefore chose the thin arrow so as

to make the symbol for a path method reminiscent of the representation of a relationship.

However, there is a difference between relationships and methods. A relationship is a

direct connection, while a method is an indirect connection established via a chain of

connections.

In this sense, a method can be viewed as a composite construct, and so we once

again employ the dashed-line convention (cf. The representation of the part-of relation).

An attribute path method is a special case of a path method. It is an operation comprising

of classes connected by semantic relationships and/or user-defined relationships that will

end with an attribute or derived attribute. The symbol employed for attribute path

methods is the same symbol as path methods except the class at the end of the chain will

have a box on the outside that will point to the class that contains the attribute, instead of

the usual arrowhead. In Figure 1.5, we see the attribute path method.



Figure 1.5 Semantic Relationships and Methods
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As an example, consider a method called 'get courses' that would consist of the

class instructor. This method returns the names of all the courses taught by a particular

instructor. To accomplish this, it accesses the attribute name of course through the

relationships path teaches, setof, is_offering_of. More specifically, it operates as follows.

It starts by applying the relationship teaches to instructor yielding sections. Applying

setof then gives a set of section. Next, applying is_offering of yields a set of course.

And, finally, applying the attribute name to each instance of this set produces the desired

result; a set of course names. Since the desired data is stored as the attribute name of the

class course, we represent this method as a dashed line pointing from instructor to the

name attribute of class course.

There are actually two aspects of a path method that should be represented

graphically. The first one, which we have just presented, displays the connection

between the source class and target data item of the method. This aspect reflects the

retrieval effect of the path method (i.e., what data it actually returns). As we mentioned

above, this aspect functions similarly to a relationship, and hence was given a graphical

symbol similar to the relationship icon.

The second aspect of a path method is the chain composed of classes that are

connected by relationships. This aspect reflects the implementation of the retrieval

mechanism. Clearly, it is a critical portion of the definition of a path method. Without it,

one cannot judge if the method is semantically correct, i.e., whether it correctly retrieves

the desired information.
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Obviously, we would like a graphical representation of this second aspect as well.

Since it is a chain composed of elements that are already represented graphically, it is

natural to simply highlight those elements in some manner. For example, in the context of

an editor program (such as the OOdini system), the elements could be emboldened or

given some tiling pattern or color.

We note, however, that highlighting the chains of all path methods in a schema

will leave much of the schema highlighted and render most chains unrecognizable due to

overlaps. Therefore, this highlighting must be used sparingly. In this sense, it is similar

to italicization in written natural language. If overused, it becomes confusing and

ineffective. In fact, it has been our experience that a designer or user is not interested in

the chains of all path methods simultaneously. Typically, one wants to concentrate on the

implementation of a single method. In such cases, only the method of interest would be

highlighted. If one wants to determine all the available methods, the retrieval aspect

represented by the dashed line is sufficient. Therefore, we view the highlighted aspect of

the representation of a path method as optional. If employed, it should be restricted to a

small number of methods.

The representation of a path method that is a branching method, i.e., that accesses

data from two or more remote locations, remains a topic for further research.

For a summary of all the graphical symbols that we have introduced, see

Figure1.1, 1.2, 1.3, 1.4, 1.5, 1.6, and 1.7. Note that text to the left is descriptive material

and is not part of the symbols.
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1.6 OOdini 2.0: A Graphical Schema Editor

We are in the final stages of the development of a software system called OOdini 2.0

(Object-Oriented di agrams, N ew Jersey I nstitute of Technology) which allows the user

to interactively manipulate the graphical schema representation for OODBs defined

above. The system is being implemented on a Sun 4/20 workstation and also on an IBM

Personal Computer. ObjectMaker Tool Developer's Kit is providing Graphical and

interface supports. OOdini's main screen can be seen in Figure A.1.

OOdini is a constraint-based graphical editor designed specifically for the schema

representation we have presented above. We note that it does not include the features of

a general graphical-constraint toolkit such as Garnet 36 . To see what we mean by

constraint-based, consider the representation of a relationship. In particular, consider a

relationship emanating from a class and left dangling, that is, unattached at its other end.

Clearly, such a construction is meaningless. So, during input OOdini 2.0 will mark such a

diagram with an anchor on the dangling end. This representation will alert the user that

the diagram is not drawn properly. Moreover, if at a later time one of these classes

moves, the relationship is automatically moved relative to it. In this way, OOdini

guarantees that the integrity of the schema diagram is always maintained, and it relieves

the user of a lot of tedious manipulation.

As with most software systems built on top of a windows environment, OOdini

relies heavily on the mouse for interaction with the user. The keyboard is required

occasionally in response to a dialog box to input textual data, such as the name of a class.

The interaction with OOdini during schema creation follows a regular pattern: The user

selects a symbol, such as a class or a relationship, from either the menu or the palette and
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bar at the bottom of the screen will inform the user of what the current symbol of

insertion is. Also, the palette will indent the current symbol of insertion. When finished

with this 'current' symbol, the user chooses another and further expands the schema. This

continues until the schema is complete, at which time the user can request that it be saved

to disk or printed. Of course, the system also provides facilities for modifying the

schema. Such features include interactive movement of schema objects using the mouse;

interactive labeling of schema objects using the keyboard, as well as interactive deletion,

again carried out with the mouse. We emphasize that all modifications of the schema are

constraint-based. For example, the movement of a class always entails the movement of

all its associated graphical objects (e.g., attributes, relationships, set classes, and so on).

Likewise, the deletion of a class propagates into the deletion of those associated objects.

OOdini manages a large drawing canvas, allowing the designer to create very

large schemata. This is a very important characteristic of the system since OODBs

typically comprise many hundreds of classes. A tool that provides but a single 'sheet'

becomes totally worthless for such applications. Scrollbars are provided to allow the user

to reposition the current working window (in the ordinary graphics sense) of the canvas.

Using the scrollbars, the user can readily pan left and right, or up and down.

While it is possible for the user to quickly navigate to and view any portion of the

canvas, the current working area presents only a small fraction of the entire schema. It is

normally not possible to display a schema of substantial size in its entirety with a

reasonable magnification. To give the user the possibility of viewing the schema

'globally,' we provide a zooming mechanism. The zooming feature is under the view
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menu on the toolbar. The Zoom feature has 5 levels of zooming. The user can zoom in or

zoom out. The current level of zoom is indicated on the status bar at the bottom of the

screen. This feature of OOdini 2.0 is particularly useful when it comes to rapidly moving

between distant regions of the schema. Of course, the scrollbars could do the same thing,

but using them is more tedious; the destination area is not in full view, and it is likely that

the user will end up doing some scrollbar 'oscillating' during the search. In general, it is

expected that the scrollbars will be used to make fine position changes to the current

working region, while the roadmap will be employed for large jumps.

To maintain conformance with other standard windows type systems, the main

system screen is laid out with the preferred menu bar and work area arrangement. (See 37

for further details.) At the uppermost portion of the main window is the menu bar which

contains the normal array of entries, 'File,' 'Edit,' 'View,' 'Insert,' 'Database,' 'Tools,'

'Window,' and 'Help.'

For more detailed information on the menu bar, please see appendix A at the end

of this paper.
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2 THE OODB PART RELATIONSHIP

If OODB systems are to fulfill their expectations in different areas, it is imperative that

they support aggregation by including a part-whole relationship as a built-in modeling

primitive. By such a relationship we mean a connection between two object classes that

provides more than just a common name like "part-of'. Rather, it must capture accepted

real world, part-whole semantics by imposing limitations on the interactions between the

instances of the participating classes and by providing them with additional functionality

befitting parts and wholes.

Our part model has as its foundation a part-whole semantic relationship that

encompasses the following:

• Constraints that impose appropriate "part-whole" restrictions on the state of

the database and the various part transactions (like "add-part and "remove-

part").

• Dependency between part and wholes.

• Inheritances of properties, both from part to whole and vice versa.

Because there exists a wide range of part-whole semantics, we organize the above

into four characteristic dimensions: (a) exclusiveness, (b) multiplicity, (c) dependency,

and (d) inheritance. Each of these dimensions can take on a number of different values,

giving flexibility to an application developer or schema designer, who simply declares

26
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the desired semantics by choosing the appropriate values. The OODB system then

automatically ensures that the chosen semantics is obeyed during the entire lifetime of the

database.

2.1 Terminology and Notation

Following' s , we will refer to a 'part' as a metonym (the prefix mero-, from the Greek

meros, meaning part). A whole object will be called a holonym (holo- meaning whole).

A part's class is a meronymic class, whereas that of a whole is a holonymic class. For

example, if classes chapter and book are in a part-whole configuration and chapter c is

part of book b, then c is a meronym and b is a holonym. Chapter and book are the

meronymic and homonymic classes, respectively.

2.2 Definition of the Part Relationship

In this section, we present a formal definition of a part relationship between a pair of

OODB classes. This relationship is described formally as a quintuple comprising a

relation between the extensions of the participating classes, and four 'characteristic'

dimensions: (1) exclusiveness, (2) cardinality, (3) dependency, and (4) value propagation.

The first of these addresses the issue of how parts may be distributed among wholes. The

next is concerned with the way parts of the same kind are collected together to form

wholes. The third dimension deals with the dependency semantics, i.e., how the deletion

of a holonym or meronym affects its counterpart in the part-whole configuration. The

final dimension addresses the issue of propagating relevant data across the part
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relationship from the whole to the part, or vice versa, leading to the definition of derived

attributes.

Figure 2.1 Part Relationships



.79

For a class C, let E(C) denote the extension of C (i.e., the set of all its instances).

Also, let ∏ (C) denote the set of all properties of C. A part relationship between a

meronymic class B and holonymic class A (written P B , A) is defined as the following

quintuple:

Complete accounts of each dimension will be given in subsequent subsections,

where formal descriptions are provided. To accomplish this, we will need the following

two definitions. Assume that there exists a part relationship PB,A.
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The graphical symbol for the part relationship serves as the basis for a rich set of

symbols that denote the various semantics of the part relationship. The symbol is a bold,

dashed line connecting the meronymic and holonymic classes. A diamond head at one

end of the line indicates the holonymic class. See Figure 2.1. The symbol carries a

mnemonic device: "the pieces of the line indicate the parts of the object".

Also, the bold line serves to highlight the part relationship, making its hierarchy

clearly recognizable as a backbone of the graphical schema.

2.2.1 Exclusive and Shared Part Relationships

Part relationships in general can be divided along the lines of exclusive and shared 39,40.

An exclusive part relationship enforces the restriction that a given meronym can

be a component of only a single holonym. In other words, the holonym is the sole owner

of the meronym. Of all the part relationships we will introduce, the exclusive

relationship is perhaps the most intuitive because part modeling is most often associated
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While no two cars can share an engine, it is also the case that a car and, say, an

airplane cannot share one either. Therefore, the exclusive part relationship between the

classes engine and car must have ramifications for the entire database topology,

restricting not only "part" references from cars to engines but from objects of other

classes to engines as well. There are times, however, when we would like to confine the

exclusive reference restriction to a single holonymic class.

Consider a computer science publication database which contains scholarly

journals and books (and, in particular, books which are compilations of articles). If we

were to diagram this database, we would use the generic part relationship symbol to

indicate that class article is in a part relationship with both journal and compilation (the

latter being a subclass of book). Ordinarily, different journals do not contain the same

article. Therefore, it is sensible to impose this constraint on the database. However, an

article can appear as part of some compilation (a common

practice in the area), and so we do not want the exclusiveness constraint between

article and journal to have any implications on the relationship between article and

compilation.

For this reason, we distinguish between two types of exclusiveness, global

exclusiveness and class exclusiveness. An exclusive part relationship, such as the one

between engine and car, which affects the entire database topology will be referred to as a

global exclusive part relationship. This kind can be found in a number of existing

systems (e.g., 39,40), where it is simply called the exclusive part relationship. We too will

usually drop "global" and just call it exclusive. The class exclusive part relationship is

one that only enforces the exclusiveness constraint on the relationship between the
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participating classes, as between article and journal. Both the exclusive and class

exclusive relationships will be given formal definitions and their own graphical

representations below.

Part relationships that are not exclusive are called shared 39 . A shared part

relationship puts no restrictions on the number of holonyms that a given meronym can be

part of, allowing the meronym to be freely shared. The part relationship between article

and compilation in the example discussed above is shared. The same article can be

included in any number of compilations.

To formalize the definitions of these three part relationships, we place different

constraints on the cardinality of the holonym sets of the parts. It is interesting to note that

the resulting theoretical ordering with respect to the extent of the constraints (namely,

shared, followed by class exclusive, and then exclusive) is exactly opposite to the

"intuitive" ordering that we used to introduce these part-relationships.

Definition :

In particular, the cardinality of such sets must be allowed to be greater than one.

Because of this lack of constraints, we use the generic graphical symbol to represent the

shared relationship. (Actually, our generic symbol denotes a single-valued, shared part

relationship. Sharing may also be combined with multi-valuedness that is discussed in

the next section.)
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In other words, it is class exclusive iff ◊  is a partial function from E(B) to E(A).

To express the fact that a part relationship is class exclusive, we add a rectangle

enclosing an "X" directly behind the diamond head of the generic symbol. The "X" is

derived from "eXclusive." The rectangle, our symbol for a class, brings to mind "class."

An example of the class exclusive part relationship can be seen in Figure 2.2.
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2.2.2 Single-/multi-valued Part Relationships

The holonyms in a part relationship may have a single part from the meronymic class or

they may have many. To accommodate these situations, we introduce a number of

single-/multi-valued part relationships, defined in terms of constraints on the Mos.

The generic part symbol aptly expresses the single-valuedness of this part

relationship as it is a single-lined connection (Figure 2.2). The mnemonic here is "single

line equals single part". This s in contrast to the multi-valued part symbol where a dual

line is employed to convey multiplicity (Figure 2.2). The multi-valued relationship is

defined presently.

We note that according to our definitions the characteristics of exclusive/sharing

and single-/multi-valuedness are completely independent of each other and can be freely

mixed and matched to form such part relationships as the single-valued, shared; single-

valued, class exclusive; multi-valued, exclusive; etc. (In fact, as we noted earlier, the

generic symbol in fig3b is actually the single-valued, shared part relationship.) Because

of this orthogonality, we demonstrated the graphical symbols for the exclusive/shared

variations without any regard to single-/multi- valuedness. Likewise, in this section, we

will illustrate the graphical symbols without regard to exclusiveness/sharing.

Pictorially, the range-restriction is shown as a numerical range alongside the dual-

lined symbol of the multi-valued part relationship. Note that even though we are using

parentheses, the range is interpreted to include both endpoints. The upper or lower

bounds of a part relationship may be omitted for an "m or greater" or "0 to n"

interpretation. Graphically, a dash replaces the omitted bound.
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Definitiion :

'The fixed-cardinality part relationship is a range-restricted part relationship with

m = n. The value of m is said to be the multiplicity of the relationship.

If only engines with six cylinders are of interest in the database, then a fixed-

cardinality relationship of multiplicity six would be used to model this. The notation for

this relationship is similar to that for the range-restricted, except that the upper and lower

bounds are consolidated into a single number.

Definitiion :

The essential part relationship is fixed-cardinality relationship of multiplicity 1.

If we wish to require that all cars in our database have an existent engine, we

would employ an essential part relationship to model this. Since the essential relationship

is not actually multi-valued, we drop the dual line from its symbol. We also forgo the

"1" in parentheses and instead place a circle directly on the broken line (Figure 2.2). This

represemtation follows the convention we introduced in 42 where we indicated the

essentiallity of attributes and "ordinary" relationships using a circle. (This notation is also

consistent with that used in 43 .)

Definition:

The multi-valued, essential part relationship is a range-restricted part relationship

with louver bound 1 and no upper bound.

W e also use the circle for this relationship, but here we maintain the dual line.
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2.2.3 Dependent Part Relationship

A part relationship can be endowed with different forms of dependency as specified by

the domain of the third characteristic dimension:

Dependency semantics is often desired when modeling with parts 39 , especially

when the holonyms comprise numerous meronyms. Such a scenario is illustrated in a

CAD drawing along with its many parts. Having the parts deleted automatically on the

deletion of the drawing alleviates the burden of deleting them manually. As is meant to

be conveyed by the picture, such a process can be tedious and time-consuming. For this

reason, we include part-to-whole dependency in our model.

There are some part-whole configurations where the part acts as a defining

element, without whose existence the whole becomes insubstantial. Consider, for

example, that without its frame, a bicycle may be seen as nothing more than a collection

of "spare" parts. Therefore, it makes sense to propagate the deletion of a frame into the

deletion of its bicycle. We refer to this as whole-to-part dependency.

To be more precise about the two types of dependency, we define part

relationships that exhibit these characteristics in the following. There, we use the notation

del(x) to denote the application of a method to delete the instance x39
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If the value of 8 is nil, then neither of the above deletion semantics is applicable.

It will be noted that in both cases, the condition requiring that the independent deleted

item (e.g., a in the case of part-to whole dependency) be the only existing referent implies

a "multivalued" deletion semantics in that the deletion is not propagated until the set of

referents on which a given object depends becomes empty39).

To express the dependency in our graphical schema representation, an arrowhead

facing in the direction of the dependency (i.e., against the direction of the deletion

propagation) is placed immediately behind the diamond head. See Figure 2.2.

2.2.4 Value Propagating Part Relationships

We now define two part relationships that support upward and downward value

propagation44,40 . Value propagation refers to the flow of a data value across the part

relationship. As a modeling tool, it is useful for expressing certain functional

dependencies between integral objects and their parts. As an example, a car may be

modeled such that its age is equal to the age of its frame. In other words, the attribute age

of class car would be defined to be identical to the attribute age of class frame, which is a

meronymic class in relation to car. In such a case, instead of storing the value of age at

both classes, the value should be stored at frame and propagated upward through the part

relationship to car as needed. In this way, age need not be stored multiple times, and its

value is guaranteed to be the same at both car and frame.
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In the discussion below, we follow 45 in defining the properties of a class [namely,

its attributes, relationships, and (reader) methods] as functions that map instances of the

class into values of an associated type. For example, if the attribute name is defined for

class person, then name is a function that maps instances of person into "nameType"

(e.g., "string").

The requirement that 0 have a converse that is a partial function insures that F π  is

well defined. In a realization of this relationship, the public interface of the class A would

be augmented with a message to retrieve the value of F π for a given instance. This

message would be identical to the message used to retrieve property π  from an instance

of B. As an illustration, consider the above example where age is propagated from frame

to car. The interface of car would be augmented with a message "age" which for any

instance of car would retrieve the value of the function F ag, defined as

The upward propagating part relationship is represented graphically by placing

the name of the property being propagated in parentheses alongside the generic symbol.

An upward-pointing arrowhead is written in front of the parentheses to indicate the

direction of the propagation (Figure 2.2).

The value propagation mechanism could be defined such that all the properties of

the meronymic class are made available to the holonymic class. We have chosen to

concentrate on a single property because the propagation of all properties is ordinarily not

meaningful in the context of a part relationship. A holonym does not normally require
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many of its part's properties. 	 We can, of course, extend the definition to a set of

properties.

The downward propagating part relationship is used in the case where a data

value of the whole determines something about its parts. For example, in the real world,

if a filing cabinet is composed of steel, then its drawers are probably composed of steel,

too. In general, we could opt to model drawers such that they are always composed of

the same material as their cabinets. We stress that within our part model, such an

arrangement would not represent a default (see, e.g., 13), but rather a definitive modeling

decision requiring all drawers to obtain their material make-up from their filing cabinets.

The definition of the downward propagating relationship is analogous to that of its

upward propagating counterpart. Due to lack of space, we omit the actual specification.

We do point out that the graphical symbol used is identical to that for the upward

propagation except that the prepended arrowhead points downward (See Figure 2.2).



Figure 2.2 Expansion of Part Relationships
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Figure 2.2 Expansion of Part Relationships (coned)

41



Figure 2.2 Expansion of Part Relationships (coned)
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3 OWNERSHIP RELATIONSHIP

Ownership is a very important relationship in the business world. It is endowed with rich

semantics with respect to the owner and the property that is owned. As used in the

corporate world, ownership can exhibit a hierarchical structure. For example, one

company can own other companies.

Because of its complexity, modeling ownership in the context of a database

system can be an extremely difficult task. In our model, we introduce an "ownership"

relationship model that can be integrated into an Object Oriented Database (OODB)

system. The use of this relationship greatly facilitates the problem of modeling real-

world ownership and of enforcing its associated constraints.

3.1 Definition of Ownership

When we describe a state of "ownership", we must, in general, include the following

three features:

• The owner,

• The property that is owned, and

• The characteristic of the relationships between the two.

According to Webster's Dictionary, ownership is defined as follows:

• The state or fact of being an owner.

43
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• Proprietorship; Legal right of property; Legal or just claim or title (to

something); in law, the right to use for one's own advantage some property.

The owner referred to above can, by law, be a natural person, a corporation, or an

organization. The latter two are, in general, referred to as legal entities. Under the law,

legal entities are vested with certain powers, some of which are also held by natural

persons. Others, like the power to exist in perpetuity, are unique to legal entities. In our

databases, we see that Jim as a natural person owns his business. The Chrysler

Corporation as a legal entity owns Dodge.

Ownership of an item is often distributed among persons and legal entities. E.g.,

Jim and David together own a business, and a business bank account. Also, the Eagle

Corporation is a joint venture of Chrysler and Mitsubishi. We describe such a situation

as joint ownership. It is legitimate for a person and a company to jointly own a property.

The ownership need not be divided into equal portions. Stock holdings partition the

ownership of a public company into various percentages.

In law, property means rights which one has in anything subject to ownership,

whether it is mobile or immobile, tangible or intangible, visible or invisible. Ownership

is used synonymously with rights in property. Thus, a person is said to be the owner of a

property if he has certain rights in it. The term ownership is often used to indicate that

one has the "highest rights" in a property, but it may be used even when one does not

have all the rights. Thus, we say that a person is an owner of the house even though he

has rented it to a tenant who has exclusive rights to the use of the house during the term

of the lease.
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A property can be classified as real, intellectual, or personal. A real property

refers to the rights that one has in land or things closely related to it. An intellectual

property is the rights held on an idea (e.g., the design of an invention) or a creative work

(such as a musical composition or a novel). For such property, the rights apply to a

potentiality — no claim is made on any tangible item. Copyrights and patents are the

ordinary forms of intellectual property. Personal property encompasses everything that is

not a real or intellectual property. As an example, Jim's business resides in a building

that is his real property. One characteristic of the ownership relationship itself centers on

the existence of a legal document that verifies the owner's rights to a property. A

copyright owner, e.g., is granted a legal certificate giving him exclusive rights to possess,

make, publish, and sell copies of his intellectual productions, and to authorize others to

do so. In contrast, the owner of a household item does not have a legal document to

support his ownership, but he has the right to use it as he pleases. We call ownership of

the former kind documented and ownership of the latter kind undocumented. So, Jim's

patent is documented, while his ownership of a toaster oven is undocumented.

As a final distinction, some kinds of ownership are acquired by operation of law,

and we call it a de jure ownership. While some others are not, and are called de facto

ownership.

3.2 Ownership as an OODB Semantic Relationship

3.2.1 Transactions and Inheritance

As noted above, the most crucial aspects of ownership are the constraints that it imposes

on its related transactions such as sale and lease. Certain transactions can be applied to
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specific kinds of ownership, while others cannot. For example in the case of exclusive

ownership, the owner can sell his belonging without restriction (and thus the transaction

"sale" can be applied freely). While for joint ownership an owner can not sell the

property without the consent of the other owners (so the use of "sale" must be controlled).

When a person has accepted an offer to sell his house, he cannot accept another offer,

even though he is still the owner, until that time when the first offer becomes invalid. We

call the ownership of this kind action-limited. Similarly, when one has bought a stock

option, the ownership of it may expire after a certain period of time if it is not exercised.

In this case, we say that the ownership is time-limited. Likewise, when one has an

ownership of some property like a car or a house, it cannot be sold without its proper

documentation.

Aside from the transactions, the ownership relationship plays a vital role in more

accurately modeling various application domains via its inheritance mechanism, which

allows values of certain attributes to be propagated across it. Consider that to calculate

Chrysler's profit for 1995, the profits of Dodge, Plymouth, and Jeep must be added

together. Furthermore, the profits of Dodge must take into account the profit of Eagle.

In such an example, a value propagation between properties and owners is required.

From the above we see that to properly support transactions and inheritance with

respect to ownership, we need to explicitly model the different characteristics (which we

call the dimensions) of the ownership relationship. The investigation has revealed six

important dimensions.
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3.3 Formal Definition of the Ownership Relationship

Let E(C) denote the extension of a class C, i.e., the set of all its instances. The ownership

relationship between a property class B and an owner class A (denoted OB,A ) is defined

as the following septuple:

that the instance b of class B is the property of (i.e., is owned by) the instance a of class

A. We will ordinarily express this fact as bQBA. The remaining elements of the

septuple are the six characteristic dimensions, whose names are Legality, Documentation,

Limitation, Exclusiveness, Dependency, and Value Propagation, respectively. For each,

we list its domain in the following:
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3.3.1 Exclusive Dimension

Ownership can be classified as exclusive or joint. In other words, a property may be

owned by one owner or jointly owned by several owners. The formal definition for the

exclusive ownership relationship follows :

Definition :

Those ownership relationships that are not exclusive are referred to as joint, in

which case a property may be either jointly owned freely, i.e., there is no explicit

partition of the rights of the joint owners in the property. For example, a joint bank

account is freely shared by a couple we call this free joint. It can be jointly owned

such that each owner takes a certain percentage of the ownership. For example, husband

and wife each own 50% of their house we call this percentage joint. We call the case

where all owners have the same percentage equal joint 46,47

Graphically, a plain dotted arrow indicates free joint (See Figure 3.1). Percentage

joint and equal joint are denoted by labels of P and =, respectively (See Figure 3.1).
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percentage of ownership of b. The percentages p b,a associated with all the owners of b

must total 100%.

Above definition defines the percentage joint ownership relationship when the

property class has only one associated owner class. At times, the ownership of an object

may be distributed among owners from different classes. This case is defined as follows.

3.3.2 Value Propagation Dimension

There are times when a certain feature of a property is naturally assimilated as a feature

of its owner, or vice versa. E.g., the address of a person may be modeled as the address

of his house rather than as an intrinsic attribute of the person. The value of address,

rather than being duplicated, should be stored solely with the house and propagated

upward on demand. Address, in this sense, is a derived attribute of person.



50

For example, if the property address were propagated from the class house to the

class person, then the ownership relationship would define the property address on class.

Thus, the address of a person is identically that of the house that he or she owns.

Invariant propagation in the other direction is defined analogously (see48).

3.3.3 Additional Dimensions

The dependency dimension (see 48,49 ) regulates the semantics of deletion of ownership

class A or property class B. It defines when deletion of one should cause the deletion of

the other. Ownership can be either documented, or undocumented. Documented

ownership always has a supporting legal document, while undocumented ownership does

not.

Some kinds of ownership are acquired "by operation of law," i.e., through a

formal legal procedure. We call such ownership de jure. Others are not, and are called

de facto. These are the values for the legality dimension. Ownership is often used to

indicate the "highest rights," but it may be used when one does not have all the rights. In
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other words, ownership may be limited in some aspects. For example, if the owner of a

house has accepted an offer to sell that house to someone, then he cannot sell it to some

other person, even though he is still the owner, unless the offer becomes invalid.
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Figure 3.1 Expansion of the Ownership Relationships



CHAPTER

4 THE ARCHITECTURE OF OBJECTMAKER

4.1 Components

ObjectMaker provides the following functional components.

4.1.1 Diagramming Tool

Diagramming tool provides support for building many types of notation, performs basic

syntax checking, derived diagram creation (e.g., subdiagram), and map semantics of

diagrams to the repository.

4.1.2 Repository Management

The ObjectMaker Repository is relational in its schema definition and storage

capabilities, but provides navigational access facilities in addition to the usual

mechanisms of sets and cursors. The schema consists of a variety of record types, with

two types of fields per record : text and link. The link fields provide the basic facility for

representing complex concepts and navigating among them.

4.1.3 View Management

The View mechanism provides access to repository information through display windows

that can be set in one of three modes : search, which allows specifying criteria for

selecting records to display (in a QBE-like way); table, which shows all selected records,

53
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one per row ; and form, which shows the fields of one record and allows records to be

added, deleted, or modified.

4.2 Levels of Functionality

4.2.1 Kernel

This layer is provided by Mark V as a set of executable, and should be considered

immutable. It provides the Extension Language interpreter, primitive predicates, the

drawing engine and the repository and view management facilities. It interacts with

Extension Language programs through primitives and callbacks.

4.2.2 Support Layer

This layer is provided as a set of Extension Language files (encrypted for the end user,

plain text user for the TDK user). It provides higher-level support for defining and

managing operations for various methods and notations; in many cases, it provides a

declarative way to specify relations and transformations. The support layer is neutral

with respect to repository schemata, diagramming notations, and methods.

4.2.3 Schema Layer

The Extension Language files in this layer provide a specific schema for object storage,

schema-specific view definitions, and other schema- related information. It is possible for

users to interact with the tool entirely at the schema layer, independent of particular

methods. This layer is delivered with the Mark V standard schema, but may be tailored

by the TDK developer.
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4.2.4 Method Layer

This layer contains Extension Language files that provide support for methods and their

associated notations, for creating and editing diagrams, generating repository information

from them, and supporting method-specific views of the resulting records.

4.3 Directories and Files

The Extension Language's files that are part of ObjectMaker are stored in the context

directory. Its useful for a developer to study them, both to see what facilities are

available in the various layers and as a source of Extension Language predicates to learn

from.
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5 THE OBJECTMAKER EXTENSION LANGUAGE

5.1 What is the Extension Language

The Extension Language is a definition and programming language that specifies the

external behavior of ObjectMaker. It is used to define all layers of functionality above

the Kernel. It can also be used by the TDK developer to personalize ObjectMaker into a

special purpose tool, either using or replacing the layers supplied by Mark V.

The language is interpretive; the Kernel includes an interpreter for the language

plus primitive constructs to interface with the internal functionality of ObjectMaker.

5.2 Why do we need the Extension Language

Mark V has developed the Extension Language in order to allow ObjectMaker's behavior

to be defined and customized by Mark V and its customers. Extension Language allows

users to customize ObjectMaker, and therefore adapt it to their work situations.

Additionally, the Extension Language predicates provide the capability for inter-tool

integration, allowing ObjectMaker to be operated by, and control the operation of, other

programs using the windows DDE and OLE protocols (capabilities for message passing

and coordinating applications' work on shared documents), Unix's RPC mechanism, or

other platform-supported communication protocols. The Extension Language allows

users to specify the "binding" of keyboard and pointer inputs to language-driven actions.
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5.3 What can you do with the Extension Language

With Extension Language predicates, you can customize ObjectMaker's interface, as well

as its behavior. For example, you can customize ObjectMaker's menu entries, and the

actions that are performed when these entries are selected. If you want a certain menu

item or a certain behavior when that menu item is selected you can modify the particular

rule that controls that aspect of ObjectMaker. You can also customize how ObjectMaker

retrieves information and displays it in diagrams, text, and code. If you want a certain

processing routine performed when ObjectMaker accesses data from the underlying

semantic repository, or if you want to implement a certain pre-and post-conditions to

accessing data in forms and tables, or pre- and post- conditions to graphic editing, you

can modify the particular rules that control that aspect of ObjectMaker.

You can specify how an object on your diagram relates to entities in the semantic

repository. In ObjectMaker, each elementary diagram object is matched (by its shape, its

pen and other style flags) to rules that determine its semantic use. So, if you want to

modify the semantic behavior of an object on your diagram, you can modify the

particular rule that controls that aspect of ObjectMaker.

Additionally, for a complex object consisting of multiple shapes, a predicate

could check the objects in a given neighborhood.

You can specify what ObjectMaker should do when a view of part of the

repository is requested. View Generation for tabular information is accomplished by the

forms and table view facility, which is itself controlled by predicates. As a textual screen

display is being prepared, these predicates prepare a search specification (which specifies

a set of objects in the semantic repository to be viewed), a view specification (a definition
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of the format and rules for the view's appearance and behavior), and default values to

assign newly created records. All of these actions may be customized.

5.4 Nature of the Language

The Extension Language is a rewrite language. This means that programs in the

language are texts containing references to stored definitions. In operation, a text is

scanned (left to right) for these references; when one is encountered, it is replaced by its

definition. The result of this operation is a completely scanned text. In the ObjectMaker

Extension Language, the stored definitions are called rules, and consist of two parts: a

head which is matched against references in the scanned text (called invocations), and a

body or tail, which is the text to be substituted for the invocation.

The power of the language derives from several features of this process:

1. The invocations are not simple words to be substituted, but may contain

parameters thus allowing one rule to match many different invocations.

The parameters may be used in the body of the rule, thus allowing what

gets substituted to vary, depending on the parameters in the invocation.

2. Invocations may be nested, and will be replaced "inside out", thus, the

result of an invocation may become a parameter to another invocation.

3. The body of a rule may also contain invocations. When a body replaces

an invocation, scanning normally resumes from the beginning of the

replacement, so that these invocations will be seen and replaced in their

turn.



59

4. Some invocations may refer to primitives, which are defined in the kernel

rather than as rules. They may turn replacement text and also produce side

effects, such as popping up a dialog box.

5. The kernel may initiate Extension Language processing under certain

circumstances. Depending on the resulting test, certain actions may be

taken.

5.5 Rules

5.5.1 Rule Head

Rule head consists of a pattern. For readability, and to avoid ambiguity in matching

invocations, we use the convention that it should look similar to a typical function or

subroutine call in procedural languages : a name(italics) (which should consist of

alphanumeric characters plus dash, underscore or number sign(#), character), optionally

followed by parameters in parentheses. Another reason for adhering to this syntax is that,

in the future, we may restrict the allowable syntax to permit efficient compilation of the

Extension Language. Again by convention, we refer to a set of rules with the same name

as predicates(italics).

Parameters may contain the following two patterns matched characters : "*" to

match any string, "?" to match any one character. Parameters may be named; the syntax

for this is name = value. It is not necessary to explicitly represent parameter names in a

head or, for that matter express the number of parameters. For example, the head foo(*)

will match an invocation with the name foo and anything at all in the parentheses.
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5.5.2 Rule Body

The body of a rule contains a mixture of plain text, embedded expressions, and parameter

references. Expressions are strings delimited by angle brackets and may be arbitrarily

nested. An expression may have the form of a language-defined expression, or may be an

invocation (a reference to a rule). In the latter case, it should have the same form as a rule

head, except that its parameters will be taken literally.

Parameter references request substitution of text from invocation parameters, and

take the form <ref>, where ref is either an integer n, requesting substitution of the nth

parameter, or a name, requesting substitution of the named parameter. If the invocation

does not contain at least n parameters, or a parameter with a given name, a null string is

substituted.
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6 IMPLEMENTING A METHODOLOGY WITH OBJECTMAKER

In this chapter, we discuss the components that are needed to be created to provide

support for the methodology that we have discussed in this report: the diagramming

notations, repository definitions and view specifications that allow users to create and

maintain method-related data.

6.1 Menu definition

The methods and notations supported by ObjectMaker are stored in directories under

context/methods. Each directory corresponds to a method; it contains a file with the

extension .mnu for each notation. By convention, this file contains only menu

specifications; syntax and semantic rules are stored in files with the same base name and

the extension .rul. The last file needed when adding a new method is the file method.cfg.

It should be created in the method directory to describe the method and its notations. This

file consists of a single association list with method information and a sublist giving

information for each menu. It must have no comments or other extraneous matters. Also,

names and descriptive text must not contain any characters that might confuse the

Extension Language scanner (i.e. commas, angle brackets, or unpaired parenthesis).

Optional attributes may be omitted or may contain any information, subject to the above

restrictions. Other named attributes may be added to the list for descriptive purposes, and

will be ignored. For the method .cfg file of OOdini 2.0, see Appendix B.
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The next file that needs to be created is the .mnu file. ObjectMaker menus

consists of the following components: a menu bar structure common to all diagram types,

menu items specific to individual diagram types, accelerator (shortcut) keys, and a palette

menu.

Most diagram notations supported by ObjectMaker will have the same items on

the top level menu bar: "File," "Edit," "View," "Insert," "Database," "Tools," Window,"

and "Help." However, most notations differ from each other in the definition of the

supported icons, the products that can be generated (such as code-generation options),

and possibly others (such as type-specific toggles or palette menus). Accordingly, MarkV

Systems has provided an easy way to use the common menu definitions for the shared

common menu functions, and optionally the ability to add submenus for the type-specific

itegr. Each of the menus includes a corresponding submenu of menu invocation that

can be used to add items for a particular notation.

The icons that represent a particular notation are mostly "localized" in the "Insert"

pull-down menu.

In addition , menu files may define a palette menu or a shortcut accelerator key

for some menu items, actions, etc. Theses key assignments appear in the declaration of

the menu items and as supplementary accelerator definitions. The palette definitions

appear as a separate definition in the menu file (See Appendix B).

To show how menus and their items are defined, we'll begin with a simple

example. Every menu file will contain a pair of rules that define the "Insert" menu; the

following is part of the actual .mnu file for OOdini 2.0 that defines a sub-menu entry for

a class under the menu entry classes:
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The first rule defines an item on the menu bar(it's invoked by the support layer

rule that defines the menu bar). If warranted, additional method-specific menus could be

added here.

"Menu" is a key-word enclosing a list of entries. The top level menu is the menu

bar; the second-level menus (sub-lists) are drop-down menu panels; lower-level menus

(sub-lists) are walking menus. Menus can be nested to a reasonable depth (certainly

deeper than good user interface principles would permit). In this example, "Classes" will

appear on the menu with a right-pointing arrowhead. Selecting this item would reveal the

one-item nested menu item of Class.

The following is the format of defining a menu item:

item(prompt-left, prompt-right, action, accelerator, status bar message #1,

status bar message #2, status bar message #3)

defines a menu item, in which prompt-left and prompt-right are the text strings

that appear on the menu(left- and right-justified, respectively), action defines what is to

be done when the item is selected, and accelerator defines a keystroke combination to be

used to achieve the same effect as choosing the item from the menu. When an accelerator

is defined, a representation for it will appear on the right side of the menu entry next to

the prompt-right, if the later is present. The status bar messages will appear on the status
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bar at the bottom of the screen to inform the user what type of item is selected, what type

of action is being performed on that item and what type of action is being performed on

the schema.

6.2 Diagram Syntax Checking

As described earlier in this report, there are several occasions when the support layer

calls appropriate predicates to check the user's drawing activities. The ".rul" file

corresponding to the notation's ".mnu" file contains the rules for checking the legality of

diagramming operations for the notation. We discuss here the predicates commonly

provided for such checks.

The basic predicate, icon type, is used in several contexts. It returns, for a given

icon, a "syntactic type" which is used in legality checks as well as in mapping icons to the

repository. In its simplest form, it's a context free mapping from an icon's shape and style

to an expression that is defined. A more complex form takes a handle to the icon, which

may be used to navigate around its neighborhood in the diagram when the type can't be

determined from the shape and style alone. For example, a box may be of a different

type depending on whether it's nested in another or is at the top level.

For example, here are a couple of definitions corresponding to the OOdini

methodology from the OOdini 2.0 .rul file:
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The parameters and tail of an arc_check are icon_types (or patterns matching

them); the first example rule may be read "an arc of regular type (i.e. one whose

icon type begins with regular) may begin and end at a regular class". The tail of the
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second rule is an example of an "or" pattern; the meaning here that an essential

relationship may end either at a regular class or a set class.

The node_parent predicate is called when a node is created or moved inside

another (i.e. the set class in the OOdini methodology). It has the form:

where nesting may be a socket, nested_or socket, or a nested. These values tell

whether the child icon can be nested (float freely within the parent), socketed (be

restricted to the border of the parent)or either.
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7 CURRENT IMPLEMENTATION OF OODINI 2.0

7.1 Actual Implementation

As explained earlier, there are 3 main components needed for implementation of OOdini

2.0. The 3 components ; the method.cfg, menu and rule files are referenced in

APPENDIX B.

The specific limitations that were discovered during the implementation are

discussed in the next section.	

7.2 Limitations of OOdini 2.0

There were many limitations that were encountered with the TDK used during the

development of OOdini 2.0. The primary limitation was the non-availability of desired

icons and adornments, as specified by the OOdini graphical representation. This led to

alternative representations, and in some cases the icons were not supported at all.

Another limitation was the non-availability of the double framed icon. Because of

this a set class could not be represented. A set class is represented by a double framed

rectangle as shown in Figure 1.3.

The TDK provided very little support when it came to adornments. Although the

TDK allowed every relationship to have at most 3 adornments : one at the head, one in

the middle, and one at the tail, the adornments could only be one from the set of pre-

defined(in the TDK adornment library) adornments. One could not design his/her own
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adornment. This makes it impossible to represent relationships such as the percentage

joint relationship that needs to have a percentage sign as an adornment. In certain cases,

such as that of ;the documented relationship, one needed a rectangle as an adornment on

the relationship. Although the ObjectMaker TDK supports both the rectangle and a

regular relationship, it still can't be used. This is because ObjectMaker does not provide

any way in which we can group both these concepts(the rectangle and a regular

relationship together.

All icons that need to represent part whole relationships have a diamond shaped

head. The TDK only supports regular arrow heads (those with '>' at the head). This made

impossible to represent any of the part whole relationships.

Besides, in cases such as the tuple class see Figure 1.3, we require an entirely

unsupported icon. The tuple class is represented by a rectangle with a small triangle

attached to its bottom width. Since such icons are not supported the tuple class was not

implemented in OOdini 2.0.

Many of OOdini 2.0's enhancements seem difficult because of the inability of the

TDK to provide a way by which a developer can design icons in any desired manner. An

example of such a requirement could be the regular class, which needs to be designed as

a set of drawers to hold individual attributes. This is required to model path methods that

end in an attribute. This feature was impossible to implement in OOdini 2.0 because of a

lack of TDK support. Besides, even if such a regular class was diagrammatically

possible, ObjectMaker did not have rules strong enough in their specifications to allow

such a feature. By not having such rules to control the feature, the tool cannot validate
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user design(i.e. it might allow other relationships to be associated with an attribute

instead of the class).



CONCLUSION

In this report, we have presented a graphical schema representation language for OODBs.

This language captures a full range of OODB constructs including classes, attributes,

methods, user-defined, and semantic relationships such as specialization relationships,

constraint relationships, part-whole relationships, and ownership relationships. The

language has been employed successfully in a number of large applications and has

proven to be expressive and intuitive. In this regard, further work such as a full-scale,

subjective evaluation study is needed.

We have also introduced OOdini, a constraint-based graphical editor designed

specifically for the creation and manipulation of our schema representation. A graphical

schema representation can greatly facilitate the design of OODBs and can serve as a

means for orienting users of such systems. The database community has recognized the

need for a standard for declarative query languages7. We believe that there is a similar

need for OODB graphical schema languages. Perhaps ours can serve as a step toward

this end. As a final example, we refer the reader to Figure 1.1, which shows an excerpt

from the schema of a university database we have built.
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APPENDIX A USER MANUAL FOR OODINI 2.0

Listed below are the menu commands and an appropriate definition of the command.

The File entry drops down a menu giving the user access to a number of disk storage and

retrieval commands. OOdini 2.0 also gives the user the option of selecting output to a

printer or setting up the page for printout. The menu also gives the user a choice for

exiting the OOdini program entirely.

A.1 File Menu

New 

Create a new, untitled, diagram. You will be prompted to save any changes to the

current diagram. Then you will have the option of specifying a new method and/or

notation.

Open

Open an existing diagram. You will be prompted to save any changes to the

current diagram. If the current diagram is untitled, the Save As dialog is displayed to

allow you to name the diagram before saving. The Open dialog initially points to the

current Project directory, if one has been opened. The method/notation with which the

diagram was saved will be automatically reloaded with the diagram.

Close

Close the current diagram. You will be prompted to save any changes. If the

diagram is untitled, the Save As dialog is displayed to allow you to name the diagram

before saving. A new, untitled, diagram is automatically opened in the current method.
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Save

Save the current diagram using the current file and path name. If the diagram is

untitled, the Save As dialog is displayed to allow you to name the diagram before saving.

Note: Save operations brand the diagram with the method/notation that is current

at the time of the Save operation, so that the next time the diagram is opened, the

method/notation is automatically loaded for you.

Save As

Save the current diagram with a new file and/or path name.

Print

Print the current diagram.

Print Full Page

Print the current diagram using default page settings.

Print Setup

Specify standard printer setup options as found in your system environment.

Diagram History

Open a diagram that was previously opened during the current ObjectMaker

session. View the selected diagram in the current window or in a newly spawned session.

If you open a diagram in the current window, you will be prompted to save any changes.

Exit

Exit from ObjectMaker. You will be prompted to save any changes. If the current

diagram is untitled, the Save As dialog is displayed to allow you to name the diagram

before saving.
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A.2 Edit Menu

The Edit menu provides the user with, among other things, a search feature for tracking

down a desired class. This function positions the system's current working window

around a given class. It gives the user yet another method of repositioning the working

window. This feature should aid both browsers and designers in their navigation through

the schema.

Undo

Undo the last diagram edit action. Shortcut: Click the right mouse button. Does

not undo semantic database operations.

Select All

Select all of the graphic elements in the diagram.

Delete

Delete one or more boxes or arrows. If action is selected first, click on box or

arrow to be deleted. If the box or arrow is already selected, selecting the Delete action

will complete the deletion process. (Shortcut - use the Delete key on the keyboard, then

click on item to be deleted.) Deleting Mapped Icons Deleting a diagram shape that has

been mapped to a semantic database causes ObjectMaker to ask if the related database

record should also be deleted.

Clicking on No will cause the semantic database record to remain even though the

diagram box is deleted. This is a logical action if the deleted object appears on other

diagrams mapped to this semantic database. Clicking on Yes will cause both the

semantic database record and the box to be deleted. If there are any associated shapes
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(arrows, children, etc.) you will be asked if the semantic database record should be

deleted for each of these associated records.

Clicking on Cancel will cancel the entire operation. Choosing Undo after the

completion of the delete operation will restore the diagram but will not restore the

semantic database. This feature allows you to edit and remap the boxes without having to

redraw them.

Duplicate

Duplicate the selected graphics, including any nested boxes and labels. Select the

box(es) to be duplicated, then choose Duplicate from the Edit menu. Place the cursor over

the selected box (or one of the boxes within the group) and hold the left mouse button

down while dragging the duplicate to its new location. During dragging operations,

boxes are depicted as dotted or dashed rectangles. Release the mouse button to finish.

Note: Duplicating a group of boxes doesn't "group" or attach them to one another.

Move

Move or resize the selected box. ObjectMaker will default to the Move command

at the completion of most edit actions. Moving a box will also move all nested boxes and

attached arrows and labels. Place the cursor over shape to be moved, hold left mouse

button down and drag to new location. To resize a box, place one of the edge or corner

cursors at the edge or corner of the box you wish to resize, hold left mouse button down

and drag to the proper location in order to obtain the new size.

Label Menu

Resize Box to Label: Resize the selected box to fit its label.
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Resize Box: Resize a box. This command allows manual resizing of a box from

anywhere within that box. Select the command, place the cursor anywhere in the box,

press and hold the left mouse button and drag until the box is the desired size. Alternate:

Simply position the cursor at an edge or corner of the box, press the left mouse button

and drag until the box is the desired size.

Resize Nested: Resize a box that contains nested boxes. This command is similar

to Resize Box except that when the parent is resized, any nested or socketed boxes are

resized at the same proportion as the parent.

Make Construct

Create a reusable graphic construct.

Insert Construct

Insert an existing graphic construct into the current diagram.

Move Attached

Move boxes that have been attached to each other. The graphic will remain

attached after the move, even if moved outside of its parent.

A.3 View Menu

Through the View menu, OOdini allows the user to Zoom in or Zoom out. OOdini can

thus serve as a schema browser or OODB orientation device.

Zoom In

Zooms into (increase zoom level of) drawing. Choose Zoom In, then click at the

point in the diagram you wish to be the center of the zoomed image. ObjectMaker

supports 5 levels of zoom.
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Zoom Out

Zoom out (decrease zoom level) of drawing. Choose Zoom Out, then click at the

point in the diagram you wish to be the center of the zoomed image. ObjectMaker

supports 5 levels of zoom.

Refresh Window

Refresh the window display. This command is used to clean up the drawing area

after editing operations that have left stray artifacts.

Center Diagram

Center the diagram in the window without changing the current zoom level.

Zoom to Fit

Zoom in or out of the current diagram so that as much of it as possible will fit

within the window. As we have discussed earlier that there are five zoom levels available

to the user, in the ObjectMaker. Note that very large diagrams may not fit even at zoom

level 1.

Center on Cursor

Center the window on a selected point in the diagram. Choose Center on Cursor,

move the cursor to the spot on the diagram you wish to be in the center of the screen, and

click the left mouse button. Provides fast, direct method of panning large diagrams or

diagrams being viewed at high zoom levels. Alternately: place the cursor at the desired

spot and press F10.

Find Graphic

Center the window on the first graphic whose label matches the specified text

string. You may use wild card characters * and ?.
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Show Grid

Toggle the visibility of the alignment grid. Grid matches value set using

Alignment Grid command except when grid would be too dense. Only box shapes,

anchors, and bends are snapped to grid, and they are centered on the nearest grid point.

Labels, arrows, notes and other diagram constructs are not snapped to grid.

Show Anchors

Toggle the visibility of anchors, internal direction indicators on arrows, and spline

outlines.

A.4 Database Menu

New

Create a new semantic database and open it. Prompts for a new database name (8

characters maximum). The dialog will default to the current Project directory if one has

been opened. Each database consists of five files. For example, assuming the name of the

database is named "mydata", the following files will be created:

mydata.tbl (the database file itself)

mydata.nxd (the database index)

mydata.lok (the database lock file)

mydata.nd0 (a copy of the index file as of the last database Save action)

mydata.tb0 (a copy of the database contents as of the last database Save action).

The ND0 and TB0 files are maintained so you can revert the database to the

previously saved state.
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Open

Open a semantic database file. The path will default to the current Project

directory, if a Project has been opened.

Save

Save changes made to the current semantic database.

Save As

Save the current semantic database with another name.

Edit Record for Graphic

Edit the record in the current semantic database for the selected graphic.

Map Entire Diagram

Map an entire diagram into the current semantic database. Creates optional log

file that is stored in the same directory as the diagram. The log file details, which boxes

and arrows were mapped and any anomalies detected.

Map Selected Graphic

Map the selected graphic into the current semantic database. Also may create a

log file of mapping activity results. Select the Map Selected Graphic command from the

Database menu and then click on the shape you wish to map.

A.5 Tools Menu

Note that some items may not be available with all methods or notations.

Trace Feature

Trace the execution of Extension Language commands. The Message Control

dialogue box is used to turn the trace feature on and off, set the trace filters and set file
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names and paths. This command should only be used in consultation with Mark V

technical support personnel.

A.6 Help Menu

Contents

Provides access to on-line help. A standard Windows Help window is displayed

with the top-level index for ObjectMaker on-line help.

About ObjectMaker

Displays a window which provides various information about the current status of

ObjectMaker including:

License information

Version, Code: (shows the version and build date of the ObjectMaker executable)

The number of Nodes (boxes, bends and anchors) and Arcs (arrows) contained in

the current diagram. The maximum number of Nodes and Arcs allowed on a single

diagram is controlled by the Nodes, Arcs and Notes values in the Setup Preferences

dialog (Tools/Installation menu).



Figure A.1 OOdini 2.0 Main Menu
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Figure A.2 Choosing various symbols using menu bar
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Figure A.3 Accessing a sub-menu



Figure A.4 ObjectMaker Toolbars
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Figure A.5 ObjectMaker Class - Person



APPENDIX B SOURCE FILES FOR OODINI 2.0

85



86



87



88



89



90



91



92



93



94



95



96



97



98



99



100



101



102



103



104



105



REFERENCES

1. E. J. Neuhold and M. Schrefl. Dynamic Derivation of Personalized Views. Proc. 14th
Int'l Conference on Very Large Databases., Long Beach, CA, 1988.

2. M. Schrefl and E. J. Neuhold. A Knowledge-based Approach to Overcome Structural
Differences in Object-Oriented Database Integration. In Proc. IFIP Working
Conference on the Role of AI in Database and Information Systems, Guangzhou,
China, 1988. North Holland.

3. M. Schrefl and E. J. Neuhold. Object Class Definition by Generalization using
Upward Inheritance In Proc. 4th Int'l Conference on Data Engineering, pages 4-13,
Los Angeles, CA, Feb.1988.

4. Lawrence A. Rowe and Michael Stonebraker. The Design of POSTGRES. In Proc.
1986 ACM SIGMOD Conference on Management of Data, Washington, D.C., May
1986.

5. Michael Stonebraker et al. Third-Generation Database System Manifesto. SIGMOD
Record,19(3): 31-44, Sept. 1990.

6. R. Agrawal and N. H. Gehani. ODE (Object Database and Environment): The
Language and Data Model. In Proc. 1989 ACM SIGMOD Int'l Conference on
Management of Data, pages 36- 45, Portland, OR May 1989. ACM.

7. R. Agrawal and N. H. Gehani and J. Srinivasan. OdeView: The Graphical Interface to
Ode. In Hector Garcia-Molina and H. V. Jagadesh, editors, Proc. 1990 ACM
SIGMOD Int'l Conference on Management of Data, pages 34-43, Atlantic City, NJ,
May 1990. ACM.

8. 0. Deux et al. The Story of O.). IEEE Trans. Knowledge and Data Eng., 2(1):91-108,
1990.

9. C. J. Date. An Introduction to Database Systems, volume 1. Addison-Wesley
Publishing Co., Inc., Reading, MA, fourth edition, 1986.

10. Ronald J. Brachman and Hector J. Levesque, editors. Readings in Knowledge
Representation, Morgan Kaufmann Publishers, Inc., Mountain View, CA, 1985.

1 . 1. J. F. Sowa. Principles of Semantic Networks, Explorations in the Representation of
Knowledge. Morgan Kaufmann Publishers, Inc., San Mateo, CA, 1991.

12. J. F. Sawa. Conceptual Structures, Information Processing in Mind and Machine.
Addison-Wesley Publishing Co., Inc., Reading, MA, 1984.

106



107

13. Elaine Rich and Kevin Knight. Artificial Intelligence. McGraw-Hill, Inc., New York,

NY, second edition, 1991.

14. Peter Pin-Shan Chen. The Entity-Relationship Model: Toward a Unified View of
Data. ACM Trans. Database Syst., 1(1):9-36, 1976.

15. Ramez Elmasri and Shamkant B. Navathe. Fundamentals of Database Systems. The
Benjamin/Cummings Publishing Co., Inc., New York, NY, 1989.

16. Jeffrey D. Ullman. Principles of Database Systems. Computer Science Press,
Rockville, MD, second edition, 1982.

17. R. G. G. Cattell and T. R. Rogers. Entity-Relationship Database User Interfaces. In
M. Stonebraker, editor, Readings in Database Systems, pages 359-368, San Mateo,
CA, 1988.

18. A. Albano and L. Cardelli and R. Orsini. Galileo: A Strongly Typed, Interactive
Conceptual Language. ACM Trans. Database Syst., 10(2): 230-260, 1985.

19. A. Albano et al. An Overview of Sidereus: A Graphical Database Schema Editor for
Galileo. In Proc. EDBT '88, pages 567-571, Venice, Italy, Mar. 1988.

20. S. Abiteboul and R. Hull. WO: A Formal Semantic Database Mode. ACM Trans.
Database Syst., 12(4): 525-565, 1987.

21. David W. Shipman. The Functional Data Model and the Data Language DAPLEX,
ACM Trans. Database Syst., 6(1): 140-173, 1981.

22. Daniel Bryce and Richard Hull. SNAP: A Graphics-based Schema Manager. In Proc.
hit '1 Conference on Data Engineering, 1986.

23. Marc Gyssens and Jan Paredaens and Dirk van Gucht. Graph-Oriented Object Model
for Database End-User Interfaces. In Hector Garcia-Molina and H. V. Jagadesh,
editors, Proc. 1990 ACM SIGMOD hit? Conference on Management of Data, pages
24-33, Atlantic City, NJ, May 1990. ACM.

24. D. H. Fishman et al. Overview of the Iris DBMS. In Won Kim and Frederick H.
Lochovsky, editors, Object-Oriented Concepts, Databases, and Applications, pages
219-250. ACM Press, New York, NY, 1989.

25. Ontologic, Inc., Burlington, MA. ONTOS 2.01 documentation, 1991.

26. Won Kim. A Model of Queries for Object-Oriented Databases, In Proc. 15th VLDB,
pages 423-432, 1989



108

27. Kevin Gorman and Joobin Choobineh. The Object-Oriented Entity-Relationship
Model (OOERM). Journal of Management Information Systems, 7(3): 41-65, 1991.

28. P. Butterworth and A. Otis and J. Stein. The GemStone Object Database Management
System. Commun. ACM, 34(10): 64-77, Oct. 1991.

29. James Rumbaugh and Michael Blaha and William Premerlani and Frederick Eddy
and William Lorensen. Object-Oriented Modeling and Design. Prentice Hall,
Englewood Cliffs, NJ, 1991.

30. Bertrand Meyer. Tools for the New Culture: Lessons from the Design of the
Libraries. Commun. ACM, 33(9): 68-88, Sept. 1990.

31. Gerti Kappel and Michael Schrefl. Object/Behavior Diagrams. In Proc. 7th Int'l
Conference on Data Eng., pages 530-539, Kobe, Japan, Apr. 1991.

32. Peter Wegner. An Object-Oriented Classification Paradigm. In Schiver and Wegner,
editors, Research Directions in Object-Oriented Programming. MIT Press, 1987.

33. Hungkway Chao and Veena Prakash Teli. Development of a University Database
using the Dual Model of Object-Oriented Knowledge Bases. Master's thesis,
Department of Computer and Information Science, NJIT, Newark, NJ, 1990.

34. E. Neuhold and Y. Perl and J. Geller and V. Turau. Separating Structural and
Semantic Elements in Object-Oriented Knowledge Bases. In Proc. of the Advanced
Database System Symposium, pages 67-74, Kyoto, Japan, 1989.

35. J. Geller and Y. Perl and E. Neuhold. Structural Schema Integration in Heterogeneous
Multi-Database Systems using the Dual Model. In Proc. First Int'l Workshop on
Interoperability in Multidatabase Systems, Los Alamitos, CA, 1991. IEEE Computer
Society Press.

36. Brad A. Myers et al. Garnet, Comprehensize Support for Graphical, Highly
Interactive User Interfaces. Computer, 23(11): 71-85, Nov. 1990.

37. Open Software Foundation. OSF/Motif Style Guide. Prentice Hall, Englewood Cliffs,
NJ, 1990.

38. M. E. Winston and R. Chaffin and D. J. Herrmann. A Taxonomy of Part-Whole
Relations. Cognitive Science,11(4): 417-444, 1987.

39. Won Kim and Elisa Bertino and Jorge F. Garza. Composite Objects Revisited. In
Proc. 1989 ACM SIGMOD Int'l Conference on the Management of Data, pages 337-
347, Portland, OR, June 1989.



109

40. G. T. Nguyen and D. Rieu. Representing Design Objects. In J. Gero, editor, Al in
Design '91. Butterworth-Heinemann Ltd., 1991.

41. P. Coad and E. Yourdon. Object-Oriented Analysis, Yourdon Press Computing
Series. Prentice Hall, Englewood Cliffs, NJ, second edition, 1991.

42. Michael Halper and James Geller and Yehoshua Perl and Erich J. Neuhold. A
Graphical Schema Representation for Object-Oriented Databases. In R. Cooper,
editor, Interfaces to Database Systems, pages 282-307. Springer-Verlag, London,
1993.

43. D. Woelk and W. Kim and W. Luther. An Object-Oriented Approach to Multimedia
Databases. In Proc. ACM SIGMOD Int'l Conference on Management of Data, pages
311-325, Washington, D.C., May 1986.

44. Stanley B. Zdonik and David Maier. Fundamentals of Object-Oriented Databases. In
S. B. Zdonik and D. Maier, editors, Readings in Object-Oriented Database Systems,
pages 1-32, Morgan Kaufmann Publishers, Inc., San Mateo, CA, 1990.

45. Michael Halper and James Geller and Yehoshua Pen. An OODB — Part" Relationship
Model. In Y. Yesha, editor, Proc. ISMM 1st Int'l Conference on Information and
Knowledge Management, pages 602-611, Baltimore, MD, Nov. 1992.

46. Michael Halper and James Geller and Yehoshua Perk Value Propagation in OODB
Part Hierarchies. In B. Bhargava and T. Finin and Y. Yesha, editors, Proc.
ISMM/ACM 2nd Int'l Conference on Information and Knowledge Management, pages
606-614, Washington, DC, Nov. 1993.

47. M. Halper and Y. Perl and 0. Yang and 3. Geller. Modeling Business Applications
with the OODB Ownership Relationship. In R. S. Freedman, editor, Proc. 3rd Int'l
Conf on AI Applications on Wall St., pages 2-10, New York, NY, June 1995.

48. 0. Yang and M. Halper and J. Geller and Y. Perl. The OODB Ownership
Relationship. In Proc. Int'l Conf on Object-Oriented Information Systems (OOIS'94),
pages 389-403,London, UK, Dec. 1994.

49. J. Geller and Y. Perl and P. Cannata and A. Sheth and E. Neuhold. A Case Study of
Structural Integration. In Y. Yesha, editor, Proc. 1st Int'l Conference on Information
and Knowledge Management, pages 102-111, Baltimore, MD, Nov. 1992


	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Acknowledgement
	Table of Contents (1 of 3)
	Table of Contents (2 of 3)
	Table of Contents (3 of 3)
	Chapter 1: Introduction to OODINI
	Chapter 2: The OODB Part Relationship
	Chapter 3: Ownership Relationship
	Chapter 4: The Architecture of Objectmaker
	Chapter 5: The Objectmaker Extension Language
	Chapter 6: Implementing a Methodology With Objectmaker
	Chapter 7: Current Implementation of OODINI 2.0
	Conclusion
	References
	Appendix A: User Manual For OODINI 2.0
	Appendix B: Source Files For OODINI 2.0

	Table of Figures



