Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use" that user may be liable for copyright infringement,

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select "Pages from: first page # to: last page #" on the print dialog screen

The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.

ABSTRACT

THERMODYNAMIC AND KINETIC ANALYSIS ON Cl. + RCl \leftarrow Cl₂ + R. REACTIONS, CH₃CjO + O₂ => PRODUCTS AND CjCHO + O₂ => PRODUCTS

by Jongwoo Lee

Thermodynamic Parameters, $\Delta H^{o}_{f(298)}$, $S^{o}_{(298)}$ and Cp(T) are evaluated for C_1 and C_2 chlorocarbon molecules and radicals. These thermodynamic properties are used in evaluation and comparison of R. + Cl₂ => R-Cl + Cl. (defined forward direction) reaction rate constants from the kinetics literature. Data from some 20 reactions in the literature show linearity on a plot of Ea_{fwd} vs. $\Delta H_{rxn,fwd}$, yielding a slope of (0.38 ± 0.04) and intercept of (10.10 \pm 0.77) kcal/mole. Thermodynamic properties ($\Delta H^{o}_{f(298)}$, $S^{o}_{(298)}$ and Cp(T) from 300 to 1500 K) for reactants, adducts, transition states, and products in reactions of CH₃ and C₂H₅ with Cl₂ are calculated using CBSQ//MP2/6-311G(d,p). Evaluated thermodynamic property data are presented for all isomers of the stable molecules CH₃Cl, CH₂Cl₂, CHCl₃, CCl₄, C₂H₅Cl, C₂H₄Cl₂, C₂H₃Cl₃, C₂H₂Cl₄, C₂HCl₅, C₂Cl₆, C₂H₃Cl, C₂H₂Cl₂, C₂HCl₃, and C₂Cl₄. Evaluated thermodynamic property data are also presented for the alkyl radicals, (including isomers) C•H₂Cl, C•HCl₂, C•Cl₃, C₂H₄Cl•, C₂H₃Cl₂•, C₂H₂Cl₃•, C₂HCl₄•, and C₂Cl₅•, for the olefin radicals (including isomers) $C_2H_2Cl \bullet$, $C_2HCl_2 \bullet$, and $C_2Cl_3 \bullet$.

Thermodynamic property and chemical kinetic analysis are performed on reactants, intermediates, transition states and products from reactions of the two radicals resulting

via H atom abstraction from acetaldehyde: CH_3CjO and CjCHO with molecular oxygen. Density functional and *ab initio* calculations are utilized to estimate thermodynamic properties: $\Delta H_{f}^{\circ}_{298}$, S°_{298} , and $Cp^{\circ}(T)$ 300 – 1500K. Rate constants are estimated as a function of temperature and pressure using QRRK analysis for k(E) and modified strong collision analysis for fall-off for application to atmospheric and combustion kinetic modeling.

The important reaction paths are determined as:

$$CH_3CjO + O_2 \longrightarrow CCOQj$$
 (Stabilization)

THERMODYNAMIC AND KINETIC ANALYSIS ON Cl. + RCl <--> Cl₂ + R. REACTIONS, CH₃CjO + O₂ => PRODUCTS AND CjCHO + O₂ => PRODUCTS

by Jongwoo Lee

A Thesis
Submitted to the Faculty of
New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of
Master of Science in Chemical Engineering

Department of Chemical Engineering, Chemistry, and Environmental Science

APPROVAL PAGE

THERMODYNAMIC AND KINETIC ANALYSIS ON Cl. + RCl <--> Cl_2 + R. REACTIONS, CH₃CjO + O_2 => PRODUCTS AND CjCHO + O_2 => PRODUCTS

Jongwoo Lee

Dr. Joseph W. Bozzelli, Thesis Advisor Distinguished Professor of Chemistry, New Jersey Institute of Technology, Newark, NJ	Date
Dr. Robert Pfeffer, Committee Member Distinguished Professor of Chemical Engineering, New Jersey Institute of Technology, Newark, NJ	Date
Dr. Robert B. Barat, Committee Member Associate Professor of Chemical Engineering, New Jersey Institute of Technology, Newark, NJ	Date

BIOGRAPHICAL SKETCH

Author:

Jongwoo Lee

Degree:

Master of Science

Date:

May 1999

Undergraduate and Graduate Education:

- Master of Science in Chemical Engineering, New Jersey Institute of Technology, Newark, NJ, 1999
- Bachelor of Science in Chemical Engineering, Yonsei University, Seoul, Korea, 1995

Major:

Chemical Engineering

Presentations and Publications:

Lee, J.; Chen, C. J.; Bozzelli, J. W., "Thermochemical and Kinetic Analysis on Acetyl Radicals Reactions with O₂: CjCHO + O₂ => Products and CCjO + O₂ => Products", Joint Meeting of the United States Sections of the Combustion Institute, Washington D. C., March 14-17, 1999. Oral Presentation.

Bozzelli, J. W.; Lee, J.; Sawerysyn, J. P., "Thermodynamic and Kinetic Analysis on Cl Atom Abstractions of Chlorine from Halocarbons and the Reverse Alkyl Abstractions: Cl. + RCl ↔ Cl₂ + R. ", Joint Meeting of the United States Sections of the Combustion Institute, Washington D. C., March 14-17, 1999. Poster.

To my beloved family

ACKNOWLEDGMENT

The last two years I have spent at NJIT have been a learning experience on several levels. I hope that in these few paragraphs I can express how much certain people have meant to me during this undertaking. First and foremost, I must thank to my advisor, Professor Joseph W. Bozzelli, not only for his guidance but also his encouragement, patience, and kindness throughout this research. I would also like to thank to my thesis committee members, Professor Robert Pfeffer and Associate Professor Robert B. Barat for their helpful corrections and suggestions.

It is my pleasure to thank Dr. Takahiro Yamada and Chiung-Ju Chen, who shared their knowledge with me and helped me with *ab initio* calculation analysis. In addition, I would like to thank my coworkers at NJIT, Byung Ik Park, Samuel Chern, Chad Sheng, Li Zhu, Hongyan Sun, and Dawoon Jung, for having dealt with me as a collegue, which has made my time at NJIT much more enjoyable and productive.

In particular, I appreciate the love my father, Nam-Ki Lee and my mother, Jung-Yeul Kang have given me over years, as well as the freedom to allow me to pursue my dreams. I would like to thank my friend, Bo-Young Noh for her encouragement and understanding. Of course, I also thank God, for without Him, nothing would be possible.

I gratefully acknowledge funding from the New Jersey Institute of Technology

NSF Industry/University Hazardous Substance Management Research Center grant

number NJ 92-240050 and the USEPA-CalTech-MIT-NJIT Research Center on Airborne

Organics grant number R819679.

TABLE OF CONTENTS

CI	Page
PA	THERMODYNAMIC AND KINETIC ANALYSIS ON CI ATOM ABSTRACTIONS OF CHLORINE FROM HALOCARBONS AND REVERSE ALKYL ABSTRACTIONS FROM Cl ₂ : Cl. + RCl <> Cl ₂ + R.
1	ABSTRACT FOR PART ONE
2	INTRODUCTION FOR PART ONE
3	METHOD FOR PART ONE5
	3.1 Thermodynamic Properties
	3.2 Thermodynamic Analysis for the Reactions
	3.3 Ab initio Calculations on CH ₃ and C ₂ H ₅ Plus Cl ₂ Reaction Systems6
	3.4 Determination of Enthalpies of Formation ($\Delta H^{o}_{f(298)}$)6
	3.5 Determination of Entropy ($S^{o}_{(298)}$) and Heat Capacities ($Cp(T)$'s, $300 \le T/K \le 1500$)
4	RESULTS AND DISCUSSION FOR PART ONE8
	4.1 Cl + RCl <=> Cl ₂ + R. Reaction8
	4.1.1 Overall8
	4.1.2 Hydrocarbons8
	4.1.3 C ₁ Chlorocarbons
	4.1.4 C ₂ Chlorocarbons
	4.1.5 Kinetic Trends16
	4.2 Ab initio Calculations in Reactions of CH ₃ and C ₂ H ₅ with Cl ₂ 19
	4.2.1 Ab initio Calculations of Thermodynamic Properties in Reactions of CH ₃ and C ₂ H ₅ with Cl ₂

TABLE OF CONTENTS (Continued)

Chapter	Pag	ţe
4.2.2	Geometries of Transition States	:0
4.2.3	Entropy (S° ₍₂₉₈₎) and Heat Capacity (Cp(T)'s, 300 - 1500K) Estimation2	28
4.2.4	Calculated Enthalpies of Formation (ΔH° _{f(298)})2	:8
4.2.5	Thermodynamic Analysis for Reactions of CH ₃ and C ₂ H ₅ with Cl ₂ 3	1
4.2.6	Atomic Charges in Reactants, Adducts, Transition States, and Products3	1
5 SUMMAI	RY FOR PART ONE3	9
APPENDIX	1.1 THERMODYNAMIC ANALYSIS FOR Cl ₂ + R. <-> RCl + Cl4	Ю
APPENDIX	1.2 KINETIC ANALYSIS5	60
REFERENC	ES - PART ONE5	8
PART II	EVALUATED THERMODYNAMIC PROPERTY DATA OF C ₁ AND C ₂ CHLOROCARBON MOLECULES AND RADICALS	50
1 ABSTRA	CT FOR PART TWO6	51
2 INTROD	UCTION FOR PART TWO6	52
	ATION OF C2 CHLOROCARBON RADICAL ΔH _f ²⁹⁸ FROM O DATA FOR PART TWO6	53
REFERENC	ES - PART TWO	34
PART III	THERMOCHEMICAL AND KINETIC ANALYSIS ON CH ₃ CjO + O ₂ REACTION	39
1 ABSTRA	CT FOR PART THREE) 0
2 INTROD	UCTION FOR PART THREE	€
3 CALCUL	LATION METHOD FOR PART THREE10	00

TABLE OF CONTENTS (Continued)

C	hapter Page
	3.1 Determination of Enthalpies of Formation ($\Delta H^{o}_{f(298)}$)
	3.2 Determination of Entropy and Heat Capacity
	3.3 High-Pressure Limit A factors (A_{∞}) and Rate Constants (k_{∞}) Determination102
	3.4 Kinetic Analysis
4	RESULTS AND DISCUSSION FOR PART THREE
	4.1 Geometries of Two Intermediate Radicals and Transition States104
	4.2 Estimation of Entropy (S°(298)) and Heat Capacity (Cp(T)'s, 300 - 1500K)110
	4.3 Estimation of Enthalpies of Formation (ΔH° _{f(298)}) using Total Energies and Isodesmic Reactions
	4.4 QRRK Calculation Results
5	SUMMARY FOR PART THREE
A	PPENDIX 3.1 THERMODYNAMIC ANALYSIS FOR CH₃CjO + O₂ REACTION124
A	PPENDIX 3.2 KINETIC ANALYSIS FOR CH ₃ CjO + O ₂ REACTION125
A	PPENDIX 3.3 KINETIC DATA FOR CH ₃ CjO + O ₂ REACTIONS ARRHENIUS FORM130
A	PPENDIX 3.4 LOG RATE CONSTANTS VS PRESSURE AND TEMPERATURE FOR CH ₃ CjO + O ₂ REACTION134
R	EFERENCES - PART THREE147
P.	ART IV THERMOCHEMICAL AND KINETIC ANALYSIS ON CJCHO + O ₂ REACTION150
1	ABSTRACT FOR PART FOUR151

TABLE OF CONTENTS (Continued)

Cl	napter Page
2	INTRODUCTION FOR PART FOUR
3	CALCULATION METHOD FOR PART FOUR157
	3.1 Determination of Enthalpies of Formation ($\Delta H^{o}_{f(298)}$)157
	3.2 Determination of Entropy and Heat Capacity159
	3.3 High-Pressure Limit A factors (A_{∞}) and Rate Constants (k_{∞}) Determination159
	3.4 Kinetic Analysis
4	RESULTS AND DISCUSSION FOR PART FOUR161
	4.1 Geometries of Two Intermediate Radicals and Transition States161
	4.2 Estimation of Entropy ($S^{o}_{(298)}$) and Heat Capacity ($Cp(T)$'s, 300 - 1500K)167
	4.3 Estimation of Enthalpies of Formation (ΔH° _{f(298)}) using Total Energies and Isodesmic Reactions
	4.4 QRRK Calculation Results
5	SUMMARY FOR PART FOUR180
A	PPENDIX 4.1 THERMODYNAMIC ANALYSIS FOR CjCHO + O ₂ REACTION181
A	PPENDIX 4.2 KINETIC ANALYSIS FOR CjCHO + O ₂ REACTION182
Α	PPENDIX 4.3 KINETIC DATA FOR CjCHO + O ₂ REACTIONS ARRHENIUS FORM187
A	PPENDIX 4.4 LOG RATE CONSTANTS VS PRESSURE AND TEMPERATURE FOR CjCHO + O ₂ REACTION191
R	EFERENCES - PART FOUR204

LIST OF TABLES

Tabl	e Page
1.1	Cl ₂ + Radicals> Products + Cl
1.2	Evaluated Thermodynamic Property Data
1.3	Cl ₂ + Radicals> Products + Cl (C-Cl bond energy)
1.4	Vibrational Frequencies (v cm ⁻¹) MP2/6-311G(d,p) level of calculation27
1.5	Moments of Inertia (amu-Bohr ²) MP2/6-311G(d,p) level of calculation27
1.6	Ideal Gas Phase Thermodynamic Properties : $\Delta H_{f~298}^{o}: CBSQ//MP2/6-311G(d,p),~S^{o}_{298}~and~Cp(T): MP2/6-311G(d,p)29$
1.7	Total Energy, ZPVE, Thermal Correction, and ΔH _f ^{o298} in CBSQ and MP2/6-311G(d,p) Calculation
1.8	Thermodynamic and Kinetic analysis for reactions of CH ₃ and C ₂ H ₅ with Cl ₂ comparing with experiment data (Timonen/Gutman1986)33
1.9	Calculated atomic charges, bond lengths(Å) and bond angles(deg) MP2/6-311G(d,p)
2.1	Isodesmic Reactions64
2.2	Thermodynamic Property Data65
2.3	Selected Thermodynamic Property Data81
3.1	Vibrational Frequencies (v cm ⁻¹) HF/6-31G(d') level of calculation112
3.2	Moments of Inertia (amu-Bohr ²) HF/6-31G(d') level of calculation112
3.3	Ideal Gas Phase Thermodynamic Properties Obtained by CBSQ Calculation and by Therm
3.4	Moments of Inertia (amu-A ²) and Rotational Barriers (kcal/mole) for Internal Rotors
3.5	List of Total Energy, ZPVE, and Thermal Correction of CBSQ Calculation115

LIST OF TABLES (Continued)

Table	e Pa	ıge
3.6	Molecule Considered to Have Known $\Delta H_{f^{\circ}298}$ for Use in Isodesmic Reactions1	16
3.7	Input Parameters and High-Pressure Limit Rate Constants (K_{∞}) for QRRK Calculations and the Resulting Rate Constants (Temp=298K): CBSQ Result (adjusted)	19
4.1	Vibrational Frequencies (ν cm ⁻¹) HF/6-31G(d') level of calculation1	69
4.2	Moments of Inertia (amu-Bohr ²) HF/6-31G(d') level of calculation1	69
4.3	Ideal Gas Phase Thermodynamic Properties Obtained by CBSQ Calculation and by Therm	70
4.4	Moments of Inertia (amu-A ²) and Rotational Barriers (kcal/mole) for Internal Rotors	71
4.5	List of Total Energy, ZPVE, and Thermal Correction of CBSQ Calculation1	172
4.6	Molecule Considered to Have Known $\Delta H_{f^{\circ}298}$ for Use in Isodesmic Reactions1	173
4.7	Input Parameters and High-Pressure Limit Rate Constants (K_{∞}) for QRRK Calculations and the Resulting Rate Constants (Temp=298K): CBSQ Result (adjusted)	176

LIST OF FIGURES

Figur	Page
1.1	$Ea_{fwd} \text{ vs } \Delta H^{o}_{rxn,fwd}.$ 11
1.2	Hydrocarbons
1.3	C ₁ Chlorocarbons
1.4	C ₂ Chlorocarbons
1.5	Reaction path diagrams in CH ₃ with Cl ₂ and C ₂ H ₅ with Cl ₂ 17
1.6a	Structures for the adducts and transition states involved in the reactions (1) and (2). Geometry optimizations at the MP2/6-311G(d,p) level of theory (CH ₃ -ClCl)
1.6b	Structures for the adducts and transition states involved in the reactions (1) and (2). Geometry optimizations at the MP2/6-311G(d,p) level of theory (TSCH ₃ XCl ₂)
1.6c	Structures for the adducts and transition states involved in the reactions (1) and (2). Geometry optimizations at the MP2/6-311G(d,p) level of theory (CH ₃ Cl-Cl).
1.6d	Structures for the adducts and transition states involved in the reactions (1) and (2). Geometry optimizations at the MP2/6-311G(d,p) level of theory (CC-ClCl)
1.6e	Structures for the adducts and transition states involved in the reactions (1) and (2). Geometry optimizations at the MP2/6-311G(d,p) level of theory (TSC ₂ H ₅ XCl ₂)
1.6f	Structures for the adducts and transition states involved in the reactions (1) and (2). Geometry optimizations at the MP2/6-311G(d,p) level of theory (CCCl-Cl)
1.7a	Bond lengths MP2/6-311G(d,p) CH ₃ + Cl ₂ > CH ₃ Cl + Cl35
1.7b	Bond lengths MP2/6-311G(d,p) $C_2H_5 + Cl_2> C_2H_5Cl + Cl$ 36
1. 8 a	Calculated atomic charges MP2/6-311G(d,p) $CH_3 + Cl_2> CH_3Cl + Cl$ 37
1.8b	Calculated atomic charges MP2/6-311G(d,p) $C_2H_5 + Cl_2> C_2H_5Cl + Cl$ 38

LIST OF FIGURES (Continued)

Figu	re Page	e
3.1	Structure for CCOQj105	5
3.2	Structure for CjCOQ106	5
3.3	Structure for TCCOQjS	7
3.4	Structure for TCCOXQE	3
3.5	Structure for TYCOCDOXOH	7
3.6	Potential Energy Diagram CH ₃ CjO + O ₂ [Q=OOH, Qj=OO., j=radical site]111	Ĺ
3.7	k vs. Temperature at 1atm CH ₃ CjO + O ₂)
3.8	k vs. Pressure at 298K CH ₃ CjO + O ₂	ĺ
3.9	k vs. Pressure at 1000K CH ₃ CjO + O ₂	2
4.1	Structure for CQjCHO	2
4.2	Structure for CQCjO	3
4.3	Structure for TCQjCHOS	1
4.4	Structure for TCQjCHOE	5
4.5	Structure for TCQXCjO	5
4.6	Potential Energy Diagram CjCHO + O ₂ [Q=OOH, Qj=OO., j=radical site]168	8
4.7	k vs. Temperature at 1atm CjCHO + O ₂ 17	7
4.8	k vs. Pressure at 298K CjCHO + O ₂	8
4.9	k vs. Pressure at 1000K CjCHO + O ₂	9

PART I

THERMODYNAMIC AND KINETIC ANALYSIS ON Cl ATOM ABSTRACTIONS OF CHLORINE FROM HALOCARBONS AND REVERSE ALKYL ABSTRACTIONS FROM $\text{Cl}_2: \text{Cl.} + \text{RCl.} \leftarrow \text{Cl}_2 + \text{R.}$

CHAPTER 1

ABSTRACT FOR PART ONE

Thermodynamic Parameters, $\Delta H^o_{f(298)}$, $S^o_{(298)}$ and Cp(T) are evaluated for small, C_1 and C_2 chlorocarbon molecules and radicals. These thermodynamic properties are used in evaluation and comparison of R. + Cl_2 => R-Cl + Cl. (defined forward direction) reaction rate constants from the kinetics literature. Data from some 20 reactions in the literature show linearity on a plot of Ea_{fwd} vs. $\Delta H_{rxn,fwd}$, yielding a slope of (0.38 ± 0.04) and intercept of (10.10 ± 0.77) kcal/mole. A correlation of average Arrhenius pre-exponential factor for RCl + Cl => R. + Cl_2 (reverse rxn) of $(4.44 \pm 1.58) \times 10^{13}$ cm³/mol-sec on a per chlorine basis is obtained with $Ea_{Rev} = (0.64 \pm 0.04) * \Delta H_{rxn,Rev} + (9.70 \pm 0.79)$, where Ea_{Rev} is 0.0 if $\Delta H_{rxn,Rev}$ is more than 15.2 kcal/mole exothermic.

reactants, adducts, transition states, and products in reactions of CH₃ and C₂H₅ with Cl₂ are calculated using CBSQ//MP2/6-311G(d,p). Molecular structures and vibration frequencies are determined at the MP2/6-311G(d,p), with single point calculations for energy at QCISD(T)/6-311+G(d,p), MP4(SDQ)/CbsB4 and MP2/CBSB3 levels of calculation. Vibration frequencies are scaled by 0.9748 for zero point energies. Contributions of rotational frequencies for S°₍₂₉₈₎ and Cp(T)'s are calculated based on rotational barrier heights and moments of inertia using the method of Pitzer and Gwinn's ¹.

CHAPTER 2

INTRODUCTION FOR PART ONE

High chlorinated solvents such as CH₂Cl₂, CHCl₃, CCl₄, C₂Cl₄, C₂HCl₃, C₂H₃Cl₃'s and fluoro chloro-carbon solvents or chemicals are in widespread use in the chemical, pharmaceutical and cleaning industries. The monomers are also present in a number of valuable and versatile polymers. The combustion, incineration or high temperature pyrolysis of these chlorocarbons includes reactions at or near surfaces and in liquids or polymers where oxygen is not present or is low in concentration. Chlorine atom abstraction of chlorine from the chlorocarbon is often the important chain propagation process in these systems; yet there is limited or almost no direct experimental kinetic information on these chlorine atom abstraction reactions. This is a due to the Cl abstraction of Cl from R-Cl being endothermic, as the Cl-Cl bond is 57.8 kcal/mole, while a typical R-Cl bond energy ranges from 71 kcal/mole in CCl₄ to 95 or 98 in vinyl chloride and chlorobenzene, respectively. Most chlorocarbons also have a hydrogen which is readily abstracted by Cl atoms, where the rate constants have high Arrhenius pre-exponential factors (> 10¹³) and little or no energies of activation. (ca 1.0 kcal/mole if thermo neutral or exothermic) Cl abstraction of halogens is also important in designed pyrolysis and oxidation experiments, where hydrogen is limited or not present. These chlorocarbon oxidation or pyrolysis with no hydrogen source, are not practical for incineration; but have value in modeling because the presence of hydrogen adds an order of magnitude complexity to the models (number of species, and reaction product

permutations). Pyrolysis of trichloroethylene, for example, shows extensive molecular weight growth products such as hexachloro-benzene, pentachloro-butadiene, etc which likely result from radical processes.² The radical intermediates present in oxidation and pyrolysis of high chlorine to hydrogen ratio thermal processes result from Cl atom elimination, beta scission and from Cl atom abstraction of Cl reactions.

We estimate kinetic data for these $Cl + RCl \Rightarrow Cl_2 + R$. reactions in this study by assembling and evaluating thermodynamic property data: $\Delta H^o_{f(298)}$, $S^o_{(298)}$, and Cp(T) on chlorocarbon and several fluoro chlorocarbon molecules and radicals. We use the thermochemical properties with available literature data on the abstractions of Cl from Cl_2 by alkyl radicals and microscopic reversibility to evaluate trends in the forward and reverse rate constants.

Thermodynamic properties ($\Delta H^o_{f(298)}$, $S^o_{(298)}$ and Cp(T) from 300 to 1500 K) for reactants, adducts, transition states, and products in reactions of CH_3 and C_2H_5 with Cl_2 , are determined using CBSQ//MP2/6-311G(d,p) ab initio calculations and kinetic predictions compared with evaluated data.

CHAPTER 3

METHOD FOR PART ONE

3.1 Thermodynamic Properties

Evaluated thermodynamic parameters: $\Delta H^o{}_{f(298)}$, $S^o{}_{(298)}$, and Cp(300) to Cp(1500) for species in the reaction schemes are listed in Table 1.2 along with literature references. Some enthalpies of chlorocarbon (C_1 and C_2) radicals are from literature data and calculations using isodesmic reactions: for example $C.H_2CH_2Cl$ is from a calculated $\Delta Hrxn$ for ($CH_3CH_3 + C.H_2CH_2Cl \Longrightarrow CH_3CH_2Cl + C.H_2CH_3$) and the known $\Delta H^o{}_{f(298)}$ for ethane, chloroethane and ethyl radical. Entropies and Cp(T) values of C_2H_3 , C_2H_5 are from use of Hydrogen Bond Increment(HBI)³ method. The HBI group technique is based on known thermodynamic properties of the parent molecule and calculated changes that occur upon formation of a radical via loss of an H atom. The HBI incorporates changes in radical formation, that result from loss or changes in vibrational frequencies, internal rotations, spin degeneracy and mass.

3.2 Thermodynamic Analysis for the Reactions

Arrhenius pre exponential factors on a per chlorine basis, energies of activation and enthalpies of reaction, A_{Rev} , A_{Rev} /Cl#, Ea_{Rev} and $\Delta H^{\circ}_{rxn,fwd}$ are calculated using literature reference data on the forward reactions Af and Eaf, the evaluated thermodynamic properties of reactants and products, and microscopic reversibility. Forward reaction direction is defined as $R. + Cl_2 => R-Cl + Cl.$ C₃H₅, allyl radical and C₃H₃, propargyl

radical have resonant structures each having two radical sites with near equal population at temperature of the experimental data, 500-700K. (Ref. 4 in Table 1.1) We assess these radical reactions with Cl₂ as occurring via both radical sites, and estimate similar rates. The experimental rate constant for the forward direction is multiplied by 0.5 to obtain the forward rate constant on a per radical site basis.

3.3 Ab initio Calculations on CH₃ and C₂H₅ Plus Cl₂ Reaction Systems

Thermodynamic properties ($\Delta H^{o}_{f(298)}$, $S^{o}_{(298)}$ and Cp(T) from 300 to 1500 K) for reactants, adduct intermediates, transition states, and products in reactions of CH_{3} and $C_{2}H_{5}$ with Cl_{2} are calculated using the established CBSQ//MP2/6-311G(d,p) composite method of Petersson's research group⁴⁻⁶. The CBSQ calculation sequence is performed on the MP2/6-311G(d,p) geometry and followed by single point calculations at the theory level of QCISD(T)/6-311+G(d,p), MP4(SDQ)/CbsB4 and MP2/CBSB3 CBSExtrap=(Nmin=10,Pop).

3.4 Determination of Enthalpies of Formation ($\Delta H^{0}_{f(298)}$)

 $\Delta H^o_{f(298)}$ for reactants and products in reactions of CH₃ and C₂H₅ with Cl₂ are from literature data (see Table 1.2). $\Delta H^o_{f(298)}$ for transition states and adducts in reactions of CH₃ and C₂H₅ with Cl₂ are calculated using total energies obtained by CBSQ//MP2/6-311G(d,p) and MP2/6-311G(d,p) level. Total energies are corrected by zero point vibrational energies (ZPVE) which are scaled by 0.9748 as recommended by Scott et al.⁷. Thermal correction 0 K to 298.15 K is calculated to estimate $\Delta H^o_{f(298)}$ at 298.15 K.⁸

3.5 Determination of Entropy ($S^{o}_{(298)}$) and Heat Capacities (Cp(T)'s, $300 \le T/K \le 1500$)

 $S^{o}_{(298)}$ and Cp(T)'s for reactants and products in reactions of CH_3 and C_2H_5 with Cl_2 are from literature data (see Table 1.2). $S^{o}_{(298)}$ and Cp(T)'s for transition states and adducts in reactions of CH_3 and C_2H_5 with Cl_2 are calculated based on vibration frequencies and moments of inertia of the optimized MP2/6-311G(d,p) structures. Contributions of internal rotation for $S^{o}_{(298)}$ and Cp(T)'s are calculated based on rotational barrier heights, moments of inertia of the rotors, and Pitzer and Gwinn's general treatment.

CHAPTER 4

RESULT AND DISCUSSION FOR PART ONE

$4.1 \text{ Cl} + \text{RCl} \iff \text{Cl2} + \text{R. Reaction}$

4.1.1 Overall

Data for the 20 reference reactions are listed in Table 1.1. The average A_{fwd} for reaction

 $R. + Cl_2 \Rightarrow R-Cl + Cl$ (defined forward direction) is

$$A_{fwd} = (2.35 \pm 3.07) \times 10^{12} \text{ cm}^3/\text{mole-sec}$$
 and

 $Ea_{fwd} = (0.38 \pm 0.04) * \Delta H_{rxn,fwd} + (10.10 \pm 0.77) \text{ kcal/mole.}$

Figure 1.1 shows the data and the correlation with several exclusions noted. A correlation

for the average Arrhenius pre-exponential factor for RCl + Cl => R. + Cl₂ (reverse rxn) of

 $A_{rev} = (4.44 \pm 1.58) \times 10^{13} \text{ cm}^3/\text{mol-sec}$ on a per chlorine basis is obtained with

$$Ea_{Rev} = (0.64 \pm 0.04) * \Delta H_{rxn,Rev} + (9.70 \pm 0.79),$$

where Ea_{Rev} is 0.0 if ΔH_{rxnRev} is more than 15.2 kcal/mole exothermic.

4.1.2 Hydrocarbons

Reactions involving only hydrocarbons are selected and data are listed in Table 1.1 and shown in Figure 1.2. Data for CH₃, C₂H₅, C₃H₅ and C₃H₃ (Isopropyl, tertiary butyl and C₂H₃ radicals are excluded.) show a slope leading to

$$Ea_{fwd} = (0.39 \pm 0.11) * \Delta H_{rxn,fwd} + (10.49 \pm 2.21) \text{ kcal/mole}$$
 and

Average
$$A_{\text{fwd}} = (5.89 \pm 2.48) \times 10^{12} \text{ cm}^3/\text{mole-sec}$$
.

Table 1.1 Cl₂ + Radicals -----> Products + Cl

RE	EACTION	S	A_{fwd}^*	Ea _{fwd} *	$A_{Rev}**$	A _{Rev} /Cl#	Ea _{Rev} **	$\Delta H^{o}_{rxn,fwd}**$	P(torr)	T (K)	Reference*
<hydi< td=""><td>ROCARB</td><td>ONS></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></hydi<>	ROCARB	ONS>									
1. Cl ₂ + CH ₃	>	CH₃Cl + Cl	3.02E+12	0.53	2.99E+13	2.99E+13	26.10	-25.50	1.9-2.8	296-712	9
2. $Cl_2 + C_2H_5$	>	$C_2H_5Cl + Cl$	7.59E+12	-0.30	8.51E+13	8.51E+13	26.66	-27.18	1.7-2.2	295-498	9
3. $Cl_2 + i - C_3H_7^{***}$	>	i-C ₃ H ₇ Cl + Cl	1.51E+13	-0.48	1.03E+15	1.03E+15	25.82	-26.80	1.4-1.9	295-498	9
4. $Cl_2 + t - C_4H_9^{***}$	>	t-C ₄ H ₉ Cl + Cl	2.40E+13	-0.01	4.04E+15	4.04E+15	26.37	-27.11	1.4-1.8	295-498	9
5. $Cl_2 + C_2H_3$	>	CH₂CHCl + Cl	5.25E+12	-0.48	4.49E+13	4.49E+13	37.10	-37.72	1.4-1.7	298-435	10
6. $Cl_2 + C_3H_5$	>	$C_3H_5Cl + Cl$	4.67E+12	4.30	1.58E+13	1.58E+13	16.52	-12.29	2.0-3.6	487-693	10
7. $Cl_2 + C_3H_3$	>	$C_3H_3Cl + Cl$	8.30E+12	6.70	7.00E+13	7.00E+13	20.01	-13.49	2.6-4.1	525-693	10
		(Avg.	9.70E+12			7.59E+14	(not recor	nmended)			
If i-C ₃ H ₇ , t-	C_4H_9 , C_2H_3	are excluded, (Avg.	(5.89 +/- 2.4	8)E+12		(5.02 +/- 3.2	27)E+13	•			
<c1 chl<="" td=""><td>OROCAI</td><td>RBONS></td><td>•</td><td>•</td><td></td><td></td><td>•</td><td></td><td></td><td></td><td></td></c1>	OROCAI	RBONS>	•	•			•				
8. $Cl_2 + CH_2Cl$	>	$CH_2Cl_2 + Cl$	9.10E+11	0.98	4.83E+13	2.42E+13	22.87	-21.90	1.7-4.3	295-719	11
9. Cl ₂ + CHCl ₂	>	CHCl ₃ + Cl	5.18E+11	2.46	1.30E+14	4.34E+13	21.09	-18.78	1.8-4.6	357-719	11
10. Cl ₂ + CCl ₃	>	CCl₄ + Cl	4.08E+11	5.26	6.00E+13	1.50E+13	17.91	-13.02	3.1	690-700	12
11. $Cl_2 + CF_3$	>	CF₃Cl + Cl	2.69E+12	3.60	1.83E+14	1.83E+14	30.55	-27.27	2.3-2.6	487-693	12
12. $Cl_2 + CF_2Cl$	>	$CF_2Cl_2 + Cl$	7.76E+11	1.91	6.89E+13	3.44E+13	24.13	-22.56	1.8-2.9	376-626	12
13. Cl ₂ + CFCl ₂	>	CFCl ₃ + Cl	8.32E+11	3.35	4.74E+13	1.58E+13	20.12	-17.18	1.5-2.6	435-693	12
		(Avg.)) 1.02E+12			5.26E+13	(not recor	nmended)			
	If C	F ₃ is excluded, (Avg.)	(6.89 +/- 2.1	5)E+11		(2.66 +/- 1.2	22)E+13				
<c2 chl<="" td=""><td>OROCAI</td><td>RBONS></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></c2>	OROCAI	RBONS>									
14. $Cl_2 + C_2Cl_5$	> ($C_2Cl_6 + Cl$	2.00E+11	5.50	2.17E+14	3.61E+13	19.04	-13.94	50	298-423	13
15. Cl ₂ + CHCl ₂ CHCl	> (CH	$(Cl_2)_2 + Cl$	6.31E+11	2.70	4.92E+14	1.23E+14	21.39	-18.83	50	298-423	13
16. $Cl_2 + CH_2CICCl_2$	> CH	₂ CICCl ₃ + CI	6.92E+11	4.10	4.29E+14	1.07E+14	18.49	-14.66	50-300	298-321	14
17. Cl ₂ + CH ₂ ClCHCl	> CH ₂	2CICHCl₂ + CI	2.00E+12	2.00	1.05E+15	3.49E+14	22.47	-20.61	80-280	298-328	15-(1)
18. Cl ₂ + CHCl ₂ CH ₂	> CH ₂	CICHCl ₂ + Cl	6.31E+11	0.90	5.37E+13	1.79E+13	27.09	-26.19	50	298-423	13
19. Cl ₂ + CCl ₃ CHCl	> CH	Cl ₂ CCl ₃ + Cl	3.16E+11	5.10	7.96E+13	1.59E+13	21.61	-16.47	50	298-423	13
20. $Cl_2 + CHCl_2CCl_2$	> CHO	Cl ₂ CCl ₃ + Cl	3.16E+11	5.10	1.96E+14	3.91E+13	16.88	-12.01	50	298-423	13
		(Avg.)	6.84E+11			9.83E+13	(not recon	nmended)			
If	CH2CICH	Cl is excluded, (Avg.)	(4.64 +/- 2.1	0)E+11		(5.65 +/- 4.6	5)E+13				
TOTALS		(TOTAL Avg.)	3.80E+12			3.03E+14	(not recon	nmended)			
	t-C₄H ₉ , C ₂	H ₃ , CF ₃ , CH ₂ CICHC		7)E+12		(4.44 +/- 1.5	•	•			
3 1/	, ,, ,	are excluded, (Avg.)	•	•		•	•				
DITC A and A	3//				+	s for A and	_				

UNITS :: A_{fwd} and A_{Rev} : cm³/(mole-sec)

Ea and $\Delta H^{\circ}_{rxn,fwd}$: kcal/mole $A_{fwd} = (2.35 + /- 3.07) * 10^{12} \text{ cm}^3 / \text{(mole-sec)}$

 $A_{Rev}(avg)/cl = (4.44 +/- 1.58)*10^{13} cm^{3}/(mole-sec)$

(i-C₃H₇, t-C₄H₉, C₂H₃, CF₃, CH₂CICHCl are excluded in calc.of A_{fwd} and A_{Rev}(avg)/cl.)

^{* :} references for Afwd and Eafwd

^{** :} calculated from Thermodynamic Properties of reactants and products

⁻ microscopic reversibility -

^{*** :} $i-C_3H_7$, $t-C_4H_9$ Symmetries = 162 & 18 respectively

Table 1.2 Evaluated Thermodynamic Property Data

SPECIES	Hf(298)	S(298)	Cp300	Ср400	Cp500	Cp600	Cp800	0-1000	0-1500	DEE/->
СНЗ	34.82	46.38	9.26	-	-	11.54		-	Cp1500	` '
TSCH3XC12	32.10	74.11	15.86	10.05 17.27	10.82 18.43	19.42	12.89	14.09		JANAF(16)
CH3Cl	-19.60	56.00	9.77				21.06	22.41		CBSQ(in this study)
C2H5	29.30	57.42	11.89	11.51 14.57	13.19	14.66	17.05	18.87	21.70	TRC(17)
TSC2H5XCl2	24.20	84.10	19.94	22.96	16.95	19.09	22.76	25.66	20.00	LAY/BOZ95(3)
C2H5Cl	-26.80	66.01	15.03		25.60	27.84	31.46	34.25		CBSQ(in this study)
i-C3H7	21.02	70.39		18.57	21.61	24.22	28.37	31.44		JANAF(16)
i-C3H7Cl	-34.70	73.41	16.58	20.27	24.03	27.49	33.13	37.52	44.37	LAY/BOZ95(3)
t-C4H9			20.85	25.88	30.48	34.34	40.33	44.92	50.50	WONG/BOZ(26)
	11.90	75.67	22.33	27.04	31.82	36.27	43.62	49.34	58,53	LAY/BOZ95(3)
t-C4H9Cl	-44.13	76.42	26.66	33.67	39.89	45.02	52.53	57.84		WONG/BOZ(26)
C2H3	71.64	53.79	10.10	11.93	13.57	14.97	17.22	18.95		LAY/BOZ95(3)
CH2CHCI	5.00	63.08	12.89	15.56	17.80	19.61	22.35	24.35		LI/BOZ98(22)
C3H5	40.75	62.05	14.87	18.66	21.88	24.63	28.95	32.10		LAY/BOZ95(3)
C3H5C1	-0.46	73.31	18.14	22.12	25.51	28.40	32.94	36.28		SWS(20)
C3H3	81.58	59.57	13.76	16.10	18.10	19.80	22.48	24.43		LAY/BOZ95(3)
C3H3Cl	39.17	68.78	17.26	20.10	22.45	24.39	27.33	29.42		TRC(17)
CH2C1	27.99	58.61	10.08	11.45	12.53	13.38	14.66	15.64		TAY/DEL91(18)
CH2Cl2	-22.83	64.57	12.20	14.24	15.93	17.30	19.32	20.76		JANAF(16)
CHCl2	23.50	68.10	12.90	14.16	15.09	15.79	16.76	17.44	18.46	KAFAFI89(freq.)(19)
CHC13	-24.20	70.66	15.76	17.83	19.34	20.44	21.91	22.86		SWS(20)
CC13	19.00	70.92	15.25	16.66	17.56	18.16	18.83	19.18		JANAF(16)
CC14	-22.94	74.02	19.98	21.92	23.09	23.82	24.64	25.05	25.47	JANAF(16)
CF3	-113.01	63.42	11.93	13.68	15.05	16.09	17.46	18.22	19.07	JANAF(16)
CF3CI	-169.20	68.17	16.04	18.53	20.32	21.59	23.16	24.02	24.98	JANAF(16)
CF2CI	-66.02	67.72	13.17	14.73	15.93	16.83	17.98	18.59	19.25	RAYEZ94(21)
CF2CI2	-117.50	71.91	17.36	19.68	21.28	22.37	23.68	24.39	25.16	JANAF(16)
CFC12	-21.60	69.17	14.02	15.42	16.49	17.28	18.26	18.77	19.34	RAYEZ94(21)
CFC13	-67.70	74.07	18.71	20.84	22.22	23.13	24.19	24.74	25.33	TRC(17)
C2C15	9.06	95.68	28.56	31.13	32.72	33.75	34.93	35.54	36.20	TRC(17)
C2C16	-33.80	94.77	32.67	36.11	38.29	39.69	41.29	42.11		SWS(20)
CHC12CHC1	11.75	84.51	21.49	24.59	26.84	28.49	30.64	32.05	34.08	TRC(17)
C2H2Cl4	-36.00	84.86	23.74	27.67	30.65	32.89	35.99	38.01	40.66	TRC(17)
CH2ClCCl2	7.87	84.56	21.39	24.09	26.15	27.70	29.95	31.50	33.77	TRC(17)
CH2CICCI3	-35.71	85.07	24.67	28.36	31.16	33.28	36.24	38.17	40.70	TRC(17)
CH2CICHCI	14.73	78.56	18.33	21.15	23.40	25.19	27.82	29.73	32.70	TRC(17)
CH2ClCHCl2	-34.80	79.71	20.40	24.47	27.74	30.29	33.85	36.15	39.29	TRC(17)
CHCl2CH2	20.31	74.64	18.95	21.99	24.28	26.05	28.54	30.31		TRC(17)
CCBCHC	10.59	88.26	25.57	28.51	30.38	31.62	33.13	34.03	35.25	TRC(17)
CHCl2CCl3	-34.80	91.18	28.30	31.96	34.52	36.34				TRC(17)
CHC12CC12	6.13	90.65	23.88	26.74	28.78	30.23	32.15	33.32		TRC(17)

UNITS: Hf(kcal/mol), S(cal/K*mol), Cp(cal/K*mol) (a): reference for Cp(T) and S only

```
Cl_2 + R. \longrightarrow RCl + Cl
                               \Delta H^{\circ}_{rxn,fwd}
      R.
                                                   Ea<sub>fwd</sub>
                                                                           Reference
      CH_3
1
                                 -25.50
                                                    0.53
                                                                           JANAF(16)
2
      C_2H_5
                                 -27.18
                                                   -0.30
                                                                           CIO/LIU97(23)
      i-C<sub>3</sub>H<sub>7</sub>
3
                                 -26.80
                                                   -0.48
                                                                           LAY/BOZ95(3)
      t-C<sub>4</sub>H<sub>9</sub>
4
                                 -27.11
                                                   -0.01
                                                                           LAY/BOZ95(3)
5
      C_2H_3
                                 -37.32
                                                   -0.48
                                                                           LAY/BOZ95(3)
6
      C<sub>3</sub>H<sub>5</sub>
                                 -12.29
                                                    4.30
                                                                           LAY/BOZ95(3)
7
      C_3H_3
                                 -13.49
                                                    6.70
                                                                           LAY/BOZ95(3)
8
      CH<sub>2</sub>Cl
                                 -21.90
                                                    0.98
                                                                           Seet98(24)
9
      CHCl<sub>2</sub>
                                 -18.78
                                                    2.46
                                                                           ROUX/PAD87(25)
10
      CCl<sub>3</sub>
                                 -13.02
                                                    5.26
                                                                           JANAF(16)
11
      CF_3
                                 -27.27
                                                    3.60
                                                                           JANAF(16)
      CF<sub>2</sub>C1
12
                                 -22.56
                                                    1.91
                                                                           RAYEZ94(21)
13
      CFCl<sub>2</sub>
                                 -17.18
                                                    3.35
                                                                           RAYEZ94(21)
14
      C_2Cl_5
                                 -13.94
                                                    5.50
                                                                           CIO/LIU97(23)
      CHCl<sub>2</sub>CHCl
15
                                 -18.83
                                                    2.70
                                                                           CIO/LIU97(23)
      CH<sub>2</sub>ClCCl<sub>2</sub>
16
                                 -14.66
                                                    4.10
                                                                           CIO/LIU97(23)
17
      CH<sub>2</sub>ClCHCl
                                 -20.61
                                                    2.00
                                                                           CIO/LIU97(23)
18
      CHCl<sub>2</sub>CH<sub>2</sub>
                                 -26.19
                                                    0.90
                                                                           CIO/LIU97(23)
      CCl<sub>3</sub>CHCl
19
                                 -16.47
                                                    5.10
                                                                           CIO/LIU97(23)
20
      CHCl<sub>2</sub>CCl<sub>2</sub>
                                 -12.01
                                                    5.10
                                                                           CIO/LIU97(23)
      Ea_{fwd}(R.+Cl_2-->RCl+Cl.) = (0.38 +/-0.04) \Delta H^{\circ}_{rxn,fwd} + (10.10 +/-0.77)
```

Ea_{fwd}(R.+ Cl₂ --> RCl + Cl.) = $(0.38 + /-0.04) \Delta H^{\circ}_{rxn,fwd} + (10.10 + /-0.77)$ Ea_{Rev}(RCl + Cl. --> R. + Cl₂) = $(0.64 + /-0.04) \Delta H^{\circ}_{rxn,Rev} + (9.70 + /-0.79)$ if $\Delta H^{\circ}_{rxn,Rev} <= -15.16$ Ea_{Rev} = 0.0 (*: i-C₃H₇, t-C₄H₉, C₂H₃, CF₃, CH₂ClCHCl are excluded.)

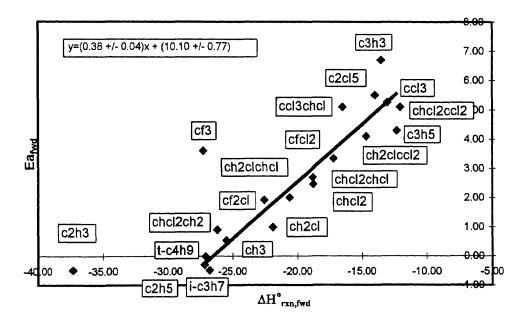


Figure 1.1 Ea_{fwd} vs ΔH°_{rxn,fwd}

R.	$\Delta H^{\circ}_{rxn,fwd}$	$\mathrm{Ea}_{\mathrm{fwd}}$			
1 CH3	-25.50	0.53			
2 C2H5	-27.18	-0.30			
			3 i-C3H7	-26.80	-0.48
			4 t-C4H9	-27.11	-0.01
			5 C2H3	-37.32	-0.48
6 C3H5	-12.29	4.30			
7 C3H3	-13.49	6.70			

Cl₂ + R. ----> RCl + Cl

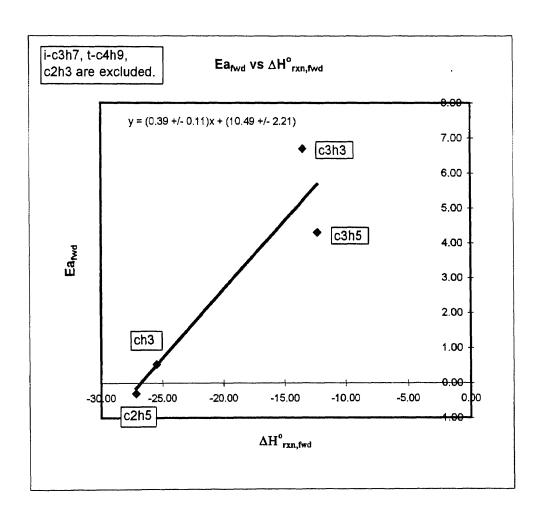


Figure 1.2 Hydrocarbons

Tertiary butyl, isopropyl and ethyl radicals show slightly negative Ea's for the forward reactions. This may suggest adduct formation occurs before further reaction to RCl + Cl products. The tertiary butyl and isopropyl radical reactions with Cl_2 are unusual. The literature values of Arrhenius pre-exponential factor show values of 1.5 and 2.4 x 10^{13} cm³/mol-sec respectively. Thermodynamic analysis of the reaction systems lead to calculated pre-exponential factors for reverse reaction of 1 x 10^{15} and 4 x 10^{15} cm³/mol-sec respectively; Approximately 2.5 to 10 times higher than the estimated collision rate at 300K. We have re-evaluated the thermodynamic properties of species in these reactions and do not find errors in entropy terms that can account for the unreasonably large reverse rate constants that are calculated. We choose to omit these reactions from our analysis.

4.1.3 C₁ Chlorocarbons

Data for C₁ chlorocarbons are shown in Table 1.1 and Figure 1.3. Data for CH₂Cl, CHCl₂, CCl₃, CF₂Cl and CFCl₂ yield a slope leading to

 $Ea_{fwd} = (0.40 \pm 0.07) * \Delta H_{rxn,fwd} + (10.32 \pm 1.31) \text{ kcal/mole and}$

Average $A_{\text{fwd}} = (6.89 \pm 2.15) \times 10^{11} \text{ cm}^3/\text{mole-sec}$.

The CF₃ value is considered on outlier and is excluded.

4.1.4 C₂ Chlorocarbons

Data for C_2 chlorocarbons are shown in Table 1.1 and Figure 1.4. Data for C_2Cl_5 , CHCl₂CHCl, CH₂ClCCl₂, CHCl₂CH₂, CCl₃CHCl and CHCl₂CCl₂ show a slope resulting in Ea_{fwd} = $(0.33 \pm 0.07) * \Delta H_{rxn,fwd} + (9.46 \pm 1.17)$ kcal/mole and

R.	$\Delta \mathrm{H}^{\mathrm{o}}_{\mathrm{rxn,fwd}}$	Ea_{fwd}			
8 CH2CI	-21.90	0.98			
9 CHCl2	-18.78	2.46			
10 CCI3	-13.02	5.26			
			11 CF3	-27.27	3.58
12 CF2CI	-22.56	1.91			
13 CFCI2	-17.18	3.35			

Cl₂ + R. ----> RCI + CI

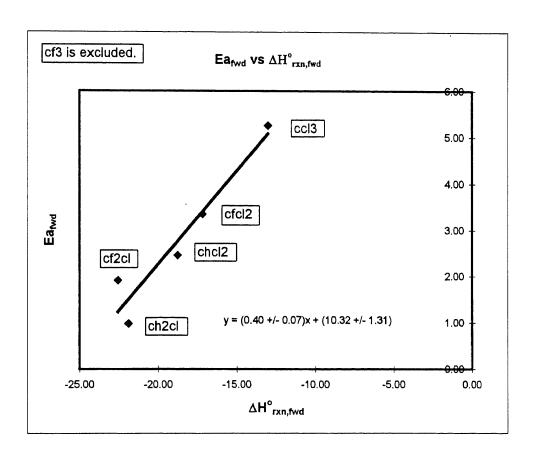


Figure 1.3 C₁ Chlorocarbons

R.	$\Delta H^{\circ}_{rxn,fwd}$	Ea_{fwd}			
14 C2CI5	-13.94	5.50			
15 CHCI2CHCI	-18.83	2.70			
16 CH2CICCI2	-14.66	4.10			
			17 CH2CICHCI	-20.61	2.00
18 CHCl2CH2	-26.19	0.90			
19 CCI3CHCI	-16.47	5.10			
20 CHCl2CCl2	-12.01	5.10			

Cl₂ + R. ----> RCI + CI

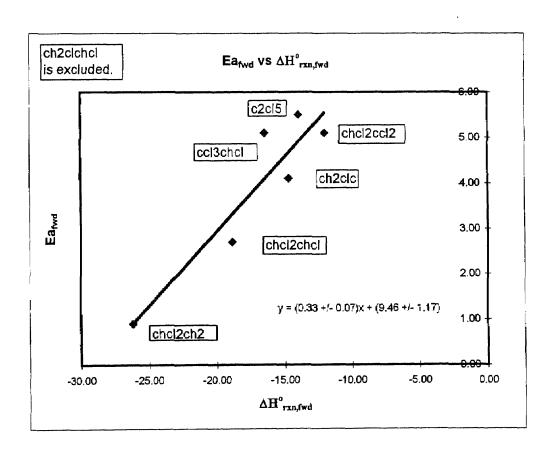
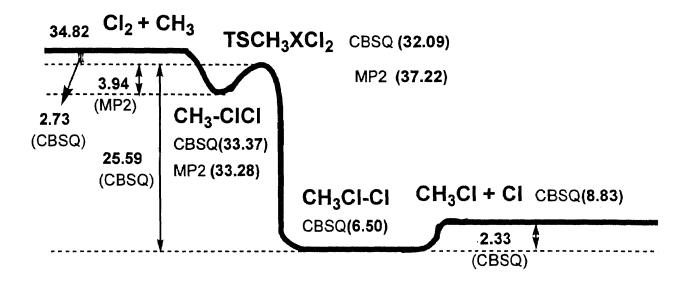


Figure 1.4 C₂ Chlorocarbons

Average $A_{\text{fwd}} = (4.64 \pm 2.10) \times 10^{11} \text{ cm}^3/\text{mole-sec}$.

The CH₂ClCHCl value is considered on outlier and is excluded.

Ea's for these reactions are determined by thermochemical analysis of experimental and theoretical data in the literature references (see Table 1.2).


4.1.5 Kinetic Trends

The more exothermic $R + Cl_2$ reactions ($\Delta H_{fwd}^{298} < -20$ kcal/mole) are those which involve hydrocarbon free radicals; these are shown to have small activation energies (less than 1 kcal/mole) in Table 1.1. The calculated transition states in CH_3 and C_2H_5 reaction with Cl_2 in Table 1.1, have enthalpy values which are -2.7 and -5.1 kcal/mole relative to the reactants (at the CBSQ composite level), respectively, in these exothermic $R + Cl_2$ reactions. (Figure 1.5)

Timonen et al.¹⁰ studied the kinetics of the reactions of unsaturated hydrocarbon free radicals (vinyl, allyl, and propargyl) with molecular chlorine. They report the reactivities of C_3H_3 and C_3H_5 are significantly reduced below that of the vinyl radical in these Cl atom transfer reactions, and suggest the reduction is due entirely to the presence of energy barriers in reactions C_3H_3 and C_3H_5 . The Arrhenius preexponential factors of reactions C_2H_3 , C_3H_3 and C_3H_5 are all similar. They indicate that the relatively low exothermicities of reactions C_3H_3 and C_3H_5 ($\Delta H_{fwd}^{298} = -13.5$ and -12.3 kcal/mole, respectively) could account for the existence of the observed 4.3 - 6.7 kcal/mole activation energies.

Seetula²⁷ shows a linear correlation in a plot of the rate constants for $R + Cl_2$ reactions at 500K vs. Δ electronegativity of the radical species R. He suggests this results from a

a)
$$Cl_2 + CH_3 \leftarrow CH_3CI + CI$$

b)
$$Cl_2 + C_2H_5 \longrightarrow C_2H_5Cl + Cl$$

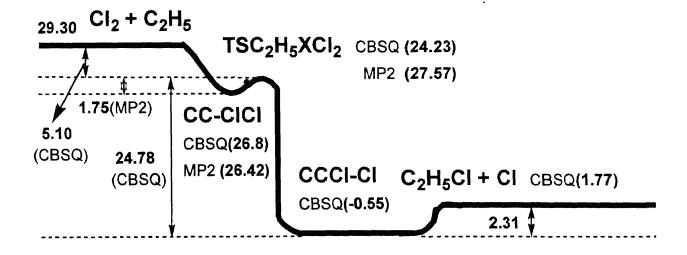


Figure 1.5 Reaction path diagrams in CH₃ with Cl₂ and C₂H₅ with Cl₂

polar transition state, which involves intramolecular electronic repulsion or attraction forces in R. and that these forces determine properties such as stability. They are driving forces behind reactivity of the radical. He suggests that an electronegative substituent at the radical site improves thermal stability of the radical and makes it less reactive by inductive effects. 28,29 He also suggests that similar intramolecular electron delocalization forces act at the transition state of this radical reaction. Seetula concludes the trend in reactivity among R + Cl₂ reactions is due primarily to changes in the activation energies (which are related to the free energies of activation) for these reactions. This Ea_{fwd} vs $\Delta H_{rxn,fwd}$ trend is illustrated by our data in Figures 1.1 to 1.4. Table 1.3 shows the presence of Cl on the carbon of the radical site reduces bond energy of new R-Cl bonds being formed.

Table 1.3 Cl₂ + Radicals ----> Products + Cl (C-Cl bond energy)

REACTIONS			$\Delta \mathrm{Hf}^{298}$	CCl bond energy	
1. Cl ₂ + CH ₃	>	CH₃Cl + Cl	-25.50	83.34	
8. Cl ₂ + CH ₂ Cl	>	$CH_2Cl_2 + Cl$	-21.90	79.74	
9. Cl ₂ + CHCl ₂	>	CHCl ₃ + Cl	-18.78	76.62	
10. Cl ₂ + CCl ₃	>	CCl ₄ + Cl	-13.02	70.86	
11. Cl ₂ + CF ₃	>	CF ₃ Cl + Cl	-27.27	85.11	
12. Cl ₂ + CF ₂ Cl	>	$CF_2Cl_2 + Cl$	-22.56	80.40	
13. Cl ₂ + CFCl ₂	>	CFCl ₃ + Cl	-17.18	75.02	

UNITS:: ΔHf²⁹⁸ and bond energy: kcal/mole

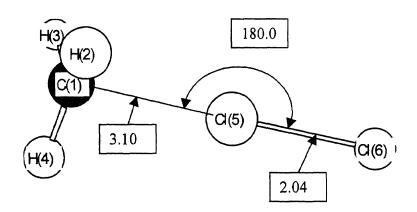
4.2 Ab initio Calculations in Reactions of CH₃ and C₂H₅ with Cl₂

4.2.1 Results from Ab initio Calculations of Thermodynamic Properties in Reactions of CH_3 and C_2H_5 with Cl_2

CH₃ + Cl₂ ---> CH₃Cl + Cl Reaction

CH₃ + Cl₂ forms an initial CH₃-ClCl adduct which has a shallow well 1.45 kcal/mole below that of the reactants (CBSQ//MP2/6-311G(d,p) level) with C-Cl bond length of 3.10Å and Cl-Cl bond length of 2.04Å. The Cl-Cl bond in this adduct is 0.01Å longer than calculated for Cl₂. This CH₃-ClCl adduct reacts to the Transition State (TS) which is 4 kcal/mole above the adduct at the MP2/6-311G(d,p) level, but not higher in energy at the CBSQ level of calculation. The C-Cl bond length is 0.77Å shorter and the Cl-Cl bond is 0.06Å longer in the TS than in the CH₃-ClCl adduct. The carbon-Cl bond is forming and the Cl-Cl bond is breaking. The TS has a 9.12 cal/mol-K lower S⁰(298) than the CH₃-CICI adduct. The TS then goes to a CH₃Cl-Cl adduct which has a 25.59 kcal/mole well (CBSO) with the C-Cl bond length 0.55Å shorter and the Cl-Cl bond length 1.20Å longer than in the TS. The CH₃Cl-Cl has a 6.34 cal/mol-K higher S^o₍₂₉₈₎ than the TS structure. The CH₃Cl-Cl adduct dissociates to CH₃Cl + Cl with a low barrier of 2.33 kcal/mole. $C_2H_5 + Cl_2 \longrightarrow C_2H_5Cl + Cl$ Reaction C₂H₅ + Cl₂ forms an initial adduct CC-ClCl which also has a shallow well, about 2.5 kcal/mole below that of the reactants at the CBSQ//MP2/6-311G(d,p) level, with C-Cl bond length of 2.85Å and Cl-Cl bond length of 2.04Å. The Cl-Cl bond in this adduct is

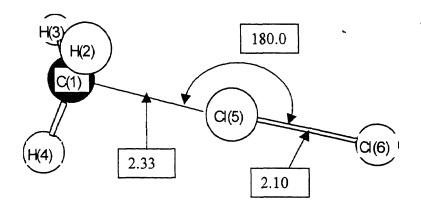
0.01Å longer than calculated for Cl₂. This CC-ClCl adduct reacts to the TS which is 1.15 kcal/mole higher in energy at the MP2/6-311G(d,p) level, but not higher in energy at the CBSQ level of calculation. (see Figure 1.6) The C-Cl bond length is 0.45Å shorter and the Cl-Cl bond is 0.04Å longer in the TS than in the CC-ClCl adduct. The TS has a 3.37


cal/mol-K lower $S^{\circ}_{(298)}$ than the CH₃-ClCl adduct. The TS goes to the CCCl-Cl which has a well of 24.78 kcal/mole at the CBSQ level where the C-Cl bond length is 0.61Å shorter and the Cl-Cl bond is 1.17Å longer than in the TS. The CCCl-Cl adduct has a 2.06 cal/mol-K higher $S^{\circ}_{(298)}$ than the TS structure. The CCCl-Cl adduct dissociates to products of $C_2H_5Cl + Cl$ with low barrier of 2.31 kcal/mole.

4.2.2 Geometries of Transition States

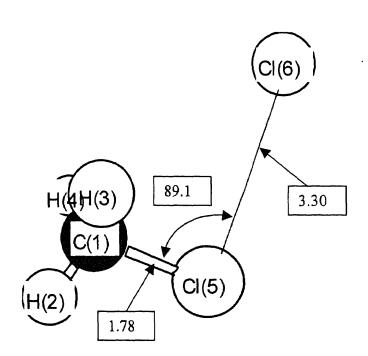
Structures of the adducts and transition states in CH₃ and C₂H₅ with Cl₂ are shown in Figure 1.6. The bond lengths of CH₃---Cl₂ and C₂H₅ ---Cl₂ in the transition state structures are 2.330 and 2.402, respectively. The bond length of C₂H₅ ---Cl₂ is 0.17Å longer than that of CH₃---Cl₂. The C-Cl bond lengths of 2.33 and 2.40 are calculated to be longer than the Cl-Cl bond lengths of 2.10 and 2.08 in TSCH₃XCl₂ and TSC₂H₅XCl₂, respectively. The C-Cl-Cl angles in TSCH₃XCl₂ and TSC₂H₅XCl₂ are 180.0 and 177.3, respectively. Figures 1.8a shows changes in bond lengths from CH₃ + Cl₂ to CH₃Cl + Cl via CH₃-ClCl, TSCH₃XCl₂ and CH₃Cl-Cl. Table 1.4 lists vibrational frequencies of adducts and transition states in MP2/6-311G(d,p).

The two transition states each have one imaginary frequency. Table 1.5 lists moments of inertia of adducts and transition states from MP2/6-311G(d,p) level calculations.


	Bond Length (A)		Bond Angle (deg)		Dihedral Angle (deg)
C1-H2	1.0797040				
C1-H3	1.0797040	H3-C1-H2	119.859270		
C1-H4	1.0797040	H4-C1-H2	119.859270	H4-C1-H2-H3	-172.533729
C1-C15	3.0975079	C15-C1-H2	93.733141	Cl5-C1-H2-H3	92.158888
C15-C16	2.0349651	Cl6-Cl5-C1	179.999899	Cl6-Cl5-C1-H2	-179.459202

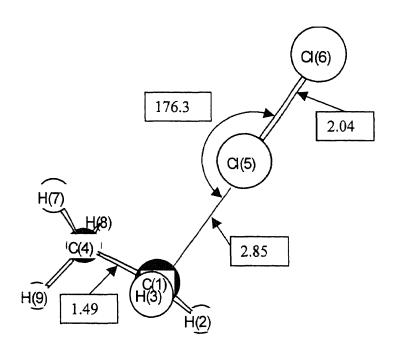
(a) CH₃-ClCl

Figure 1.6a Structures for the adducts and transition states involved in the reactions (1) and (2). Geometry optimizations at the MP2/6-311G(d,p) level of theory. (CH₃-ClCl)


	Bond Length (A)		Bond Angle (deg)		Dihedral Angle (deg)
C1-H2	1.0817521				
C1-H3	1.0817521	H3-C1-H2	118.024009		
C1-H4	1.0817521	H4-C1-H2	118.024003	H4-C1-H2-H3	-152.403027
C1-C15	2.3301785	Cl5-C1-H2	98.151660	Cl5-C1-H2-H3	103.798497
C15-C16	2.0978717	Cl6-Cl5-C1	179.999742	Cl6-Cl5-C1-H2	-179.009882

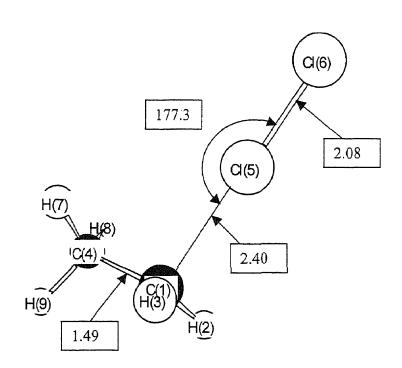
(b) TSCH₃XCl₂

Figure 1.6b Structures for the adducts and transition states involved in the reactions (1) and (2). Geometry optimizations at the MP2/6-311G(d,p) level of theory. (TSCH₃XCl₂)


	Bond Length (A)		Bond Angle (deg)		Dihedral Angle (deg)
C1-H2 C1-H3 C1-H4	1.0878704 1.0878704 1.0878704	H3-C1-H2 H4-C1-H2	110.205132 110.205141	H4-C1-H2-H3	-121.641201
C1-C15 C15-C16	1.7786100 3.3008227	Cl5-C1-H2	108.678680 89.068799	C15-C1-H2-H3 C16-C15-C1-H2	119.179376 179.951884

(c) CH₃Cl-Cl

Figure 1.6c Structures for the adducts and transition states involved in the reactions (1) and (2). Geometry optimizations at the MP2/6-311G(d,p) level of theory. (CH₃Cl-Cl)


	Bond Length (A)		Bond Angle (deg)		Dihedral Angle (deg)	
C1-H2 C1-H3 C1-C4 C1-C15 C15-C16 C4-H7 C4-H8 C4-H9	1.4918126 2.8512380 2.0416507 1.0928203 1.0928105	H3-C1-H2 C4-C1-H2 Cl5-C1-H2 Cl6-Cl5-C1 H7-C4-C1 H8-C4-C1 H9-C4-C1	94.185453 176.273561 111.366252 111.367406	C4-C1-H2-H3 Cl5-C1-H2-H3 Cl6-Cl5-C1-H2 H7-C4-C1-H2 H8-C4-C1-H2 H9-C4-C1-H2	96.911657	

(d) CC-ClCl

Figure 1.6d Structures for the adducts and transition states involved in the reactions (1) and (2). Geometry optimizations at the MP2/6-311G(d,p) level of theory. (CC-ClCl)

	Bond Length (A)		Bond Angle (deg)	Dihedral Angle (deg)
C1-H2 C1-H3 C1-C4 C1-C15 C15-C16 C4-H7 C4-H8 C4-H9	1.0845277 1.0845213 1.4894599 2.4021188 2.0835974 1.0916716 1.0917337 1.0999643	H3-C1-H2 C4-C1-H2 C15-C1-H2 C16-C15-C1 H7-C4-C1 H8-C4-C1 H9-C4-C1	116.330713 -119.133298 95.431259 177.346547 111.368261 111.356443 109.714949	C4-C1-H2-H3 -153.918681 Cl5-C1-H2-H3 98.798312 Cl6-Cl5-C1-H2 119.768136 H7-C4-C1-H2 -164.638694 H8-C4-C1-H2 -42.914304 H9-C4-C1-H2 76.199249

(e) TSC₂H₅XCl₂

Figure 1.6e Structures for the adducts and transition states involved in the reactions (1) and (2). Geometry optimizations at the MP2/6-311G(d,p) level of theory. (TSC₂H₅XCl₂)

	Bond Length (A)	Bond Angle (deg)	Dihedral Angle (deg)
C1-H2	1.0899852		
C1-H3	1.0900362 H3-C1-H2	109.175033	
C1-C4	1.5163650 C4-C1-H2	111.610294	C4-C1-H2-H3 -123.711020
C1-C15	1.7906557 C15-C1-H2	106.602062	Cl5-C1-H2-H3 115.017378
C15-C16	3.2529477 Cl6-Cl5-Cl	89.594795	Cl6-Cl5-Cl-H2 -158.991415
C4-H7	1.0915756 H7-C4-C1	110.744746	H7-C4-C1-H2 -179.287169
C4-H8	1.0918485 H8-C4-C1	110.773085	H8-C4-C1-H2 -58.815927
C4-H9	1.0944691 H9-C4-C1	109.448585	H9-C4-C1-H2 60.992411

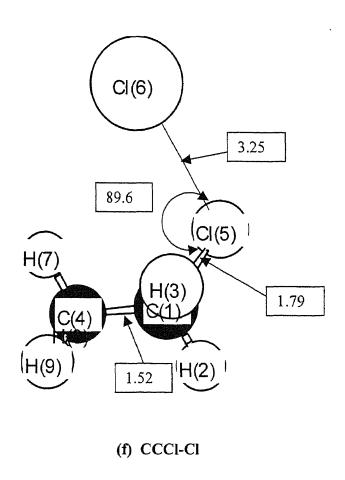


Figure 1.6f Structures for the adducts and transition states involved in the reactions (1) and (2). Geometry optimizations at the MP2/6-311G(d,p) level of theory. (CCCl-Cl)

Table 1.4 Vibrational Frequencies^a (ν cm⁻¹) MP2/6-311G(d,p) level of calculation

Species				Vi	bration	al Fre	quencie	es			
ch3-clcl	47 3364	47 3364	82	146	146	525	545	1447	1447	3170	
tsch3xcl2 ^b	-495 ^d 3345	65 3345	65	394	530	530	976	1 44 6	1446	3158	
ch3cl-cl	42 3231	43 3232	61	779	1066	1067	1441	1494	1494	3121	
cc-clcl	48 1092	63 1224	87 1420	120 1494	131 1504	271 1511	579 3040	607 3130	822 3176	1008 3202	3314
tsc2h5xcl2 ^c	-348 ^d 1102	72 1234	87 1414	170 1492	196 1493	433 1510	517 3045	814 3144		1044 3193	3305
cccl-cl	44 1305	54 1369	63 1437	293 1504	343 1505	718 1518	805 3086	1014 3134	1116 3176	1120 3185	3207

^a non-scaled. ^{b,c} Transition State Structure described in Figure 5.

Table 1.5 Moments of Inertia (amu-Bohr²) MP2/6-311G(d,p) level of calculation

Species	I_{A}	I _B	I_{C}
ch3-clcl	12.57	1015.66	1015.66
tsch3xcl2	12.38	794.63	794.63
ch3cl-cl	131.82	833.62	953.99
cc-clcl	93.92	1461.85	1532.15
tsc2h5xcl2	89.57	1282.56	1348.56
cccl-cl	339.96	979.25	1230.03

^d Transition State, one imaginary frequency.

4.2.3 Estimation of Entropy (S⁰₍₂₉₈₎) and Heat Capacity (Cp(T)'s, 300 - 1500K) for Transition States and Adducts

 $S^{\circ}_{(298)}$ and Cp(T)'s are calculated based on vibration frequencies and moments of inertia of the optimized MP2/6-311G(d,p) structures. The calculation results using MP2/6-311G(d,p) determined geometries and frequencies are summarized in Table 1.6. TVR represents the sum of the contributions from translations, vibrations and external rotations for $S^{\circ}_{(298)}$ and Cp(T)'s. Symmetry is incorporated in estimation of $S^{\circ}_{(298)}$ as described in Table 1.6. Contributions of internal rotation for $S^{\circ}_{(298)}$ and Cp(T)'s are calculated based on rotational barrier heights, moments of inertia of the rotors using the method of Pitzer and Gwinn's¹.

4.2.4 Calculated Enthalpies of Formation (ΔH⁰_{f(298)})

ΔH°_{f(298)} for reactants, adducts, transition states, and products in reactions of CH₃ and C₂H₅ with Cl₂ are calculated using CBSQ//MP2/6-311G(d,p) and MP2/6-311G(d,p). The calculation results are summarized in Table 1.7. The activation energies of TSCH₃XCl₂ are estimated by taking the difference of total energy between reactants and TSCH₃XCl₂ resulting in –2.73 and 2.4 kcal/mole for CBSQ//MP2/6-311G(d,p) and MP2/6-311G(d,p), and ΔH°_{f(298)} of the CH₃-ClCl intermediate adduct is calculated as 33.37 and 33.28 kcal/mole, respectively. Activation energies of TSC₂H₅XCl₂ are estimated by taking the difference of total energy between reactants and TSC₂H₅XCl₂ resulting in -5.07 and -1.73 kcal/mole for CBSQ//MP2/6-311G(d,p) and MP2/6-311G(d,p). ΔH°_{f(298)} of CC-ClCl is calculated as 26.80 and 26.42 kcal/mole, respectively.

The overall energy diagram is illustrated in Figure 1.5.

Table 1.6 Ideal Gas Phase Thermodynamic Properties a : $\Delta H_{f~298}^{~o}$: CBSQ//MP2/6-311G(d,p), S^o_{298} and Cp(T): MP2/6-311G(d,p)

Species and		$\Delta \mathrm{Hf}^{\circ}_{298}$	S° 298	Cp ₃₀₀ ^b	Cp ₄₀₀	Cp ₅₀₀	Cp ₆₀₀	Cp ₈₀₀	Cp ₁₀₀₀	Cp ₁₅₀₀
Symmetry #								,		
ch3-clcl	TVR°		83.23	20.23	21.32	22.23	23.03	24.43	25.64	27.91
(3)	Total ^f	33.37	83.23 ^e	20.23	21.32	22.23	23.03	24.43	25.64	27.91
tsch3xcl2	TVR		68.68	14.39	15.96	17.22	18.27	19.97	21.36	23.80
(3)	Internal Rotor 1 ^d		5.42	1.48	1.31	1.21	1.15	1.08	1.05	1.02
	Total ^f	32.10	74.11 ^e	15.86	17.27	18.43	19.42	21.06	22.41	24.82
ch3cl-cl	TVR		74.70	13.48	15.15	16.79	18.25	20.62	22.44	25.40
(3)	Internal Rotor 1		5.75	0.99	0.99	0.99	0.99	0.99	0.99	0.99
	Total ^f	6.23	80.45 ^e	14.47	16.14	17.79	19.24	21.61	23.43	26.39
cc-clcl	TVR		83.09	21.39	24.37	27.05	29.35	33.06	35.92	40.63
(3)	Internal Rotor 1		4.38	1.63	1.76	1.76	1.70	1.58	1.47	1.27
	Total ^f	26.8	87.47 ^e	23.02	26.13	28.81	31.05	34.64	37.39	41.90
tsc2h5xcl2	TVR		72.22	16.70	19.84	22.65	25.05	28.87	31.80	36.58
(3)	Internal Rotor 1,2		11.89	3.24	3.11	2.95	2.79	2.59	2.44	2.24
	Total ^f	24.2	84.10 ^e	19.94	22.96	25.60	27.84	31.46	34.25	38.82
cccl-cl	TVR		74.31	16.16	19.48	22.62	25.35	29.72	33.00	38.20
(3)	Internal Rotor 1,2		11.85	3.46	3.33	3.16	2.99	2.76	2.58	2.32
` '	Total ^f	-1.19	86.16 ^e	19.62	22.81	25.78	28.35	32.47	35.58	40.52

^a Thermodynamic properties are referred to a standard state of an ideal gas of pure enantiometer at 1 atm. ^b In cal/mol-K. ^c The sum of contributions from translations, external rotations, and vibrations. ^d Contribution from internal rotation.

^e Symmetry number is taken into account (-R * ln(number of symmetry))

^f Spin degeneracy contribution for entropy = 1.987 * ln(2) (cal/mol-K) is taken into account.

Table 1.7 Total Energy, ZPVE, Thermal Correction, and ΔH_f ^o₂₉₈ in CBSQ and MP2/6-311G(d,p) Calculation^a

Species	Total Energy at 298K ^b	Total Energy at 298K ^b	ZPVE ^c	Thermal Correction ^d	$\Delta H_{f~298}^{~o}$	ΔH _f 298
	MP2/6-311G(d,p)	CBSQ			(MP2)	(CBSQ)
cl2	-919.2357806	-919.45662	0.0011961	0.0035010	0.00	0.00
ch3	-39.7072381	-39.7406173	0.0293571	0.0040820	34.82 ^e	34.82 ^e
ch3-clcl	-958.9454736	- 959.1995455	0.0318214	0.0079400	33.28	33.37
tsch3xcl2	-958.9391929	-959.2015846	0.0339796	0.0061560	37.22	32.09
ch3cl-cl	-959.0137142	-959.2423618	0.0379109	0.0064490	- 9.54	6.50
ch3cl	-499.4262791	-449.5581297	0.0372296	0.0039680	-	_
cl	-459.5851374	-459.6805237	0.0000000	0.0023600	-	_
c2h5	-78.9029613	-78.9664974	0.0589530	0.0048250	29.30 ^e	29.30 ^e
cc-clcl	-998.1433280	-998.4270989	0.0618296	0.0085130	26.42	26.80
tsc2h5xcl2	-998.1414941	-998.4311891	0.0628073	0.0072330	27.57	24.23
cccl-cl	-998.2137368	-998.4706799	0.0666130	0.0073610	-17.76	-0.55
c2h5cl	-538.6258002	-538.7864702	0.0660780	0.0048980	-	-

^a Unit in Hartree 1 HF=627.51 kcal/mol. ^b Scaled ZPVE are included. Scaling factor is recommended as 0.9748 by Scott et al. ²⁴ for MP2/6-311G(d,p). ^c Scaled by 0.9748 ^d Non-scaled.

 $^{^{\}text{c}} \, \Delta H_{\text{f 298}}^{\, \text{o}} \, \, \text{CH}_{3}$ and $\text{C}_{2} \text{H}_{5}$ are set to literature values in Table 2 for isodesmic reaction.

4.2.5 Thermodynamic Analysis for reactions of CH₃ and C₂H₅ with Cl₂

 ΔH_{rxn} , ΔU_{rxn} and the Arrhenius pre-exponential factor are calculated using thermodynamic properties of the transition state structures for temperature from 300K to 2000K and results are shown in Table 1.8. The experimental A_{fwd} of 3.02 * 10^{12} for Cl_2 + CH_3 => CH_3 Cl + Cl reaction in Table 1.1, corresponds to the calculated A_{fwd} value near 700K in Table 1.8 (a). The experimental A_{Rev} of 2.99 * 10^{13} in CH_3 Cl + Cl => Cl_2 + CH_3 reaction in Table 1.1, corresponds to the calculated A_{Rev} near 500K in Table 1.8 (b). The experimental A_{fwd} of 7.59 * 10^{12} for Cl_2 + C_2H_5 => C_2H_5 Cl + Cl reaction in Table 1.1, corresponds to the calculated A_{fwd} near 1100K in Table 1.8 (c). The experimental A_{Rev} of 8.51 * 10^{13} for C_2H_5 Cl + Cl => Cl_2 + C_2H_5 reaction in Table 1.1, corresponds to the calculated A_{Rev} near 1200K in Table 1.8 (d).

4.2.6 Atomic Charges in Reactants, Adducts, Transition States, and Products

CH₃ + Cl₂ ---> CH₃Cl + Cl and $C_2H_5 + Cl_2$ ---> C_2H_5 Cl + Cl Reactions

Table 1.9 illustrates Mulliken Atomic Charges on the H, C, and Cl atoms in the CH₃ + Cl₂ and $C_2H_5 + Cl_2$ reaction systems. Calculated charges on the H atoms remain positive throughout the reaction process at ca. 0.1. Charges on the carbon bonding to Cl are negative 0.34 in CH₃ with a progressive increase to – 0.26 in CH₃Cl. The corresponding carbon in the C_2H_5 reaction experiences a decrease from – 0.25 to – 0.31 when C_2H_5 + Cl₂ react to the TSC₂H₅XCl₂ and then increases to – 0.21 in C_2H_5 Cl. The Cl atom bonding to the carbon has no charge in Cl₂, positive 0.01 and 0.02 charges in the TSCH₃XCl₂ and the TSC₂H₅XCl₂, respectively, then decreases to – 0.16 in the Cl atom of the products (both CH₃Cl and C₂H₅Cl). The leaving Cl has no charge in Cl₂, negative

0.13 charge in both the TSCH₃XCl₂ and the TSC₂H₅XCl₂, then increases near zero (- 0.
01) in both the CH₃Cl-Cl adduct and the CCCl-Cl adduct.

Figure 1.7 and the description of charges show that H atoms donate e⁻ to the carbon radical center and to chlorine in R-Cl. Replacement of the H's with electronegative halogens or other electronegative species must reduce the available e⁻ density to/at the carbon site. This likely reduces bond energy of additional R-Cl bonds being formed. Repulsive effects may also be important in the reduced bond energies.

Table 1.8 Thermodynamic and Kinetic analysis for reactions of CH_3 and C_2H_5 with Cl₂ comparing with experiment data* (Timonen/Gutman1986)

(a) $Cl_2 + CH_3> TSCH_3$	a) c	+ 12		>	1SCH ₃ XC	12
---------------------------	------	------	--	---	----------------------	----

Cl ₂	(b)	$CH_3Cl + Cl$	>	$TSCH_{3}XCl_{2} \\$
-----------------	------------	---------------	---	----------------------

T(K)	$\Delta H^{a} rxn$	AT 7ª	Af a	•	T/V)	ATT	A Y Tarana	A.C
		ΔU^{a} rxn	Al		T(K)	ΔHrxn	ΔUrxn	Af
300	- 2.723	-2.127	1.08E+12		300	22.78	23.38	9.04E+12
400	-2.862	-2.068	1.57E+12		400	22.84	23.63	1.74E+13
500	- 2.975	-1.982	2.15E+12		500	22.84	23.84	2.75E+13
600	-3.068	-1.876	2.85E+12		600	22.80	24.00	3.82E+13
800	-3.218	-1.628	4.54E+12		800	22.61	24.20	5.93E+13
1000	-3.344	-1.357	6.61E+12		1000	22.30	24.29	7.78E+13
1200	-3.464	-1.080	9.00E+12		1200	21.91	24.29	9.37 E +13
1500	-3.639	-0.659	1.32E+13		1500	21.25	24.23	1.14E+14
2000	-3.868	0.106	2.19E+13		2000	20.11	24.08	1.46E+14
		·						
P(torr)	T(K)				P(torr)	T(K)		
1.9 - 2.8	296-712	Expt.*	3.02E+12		1.9 - 2.8	296-712	Expt.*	2.99E+13

(c) $Cl_2 + C_2H_5$ ----> $TSC_2H_5XCl_2$ (d) $C_2H_5Cl + Cl$ ----> $TSC_2H_5XCl_2$

T(K)	ΔHrxn	ΔUrxn	Af	_	T(K)	Δ Hrxn	ΔUrxn	Af
300	-5.1	-4.504	6.39E+11		300	22.08	22.68	9.98E+12
400	-5.11	-4.315	1.12E+12		400	22.07	22.87	1.75E+13
500	-5.108	-4.114	1.75E+12		500	22.03	23.02	2.60E+13
600	-5.103	-3.911	2.54E+12		600	21.95	23.14	3.49E+13
800	-5.112	-3.523	4.48E+12		800	21.71	23 .30	5.25E+13
1000	-5.165	-3.178	6.80E+12		1000	21.40	23.38	6.87E+13
1200	-5.259	-2.875	9.38E+12		1200	21.03	23.41	8.36E+13
1500	- 5.439	-2.458	1.37E+13		1500	20.43	23.41	1.05E+14
2000	-5.7	-1.726	2.26E+13		2000	19.43	23.40	1.39E+14
P(torr)	T(K)				P(torr)	T(K)		
1.7 - 2.2	295-498	Expt.*	7.59E+12		1.7 - 2.2	295-498	Expt.*	8.51E+13

 $[^]a$ Units; ΔH and ΔU : kcal/mole, Af: cm 3 /mole-sec

Table 1.9 Calculated atomic charges, bond lengths(A) and bond angles(deg) MP2/6-311G(d,p)

(a) $CH_3 + Cl_2 ----> CH_3Cl + Cl$

Expt. Ea = 0.53 kcal/mole

	CH_3	Cl ₁ -Cl ₂	CH ₃ -Cl ₁ Cl ₂	TSCH ₃ XCl ₂	CH ₃ Cl-Cl	CH ₃ Cl
Charges						
H	0.11		0.12	0.16	0.145	0.14
C	-0.34		-0.36	-0.35	-0.264	-0.26
Cl_1		0	0.02	0.01	-0.161	- 0.159
Cl ₂		0	-0.04	-0.13	-0.011	
Bond Length						
C-Cl			3.10	2.33	1.78	1.78
Cl-Cl		2.03	2.04	2.10	3.30	
Bond Angle						
C-Cl-Cl			180.0	180.0	89.1	

(b) $C_2H_5 + Cl_2 ----> C_2H_5Cl + Cl$

Expt. Ea = -0.30 kcal/mole

	C_2H_5	Cl ₅ -Cl ₆	C ₃ C ₄ -Cl ₅ Cl ₆	TSC ₂ H ₅ XCl ₂	CCCI-CI	C_2H_5Cl
Charges						
$\mathbf{H_1}$	0.095		0.105	0.12	0.11	0.1
$\mathbf{H_2}$	0.11		0.13	0.153	0.147	0.11
C_3	-0.25		-0.24	-0.23	-0.234	-0.24
\mathbf{C}_{4}	-0.25		-0.29	-0.31	-0.22	-0.21
Cl ₅		0	0.03	0.02	-0.161	-0.16
Cl ₆		0	-0.06	-0.13	-0.01	
Bond Length						
C-Cl			2.85	2.40	1.79	1.79
Cl-Cl		2.03	2.04	2.08	3.25	
Bond Angle						
C-Cl-Cl			176.3	177.3	89.6	

$$\begin{array}{c} \text{CH}_3 + \text{CI}_2 & ----> \text{CH}_3\text{CI} + \text{CI} \\ \\ \text{CH}_3 + \text{CI}_2 \\ \\ \text{H} & \text{C} + \text{CI} - \text{CI} \\ \\ \text{H} & (1.08) & (2.03) \\ \end{array} \\ \begin{array}{c} \text{CH}_3\text{-CICI} \\ \\ \text{H} & (1.08) \\ \\ \text{H} - \text{C} - \text{CI} - \text{CI} \\ \\ \text{H} & (3.10) & (2.04) \\ \end{array} \\ \text{TSCH}_3\text{XCI}_2 \\ \\ \text{H} & (1.08) \\ \\ \text{H} - \text{C} - \text{CI} - \text{CI} \\ \\ \text{H} & (2.33) & (2.10) \\ \end{array} \\ \begin{array}{c} \text{CH}_3\text{CI-CI} \\ \\ \text{H} & (1.09) \\ \\ \text{H} - \text{C} - \text{CI} - \text{CI} \\ \\ \text{H} & (1.78) \\ \end{array} \\ \begin{array}{c} \text{CH}_3\text{CI-CI} \\ \\ \text{H} & (1.78) \\ \end{array} \\ \end{array}$$

Figure 1.7a Bond lengths MP2/6-311G(d,p) CH3 + Cl2 ----> CH3Cl + Cl

$$C_{2}H_{5} + CI_{2} ----> C_{2}H_{5}CI + CI$$

$$C_{2}H_{5} + CI_{2}$$

$$H_{1}(1.09)|_{1}(1.08)$$

$$H_{-C} - C + CI + CI - CI$$

$$H_{1}(1.09)|_{1}(1.08)$$

$$H_{-C} - C - CI - CI$$

$$H_{1}(1.09)|_{1}(1.08)$$

$$H_{-C} - C - CI - CI$$

$$H_{1}(1.09)|_{1}(1.09)$$

Figure 1.7b Bond lengths MP2/6-311G(d,p) C2H5 + Cl2 ----> C2H5Cl + Cl

$$\begin{array}{c} \mathsf{CH_3} + \mathsf{CI_2} \\ \mathsf{H} \\ \mathsf{C} \cdot + & \mathsf{CI} - \mathsf{CI} \\ \mathsf{H} \cdot (-0.34) & (0) & (0) \\ (0.11) \\ & \mathsf{CH_3}\text{-}\mathsf{CICI} \\ \mathsf{H} \cdot (0.02) \\ \mathsf{H} - \mathsf{C} - \mathsf{CI} - \mathsf{CI} \\ \mathsf{H} \cdot (-0.36) & (-0.04) \\ (0.12) \\ & \mathsf{H} \cdot (-0.36) & (-0.04) \\ \mathsf{H} - \mathsf{C} - \mathsf{CI} - \mathsf{CI} \\ \mathsf{H} \cdot (-0.35) & (-0.13) \\ (0.16) \\ & \mathsf{CH_3}\mathsf{CI}\text{-}\mathsf{CI} \\ \mathsf{H} \cdot (-0.264) & (-0.011) \\ (0.145) \\ & \mathsf{CH_3}\mathsf{CI} + \mathsf{CI} \\ \mathsf{H} \cdot (-0.260) & (0) \\ \mathsf{H} - \mathsf{C} - \mathsf{CI} + \mathsf{CI} \\ \mathsf{H} \cdot (-0.260) & (0) \\ (0.140) \\ \end{array}$$

CH3 + Cl2 ----> CH3CI + CI

Figure 1.8a Calculated atomic charges MP2/6-311G(d,p) CH₃ + Cl₂ ----> CH₃Cl + Cl

$$C_2H_5 + Cl_2 ----> C_2H_5Cl + Cl$$

Figure 1.8b Calculated atomic charges MP2/6-311G(d,p) C2H5 + Cl2 ----> C2H5Cl + Cl

CHAPTER 5

SUMMARY FOR PART ONE

Thermodynamic Parameters, $\Delta H^{\circ}_{f(298)}$, $S^{\circ}_{(298)}$ and Cp(T) are evaluated for reactants and products in R. + $Cl_2 \iff$ R-Cl + Cl reactions. The forward rate constants are evaluated from the literature. The reverse rate constants are calculated from thermodynamic properties of reactants and products and microscopic reversibility. The trends of Ea_{fwd} vs $\Delta H_{rxn,fwd}$ and Arrhenius pre-exponential factor for overall, hydrocarbons, C_1 chlorocarbons, and C_2 chlorocarbons are evaluated.

We recommend rate expression of average A_{fwd} = $(2.35 \pm 3.07) \times 10^{12}$ cm³/mole-sec and Ea_{fwd} = $(0.38 \pm 0.04) * \Delta H_{rxn,fwd}$ + (10.10 ± 0.77) kcal/mole for overall, average A_{fwd} = $(5.89 \pm 2.48) \times 10^{12}$ cm³/mole-sec and Ea_{fwd} = $(0.39 \pm 0.11) * \Delta H_{rxn,fwd}$ + (10.49 ± 2.21) kcal/mole for hydrocarbons, average A_{fwd} of $(6.89 \pm 2.15) \times 10^{11}$ cm³/mole-sec and Ea_{fwd} = $(0.40 \pm 0.07) * \Delta H_{rxn,fwd}$ + (10.32 ± 1.31) kcal/mole for C_1 chlorocarbons, and average A_{fwd} of $(4.64 \pm 2.10) \times 10^{11}$ cm³/mole-sec and Ea_{fwd} = $(0.33 \pm 0.07) * \Delta H_{rxn,fwd}$ + (9.46 ± 1.17) kcal/mole for C_2 chlorocarbons.

We have performed *ab initio* calculation on $CH_3 + Cl_2 \iff CH_3Cl + Cl$ and $C_2H_5 + Cl_2 \iff C_2H_5Cl + Cl$ reaction. We show canonical transition state calculations agree well with experimental data for these two, low Ea_{fwd} , reaction systems. The carbon atom which undergoes bonding to the Cl has a slightly increasing negative charge in the transition state then the charge increases, becomes less negative.

APPENDIX 1.1

THERMODYNAMIC ANALYSIS FOR $Cl_2 + R. <-> RCl + Cl.$

THERMODYNAMIC ANALYSIS for REACTION

```
Rx
       CL2
               + CH3
                         = CH3CL
Hf {Kcal/mol}
               .000
                     34.820 -19.600
                                      28.920
S {cal/mol K} 53.290 46.380 56.000
                                      39,460
dHr \{kcal/mol\} (298K) =
                         -25.50
                                 dHr avg (298., 1000. K) =
                                                          -25.57
dU(dE) \{kcal/mol\} (") =
                        -25.50
                                 dUr avg (298., 1000. K) =
                                                          -25.57
dSr \{cal/mol K\} (") =
                        -4.21
                               dSr avg (298., 1000. K) =
                                                        -4.56
dGr \{kcal/mol\} (") =
                       -24.24 dGr avg (298., 1000. K) =
                                                        -22.62
     Af/Ar (") = 1.202E-01 Af/Ar avg (298., 1000. K) = 1.010E-01
  T(K) dH(Kcal/mol) dU(Kcal/mol) dS(cal/mol K) (Af/Ar) dG(Kcal/mol)
  300.00 -2.550E+01 -2.550E+01 -4.225E+00 1.193E-01 -2.424E+01
  400.00 -2.570E+01 -2.570E+01 -4.789E+00 8.982E-02 -2.378E+01
  500.00 -2.582E+01 -2.582E+01 -5.057E+00 7.848E-02 -2.329E+01
  600.00 -2.587E+01 -2.587E+01 -5.158E+00 7.456E-02 -2.278E+01
  800.00 -2.583E+01 -2.583E+01 -5.105E+00 7.662E-02 -2.175E+01
 1000.00 -2.565E+01 -2.565E+01 -4.900E+00 8.490E-02 -2.075E+01
 1200.00 -2.537E+01 -2.537E+01 -4.654E+00 9.610E-02 -1.979E+01
 1500.00 -2.489E+01 -2.489E+01 -4.294E+00 1.152E-01 -1.845E+01
 2000.00 -2.397E+01 -2.397E+01 -3.769E+00 1.500E-01 -1.644E+01
  THERMODYNAMIC ANALYSIS for REACTION
               + C2H5
                          = C2H5CL
                                      + CL
Rx
       CL2
                                      28.920
Hf {Kcal/mol}
               .000
                     29.300 -26.800
                     57.420
                                      39.460
S {cal/mol K} 53.290
                              66.010
                         -27.18
                                 dHr avg (298., 1000. K) =
                                                           -26.96
dHr \{kcal/mol\} (298K) =
                                 dUr avg (298., 1000. K) =
                                                          -26.96
dU(dE) \{kcal/mol\}(") =
                        -27.18
dSr \{cal/mol K\} (") =
                        -5.24 dSr avg (298., 1000. K) =
                                                        -4.80
dGr \{kcal/mol\} (") = -25.62 dGr avg (298., 1000. K) =
     Af/Ar (") = 7.157E-02 Af/Ar avg (298., 1000. K) = 8.918E-02
  T(K) dH(Kcal/mol) dU(Kcal/mol) dS(cal/mol K) (Af/Ar) dG(Kcal/mol)
  300.00 -2.718E+01 -2.718E+01 -5.239E+00 7.162E-02 -2.561E+01
  400.00 -2.712E+01 -2.712E+01 -5.069E+00 7.800E-02 -2.509E+01
  500.00 -2.700E+01 -2.700E+01 -4.803E+00 8.917E-02 -2.460E+01
  600.00 -2.684E+01 -2.684E+01 -4.510E+00 1.034E-01 -2.413E+01
  800.00 -2.644E+01 -2.644E+01 -3.946E+00 1.372E-01 -2.329E+01
  1000.00 -2.602E+01 -2.602E+01 -3.468E+00 1.745E-01 -2.255E+01
  1200.00 -2.559E+01 -2.559E+01 -3.078E+00
                                             2.125E-01 -2.189E+01
  1500.00 -2.496E+01 -2.496E+01 -2.611E+00
                                             2.688E-01 -2.104E+01
  2000.00 -2.393E+01 -2.393E+01 -2.019E+00 3.619E-01 -1.989E+01
```

```
THERMODYNAMIC ANALYSIS for REACTION
       CL2
Rx
               +CC.C
                         = CCCLC
                                      +CL
Hf {Kcal/mol}
               .000
                     21.020 -34.700
                                      28.920
S {cal/mol K} 53.290
                     69.010 73.410
                                      39.460
dHr \{kcal/mol\} (298K) =
                         -26.80
                                 dHr avg (298., 1000. K) =
                                                           -26.30
dU(dE) \{kcal/mol\} (") =
                         -26.80
                                 dUr avg (298., 1000. K) =
                                                          -26.30
dSr \{cal/mol K\} (") =
                        -9.43
                               dSr avg (298., 1000. K) =
                                                         -8.38
dGr \{kcal/mol\} (") =
                       -23.99
                               dGr avg (298., 1000, K) =
                                                         -20.86
     Af/Ar (") = 8.688E-03 Af/Ar avg (298., 1000. K) = 1.473E-02
  T(K) dH(Kcal/mol) dU(Kcal/mol) dS(cal/mol K) (Af/Ar) dG(Kcal/mol)
  300.00 -2.680E+01 -2.680E+01 -9.421E+00 8.728E-03 -2.397E+01
  400.00 -2.660E+01 -2.660E+01 -8.847E+00 1.165E-02 -2.306E+01
  500.00 -2.631E+01 -2.631E+01 -8.220E+00 1.597E-02 -2.220E+01
  600.00 -2.598E+01 -2.598E+01 -7.614E+00 2.167E-02 -2.141E+01
  800.00 -2.524E+01 -2.524E+01 -6.554E+00
                                             3.693E-02 -2.000E+01
 1000.00 -2.449E+01 -2.449E+01 -5.716E+00 5.632E-02 -1.878E+01
 1200.00 -2.377E+01 -2.377E+01 -5.055E+00
                                             7.853E-02 -1.770E+01
 1500.00 -2.274E+01 -2.274E+01 -4.287E+00 1.156E-01 -1.630E+01
 2000.00 -2.117E+01 -2.117E+01 -3.382E+00 1.823E-01 -1.440E+01
  THERMODYNAMIC ANALYSIS for REACTION
       CL2
               + C3C.
                         = C3CCL
                                     + CL
Rx
Hf {Kcal/mol}
               000.
                      11.900 -44.130
                                       28.920
S {cal/mol K} 53.290
                      74.290
                              76.420
                                       39.460
dHr \{kcal/mol\} (298K) =
                          -27.11
                                  dHr avg (298., 1000. K) =
                                                           -26.38
                                 dUr avg (298., 1000. K) =
dU(dE) \{kcal/mol\} (") =
                         -27.11
                                                           -26.38
dSr \{cal/mol K\} (") =
                                dSr avg (298., 1000. K) =
                                                         -10.18
                        -11.70
                                dGr avg (298., 1000. K) =
dGr \{kcal/mol\} (") =
                       -23.62
                                                         -19.77
     Af/Ar (") = 2.772E-03 Af/Ar avg (298., 1000. K) = 5.942E-03
  T(K) dH(Kcal/mol) dU(Kcal/mol) dS(cal/mol K) (Af/Ar) dG(Kcal/mol)
  300.00 -2.711E+01 -2.711E+01 -1.169E+01 2.785E-03 -2.360E+01
                                             4.034E-03 -2.246E+01
  400.00 -2.685E+01 -2.685E+01 -1.095E+01
  500.00 -2.643E+01 -2.643E+01 -1.002E+01
                                             6.444E-03 -2.142E+01
                                             1.028E-02 -2.046E+01
  600.00 -2.592E+01 -2.592E+01 -9.096E+00
  800.00 -2.482E+01 -2.482E+01 -7.516E+00
                                             2.277E-02 -1.881E+01
  1000.00 -2.379E+01 -2.379E+01 -6.364E+00
                                              4.065E-02 -1.742E+01
  1200.00 -2.290E+01 -2.290E+01 -5.549E+00
                                              6.125E-02 -1.624E+01
```

1500.00 -2.175E+01 -2.175E+01 -4.696E+00

2000.00 -2.015E+01 -2.015E+01 -3.769E+00

9.409E-02 -1.471E+01

1.500E-01 -1.261E+01

```
THERMODYNAMIC ANALYSIS for REACTION
Rx
       CL2
               + C2H3
                          = CH2CHCL + CL
Hf {Kcal/mol}
               .000
                     71.640
                              5.000
                                      28.920
S {cal/mol K} 53.290
                      53.790
                              63.080
                                       39.460
dHr \{kcal/mol\} (298K) =
                         -37.72
                                 dHr avg (298., 1000. K) =
                                                           -37.58
dU(dE) \{kcal/mol\} (") =
                        -37.72
                                 dUr avg (298., 1000, K) =
                                                          -37.58
dSr \{cal/mol K\} (") =
                               dSr avg (298., 1000. K) =
                        -4.54
                                                        -4.27
dGr \{kcal/mol\} (") = -36.37
                               dGr avg (298., 1000. K) =
                                                        -34.81
     Af/Ar (") = 1.018E-01 Af/Ar avg (298., 1000. K) = 1.169E-01
  T(K) dH(Kcal/mol) dU(Kcal/mol) dS(cal/mol K) (Af/Ar) dG(Kcal/mol)
  300.00 -3.772E+01 -3.772E+01 -4.540E+00 1.018E-01 -3.636E+01
  400.00 -3.770E+01 -3.770E+01 -4.474E+00
                                            1.052E-01 -3.591E+01
  500.00 -3.762E+01 -3.762E+01 -4.305E+00
                                            1.146E-01 -3.547E+01
  600.00 -3.750E+01 -3.750E+01 -4.097E+00 1.272E-01 -3.505E+01
  800.00 -3.720E+01 -3.720E+01 -3.667E+00 1.579E-01 -3.427E+01
 1000.00 -3.685E+01 -3.685E+01 -3.277E+00
                                            1.922E-01 -3.358E+01
 1200.00 -3.648E+01 -3.648E+01 -2.938E+00
                                             2.280E-01 -3.296E+01
 1500.00 -3.590E+01 -3.590E+01 -2.504E+00
                                             2.836E-01 -3.214E+01
 2000.00 -3.489E+01 -3.489E+01 -1.924E+00 3.797E-01 -3.104E+01
  THERMODYNAMIC ANALYSIS for REACTION
Rx
       CL2
               + C3H5
                          = C3H5CL
                                      + CL
Hf {Kcal/mol}
               .000
                     40.750
                              -.460
                                      28.920
S {cal/mol K} 53.290
                      62.050
                              73.310
                                       39.460
dHr \{kcal/mol\} (298K) =
                         -12.29
                                  dHr avg (298., 1000. K) =
                                                           -12.22
                                 dUr avg (298., 1000. K) =
dU(dE) \{kcal/mol\} (") =
                         -12.29
                                                          -12.22
dSr \{cal/mol K\} (") =
                        -2.57
                               dSr avg (298., 1000. K) =
dGr \{kcal/mol\} (") = -11.52
                               dGr avg (298., 1000. K) =
                                                         -10.65
     Af/Ar (") = 2.743E-01 Af/Ar avg (298., 1000. K) = 2.958E-01
  T(K) dH(Kcal/mol) dU(Kcal/mol) dS(cal/mol K) (Af/Ar) dG(Kcal/mol)
  300.00 -1.229E+01 -1.229E+01 -2.568E+00 2.746E-01 -1.152E+01
  400.00 -1.226E+01 -1.226E+01 -2.471E+00
                                             2.883E-01 -1.127E+01
  500.00 -1.222E+01 -1.222E+01 -2.384E+00
                                             3.012E-01 -1.102E+01
  600.00 -1.217E+01 -1.217E+01 -2.306E+00
                                             3.133E-01 -1.079E+01
  800.00 -1.208E+01 -1.208E+01 -2.172E+00
                                             3.352E-01 -1.034E+01
 1000.00 -1.197E+01 -1.197E+01 -2.055E+00
                                             3.555E-01 -9.920E+00
 1200.00 -1.185E+01 -1.185E+01 -1.942E+00
                                              3.763E-01 -9.520E+00
 1500.00 -1.161E+01 -1.161E+01 -1.765E+00
                                             4.114E-01 -8.964E+00
 2000.00 -1.106E+01 -1.106E+01 -1.452E+00
                                             4.817E-01 -8.160E+00
```

```
THERMODYNAMIC ANALYSIS for REACTION
Rx
       CL2
               + C3H3
                          = C3H3CL
                                      + CL
Hf {Kcal/mol}
               .000
                     81.580
                             39.170
                                      28.920
S {cal/mol K} 53.290
                     59.570
                             68.780
                                      39.460
dHr \{kcal/mol\} (298K) =
                         -13.49
                                 dHr avg (298., 1000. K) =
                                                          -13.31
dU(dE) \{kcal/mol\} (") =
                      -13.49 dUr avg (298., 1000. K) =
                                                         -13.31
dSr \{cal/mol K\} (") =
                        -4.62 dSr avg (298., 1000. K) =
                                                        -4.24
dGr \{kcal/mol\} (") = -12.11
                               dGr avg (298., 1000. K) =
                                                        -10.56
     Af/Ar (") = 9.777E-02 Af/Ar avg (298., 1000. K) = 1.185E-01
  T(K) dH(Kcal/mol) dU(Kcal/mol) dS(cal/mol K) (Af/Ar) dG(Kcal/mol)
  300.00 -1.349E+01 -1.349E+01 -4.616E+00 9.796E-02 -1.210E+01
  400.00 -1.341E+01 -1.341E+01 -4.396E+00 1.094E-01 -1.165E+01
  500.00 -1.331E+01 -1.331E+01 -4.170E+00 1.226E-01 -1.122E+01
  600.00 -1.319E+01 -1.319E+01 -3.955E+00 1.366E-01 -1.082E+01
  800.00 -1.293E+01 -1.293E+01 -3.577E+00 1.652E-01 -1.007E+01
 1000.00 -1.265E+01 -1.265E+01 -3.266E+00
                                             1.933E-01 -9.383E+00
 1200.00 -1.236E+01 -1.236E+01 -3.003E+00
                                             2.207E-01 -8.757E+00
 1500.00 -1.190E+01 -1.190E+01 -2.661E+00
                                             2.620E-01 -7.909E+00
 2000.00 -1.106E+01 -1.106E+01 -2.181E+00
                                             3.336E-01 -6.702E+00
  THERMODYNAMIC ANALYSIS for REACTION
Rx
               + CH2CL
                                       + CL
       CL2
                           = CH2CL2
Hf {Kcal/mol}
               .000
                     27.990 -22.830
                                      28.920
S {cal/mol K} 53.290 58.610
                             64.570
                                      39.460
                         -21.90
dHr \{kcal/mol\} (298K) =
                                 dHr avg (298., 1000. K) =
                                                          -21.89
                                dUr avg (298., 1000. K) =
dU(dE) \{kcal/mol\} (") =
                        -21.90
                                                          -21.89
                               dSr avg (298., 1000. K) =
dSr \{cal/mol K\} (") =
                        -7.87
dGr \{kcal/mol\} (") = -19.55
                               dGr avg (298., 1000. K) =
     Af/Ar (") = 1.905E-02 Af/Ar avg (298., 1000. K) = 1.884E-02
  T(K) dH(Kcal/mol) dU(Kcal/mol) dS(cal/mol K) (Af/Ar) dG(Kcal/mol)
  300.00 -2.190E+01 -2.190E+01 -7.875E+00 1.900E-02 -1.954E+01
  400.00 -2.195E+01 -2.195E+01 -8.025E+00
                                            1.762E-02 -1.874E+01
                                            1.754E-02 -1.794E+01
  500.00 -2.196E+01 -2.196E+01 -8.034E+00
  600.00 -2.192E+01 -2.192E+01 -7.965E+00
                                            1.816E-02 -1.714E+01
  800.00 -2.174E+01 -2.174E+01 -7.716E+00
                                            2.059E-02 -1.557E+01
  1000.00 -2.147E+01 -2.147E+01 -7.414E+00 2.396E-02 -1.406E+01
  1200.00 -2.114E+01 -2.114E+01 -7.114E+00 2.787E-02 -1.260E+01
                                            3.418E-02 -1.053E+01
  1500.00 -2.059E+01 -2.059E+01 -6.708E+00
```

2000.00 -1.962E+01 -1.962E+01 -6.148E+00 4.531E-02 -7.322E+00

```
THERMODYNAMIC ANALYSIS for REACTION
Rx
       CL2
               + CHCL2
                           = CHCL3
                                      + CL
Hf {Kcal/mol}
               .000
                     23.500 -24.200
                                      28.920
S {cal/mol K} 53.290
                     68.100 70.660
                                      39,460
dHr \{kcal/mol\} (298K) =
                         -18.78
                                 dHr avg (298., 1000. K) =
                                                           -18.63
dU(dE) \{kcal/mol\} (") =
                        -18.78
                                 dUr avg (298., 1000. K) =
                                                          -18.63
dSr \{cal/mol K\} (") =
                       -11.27
                               dSr avg (298., 1000. K) =
                                                        -10.98
dGr \{kcal/mol\} (") =
                       -15.42
                               dGr avg (298., 1000. K) =
     Af/Ar (") = 3.441E-03 Af/Ar avg (298., 1000. K) = 3.975E-03
  T(K) dH(Kcal/mol) dU(Kcal/mol) dS(cal/mol K) (Af/Ar) dG(Kcal/mol)
  300.00 -1.878E+01 -1.878E+01 -1.127E+01 3.441E-03 -1.540E+01
  400.00 -1.875E+01 -1.875E+01 -1.119E+01 3.586E-03 -1.427E+01
  500.00 -1.867E+01 -1.867E+01 -1.101E+01
                                            3.917E-03 -1.316E+01
  600.00 -1.856E+01 -1.856E+01 -1.080E+01 4.352E-03 -1.207E+01
  800.00 -1.826E+01 -1.826E+01 -1.038E+01
                                             5.396E-03 -9.956E+00
 1000.00 -1.791E+01 -1.791E+01 -9.990E+00 6.554E-03 -7.920E+00
 1200.00 -1.754E+01 -1.754E+01 -9.654E+00
                                            7.763E-03 -5.956E+00
 1500.00 -1.696E+01 -1.696E+01 -9.222E+00 9.644E-03 -3.127E+00
 2000.00 -1.596E+01 -1.596E+01 -8.645E+00 1.290E-02 1.334E+00
  THERMODYNAMIC ANALYSIS for REACTION
       CL2
                + CCL3
                          = CCL4
                                     + CL
Rx
Hf {Kcal/mol}
               .000
                     19.000 -22.940
                                       28.920
S {cal/mol K} 53.290
                      70.920
                              74.020
                                       39.460
dHr \{kcal/mol\} (298K) =
                         -13.02
                                 dHr avg (298., 1000. K) =
                                                           -12.65
dU(dE) \{kcal/mol\} (") =
                         -13.02
                                 dUr avg (298., 1000. K) =
                                                          -12.65
dSr \{cal/mol K\} (") =
                       -10.73
                                dSr avg (298., 1000. K) =
                                                         -9.92
dGr \{kcal/mol\} (") =
                               dGr avg (298., 1000. K) =
                        -9.82
                                                         -6.21
     Af/Ar (") = 4.516E-03 Af/Ar avg (298., 1000. K) = 6.803E-03
  T(K) dH(Kcal/mol) dU(Kcal/mol) dS(cal/mol K) (Af/Ar) dG(Kcal/mol)
  300.00 -1.302E+01 -1.302E+01 -1.072E+01 4.541E-03 -9.801E+00
  400.00 -1.282E+01 -1.282E+01 -1.017E+01 5.993E-03 -8.757E+00
  500.00 -1.261E+01 -1.261E+01 -9.692E+00 7.614E-03 -7.765E+00
  600.00 -1.239E+01 -1.239E+01 -9.282E+00 9.359E-03 -6.817E+00
  800.00 -1.193E+01 -1.193E+01 -8.621E+00 1.305E-02 -5.030E+00
  1000.00 -1.147E+01 -1.147E+01 -8.116E+00 1.683E-02 -3.358E+00
 1200.00 -1.103E+01 -1.103E+01 -7.714E+00
                                             2.061E-02 -1.776E+00
  1500.00 -1.038E+01 -1.038E+01 -7.227E+00
                                              2.633E-02 4.619E-01
 2000.00 -9.296E+00 -9.296E+00 -6.604E+00 3.602E-02 3.912E+00
```

```
Rx
       CL2
               + C2CL5
                          = C2CL6
                                      +CL
Hf {Kcal/mol}
               .000
                     9.060 -33.800
                                      28.920
S {cal/mol K} 53.290
                     95.680 94.770
                                      39.460
                                 dHr avg (298., 1000. K) =
dHr \{kcal/mol\} (298K) =
                         -13.94
                                                           -13.54
dU (dE) \{kcal/mol\} (") = -13.94
                                 dUr avg (298., 1000. K) =
                                                          -13.54
dSr \{cal/mol K\} (") =
                       -14.74
                               dSr avg (298., 1000. K) =
                                                         -13.88
dGr \{kcal/mol\} (") = -9.55
                               dGr avg (298., 1000. K) =
                                                         -4.53
     Af/Ar (") = 6.002E-04 Af/Ar avg (298., 1000. K) = 9.233E-04
  T(K) dH(Kcal/mol) dU(Kcal/mol) dS(cal/mol K) (Af/Ar) dG(Kcal/mol)
  300.00 -1.394E+01 -1.394E+01 -1.473E+01
                                             6.028E-04 -9.518E+00
  400.00 -1.376E+01 -1.376E+01 -1.423E+01
                                             7.766E-04 -8.070E+00
  500.00 -1.353E+01 -1.353E+01 -1.371E+01
                                             1.007E-03 -6.673E+00
  600.00 -1.327E+01 -1.327E+01 -1.324E+01
                                             1.277E-03 -5.326E+00
  800.00 -1.273E+01 -1.273E+01 -1.247E+01
                                             1.882E-03 -2.759E+00
  1000.00 -1.223E+01 -1.223E+01 -1.191E+01
                                             2.499E-03 -3.240E-01
  1200.00 -1.176E+01 -1.176E+01 -1.148E+01
                                             3.097E-03 2.013E+00
  1500.00 -1.108E+01 -1.108E+01 -1.097E+01
                                             4.004E-03
                                                        5.377E+00
  2000.00 -9.957E+00 -9.957E+00 -1.032E+01
                                             5.539E-03 1.069E+01
   THERMODYNAMIC ANALYSIS for REACTION
Rx
                         = CF3CL
                                     + CL
        CL2
               + CF3
               .000 -113.010 -169.200
                                        28.920
Hf {Kcal/mol}
S {cal/mol K} 53.290 63.420
                             68.170
                                       39.460
                                  dHr avg (298., 1000. K) =
                                                            -26.95
dHr \{kcal/mol\} (298K) =
                         -27.27
                                 dUr avg (298., 1000. K) =
                                                           -26.95
dU(dE) \{kcal/mol\} (") =
                         -27.27
                               dSr avg (298., 1000. K) =
dSr \{cal/mol K\} (") =
                        -9.08
                                                         -8.38
                                dGr avg (298., 1000. K) =
dGr \{kcal/mol\} (") =
                       -24.56
     Af/Ar (") = 1.036E-02 Af/Ar avg (298., 1000. K) = 1.471E-02
  T(K) dH(Kcal/mol) dU(Kcal/mol) dS(cal/mol K) (Af/Ar) dG(Kcal/mol)
  300.00 -2.727E+01 -2.727E+01 -9.072E+00 1.040E-02 -2.455E+01
   400.00 -2.712E+01 -2.712E+01 -8.648E+00
                                             1.288E-02 -2.366E+01
   500.00 -2.693E+01 -2.693E+01 -8.236E+00
                                             1.585E-02 -2.282E+01
                                             1.916E-02 -2.201E+01
   600.00 -2.673E+01 -2.673E+01 -7.858E+00
   800.00 -2.629E+01 -2.629E+01 -7.227E+00
                                             2.633E-02 -2.051E+01
                                              3.368E-02 -1.911E+01
  1000.00 -2.585E+01 -2.585E+01 -6.738E+00
  1200.00 -2.542E+01 -2.542E+01 -6.348E+00
                                             4.099E-02 -1.780E+01
  1500.00 -2.478E+01 -2.478E+01 -5.872E+00
                                             5.208E-02 -1.597E+01
                                             7.090E-02 -1.320E+01
  2000.00 -2.372E+01 -2.372E+01 -5.259E+00
```

```
THERMODYNAMIC ANALYSIS for REACTION
               + CF2CL
Rx
       CL2
                          = CF2CL2
                                      + CL
Hf {Kcal/mol}
               .000 -66.020 -117.500
                                      28,920
S {cal/mol K} 53.290
                    67.720
                              71.910
                                      39.460
dHr \{kcal/mol\} (298K) =
                         -22.56
                                 dHr avg (298., 1000. K) =
                                                          -22.22
dU(dE) \{kcal/mol\} (") =
                        -22.56
                                dUr avg (298., 1000. K) =
                                                          -22.22
dSr \{cal/mol K\} (") =
                        -9.64
                               dSr avg (298., 1000. K) =
                                                        -8.91
dGr \{kcal/mol\} (") = -19.69
                               dGr avg (298., 1000. K) =
                                                        -16.44
     Af/Ar (") = 7.816E-03 Af/Ar avg (298., 1000. K) = 1.127E-02
  T(K) dH(Kcal/mol) dU(Kcal/mol) dS(cal/mol K) (Af/Ar) dG(Kcal/mol)
  300.00 -2.256E+01 -2.256E+01 -9.632E+00 7.848E-03 -1.967E+01
  400.00 -2.240E+01 -2.240E+01 -9.186E+00 9.825E-03 -1.873E+01
  500.00 -2.221E+01 -2.221E+01 -8.754E+00 1.221E-02 -1.783E+01
  600.00 -2.199E+01 -2.199E+01 -8.362E+00 1.487E-02 -1.697E+01
  800.00 -2.154E+01 -2.154E+01 -7.713E+00
                                            2.062E-02 -1.537E+01
  1000.00 -2.110E+01 -2.110E+01 -7.217E+00 2.646E-02 -1.388E+01
  1200.00 -2.067E+01 -2.067E+01 -6.825E+00
                                             3.222E-02 -1.248E+01
                                             4.097E-02 -1.050E+01
  1500.00 -2.003E+01 -2.003E+01 -6.348E+00
  2000.00 -1.896E+01 -1.896E+01 -5.733E+00
                                             5.583E-02 -7.490E+00
   THERMODYNAMIC ANALYSIS for REACTION
               + CFCL2
                           = CFCL3
                                      + CL
Rx
        CL2
               .000 -21.600 -67.700
                                      28.920
Hf {Kcal/mol}
S {cal/mol K} 53.290 69.170
                             74.070
                                       39.460
                                 dHr avg (298., 1000. K) =
dHr \{kcal/mol\} (298K) =
                         -17.18
                                                           -16.77
                         -17.18
                                 dUr avg (298., 1000. K) =
dU(dE) \{kcal/mol\} (") =
                                                          -16.77
dSr \{cal/mol K\} (") =
                               dSr avg (298., 1000. K) =
                        -8.93
                                                        -8.03
dGr \{kcal/mol\} (") = -14.52
                               dGr avg (298., 1000. K) =
                                                         -11.55
     Af/Ar (") = 1.117E-02 Af/Ar avg (298., 1000. K) = 1.757E-02
  T(K) dH(Kcal/mol) dU(Kcal/mol) dS(cal/mol K) (Af/Ar) dG(Kcal/mol)
  300.00 -1.718E+01 -1.718E+01 -8.919E+00 1.124E-02 -1.450E+01
  400.00 -1.697E+01 -1.697E+01 -8.327E+00 1.513E-02 -1.364E+01
                                             1.977E-02 -1.283E+01
  500.00 -1.673E+01 -1.673E+01 -7.796E+00
  600.00 -1.648E+01 -1.648E+01 -7.334E+00
                                             2.495E-02 -1.208E+01
                                             3.613E-02 -1.069E+01
  800.00 -1.597E+01 -1.597E+01 -6.598E+00
  1000.00 -1.548E+01 -1.548E+01 -6.058E+00 4.742E-02 -9.425E+00
                                            5.846E-02 -8.257E+00
  1200.00 -1.503E+01 -1.503E+01 -5.642E+00
  1500.00 -1.436E+01 -1.436E+01 -5.143E+00
                                             7.515E-02 -6.642E+00
```

2000.00 -1.326E+01 -1.326E+01 -4.510E+00 1.033E-01 -4.237E+00

```
THERMODYNAMIC ANALYSIS for REACTION
       CL2
Rx
               + CHCL2CHCL = C2H2CL4 + CL
Hf {Kcal/mol}
               .000
                             -36.000
                                       28,920
                     11.750
S {cal/mol K} 53.290
                      84.510
                              84.860
                                       39.460
dHr \{kcal/mol\} (298K) =
                         -18.83
                                  dHr avg (298., 1000. K) =
                                                           -18.69
dU(dE) \{kcal/mol\} (") =
                        -18.83
                                 dUr avg (298., 1000. K) =
                                                          -18.69
dSr \{cal/mol K\} (") =
                       -13.48
                               dSr avg (298., 1000. K) =
                                                         -13.23
dGr \{kcal/mol\} (") =
                       -14.81
                               dGr avg (298., 1000. K) =
                                                         -10.11
     Af/Ar (") = 1.132E-03 Af/Ar avg (298., 1000. K) = 1.283E-03
  T(K) dH(Kcal/mol) dU(Kcal/mol) dS(cal/mol K) (Af/Ar) dG(Kcal/mol)
  300.00 -1.883E+01 -1.883E+01 -1.348E+01
                                             1.130E-03 -1.479E+01
  400.00 -1.883E+01 -1.883E+01 -1.348E+01
                                             1.133E-03 -1.344E+01
  500.00 -1.876E+01 -1.876E+01 -1.333E+01
                                             1.222E-03 -1.210E+01
  600.00 -1.864E+01 -1.864E+01 -1.310E+01
                                             1.367E-03 -1.077E+01
  800.00 -1.827E+01 -1.827E+01 -1.258E+01
                                             1.782E-03 -8.204E+00
 1000.00 -1.779E+01 -1.779E+01 -1.205E+01
                                             2.328E-03 -5.742E+00
 1200.00 -1.726E+01 -1.726E+01 -1.157E+01
                                             2.966E-03 -3.382E+00
 1500.00 -1.645E+01 -1.645E+01 -1.096E+01
                                             4.014E-03 -6.244E-03
 2000.00 -1.515E+01 -1.515E+01 -1.021E+01
                                              5.856E-03 5.278E+00
  THERMODYNAMIC ANALYSIS for REACTION
        CL2
                + CH2CLCCL2 = CH2CLCCL3 + CL
Rx
Hf {Kcal/mol}
               .000
                      7.870 -35.710
                                      28.920
S {cal/mol K} 53.290
                      84.560
                              85.070
                                       39.460
dHr \{kcal/mol\} (298K) =
                         -14.66
                                  dHr avg (298., 1000. K) =
                                                           -14.39
dU(dE) \{kcal/mol\} (") =
                                 dUr avg (298., 1000. K) =
                                                           -14.39
                         -14.66
dSr \{cal/mol K\} (") =
                       -13.32
                                dSr avg (298., 1000. K) =
                                                         -12.77
dGr \{kcal/mol\} (") =
                       -10.69
                                dGr avg (298., 1000. K) =
                                                          -6.10
     Af/Ar (") = 1.227E-03 Af/Ar avg (298., 1000. K) = 1.614E-03
  T(K) dH(Kcal/mol) dU(Kcal/mol) dS(cal/mol K) (Af/Ar) dG(Kcal/mol)
                                             1.228E-03 -1.066E+01
  300.00 -1.466E+01 -1.466E+01 -1.332E+01
                                             1.367E-03 -9.341E+00
  400.00 -1.458E+01 -1.458E+01 -1.310E+01
  500.00 -1.444E+01 -1.444E+01 -1.278E+01
                                             1.610E-03 -8.047E+00
  600.00 -1.423E+01 -1.423E+01 -1.241E+01
                                             1.936E-03 -6.787E+00
                                             2.807E-03 -4.379E+00
  800.00 -1.372E+01 -1.372E+01 -1.167E+01
  1000.00 -1.312E+01 -1.312E+01 -1.101E+01 3.925E-03 -2.112E+00
  1200.00 -1.250E+01 -1.250E+01 -1.044E+01
                                              5.222E-03 3.149E-02
  1500.00 -1.158E+01 -1.158E+01 -9.760E+00
                                              7.358E-03
                                                         3.057E+00
  2000.00 -1.016E+01 -1.016E+01 -8.938E+00
                                              1.113E-02
                                                         7.719E+00
```

```
THERMODYNAMIC ANALYSIS for REACTION
Rx
       CL2
               + CH2CLCHCL = CH2CLCHCL2 + CL
Hf {Kcal/mol}
               .000
                     14.730 -34.800
                                      28.920
S {cal/mol K} 53.290
                     78.560
                             79.710
                                      39.460
dHr \{kcal/mol\} (298K) =
                         -20.61
                                 dHr avg (298., 1000. K) =
                                                          -20.47
dU(dE) \{kcal/mol\} (") =
                       -20.61
                                dUr avg (298., 1000. K) =
                                                          -20.47
                               dSr avg (298., 1000. K) =
dSr \{cal/mol K\} (") =
                       -12.68
                                                        -12.44
dGr \{kcal/mol\} (") =
                       -16.83
                               dGr avg (298., 1000. K) =
                                                        -12.39
     Af/Ar (") = 1.693E-03 Af/Ar avg (298., 1000. K) = 1.909E-03
  T(K) dH(Kcal/mol) dU(Kcal/mol) dS(cal/mol K) (Af/Ar) dG(Kcal/mol)
  300.00 -2.061E+01 -2.061E+01 -1.269E+01 1.688E-03 -1.681E+01
  400.00 -2.064E+01 -2.064E+01 -1.277E+01 1.621E-03 -1.553E+01
  500.00 -2.057E+01 -2.057E+01 -1.261E+01 1.753E-03 -1.426E+01
  600.00 -2.042E+01 -2.042E+01 -1.235E+01 1.999E-03 -1.301E+01
  800.00 -1.999E+01 -1.999E+01 -1.173E+01
                                            2.732E-03 -1.060E+01
 1000.00 -1.945E+01 -1.945E+01 -1.113E+01 3.697E-03 -8.319E+00
 1200.00 -1.887E+01 -1.887E+01 -1.060E+01
                                             4.815E-03 -6.147E+00
 1500.00 -1.801E+01 -1.801E+01 -9.962E+00
                                             6.648E-03 -3.067E+00
 2000.00 -1.664E+01 -1.664E+01 -9.173E+00
                                             9.886E-03 1.706E+00
  THERMODYNAMIC ANALYSIS for REACTION
Rx
       CL2
               + CHCL2CH2 = CH2CLCHCL2 + CL
Hf {Kcal/mol}
               .000
                     20.310 -34.800
                                      28.920
S {cal/mol K} 53.290
                     74.640
                              79.710
                                      39,460
                                 dHr avg (298., 1000. K) =
dHr \{kcal/mol\} (298K) =
                         -26.19
                                                          -26.19
dU(dE) \{kcal/mol\} (") =
                         -26.19 dUr avg (298., 1000. K) =
                                                          -26.19
dSr \{cal/mol K\} (") =
                        -8.76
                               dSr avg (298., 1000. K) =
                                                        -8.83
dGr \{kcal/mol\} (") = -23.58 dGr avg (298., 1000. K) =
                                                        -20.46
     Af/Ar (") = 1.217E-02 Af/Ar avg (298., 1000. K) = 1.176E-02
  T(K) dH(Kcal/mol) dU(Kcal/mol) dS(cal/mol K) (Af/Ar) dG(Kcal/mol)
  300.00 -2.619E+01 -2.619E+01 -8.769E+00 1.212E-02 -2.356E+01
  400.00 -2.629E+01 -2.629E+01 -9.050E+00 1.052E-02 -2.267E+01
  500.00 -2.630E+01 -2.630E+01 -9.079E+00 1.036E-02 -2.176E+01
  600.00 -2.624E+01 -2.624E+01 -8.976E+00 1.092E-02 -2.086E+01
  800.00 -2.597E+01 -2.597E+01 -8.590E+00
                                            1.326E-02 -1.910E+01
  1000.00 -2.556E+01 -2.556E+01 -8.135E+00
                                             1.667E-02 -1.743E+01
  1200.00 -2.508E+01 -2.508E+01 -7.699E+00
                                             2.076E-02 -1.584E+01
  1500.00 -2.433E+01 -2.433E+01 -7.140E+00
                                             2.751E-02 -1.362E+01
  2000.00 -2.308E+01 -2.308E+01 -6.421E+00 3.950E-02 -1.024E+01
```

```
THERMODYNAMIC ANALYSIS for REACTION
Rx
       CL2
               + CCL3CHCL = CHCL2CCL3 + CL
Hf {Kcal/mol}
               .000
                     10.590 -34.800
                                      28.920
S {cal/mol K} 53.290
                      88.260
                              91.180
                                      39,460
dHr \{kcal/mol\} (298K) =
                         -16.47
                                 dHr avg (298., 1000. K) =
                                                           -16.51
dU(dE) \{kcal/mol\} (") =
                        -16.47
                                 dUr avg (298., 1000. K) =
                                                          -16.51
dSr \{cal/mol K\} (") =
                               dSr avg (298., 1000. K) =
                       -10.91
                                                        -10.99
dGr \{kcal/mol\} (") =
                               dGr avg (298., 1000. K) =
                       -13.22
                                                         -9.38
     Af/Ar (") = 4.125E-03 Af/Ar avg (298., 1000. K) = 3.972E-03
  T(K) dH(Kcal/mol) dU(Kcal/mol) dS(cal/mol K) (Af/Ar) dG(Kcal/mol)
  300.00 -1.647E+01 -1.647E+01 -1.091E+01 4.130E-03 -1.320E+01
  400.00 -1.647E+01 -1.647E+01 -1.089E+01 4.161E-03 -1.211E+01
  500.00 -1.650E+01 -1.650E+01 -1.097E+01 4.001E-03 -1.102E+01
  600.00 -1.654E+01 -1.654E+01 -1.104E+01
                                            3.862E-03 -9.915E+00
  800.00 -1.654E+01 -1.654E+01 -1.105E+01
                                            3.850E-03 -7.703E+00
  1000.00 -1.639E+01 -1.639E+01 -1.089E+01 4.176E-03 -5.507E+00
  1200.00 -1.612E+01 -1.612E+01 -1.064E+01 4.722E-03 -3.354E+00
  1500.00 -1.563E+01 -1.563E+01 -1.028E+01
                                             5.673E-03 -2.175E-01
  2000.00 -1.472E+01 -1.472E+01 -9.751E+00 7.392E-03 4.786E+00
  THERMODYNAMIC ANALYSIS for REACTION
                + CHCL2CCL2 = CHCL2CCL3 + CL
Rx
        CL2
Hf {Kcal/mol}
                      6.130 -34.800
                                      28.920
               .000
S {cal/mol K} 53.290
                      90.650 91.180
                                       39.460
                                  dHr avg (298., 1000. K) =
dHr \{kcal/mol\} (298K) =
                         -12.01
                                                           -11.78
                                 dUr avg (298., 1000. K) =
                                                          -11.78
dU(dE) \{kcal/mol\} (") =
                       -12.01
                       -13.30 dSr avg (298., 1000. K) =
                                                         -12.77
dSr \{cal/mol K\} (") =
dGr \{kcal/mol\} (") = -8.04 dGr avg (298., 1000. K) =
                                                         -3.49
     Af/Ar (") = 1.239E-03 Af/Ar avg (298., 1000. K) = 1.615E-03
  T(K) dH(Kcal/mol) dU(Kcal/mol) dS(cal/mol K) (Af/Ar) dG(Kcal/mol)
                                             1.247E-03 -8.020E+00
  300.00 -1.201E+01 -1.201E+01 -1.329E+01
  400.00 -1.184E+01 -1.184E+01 -1.281E+01
                                             1.584E-03 -6.718E+00
                                             1.821E-03 -5.451E+00
  500.00 -1.172E+01 -1.172E+01 -1.253E+01
  600.00 -1.161E+01 -1.161E+01 -1.233E+01
                                             2.014E-03 -4.208E+00
                                             2.405E-03 -1.777E+00
  800.00 -1.136E+01 -1.136E+01 -1.198E+01
  1000.00 -1.104E+01 -1.104E+01 -1.162E+01
                                             2.883E-03
                                                        5.839E-01
  1200.00 -1.064E+01 -1.064E+01 -1.126E+01
                                             3.452E-03
                                                        2.872E+00
  1500.00 -1.002E+01 -1.002E+01 -1.080E+01
                                             4.365E-03
                                                        6.179E+00
                                             5.947E-03 1.142E+01
  2000.00 -8.949E+00 -8.949E+00 -1.018E+01
```

APPENDIX 1.2

KINETIC ANALYSIS

```
THERMODYNAMIC ANALYSIS for REACTION
```

Rx CL2 + CH3 = TSCXCL2 Hf {Kcal/mol} .000 34.820 32.100 S {cal/mol K} 53.290 46.380 74.110

 $dHr \{kcal/mol\} (298K) =$ -2.72 dHr avg (298., 1500. K) =-3.18 $dU(dE) \{kcal/mol\} (") =$ -2.13dUr avg (298., 1500. K) =-1.39 $dSr \{cal/mol K\} (") =$ -25.56 dSr avg (298., 1500. K) =-26.28 $dGr \{kcal/mol\} (") =$ dGr avg (298., 1500. K) =20.45 4.90 Af/Ar (") = 1.723E-01 Af/Ar avg (298., 1500. K) = 3.622E-01Fit Af/Ar : A = 2.154E-02 n = .34 alpha = -2.993E-04 avg error 1.71 %Fit Af/Ar w/ddU: A = 2.740E-03 n = .71 alpha = -2.359E-04 avg error 2.47 %

T (K) dH(Kcal/mol) dU(Kcal/mol) dS(cal/mol K) (Af/Ar) dG(Kcal/mol) 300.00 -2.723E+00 -2.127E+00 -2.557E+01 1.725E-01 4.948E+00 400.00 -2.862E+00 -2.068E+00 -2.597E+01 1.877E-01 7.527E+00 500.00 -2.975E+00 -1.982E+00 -2.623E+01 2.067E-01 1.014E+01 600.00 -3.068E+00 -1.876E+00 -2.640E+01 2.277E-01 1.277E+01 800.00 -3.218E+00 -1.628E+00 -2.661E+01 2.722E-01 1.807E+01 1000.00 -3.344E+00 -1.357E+00 -2.675E+01 3.169E-01 2.341E+01 1200.00 -3.464E+00 -1.080E+00 -2.686E+01 3.599E-01 2.877E+01 1500.00 -3.639E+00 -6.588E-01 -2.699E+01 4.213E-01 3.685E+01 2000.00 -3.868E+00 1.057E-01 -2.713E+01 5.253E-01 5.038E+01

The model fitted is for bi-molecular reaction.

The 3 parameters for the model equation of A(T) = Aprime * T^n * exp(-Ea/RT) Aprime = 5.2703E+07 n = 1.61232 Ea = -2.5676E+03

Temp(K)	AF(T)	T_K^n	k_calc(T)	k_fit
300.00	1.079E+12	9.861E+03	3.824E+13	3.859E+13
400.00	1.565E+12	1.568E+04	2.111E+13	2.090E+13
500.00	2.154E+12	2.247E+04	1.583E+13	1.570E+13
600.00	2.848E+12	3.015E+04	1.374E+13	1.369E+13
800.00	4.541E+12	4.794E+04	1.264E+13	1.271E+13
1000.00	6.607E+12	6.870E+04	1.308E+13	1.318E+13
1200.00	9.004E+12	9.218E+04	1.416E+13	1.426E+13
1500.00	1.318E+13	1.321E+05	1.643E+13	1.648E+13
2000.00	2.190E+13	2.101E+05	2.133E+13	2.112E+13

Rx CH3CL-CL = TSCXCL2 Hf {Kcal/mol} 6.230 32.100 S {cal/mol K} 80.450 74.110

 $dHr \{kcal/mol\} (298K) =$ 25.87 dHr avg (298., 1500. K) =25.54 $dU(dE) \{kcal/mol\} (") =$ 25.87 dUr avg (298., 1500. K) =25.54 $dSr \{cal/mol K\} (") =$ -6.34 dSr avg (298., 1500. K) =-6.44 $dGr \{kcal/mol\} (") =$ 27.76 dGr avg (298., 1500. K) =31.33 Af/Ar (") = 4.114E-02 Af/Ar avg (298., 1500. K) = 3.919E-02 : A = 8.306E-04 n = .75 alpha = 1.098E-03 avg error 3.91 %Fit Af/Ar w/ddU: A = 1.142E-04 n = 1.15 alpha = 1.847E-03 avg error 9.19 %

T(K) dH(Kcal/mol) dU(Kcal/mol) dS(cal/mol K) (Af/Ar) dG(Kcal/mol) 300.00 2.587E+01 2.587E+01 -6.331E+00 4.133E-02 2.777E+01 400.00 2.599E+01 2.599E+01 -5.979E+00 4.935E-02 2.839E+01 500.00 2.607E+01 2.607E+01 -5.808E+00 5.376E-02 2.897E+01 600.00 2.610E+01 2.610E+01 -5.747E+00 5.544E-02 2.955E+01 800.00 2.606E+01 2.606E+01 -5.807E+00 5.379E-02 3.070E+01 1000.00 2.590E+01 2.590E+01 -5.986E+00 4.916E-02 3.188E+01 1200.00 2.565E+01 2.565E+01 -6.205E+00 4.403E-02 3.310E+01 2.521E+01 -6.533E+00 3.734E-02 1500.00 2.521E+01 3.501E+01 2.440E+01 -6.997E+00 2.956E-02 2000.00 2.440E+01 3.840E+01

The model fitted is for uni-molecular reaction.

Temp(K)	AF(T)	T_K^n	k_calc(T)	k_fit
300.00	2.583E+11	9.158E+01	3.651E-08	3.533E-08
400.00	4.113E+11	1.150E+02	2.573E-03	2.654E-03
500.00	5.601E+11	1.372E+02	2.251E+00	2.326E+00
600.00	6.932E+11	1.586E+02	2.149E+02	2.188E+02
800.00	8.967E+11	1.991E+02	6.815E+04	6.720E+04
1000.00	1.024E+12	2.376E+02	2.242E+06	2.174E+06
1200.00	1.101E+12	2.745E+02	2.340E+07	2.266E+07
1500.00	1.167E+12	3.276E+02	2.473E+08	2.440E+08
2000.00	1.232E+12	4.114E+02	2.651E+09	2.765E+09

Rx CH3CL + CL = TSCXCL2 Hf {Kcal/mol} -19.600 28.920 32.100 S {cal/mol K} 56.000 39.460 74.110

 $dHr \{kcal/mol\} (298K) =$ 22.78 dHr avg (298., 1500. K) =22.01 $dU(dE) \{kcal/mol\} (") =$ 23.37 dUr avg (298., 1500. K) =23.80 $dSr \{cal/mol K\} (") =$ -21.35 dSr avg (298., 1500. K) =-22.02 $dGr \{kcal/mol\} (") =$ 29.15 dGr avg (298., 1500. K) =41.82 Af/Ar (") = 1.433E+00 Af/Ar avg (298., 1500. K) = 3.078E+00A = 7.364E-04 n = 1.40 alpha = 1.106E-03 avg error 4.25 %Fit Af/Ar w/ddU: A = 5.664E-06 n = 2.33 alpha = 2.153E-03 avg error 11.46 %

T (K) dH(Kcal/mol) dU(Kcal/mol) dS(cal/mol K) (Af/Ar) dG(Kcal/mol) 300.00 2.278E+01 2.338E+01 -2.135E+01 1.446E+00 2.918E+01 400.00 2.284E+01 2.363E+01 -2.118E+01 2.090E+00 3.131E+01 500.00 2.284E+01 2.384E+01 -2.117E+01 2.633E+00 3.343E+01 600.00 2.280E+01 2.400E+01 -2.124E+01 3.053E+00 3.555E+01 800.00 2.261E+01 2.420E+01 -2.151E+01 3.553E+00 3.982E+01 1000.00 2.230E+01 2.429E+01 -2.185E+01 3.733E+00 4.415E+01 1200.00 2.191E+01 2.429E+01 -2.221E+01 3.745E+00 4.856E+01 1500.00 2.125E+01 2.423E+01 -2.270E+01 3.657E+00 5.530E+01 2000.00 2.011E+01 2.408E+01 -2.336E+01 3.501E+00 6.682E+01

The model fitted is for bi-molecular reaction.

The 3 parameters for the model equation of A(T) = Aprime * T^n * exp(-Ea/RT) Aprime = 2.4686E+09 n = 1.42724 Ea = 2.3358E+04

Temp(K)	AF(T)	T K^n	k calc(T)	k_fit
300.00	9.044E+12	3.431E+03	8.402E-05	8.125E-05
400.00	1.743E+13	5.173E+03	2.133E+00	2.201E+00
500.00	2.745E+13	7.113E+03	1.045E+03	1.081E+03
600.00	3.820E+13	9.227E+03	6.928E+04	7.055E+04
800.00	5.927E+13	1.391E+04	1.447E+07	1.426E+07
1000.00	7.782E+13	1.913E+04	3.823E+08	3.705E+08
1200.00	9.369E+13	2.482E+04	3.521E+09	3.409E+09
1500.00	1.144E+14	3.412E+04	3.370E+10	3.326E+10
2000.00	1.460E+14	5.145E+04	3.410E+11	3.557E+11

THERMODYNAMIC ANALYSIS for REACTION Rx CH3CL + CL = CH3CL-CL Hf {Kcal/mol} -19.600 28.920 6.230

S {cal/mol K} 56.000 39.460 80.450

 $dHr \{kcal/mol\} (298K) =$ -3.09 dHr avg (298., 1500. K) =-3.53 $dU(dE) \{kcal/mol\} (") =$ -2.50dUr avg (298., 1500. K) =-1.74 $dSr \{cal/mol K\} (") =$ dSr avg (298., 1500. K) =-15.01 -15.59 $dGr \{kcal/mol\} (") =$ 1.39 dGr avg (298., 1500. K) =10.49 Af/Ar (") = 3.484E+01 Af/Ar avg (298., 1500. K) = 7.854E+01Fit Af/Ar : A = 8.866E-01 n = .65 alpha = 8.294E-06 avg errorFit Af/Ar w/ddU: A = 4.958E-02 n = 1.17 alpha = 3.057E-04 avg error 2.05 %

T(K) dH(Kcal/mol) dU(Kcal/mol) dS(cal/mol K) (Af/Ar) dG(Kcal/mol) 300.00 -3.091E+00 -2.495E+00 -1.501E+01 3.499E+01 1.413E+00 400.00 -3.158E+00 -2.363E+00 -1.521E+01 4.235E+01 2.924E+00 500.00 -3.227E+00 -2.234E+00 -1.536E+01 4.898E+01 4.453E+00 600.00 -3.298E+00 -2.106E+00 -1.549E+01 5.507E+01 5.996E+00 800.00 -3.445E+00 -1.855E+00 -1.570E+01 6.605E+01 9.116E+00 1000.00 -3.594E+00 -1.607E+00 -1.587E+01 7.592E+01 1.227E+01 1200.00 -3.744E+00 -1.359E+00 -1.600E+01 8.506E+01 1.546E+01 9.794E+01 2.029E+01 1500.00 -3.963E+00 -9.824E-01 -1.617E+01 1.185E+02 2.842E+01 2000.00 -4.298E+00 -3.244E-01 -1.636E+01

The model fitted is for bi-molecular reaction.

The 3 parameters for the model equation of $A(T) = Aprime * T^n * exp(-Ea/RT)$ Aprime = 1.0421E+10 n = 1.63527 Ea = -2.8673E+03

Temp(K)	AF(T)	T_K^n	k_calc(T)	k_fit
300.00	2.188E+14	1.124E+04	1.439E+16	1.438E+16
400.00	3.532E+14	1.799E+04	6.908E+15	6.914E+15
500.00	5.106E+14	2.591E+04	4.837E+15	4.840E+15
600.00	6.889E+14	3.492E+04	4.031E+15	4.031E+15
800.00	1.102E+15	5.589E+04	3.539E+15	3.537E+15
1000.00	1.583E+15	8.050E+04	3.554E+15	3.551E+15
1200.00	2.128E+15	1.085E+05	3.763E+15	3.762E+15
1500.00	3.063E+15	1.562E+05	4.259E+15	4.260E+15
2000.00	4.940E+15	2.501E+05	5.360E+15	5.362E+15

Rx CL2 + C2H5 = TSCCXCL2 Hf {Kcal/mol} .000 29.300 24.200 S {cal/mol K} 53.290 57.420 84.100

 $dHr \{kcal/mol\} (298K) =$ -5.10 dHr avg (298., 1500. K) =-5.27 $dU(dE) \{kcal/mol\} (") =$ -4.51 dUr avg (298., 1500. K) =-3.48 $dSr \{cal/mol K\} (") =$ -26.61 dSr avg (298., 1500. K) =-26.76 $dGr \{kcal/mol\} (") =$ 2.83 dGr avg (298., 1500. K) =18.79 Af/Ar (") = 1.016E-01 Af/Ar avg (298., 1500. K) = 2.836E-01 : A = 1.867E-04 n = 1.12 alpha = 2.635E-04 avg errorFit Af/Ar w/ddU: A = 1.389E-06 n = 2.02 alpha = 8.979E-04 avg error 2.54 %

T(K) dH(Kcal/mol) dU(Kcal/mol) dS(cal/mol K) (Af/Ar) dG(Kcal/mol) 300.00 -5.100E+00 -4.504E+00 -2.661E+01 1.021E-01 2.883E+00 400.00 -5.110E+00 -4.315E+00 -2.664E+01 1.342E-01 5.546E+00 500.00 -5.108E+00 -4.114E+00 -2.663E+01 1.682E-01 8.210E+00 600.00 -5.103E+00 -3.911E+00 -2.663E+01 2.027E-01 1.087E+01 800.00 -5.112E+00 -3.523E+00 -2.664E+01 2.686E-01 1.620E+01 1000.00 -5.165E+00 -3.178E+00 -2.670E+01 3.262E-01 2.153E+01 1200.00 -5.259E+00 -2.875E+00 -2.678E+01 3.749E-01 2.688E+01 1500.00 -5.439E+00 -2.458E+00 -2.692E+01 4.382E-01 3.493E+01 2000.00 -5.700E+00 -1.726E+00 -2.707E+01 5.414E-01 4.843E+01

The model fitted is for bi-molecular reaction.

The 3 parameters for the model equation of A(T) = Aprime * T^n * exp(-Ea/RT) Aprime = 5.4494E+06 n = 1.89769 Ea = -5.0051E+03

Temp(K)	AF(T)	T_K^n	k_calc(T)	k_fit
300.00	6.388E+11	5.021E+04	1.222E+15	1.212E+15
400.00	1.119E+12	8.668E+04	2.552E+14	2.565E+14
500.00	1.753E+12	1.324E+05	1.102E+14	1.112E+14
600.00	2.535E+12	1.871E+05	6.740E+13	6.787E+13
800.00	4.480E+12	3.230E+05	4.109E+13	4.102E+13
1000.00	6.800E+12	4.933E+05	3.366E+13	3.337E+13
1200.00	9.380E+12	6.972E+05	3.132E+13	3.100E+13
1500.00	1.370E+13	1.065E+06	3.126E+13	3.111E+13
2000.00	2.257E+13	1.838E+06	3.485E+13	3.529E+13

Rx CCCL-CL = TSCCXCL2 Hf {Kcal/mol} -1.190 24.200 S {cal/mol K} 86.160 84.100

 $dHr \{kcal/mol\} (298K) =$ 25.39 dHr avg (298., 1500. K) =24.79 $dU(dE) \{kcal/mol\} (") =$ dUr avg (298., 1500. K) =25.39 24.79 $dSr \{cal/mol K\} (") =$ -2.06 dSr avg (298., 1500. K) =-2.62 $dGr \{kcal/mol\} (") =$ 26.00 dGr avg (298., 1500. K) =27.15 Af/Ar (") = 3.546E-01 Af/Ar avg (298., 1500. K) = 2.672E-01: A = 1.312E-01 n = .22 alpha = 7.671E-04 avg error = 2.66 %Fit Af/Ar w/ddU: A = 1.292E-01 n = .25 alpha = 1.150E-03 avg error 5.57 %

T(K) dH(Kcal/mol) dU(Kcal/mol) dS(cal/mol K) (Af/Ar) dG(Kcal/mol) 300.00 2.539E+01 2.539E+01 -2.058E+00 3.550E-01 2.601E+01 3.658E-01 2.621E+01 400.00 2.541E+01 2.541E+01 -1.999E+00 500.00 2.540E+01 2.540E+01 -2.013E+00 3.630E-01 2.641E+01 600.00 2.537E+01 2.537E+01 -2.076E+00 3.518E-01 2.661E+01 800.00 2.522E+01 2.522E+01 -2.285E+00 3.166E-01 2.705E+01 1000.00 2.499E+01 2.499E+01 -2.547E+00 2.776E-01 2.753E+01 2.469E+01 -2.816E+00 2.424E-01 1200.00 2.469E+01 2.807E+01 2.419E+01 -3.185E+00 2.013E-01 2.897E+01 1500.00 2.419E+01 2000.00 2.334E+01 2.334E+01 -3.675E+00 1.573E-01 3.069E+01

The model fitted is for uni-molecular reaction.

Temp(K)	AF(T)	T_K^n 2.316E+01 2.714E+01 3.069E+01 3.393E+01 3.976E+01 4.496E+01 4.971E+01	k_calc(T)	k_fit
300.00	2.219E+12		7.040E-07	6.878E-07
400.00	3.048E+12		3.974E-02	4.060E-02
500.00	3.782E+12		2.971E+01	3.042E+01
600.00	4.398E+12		2.523E+03	2.557E+03
800.00	5.277E+12		6.790E+05	6.723E+05
1000.00	5.784E+12		2.001E+07	1.957E+07
1200.00	6.062E+12		1.931E+08	1.887E+08
1200.00	6.062E+12	4.971E+01	1.931E+08	1.887E+08
1500.00	6.293E+12	5.621E+01	1.878E+09	1.860E+09
2000.00	6.554E+12	6.587E+01	1.844E+10	1.900E+10

THERMODYNAMIC ANALYSIS for REACTION Rx C2H5CL + CL = TSCCXCL2

Hf {Kcal/mol} -26.800 28.920 24.200 S {cal/mol K} 65.790 39.460 84.100

 $dHr \{kcal/mol\} (298K) =$ 22.08 dHr avg (298., 1500. K) =21.26 $dU (dE) \{kcal/mol\} (") =$ 22.67 dUr avg (298., 1500. K) =23.04 $dSr \{cal/mol K\} (") =$ -21.15 dSr avg (298., 1500. K) =-22.01 $dGr \{kcal/mol\} (") =$ 28.39 dGr avg (298., 1500. K) =41.05 Af/Ar (") = 1.585E+00 Af/Ar avg (298., 1500. K) = 3.094E+00 : A = 6.529E-03 n = 1.01 alpha = 7.453E-04 avg error 3.13 %Fit Af/Ar w/ddU: A = 1.869E-04 n = 1.69 alpha = 1.477E-03 avg error 8.31 %

T(K) dH(Kcal/mol) dU(Kcal/mol) dS(cal/mol K) (Af/Ar) dG(Kcal/mol) 300.00 2.208E+01 1.596E+00 2.268E+01 -2.115E+01 2.842E+01 400.00 2.207E+01 2.287E+01 -2.118E+01 2.100E+00 3.054E+01 500.00 2.203E+01 2.302E+01 -2.127E+01 2.497E+00 3.266E+01 600.00 2.195E+01 2.314E+01 -2.141E+01 2.793E+00 3.480E+01 800.00 2.171E+01 2.330E+01 -2.175E+01 3.146E+00 3.911E+01 1000.00 2.140E+01 2.338E+01 -2.210E+01 3.294E+00 4.350E+01 2.341E+01 -2.244E+01 1200.00 2.103E+01 3.340E+00 4.795E+01 1500.00 2.043E+01 2.341E+01 -2.288E+01 3.342E+00 5.475E+01 2000.00 1.943E+01 2.340E+01 -2.346E+01 3.328E+00 6.634E+01

The model fitted is for bi-molecular reaction.

The 3 parameters for the model equation of $A(T) = Aprime * T^n * exp(-Ea/RT)$ Aprime = 3.9790E+09 n = 1.35426 Ea = 2.2629E+04

Temp(K)	AF(T)	T_K^n	k_calc(T)	k_fit
300.00	9.980E+12	2.263E+03	3.007E-04	2.939E-04
400.00	1.751E+13	3.341E+03	5.616E+00	5.740E+00
500.00	2.603E+13	4.520E+03	2.255E+03	2.307E+03
600.00	3.493E+13	5.786E+03	1.299E+05	1.315E+05
800.00	5.247E+13	8.542E+03	2.257E+07	2.233E+07
1000.00	6.867E+13	1.156E+04	5.321E+08	5.208E+08
1200.00	8.355E+13	1.479E+04	4.546E+09	4.449E+09
1500.00	1.045E+14	2.001E+04	4.050E+10	4.016E+10
2000.00	1.388E+14	2.954E+04	3.846E+11	3.956E+11

THERMODYNAMIC ANALYSIS for REACTION C2H5CL + CL = CCCL-CL

Rx C2H5CL + CL = CCCL-CI Hf {Kcal/mol} -26.800 28.920 -1.190 S {cal/mol K} 65.790 39.460 86.160

 $dHr \{kcal/mol\} (298K) =$ -3.31 dHr avg (298., 1500. K) =-3.53 $dU(dE) \{kcal/mol\} (") =$ -2.72dUr avg (298., 1500. K) =-1.75 $dSr \{cal/mol K\} (") =$ -19.09 dSr avg (298., 1500. K) =-19.39 $dGr \{kcal/mol\} (") =$ dGr avg (298., 1500. K) =2.38 13.90 Af/Ar (") = 4.470E+00 Af/Ar avg (298., 1500. K) = 1.158E+01 : A = 4.975E-02 n = .79 alpha = -2.173E-05 avg error .50 %Fit Af/Ar w/ddU: A = 1.447E-03 n = 1.44 alpha = 3.272E-04 avg error 2.65 %

T(K) dH(Kcal/mol) dU(Kcal/mol) dS(cal/mol K) (Af/Ar) dG(Kcal/mol) 300.00 -3.310E+00 -2.714E+00 -1.909E+01 4.495E+00 2.417E+00 400.00 -3.340E+00 -2.545E+00 -1.918E+01 5.742E+00 4.330E+00 500.00 -3.378E+00 -2.385E+00 -1.926E+01 6.878E+00 6.252E+00 7.939E+00 600.00 -3.421E+00 -2.229E+00 -1.934E+01 8.182E+00 800.00 -3.508E+00 -1.918E+00 -1.946E+01 9.937E+00 1.206E+01 1000.00 -3.589E+00 -1.602E+00 -1.955E+01 1.187E+01 1.597E+01 1200.00 -3.661E+00 -1.277E+00 -1.962E+01 1.377E+01 1.988E+01 1500.00 -3.759E+00 -7.789E-01 -1.969E+01 1.660E+01 2.578E+01 2000.00 -3.914E+00 5.984E-02 -1.978E+01 2.116E+01 3.565E+01

The model fitted is for bi-molecular reaction.

Temp(K)	AF(T)	T_K^n	k_calc(T)	k_fit
300.00	2.811E+13	2.931E+04	2.670E+15	2.671E+15
400.00	4.788E+13	4.924E+04	1.178E+15	1.178E+15
500.00	7.170E+13	7.364E+04	7.907E+14	7.902E+14
600.00	9.931E+13	1.023E+05	6.439E+14	6.431E+14
800.00	1.657E+14	1.719E+05	5.540E+14	5.537E+14
1000.00	2.474E+14	2.570E+05	5.541E+14	5.545E+14
1200.00	3.446E+14	3.571E+05	5.888E+14	5.896E+14
1500.00	5.191E+14	5.340E+05	6.741E+14	6.748E+14
2000.00	8.823E+14	8.971E+05	8.691E+14	8.677E+14

REFERENCES (PART ONE)

- 1. Pitzer, K. S.; Gwinn, W. D. J. Chem. Phys. 1942, 10, 428.
- 2. Earl, B. L.; Titus, R. L. Collect. Czech. Chem. Commun. 1995, 60, 104.
- 3. Lay, T. H.; Bozzelli, J. W.; Dean, A. M.; Ritter, E. R. J. Phys. Chem. 1995, 99(39), 14514-14527.
- 4. Petersson, G. A.; Nyden, M. R. J. Chem. Phys. 1981, 75, 3423.
- 5. Petersson, G. A.; Al-Laham, M.A. J. Chem. Phys. 1994, 94, 6081.
- Montgomery, Jr. J. A.; Ochterski, J. W.; Petersson, G. A. J. Phys. Chem. 1994, 101, 5900.
- 7. Scott, A. P.; Random, L. J. Phys. Chem. 1996, 100, 16502.
- 8. Hehre, W. J.; Random, L.; Schleyer, P. R.; Pople, J. A. Ab-Initio Molecular Orbital Theory; John Wiley & Sons: New York, NY, 1986.
- 9. Timonen, R. S.; Gutman, D. J. Phys. Chem. 1986, 90, 2987.
- 10. Timonen, R. S.; Russell, J. J.; Sarzynski, D.; Gutman, D. J. Phys. Chem. 1987, 91, 1873.
- 11. Seetula, J. A.; Gutman, D.; Lightfoot, P. D.; Rayes, M. T.; Senkan, S. M. J. Phys. Chem. 1991, 95, 10688-10693.
- 12. Timonen, R. S.; Russell, J. J.; Gutman, D. Int. J. Chem. Kinet. 1986, 18, 1193.
- 13. Ayscough, P. B.; Cocker, A. J.; Dainton, F. S.; Hirst, S.; Weston, M. *Proc. Chem. Soc.* 1961, 244.
- 14. Ayscough, P. B.; Dainton, F. S.; Fleischfresser, B. E. Trans. Faraday Soc. 1966, 62, 1838.
- 15. Bertrand, L.; Bizongwako, J.; Huybrechts, G.; Olbregts, J. Bull. Soc. Chim. Belg. 1972, 81, 73-80. (1) Using R. + $O_2 = 6.31E+10$ for k_{ref} .
- 16. Stull, D. R.; Prophet, H. *JANAF Thermochemical Tables*; 2nd Ed.(NSRDS-NBS37). U.S.Government Printing Office: Washington D.C., 1970.

- 17. Rodgers, A. S. Selected Values for Properties of Chemical Compounds; Thermodynamic Research Center, Texas A&M University: College Station, TX, 1982.
- 18. Taylor, P. H.; Dellinger, B.; Tirey, D. A. Int. J. Chem. Kinet. 1991, 23, 1051-1074.
- 19. Kafafi, S. A.; Hudgens, J. W. J. Phys. Chem. 1989, 93, 3474-3479. : I took the frequencies in this article for calculating S, Cp.
- 20. Stull, D. R.; Westrum, E. F. Jr.; Sinke, G. C. *The Chemical Thermodynamics of Organic Compounds*; Robert E. Krieger Publishing: Malabar, FL, 1987.
- Rayez, M. T.; Rayez, J. C.; Sawerysyn, J. P. J. Phys. Chem. 1994, 98(44), 11342-11352.
- 22. Zhu, L.; Bozzelli, J. W.; Lay, T. H. Ind. Eng. Chem. Res. 1998, 37, 3497-3507.
- 23. Cioslowski, J.; Liu, G.; Moncrieff, D. J. Am. Chem. Soc. 1997, 119(47), 11452-11457.
- 24. Seetula, J. A. J. Chem. Soc., Faraday Trans. 1998, 94(7), 891-898.
- 25. Tschuikow-Roux, E.; Paddison, S. Int. J. Chem. Kinet. 1987, 19, 15-24.
- 26. Wong, D. K.; Kretkowski, D. A.; Bozzelli, J. W. Ind. Eng. Chem. Res. 1993, 32, 3184-3188.
- 27. Seetula, J. A. J. Chem. Soc., Faraday Trans. 1998, 94, 3561-3567.
- 28. Seetula, J. A. J. Chem. Soc., Faraday Trans. 1996, 92, 3069-3078.
- 29. Seetula, J. A.; Gutman, D. J. Phys. Chem. 1991, 95, 3626-3630.

PART II

EVALUATED THERMODYNAMIC PROPERTY DATA OF C₁ AND C₂ CHLOROCARBON MOLECULES AND RADICALS

ABSTRACT FOR PART TWO

Ideal gas thermodynamic parameters, $\Delta H^{\circ}_{f(298)}$, $S^{\circ}_{(298)}$ and Cp(T) are evaluated for C_1 and C_2 chlorocarbon molecules and radicals from literature data. Enthalpies of some chlorocarbon radicals are from a combination of literature data and *ab initio* or density functional calculations along with isodesmic reactions: for example $C \bullet H_2CH_2Cl$ is from a calculated ΔH_{rxn} for

$$C \bullet H_2CH_2Cl + CH_3CH_3 \Longrightarrow CH_3CH_2Cl + C_2H_5 \bullet$$

and the known $\Delta H^o_{f(298)}$ for ethane, chloroethane and ethyl radical. Entropies and Cp(T) values of C_2H_5 are from evaluated literature.

Evaluated thermodynamic property data are presented for all isomers of the stable molecules CH₃Cl, CH₂Cl₂, CHCl₃, CCl₄, C₂H₅Cl, C₂H₄Cl₂, C₂H₃Cl₃, C₂H₂Cl₄, C₂HCl₅, C₂Cl₆, C₂H₃Cl, C₂H₂Cl₂, C₂HCl₃, and C₂Cl₄.

Evaluated thermodynamic property data are also presented for the alkyl radicals, (including isomers when they exist) $C \bullet H_2Cl$, $C \bullet HCl_2$, $C \bullet Cl_3$, $C_2H_4Cl \bullet$, $C_2H_3Cl_2 \bullet$, $C_2H_2Cl_3 \bullet$, $C_2H_2Cl_3 \bullet$, and $C_2Cl_5 \bullet$, for the olefin radicals (including isomers) $C_2H_2Cl \bullet$, $C_2HCl_2 \bullet$, and $C_2Cl_3 \bullet$.

INTRODUCTION FOR PART TWO

Chlorocarbons are widely used chemicals or solvents in synthesis and in chemical industry, as cleaning agents and starting materials in synthesis of polymers, pesticides, and other products. Many chlorocarbons are present in the atmosphere and chlorinated organic species are present in both municipal and hazardous wastes as polyvinyl chloride and other halogenated polymers and products. Thermodynamic properties of chlorocarbons are important to industries utilizing them, in analysis of environmental effects and in evaluation of kinetics or thermodynamic equilibrium for both destruction and synthesis processes. These properties are also needed as input in kinetic modeling and in equilibrium codes. The presence of chlorocarbon is known to slow the overall oxidation rate of hydrocarbons through studies of flame velocity, temperature, and flame stability. 73 Reports of studies under varied condition sets indicate that both acceleration and inhibition effects can be observed in hydrocarbon reaction systems with a chlorinated hydrocarbon present. 74-76 It would be of significant value to have knowledge of their fundamental thermodynamic properties for equilibrium calculations and for an accurate and fundamental understanding of the reaction pathways relating to chlorocarbon formation, destruction, and interactions in synthesis, combustion, and other environmental degradation/transformation processes.

CALCULATION OF C_2 CHLOROCARBON RADICAL ΔH_f^{298} FROM AB INITIO DATA FOR PART TWO

 ΔH_{rxn} is calculated for reactions involving a number of C_2 chlorocarbon radicals when ab initio data are available by the G2 composite calculation method from the study of Cioslowski et al.[12]. The calculations use equations which are illustrated in the example below. $\Delta H^o_{f(298)}$ of evaluated experimental or accepted ab initio data are taken for the stable molecule species: ethane (-20.20 kcal/mole[3]), chloroethane (-26.80[3]) and for the ethyl radical (29.30[this study]). The known $\Delta H^o_{f(298)}$ of the three species and the calculated $\Delta Hrxn$ allows calculation of $\Delta H^o_{f(298)}$ for the target radical, $C \bullet H_2CH_2Cl$, in the example equation.

$$C \bullet H_2 C H_2 C I + C H_3 C H_3 \Longrightarrow C H_3 C H_2 C I + C_2 H_5 \bullet$$

Table II.1 below is a listing of the isodesmic reactions used for the C₂ chlorocarbon radicals with G2 *ab initio* energies determined from atomization analysis reported by Cioslowski et al.[12].

This same method, isodesmic reactions for $\Delta H^o_{f(298)}$, is also utilized to determine $\Delta H^o_{f(298)}$ for C_2 chlorocarbon radicals using the density functional calculations B3LYP/6-311G** values of Cioslowski et al.[12]. We find the B3LYP/6-311G** values from isodesmic reactions yield slightly lower values than those obtained from the G2 isodesmic reactions.

We also compare these B3LYP-isodesmic reaction values and G2-isodesmic reaction values to the direct(atomization) B3LYP values of Cioslowski et al.[12] and to our evaluated literature data. We find a near constant bias of 2.7 kcal/mole from comparison with the values from G2 isodesmic reaction in this work, values for Seetula's[9] or other experimental values[29,48].

A third estimation method is the use of this constant applied to B3LYP/6-311G** calculations of chlorocarbons. Data are listed in Table II.2.

Table 2.1 Isodesmic Reactions

 $\begin{array}{l} \underline{\text{CH}_3\text{CHCl}}^{\text{a}} + \text{CH}_3\text{CH}_3 \implies \text{CH}_3\text{CH}_2\text{Cl} + \text{C} \bullet \text{H}_2\text{CH}_3 \\ \underline{\text{CH}_2\text{ClCH}_2} \bullet + \text{CH}_3\text{CH}_3 \implies \text{CH}_3\text{CH}_2\text{Cl} + \text{C} \bullet \text{H}_2\text{CH}_3 \\ \underline{\text{CH}_3\text{CCl}_2} \bullet + \text{CH}_3\text{CH}_3 \implies \text{CH}_3\text{CHCl}_2 + \text{C} \bullet \text{H}_2\text{CH}_3 \\ \underline{\text{CHCl}_2\text{CH}_2} \bullet + \text{CH}_3\text{CH}_3 \implies \text{CH}_3\text{CHCl}_2 + \text{C} \bullet \text{H}_2\text{CH}_3 \\ \underline{\text{CH}_2\text{ClCHCl}} \bullet + \text{CH}_3\text{CH}_3 \implies \text{CH}_2\text{ClCH}_2\text{Cl} + \text{C} \bullet \text{H}_2\text{CH}_3 \\ \underline{\text{CCl}_3\text{CH}_2} \bullet + \text{CH}_3\text{CH}_3 \implies \text{CH}_3\text{CCl}_3 + \text{C} \bullet \text{H}_2\text{CH}_3 \\ \underline{\text{CH}_2\text{ClCCl}_2} \bullet + \text{CH}_3\text{CH}_3 \implies \text{CH}_2\text{ClCHCl}_2 + \text{C} \bullet \text{H}_2\text{CH}_3 \\ \underline{\text{CHCl}_2\text{CHCl}} \bullet + \text{CH}_3\text{CH}_3 \implies \text{CH}_2\text{ClCHCl}_2 + \text{C} \bullet \text{H}_2\text{CH}_3 \\ \underline{\text{CCl}_3\text{CHCl}} \bullet + \text{CH}_3\text{CH}_3 \implies \text{CCl}_3\text{CH}_2\text{Cl} + \text{C} \bullet \text{H}_2\text{CH}_3 \\ \underline{\text{CHCl}_2\text{CCl}_2} \bullet + \text{CH}_3\text{CH}_3 \implies \text{CHCl}_2\text{CHCl}_2 + \text{C} \bullet \text{H}_2\text{CH}_3 \\ \underline{\text{CHCl}_2\text{CCl}_2} \bullet + \text{CH}_3\text{CH}_3 \implies \text{CHCl}_2\text{CHCl}_2 + \text{C} \bullet \text{H}_2\text{CH}_3 \\ \underline{\text{ChCl}_2\text{Cl}_2} \bullet + \text{CH}_3\text{CH}_3 \implies \text{CHCl}_2\text{CHCl}_2 + \text{C} \bullet \text{H}_2\text{CH}_3 \\ \underline{\text{ChCl}_2} \bullet + \text{CH}_3\text{CH}_3 \implies \text{CHCl}_2\text{CHCl}_2 + \text{C} \bullet \text{H}_2\text{CH}_3 \\ \underline{\text{ChCl}_2} \bullet + \text{CH}_3\text{CH}_3 \implies \text{CHCl}_2\text{CHCl}_2 + \text{C} \bullet \text{H}_2\text{CH}_3 \\ \underline{\text{ChCl}_2} \bullet + \text{CH}_3\text{CH}_3 \implies \text{CHCl}_2\text{CHCl}_2 + \text{C} \bullet \text{H}_2\text{CH}_3 \\ \underline{\text{ChCl}_2} \bullet + \text{CH}_3\text{CH}_3 \implies \text{CHCl}_2\text{CHCl}_2 + \text{C} \bullet \text{H}_2\text{CH}_3 \\ \underline{\text{ChCl}_2} \bullet + \text{CH}_3\text{CH}_3 \implies \text{CHCl}_2\text{CHCl}_2 + \text{C} \bullet \text{H}_2\text{CH}_3 \\ \underline{\text{ChCl}_2} \bullet + \text{CH}_3\text{CH}_3 \implies \text{CHCl}_2\text{CHCl}_2 + \text{C} \bullet \text{H}_2\text{CH}_3 \\ \underline{\text{ChCl}_2} \bullet + \text{CH}_3\text{CH}_3 \implies \text{CHCl}_2\text{CHCl}_2 + \text{C} \bullet \text{H}_2\text{CH}_3 \\ \underline{\text{ChCl}_2} \bullet + \text{CH}_3\text{CH}_3 \implies \text{CHCl}_2\text{CHCl}_2 + \text{C} \bullet \text{H}_2\text{CH}_3 \\ \underline{\text{ChCl}_2} \bullet + \text{CH}_3\text{CH}_3 \implies \text{CHCl}_2\text{CHCl}_2 + \text{C} \bullet \text{H}_2\text{CH}_3 \\ \underline{\text{ChCl}_2} \bullet + \text{CH}_3\text{CH}_3 \implies \text{CHCl}_2\text{CHCl}_2 + \text{C} \bullet \text{CH}_2\text{CH}_3 \\ \underline{\text{ChCl}_2} \bullet + \text{CH}_3\text{CH}_3 \implies \text{CHCl}_2\text{CHCl}_2 + \text{C} \bullet \text{CH}_2\text{CH}_3 \\ \underline{\text{ChC}_2} \bullet + \text{CH}_3\text{CH}_3 \implies \text{CHCl}_2 + \text{C} \bullet \text{CH}_2\text{CH}_3 \\ \underline{\text{CHC}_2} \bullet + \text{CH}_3\text{CH}_3 \implies \text{CHCl}_2 + \text{C} \bullet \text{CH}_2\text{CH}_3 \\ \underline{\text{CHC}_2} \bullet + \text$

^a underlined species are the target radicals in the equations.

Table 2.2	Thermodynami	c Propert	y Data	a																
	^a UNITS : H _{f 298} (ko	cal/mol), S°	₂₉₈ (cal/l	< * mol)																
SPECIES	REFERENCE []	Hf ^o ₂₉₈	S° ₂₉₈	Ср ³⁰⁰	Cp ⁴⁰⁰	Cp ⁵⁰⁰	Cp ⁶⁰⁰	Cp ⁸⁰⁰	Cp ¹⁰⁰⁰	Cp ¹⁵⁰⁰				Εl	LEM	EN	rs		<u> </u>	
*CL	Benson[1]	28.90	39.50	5.32	5.32	5.32	5.32	5.32	5.32	5.32	_	0		0	CL	1	0	G	0	
- CL		28.92	39.46	5.22	5.37	5.44	5.45	5.39	5.31	5.18		0	-	0	CL	1	0	G	0	
	JANAF[3]	28.99	39.48		5.37	5.43	5.44	5.39	5.31	5.17		0		0	CL	1	0	G	0	
	TRC[2]	29.00	35,40	J.ZZ	3.37	3.43	3.44	0.00	0.01	3.17		0	\vdash	ō	CL	1	0	G	0	
	MELIUS93[7]	28.99	· · · · · · · · · · · · · · · · · · ·									0	\vdash \dashv	0	CL	1	0	G	0	
	Seet98[9]	28.992+-	0.002									0	-	0	CL	1	0	G	0	
	89COX/WAG[44]	28.92	39.46	5.22	5.37	5.44	5.45	5.39	5.31	5.18		0	\vdash	0	CL	1	0	G	0	
	NJIT99	20.92	39,40	3.22	3.31	3.44	3.43	3.33	0.01	3.10			-	U	OL.					
01.0		0.00	£2.20	8.16	8.39	8.57	8.71	8.89	8.99	9.11		0	\vdash	0	CL	2	0	G	0	
CL2	Benson[1]	0.00	53.30	1		8.62	8.74	8.88	8.96	9.11				0	CL	2	0	G	0	
	JANAF[3]		53,29			8.62	8.74	8.87	8.95	9.07		0	-	0	CL	2	0	G	0	
	TRC[2]	0.00	53.32	8.12	8.44	8.62	8.74	8.88		9.07		0			CL	2		G	0	
	NJIT99	0.00	53.29	8.12	8.44	0.02	0.74	0.00	8.96	9.07		0		0	CL	-	0	G	U	
CCL	ROD/HOP96[14]	104.30									С	1	CL	1		0	0	G	0	
	85LIAS[52]	104.00									С	1	CL	1		0	0	G	0	
	85CHASE[51]	120.00									С	1	CL	1		0	0	G	0	
¹CCL2	DODULO DOCK O	54.50									С	1	CL	2		0	0	G	0	
CCLZ	ROD/HOP96[14]									· · · · · · · · · · · · · · · · · · ·	C		CL	2	-	0	0	G	0	
	91PAULINO[41]	52.40		ļ							C		CL	2	-	0	0	G	0	
	93KOHN[37]	51.00										1	CL		_	U	U		0	
CCL3	BSN,RADI[1,72]	19.00	72.01	1	17.00					•		1	CL	3		0	0	G	0	
	JANAF[3]	19.00	70.92	15,25	16 66	17.56	18.16	18,83	19,18	19,56	С	1	CL	3		0	0	G	0	
	MELIUS93[7]	16.60									С	1	CL	3		0	0	G	0	
	73MEN/GOL[63]	19.00									С	1	CL	3		0	0	G	0	
	88HOL/LOS[48]	18.0 +- 2	2.0								С	1	CL	3		0	0	G	0	
	91HUD/SEET[39]	17.0 +- 0).6								С	1	CL	3		0	0	G	0	

Table 2.2	(Continued)																		
SPECIES	REFERENCE[]	H f ° ₂₉₈	S° 298	Ср ³⁰⁰	Cp ⁴⁰⁰	Ср ⁵⁰⁰	Cp ⁶⁰⁰	Cp ⁸⁰⁰	Cp ¹⁰⁰⁰	Cp ¹⁵⁰⁰					EM	EN	rs		
	ROD/HOP96[14]	18.00									С		CL			0	0	G	0
	NJIT99	19.00	70.92	15.25	16.66	17.56	18.16	18.83	19.18	19.56	С	1	CL	3		0	0	G	0
CCL4	SWS[4]	-22.90	74.21	19.92	21.55	22.72	23.55	24.48	24.88	25.38	С		CL	4		0	0	G	0
	JANAF[3]	-22.94								25.47			CL	4		0	0	G	0
	TRC[2]	-22.90	74.09	19.98	21.92	23.09	23.82	24.64	25.05	25.50	С	1	CL	4		0	0	G	0
	MELIUS93[7]	-20.20									С	1	CL	4		0	0	G	0
	74ROD/CHAO[62]	-22.90									С	1	CL	4		0	0	G	0
	NJIT99	-22.94	74.02	19.98	21.92	23.09	23.82	24.64	25.05	25.47	С	1	CL	4		0	0	G	0
CF3	JANAF[3]	-113.01	63.42	11.93	13.68	15.05	16.09	17.46	18.22	19.07	С	1	F	3		0	0	G	0
	MELIUS93[7]	-112.79	65.43	12.00		15.12		17.48	18.23	19.09	С	1	F	3		0	0	G	0
	TRC[2]	-111.71	63.22	11.90	13.70	15.11	16.16	17.49	18.25	19.10	С	1	F	3		0	0	G	0
	86TSA[50]	-110.00									С	1	F	3		0	0	G	0
	ROUX/PAD87[26]	-112.00									С	1	F	3		0	0	G	0
	NJIT99	-113.01	63.42	11.93	13.68	15.05	16.09	17.46	18.22	19.07	С	1	F	3		0	0	G	0
05001		~~ ~~	67.70	46.47	44.70	ee na	46 00	47.00	40 50	19.25		4	CL	1	F	2	0	G	0
CF2CL	RAYEZ94[17]		01.12	19.17	14:70 	19.90	::1 0 .00	17.50		19,20	C	1	CL	1	F	2	0	G	0
	MELIUS93[7]	-66.20	67.72	13.17	14 72	15.93	16.83	17.98	18.59	19.25	C		CL	<u> </u>	F	2	0	G	0
	NJIT99	-66.02	01.12	13.17	14.73	15.93	10.03	17.90	10.59	19.25	U	1	CL	1	-	4	U	9	0
CF3CL	PED&JANAF[3,27]	-168.82								24.97		1	CL	1	F	3	0	G	0
	JANAF[3]	-169.20										1	CL	1	F	3	0	G	0
	TRC[2]	-168.30	68.21	16.04	18.52	20.32	21.59	23.16	24.02	24.98	С	1	CL	1	F	3	0	G	0
	MELIUS93[7]	-169.80									С		CL	1	F	3	0	G	0
	NJIT99	-169.20	68.17	16.04	18.53	20.32	21.59	23.16	24.02	24.98	С	1	CL	1	F	3	0	G	0
CFCL2	RAYEZ94[17]	-21.60	69,17	14.02	15.42	16.49	17,28	18,26	18.77	19.34	С	1	CL		F	1	0	G	0
	MELIUS93[7]	-22.80									С	1	CL	2	F	1	0	G	0
	NJIT99	-21.60	69.17	14.02	15.42	16.49	17.28	18.26	18.77	19.34	С	1	CL	2	F	1	0	G	0
							 						-	-					

Table 2.2	(Continued)																		
SPECIES	REFERENCE []	Hf ^o ₂₉₈	S° 298	Ср ³⁰⁰	I	1 .		Cp ⁸⁰⁰		l -			1	EI	LEM	EN.	TS		
CF2CL2	PED&JANAF[3,27]	-114.12	72.02	17.39	19.52	21.11	22.27	23.68	24.37	25.14			CL	2	F	2	0	G	0
	JANAF[3]	-117.50	71.91	17.36						25.16			CL	2	F	2	0	G	0
	TRC[2]	-117.30	71.84	17.33	19.67	21.27	22.37	23.68	24.38	25.17	С	1	CL		F	2	0	G	0
	MELIUS93[7]	-117.70									С	1	1		F	2	0	G	0
	NJIT99	-117.50	71.91	17.36	19.68	21.28	22.37	23.68	24.39	25.16	C	1	CL	2	F	2	0	G	0
CFCL3	PED&JANAF[3,27]	-64.12	74.12	18.78	20.66	22.04	23.03	24.20	24.73	25.32	С	1	CL	3	F	1	0	G	0
	JANAF[3]	-69.00								25.32			CL		F	1	0	G	0
	TRC[2]		74.07	18.71	20.84	22,22	23.13	24.19	24 74	25.33	С		CL		F	1	0	G	0
	MELIUS93[7]	-67.70		A864 - CECCES CONTROL			eccesionistici (Sel				С		CL		F	1	0	G	0
	NJIT99	-67.70	74.07	18.71	20.84	22.22	23.13	24.19	24.74	25.33	С	1	CL	3	F	1	0	G	0
СН	ROD/HOP96[14]	142.40					-,				С	1					0	G	0
	91GREV/JAN[40]	142.50									С	1	Н				0	G	0
	69HERZ/JONES[70]	142.30									С	1	Н	1			0	G	0
10110		400.70									_	4							_
¹ CH2	ROD/HOP96[14]	102.70									C	1	Н	2			0	G	0
	78LENGEL[59]	101.70									С	1	Н	2			0	G	0
	78LENGEL[59]	102.60							-		С	1	Н	2			0	G	0
³ CH2	ROD/HOP96[14]	93.80									С	1	Н	2	$\neg \neg$		0	G	0
	78LENGEL[59]	93.60									C	1	Н	2			0	G	0
	65DIBELER[71]	93.90									C	1	Н	2			0	G	0
	78LENGEL[59]	94.10									C	1	Н	2			0	G	0
	85LEOPOLD[53]	92.80									С	1	Н	2			0	G	0
¹CHCL	ROD/HOP96[14]	76.80									С	1	Н	1	CL	1	0	G	0
OFFICE	94BORN[35]	76.00									c	1			CL	1	0	G	0
	85LIAS[52]	71.00									c	1	H		CL	1	0	G	0
		80.00									c	1	H	1	CL	1	0	G	0
	85CHASE[51]	00.00										-	П	-	<u>UL</u>	-	U	9	-

Table 2.2	(Continued)																		
SPECIES	REFERENCE []	Hf ^o 298	S° ₂₉₈	Cp ³⁰⁰	Cp ⁴⁰⁰	Ср ⁵⁰⁰	Cp ⁶⁰⁰	Cp ⁸⁰⁰	Cp ¹⁰⁰⁰	Cp ¹⁵⁰⁰				E	LEM	EN	ΓS		
³ CHCL	ROD/HOP96[14]	83.30									С	1	Н	1	CL	1	0	G	0
	94BORN[35]	82.40									С	1	Н	1	CL	1	0	G	0
	85LIAS[52]	73.00									С	1	Τ	1	CL	1	0	G	0
CHCL2	ROUX,RADI[26,72]	23.50	66.71	12.35	13.73		15.59	16.67	17.34	18.46	С	1	Н	1	CL	2	0	G	0
	89TSC/CHE[46]	23.50		13.11		14.68		16.83	17.98	19.80	С	1	Н	1	CL	2	0	G	0
	TAY/DEL91[21]	23.50	67.30	11.75	1	14.36		16.44		18.39	C	1	Τ	1	CL	2	0	G	0
	MOPAC[5]	11.04	66.78							18.45		1	Ξ	1	CL	2	0	G	0
	KAFAF189[24]		68.10	12.90	14.16	15.09	15.79	16.76	17,44	18.46	С	1	Η	1	CL	2	0	G	0
	MELIUS93[7]	19.50									Ç	1	Н	1	CL	2	0	G	0
	Seet98[9]	21.27	7								С	1	Н	1	CL	2	0	G	0
	SEET96[10]	21.27	66.92								C	1	Н	1	CL	2	0	G	0
	ROUX/PAD87[26]	23.50									С	1	Η	1	CL	2	0	G	0
	83WEI/BEN[54]	25.70									С	1	Н	1	CL	2	0	G	0
	88HOL/LOS[48]	22.3+-2.0)								С	1	Н	1	CL	2	0	G	0
	ROD/HOP96[14]	22.40									С	1	Η	1	CL	2	0	G	0
7777	NJIT99	23.50	68.10	12.90	14.16	15.09	15.79	16.76	17.44	18.46	С	1	Н	1	CL	2	0	G	0
CHCL3	SWS[4]		70.66	15.76	17.83	19,34	20.44	21.91	22.86		С	1	Н	1	CL	3	0	G	0
	RAYEZ94[17]	-23.30	69.83	15.37	17.29	18.80		21.63	22.64	24.06	С	1	Н	1	CL	3	0	G	0
	TRC[2]	-24.59	70.65	15.67		19.26	20.38	21.87	22.83	24.16	С	1	Н	1	CL	3	0	G	0
	JANAF[3]	-24.66	70.63	15.67	17.75	19.27	20.38	21.87	22.83	24.16	С	1	H	1	CL	3	0	G	0
	MELIUS93[7]	-23.30									С	1	Н	1	CL	3	0	G	0
	74ROD/CHAO[62]	-24.60									С	1	Н	1	CL	3	0	G	0
	ROD/HOP96[14]	-25.40									С	1	Н	1	CL	3	0	G	0
	88LIAS[47]	-25.00									C	1	Н	1	CL	3	0	G	0
	NJIT99	-24.20	70.66	15.76	17.83	19.34	20.44	21.91	22.86		С	1	Н	1	CL	3	0	G	0
CH2CL	ROUX,RADI[26,72]	29.10	58.51	9.97	11.42	12 60	13.55	14 94	15.88	17.31	С	1	Н	2	CL	1	0	G	0
UI IZUL	MOPAC[5]	20.10	58.61	f :	i		13.38		15.64	17.30		1	H	2	CL	1	0	G	0
	89TSC/CHE[46]	29.10	59.60)	11.14		14.10	15.83	18.31	c	1	Н	2	CL	 	0	G	0
	TAY/DEL91[21]		58.17	9.56		12.03		14.49	15.59	17.36	c	1	Н	2	CL	1	0	G	0

Table 2.2	(Continued)																		
SPECIES	REFERENCE []	Hf° ₂₉₈	S° 298	Cp ³⁰⁰	Cp ⁴⁰⁰	Ср ⁵⁰⁰	Cp ⁶⁰⁰	Cp ⁸⁰⁰	Cp ¹⁰⁰⁰	Cp ¹⁵⁰⁰				E	LEM	EN	TS		
	MELIUS93[7]	27.10									С	1	Н	2	CL	1	0	G	0
	Seet98[9]	28,04									С	1	Н	2	CL	1	0	G	0
	SEET96[10]	28.04	64.77								С	1	Н	2	CL	1	0	G	0
	ROUX/PAD87[26]	29.10									C	1	Н	2	CL	1	0	G	0
	83WEI/BEN[54]	31.10							_		С	1	Н	2	CL	1	0	G	0
	88HOL/LOS[48]	27.7 +- 2	0								С	1	H	2	CL	1	0	G	0
	ROD/HOP96[14]	28.20									С	1	Н	2	CL	1	0	G	0
	NJIT99	27.99	58.51	9.97	11.42	12.60	13.55	14.94	15.88	17.31	С	1	Н	2	CL	1	0	G	0
CH2CL2	SWS[4]	-22.80	64.61	12.24	14.19	15 83	17.20	19.32	20.82	23.01	С	1	Н	2	CL	2	0	G	0
	JANAF[3]	-22.83			14.24					22.91		1	Н	2	CL	2	0	G	0
	TRC[2]	-22.80	64.64	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	14.24				20.76	22.90	С	1	Н	2	CL	2	0	G	0
	85CHASE[51]	-22.83	64.60								С	1	Н	2	CL	2	0	G	0
	MELIUS93[7]	-22.60									c	1	Н	2	CL	2	0	G	0
	74ROD/CHAO[62]	-22.80									c	1	Н	2	CL	2	0	G	0
	ROD/HOP96[14]	-23.20				_					C	1	Н	2	CL	2	0	G	0
	88LIAS[47]	-22.90									c	1	Н	2	CL	2	0	G	0
	NJIT99	-22.83	64.57	12.20	14.24	15.93	17.30	19.32	20.76	22.91	С	1	Н	2	CL	2	0	G	0
												_							
CH3	JANAF[3]	34.82	46.38	9.26			11.54					1	Н	3		0	0	G	0
	TRC[2]	35.11	46.46	9.20	9.99	10.76	11.49	12.86	14.07	16.29	С	1	Н	3		0	0	G	0
	MELIUS93[7]	34.90									C	1	Н	3		0	0	G	0
	Seet98[9]	34.89									C	1	Н	3		0	0	G	0
	NICOVICH91[22]	35.30									C	1	Н	3		0	0	G	0
	RUSS/SEET88[25]	35.37	50.91								C	1	H	3		0	0	G	0
	81HEN/KNO[56]	35.10									С	1	Н	3		0	0	G	0
	NJIT99	34.82	46.38	9.26	10.05	10.82	11.54	12.89	14.09	16.29	С	1	Н	3		0	0	G	0
CH3CL	74ROD/CHAO[62]	-19.59	56.01	9.76	11.57	13.18	14.61	16.99	18.84	21.76	С	1	Н	3	CL	1	0	G	0
	TRC[2]	-19.60	56.00	9.77		13.19		17.05	18.87	L		1	Н		CL	1	0	G	0
	JANAF[3]	-20.66	55.99	9.76			14.64	17.03	18.86	21.75	c	1	H	3	CL	1	0	Ğ	0
	85CHASE[51]	-20.00	56.01								c	1	Н	3	CL	1	0	G	0

Table 2.2	(Continued)												l						
SPECIES	REFERENCE []	Hf° ₂₉₈	S° 298	Cp ³⁰⁰	Cp ⁴⁰⁰	Cp ⁵⁰⁰	Cp ⁶⁰⁰	Cp ⁸⁰⁰	Cp ¹⁰⁰⁰	Cp ¹⁵⁰⁰				E	LEM	EN.	TS		
	MELIUS93[7]	-20.10									С	1	H		CL	1	0	G	0
	74ROD/CHAO[62]	-19.60									С	1	H	1	CL	1	0	G	0
	ROD/HOP96[14]	-20.10									С	1			CL	1	0	G	0
	88LIAS[47]	-19.60									С	1			CL	1	0	G	0
	илтээ	-19.60	56.00	9.77	11.51	13.19	14.66	17.05	18.87	21.76	С	1	Н	3	CL	1	0	G	0
C2CL3	RADICALC[72]	53.00	79.11	19.25	20.20	21.23	22.25	24.03	25.24	25.80	С	2	CL	3		0	0	G	0
	TAY/DEL91[21]	48.00	78,12	18.66		21.82	****************	23.81	24.54	25,86	С		CL			0	0	G	0
	MELIUS93[7]	54.40									С		CL	3		0	0	G	0
	NJIT99	54.40	79.11	19.25	20.20	21.23	22.25	24.03	25.24	25.80	С	2	CL	3		0	0	G	0
C2CL4	CIAICIAI	-3.40	24.44	22.42	24.86	oe ee	27 O.S	20 40	29.95	30.78	С	2	CL	4		0	0	G	0
OZCL4	SWS[4]	-2.97	82.05				27.91	29.30	30.09	30.98	C		CL	4		0	0	G	0
	JANAF[3]	-2.89	81.49	L		26.73		29.30	30.09	30.97	C	2				0	0	G	0
	TRC[2]	(-8.081)	82.70				27.98	29.20	30.07	30.96	C		CL	4		0	0	G	0
	MOPAC[5]	-5.70	02.70	23.00	25.30	20,91	27.90	29.31	30.00	30.90	C	2	CL	4		0	0	G	0
	MELIUS93[7]	-3.40	81.45								C	2	, 7	4		0	0	G	0
	93BEN/COH[36]	-3.40	81.47	22.73	25 10	26.72	27.86	29.28	30.07	30.97	C		CL	4		0	0	G	0
	CHEN/BOZ98[8] NJIT99	-3.15	81.41	22.73	1		27.95	29.40	29.95	30.78	$\frac{c}{c}$	2		4		0	0	G	0
C2CL5	OLK84[28]	7.50	92.21	27.61	30.17		33.53		36.14	37.01	С	2	CL	5		0	0	G	1
	TRC[2]	8.60	95.82	27.15	30.07	31.93	33.17	34.58	35.32	36.09	С	2	CL	5		0	0	G	1
	TAY/DEL91[21]	7.70	96.37	32.04		36.34		38.04	38.43	38.63	C	2	CL	5		0	0	G	1
	MOPAC[5]	-10.50	95.68	28.56	31.13	32.72	33.75	34.93	35.54	36.20	C	2	CL	5		0	0	G	1
	80WEI/BSN[57]	7.7+- 1									C	2	CL	5		0	0	G	1
	MC/GOL82[29]	8.4+- 1.9									C	2	CL	5		0	0	G	1
	CIO/LIU97[12]	9.06	G2(iso	desmic)							C	2	CL	5	7	0	0	G	1
	CIO/LIU97[12]	7.44	B3LYP	(isodes	mic)						С	2	CL	5		0	0	G	1
	CIO/LIU97[12]	7.63	B3LYP	(adjuste	ed)						C	2	CL	5		0	0	G	1
	MELIUS93[7]	7.40									С		CL	5		0	0	G	1
	еетіци	9.06	95.68	28.56	31.13	32.72	33.75	34.93	35.54	36.20	С	2	CL	5		0	0	G	1
										}	}	_]		7		}	}		

Table 2.2 (Continued)																		
SPECIES	REFERENCE[]	Hf ^o ₂₉₈	S° 298	Cp ³⁰⁰				Cp ⁸⁰⁰		Cp ¹⁵⁰⁰					LEM	EN	TS		
C2CL6	SWS[4]	-33.80	94.77	32.67					42.11		С		CL	1		0	0	G	1
	JANAF[3]	-32.08	95.07	33.29		38.78	40.14						CL	1		0	0	G	1
	TRC[2]	-33.20	95.33	32.76		38.40				43.31	С		CL			0	0	G	1
	CHAO74[31]	-33.20	95.30	32.76	36.21	38.40	39.82	41.48	42.38	43.34	С		CL	6		0	0	G	1
	83KOL/PAP[55]	-32.9, -34	4.7, -33	.0, -36.	1						С		CL	6		0	0	G	1
	80WEI/BSN[57]	-33.70									С		CL			0	0	G	1
	MELIUS93[7]	-32.40									С		CL	6		0	0	G	1
	NJIT99	-33.80	94.77	32.67	36.11	38.29	39.69	41.29	42.11		С	2	CL	6		0	0	G	1
CHCLCCL	RADICALC[72]	55.30	70.51	15.78	17.56	18.99	20.13	21.73	22.72	24.02	С	2	Н	1	CL	2	0	G	0
	TAY/DEL91[21]	55.99	71.91			18.78		21.49		25.04	С	2	Н	1	CL	2	0	G	0
	MOPAC[5]	47.72	73.62	15.53	17.35	18.72	19.78	21.31	22.37	23.89	С	2	Н	1	CL	2	0	G	0
	MELIUS93[7]	56.00	****************				,				С	2	Н	1	CL	2	0	G	0
	NJIT99	56.00	73.62	15.53	17.35	18.72	19.78	21.31	22.37	23.89	С	2	Н	1	CL	2	0	G	0
CCL2CH	RADICALC[72]	58.21	69.51	15.70	17.63	19.12	20.26	21.77	22.61	23.72	С	2	Н	1	CL	2	0	G	0
	TAY/DEL91[21]	62.30	71.47	15.30		19.04		21.71		24.85	С	2	Н	1	CL	2	0	G	0
	HO/BAR92[19]	58.20		17.52		22.16		25.74	26.90			2	Н	1	CL	2	0	G	0
	MOPAC[5]			16.75						24.02			Н	1	CL	2	0	G	0
	MELIUS93[7]	62.30							**************************************		С	2	Н	1	CL	2	0	G	0
	NJIT99	62.30		16.75	18.60	19.82	20.70	21.91	22.75	24.02	С		Н	1	CL	2	0	G	0
C2HCL3	TRC[2]	-2.29	77.72	19.23	21.80	23.68	25.07	26.95	28.16	29.79	С	2	Н	1	CL	3	0	G	0
<u>OZITOZO</u>	69STUWES[69]	-1.40		19.22		23.75		26.80				2	Н	1	CL	3	0	G	0
	MELIUS93[7]	-3.90									С	2	Н	1	CL	3	0	G	0
	93BEN/COH[36]	-1.10	77.50								С	2	Н	1	CL	3	0	G	0
	PEDLEY86[27]	-2.30	1,100								С	2	Н	1	CL	3	0	G	0
	CHEN/BOZ98[8]	-1.88	77.67	19.26	21.80	23.67	25.06	26.94	28.15	29.79	C		Н	1	CL	3	0	G	0
	NJIT99	-2.29	77.72				25.07		1		С	2	Н	1	CL	3	0	Ğ	0
		F 00	07 04	24 10	26 50	29 44	20.90	21 02	32.00	34.53		2	Н	4	CL	A	0	G	1
CHCL2CCL2	RADICALC[72]	5.80								34.53 34.89		$\frac{2}{2}$	Н	1	CL	4	0	G	1
(1,1,2,2)	TRC[2]	5.21	ಆರ. ರಶ	_∠ა.იი	∠0,14	Z0.10	ು∪,∠ડ	02.10	ುರ.ರ∠	04.0 9	U		П		OL.	4	U	ري	

Table 2.2	(Continued)																		
SPECIES	REFERENCE []	Hf° ₂₉₈	S° ₂₉₈	Cp ³⁰⁰	Cp ⁴⁰⁰	Cp ⁵⁰⁰	Ср ⁶⁰⁰	Cp ⁸⁰⁰	Cp ¹⁰⁰⁰	Cp ¹⁵⁰⁰				El	EM	EN	rs		
	HO/BAR92[19]	5.80	87.90	23.50		28.76		32.52	33.68	35.70	С	2	Н	1	CL	4	0	G	1
	TAY/DEL91[21]	4.90	89.63	23.50		28.86		32.71	33.95	36.65	C	2	Н	1	CL	4	0	G	1
	MELIUS93[7]	8.50									С	2	Н	1	CL	4	0	G	1
	CIO/LIU97[12]		G2(iso								O	2	Н	1	CL	4	0	G	1
	CIO/LIU97[12]	4.80	B3LYP	(isodes	mic)						С	2	Н	1	CL	4	0	G	1
	CIO/LIU97[12]	4.99	B3LYP	(adjuste	ed)						C	2	Н	1	CL	4	0	G	1
	NJIT99	6.55	90.65	23.88	26.74	28.78	30.23	32.15	33.32	34.89	С	2	Н	1	CL	4	0	G	1
CCL3CHCL	THERM[6]	9.34	86.47	25.20	28.00	30.17	31.37	33.31	34.15	0.00	С	2	Н	1	CL	4	0	G	1
(1,2,2,2)	TRC[2]	12.19	88.26	25.57	28.51	30.38	31.62	33.13	34.03	35.25	С	2	Н	1	CL	4	0	G	1
	MELIUS93[7]	11.10									С	2	Н	1	CL	4	0	G	1
	CIO/LIU97[12]	11.28	G2(iso	desmic)							С	2	Н	1	CL	4	0	G	1
	CIO/LIU97[12]	9.59	B3LYP	(isodes	mic)						С	2	Н	1	CL	4	0	G	1
	CIO/LIU97[12]		B3LYP	<u> </u>							С	2	Н	1	CL	4	0	G	1
	NJIT99	11.28			Ź8.51	30.38	31.62	33.13	34.03	35.25	С	2	Н	1	CL	4	0	G	1
CHCL2CCL3	SWS[4]	-34.00	91.01	27.11	30.78	33.56	35.62	38.20	39.56	41.19	С	2	Н	1	CL	5	0	G	1
	TRC[2]	-34.80	91.18	28.30	31.96	34.52	36.34	38.64	40.17	41.99	С	2	Ξ	1	CL	5	0	G	1
	69STU/WES[69]	-38.00	90.70	28.40	***************************************	34.50		38.50	39.70		С	2	H	1	CL	5	0	G	1
	CHAO74[31]	-34.80	91.16	28.30	31.96	34.52	36.35	38.71	40.17	42.04	С	2	Н	1	CL	5	0	G	1
	83KOL/PAP[55]	-33.0, -3	4.2, -34	8.							С	2	Н	1	CL	5	0	G	1
	72CHAO/ROD[65]	-34.80								•	С	2	Н	1	CL	5	0	G	1
	MELIUS93[7]	-35.20									С	2	Н	1	CL	5	0	G	1
	NJIT99	-34.80	91.18	28.30	31.96	34.52	36.34	38.64	40.17	41.99	С	2	Н	1	CL	5	0	G	1
CH2CCL	RADICALC[72]	60.41	63.01	11.93	14.18	15.98	17.40	19.41	20.68	22.59	С	2	Н	2	CL	1	0	G	0
	HO/BAR92[19]	60.40	64.46	11.39		16.35		21.23	23.38	26.87	С	2	Н	2	CL	1	0	G	0
	TAY/DEL91[21]	61.43	64.30	12.29		15.93		19.22	20.71	23.60	С	2	Н	2	CL	1	0	G	0
	MOPAC[5]	52.39	62.77	13.00	14.82		17,44		20.61			2	Н	2	CL	1	0	G	0
	MELIUS93[7]	61.40		panastatanan (1967)					000000000000000000000000000000000000000	300000 0000000000000000000000000000000	С	2	Н	2	CL	1	0	G	0
	NJIT99	61.40	62.77	13.00	14.82	16.27	17.44	19.26	20.61	22.76	С	2	Н	2	CL	1	0	G	0

Table 2.2 (Continued)																		
SPECIES	REFERENCE[]	Hf ^o ₂₉₈	S° 298	Cp ³⁰⁰	Cp ⁴⁰⁰	Cp ⁵⁰⁰		Cp ⁸⁰⁰						Εl	EM	EN	rs		
CHCHCL	RADICALC[72]	63.31	62.31	12.14	14.54	16.40	17.82	19.73	20.88	22.67	С	2	Ι	2	긶	1	0	G	0
	TAY/DEL91[21]	64.00	64.21	12.11		15.98		19.35	20.82	23.66	С	2	Τ	2	CL	1	0	G	0
	MOPAC[5]	59.79	65.60	13.72	15.55	16.94	18.03	19.67	20.90	22.88	С	2	Η	2	CL	1	0	G	0
	MELIUS93[7]	64.80									С	2	Н	2	CL	1	0	G	0
	NJIT99	64.80	65.60	13.72	15.55	16.94	18.03	19.67	20.90	22.88	С	2	Н	2	CL	1	0	O	0
CH2CCL2	TRC[2]	0.57			18.77		22.41	• • • • • • • • • • • • • • • • • • • •	26.28			2	Н	2	CL	2	0	G	0
	69STU/WES[69]	0.62	69.25	15.81		20.56		24.68	26.19	28.21	С	2	Η	2	CL	2	0	O	0
	71MAN/SUN[66]	0.60									С	2	Τ	2	CL	2	0	G	0
	MELIUS93[7]	0.70									С	2	Ι	2	CL	2	0	G	0
	PEDLEY86[27]	0.62									С	2	Н	2	CL	2	0	G	0
	CHEN/BOZ98[8]	0.50	67.00	16.07	18.78	20.84	22.42	24.70	26.28	28.63	С	2	Н	2	CL	2	0	G	0
	93BEN/COH[36]	4.56	69.71								С	2	Н	2	CL	2	0	G	0
	NJIT99	0.57	68.83	16.06	18.77	20.83	22.41	24.69	26.28	28.63	С	2	Н	2	CL	2	0	G	0
CHCLCHCL	SWS[4]	1.00	69.29	15.99	18 58	20.65	22.28	24.62	26.24		С	2	Н	2	CL	2	0	G	0
(trans)	TRC[2]	1	69.30							28.61	С	2	Н	2	CL	2	0	G	0
(4.4.7.7)	69STUWES[69]	+0.64									С	2	Н	2	CL	2	0	G	0
	MELIUS93[7]	+0.60									С	2	Н	2	CL	2	0	G	0
	93BEN/COH[36]	2.20	69.42								С	2	Н	2	CL	2	0	G	0
	PEDLEY86[27]	1.20									С	2	Н	2	CL	2	0	G	0
	CHEN/BOZ98[8]	0.70	69.29	15.96	18.55	20.63	22.25	24.58	26.22	28.63	С	2	Н	2	CL	2	0	G	0
	NJIT99	-0.45	69.29	15.99	18.58	20.65	22.28	24.62	26.24	,	С	2	Н	2	CL	2	0	G	0
Z_CHCLCHCL	SWS[4]	0.45	69.21	15.69		20.52				28.66		2	Н	2	CL	2	0	G	0
(cis)	TRC[2]	+0.67	69.24	15.59	18.38	20.54	22,21	24.59	26.22			2	Ι	2	CL	2	0	G	0
	69STU/WES[69]	0.75	69.25	15.81		20.56		24.68	26.19	28.21	С	2	H	2	CL	2	0	G	0
	MELIUS93[7]	-1.10									С	2	Ι	2	CL	2	0	G	0
	93BEN/COH[36]	1.20	69.42								С	2	Н	2	CL	2	0	G	0
	PEDLEY86[27]	1.10									C	2	Η	2	CL	2	0	G	0
	CHEN/BOZ98[8]	0.30	69.21	15.66	18.34	20.49	22.20	24.65	26.26	28.65	С	2	Н	2	CL	2	0	G	0
	илт99	-0.67	69.24	15.59	18.38	20.54	22.21	24.59	26.22	28.61	C	2	Н	2	CL	2	0	G	0

Table 2.2 (Continued)																		
SPECIES	REFERENCE []	Hf° ₂₉₈	S° 298	Cp ³⁰⁰	Cp ⁴⁰⁰		Cp ⁶⁰⁰		Cp ¹⁰⁰⁰	Cp ¹⁵⁰⁰				El	EM	EN	rs		
CHCL2CHCL	RADICALC[72]	9.80	82.11	20.91			27.28			33.72		2	Н	2	CL	3	0	G	1
(1,2,2)	TRC[2]	11.09	84.51	21.49	24.59	26.84	28.49	30.64	32.05	34.08	С	2	Н	2	CL	3	0	G	1
	HO/BAR92[19]	8.50	83.10	20.21		25.68		30.14	31.77	34.50	С	2	Н	2	CL	3	0	G	1
	TAY/DEL91[21]	9.80	82.23	20.94		26.42		30.20	31.59	35.02	C	2	Η	2	CL	3	0	G	1
	MELIUS93[7]	10.30									С	2	Н	2	CL	3	0	G	1
	CIO/LIU97[12]	11.53	G2(iso	desmic)							C	2	Η	2	CL	3	0	G	1
	CIO/LIU97[12]	9.93	B3LYP	(isodes	mic)						С	2	Η	2	CL	3	0	G	1
	CIO/LIU97[12]	10.12	B3LYP	(adjuste	ed)						С	2	Н	2	CL	3	0	G	1
	илтээ	11.53	84.51	21.49	24.59	26.84	28.49	30.64	32.05	34.08	С	2	Н	2	CL	3	0	G	1
CH2CLCCL2	RADICALC[72]	7.00	81.31	20.82	23.31	25.33	26.98	29.41	31.08	33.61	С	2	Н	2	CL	3	0	G	1
(1,1,2)	TRC[2]	6.31	L	1	1				31.50			2	Н	2	CL	3	0	G	1
<u> </u>	HO/BAR92[19]	7.05	83.20	20.21		25.68	***************************************	30.14	31,77	34.50	С	2	Н	2	CL	3	0	G	1
	TAY/DEL91[21]	8.20	82.15	20.69		25.99		29.86	31.33	34.89	С	2	Н	2	CL	3	0	G	1
	CIO/LIU97[12]	7.65	G2(iso	desmic)							С	2	Н	2	CL	3	0	G	1
	CIO/LIU97[12]		B3LYP								С	2	Н	2	CL	3	0	G	1
	CIO/LIU97[12]	6.49	B3LYP	(adjuste	ed)						С	2	Н	2	CL	3	0	G	1
	MELIUS93[7]	6.00									С	2	Н	2	CL	3	0	G	1
	NJIT99	7.65	84.56	21.39	24.09	26.15	27.70	29.95	31.50	33.77	С	2	Н	2	CL	3	0	G	1
CCL3CH2	RADICALC[72]	14.80	81.41	22.04	24.60	26.63	28.22	30.46	31.91	34.07	С	2	Н	2	CL	3	0	G	1
(2,2,2)	TRC[2]	17.21	L	1	1				31.83			2	Н	2	CL	3	0	G	1
(-,-,-)	89ATK/BAU[45]	10.70		************	[************			***********	С	2	Н	2	CL	3	0	G	1
	CIO/LIU97[12]		G2(iso	desmic)	L						С	2	Н	2	CL	3	0	G	1
	CIO/LIU97[12]		B3LYP								С	2	Н	2	CL	3	0	G	1
	CIO/LIU97[12]		B3LYP	<u> </u>							C	2	Н	2	CL	3	0	G	1
	MELIUS93[7]	18.80			l						С	2	Н	2	CL	3	0	G	1
	илітээ	18.39	80.50	22.01	24.86	26.86	28.35	30.40	31.83	33.94	С	2	Н	2	CL	3	0	G	1
CH2CLCCL3	THERM[6]	-35.16					33.17		37.68		С	2	Н	2	CL	4	0	G	1
(1,1,1,2)	TRC[2]		85.07							40.70		2	Н	2	CL	4	0	G	1
	SWS[4]	-37.20	86.01	27.17	30.13	32.52	34.42	37.08	38.71	40.67	С	2	Н	2	CL	4	0	G	1

Table 2.2	(Continued)																		
SPECIES	REFERENCE[]	Hf° ₂₉₈	S° ₂₉₈	Cp ³⁰⁰	Cp ⁴⁰⁰	Cp ⁵⁰⁰	Cp ⁶⁰⁰	Cp ⁸⁰⁰	Cp ¹⁰⁰⁰	Cp ¹⁵⁰⁰				El	LEM	EN	rs		
	83KOL/PAP[55]	-36.00	85.90	25.00		31.20		35.80	37.50		С	2	H	2	CL	4	0	G	1
	CHAO74[31]	-35.70	85.05	24.67	28.36	31.16	33.28	36.24	38.17	40.69	С	2	Н	2	CL	4	0	G	1
	93BEN/COH[36]	-34.70	86.02								С	2	Н	2	CL	4	0	G	1
	CHEN/BOZ98[8]	-35.54	84.53	24.62	28.29	31.07	33.17	36.11	38.11	40.61	С	2	Н	2	CL	4	0	O	1
	MELIUS93[7]	-35.30									С	2	Н	2	CL	4	0	G	1
	ијг99	-35.71	85.07	24.67	28.36	31.16	33.28	36.24	38.17	40.70	С	2	I	2	CL	4	0	G	1
C2H2CL4	THERM[6]	-36.46	86.37	24.47			32.41		37.15	39.67	С		Н	2	CL	4	0	G	1
(CHCL2CHCL2)	SWS[4]	-37.20	86.01				34.42			40.67	L	2	Н	2	CL	4	0	G	1
(1,1,2,2)	TRC[2]		84.86	23.74	27.67	30.65	32.89	35.99	38.01	40.66	С	2	Н	2	CL	4	0	G	1
	MELIUS93[7]	-36.00									С	2	Н	2	CL	4	0	G	1
	83KOL/PAP[55]	-37.60 +-	0.72								С	2	Н	2	CL	4	0	G	1
	94Lide[33]	-35.66									С	2	Н	2	CL	4	0	G	1
	93BEN/COH[36]	-35.80	86.02								С	2	Н	2	CL	4	0	G	1
	PEDLEY86[27]	-35.66									C	2	Н	2	CL	4	0	G	1
	CHEN/BOZ98[8]	-36.98	86.29	24.03	27.85	30.80	33.00	36.08	38.03	39.59	С	2	Н	2	CL	4	0	G	1
	NJIT99	-36.00	84.86	23.74	27.67	30.65	32.89	35.99	38.01	40.66	С	2	Н	2	CL	4	0	G	1
C2H3	THERM[6]	71.62	56.61	10.09	11.98	13.61	15.02	17.30	19.03	21.82	С	2	Н	3		0	0	G	0
	LAY/BOZ95[16]	71.64	53.79	10.10	11.93	13.57	14.97	17.22	18.95	•	С	2	Н	3		0	0	G	0
	MOPAC[5]	62.98	54.79	11.11	12.91	14.37	15.58	17.53	19.08	21.72	С	2	Н	3		0	0	G	0
	MELIUS93[7]	71.00									С	2	Н	3		0	0	G	0
	DEFREES80[30]	71.50									C	2	Н	3		0	0	G	0
	70BENSON[68]	69.00									C	2	Н	3		0	0	G	0
	79ROSS/GOL[58]	64.00									С	2	Н	3		0	0	G	0
	NJIT99	71.64	53.79	10.10	11.93	13.57	14.97	17.22	18.95		С	2	Н	3		0	0	G	0
CH2CHCL	TRC[2]	6.81	63.12	12.86	15.54	17.77	19.58	22.33	24.33	27.43	С	2	Н	3	CL	1	0	G	0
	69STU/WES[69]	5.00	63.09	12.33		17.73		22.47	24.26	26.88	С	2	Н	3	CL	1	0	G	0
	SWS[4]	8.40		12.89		17.80	19.61		24.35		С	2	Н	3	CL	1	0	G	0
	Gluk97(G2)	5.21	, x x x x x x x x x x x x x x x x x x x			perendental de marco (100)					С	2	Н	3	CL	1	0	G	0
	COL/THOM97[11]										С	2	Н	3	CL	1	0	G	0

Table 2.2 (Continued)																		
SPECIES	REFERENCE []	Hf° ₂₉₈	S° ₂₉₈	Cp ³⁰⁰	Cp ⁴⁰⁰	Cp ⁵⁰⁰	Cp ⁶⁰⁰	Cp ⁸⁰⁰	Cp ¹⁰⁰⁰	Cp ¹⁵⁰⁰				EI	LEM	EN.	rs	·	
	88LIAS[47]	5.5 +- 0.	478								С	2	Н		CL	1	0	G	0
	MELIUS93[7]	4.70									С	2	Н	3	CL	1	0	G	0
	NJIT99	5.00	63.08	12.89	15.56	17.80	19.61	22.35	24.35		С	2	Н	3	CL	1	0	G	0
CH2CLCHCL	RADICALC[72]	11.40	75.71	17.67	20.11	22.27	24.16	27.26	29.57	32.89	С	2	Н	3	CL	2	0	G	1
(1,2) a,b	TRC[2]	15.61	78.56	18 33	21.15	23.40	25.19	27.82	29.73	32.70	С	2	Н	3	CL	2	0	G	1
	HO/BAR92[19]	11.49	75.80	16.81		22.56		27.67	29.75	33.21	С	2	Н	3	CL	2	0	G	1
	TAY/DEL91[21]	13.30	77.00	18.39		23.37		27.97	29.94	34.78	С	2	Н	3	CL	2	0	G	1
	CIO/LIU97[12]	14.65	G2(iso	desmic)							С	2	Н	3	CL	2	0	G	1
	CIO/LIU97[12]	13.43	B3LYP	(isodes	mic)						С	2	Н	3	CL	2	0	G	1
	CIO/LIU97[12]	13.62	B3LYP	(adjuste	ed)						С	2	Η	3	CL	2	0	G	1
	MELIUS93[7]	13.10		*							С	2	Н	3	CL	2	0	G	1
	NJIT99	14.65	78.56	18.33	21.15	23.40	25.19	27.82	29.73	32.70	С	2	Н	3	CL	2	0	G	1
CH3CCL2	RADICALC[72]	11.30	73.61	17.16	20.31	22.97	25.20	28.59	30.88	33.73	С	2	Н	3	CL	2	0	G	1
(1,1) a,a	TRC[2]	10.21	76.12	18.02	20.63		24.62	27.37	29.40	32.50	С	2	Н	3	CL	2	0	G	1
	HO/BAR92[19]	10.50	73.60	17.28		22.86		28.09	30.18	33.09	С	2	Н	3	CL	2	0	G	1
······································	CHEN/ROUX92[18]	11.75	75.18	18.17	20.75	22.91	24.70	27.48	29.51	32 60	C	2	Н	3	CL	2	0	G	1
	Seet98[9]	10.16									С	2	Н	3	CL	2	0	G	1
	SEET96[10]	10.16	68.83								С	2	Н	3	CL	2	0	G	1
	CIO/LIU97[12]	12.43	G2(iso	lesmic)							C	2	Н	3	CL	2	0	G	1
	CIO/LIU97[12]	12.40	B3LYP	(isodes	mic)						C	2	Н	3	CL	2	0	G	1
	CIO/LIU97[12]	12.59	B3LYP	(adjuste	ed)						C	2	Н	3	CL	2	0	G	1
	MELIUS93[7]	10.30									C	2	Н	3	CL	2	0	G	1
	NJIT99	12.43	75.18	18.17	20.75	22.91	24.70	27.48	29.51	32.60	С	2	Н	3	CL	2	0	G	1
CHCL2CH2	RADICALC[72]	16.00	77.31	17.92	20.85	23.23	25.17	28.04	30.01	32.97	С	2	Н	3	CL	2	0	G	1
(2,2) b,b	TRC[2]	19.31	74.64	18.95	21.99	24.28	26.05	28.54	30:31	33.01	C	2	Н	3	CL	2	0	G	1
	HO/BAR92[19]	16.40	74.30	17.35		22.95		28.03	30.29	33.07	С	2	H	3	CL	2	0	G	1
	CIO/LIU97[12]	20,31	G2(iso	lesmic)							C	2	Н	3	CL	2	0	G	1
	CIO/LIU97[12]	18.86	B3LYP	(isodesi	mic)						С	2	Н	3	CL	2	0	G	1
	CIO/LIU97[12]	19.05	B3LYP	(adjuste	ed)						С	2	Н	3	CL	2	0	G	1

Table 2.2 (Continued)																		
SPECIES	REFERENCE[]	Hf ^o ₂₉₈	S° 298	Ср ³⁰⁰	Cp ⁴⁰⁰	Ср ⁵⁰⁰	Ср ⁶⁰⁰	Ср ⁸⁰⁰	Cp ¹⁰⁰⁰	Ср ¹⁵⁰⁰				El	_EM	EN ⁻	rs		
	MELIUS93[7]	20.20									С	2	Н	3	CL	2	0	G	1
	NJIT99	20.31	74.64	18.95	21.99	24.28	26.05	28.54	30.31	33.01	С	2	Η	3	CL	2	0	G	1
CH2CLCHCL2	TRC(2)	-34.80	79.71	20.40	24.47	27.74	30.29	33.85	36.15	39.29	С	2	Н	3	CL	3	0	G	1
(1,1,2)	69STU/WES[69]	-33.10				27.92	000000000000000000000000000000000000000	33.28	<u>eccessors areas as anco</u>	38.91	С	2	Н	3	CL	3	0	G	1
(-,-,-)	83KOL/PAP[55]	-34.58 +-									С	2	Н	3	CL	3	0	G	1
	94Lide[33]	-36.14									С	2	Н	3	CL	3	0	G	1
	MELIUS93[7]	-33.90									С	2	Н	3	CL	3	0	G	1
	93BEN/COH[36]	-34.60	81.50								С	2	Н	3	CL	3	0	G	1
, , , , , , , , , , , , , , , , , , , ,	PEDLEY86[27]	-34.80									С	2	Н	3	CL	3	0	G	1
	CHEN/BOZ98[8]	-33.99	81.22	21.31	24.85		29.81	33.00	35.03	38.09	С	2	Н	3	CL	3	0	G	1
	NJIT99	-34.80	79.71	20.40	24.47	27.74	30.29	33.85	36.15	39.29	С	2	Н	3	CL	3	0	G	1
			************											_	-	_	_		
CH3CCL3	TRC[2]	-34.01			 Address State Contract Contract 		30.68		35.81			2	Н	3	CL	3	0	G	1
(1,1,1)	PEDLEY86[27]	-30.90	78.60			28.45		33,70	35.73	38.91	С	2	Н	3	CL	3	0	G	1
	CHAO74[31]	-34.01	76.49	22.07							С	2	Н	3	CL	3	0	G	1
	83KOL/PAP[55]	-34.56+-	0.19								С	2	Н	3	CL	3	0	G	1
	MELIUS93[7]	-33.60				ļ					С	2	Н	3	CL	3	0	G	1
	NJIT99	-34.01	76.51	22.14	25.72	28.52	30.68	33.75	35.81	38.80	С	2	Н	3	CL	3	0	G	1
C2H4	JANAF[3]	12.54	52.40	10.29	12.68	14,93	16.89	20.04	22.44	26.29	С	2	Н	4		0	0	G	0
	SWS[4]	12.50	52.45	10.45	12.90	15.16	17.10	20.20	22.57		С	2	Н	4		0	0	G	0
	MELIUS93[7]	12.30									С	2	Н	4		0	0	G	0
	ИЛІТ99	12.54	52.40	10.29	12.68	14.93	16.89	20.04	22.44	26.29	С	2	Н	4		0	0	G	0
CH3CHCL	TRC[2]	18.50	68.69	14.65	17.28	19.67	21.70	24.93	27.37	31.24	С	2	Н	4	CL	1	0	G	1
a	89TSC/CHE[46]	17.51	67.31			19.79		25.42	£		1		Н	4	CL	1	0	G	1
<u> </u>	CHEN/ROUX92[18]	18.26		l .	•	1	·		27.72				Н	4	CL	1	0	G	1
	Seet98[9]	18.28			(,					c	2	Н	4	CL	1	0	G	1
	SEET96[10]	18.28	66.68		<u> </u>				 		C	2	Н	4	CL	1	0	G	1
	88HOL/LOS[48]	19.3+-2.0									C	2	Н	4	CL	1	0	G	1
	CIO/LIU97[12]	19.18		desmic)	L	 			 		С	2	H	4	CL	1	0	G	1

Table 2.2 (Continued)		•																
SPECIES	REFERENCE []	Hf ^o ₂₉₈	S° 298	Cp ³⁰⁰	Cp ⁴⁰⁰	Cp ⁵⁰⁰	Cp ⁶⁰⁰	Cp ⁸⁰⁰	Cp ¹⁰⁰⁰	Cp ¹⁵⁰⁰				El	LEM	EN-	rs		
	CIO/LIU97[12]	19.09	B3LYP	(isodes	mic)						C	2	Н	4	CL	1	0	G	1
	CIO/LIU97[12]	19.25	B3LYP	(adjuste	ed)						C	2	H	4	CL	1	0	G	1
	MELIUS93[7]	18.20									C	2	I	4	CL	1	0	G	1
	MIYO/ROUX90[23]	17.60									O	2	Η	4	CL	1	0	G	1
	NJIT99	19.18	68.86	14.84	17.57	20.00	22.05	25.29	27.72	31.51	C	2	Н	4	CL	1	0	G	1
CH2CLCH2	TRC[2]	22.39	68.00	15.65	18.55	20.96	22.92	25.88	28.08	31.57	С	2	Н	4	CL	1	0	G	1
b	HO/BAR92[19]	20.78		14.01		20.09	-	25.88			С	2	Н	4	CL	1	0	G	1
	CHEN/ROUX92[18]	22.44	69.07	15.51	18.09	20.37	22.30	25.37	27.71	31,44	C	2	Н	4	CL	1	0	G	1
	Seet98[9]	22.23									С	2	Н	4	CL	1	0	G	1
	88HOL/LOS[48]	22.8 +- 2	2.0								С	2	Н	4	CL	1	0	G	1
	CIO/LIU97[12]	23.20	G2(iso	desmic)							С	2	Н	4	CL	1	0	G	1
	CIO/LIU97[12]	21.97	B3LYP	(isodes	mic)						С	2	H	4	CL	1	0	G	1
	CIO/LIU97[12]	22.16	B3LYP	(adjuste	ed)						С	2	Н	4	CL	1	0	G	1
	MELIUS93[7]	23.00									С	2	Н	4	CL	1	0	G	1
	MIYO/ROUX90[23]	21.80									C	2	Н	4	CL	1	0	G	1
	NJIT99	23.20	69.07	15.51	18.09	20.37	22.30	25.37	27.71	31.44	С	2	H	4	CL	1	0	G	1
CH2CLCH2CL	TRC[2]	-30.31	73.12	18.54	21.95	24.96	27.45	31.16	33.78	37.64	c	2	Н	4	CL	2	0	G	1
	69STU/WES[69]	-31.00	73.66	18.99	000000000000000000000000000000000000000	24.74		30.32	33.06	38.79	С	2	Н	4	CL	2	0	G	1
	83KOL/PAP[55]	+32.1++ ().3								С	2	Н	4	CL	2	0	G	1
	94Lide[33]	-30.33									C	2	Н	4	CL	2	0	G	1
	93BEN/COH[36]	-33.40	76.34								С	2	Н	4	CL	2	0	G	1
	PEDLEY86[27]	-30.33									С	2	Н	4	CL	2	0	G	1
	CHEN/BOZ98[8]	-31.05	75.05	18.23	21.54	24.39	26.70	30.25	32.89	36.94	С	2	Н	4	CL	2	0	G	1
	MELIUS93[7]	-32.40									C	2	Н	4	CL	2	0	G	1
	NJIT99	-31.22	73.12	18.54	21.95	24.96	27.45	31.16	33.78	37.64	С	2	Н	4	CL	2	0	G	1
CH3CHCL2	TRC[2]	-31.09	72.94	18,32	21.84	24.79	27.18	30.79	33.40	37.40	С	2	Н	4	CL	2	0	G	1
	69STU/WES[69]	-31.05	72.89	18.29		24.81		30.87	33.44	37.80	С	2	Н	4	CL	2	0	G	1
	CHA074[31]	-31.10	72.88	18.24							С	2	Н	4	CL	2	0	G	1
	83KOL/PAP[55]	-31.2+- (0.7								C	2	Н	4	CL	2	0	G	1

Table 2.2	(Continued)																		
SPECIES	REFERENCE []	Hf° ₂₉₈	S° ₂₉₈	Ср ³⁰⁰	Cp ⁴⁰⁰	Cp ⁵⁰⁰	Cp ⁶⁰⁰	Cp ⁸⁰⁰	Cp ¹⁰⁰⁰	Cp ¹⁵⁰⁰				El	LEM	EN	TS		
	94Lide[33]	-30.52									С	2	Н	4	CL	2	0	G	1
	MELIUS93[7]	-32.10									С	2	Н	4	CL	2	0	G	1
	93BEN/COH[36]	-27.90	71.82								С	2	Н	4	CL	2	0	G	1
	PEDLEY86[27]	-30.52									С	2	Н	4	CL	2	0	G	1
	CHEN/BOZ98[8]	-31.04	73.03	18.18		24.93		31.11		37.01	С	2	Н	4	CL	2	0	G	1
	NJIT99	-31.09	72.94	18.32	21.84	24.79	27.18	30.79	33.40	37.40	С	2	H	4	CL	2	0	G	1
C2H5	TRC[2]	25.91	58.87	12.44		17.47	19.60	23.13	25.90	30.37	С	2	Н	5		0	0	G	1
	90SANDIA[42]	28.02	60.14	11.32		15.59	18.29	22.58	25.50	29.56		2	Н	5		0	0	G	1
	90CHEN[43]		59.30	12.11	I	17.39	19.58	23.20	25.98	30.41	С	2	Η	5		0	0	G	1
	86TSANG[49]		59.37	12.13	14.66	17.18	19.22	22.84	25.65	30.24	С	2	Н	5		0	0	G	1
	94BURCAT[34]	28.36	59.06	12.07							С	2	Η	5		0	0	G	1
	92COHEN[38]		59.23		14.80					30.33	С	2	Η	5		0	0	G	1
	LAY/BOZ95[16]	28.80	57.42	11.89	14.57	16.95	19.09	22.76	25.66		C	2	Ι	5		0	0	G	1
	Seet98[9]	28.85									C	2	Н	5		0	0	G	1
	SEAKINS92[20]	28.92+-	0.36								C	2	Η	5		0	0	G	1
	CIO/LIU97[12]	29.30	(this stu	ıdy)							C	2	Н	5		0	0	G	1
	CIO/LIU97[12]	29.49	B3LYP	(adjuste	ed)						С	2	H	5		0	0	G	1
	MELIUS93[7]	28.80									C	2	H	5		0	0	G	1
	NICOVICH91[22]	29.10									С	2	Н	5		0	0	G	1
, 300	RUSS/SEET88[25]	28.68	62.14								C	2	Н	5		0	0	G	1
	илтээ	29.30	57.42	11.89	14.57	16.95	19.09	22.76	25.66		С	2	Н	5		0	0	G	1
C2H5CL	JANAF[3]	 -26.80	66.01	15.03	18.57	21.61	24.22	28.37	31.44	36 16	С	2	Н	5	CL	1	0	G	1
-	TRC[2]	-26.84	65.94	15.04	18.54	21.66	24.28	28,38	31.43	36.17	С	2	Н	5	CL	1	0	G	1
	HO/BAR92[19]	-26.83	66.03	15.06		21.67		28.43	31.47	36.27	С	2	Н	5	CL	1	0	G	1
	CHAO74[31]	-26.83	65.91	14.97							С	2	Н	5	CL	1	0	G	1
	88LIAS[47]	-26.79	65.96								С	2	Н	5	CL	1	0	G	1
	71FLET/PIL[67]	-26.83									С	2	Н	5	CL	1	0	G	1
	83KOL/PAP[55]	-26.8+-	0.2								С	2	Η	5	CL	1	0	G	1
	MELIUS93[7]	-27.20					***************************************				С	2	H	5	CL	1	0	G	1
	NJIT99	-26.80	66.01	15.03	18.57	21.61	24.22	28.37	31.44	36.16	C	2	Н	5	CL	1	0	G	1

Table 2.2	(Continued)																			ĺ
SPECIES	REFERENCE []	Hf ^o ₂₉₈	S°298	Cp ³⁰⁰	Cp ⁴⁰⁰	Cp ⁵⁰⁰	Ср ⁶⁰⁰	Cp ⁸⁰⁰	Cp ¹⁰⁰⁰	Cp ¹⁵⁰⁰				EI	EM	EN:	TS	/		
C2H6	JANAF[3]	_ -20.20	54.81	12.54	15 78	18.70	21.33	25.78	29.29	34.87	С	2	Н	6		0	0	G	1	<u> </u>
	83KOL/PAP[55]	-20.1 +-	0.1	[С	2	Н	6		0	0	G	1	
	MELIUS93[7]	-20.80	(stagg	ered)							C	2	Н	6		0	0	G	1	
	73CHAO/WIL[64]	-20.24									С	2	Н	6		0	0	G	1	
	NJIT99	-20.20	54.81	12.54	15.78	18.70	21.33	25.78	29.29	34.87	С	2	Н	6		0	0	G	1	
CH3CF3	ZAC/TSANG96[15]	-180.54									С	2	Н	3	F	3	0	G	1	
	CHEN/ROD75[32]	-178.20									С	2	Н	3	F	3	0	G	1	
	MELIUS93[7]	-180.53									С	2	Н	3	F	3	0	G	1	
	PEDLEY86[27]	-177.94									С	2	Н	3	F	3	0	G	1	_
	SWS[4]	-178.20									С	2	Η	3	F	3	0	G	1	
0110050		405.00			ļ							_				_		_		
CH2CF3	ZAC/TSANG96[15]	-125.86			 -	ļ					C	2	H	2	F	3	0	G	1	
	78RODGERS[60]	-123.59									C	2	Н	2	F	3	0	G	1	
	MELIUS93[7]	-125.90									С	2	H	2	F	3	0	G	1	
CH3CF2CL	MELIUS93[7]	-128.70									С	2	Н	3	F	2	CL	1	G	1
	78PAP/KOL[61]	-126.60									С	2	Н	3	F	2	CL	1	G	1
	THERM[6]	-127.51									С	2	Н	3	F	2	CL	1	G	1
CH2CF2CL	MELIUS93[7]	-75.40									С	2	Н	2	F	2	CL	1	G	1
CH3CFCL2	MELIUS93[7]	-79.67									С	2	Н	3	F	1	CL	2	G	1
CH2CFCL2	MELIUS93[7]	-25.80									С	2	Н	2	F	1	CL	2	G	1

Table 2.3	Selected Therm	odynam	ic Prop	erty D)ata ^a													ļ	
	3																		\vdash
	^a UNITS : H _f ₂₉₈ (kca	al/mol), S	₂₉₈ (cal/l	(* mol))													<u> </u>	
SPECIES	REFERENCE[]	Hf ^o ₂₉₈	S° ₂₉₈	Cp ³⁰⁰	Cp ⁴⁰⁰	Cp ⁵⁰⁰	Cp ⁶⁰⁰	Cp ⁸⁰⁰	Cp ¹⁰⁰⁰	Cp ¹⁵⁰⁰				EI	EM	EN ⁻	TS	·	
		20.00	20.46	F 00	E 27	E 44	5.45	5.39	5.31	5.18		0		0	CL	1	0	G	0
*CL	JANAF[3]	28.92	39.46	5.22	5.37	5.44	8.74		8.96	9.07		0		0	CL	2	0	G	0
CL2	JANAF[3]	0.00	53.29	8.12	8.44	8.62		8.88			С		CL	3	CL	0	0	G	0
CCL3	JANAF[3]	19.00	70.92	15.25		17.56	18.16	18.83	19.18	19.56 25.47	C		CL		-	0	0	G	0
CCL4	JANAF[3]	-22.94	74.02	19.98		23.09	23.82	24.64	25.05			1		4			_	G	
CF3	JANAF[3]	-113.01	63.42	11.93		15.05	16.09	17.46	18.22	19.07	C	1	F	3	-	0	0	1	0
CF2CL	RAYEZ94[17]	-66.02	67.72	13.17	14.73	15.93	16.83	17.98	18.59	19.25	С		CL	1	F	2	0	G	0
CF3CL	JANAF[3]	-169.20	68.17	16.04		20.32	21.59	23.16	24.02	24.98		1	CL	1	F	3	0	G	0
CFCL2	RAYEZ94[17]	-21.60	69.17	14.02	15.42	16.49	17.28	18.26	18.77	19.34		1	CL	2	F	1	0	G	0
CF2CL2	JANAF[3]	-117.50	71.91	17.36	19.68	21.28	22.37	23.68	24.39	25.16		1	CL	2	F	2	0	G	0
CFCL3	MELIUS93[7]	-67.70									С	1	CL	3	F	1	0	G	0
	TRC[2]		74.07	18.71	20.84	22.22	23.13	24.19	24.74	25.33	С	1	CL	3	F	1	0	G	0
CHCL2	89TSC/CHE[46]	23.50									С	1	Н	1	CL	2	0	G	0
	KAFAF189[24]		68.10	12.90	14.16	15.09	15.79	16.76	17.44	18.46	С	1	Н	1	CL	2	0	G	0
CHCL3	SWS[4]	-24.20	70.66	15.76	17.83	19.34	20.44	21.91	22.86		С	1	Н	1	CL	3	0	G	0
CH2CL	AVG[7,9,21,48]	27.99									C	1	H	2	CL	1	0	G	0
	MOPAC[5]		58.61	10.08	11.45	12.53	13.38	14.66	15.64	17.30	C	1	Η	2	CL	1	0	G	0
CH2CL2	JANAF[3]	-22.83	64.57	12.20	14.24	15.93	17.30	19.32	20.76	22.91	C	1	Н	2	CL	2	0	G	0
CH3	JANAF[3]	34.82	46.38	9.26	10.05	10.82	11.54	12.89	14.09	16.29	C	1	Н	3		0	0	G	0
CH3CL	TRC[2]	-19.60	56.00	9.77	11.51	13.19	14.66	17.05	18.87	21.76	C	1	Н	3	CL	1	0	G	0
C2CL3	MELIUS93[7]	54.40									C	2	CL	3		0	0	G	0
	RADICALC[72]		79.11	19.25	20.20	21.23	22.25	24.03	25.24	25.80	С	2	CL	3		0	0	G	0
C2CL4	SWS[4]	-3.40	81.41	22.43	24.86	26.66	27.95	29.40	29.95	30.78	С	2	CL	4		0	0	G	0
C2CL5	CIO/LIU97[12]	9.06	G2(iso		L						С	2	CL	5		0	0	G	1
	MOPAC[5]	1	95.68			32.72	33.75	34.93	35.54	36.20	С	2	CL	5		0	0	G	1
C2CL6	SWS[4]	-33.80	94.77	32,67		38.29	39.69		42.11		C	2	CL	6		0	0	G	1
CHCLCCL	MELIUS93[7]	56.00									С	2	Н	1	CL	2	0	G	0
5.10E56E	MOPAC[5]	1 30.00	73.62	15.53	17 35	18.72	19.78	21.31	22.37	23,89	С	2	Н	1	CL	2	0	G	0

Table 2.3	(Continued)																		
SPECIES	REFERENCE[]	Hf ^o ₂₉₈	S° 298	Ср ³⁰⁰	Cp ⁴⁰⁰	Cp ⁵⁰⁰	Cp ⁶⁰⁰	Cp ⁸⁰⁰	Cp ¹⁰⁰⁰	Cp ¹⁵⁰⁰			•	E	LEM	EN.	TS		
CCL2CH	MELIUS93[7]	62.30									C	2	Н	1	CL	2	0	G	0
	MOPAC[5]		71.28	16.75		19.82	20.70	21.91	22.75	24.02	С	2	Н	1	CL	2	0	G	0
C2HCL3	TRC[2]	-2.29	77.72	19.23	21.80	23.68	25.07	26.95	28.16	29.79	С	2	Н	1	CL	3	0	G	0
CHCL2CCL2	CIO/LIU97[12]	6.55	G2(isod								С	2	Н	1	CL	4	0	G	1
(1,1,2,2)	TRC[2]		90.65	23.88	26.74	28.78	30.23	32.15	33.32	34.89	O	2	Η	1	CL	4	0	G	1
CCL3CHCL	CIO/LIU97[12]	11.28	G2(iso								С	2	Н	1	CL	4	0	G	1
(1,2,2,2)	TRC[2]	12.19	88.26	25.57	28.51	30.38	31.62	33.13	34.03	35.25	O	2	Н	1	CL	4	0	G	1
CHCL2CCL3	TRC[2]	-34.80	91.18	28.30	31.96	34.52	36.34	38.64	40.17	41.99	С	2	Н	1	CL	5	0	G	1
CH2CCL	MELIUS93[7]	61.40									С	2	Н	2	CL	1	0	G	0
	MOPAC[5]		62.77	13.00	14.82	16.27	17.44	19.26	20.61	22.76	С	2	Н	2	CL	1	0	G	0
CHCHCL	MELIUS93[7]	64.80									С	2	Н	2	CL	1	0	G	0
	MOPAC[5]		65.60	13.72	15.55	16.94	18.03	19.67	20.90	22.88	С	2	Н	2	CL	1	0	G	0
CH2CCL2	TRC[2]	0.57	68.83	16.06	18.77	20.83	22.41	24.69	26.28	28.63	С	2	Н	2	CL	2	0	G	0
CHCLCHCL	AVG[2,7,69]	-0.45									С	2	Н	2	CL	2	0	G	0
(trans)	SWS[4]		69.29	15.99	18.58	20.65	22.28	24.62	26.24		С	2	Н	2	CL	2	0	G	0
Z_CHCLCHCL	TRC[2]	-0.67	69.24	15.59	18.38	20.54	22.21	24.59	26.22	28.61	С	2	Н	2	CL	2	0	G	0
(cis)																			
CHCL2CHCL	CIO/LIU97[12]	11.53	G2(iso	desmic)							С	2	Н	2	CL	3	0	G	1
(1,2,2)	TRC[2]				24.59	26.84	28.49	30.64	32.05	34.08	С	2	Н	2	CL	3	0	G	1
CH2CLCCL2	CIO/LIU97[12]	7.65	G2(iso	lesmic)							С	2	Н	2	CL	3	0	G	1
(1,1,2)	TRC[2]		84.56	21.39	24.09	26.15	27.70	29,95	31.50	33.77	С	2	Н	2	CL	3	0	G	1
CCL3CH2	CIO/LIU97[12]	18.39	G2(iso	lesmic)							С	2	Н	2	CL	3	0	G	1
(2,2,2)	TRC[2]		80.50	22.01	24.86	26.86	28.35	30.40	31.83	33.94	С	2	Н	2	CL	3	0	G	1
CH2CLCCL3	TRC[2]	-35.71	85.07	24.67	28.36	31.16	33.28	36.24	38.17	40.70	С	2	Н	2	CL	4	0	G	1
(1,1,1,2)																			
C2H2CL4	MELIUS93[7]	-36.00									С	2	Н	2	CL	4	0	G	1
(CHCL2CHCL2)	TRC[2]		84.86	23.74	27.67	30.65	32.89	35.99	38.01	40.66	С	2	Н	2	CL	4	0	G	1
(1,1,2,2)																			
C2H3	LAY/BOZ95[16]	71.64	53.79	10.10	11.93	13.57	14.97	17.22	18.95		С	2	Н	3		0	0	G	0
CH2CHCL	COL/THOM97[11]	5.00									С	2	Н	3	CL	1	0	G	0
	SWS[4]		63.08	12.89	15.56	17.80	19.61	22.35	24.35		С	2	Н	3	CL	1	0	G	0

Table 2.3 (Continued)																		
SPECIES	REFERENCE []	Hf ^o ₂₉₈	S° ₂₉₈	Cp ³⁰⁰	Cp ⁴⁰⁰	Cp ⁵⁰⁰	Ср ⁶⁰⁰	Cp ⁸⁰⁰	Cp ¹⁰⁰⁰	Cp ¹⁵⁰⁰	1			El	EM	EN	rs		
CH2CLCHCL	CIO/LIU97[12]		G2(iso								С	2	Н	3	CL	2	0	G	1
(1,2) a,b	TRC[2]		78.56	18.33	21.15	23.40	25.19	27.82	29.73	32.70	С	2	Η	3	CL	2	0	G	1
CH3CCL2	CIO/LIU97[12]	12.43	G2(iso	desmic)							С	2	Τ	3	CL	2	0	G	1
(1,1) a,a	CHEN/ROUX92[18]		75.18	18.17	20.75	22.91	24.70	27.48	29.51	32.60	С	2	Η	3	CL	2	0	G	1
CHCL2CH2	CIO/LIU97[12]	20.31	G2(iso	desmic)							С	2	Τ	3	CL	2	0	G	1
(2,2) b,b	TRC[2]		74.64	18.95	21.99	24.28	26.05	28.54	30.31	33.01	С	2	I	3	CL	2	0	G	1
CH2CLCHCL2	TRC[2]	-34.80	79.71	20.40	24.47	27.74	30.29	33.85	36.15	39.29	С	2	Τ	3	CL	3	0	G	1
(1,1,2)																			
CH3CCL3	TRC[2]	-34.01	76.51	22.14	25.72	28.52	30.68	33.75	35.81	38.80	С	2	Н	3	CL	3	0	G	1
(1,1,1)																			
C2H4	JANAF[3]	12.54	52.40	10.29	12.68	14.93	16.89	20.04	22,44	26.29	С	2	Н	4		0	0	G	0
CH3CHCL	CIO/LIU97[12]	19.18	G2(iso	desmic)							C	2	Н	4	CL	1	0	G	1
а	CHEN/ROUX92[18]		68.86	14.84	17.57	20.00	22.05	25.29	27.72	31.51	С	2	Н	4	CL	1	0	G	1
CH2CLCH2	CIO/LIU97[12]	23.20	G2(iso	desmic)							С	2	Н	4	CL	1	0	G	1
b	CHEN/ROUX92[18]		69.07	15.51	18.09	20.37	22.30	25.37	27.71	31.44	С	2	Η	4	CL	1	0	G	1
CH2CLCH2CL	AVG[33,55]	-31.22									C	2	Н	4	CL	2	0	G	1
	TRC[2]		73.12	18.54	21.95	24.96	27.45	31.16	33.78	37.64	С	2	Н	4	CL	2	0	G	1
CH3CHCL2	TRC[2]	-31.09	72.94	18.32	21.84	24.79	27.18	30.79	33.40	37.40	C	2	Н	4	CL	2	0	G	1
C2H5	CIO/LIU97[12]	29.30	(this stu	ıdy)							С	2	Н	5		0	0	G	1
	LAY/BOZ95[16]		57.42	11.89	14.57	16.95	19.09	22.76	25.66		С	2	Н	5		0	0	G	1
C2H5CL	JANAF[3]	-26.80	66.01	15.03	18.57	21.61	24.22	28.37	31.44	36.16	С	2	Н	5	CL	1	0	G	1
C2H6	JANAF[3]	-20.20	54.81	12.54	15.78	18.70	21.33	25.78	29.29	34.87	С	2	Н	6		0	0	G	1

REFERENCES (PART TWO)

- 1. Benson, S. W. *Thermochemical Kinetics*; 2nd ed. Weily-Interscience: New York, 1976.
- 2. Rodgers, A. S. Selected Values for Properties of Chemical Compounds; Thermodynamic Research Center, Texas A&M University: College Station, TX, 1982.
- 3. Stull, D. R.; Prophet, H. *JANAF Thermochemical Tables*; 2nd Ed.(NSRDS-NBS37). U.S.Government Printing Office: Washington D.C., 1970.
- 4. Stull, D. R.; Westrum, E. F. Jr.; Sinke, G. C. *The Chemical Thermodynamics of Organic Compounds*; Robert E. Krieger Publishing: Malabar, FL, 1987.
- 5. Stewart, J. J. MOPAC 6.0, Frank J. Seiler Research Lab., US Air Force Academy, Colorado, 1990.
- 6. Ritter, E. R. J. Chem. Inf. Comput. Sci. 1991, 31, 400.
- 7. Melius, C. F. BAC-MP4 Heats of Formation and Free Energies; Sandia National Laboratories: Livermore, CA, 1993.
- 8. Chen, C. J.; Wong, D.; Bozzelli, J. W. J. Phys. Chem. A. 1998, 102, 4551-4558.
- 9. Seetula, J. A. J. Chem. Soc., Faraday Trans. 1998, 94(7), 891-898.
- 10. Seetula, J. A. J. Chem. Soc., Faraday Trans. 1996, 92, 3069-3078.
- 11. Colegrove, B. T.; Thompson, T. B. J. Chem. Phys. 1997, 106 (4), 22.
- 12. Cioslowski, J.; Guanghua Liu, G.; Moncrieff, D. J. Am. Chem. Soc. 1997, 119(47), 11452-11457(ENG).
- 13. Glukhovtsev, M. N.; Bach, R. D. J. Phys. Chem. A, 1997, 101(19), 3574-3579.
- 14. Rodriquez, C. F.; Bohme, D. K.; Hopkinson, A. C. J. Phys. Chem. 1996, 100, 2942-2949.
- 15. Zachariah, M. R.; Westmoreland, P. R.; Burgess Jr., D. R.; Tsang, W.; Melius, C. F. J. Phys. Chem. 1996, 100, 8737-8747.

- 16. Lay, T. H.; Bozzelli, J. W.; Dean, A. M.; Ritter, E. R. J. Phys. Chem. 1995, 99(39), 14514-14527.
- 17. Rayez, M. T.; Rayez, J. C.; Sawerysyn, J. P. J. Phys. Chem. 1994, 98(44), 11342-11352.
- 18. Chen, Y.; Tschuikow-Roux, E. J. Phys. Chem. 1992, 96, 7266-7272.
- 19. Ho, W.; Barat, R. B.; Bozzelli, J. W. Combustion and Flame 1992, 88, 265-295.
- 20. Seakins, P. W.; Pilling, M. J.; Niiranen, J. T.; Gutman, D.; Krasnoperov, L. N. *J. Phys. Chem.* 1992, 96, 9847-9855.
- 21. Taylor, P. H.; Dellinger, B.; Tirey, D. A. Int. J. Chem. Kinet. 1991, 23, 1051-1074.
- 22. Nicovich, J. M.; Van Dijk, C. A.; Kreutter, K.D.; Wine, P. H. J. Phys. Chem. 1991, 95, 9890-9896.
- 23. Miyokawa, K.; Tschuikow-Roux, E. J. Phys. Chem. 1990, 94, 715-717.
- 24. Kafafi, S. A.; Hudgens, J. W. J. Phys. Chem. 1989, 93, 3474-3479.
- 25. Russell, J. J.; Seetula, J. A.; Gutman, D. J. Am. Chem. Soc. 1988, 110, 3092-3099.
- 26. Tschuikow-Roux, E.; Paddison, S. Int. J. Chem. Kinet. 1987, 19, 15-24.
- 27. Pedley, J. B.; Naylor, R. O.; Kirby, S. P. *Thermodynamic Data of Organic Compounds*; 2nd ed. Chapman and Hall: London, 1986.
- 28. Orlov, Y. D.; Lebedev, Y. A.; Korsunskii, B. L. Institute of Chemical Physics, Academy of Sciences of the USSR, Moscow. Kalinin State University. Translated from *Izvestiya Akademii Nauk SSSR*, *Seriya Khimicheskaya*, 1984(July), 7, 1550-1555.
- 29. McMillen, D. F.; Golden, D. M. Annu. Rev. Phys. Chem. 1982, 33, 493-532.
- 30. DeFrees, D. J.; McIver, Jr., R. T.; Hehre, W. J. J. Am. Chem. Soc. 1980, 102, 3334.
- 31. Chao, J.; Rodgers, A. S.; Wilhoit, R. C.; Zwolinski, B. J. J. Phys. Chem. Ref. Data 1974, 3, 141.
- 32. Chen, S. S.; Rodgers, A. S.; Chao, J.; Wilhoit, R. C.; Zwolinski, B. J. J. Phys. Chem. Ref. Data 1975, 4(2), 441-456.
- 33. Lide, D. R. (Ed.) CRC Handbook of Chemistry and Physics (1913-1995); 75th ed. CRC Press: Boca Raton, FL, 1994, pp 5-9.

- 34. Burcat, A.; McBride, B. 1994 Ideal Gas Thermodynic Data for Combustion and Air-Pollution Use; Israel Institute of Technology: Haifa, 1993.
- 35. Born, M.; Ingemann, S.; Nibbering, N. M. M. J. Am. Chem. Soc. 1994, 116, 7210.
- 36. (a) Cohen, N.; Benson, S. W. *Chem. Rev.* 1993, 93, 2419. (b) Cohen, N. *J. Phys. Chem. Ref. Data* 1996, 25(6), 1411.
- 37. Kohn, D. W.; Robles, E. S. J.; Logan, C. F.; Chen, P. J. Phys. Chem. 1993, 97, 4936.
- 38. Cohen, N. J. Phys. Chem. 1992, 96, 9052.
- 39. Hudgens, J. W.; Johnson, R. D.; Timonen, R. S.; Seetula, J. A.; Gutman, D. *J. Phys. Chem.* 1991, 95, 4400.
- 40. Grev, R. S.; Janssen, C. L.; Schaefer, H. F. J. Chem. Phys. 1991, 95, 5128.
- 41. Paulino, J. A.; Squires, R. R. J. Am. Chem. Soc. 1991, 113, 5773.
- 42. Thermodynamic data base of ideal gas; Sandia National Laboratory: 1990.
- 43. Chen, Y.; Rauk, A.; Tschuikow-Roux, E. J. Chem. Phys. 1990, 93, 1187.
- 44. Cox, J. D.; Wagman, D. D.; Medvedev, V. A. (Eds.) *CODATA Key Values for Thermodynamics*; Hemisphere Publishing Corp.: New York, 1989.
- 45. Atkinson, R.; Baulch, D. L.; Cox, R. A.; Hampson, Jr., R. F.; Kerr, J. A.; Troe, J. J. Phys. Chem. Ref. Data (Suppl. III), 1989, 18, 881.
- 46. Tschuikow-Roux, E.; Chen, Y. J. Am. Chem. Soc. 1989, 111, 9030.
- 47. Lias, S. G.; Bartmess, J. E.; Liebman, J. F.; Holmes, J. L.; Levin, R. D.; Mallard, W. G. J. Phys. Chem. Ref. Data (Suppl. I), 1988, 17.
- 48. Holmes, J. L.; Lossing, F. P. J. Am. Chem. Soc. 1988, 110, 7343.
- 49. Tsang, W. J. Phys. Chem. Ref. Data 1986, 15, 1087.
- 50. Tsang, W, "Single Pulse Shock Tube Study on the stability of Perfluorobromomethane" to be published.
- 51. Chase, Jr., M. W.; Davis, C.A.; Downey, Jr., J. R.; Frurip, D. J.; McDonald, R.A.; Syverud, A. N. J. Phys. Chem. Ref. Data (Suppl.), 1985, 14.
- 52. Lias, S. G.; Karpas, Z.; Liebman, J. F. J. Am. Chem. Soc. 1985, 107, 6089.

- 53. Leopold, D. G.; Murray, K. K.; Miller, A. E. S.; Lineberger, W. C. J. Chem. Phys. 1985, 83, 4849.
- 54. Weissman, M.; Benson, S. W. J. Phys. Chem., 1983, 87, 243.
- 55. Kolesov, V. P.; Papina, T. S. Russ. Chem. Rev. 1983, 52, 425, and references cited therein.
- 56. Heneghan, S. P.; Knoot, P. A.; Benson, S. W. Int. J. Chem. Kinet. 1981, 13, 677.
- 57. Weissman, M.; Benson, S. W. Int. J. Chem. Kinet. 1980, 12, 403.
- 58. Rossi, M.; Golden, D. M. J. Am. Chem. Soc., 1979, 101, 1230.
- 59. Lengel, R. K.; Zare, R.N. J. Am. Chem. Soc. 1978, 100, 7495.
- 60. Rodgers, A. S. ACS Symp. Ser. 1978, 66, 296.
- 61. Papina, T. S.; Kolesov, V. P. Vestn. Mosk. Univ. Ser. 2 Khim. 1978, 19, 500.
- 62. Rodgers, A. S.; Chao, J.; Wilhoit, R. C.; Zwolinski, B. J. J. Phys. Chem. Ref. Data 1974, 3, 117.
- 63. Mendenhall, G. D.; Golden, D. M.; Benson, S. W. J. Phys. Chem. 1973, 77, 2707.
- 64. Chao, J.; Wilhoit, R. C.; Zwolinski, B. J. J. Phys. Chem. Ref. Data 1973, 2, 427.
- 65. Chao, J.; Rodgers, A. S.; Wilhoit, R. C.; Zwolinski, B. J. *Ideal Gas Chemical Thermodynamic Properties of the Six Chloroethanes with Symmetric Top*; NBS: Washington, DC, 1972.
- 66. Mansson, M.; Ringner, B.; Sunner, S. J. Chem. Thermodyn. 1971, 3, 547.
- 67. Fletcher, R. A.; Pilcher, G. Trans. Faraday Society. 1971, 67, 3191.
- 68. Benson, S. W.; O'neal, H. E. Kinetic Data on Gas Phase, Unimolecular Reactions; U.S. Government Printing Office: Washington, D.C., 1970.
- 69. Stull, D. R.; Westrum, Jr., E.F.; Sinke, G. C. The Chemical Thermodynamics of Organic Compounds; John Wiley & Sons Inc: NY, 1969.
- 70. Herzberg, G.; Jones, J. W. Astrophys. J. 1969, 158, 399.
- 71. Dibeler, V. H.; Krauss, M.; Reese, R. M.; Harllee, F. N. J. Chem. Phys. 1965, 42, 3791

- 72. Ritter, E. R.; Bozzelli, J. W. Chemical & Physical Processes in Combustion 1993, 103, 459.
- (a) Ho, W.; Yu, Q. R.; Bozzelli, J. W. Combust. Sci. Technol. 1992, 85, 23. (b) Ho, W.; Bozzelli, J. W. 24th Symp. (Int.) Combust., Combust. Inst. 1992, 743. (c) Wang, H.; Hahn, T. O.; Sung, C. J.; Law, C. K. Combust. Flame 1996, 105, 291. (d) Yang, G.; Kennedy, I. A. Combust. Flame 1993, 92, 187.
- 74. Westbrook, C. K. 19th Symp. (Int.) Combust. Combust. Inst. 1982, 126.
- 75. Karra, D.; Senkan, S. M. Combust. Sci. Technol. 1987, 54, 333.
- 76. Chang, W. D.; Kara, S. D.; Senkan, S. M. Combust. Sci. Technol. 1986, 49, 107.

PART III

THERMOCHEMICAL AND KINETIC ANALYSIS ON $CH_3CjO + O_2$ REACTION

ABSTRACT FOR PART THREE

Reaction pathways and kinetics are analyzed on CH₃CjO + O₂ reaction system using density functional and ab initio calculations to determine thermodynamic properties of reactants, intermediate radicals, and transition state (TS) structures. Enthalpies of formation ($\Delta H_f^{\circ}_{298}$) are determined using the CBSQ composite method and also by density functional calculations with isodesmic reactions for radical species. Entropies (S°₂₉₈) and heat capacities (Cp°(T) 300 –1500 K) are determined using geometric parameters and vibrational frequencies obtained at the HF/6-31G(d') level of theory. Ouantum Rice-Ramsperger-Kassel (QRRK) analysis is used to calculate energy dependent rate constants, k(E). The acetyl radical CH₃CjO adds to O₂ to form a CCOQj peroxy radical ($\Delta H_f^{\circ}_{298} = -38.75$ kcal/mole in CBSQ). The peroxy radical can undergo dissociation back to reactants, decompose to products, CH₂CO + HO₂ via HO₂ elimination (Ea,rxn = 28.01 kcal/mole in CBSQ) or isomerize via hydrogen shift (Ea,rxn = 26.93 kcal/mole in CBSQ) to form a CjCOQ isomer ($\Delta H_f^{\circ}_{298}$ = -32.35 kcal/mole in CBSO). This isomer CiCOQ can undergo β-scission to products, CH₂CO + HO₂ (Ea,rxn = 31.53 kcal/mole in CBSQ) or decompose to CyCOC=O + OH via OH elimination (Ea,rxn = 23.08 kcal/mole in CBSQ). Rate constants are estimated as function of pressure and temperature using QRRK analysis for k(E) and modified strong collision analysis for fall-off. Important reactions are stabilization of CCOQj peroxy adduct at low temperature and CH2CO + HO2 and oxirane aldehyde +

OH at high temperature. Rate constants at 1atm pressure are (k=A(T/K)^nexp(-Ea/RT), A in cm³/(mole-s), Ea in kcal/mole): k_1 =(6.93×10⁴³)(T/K)^{-10.29} e^{-8.28/RT} for CH₃CjO + O₂ => CCOQj ; k_6 =(3.65×10¹⁸)(T/K)^{-1.78} e^{-6.29/RT} for CH₃CjO + O₂ => CH₂CO + HO₂ ; k_7 =(2.09×10²⁷)(T/K)^{-4.45} e^{-13.44/RT} for CH₃CjO + O₂ => CyCOC=O + OH ; k_8 =(8.42×10⁴⁰)(T/K)^{-9.17} e^{-12.47/RT} for CH₃CjO + O₂ => CjCOQ

CHAPTER 2

INTRODUCTION FOR PART THREE

Important initial products from pyrolysis, oxidation, or photochemical reactions of saturated and unsaturated hydrocarbons are the corresponding radicals. The subsequent reactions of the hydrocarbon radicals with molecular oxygen are complex and difficult to study experimentally and present a source of controversy with regard to both pathway and reactions rates. These reactions, furthermore, represent the principal pathways of the radical conversion in many hydrocarbon oxidation and combustion processes^{1, 2} and also in atmosphere.

The currently accepted OH radical chain mechanism for oxidation of volatile organic compounds (VOC) during night-time conditions requires a source of RC•O radicals to form RCO₃ or RO₂ radicals.^{3,4} The formation / pathways and kinetics of RC•O radical formation is not fully understood. Atmospheric researchers are active in areas of both experimental and modeling studies relating to these kinetic processes. Areas of focus are primarily those relative to secondary pathways, specifically the reactions of O₂ and NO with radicals formed in the primary OH abstraction or addition steps. The rate and extent of formation of secondary pollutants and photochemical oxidant, including ozone, are largely determined by these reactions. The product distributions in the photo-oxidation of VOCs under simulated troposphere conditions can be influenced by the varied reaction rates and channels (pathways) of RC•O radical interaction with oxygen.

RC•O radicals can be produced from emitted organic precursor specie such as CH₃CHO, in several ways, by reactions with OH, or NO₃ radicals or by photolysis. CH₃CHO is of particular interest in atmospheric chemistry since it is formed as a product of the reaction of O₃ and / or OH radicals with naturally occurring, nonmethane hydrocarbons, especially higher olefins such as isoprene and terpene. The photo-oxidation of hydrocarbons in photochemical smog also produces acetaldehyde as a major intermediate product. Acetylperoxy radicals CCOQi(often represented as CH₃CO•₃) are formed as a result of CH₃CjO radical reaction with O₂ in the photooxidation of higher carbonyl compounds (acetaldehyde, acetone, methylvinylketone, methylglyoxal, etc..) play an important role in atmospheric photo-oxidation processes. In the polluted atmosphere they react with NOx and in the clean troposphere with other peroxy radicals. Acetylperoxy radicals are the precursor of peroxyacetylnitrate (PAN) an important constituent of photochemical smog and an air pollutant having important physiological effects. PAN is formed by combination with NO₂:

$$CH_3CO \bullet_3 + NO_2 + M \rightarrow CH_3CO \bullet_3 NO_2 + M$$

Because of its thermal stability at lower temperatures and its photochemical inertness under tropospheric conditions, PAN can act as a temporary reservoir for NOx and serve as a carrier for transport in colder regions of the troposphere.

Peroxy radicals (ROO•), particularly CH₃CO•₃, are important intermediates in the oxidation of organic compounds in the troposphere^{3, 4}. Their loss processes are one of the major factors influencing chain length in forming of ozone. Their reactions with NO are primarily chain propagating reactions resulting in the formation of NO₂,

which, on photolysis, yields O₃ NO₂, HO₂ and other peroxy radicals are, in contrast, mainly chain terminating. Hydro and alkyl - peroxy radicals are important in remote continental and marine atmospheres; they undergo reactions resulting in aldehydes, alcohols, organic acids, and hydroperoxides. There exists a need to establish structure-reactivity relationships for the different classes of radicals, due to different major reaction paths of the variety of peroxy radicals formed from VOCs and their oxidized derivatives. These relationships will allow estimation of kinetic pathways and rate constants, without required experimental data on each reactions of each molecule in a series.

Several studies have illustrated that the reactions of ethyl⁵⁻¹⁰ and isopropyl¹¹ radicals at pressures from 1 to 6000 torr and temperatures from 300 to 900 K, exhibit significant negative temperature dependence (NTD) and complex fall-off with pressure. The ethyl reaction is the best characterized and is shown to produce C₂H₄+ HO₂. The rate of ethyl radical loss decreases significantly with temperature⁵ and increases with pressure; this is explained by invoking reversible formation of a weakly bound adduct. The adduct, C₂H₅OO• is readily stabilized at low temperatures and atmospheric pressure; but dissociates back to reactants at higher temperatures. This rapid dissociation of the adduct is the origin of the observed NTD regime in hydrocarbon oxidation.

Analysis of the $C_2H_5+O_2$ reaction system^{12, 13} invokes formation of a chemically activated adduct, which can be stabilized or, before stabilization, can dissociate back to $C_2H_5+O_2$, react through a cyclic five-member ring intermediate to form a primary hydroperoxy alkyl radical, which can be stabilized or undergo elimination to C_2H_4+

HO₂. The ethyl peroxy C₂H₅OO can also react directly via HO₂ elimination to C₂H₄+ HO₂. The formation of epoxide + OH in this system is limited by a lower Arrhenius A factors due to the isomerization and epoxide formation transition states combined with a low Ea for direct HO₂ elimination. The results of modeling studies for loss of ethyl and production of ethylene show good agreement with experimental data ^{8,9}. Important conclusions from the modeling indicate that well depth is often critical to the further reaction to new products. A deeper well provides more energy in the initially formed chemically activated adduct for forward reaction, before stabilization can occur. Isomerization, HO₂ elimination and epoxide + OH reaction A factors are much lower than that for dissociation of the complex to reactants, but the isomerization barrier height is often lower. At higher temperatures increased isomerization relative to stabilization of the activated complex leads to higher C₂H₄ + HO₂ formation rates in these systems. Similar results are reported on analysis of reactions of allyl, vinyl and formyl radicals reaction with oxygen. 14,15 There is however very little information on the important reaction of CH₃CjO radicals with O_2^{16} . The oxidation process involves formation of chemically activated peroxyacetyl radical, CH₃CO•₃, which, similar to the ethyl peroxy system. The adduct can dissociate back to reactants, undergo reaction to new products or be collisionally stabilized.

Acetaldehyde and the corresponding radical species that result via loss of hydrogen atoms from the two different carbon sites in CH₃CHO are also common products (intermediates) from oxidation processes of higher molecular weight hydrocarbon species in both combustion and in atmospheric photochemistry. The acetaldehyde and

its two radicals are also produced by molecular weight growth from C_1 carbon combustion and mild oxidation processes where the slow reaction of methyl radical with O_2 to $CH_3O + O$ or $CH_2O + OH$. The slow conversion of $CH_3OO \bullet$ (methyl peroxy radical) to products, results in an equilibrium between $CH_3 + O_2$ and $CH_3OO \bullet$ where entropy favors the reactants at higher temperatures. As a result methyl radicals often buildup in the radical pool until combination occurs forming ethane and ethyl + H. Acetaldehyde is one of the important oxidation products of ethane and ethylene. Acetaldehyde and acetyl radicals are important intermediates in the overall breakdown processes of higher molecular weight and C_1 hydrocarbons to CH_2O , CO, CO_2 and H_2O . The radical reactions with oxygen also serve as model reactions for larger aldehydic molecule systems.

This study focuses on reaction mechanism of acetyl radical association with O₂. Thermodynamic properties are estimated for reactants, intermediate, products and transition states along the reaction pathway. The thermodynamic parameters are used to calculate high-pressure limit rate constants using canonical Transition State Theory. Rate constants as a function of temperature and pressure are estimated using a multi frequency Quantum RRK analysis with modified strong collision analysis of Gilbert et. al¹⁷⁻¹⁹ for fall off. The data at relevant pressures and temperatures should be useful to both atmospheric and combustion modelers.

$$CH_3CjO + O_2 + M \longrightarrow CCOQj + M$$
(1)

One absolute measurement of k_1 has been reported in the literature. McDade et al.³⁶ determined $k_1 = (1.2 \pm 0.2) * 10^{12}$ cm³/(mole-s) in 1-4 torr total pressure of He at 298K. The high-pressure limiting value of $k_1 = (3.01 \pm 1.5) * 10^{12}$ cm³/(mole-s)

recommended by the IUPAC panel is based on the absolute measurements of McDade et al. The pressure dependence of the $C_2H_5 + O_2$ reaction. The results from two studies, one of the relative reactivity of CH_3CjO with O_2 and Cl_2^{38} , the other of the rate constant for the reaction of CH_3CjO with Cl_2^{39} , have been combined to give a high-pressure limiting rate constant of $k_1 = (1.9 \pm 0.4) * 10^{12}$ cm³/(mole-s) at room temperature.

Recently, Sehested et al.³⁵ report on $k_1 = (2.65 \pm 0.4) * 10^{12}$ cm³/(mole-s) at 295K and 1000 mbar total pressure of SF₆.

Tyndall et al.⁴⁰ studied the reaction of OH radical with methyl glyoxal and acetaldehyde in a low pressure (c.a. 3 torr) flow reactor at temperatures from 260 to 333 K. They report rate constants for OH abstractions from the parent molecules and also report data on further reactions of the radicals formed from the abstractions by OH. They infer that only the acetyl radical is formed and further reaction of acetyl radical with O₂ leads to noticeable regeneration of OH; from observations showing reduced loss of the OH versus time. Some chamber experiments with FTIR monitoring showed no evidence of OH radical production.

Absolute rate constants of Fluorine atom reaction with acetaldehyde were studied by Sehested and coworkers³⁵ using pulse radiolysis combined with transient ultraviolet absorption. They report production of two radicals - formyl methyl at 35% and acetyl at 65% (both \pm 9%). We note that for reactions where chlorine atom is abstracting hydrogen atoms. Chlorine atoms usually have similiar A factors and similar or lower Ea's when the reactions are exothermic which they are in all cases in this study. In the case of acetaldehyde, for example, k_{298} for Cl atom abstraction is reported as $4.58 \times$

10¹³[41] at 298K, while abstraction by F atom is 5.00 x 10¹³[42]. The H--Cl bond is 103 kcal/mole, while the carbonyl C--H and methyl C--H bonds on acetaldehyde are 88 and 94 kcal/mole respectively. Chlorine should, therefore, readily abstract from both hydrogen sites of acetaldehyde.

Michael et al.⁴³ studied the reaction of OH with acetaldehyde in a low pressure discharge flow reactor with resonance fluorescence monitoring. He also studied the reaction of radical(s) generated via the OH reaction with O_2 . The total reaction rate constant for OH with acetaldehyde was $A = 3.3 \times 10^{12}$, with a small negative energy of activation of 610 cal/mole. Michael et al. report near complete regeneration of OH radical in the OH + acetaldehyde experiments when O_2 was present to further react with the indicated acetyl radical formed. In separate studies with Cl atom reacting with acetaldehyde, they observed production of OH radical on further radical reaction(s) with O_2 . They considered and rejected possible formation of formyl methyl radicals based on work of Gutman's research group and an assumed bond energy of the H--C bond on the methyl group of 98 kcal/mole.

Slagle and Gutman⁴⁴ studied formation of acetyl radical from acetaldehyde in reaction of Cl atoms from 1082 cm⁻¹ IR multiphoton decomposition of CF₂Cl₂ of C₆F₅Cl. They monitored the radical profiles with photoionization mass spectrometry. Verification of CH₃CjO radical versus formyl methyl was by use of deuterated acetaldehyde, CH₃CHO. They observed CH₃CjO and could not detect CjCHO; but did not estimate lower limits of its detection.

Reaction kinetics of acetylperoxy radicals with nitric oxide and nitrogen dioxide were studies by Marica and Szente³⁹, where the peroxy radicals were generated via

reaction of acetyl radical with O₂. Acetyl radicals were generated by reaction of acetaldehyde with Cl atoms and Cl atoms were produced by 351 nm eximer laser pulses ca 300 mJ/pulse. Maricq and Szente provide data on nitric oxide plus acetyl and methyl peroxy radical decay and NO₂ formation versus time for modeling comparisons.

Formyl methyl radicals, the other possible radical that may be formed by abstraction of H atoms from acetaldehyde, were generated by photodissociations of methyl-vinyl ether by Zhu and Johnston⁴⁵. CH_3 -O- C_2H_3 + hv \Longrightarrow CH_3 + C_2H_3O . Here the vinoxy radical undergoes rapid electron rearrangement to the lower energy form (ca 18 kcal/mole loser in energy) formyl methyl radical. Kinetic studies on this formyl methyl radical with O_2 show slower reaction, $k_2 = 1.2 \times 10^{11}$ cm³/mole-sec, than rate constants reported for acetyl radical $k_1 = 1 \times 10^{12}$ cm³/mole-sec. They suggest that if formyl methyl radicals are produced in reactions of Cl atoms or OH with acetaldehyde, they will react about one tenth as fast with O_2 , probably leading to small or no corrections to the faster acetyl + O_2 reactions.

Photo dissociation of PAN, (PeroxyAcetylNitrate) was used by Villalta and Howard¹¹ to generate acetylperoxy radicals for study of reaction kinetics with nitric oxide. Rate constants determined by this method agreed well with other reported values. This agreement of kinetic data where acetylperoxy radicals are generated by a very different and positive mechanism supports the assumption of Maricq and Szente⁴³, Sehested et al.³⁵, Tyndall et al.⁴⁰, Michael et al.⁴³, and Slagle and Gutman⁴⁴, that primarily acetyl radicals are generated by reaction with OH, or Cl atoms.

CHAPTER 3

CALCULATION METHOD FOR PART THREE

3.1 Determination of Enthalpies of Formation

Enthalpies of formation (ΔH_f°₂₉₈) for reactants, intermediate radicals, transition states and products are calculated using CBS-Q composite method and density functionals. The initial structure of each compound or transition state is determined using ROHF or UHF/PM3 in MOPAC²⁰, followed by optimization and vibrational frequency calculation at HF/6-31G(d') level of theory using GAUSSIAN 94²¹. Transition State (TS) geometries are identified by the existence of only one imaginary frequency, structure information and the TST reaction coordinate vibration information. Zeropoint vibrational energies (ZPVE), vibrational frequencies and thermal contributions to enthalpy from harmonic frequencies are scaled by 0.91844 as recommended by Petersson et. al²². Single point energy calculation are carried out at the B3LYP/6-31G(d'). The complete basis set (CBS-Q) method of Petersson and coworkers for computing accurate energies²³⁻²⁵ are chosen as our primary for determining enthalpies.

The CBS-Q calculation sequence is performed on the MP2/6-31G(d') geometry and followed by single point calculations at the theory level of QCISD(T)/6-31+G(d'), MP4(SDQ)/CbsB4 and MP2/CBSB3 CBSExtrap=(Nmin=10,Pop).

The isodesmic reactions are used to determine the heat of formation ($\Delta H_f^{\circ}_{298}$) for intermediate radicals. For estimation of CH₃C(=O)OOH [defined CCOQ, Q=OOH (hydroperoxy group)]

 $CH_3C(=0)OOH + CH_3CH_2OH \le CH_3C(=0)OH + CH_3CH_2OOH \dots (1)$

For estimation of $C \bullet H_2C(=O)OOH$ [defined CjCOQ, j : radical site]

 $CH_3C(=O)OOH + CH_3C \bullet H_2 <==> C \bullet H_2C(=O)OOH + CH_3CH_3(2)$

For estimation of CH₃C(=O)OO• [defined CCOQj, Qj : -OO•]

 $CH_3C(=O)OOH + CH_3OO \bullet <==> CH_3C(=O)OO \bullet + CH_3OOH(3)$

The method of isodesmic reactions relies upon the similarity of bonding environment in the reactants and products that leads to cancellation of systematic errors in the *ab initio* MO calculations. ²⁶ The basic requirement of the isodesmic reaction is that the number of bonds of each formal chemical bond type is conserved in the reaction. In reaction (1), *ab initio* calculations with ZPVE and thermal correction are performed for all of four compounds. Since $\Delta H_{\rm f}{}^{\circ}_{298}$ of three compounds excepting CCOQ have been experimentally or theoretically calculated, the unknown $\Delta H_{\rm f}{}^{\circ}_{298}$ of CCOQ is obtained. The remaining two radicals are calculated in the same manner.

The $\Delta H_{f^{\circ}298}$ of transition state compounds are estimated by evaluation of $\Delta H_{f^{\circ}298}$ of the stable radical adducts plus difference of total energies with ZPVE and thermal correction between these radical species and the transition state (TS).

TCCOQjS: A peroxy radical CCOQj isomerize to form a CjCOQ isomer via hydrogen shift.

TCCOXQE: A peroxy radical CCOQj decompose to products, CH₂CO + HO₂ via HO₂ elimination.

TCjCOXQ : A CjCOQ isomer undergo β-scission to products, CH₂CO + HO₂

TYCOCDOXOH : A CjCOQ isomer decompose to products, CyCOC=O + OH via

OH elimination.

3.2 Determination of Entropy and Heat Capacity

The contributions of external rotation and vibrations to entropies and heat capacities are calculated from scaled vibration frequencies and moments of inertia for the optimized HF/6-31G(d') structures. Contributions from frequencies corresponding to hindered internal rotation are replaced with contributions calculated from the method of Pitzer and Gwinn²⁷ for S and Cp(T). Number of optical isomers and spin degeneracy of unpaired electrons are also incorporated.

3.3 High-Pressure Limit A Factors (A_{∞}) and Rate Constants (k_{∞}) Determination For the reactions where thermodynamic properties of TS are calculated by *ab initio* or density functional methods, $k_{\infty}s$ are fit by three parameters A_{∞} , n, and E_a over temperature range from 298 to 2000K, $k_{\infty} = A_{\infty}(T)^n \exp(-E_a/RT)$ Entropy differences between reactant and TS are used to determine the pre-exponential factor, A, via conventional transition state theory (TST) for unimolecular and bimolecular reactions $A = (k_b T/h_p) \exp(\Delta S^{\sharp}/R)$ and $A = (ek_b T/h_p) \exp(\Delta S^{\sharp}/R)$, respectively. h_p is Plank's constant and k_b is the Boltzman constant.

3.4 Kinetic Analysis

Once the potential energy surface and thermochemical properties are evaluated, forward or reverse rate for each, elementary reaction step are determined, Multi-frequency Quantum Rice-Ramsperger-Kassel (QRRK) analysis is then used for k(E) and modified strong collision analysis of Gilbert et. al¹⁷⁻¹⁹ used for fall-off; to obtain rate constants as a function of temperature and pressure. Reactions which incur a change in number of moles, such as unimolecular dissociation, have energy of activation calculated as delta Urxn plus an Ea for the reverse addition, where U is internal energy.

A modified QRRK analysis we use in this srudy is described by Zhong and Bozzelli. It is shown to yield reasonable results and provides a framework by which the effects of temperature and pressure can be evaluated in complex reaction systems. The current version of the QRRK computer code utilizes a reduced set of vibration frequencies which accurately reproduce the molecule (adduct) heat capacity data, with inclusion of one external rotation to calculate density of states $\rho(E)$. Comparisons of ratios of these $\rho(E)/Q$ (partition function Q) with direct count $\rho(E)/Q$ are shown to be in good agreement. Nonlinear Arrhenius effects resulting from changes in the thermodynamic properties of the respective TST's relative to the adduct with temperature are incorporated using a two parameter Arrhenius preexponential factor (A, n) in AT^n .

CHAPTER 4

RESULT AND DISCUSSION FOR PART THREE

4.1 Geometries of Two Intermediate Radicals and Transition States

Figure 3.1 to 3.5 show MP2/6-31G(d') determined geometries of CCOQi, CjCOQ, TCCOQIS, TCCOXQE and TYCOCDOXOH respectively. [names are defined in section 3.1] Figure 3.1 and Figure 3.2 show the optimized geometries of two intermediate radicals, CCOQi and CjCOQ, respectively. Figure 3.3 shows TCCOQiS structure for isomerization (H shift) reaction. The H₆ atom is in a bridge structure shifting from C_1 to radical site O_5 . The leaving bond length H_6 - C_1 is calculated as 1.27Å with MP2/6-31G(d') determined geometry; where the H-C bond length in CCOOi is calculated as 1.09Å. The forming bond length H₆-O₅ is calculated as 1.25Å. All bond lengths are from MP2/6-31G(d') determined geometries. The normal bond length H-O in CjCOQ is calculated as 0.97Å. Figure 3.4 shows TCCOXQE structure, HO₂ elimination of CCOQj --> CH₂CO + HO₂. The leaving bond length of C₁-H₈ is calculated as 1.23Å and the C-H bond length in CCOQ_j is calculated as 1.09Å. The leaving bond length of C2-O6 is calculated as 2.02Å and the C-O bond length in CjCOQ is calculated as 1.38Å. The leaving O₆-O₇ bond length is calculated as 1.28Å and the O-O bond length in CjCOQ is calculated as 1.46Å. Again all bond lengths are from MP2/6-31G(d') determined geometries.

Figure 3.5 shows TYCOCDOXOH structure, OH elimination of CjCOQ --> CyCOC=O+OH. The leaving bond length O_4-O_7 is calculated as 1.84Å and the O-O

CCOQj [Qj = OO. (peroxy), j : radical site]

 $CH_3C=O(OO.)$

Geometry optimization at the MP2/6-31G(d') level of theory.

	Bond Length (Å)		Bond Angle (deg)	Dihedral Angle (deg)
C2-C1 O3-C2 O4-O3 O5-O2 H6-C1 H7-C1 H8-C1	1.50 1.44 1.31 1.19 1.09 1.09	O3-C2-C1 O4-O3-O2 O5-C2-C1 H6-C1-C2 H7-C1-C2 H8-C1-C2	115.7 113.2 129.0 107.2 110.7 110.7	O4-O3-O2-C1 0.0 O5-C2-C1-O3 -180.0 H6-C1-C2-O3 -180.0 H7-C1-C2-O3 59.5 H8-C1-C2-O3 -59.5

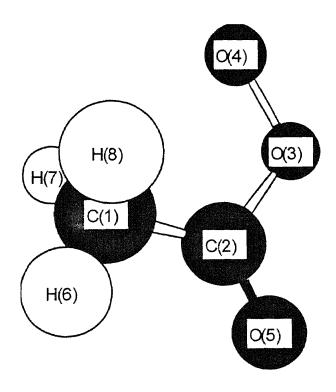


Figure 3.1 Structure for CCOQj

CjCOQ [Q = OOH (hydroperoxy group), j: radical site]

$C.H_2C=O(OOH)$

Geometry optimization at the MP2/6-31G(d') level of theory.

	Bond Length (Å)		Bond Angle (deg)	I	Dihedral Angle (deg)
C2-C1 O3-C2	1.48 1.38	O3-C2-C1	118.0		
04-03	1.46	O4-O3-O2	111.8	O4-O3-O2-C1	1.4
O5-O2 H6-C1	1.19 1.08	O5-C2-C1 H6-C1-C2	125.4 123.6	O5-C2-C1-O3 H6-C1-C2-O3	-179.2 2.5
H7-C1 H8-C4	1.08 0.97	H7-C1-C2 H8-O4-O3	115.1 98.2	H7-C1-C2-O3 H8-O4-O3-C2	-179.1 141.4

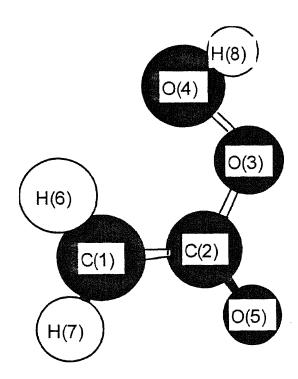


Figure 3.2 Structure for CjCOQ

TCCOQjS

CH₃C=O(OO.) \rightarrow [TCCOQjS]* \rightarrow C.H₂C=O(OOH) < H Shift Isomerization > Geometry optimization at the MP2/6-31G(d') level of theory.

L	ond ength Å)	Bond Angl (deg)	e	Dihedral Angle (deg)
O3-C2 1. O4-C2 1. O5-O4 1 H6-O5 1	.38 O4- .42 O5- .25 O6-	-C2-C1 128.6 -C2-C1 108.8 -O4-C2 108.2 -O5-O4 98.2 -C1-C2 114.	O4-C2-C1-O3 O5-O4-C2-C1 O6-O5-O4-C2	0.0 0.0

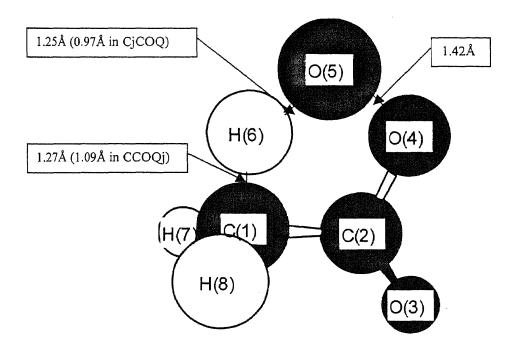


Figure 3.3 Structure for TCCOQjS

TCCOXQE

 $CH_3C=O(OO.)$ \rightarrow $[TCCOXQE]^\# \rightarrow CH_2=C=O+HO_2 < HO_2$ Elimination >

Geometry optimization at the MP2/6-31G(d') level of theory.

	Bond Length (Å)		Bond Angle (deg)		Dihedral Angle (deg)
C2-C1 H3-C1 H4-C1 O5-C2 O6-O2 O7-O6 H8-C1	1.42 1.09 1.09 1.17 2.02 1.28 1.23	H3-C1-C2 H4-C1-C2 O5-C2-C1 O6-C2-C1 O7-O6-C2 H8-C1-C2	110.6 112.3 157.6 95.3 105.8 99.3	H4-C1-C2-H3 O5-C2-C1-H3 O6-C2-C1-H3 O7-O6-C2-C1 H8-C1-C2-H3	99.8 9.4

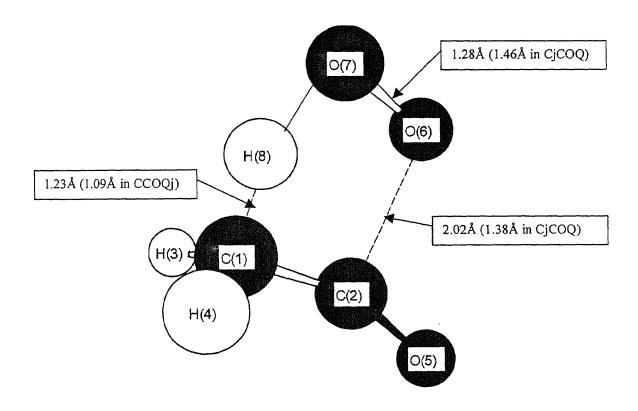


Figure 3.4 Structure for TCCOXQE

TYCOCDOXOH

C.H₂C=O(OOH) \rightarrow [TYCOCDOXOH][#] \rightarrow CyCOC=O + OH < OH Elimination > Geometry optimization at the MP2/6-31G(d') level of theory.

	Bond Length (Å)		Bond Angle (deg)	Dihedral Angle (deg)
C2-O1	1.21			
C3-C2	1.47	C3-C2-O1	138.9	
O4-C2	1.31	O4-C2-O1	132.3	O4-C2-O1-C3 -180.0
H5-C3	1.08	H5-C3-C2	120.2	H5-C3-C2-O1 93.8
H6-C3	1.08	H6-C3-C2	120.2	H6-C3-C2-O1 -93.8
07-04	1.84	O7-O4-C2	109.1	O7-O4-C2-O1 0.0
H8-O7	0.98	H8-O7-O4	93.7	H8-O7-O4-C2 0.0

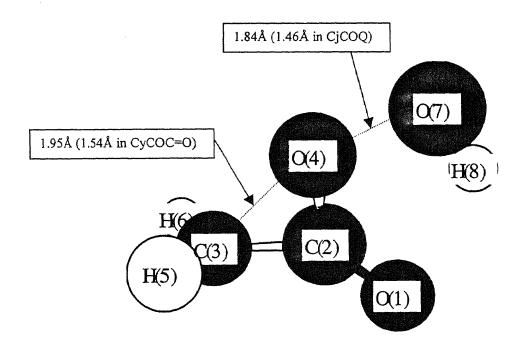


Figure 3.5 Structure for TYCOCDOXOH

bond length in CjCOQ is calculated as 1.46Å. The forming C_3 - O_4 bond is calculated as 1.95Å and the C-O bond length in CyCOC=O is calculated as 1.54Å.

4.2 Estimation of Entropy (S°₍₂₉₈₎) and Heat Capacity (Cp(T)'s, 300 - 1500K)

S°₍₂₉₈₎ and Cp(T)'s are calculated based on vibration frequencies and moments of inertia of the optimized HF/6-31G(d') structures. (Table 3.1 and Table 3.2)

The calculation results using MP2/6-31G(d') determined geometries and HF/6-31G(d') determined frequencies are summarized in Table 3.3. TVR represents the sum of the contributions from translations, vibrations and external rotations for S°₍₂₉₈₎ and Cp(T)'s. Symmetry, optical isomer and electronic spin are incorporated in estimation of S°₍₂₉₈₎ as described in Table 3.3. Contributions of internal rotation for S°₍₂₉₈₎ and Cp(T)'s are calculated based on rotational barrier heights, moments of inertia of the rotors using the method of Pitzer and Gwinn's²⁶. (Table 3.4)

4.3 Estimation of Enthalpy of Formation (ΔH_f°₂₉₈) using Total Energies and Isodesmic Reactions

The overall energy diagram for the $CH_3CjO + O_2$ reaction system is illustrated in Figure 3.6.

CBSQ calculations are performed on the MP2/6-31G(d') determined geometries and HF/6-31G(d') determined frequencies. Density functionals are performed on the B3LYP/6-31G(d) determined geometries and frequencies.

Isodesmic reactions are applied to accurately estimate $\Delta H_{f^{\circ}298}$ of CCOQ and two intermediate radicals, CjCOQ and CCOQj. Zero point Vibration energies (ZPVE's) and thermal corrections to 298.15 K are taken into account. The total energies at 0 K

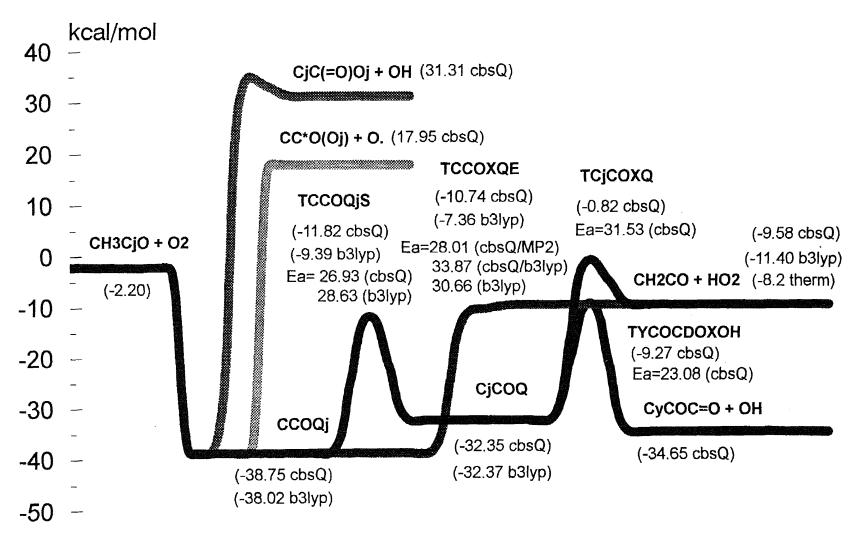


Figure 3.6 Potential Energy Diagram CH₃CjO + O₂ [Q=OOH, Qj=OO., j=radical site]

Table 3.1 Vibrational Frequencies^a (v cm⁻¹) HF/6-31G(d') level of calculation

Species						Vibrati	onal	Frequ	encies									
СН3СНО	160	543	847	956	1223	1256	1519	1556	1598	1607	2029	3123	3190	3251	3309			
CH3CjO	107	506	920	1040	1154	1502	1595	1596	2141	3199	3289	3293						
CCOQ	35	175	318	346	475	672	714	998	1190	1173	1192	1425	1548	1602	1607	1677	2009	3222
	3297	3336	3962															
CCOQj	107	167	340	459	628	714	954	1094	1166	1252	1323	1545	1601	1607	2103	3219	3292	3337
CjCOQ	106	129	368	371	536	624	627	774	915	1096	1202	1371	1577	1631	1809	3365	3495	4113
CH2CO	492	632	690	1102	1264	1554	2381	3363	3466									
$TCCOQjS^b$	-1669 ^f	139	274	485	543	601	690	846	934	1017	1032	1070	1165	1435	1727	1881	3136	3224
TCCOXQE ^c	-1596 ^f	81	226	375	452	513	566	771	1012	1063	1182	1460	1507	1533	1868	2435	3259	3340
TCjCOXQ ^d	-877.6 ^f	98	182	228	290	408	514	554	731	1015	1096	1143	1545	1626	2192	3327	3435	4059
CC*O(Oj)	52	428	594	634	933	1050	1170	1384	1534	1604	1606	2018	3214	3287	3331			
CyCOC=O	542	596	839	1060	1104	1172	1257	1349	1622	2216	3315	3418						
TYCOCDOXOH°	-671 ^f	152	194	270	326	387	613	634	804	985	1012	1017	1211	1459	1898	3191	3307	3611

^a non-scaled. ^{b,c,d,e} Transition State Structure described in results section.

Table 3.2 Moments of Inertia (amu-Bohr²) HF/6-31G(d') level of calculation

Species	I_{A}	I_{B}	$I_{\mathbf{C}}$	Species	$I_{\mathbf{A}}$	$ m I_B$	$I_{\rm C}$
СН3СНО	31.09	175.54	195.57	TCCOQjS	177.19	371.70	536.83
CH3CjO	20.77	180.48	190.17	TCCOXQE	194.75	477.79	660.74
CCOQ	191.62	383.50	562.14	TCjCOXQ	202.06	443.62	609.40
CCOQi	165.45	396.96	551.32	CC*O(Oj)	147.47	182.32	318.64
CiCOQ	170.86	382.43	553.29	CyCOC=O	67.39	218.08	273.37
CH2CO	6.30	171.66	177.96	TYCOCDOXOH	194.30	421.08	602.79

f Transition State, one imaginary frequency.

Table 3.3 Ideal Gas Phase Thermodynamic Properties Obtained by CBSQ Calculation^a and by Therm*

Species		ΔHf° ₂₉₈ ^b	S° 298°	Cp300°	Cp ₄₀₀	Cp ₅₀₀	Cp ₆₀₀	Cp800	Cp ₁₀₀₀	Cp ₁₅₀₀
(s, e, OI) ^g										
СНЗСНО	TVR ^d		57.97 ⁸	11.58	14.29	16.88	19.20	22.98	25.80	30.10
(CH3-C(=O)H)	Internal Rotor 1		5.16	1.44	1.30	1.23	1.17	1.10	1.07	1.03
(3,0,1)	Total		63.13	13.02	15.59	18.11	20.37	24.08	26.87	31.13
	THERM	-39.10	63.11	12.49	15.83	18.59	20.85	24.22	26.50	29.76
CH3CjO**	TVR		58.82	11.12	13.24	15.24	17.01	19.90	22.06	25.39
(CH3-C.(=O))	Internal Rotor 1		5.24	1.62	1.41	1.29	1.21	1.12	1.08	1.03
(3,1/2,1)	Total		64.06	12.74	14.65	16.53	18.22	21.02	23.14	26.42
	THERM	-2.20	62.71	11.10	13.92	16.23	18.11	20.89	22.75	25.35
CCOQ***	TVR		66.79	15.22	18.93	22.24	25.05	29.40	32.54	37.27
(CH3-C(=O)OOH)	Internal Rotor 1,2,3		9.65	5.53	6.06	6.27	6.30	6.06	5.64	4.70
(3,0,2)	Total	-84.70	76.44	20.75	24.99	28.51	31.35	35.46	38.18	41.97
	THERM	-80.48	77.23	20.53	24.34	27.65	30.39	34.52	37.41	
CCOQj***	TVR		66.86	15.33	18.81	21.84	24.36	28.18	30.87	34.77
(CH3-C(=O)OO.)	Internal Rotor 1,2		12.69	2.72	2.46	2.30	2.21	2.12	2.08	2.03
(3,1/2,1)	Total	-38.75	79.55	18.05	21.27	24.14	26.57	30.30	32.95	36.80
	THERM	-44.38	77.45	18.48	21.50	24.10	26.30	29.80	32.44	
cjcoq	TVR		70.45	15.79	19.14	21.85	24.01	27.19	29.43	32.85
(C.H2-C(=O)OOH)	Internal Rotor 1,2,3		8.80	6.00	6.39	6.50	6.46	6.15	5.69	4.72
(1,1/2,2)	Total	-32.35	79.25	21.79	25.53	28.35	30.47	33.34	35.12	37.57
	THERM	-38.18	74.50	20.23	23.94	26.87	29.16	32.40	34.56	
CH2CO (2,0,1)	TVR		57.57	12.26	14.10	15.61	16.85	18.81	20.29	22.61
(CH2=C=O)	Total		57.57	12.26	14.10	15.61	16.85	18.81	20.29	22.61
	THERM	-11.70	57.81	12.68	14.77	16.43	17.75	19.65	20.92	22.91
TCCOQjS	TVR		72.15	19.92	23.97	27.10	29.51	32.90	35.12	38.15
(1,1/2,2)	Total	-11.82	72.15	19.92	23.97	27.10	29.51	32.90	35.12	38.15
TCCOXQE	TVR		74.97	20.04	23.37	26.14	28.41	31.83	34.20	37.57
(1,1/2,2)	Total	-10.74	74.97	20.04	23.37	26.14	28.41	31.83	34.20	37.57
TCjCOXQ	TVR		74.11	18.14	20.96	23.20	25.00	27.76	29.80	33.03
(1,1/2,2)	Internal Rotor 1,2		5.07	3.83	4.19	4.41	4.52	4.47	4.20	3.47
	Total	-0.82	79.18	21.97	25.15	27.61	29.52	32.23	34.00	36.50
CC*O(Oj)	TVR		62.80	12.71	15.42	17.91	21.10	23.58	26.16	30.15
(CH3-C(=O)O.)	Internal Rotor 1		5.62	1.08	1.05	1.03	1.02	1.01	1.00	1.00
(3,1/2,1)	Total	-41.61	68.42	13.79	16.47	18.94	22.12	24.59	27 .16	31.15
	THERM	-51.38	63.56	14.78	17.67	20.28	22.42	25.81	28.19	
CyCOC=O	TVR		62.29	11.95	14.65	17.06	19.06	22.10	24.24	27.42
(1,0,1)	Total	-44.14	62.29	11.95	14.65	17.06	19.06	22.10	24.24	27.42
TYCOCDOXOH	TVR		73.08	18.74	21.97	24.50	26.48	29.39	31.47	34.77
(1,1/2,1)	Internal Rotor 1		4.31	1.46	1.30	1.20	1.14	1.08	1.05	1.02
	Total	-9.27	77.39	20.20	23.27	25.70	27.62	30.47	32.52	35.79

^{* :} therm values for stable species are included for comparison

^{**} j : radical site, *** Q = OOH (hydroperoxy group), Qj = OO.(peroxy)

a: Thermodynamic properties are referred to a standard state of an ideal gas of pure enantiometer at 1 atm.

b: Units in kcal/mol c: Units in cal/mol-K

d: Sum of contributions from translations, vibrations, and external rotations.

f: Contribution from internal rotation

g : Symmetry number, optical isomer and electronic spin are taken into account,

⁻Rln(s), Rln2, Rln2, respectively.

s = number of symmetry, e = electronic spin, OI = number of optical isomer

Table 3.4 Moments of Inertia (amu-A²) and Rotational Barriers (kcal/mole) for Internal Rotors

Species	Rotor	I_A	I_{B}	V	nª
СН3СНО	CH3C(=O)H	3.12	18.90	1.20	6
CH3CjO ^b	CH3C.(=O)	3.12	23.81	1.20	3
$CCOQ^{c}$	CH3C(=0)OOH	3.12	130.14	3.18	6
	CH3C(=O)OOH	44.19	1.56	5.46	2
	CH3C(=O)OOH	100.00	0.92	7.15	1
$CCOQj^d$	CH3C(=0)OO.	3.12	126.74	0.70	6
	CH3C(=0)00.	44.19	30.84	1.00	2
CjCOQ	C.H2C(=0)OOH	1.75	130.14	3.18	2
	C.H2C(=O)OOH	42.44	1.56	5.46	2
	C.H2C(=O)OOH	100.00	0.92	7.15	1
TCjCOXQ	C.H2C(=O)OOH	42.44	1.56	5.46	2
	C.H2C(=O)OOH	100.00	0.92	7.15	1
CC*O(Oj) ^e	CH3C(=O)O.	3.12	38.12	0.48	6
TYCOCDOXOH	OHCyCOC=O	0.98	61.8	1	2

a n: foldness

b "j" stands for radical site.

 $^{^{\}circ}$ "Q" stands for hydroperoxy group(OOH).

^d "Qj" stands for peroxy (OO.).

e "*" stands for bouble bonding(C=O).

Table 3.5 List of Total Energy, ZPVE, and Thermal Correction of CBSQ Calculation^a

Species	Total Energy at 0K ^b	ZPVE ^c	Thermal Correction ^d	Total Energy at 298K ^b
СН3СНО	-153.5808040	0.0596140	0.0047500	-153.5760540
CH3CjO ^e	-152.9409014	0.0463440	0.0048310	-152.9360704
$CCOQ^f$	-303.8036387	0.0701660	0.0066110	-303.7970277
CCOQj ^g	-303.1591877	0.0569790	0.0059440	-303.1532437
CjCOQ	-303.1472163	0.0546810	0.0058250	-303.1413913
CH2CO	-152.3751740	0.0340450	0.0043090	-152.3708650
TCCOQjS	-303.1150471	0.0492970	0.0055420	-303.1095051
TCCOXQE	-303.1140266	0.0492960	0.0062490	-303.1077776
TCjCOXQ	-303.0980978	0.0511300	0.0069470	-303.0911508
CC*O(Oj) ^h	-228.0835228	0.0520300	0.0053120	-228.0782108
CyCOC=O	-227.5038475	0.0421240	0.0042990	-227.4995485
TYCOCDOXOH	-303.1112666	0.0480010	0.0066610	-303.1046056

^a Unit in Hartree 1 HF=627.51 kcal/mol.
^b Scaled ZPVE are included. Scaling factor is recommended as 0.91844 by Petersson et.al [22]

^c Non-scaled.

^d Non-scaled.

^e "j" stands for radical site.

^f "Q" stands for hydroperoxy group(OOH).

^g "Qj" stands for peroxy(OO_•).

h "*" stands for bouble bonding(C=O).

including scaled ZPVE's, nonscaled ZPVE's, thermal corrections to 298.15 K, and total energies at 298 K including scaled ZPVE's are shown in Table 3.5 for CBSQ calculations. Frequencies are scaled by 0.91844 for HF/6-31G(d') determined frequencies as recommended by Petersson et al.²²

Table 3.6 Molecule Considered to Have Known $\Delta H_f^{\circ}_{298}$ for Use in Isodesmic Reactions.

Compounds	ΔH _f ° ₂₉₈ (kcal/mole)
CH ₃ CH ₂ OH	-56.17 [30]
CH ₃ C(=O)OH	-103.56 (Avg. of [30],[31],[32])
CH ₃ CH ₂ OOH	-39.9 [33]

The evaluated enthalpies of formation for the molecules considered to have known $\Delta H_{f}^{\circ}_{298}$ values, for use in the isodesmic reaction, are : -56.17[30], -103.56[average of 30, 31, 32], and -39.9[33] for CH₃CH₂OH, CH₃C(=O)OH, and CH₃CH₂OOH, respectively. A low or zero $\Delta H^{\circ}_{frxn,298}$ supports the hypothesis of group additivity and increases credibility of the calculations.

The CBSQ and density functionals determined enthalpy of reaction (1) is -2.59 and -3.88 kcal/mole, respectively. $\Delta H_f^{\circ}_{298}[CCOQ]$ is evaluated from

$$\Delta H^{\circ}_{fixn,298} = \Delta H_{f}^{\circ}_{298} [CH_{3}C(=O)OH] + \Delta H_{f}^{\circ}_{298} [CH_{3}CH_{2}OOH]$$

$$-\Delta H_{f}^{\circ}_{298} [CCOQ] - \Delta H_{f}^{\circ}_{298} [CH_{3}CH_{2}OH] = -2.59 \text{ or } -3.88$$

$$= -103.56 + (-39.9) - X - (-56.17) \text{ kcal/mole}(4)$$

The enthalpy of formation of CCOQ obtained is -84.7 and -83.41 kcal/mole in CBSQ and density functionals calculations, respectively.

The enthalpy of formation of two intermediate radicals, CjCOQ and CCOQj by CBSQ and density functionals are obtained from use of isodesmic reactions (2) and (3) and bond dissociation energy of C₂H₅—H(101.6 kcal/mole) and CH₃OO—H(86.3 kcal/mole) The data results in enthalpy values are -32.35 and -32.37 for CjCOQ, -38.75 and -38.02 for CCOQj, in CBSQ and density functionals calculations, respectively.

Formation of CCOQj adduct has a well depth of 36.55 kcal/mole.

The activation energy for isomerization, TCCOQjS, is estimated from both the reactant CCOQj and the product CjCOQ. The averaged result is 26.93 and 28.63 kcal/mole in CBSQ and density functionals, respectively. The activation energy for direct HO₂ elimination, TCCOXQE, is estimated by taking the difference of total energy with ZPVE and thermal correction between transition state(TS) and peroxy reactant, resulting in 28.01 and 30.66 kcal/mole in CBSQ and density functionals, respectively. The activation energy for HO₂ elimination from the hydroperoxide isomer, TCjCOXQ, is estimated by taking the difference of total energy with ZPVE and thermal correction between transition state(TS) and reactant, resulting in 31.53 kcal/mole via CBSQ. The activation energy for epoxide formation via OH elimination, TYCOCDOXOH, is estimated by taking the difference of total energy with ZPVE and thermal correction between transition state(TS) and hydroperoxide isomer, resulting in 23.08 kcal/mole by CBSQ.

4.4 QRRK Calculation Results

QRRK calculations for k(E) and modified strong collision analysis of Gilbert et. al¹⁷⁻¹⁹ for fall-off are performed on the CH₃CjO + O₂ reaction to obtain rate constants as a function of temperature and pressure and results are listed in Table 3.7. Δ E down of 400 cal/mole is used for bath gas N₂.

Plots of rate constants at 1atm pressure versus 1000/T are illustrated in Figure 3.7. Stabilization (CCOQj) is clearly important at lower temperatures, 1atm pressure, with reverse dissociation and ketene + HO₂ products via direct HO₂ elimination important at higher temperatures.

Plots of rate constants at 298 K versus pressure are illustrated in Figure 3.8.

The figure illustrates that stabilization is the dominant path at high pressures, while reverse dissociation and ketene + HO₂ products via direct HO₂ elimination channel are most important at low pressures.

Plots of rate constants at 1000 K versus pressure are illustrated in Figure 3.9.

The figure illustrates that stabilization decreases as pressure is decreased. Reverse dissociation and ketene + HO₂ products via direct HO₂ elimination are most important at both high and low pressures.

Table 3.7 Input Parameters^a and High-Pressure Limit Rate Constants $(K_{\infty})^b$ for QRRK Calculations^c and the Resulting Rate Constants (Temp=298K): CBSQ Result (adjusted)

Input parameters for QRRK calculations

High-pressure Limit Rate Constants							
			k∞				
Reaction	A[S ⁻¹ or cm ³ /(mole s)]	n	Ea (kcal/mole)				
$1 \text{ CH}_3\text{CjO} + \text{O}_2 => \text{CCOQj}^d$	2.65E+12	0.0	0.0				
$-1 CCOQj => CH_3CjO + O_2^e$	9.40E+13	0.0	34.66				
$2 CCOQj \Rightarrow CjCOQ^f$ $3 CCOQj \Rightarrow CH_2CO + HO_2^f$	1.52E+5 9.29E+5	2.22 2.14	26.25 27.30				
$4 \text{ CjCOQ} \Rightarrow \text{CH}_2\text{CO} + \text{HO}_2$ $4 \text{ CjCOQ} \Rightarrow \text{CyCOC=O} + \text{OH}^f$ $5 \text{ CjCOQ} \Rightarrow \text{CH}_2\text{CO} + \text{HO}_2^f$	8.13E+8	0.98	23.09				
$5 \text{ CjCOQ} \Rightarrow \text{CH}_2\text{CO} + \text{HO}_2^{\text{f}}$	5.21E+10	0.81	31.77				

Calculated Reaction Parameters at P = 1atm, $k=A(T/K)^n \exp(-Ea/RT)$ (T=298-2000K)

Reaction	A	n	Ea (kcal/mole)	$k_{298}(s^{-1} \text{ or } cm^3/(\text{mole } s)$
1 CH3CjO + O2 => CCOQj	6.93E+43	-10.29	8.28	2.03E+12
$6 \text{ CH}_3\text{CjO} + \text{O}_2 => \text{CH}_2\text{CO} + \text{HO}_2$	3.65E+18	-1.78	6.29	3.51E+09
$7 \text{ CH}_3\text{CiO} + \text{O}_2 \Rightarrow \text{CyCOC} = \text{O} + \text{OH}$	2.09E+27	-4.45	13.44	2.83E+06
$8 \text{ CH}_3\text{CjO} + \text{O}_2 \Rightarrow \text{CjCOQ}$	8.42E+40	-9.17	12.47	1.23E+09
2 CCOQj => CjCOQ	2.61E+40	-9.10	36.50	1.00E-09
$3 \text{ CCOO}_i \Rightarrow \text{CH}_2\text{CO} + \text{HO}_2$	1.07E+36	-7.53	35.97	1.00E-09
$4 \text{ CiCOQ} \Rightarrow \text{CyCOC=O} + \text{OH}$	1.97E+31	-6.27	29.39	1.68E-08
$5 \text{ CjCOQ} \Rightarrow \text{CH}_2\text{CO} + \text{HO}_2$	4.18E+34	-7.11	37.76	2.16E-11

^aGeometric mean frequency (from CPFIT, Ref.[34]: 389.7 cm⁻¹(5.993); 1292.8 cm⁻¹ (7.788); 2889.0 cm⁻¹ (3.279). Lennard-Jones parameters: σij=5.19Å, ε/k=533.08

^bThe units of A factors and rate constants k are s⁻¹ for unimolecular reactions and cm³/(mole s) for bimolecular reactions.

^cAE down of 400 cal/mole is used.

^d k_{∞1}: Sehested et al. [35]

 $^{^{}e}\,k_{\omega_{0},-1}$: thermodynamics and microscopic reversibility <MR>

 $[^]f$ A is calculated using TST and entropy of transition state, ΔS^*_{298} from HF/6-31G(d') (see Table 3.3); Ea is from CBSQ calculation (see Table 3.3 and description for determination of Ea in Results section). All parameters A, n, Ea, are fit over the temperature range of 298-2000K.

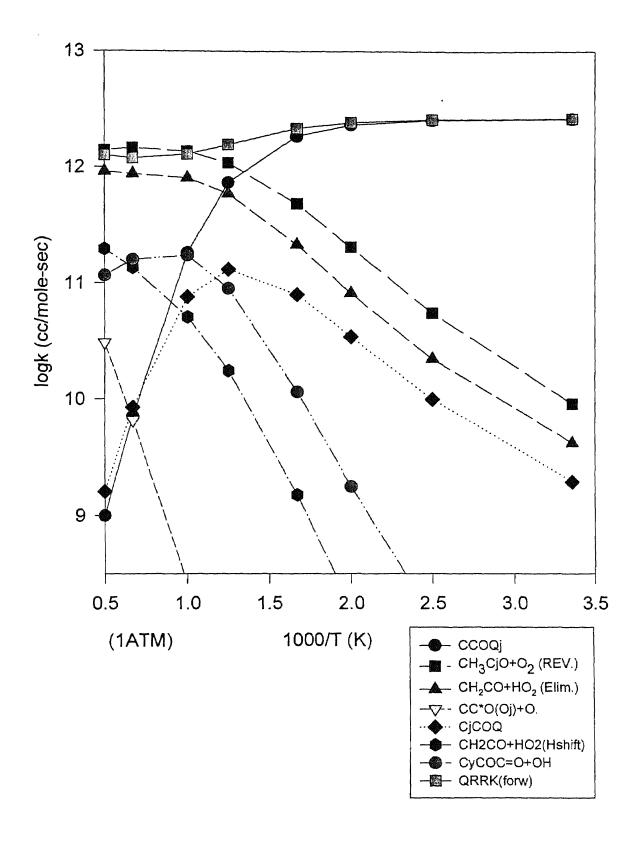


Figure 3.7 k vs. Temperature at 1atm CH₃CjO + O₂

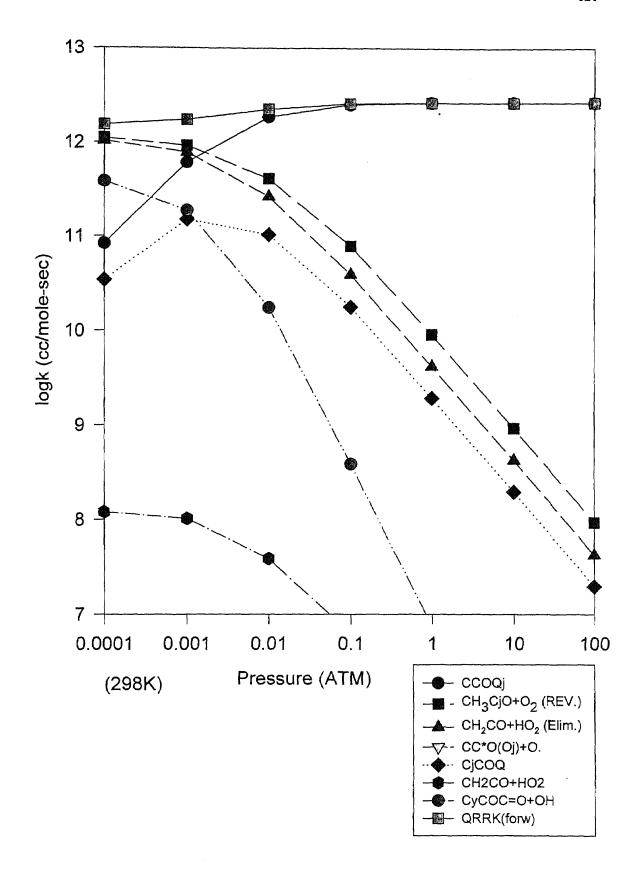


Figure 3.8 k vs. Pressure at 298K $CH_3CjO + O_2$

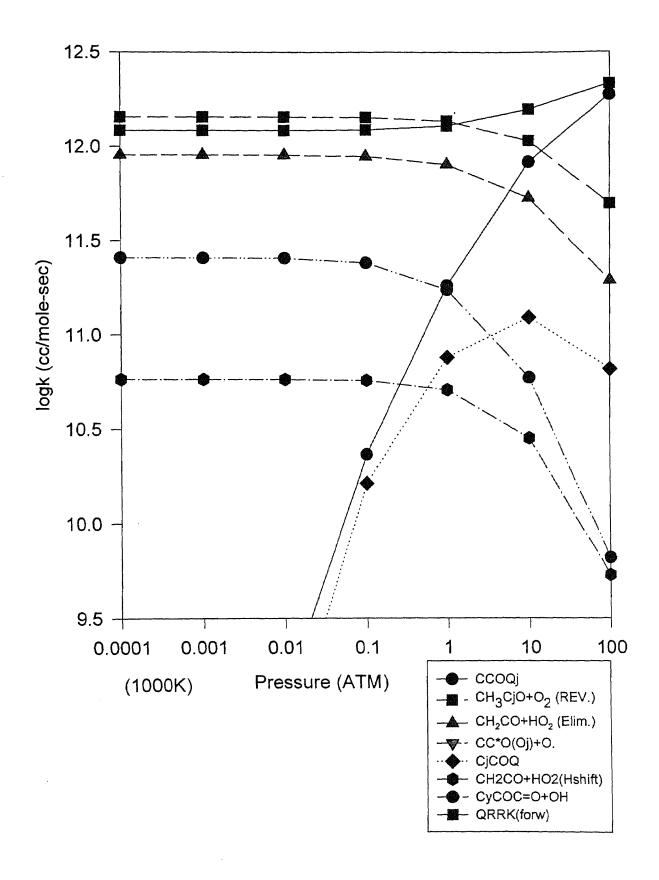


Figure 3.9 k vs. Pressure at 1000K CH₃CjO + O₂

CHAPTER 5

SUMMARY FOR PART THREE

Thermodynamic properties of stable radicals and transition states on $CH_3CjO + O_2$ reaction system are calculated using density functional and *ab initio* methods. Enthalpies of formation ($\Delta H_{\rm f}{}^{\circ}_{298}$) are determined using the CBSQ composite method and density functional calculations with isodesmic reactions. Entropies (S°_{298}) and heat capacities (Cp(T) 300 –1500 K) are determined using geometric parameters and vibrational frequencies obtained at the HF/6-31G(d') level of theory. Reaction pathways and kinetics are analyzed on $CH_3CjO + O_2$ reaction system using QRRK for k(E) and modified strong collision analysis of Gilbert et. al¹⁷⁻¹⁹ for fall-off. Major reaction paths at 1atm pressure are stabilization of CCOQj peroxy adduct at low temperature and $CH_2CO + HO_2$ via HO_2 elimination and CyCOC=O + OH via OH elimination at high temperature.

APPENDIX 3.1

THERMODYNAMIC ANALYSIS FOR CH₃CjO + O₂ REACTION

```
THERMODYNAMIC ANALYSIS for REACTION
Rx
       CH3CJO + O2
                           = CCOQJ
Hf {Kcal/mol} -2.200
                       .000
                            -38,750
S {cal/mol K} 64.060
                      46.630
                              79.550
dHr \{kcal/mol\} (298K) =
                         -36.55
                                 dHr avg (298., 1500. K) =
dU(dE) \{kcal/mol\} (") =
                                dUr avg (298., 1500. K) =
                       -35.96
                                                         -34.66
dSr \{cal/mol K\} (") =
                       -31.14
                               dSr avg (298., 1500. K) =
                                                        -31.35
dGr \{kcal/mol\} (") =
                       -27.27
                               dGr avg (298., 1500. K) =
                                                         -8.26
     Af/Ar (") = 1.039E-02 Af/Ar avg (298., 1500. K) = 2.823E-02
  T(K) dH(Kcal/mol) dU(Kcal/mol) dS(cal/mol K) (Af/Ar) dG(Kcal/mol)
  300.00 -3.655E+01 -3.596E+01 -3.116E+01 1.037E-02 -2.721E+01
  400.00 -3.675E+01 -3.596E+01 -3.174E+01
                                            1.032E-02 -2.406E+01
  500.00 -3.686E+01 -3.587E+01 -3.198E+01
                                            1.140E-02 -2.087E+01
  600.00 -3.691E+01 -3.572E+01 -3.207E+01
                                            1.313E-02 -1.767E+01
  800.00 -3.687E+01 -3.528E+01 -3.202E+01
                                            1.793E-02 -1.126E+01
 1000.00 -3.675E+01 -3.476E+01 -3.188E+01
                                             2.398E-02 -4.867E+00
 1200.00 -3.660E+01 -3.421E+01 -3.174E+01
                                             3.088E-02 1.496E+00
                                             4.244E-02
 1500.00 -3.634E+01 -3.336E+01 -3.155E+01
                                                       1.099E+01
 2000.00 -3.591E+01 -3.193E+01 -3.130E+01 6.415E-02 2.670E+01
  THERMODYNAMIC ANALYSIS for REACTION
Rx
                 = CC*O(OJ)
        CCOOJ
                               + O
Hf {Kcal/mol} -38.750 -41.590
                               59.560
S {cal/mol K} 79.550
                      68.420
                              38.470
dHr \{kcal/mol\} (298K) =
                          56.72
                                 dHr avg (298., 1500. K) =
                                                           56.45
                                                          54.66
dU(dE) \{kcal/mol\} (") =
                         56.13
                                dUr avg (298., 1500. K) =
dSr \{cal/mol K\} (") =
                               dSr avg (298., 1500. K) =
                                                         27.12
                        27.34
dGr \{kcal/mol\} (") =
                        48.57
                               dGr avg (298., 1500. K) =
                                                         32.07
     Af/Ar (") = 1.422E+01 Af/Ar avg (298., 1500. K) = 4.217E+00
  T(K) dH(Kcal/mol) dU(Kcal/mol) dS(cal/mol K) (Af/Ar) dG(Kcal/mol)
         5.672E+01
                     5.613E+01 2.735E+01
                                            1.417E+01
                                                        4.852E+01
  300.00
  400.00 5.677E+01 5.598E+01
                                2.750E+01
                                            1.150E+01
                                                        4.577E+01
  500.00 5.678E+01 5.579E+01 2.752E+01
                                            9.278E+00
                                                        4.302E+01
                     5.556E+01
                                 2.747E+01
                                            7.556E+00
                                                        4.027E+01
  600.00 5.676E+01
  800.00 5.665E+01 5.506E+01
                                            5.246E+00
                                                        3.479E+01
                                 2.732E+01
                                             3.882E+00
                                                       2.934E+01
  1000.00 5.651E+01 5.452E+01
                                 2.717E+01
                                 2.704E+01
                                            3.034E+00
                                                        2.392E+01
                      5.399E+01
  1200.00 5.637E+01
                                 2.690E+01
                                             2.261E+00
                                                        1.584E+01
  1500.00
          5.618E+01
                      5.320E+01
```

2.676E+01

1.580E+00

2.426E+00

5.197E+01

2000.00

5.594E+01

APPENDIX 3.2

KINETIC ANALYSIS FOR CH₃CjO + O₂ REACTION

THERMODYNAMIC ANALYSIS for REACTION

Rx CCOQJ = TCCOQJS Hf {Kcal/mol} -38.750 -11.820 S {cal/mol K} 79.550 72.150

 $dHr \{kcal/mol\} (298K) =$ 26.93 dHr avg (298., 1500. K) =28.29 $dU(dE) \{kcal/mol\} (") =$ 26.93 dUr avg (298., 1500. K) =28.29 $dSr \{cal/mol K\} (") =$ -7.40 dSr avg (298., 1500. K) = -5.46 $dGr \{kcal/mol\} (") =$ 29.14 dGr avg (298., 1500. K) =33.20 Af/Ar (") = 2.413E-02 Af/Ar avg (298., 1500. K) = 6.417E-02 A = 1.711E-06 n = 1.70 alpha = 6.111E-04 avg error 3.13 %Fit Af/Ar w/ddU: A = 7.988E-10 n = 3.10 alpha = 1.720E-03 avg error 2.94 %

T(K) dH(Kcal/mol) dU(Kcal/mol) dS(cal/mol K) (Af/Ar) dG(Kcal/mol) 300.00 2.693E+01 2.693E+01 -7.388E+00 2.428E-02 2.915E+01 400.00 2.717E+01 2.717E+01 -6.726E+00 3.388E-02 2.986E+01 3.050E+01 500.00 2.744E+01 2.744E+01 -6.119E+00 4.598E-02 2.773E+01 -5.592E+00 5.996E-02 600.00 2.773E+01 3.108E+01 2.829E+01 -4.779E+00 9.027E-02 3.211E+01 800.00 2.829E+01 1000.00 2.878E+01 2.878E+01 -4.231E+00 1.189E-01 3.301E+01 2.918E+01 -3.865E+00 1.429E-01 3.382E+01 1200.00 2.918E+01 1500.00 2.965E+01 2.965E+01 -3.513E+00 1.706E-01 3.492E+01 2000.00 3.016E+01 3.016E+01 -3.216E+00 1.982E-01 3.659E+01

The model fitted is for uni-molecular reaction.

The 3 parameters for the model equation of $A(T) = Aprime * T^n * exp(-Ea/RT)$ Aprime = 1.5209E+05 n = 2.21722 Ea = 2.6246E+04

Temp(K)	AF(T)	T_K^n	k_calc(T)	k_fit
300.00	1.518E+11	3.107E+05	3.618E-09	3.570E-09
400.00	2.824E+11	5.879E+05	4.048E-04	4.075E-04
500.00	4.791E+11	9.643E+05	4.858E-01	4.935E-01
600.00	7.496E+11	1.445E+06	5.949E+01	6.040E+01
800.00	1.505E+12	2.734E+06	2.806E+04	2.807E+04
1000.00	2.478E+12	4.484E+06	1.270E+06	1.251E+06
1200.00	3.574E+12	6.718E+06	1.731E+07	1.694E+07
1500.00	5.333E+12	1.102E+07	2.550E+08	2.511E+08
2000.00	8.260E+12	2.085E+07	4.178E+09	4.295E+09

THERMODYNAMIC ANALYSIS for REACTION

Rx CJCOQ = TCCOQJS Hf {Kcal/mol} -32.350 -11.820 S {cal/mol K} 84.120 72.150

 $dHr \{kcal/mol\} (298K) =$ 20.53 dHr avg (298., 1500. K) =21.74 dUr avg (298., 1500. K) = $dU(dE) \{kcal/mol\} (") =$ 20.53 21.74 $dSr \{cal/mol K\} (") =$ -11.97 dSr avg (298., 1500. K) =-10.61 $dGr \{kcal/mol\} (") =$ dGr avg (298., 1500. K) =31.28 24.10 Af/Ar (") = 2.420E-03 Af/Ar avg (298., 1500. K) = 4.794E-03A = 1.553E-04 n = .43 alpha = -6.148E-04 avg error 7.45 %Fit Af/Ar w/ddU: A = 4.668E-06 n = 1.03 alpha = -5.410E-04 avg error 13.51 %

T(K) dH(Kcal/mol) dU(Kcal/mol) dS(cal/mol K) (Af/Ar) dG(Kcal/mol) 300.00 2.053E+01 2.053E+01 -1.197E+01 2.416E-03 2.412E+01 400.00 2.054E+01 2.054E+01 -1.195E+01 2.441E-03 2.532E+01 500.00 2.064E+01 2.064E+01 -1.173E+01 2.733E-03 2.650E+01 3.182E-03 2.766E+01 2.081E+01 -1.143E+01 600.00 2.081E+01 2.125E+01 -1.079E+01 4.381E-03 2.988E+01 800.00 2.125E+01 1000.00 2.175E+01 2.175E+01 -1.023E+01 5.804E-03 3.198E+01 2.225E+01 -9.776E+00 7.300E-03 3.398E+01 1200.00 2.225E+01 2.296E+01 -9.252E+00 9.500E-03 3.683E+01 2.296E+01 1500.00 2.394E+01 -8.683E+00 1.265E-02 4.130E+01 2.394E+01 2000.00

The model fitted is for uni-molecular reaction.

The 3 parameters for the model equation of $A(T) = Aprime * T^n * exp(-Ea/RT)$ Aprime = 3.8474E+04 n = 2.01928 Ea = 1.9703E+04

Temp(K)	AF(T)	T_K^n	k_calc(T)	k_fit
300.00	1.510E+10	1.005E+05	1.669E-05	1.708E-05
400.00	2.034E+10	1.796E+05	1.218E-01	1.184E-01
500.00	2.847E+10	2.818E+05	2.701E+01	2.645E+01
600.00	3.978E+10	4.073E+05	1.047E+03	1.042E+03
800.00	7.302E+10	7.280E+05	1.141E+05	1.160E+05
1000.00	1.209E+11	1.142E+06	2.128E+06	2.171E+06
1200.00	1.825E+11	1.651E+06	1.615E+07	1.638E+07
1500.00	2.969E+11	2.591E+06	1.342E+08	1.342E+08
2000.00	5.272E+11	4.631E+06	1.276E+09	1.252E+09

THERMODYNAMIC ANALYSIS for REACTION Rx CCOQJ = TCCOXOE

Hf {Kcal/mol} -38.750 -10.740 S {cal/mol K} 79.550 74.970

 $dHr \{kcal/mol\} (298K) =$ 28.01 dHr avg (298., 1500. K) =29.39 . $dU(dE) \{kcal/mol\} (") =$ 28.01 dUr avg (298., 1500. K) =29.39 $dSr \{cal/mol K\} (") =$ -4.58 dSr avg (298., 1500. K) =-2.77 $dGr \{kcal/mol\} (") =$ 29.38 dGr avg (298., 1500. K) =31.88 Af/Ar (") = 9.976E-02 Af/Ar avg (298., 1500. K) = 2.478E-01 : A = 2.310E-04 n = 1.06 alpha = -8.875E-05 avg error 1.41 %Fit Af/Ar w/ddU: A = 1.484E-06 n = 1.97 alpha = 3.886E-04 avg error 1.27 %

T(K) dH(Kcal/mol) dU(Kcal/mol) dS(cal/mol K) (Af/Ar) dG(Kcal/mol) 300.00 2.801E+01 2.801E+01 -4.567E+00 1.004E-01 2.938E+01 400.00 2.822E+01 2.822E+01 -3.971E+00 1.355E-01 2.981E+01 500.00 2.843E+01 2.843E+01 -3.511E+00 1.708E-01 3.018E+01 600.00 2.864E+01 2.864E+01 -3.125E+00 2.075E-01 3.051E+01 800.00 2.909E+01 2.909E+01 -2.474E+00 2.879E-01 3.107E+01 1000.00 2.958E+01 2.958E+01 -1.932E+00 3.782E-01 3.151E+01 1200.00 3.007E+01 3.007E+01 -1.482E+00 4.742E-01 3.185E+01 1500.00 3.077E+01 3.077E+01 -9.647E-01 6.154E-01 3.221E+01 2000.00 3.184E+01 3.184E+01 -3.463E-01 8.401E-01 3.253E+01

The model fitted is for uni-molecular reaction.

Temp(K)	AF(T)	T_K^n	k_calc(T)	k_fit
300.00	6.277E+11	2.050E+05	2.443E-09	2.455E-09
400.00	1.130E+12	3.798E+05	4.290E-04	4.269E-04
500.00	1.780E+12	6.129E+05	6.666E-01	6.631E-01
600.00	2.594E+12	9.061E+05	9.579E+01	9.557E+01
800.00	4.799E+12	1.679E+06	5.405E+04	5.425E+04
1000.00	7.881E+12	2.709E+06	2.701E+06	2.716E+06
1200.00	1.186E+13	4.006E+06	3.951E+07	3.965E+07
1500.00	1.923E+13	6.464E+06	6.324E+08	6.317E+08
2000.00	3.501E+13	1.198E+07	1.160E+10	1.156E+10

THERMODYNAMIC ANALYSIS for REACTION Rx CJCOQ = TCJCOXQ Hf {Kcal/mol} -32.350 -.820 S {cal/mol K} 84.120 82.960

```
dHr \{kcal/mol\} (298K) =
                            31.53
                                   dHr avg (298., 1500. K) =
                                                                31.28
dU(dE) \{kcal/mol\} (") =
                           31.53
                                   dUr avg (298., 1500. K) =
                                                               31.28
dSr \{cal/mol K\} (") =
                         -1.16
                                 dSr avg (298., 1500. K) =
                                                             -1.33
dGr \{kcal/mol\} (") =
                                 dGr avg (298., 1500. K) =
                         31.88
                                                             32.47
     Af/Ar (") = 5.578E-01 Af/Ar avg (298., 1500. K) = 5.127E-01
Fit Af/Ar : A = 1.473E-01 n = .27 alpha = 5.187E-04 avg error 2.71 %
Fit Af/Ar w/ddU: A = 9.832E-02 n = .36 alpha = 8.149E-04 avg error 5.71 %
```

```
T(K) dH(Kcal/mol) dU(Kcal/mol) dS(cal/mol K) (Af/Ar) dG(Kcal/mol)
300.00 3.153E+01
                  3.153E+01 -1.155E+00 5.592E-01
                                                   3.188E+01
400.00 3.159E+01
                  3.159E+01 -9.790E-01 6.110E-01
                                                  3.198E+01
500.00 3.161E+01
                  3.161E+01 -9.297E-01
                                        6.263E-01
                                                  3.208E+01
600.00 3.161E+01 3.161E+01 -9.430E-01
                                        6.222E-01
                                                  3.217E+01
800.00 3.153E+01
                  3.153E+01 -1.048E+00
                                        5.903E-01
                                                   3.237E+01
1000.00 3.141E+01
                   3.141E+01 -1.181E+00
                                         5.518E-01
                                                   3.259E+01
                   3.127E+01 -1.314E+00
1200.00 3.127E+01
                                         5.163E-01
                                                   3.284E+01
1500.00 3.102E+01
                   3.102E+01 -1.495E+00
                                         4.712E-01
                                                   3.326E+01
2000.00 3.059E+01
                   3.059E+01 -1.745E+00
                                         4.156E-01
                                                   3.408E+01
```

The model fitted is for uni-molecular reaction.

Temp(K)	AF(T)	T_K^n	k_calc(T)	k_fit
300.00	3.496E+12	9.898E+01	3.723E-11	3.664E-11
400.00	5.092E+12	1.248E+02	2.784E-05	2.830E-05
500.00	6.525E+12	1.494E+02	9.894E-02	1.005E-01
600.00	7.778E+12	1.730E+02	2.386E+01	2.403E+01
800.00	9.839E+12	2.181E+02	2.390E+04	2.371E+04
1000.00	1.150E+13	2.611E+02	1.568E+06	1.546E+06
1200.00	1.291E+13	3.024E+02	2.608E+07	2.572E+07
1500.00	1.473E+13	3.619E+02	4.447E+08	4.424E+08
2000.00	1.732E+13	4.563E+02	7.868E+09	8.014E+09

THERMODYNAMIC ANALYSIS for REACTION

Rx CJCOQ = TYCOCDOXO Hf {Kcal/mol} -32.350 -9.270 S {cal/mol K} 84.120 77.390

 $dHr \{kcal/mol\} (298K) =$ 23.08 dHr avg (298., 1500. K) =23.05 $dU (dE) \{kcal/mol\} (") =$ dUr avg (298., 1500. K) =23.08 23.05 $dSr \{cal/mol K\} (") =$ -6.73 dSr avg (298., 1500. K) =-6.77 $dGr \{kcal/mol\} (") =$ dGr avg (298., 1500. K) =25.09 29.14 Af/Ar (") = 3.381E-02 Af/Ar avg (298., 1500. K) = 3.308E-02 Fit Af/Ar : A = 3.270E-02 n = .01 alpha = 4.184E-05 avg errorFit Af/Ar w/ddU: A = 3.015E-02 n = .02 alpha = 7.455E-05 avg error 1.19 %

T(K) dH(Kcal/mol) dU(Kcal/mol) dS(cal/mol K) (Af/Ar) dG(Kcal/mol) 300.00 2.308E+01 2.308E+01 -6.731E+00 3.380E-02 2.510E+01 400.00 2.307E+01 2.307E+01 -6.762E+00 3.327E-02 2.577E+01 500.00 2.306E+01 2.306E+01 -6.775E+00 3.304E-02 2.645E+01 600.00 2.306E+01 2.306E+01 -6.781E+00 3.295E-02 2.713E+01 800.00 2.306E+01 2.306E+01 -6.783E+00 3.292E-02 2.849E+01 1000.00 2.306E+01 2.306E+01 -6.785E+00 3.288E-02 2.984E+01 3.276E-02 1200.00 2.305E+01 2.305E+01 -6.793E+00 3.120E+01 1500.00 2.302E+01 2.302E+01 -6.817E+00 3.236E-02 3.324E+01 2000.00 2.290E+01 2.290E+01 -6.882E+00 3.132E-02 3.666E+01

The model fitted is for uni-molecular reaction.

Temp(K)	AF(T)	T_K^n	k_calc(T)	k_fit
300.00	2.113E+11	2.640E+02	3.235E-06	3.234E-06
400.00	2.773E+11	3.497E+02	6.879E-02	6.876E-02
500.00	3.443E+11	4.349E+02	2.852E+01	2.853E+01
600.00	4.120E+11	5.198E+02	1.639E+03	1.640E+03
800.00	5.487E+11	6.886E+02	2.751E+05	2.753E+05
1000.00	6.851E+11	8.565E+02	6.256E+06	6.255E+06
1200.00	8.190E+11	1.024E+03	5.192E+07	5.185E+07
1500.00	1.012E+12	1.273E+03	4.481E+08	4.473E+08
2000.00	1.305E+12	1.687E+03	4.102E+09	4.110E+09

APPENDIX 3.3

KINETIC DATA FOR $CH_3CjO + O_2$ REACTIONS ARRHENIUS FORM

Chemical Activation $CH_3CjO + O_2$

CH3CO+O2	<=> CCOQJ	4.57E+36	-9.52	2923.	•	1.00E-04	(1.00E-04)	atm,	298-2000 K,	13% err, 1.00 x N2
CH3CO+O2	<=> CCOQJ	3.85E+38	-9.79	3460.	!	1.00E-03	(1.00E-03)	atm,	298-2000 K.	15% err, 1.00 x N2
CH3CO+O2	<=> CCOQJ		-10.62	5330.	ļ.	1.00E-02	(1.00E-02)	atm,	298-2000 K,	19% err, 1.00 x N2
CH3CO+O2	<=> CCOQJ		-11.16	7568.	!	1.00E-01	(1.00E-01)	atm,	298-2000 K,	17% err, 1.00 x N2
CH3CO+O2	<=> CCOOJ		10.29	8278.	į	1.00E+00	(1.00E+00)	atm,	298-2000 K,	24% err, 1.00 x N2
CH3CO+O2	<=> CCOOJ	2.06E+37	-8.02	7092.	!	1.00E+01	(1.00E+01)	atm,	298-2000 K,	35% err, 1.00 x N2
CH3CO+O2	<=> CCOQJ	2.53E+28	-5.10	4760.	!	1.00E+02	(1.00E+02)	atm,	298-2000 K,	32% err, 1.00 x N2
CH3CO+02	<=> CH3CO+02	2.10E+12	04	254.	!		(1.00E-04)	atm,	298-2000 K	3% err, 1.00 x N2
CH3CO+O2	<=> CH3CO+O2	8.45E+12	22	590.	•	1.00E-03	(1.00E-03)	atm,	298-2000 K,	1% err, 1.00 x N2
CH3CO+O2	<=> CH3CO+O2	2.04E+15	90	1977.	!	1.00E-02	(1.00E-02)	atm,	298-2000 K,	4% err, 1.00 x N2
CH3CO+O2	<=> CH3CO+O2	8.76E+18	-1.92	4461.	!	1.00E-01	(1.00E-01)	atm,	298-2000 K,	6% err, 1.00 x N2
CH3CO+O2	<=> CH3CO+O2	2.30E+20	-2.27	6608.	!	1.00E+00	(1.00E+00)	atm,	298-2000 K,	11% err, 1.00 x N2
CH3CO+O2	<=> CH3CO+O2	8.34E+16	-1.18	7088.	!	1.00E+01	(1.00E+01)	atm,	298-2000 K,	36% err, 1.00 x N2
CH3CO+O2	<=> CH3CO+02	8.02E+08	1.24	5735.	!	1.00E+02	(1.00E+02)	atm.	298-2000 K,	60% err, 1.00 x N2
CH3CO+O2	<=> CH2CO+HO2	1.52E+12	07	-38.	1		(1.00E-04)		298-2000 K.	3% err, 1.00 x N2
CH3CO+O2	<=> CH2CO+HO2	1.09E+13	32	449.	1		(1.00E-03)		298-2000 K,	5% err, 1.00 x N2
CH3CO+O2	<=> CH2CO+HO2	8.79E+15	-1.15	2232.	•		(1.00E-02)	•	298-2000 K,	10% err, 1.00 x N2
CH3CO+O2	<=> CH2CO+HO2	1.05E+19	-2.00	4747.	í		(1.00E-01)		298-2000 K.	8% err, 1.00 x N2
CH3CO+O2	<=> CH2CO+HO2	3.65E+18	-1.78	6293.	į		(1.00E+00)	-	298-2000 K,	18% err, 1.00 x N2
CH3CO+O2	<=> CH2CO+HO2	1.82E+13	15	6053.			(1.00E+01)		298-2000 K,	44% err, 1.00 x N2
CH3CO+O2	<=> CH2CO+HO2	1.49E+04	2.57	4223.	i		(1.00E+02)	atm.	298-2000 K.	60% err, 1.00 x N2
CH3CO+O2	<=> CC*00J+0.	9.55E+12	04	20844.	i		(1.00E-04)		298-2000 K.	45% err, 1.00 x N2
CH3CO+O2	<=> CC*OOJ+O.	9.57E+12	04	20845.			(1.00E-03)		298-2000 K,	45% err, 1.00 x N2
	<=> CC*00J+0.	9,80E+12	04	20852.			(1.00E-02)		298-2000 K,	45% err, 1.00 x N2
CH3CO+O2	<=> CC*00J+0.	1.23E+13	07	20916.	:		(1.00E-01)	•	298-2000 K,	45% err, 1.00 x N2
CH3CO+O2	<=> CC*00J+0.	7.07E+13	28	21429.				atm,	298-2000 K,	45% err, 1.00 x N2
СИЗСО+О2		4.53E+15	20 77	23096.	:		(1.00E+01)		298-2000 K,	56% err, 1.00 x N2
CH3CO+O2	<=> CC*OOJ+O. <=> CC*OOJ+O.	3.77E+13	// 09	23979.	:		(1.00E+01)		298-2000 K.	91% err, 1.00 x N2
CH3CO+O2			-8.48				•		298-2000 K,	•
CH3CO+O2	<=> CJCOQ	2.46E+33		2472.	!		(1.00E-04)	•		18% err, 1.00 x N2
CH3CO+O2	<=> CJCOQ	5.33E+36	-9.15	3859.	:		(1.00E-03)		298-2000 K,	23% err, 1.00 x N2
CH3CO+O2	<=> CJCOQ		-10.75	7786.	!		(1.00E-02)	•	298-2000 K,	28% err, 1.00 x N2
CH3CO+02	<=> CJCOQ		-11.26	11605.	!		(1.00E-01)	•	298-2000 K,	20% err, 1.00 x N2
CH3CO+02	<=> ClCOO	8.42E+40	-9.17	12465.	!		(1.00E+00)		298-2000 K,	43% err, 1.00 x N2
CH3CO+02	<=> CJCOQ	6.51E+27	-4.95	10292.	!		(1.00E+01)	atm,	298-2000 K,	78% err, 1.00 x N2
CH3CO+O2	<=> CJCOQ	3.75E+11	.08	6449.	1		(1.00E+02)	•	298-2000 K,	85% err, 1.00 x N2
CH3CO+O2	<=> CH2CO+HO2	2.78E+11	.13	5058.	1		(1 00E-04)	•	298-2000 K,	5% err, 1.00 x N2
CH3CO+O2	<=> CH2CO+HO2	8.52E+11	01	5335.	!		(1.00E-03)	atm,	298-2000 K,	4% err, 1.00 x N2
CH3CO+O2	<=> CH2CO+HO2	5.22E+14	81	6982.	į		(1.00E-02)	atm,	298-2000 K,	2% err, 1.00 x N2
CH3CO+O2	<=> CH2CO+HO2	3.01E+20	-2.43	10960.	į		(1.00E-01)	atm,	298-2000 K,	6% err, 1.00 x N2
CH3CO+O2	<=> CH2CO+HO2	2.16E+23	-3.14	15002.	!		(1.00E+00)	atm,	298-2000 K,	23% err, 1.00 x N2
CH3CO+O2	<=> CH2CO+HO2	2.79E+17	-1.26	16212.	!		(1.00E+01)	atm,	298-2000 K,	77% err, 1.00 x N2
CH3CO+O2	<=> CH2CO+HO2	6.55E+02	3.13	13930.	!		(1.00E+02)	atm,		137% err, 1.00 x N2
CH3CO+02	<=> OCYCO+OH	1.26E+16	-1.48	1158.	!		(1.00E-04)		298-2000 K,	2% err, 1.00 x N2
CH3CO+O2	<=> OCYCO+OH	1.79E+18	-2.10	2400.	!	1.00E-03	(1.00E-03)	atm,	298-2000 K,	4% err, 1.00 x N2
CH3CO+O2	<=> OCYCO+OH	1.33E+24	-3.77	6154.	į.	1.00E-02	(1.00E-02)	atm,	298-2000 K,	11% err, 1.00 x N2
CH3CO+O2	<=> OCYCO+OH	1.25E+29	-5.12	10758.	į.	1.00E-01	(1.00E-01)	atm,	298-2000 K,	12% err, 1.00 x N2

СН3СО+О2	<=> OCYCO+OH	2.09E+27 -4.45	13442.	! 1.00E+00 (1.00E+00) atm, 298-2000 K, 46% err, 1.00 x N2
CH3CO+O2	<=> OCYCO+OH	7.34E+16 -1.24	12904.	! 1.00E+01 (1.00E+01) atm, 298-2000 K, 108% err, 1.00 x N2
CH3CO+O2	<=> OCYCO+OH	1.57E+00 3.71	9664.	! 1.00E+02 (1.00E+02) atm, 298-2000 K, 151% err, 1.00 x N2
CH3CO+O2	(2) OCICOTOR	1.372.00 3.12	3001.	
Dissociation				
CCOQJ	<=> CH3CO+O2	7.32E+38 -9.73	37889.	! 1.00E-04 (1.00E-04) atm, 298-2000 K, 15% err, 1.00 x N2
CCOOT	<=> CH3CO+O2	5.72E+40 -9.99	38408.	! 1.00E-03 (1.00E-03) atm, 298-2000 K, 17% err, 1.00 x N2
CCOOL	<=> CH3CO+O2	4.19E+44 -10.80	40248.	! 1.00E-02 (1.00E-02) atm, 298-2000 K, 21% err, 1.00 x N2
-	<=> CH3CO+O2	4.84E+47 -11.35	42481.	! 1.00E-01 (1.00E-01) atm, 298-2000 K, 19% err, 1.00 x N2
CCOQJ	<=> CH3CO+O2	9.49E+45 -10.47	43193.	! 1.00E+00 (1.00E+00) atm, 298-2000 K, 24% err, 1.00 x N2
CCOQJ	<=> CH3CO+O2	2.85E+39 -8.21	42008.	! 1.00E+01 (1.00E+01) atm, 298-2000 K, 33% err, 1.00 x N2
TOOOD	<=> CH3CO+O2	3.50E+30 -5.29	39676.	! 1.00E+02 (1.00E+02) atm, 298-2000 K, 30% err, 1.00 x N2
CCOQJ	<=> CH2CO+HO2	3.02E+45 -11.70	34786.	! 1.00E-04 (1.00E-04) atm, 298-2000 K, 16% err, 1.00 x N2
CCOOJ	<=> CH2CO+H02	4.69E+47 -11.99	36613.	! 1.00E-03 (1.00E-03) atm, 298-2000 K, 16% err, 1.00 x N2
CCOQJ		1.57E+47 -11.50	37697.	! 1.00E-02 (1.00E-02) atm, 298-2000 K, 21% err, 1.00 x N2
CCOQJ	<=> CH2CO+HO2	1.30E+43 -9.94	37458.	! 1.00E-01 (1.00E-01) atm, 298-2000 K, 32% err, 1.00 x N2
CCOQJ	<=> CH2CO+HO2	1.07E+36 -7.53	35972.	! 1.00E+00 (1.00E+00) atm, 298-2000 K, 42% err, 1.00 x N2
CCOQJ	<=> CH2CO+HO2	2.56E+27 -4.71	33715.	! 1.00E+01 (1.00E+01) atm, 298-2000 K, 41% err, 1.00 x N2
CCOQJ	<=> CH2CO+HO2		31283.	! 1.00E+02 (1.00E+02) atm, 298-2000 K, 29% err, 1.00 x N2
CCOQJ	<=> CH2CO+HO2	8.21E+18 -1.98 3.03E+26 -6.06	57367.	! 1.00E-04 (1.00E-04) atm, 298-2000 K, 40% err, 1.00 x N2
CCOQJ	<=> CC*00J+0.		57368.	! 1.00E-03 (1.00E-03) atm, 298-2000 K, 40% err, 1.00 x N2
CCOQJ	<=> CC*00J+0.	3.04E+27 -6.06		
CCOQJ	<=> CC*00J+0.	3.11E+28 -6.07	57374.	
CCOQJ	<=> CC*00J+0.	3.84E+29 -6.09	57436.	
CCOÕl	<=> CC*OOJ+O.	1.93E+31 -6.29	57925.	
CCOQJ	<=> CC*OOJ+O.	5.79E+33 -6.68	59462.	
CCOQJ	<=> CC*00J+0.	7.71E+31 -5.77	60018.	
CCOQJ	<=> CJCOO	1.05E+57 -15.58	37127.	
CCOÕl	<=> CJCOQ	4.20E+58 -15.66	39020.	
CCOÕl	<=> CJCOQ	3.69E+55 -14.34	39378.	
CCOQJ	<=> CJCOQ	3.08E+49 -12.15	38558.	! 1.00E-01 (1.00E-01) atm, 298-2000 K, 46% err, 1.00 x N2
CCOQJ	<=> CJCOQ	2.61E+40 -9.10	36498.	! 1.00E+00 (1.00E+00) atm, 298-2000 K, 58% err, 1.00 x N2
CCOQJ	<=> CJCOQ	6.24E+29 ~5.63	33648.	! 1.00E+01 (1.00E+01) atm, 298-2000 K, 53% err, 1.00 x N2
CCOQJ	<=> CJCOQ	5.33E+19 -2.40	30739.	! 1.00E+02 (1.00E+02) atm, 298-2000 K, 35% err, 1.00 x N2
CCOQJ	<=> CH2CO+HO2	8.71E+32 -8.02	42632.	! 1.00E-04 (1.00E-04) atm, 298-2000 K, 11% err, 1.00 x N2
CCOQJ	<=> CH2CO+HO2	3.14E+34 -8.18	42959.	! 1.00E-03 (1.00E-03) atm, 298-2000 K, 11% err, 1.00 x N2
CCOQJ	<=> CH2CO+HO2	3.28E+38 -9.04	44828.	! 1.00E-02 (1.00E-02) atm, 298-2000 K, 15% err, 1.00 x N2
CCOQJ	<=> CH2CO+HO2	2.52E+44 -10.39	48777.	! 1.00E-01 (1.00E-01) atm, 298-2000 K, 18% exr, 1.00 x N2
CCOQJ	<=> CH2CO+HO2	2.34E+44 ~9.95	51548.	! 1.00E+00 (1.00E+00) atm, 298-2000 K, 34% err, 1.00 x N2
CCOQJ	<=> CH2CO+HO2	5.07E+34 -6.70	50827.	! 1.00E+01 (1.00E+01) atm, 298-2000 K, 73% err, 1.00 x N2
CCOQJ	<=> CH2CO+HO2	1.66E+19 -1.85	47457.	! 1.00E+02 (1.00E+02) atm, 298-2000 K, 93% err, 1.00 x N2
ccool	<=> OCYCO+OH	7.42E+45 -11.96	36987.	! 1.00E-04 (1.00E-04) atm, 298-2000 K, 19% err, 1.00 x N2
CCOQJ	<=> OCYCO+OH	1.01E+52 -13.39	40909.	! 1.00E-03 (1.00E-03) atm, 298-2000 K, 21% err, 1.00 x N2
CCOQJ	<=> OCYCO+OH	1.20E+55 -13.87	44624.	! 1.00E-02 (1.00E-02) atm, 298-2000 K, 21% err, 1.00 x N2
CCOQJ	<=> OCYCO+OH	2.14E+51 -12.35	46148.	! 1.00E-01 (1.00E-01) atm, 298-2000 K, 45% err, 1.00 x N2
CCOQJ	<=> OCYCO+OH	7.01E+40 -8.89	45045.	! 1.00E+00 (1.00E+00) atm, 298-2000 K, 84% err, 1.00 x N2
ccoor	<=> OCYCO+OH	1.61E+26 -4.28	42025.	! 1.00E+01 (1.00E+01) atm, 298-2000 K, 113% err, 1.00 x N2
CCOQJ	<=> OCYCO+OH	3.68E+10 .50	38140.	! 1.00E+02 (1.00E+02) atm, 298-2000 K, 106% err, 1.00 x N2

```
298-2000 K, 17% err, 1.00 x N2
                                                                   30001.
                                                                               ! 1.00E-04 (1.00E-04) atm,
                                               1.32E+57
                                                         -16.22
CJCOQ
                     <=> CCOOJ
                                                                               ! 1.00E-03 (1.00E-03) atm,
                                                                                                             298-2000 K, 16% err, 1.00 x N2
                                                         -16.61
                                                                   32351.
                                               7.20E+59
CJCOQ
                     <=> CCOQJ
                                                                                                             298-2000 K, 25% err, 1.00 x N2
                                                                                 1.00E-02 (1.00E-02) atm,
                                                                   32965.
                     <=> CCOQJ
                                               1.23E+57
                                                         -15.33
CJCOQ
                                                                                                             298-2000 K, 43% err, 1.00 x N2
                                                                                 1.00E-01 (1.00E-01)
                                                                                                      atm,
                                               4.92E+50
                                                         -13.00
                                                                    32199.
                     <=> CCOQJ
CJCOQ
                                                                                                             298-2000 K, 56% err, 1.00 x N2
                                                          -9.73
                                                                                  1.00E+00 (1.00E+00)
                                                                                                      atm,
                                               1.03E+41
                                                                    30078.
CJCOO
                     <=> CCOQJ
                                                                                                             298-2000 K, 53% err, 1.00 x N2
                                                                                  1.00E+01 (1.00E+01)
                                                                                                      atm,
                                                          -6.00
                                                                    27076.
                                               4.20E+29
CJCOQ
                     <=> CCOQJ
                                                                                                             298-2000 K,
                                                                                                                          36% err, 1.00 x N2
                                                                                 1.00E+02 (1.00E+02)
                                                                                                      atm.
                     <=> CCOQJ
                                               9.32E+18
                                                          -2.58
                                                                    24025.
CJCOQ
                                                                                                                          23% err, 1.00 x N2
                                                                                 1.00E-04 (1.00E-04) atm,
                                                                                                             298-2000 K,
                                                          -8.78
                                                                    30087.
                     <=> CH3CO+O2
                                               3.15E+34
CJCOQ
                                                                                                             298-2000 K,
                                                                                                                          29% err, 1.00 x N2
                                                          -9.43
                                                                    31424.
                                                                                 1.00E-03 (1.00E-03) atm,
                                               5.71E+37
CJCOQ
                     <=> CH3CO+O2
                                                                                                                          34% err, 1.00 x N2
                                                                               ! 1.00E-02 (1.00E-02)
                                                                                                      atm,
                                                                                                             298-2000 K,
                     <=> CH3CO+O2
                                               2.60E+44
                                                         -11.02
                                                                    35301,
CJCOQ
                                                                                                             298-2000 K,
                                                                                                                          22% err, 1.00 x N2
                                                         -11.64
                                                                    39219.
                                                                               ! 1.00E-01 (1.00E-01) atm,
                                               8.76E+47
                     <=> CH3CO+O2
CJCOQ
                                                                                                             298-2000 K,
                                                                                                                          37% err, 1.00 x N2
                                                                                 1.00E+00 (1.00E+00)
                                               5.99E+42
                                                          -9.69
                                                                    40265.
                     <=> CH3CO+O2
CJCOQ
                                                                                                                          69% err, 1.00 x N2
                                                                                                             298-2000 K,
                                                          -5.54
                                                                    38210.
                                                                                 1.00E+01 (1.00E+01) atm,
                     <=> CH3CO+O2
                                               8.33E+29
CJCOQ
                                                                                 1.00E+02 (1.00E+02) atm,
                                                                                                             298-2000 K,
                                                                                                                          77% err, 1.00 x N2
                     <=> CH3CO+O2
                                               5.13E+13
                                                           -.51
                                                                    34401.
CJCOQ
                                                                                                                          28% err, 1.00 x N2
                                                                               ! 1.00E-04 (1.00E-04) atm,
                                                                                                             298-2000 K,
                                                         -12.34
                                                                    30200.
                     <=> CH2CO+HO2
                                               7.53E+46
CJCOQ
                                                                                                             298-2000 K,
                                                                                                                          19% err, 1.00 x N2
                                                         -12.60
                                                                    33278.
                                                                                 1.00E-03 (1.00E-03) atm,
                                               1.33E+49
                     <=> CH2CO+HO2
CJCOO
                                                                                                             298-2000 K.
                                                                                                                          18% err, 1.00 x N2
                                                                                  1.00E-02 (1.00E-02)
                                                                                                      atm,
                                               2.09E+48
                                                         -11.97
                                                                    35644.
CJCOQ
                     <=> CH2CO+HO2
                                                                                                             298-2000 K,
                                                                                                                          41% err, 1.00 x N2
                                                          -9.85
                                                                    36297.
                                                                                 1.00E-01 (1.00E-01)
                                                                                                      atm,
                     <=> CH2CO+HO2
                                               2.85E+42
CJCOQ
                                                                                                                          75% err, 1.00 x N2
                                                                               ! 1.00E+00 (1.00E+00)
                                                                                                      atm,
                                                                                                             298-2000 K.
                                                          -6.14
                                                                    34752.
                                               1.10E+31
CJCOQ
                     <=> CH2CO+H02
                                                                                                                          97% err. 1.00 x N2
                                                                                                             298-2000 K,
                                               1.30E+16
                                                           -1.46
                                                                    31555.
                                                                               ! 1.00E+01 (1.00E+01) atm,
                     <=> CH2CO+HO2
CJCOQ
                                                                                                             298-2000 K.
                                                                                                                          89% err, 1,00 x N2
                                                                               ! 1.00E+02 (1.00E+02)
                                               2.52E+00
                                                           3.33
                                                                    27616.
CJCOQ
                     <=> CH2CO+HO2
                                                                                                             298-2000 K,
                                                                                                                          22% err, 1.00 x N2
                                                                                  1.00E-04 (1.00E-04) atm,
                     <=> CC*00J+0.
                                               3.79E+22
                                                           -5.37
                                                                    49300.
CJCOO
                                                                                  1.00E-03 (1.00E-03) atm,
                                                                                                             298-2000 K,
                                                                                                                          22% err, 1.00 x N2
                                                           -5.38
                                                                    49307.
                                               3.89E+23
                     <=> CC*00J+0.
CJCOQ
                                                                                                                          22% err, 1.00 x N2
                                                                                                             298-2000 K,
                                                                                  1.00E-02 (1.00E-02)
                                                                                                      atm,
                     <=> CC*00J+0.
                                               5.03E+24
                                                           -5.41
                                                                    49373.
CJCOQ
                                                                                                                          24% err, 1.00 x N2
                                                                                  1.00E-01 (1.00E-01)
                                                                                                      atm,
                                                                                                             298-2000 K,
                                               4.08E+26
                                                           -5.67
                                                                    49925.
                     <=> CC*00J+0.
CJCOQ
                                                                                                      atm,
                                                                                                             298-2000 K.
                                                                                                                          27% err, 1.00 x N2
                                                           -6.59
                                                                    52203.
                                                                                 1.00E+00 (1.00E+00)
                     <=> CC*00J+0.
                                               7.63E+30
CJCOQ
                                                                    55300.
                                                                               ! 1.00E+01 (1.00E+01) atm,
                                                                                                             298-2000 K,
                                                                                                                          17% err, 1.00 x N2
                                               4.08E+33
                                                           -6.99
                     <=> CC*00J+0.
CJCOQ
                                                                                                             298-2000 K,
                                                                                                                          32% err, 1.00 x N2
                                                                                  1.00E+02 (1.00E+02)
                                                                                                      atm,
                                                           -4.53
                                                                    55490.
                     <=> CC*00J+0.
                                               4.32E+26
CJCOQ
                                                                                                                          21% err, 1.00 x N2
                                                           -6.21
                                                                    32810.
                                                                                  1.00E-04 (1.00E-04)
                                                                                                      atm.
                                                                                                             298-2000 K,
                                               1.12E+27
                     <=> CH2CO+HO2
CJCOQ
                                                                                                             298-2000 K,
                                                                                                                          22% err, 1.00 x N2
                                                                                  1.00E-03 (1.00E-03) atm,
                                               2.88E+28
                                                           -6.32
                                                                    33048.
CJCOQ
                     <=> CH2CO+HO2
                                                                                                             298-2000 K, 27% err, 1.00 x N2
                                                                                  1.00E-02 (1.00E-02)
                                               3.87E+31
                                                           -6.93
                                                                    34351.
                                                                                                      atm.
                     <=> CH2CO+HO2
CJCOQ
                                                                                                      atm,
                                                                                                             298-2000 K, 23% err, 1.00 x N2
                                                                                  1.00E-01 (1.00E-01)
                                               2.50E+35
                                                           -7.70
                                                                    36706.
CJCOO
                      <=> CH2CO+H02
                                                                                                             298-2000 K, 15% err, 1.00 x N2
                                                           -7.11
                                                                    37759.
                                                                                  1.00E+00 (1.00E+00)
                                                                                                      atm,
                                               4.18E+34
                     <=> CH2CO+HO2
CJCOQ
                                                                                  1.00E+01 (1.00E+01)
                                                                                                      atm,
                                                                                                             298-2000 K,
                                                                                                                         21% err, 1.00 x N2
                                                           -4.95
                                                                    36702.
                                               2.91E+28
                     <=> CH2CO+HO2
C1COO
                                                                                                             298-2000 K, 18% err, 1.00 x N2
                                                                                  1.00E+02 (1.00E+02)
                                                           -2.27
                                                                    34547.
                     <=> CH2CO+HO2
                                               1.88E+20
CJCOQ
                                                                                  1.00E-04 (1.00E-04) atm,
                                                                                                             298-2000 K, 32% err, 1.00 x N2
                                                           -9.27
                                                                    26773.
                                               5.56E+36
                      <=> OCYCO+OH
CJCOQ
                                                                                                             298-2000 K, 28% err, 1.00 x N2
                                                                    29023.
                                                                                  1.00E-03 (1.00E-03)
                                                                                                      atm,
                                                           -9.99
                      <=> OCYCO+OH
                                               2.34E+40
C1COO
                                                                                                             298-2000 K, 18% err, 1.00 x N2
                                                           -9.85
                                                                    30565.
                                                                                  1.00E-02 (1.00E-02) atm,
                                               1.38E+41
                      <=> OCYCO+OH
CJCOQ
                                                                                  1.00E-01 (1.00E-01) atm,
                                                                                                             298-2000 K, 18% err, 1.00 x N2
                                               7.67E+37
                                                           -8.54
                                                                    30670.
                      <=> OCYCO+OH
CJCOQ
                                                                                                             298-2000 K, 26% err, 1.00 x N2
                                                                    29392.
                                                                                  1.00E+00 (1.00E+00)
                                                                                                      atm,
                                               1.97E+31
                                                           -6.27
                      <=> OCYCO+OH
CJCOQ
                                                                                                             298-2000 K, 26% err, 1.00 x N2
                                                                                  1.00E+01 (1.00E+01)
                                                                                                      atm,
                                                                    27305.
                                               1.65E+23
                                                           -3.62
                      <=> OCYCO+OH
CJCOQ
                                                                               ! 1.00E+02 (1.00E+02) atm, 298-2000 K, 16% err, 1.00 x N2
                                               8.08E+15
                                                           -1.27
                                                                    25205.
                      <=> OCYCO+OH
CJCOQ
```

APPENDIX 3.4

LOG RATE CONSTANTS VS PRESSURE AND TEMPERATURE FOR $CH_3CjO + O_2$ REACTION

$Chemical\ Activation\ Reaction\ (\ CH_3CjO+O_2\)\ Rate\ Constants: log\ rate\ constants\ vs\ Temperature\ at\ specified\ Pressures$

P (ATM)	T (K)	1000/T	CCOOJ	CH3CO+02	CH2CO+HO2	сс*00л+0.	CJCOQ	CH2CO+HO2	OCYCO+OH	QRRK (forw)
1.00E-04	298.		10.923	12.046	12.015	-2.203	10.537	8.081	11.585	12,187
1.00E-04	400.		10.281	12.062	12.027	1.201	10.009	8.997	11.603	12.175
1.00E-04	500.	2.00E+00	9.709	12.089	12.013	3.545	9.492	9.559	11.579	12.153
1.00E-04	600.	1.67E+00	9.183	12.112	11.997	5.441	8.994	9.950	11.548	12.133
1.00E-04	800.	1.25E+00	8.230	12.140	11.972	7.328	8.073	10.458	11.482	12.103
1.00年-04	1000.	1.00E+00	7.387	12.156	11.955	8.412	7.297	10.764	11.409	12.085
1.00E-04	1500.	6.67E-01	5.861	12.166	11.943	9.817	6.009	11.137	11.218	12.074
1.00E-04	2000.	5.00E-01	5.002	12.144	11.961	10.487	5,233	11.294	11.068	12.100
P (ATM)	T (K)	1000/T	CCOÕL	CH3CO+02	CH2CO+HO2	CC*00J+0.	C1COÖ	CH2CO+HO2	OCACO+OH	QRRK (forw)
1.00E-03	298.	3.36E+00	11.786	11.964	11.893	-2.203	11.176	8.012	11.272	12.238
1.00E-03	400.	2.50E+00	11.237	12.043	11.991	1.200	10.875	8.977	11.501	12.189
1.00E-03	500.	2.00E+00	10.693	12.084	12.002	3.545	10.441	9.553	11.545	12.157
1.00E-03	600.	1.67E+00	10.177	12.110	11.993	5.441	9.974	9.948	11.536	12.134
1.00E-03	800.	1.25E+00	9.229	12.140	11.971	7.328	9.069	10.458	11.480	12.104
1.00E-03	1000.	1.00E+00	8.387	12.156	11.955	8.412	8.296	10.764	11.408	12.085
1.00E-03	1500.	6.67E-01	6.861	12.166	11.943	9.817	7.008	11.137	11.218	12.074
1.00E-03	2000.	5.00E-01	6.002	12.144	11.961	10.487	6.233	11.294	11.068	12.100
P (ATM)	T (K)	1000/T	CCOQJ	CH3CO+02	CH2CO+HO2	CC*00J+0.	CJCOQ	CH2CO+HO2	OCYCO+OH	QRRK (forw)
1.00E-02	298.		12.268	11.613	11.422	-2.205	11.016	7.588	10.242	12.350
1.00E-02	400.	2.50E+00	11.979	11.919	11.781	1.200	11.221	8.818	10.986	12.260
1.00E-02	500.	2.00E+00	11.577	12.043	11,919	3.544	11,106	9.495	11.317	12.189
1.00E-02	600.	1.67E+00	11.126	12.097	11,962	5.441	10.813	9.927	11.443	12.146
1.00E-02	800.	1.25E+00	10.220	12.138	11.967	7.328	10.034	10.455	11.465	12.105
1.00E-02	1000.	1.00E+00	9.385	12.156	11,954	8.412	9.287	10.763	11.406	12.085
1.00E-02	1500.	6.67E-01	7.861	12,166	11,943	9.817	8.007	11.137	11.218	12.074
1.00E-02	2000.	5.00E-01	7.002	12.144	11.961	10.487	7.233	11.294	11.068	12.100
P (ATM)	T (K)	1000/T	CCOQJ	CH3CO+O2	CH2CO+HO2	CC*00J+0.	CJCOQ	CH2CO+HO2	OCYCO+OH	QRRK (forw)
1.00E-01		3.36E+00	12.400	10.895	10.594	-2.223	10.251	6.423	8.590	12,410
1.00E-01	400.		12.321	11.504	11.209	1.190	10.825	8.148	9.809	12.368
1.00E-01	500.	2.00E+00	12.147	11.840	11.587	3.540	11.115	9.157	10.578	12.292
1.00E-01	600.		11.875	12.008	11.793	5.439	11.168	9.773	11.025	12.212
1.00E-01	800.	1.25E+00	11.150	12.124	11.933	7.328	10.809	10.427	11.361	12.120
1.00E-01	1000.	1.00E+00	10.366	12.154	11.948	8.412	10.213	10.758	11.381	12.088
1.00E-01	1500.	6.67E-01	8.859	12.166	11.943	9.817	8.998	11.136	11.216	12.074
1.00E-01	2000.	5.00E-01	8.002	12.144	11.961	10.487	8.230	11.294	11.068	12.100
										*
P (ATM)	T (K)	1000/T	CCOQJ	CH3CO+02	CH2CO+HO2	CC*00J+0.	CACOÖ	CH2CO+HO2	OCACO+OH	QRRK (forw)
1.00E+00	298.	3.36E+00	12.421	9.963	9.626	-2.370	9.291	4.680	6.668	12.422
1.00E+00	400.	2.50E+00	12.409	10.747	10.350	1.108	10.001	6.784	8.127	12.414
1.00E+00	500.	2.00E+00	12.367	11.311	10.916	3.498	10.541	8.207	9.249	12.388
1.00E+00	600.	1.67E+00	12.269	11.685	11.331	5.424	10.903	9.178	10.063	12.336

1.00E+00	800.	1.25E+00	11.866	12.036	11.771	7.324	11.117	10.245	10.954	12.194
1.00E+00	1000.	1.00E+00	11,260	12.135	11.905	8.411	10.880	10.708	11.237	12.109
1.00E+00	1500.	6.67E-01	9.848	12.165	11.940	9.817	9.929	11.132	11.201	12.075
1.00E+00	2000.	5.00E-01	8.999	12.144	11.960	10.487	9.208	11.293	11.064	12.100
P (ATM)	T (K)	1000/T	ссоод	CH3CO+02	CH2CO+HO2	cc*00J+0.	CJCOQ	CH2CO+HO2	OCYCO+OH	QRRK (forw
1.00E+01	298.	3.36E+00	12.423	8.972	8.630	-2.958	8.296	2.722	4.679	12.423
1.00E+01	400.	2.50E+00	12,422	9.800	9.376	. 673	9.032	4.964	6.200	12.422
1.00E+01	500.	2.00E+00	12.416	10.477	10.015	3.216	9.658	6.643	7.488	12.418
1.00E+01	600.	1.67E+00	12.397	11.022	10.563	5.294	10.187	7.950	8.566	12.406
1.00E+01	800.	1.25E+00	12.256	11.728	11.344	7.292	10.883	9.632	10.052	12.325
1.00E+01	1000.	1.00E+00	11,919	12.031	11.728	8.403	11.092	10.453	10.773	12.198
1.00E+01	1500.	6.67E-01	10.786	12.158	11.925	9.816	10.668	11.096	11.113	12.083
1.00E+01	2000.	5.00E-01	9.983	12.142	11.958	10.487	10.102	11.283	11.041	12.101
P (ATM)	T (K)	1000/T	CCOOI	CH3CO+02	CH2CO+HO2	CC*00J+0.	COCOQ	CH2CO+HO2	OCYCO+OH	QRRK (forw
1.00E+02	298.	3.36E+00	12.423	7.973	7.630	-3.884	7.296	.727	2.680	12.423
1.00E+02	400.	2.50E+00	12.423	8.807	8.379	191	8.036	2.992	4.209	12.423
1.00E+02	500.	2.00E+00	12.422	9.507	9.031	2.456	8.676	4.740	5.535	12.423
1.00E+02	600.	1.67E+00	12.420	10.118	9.620	4.757	9.253	6.210	6.716	12.421
1.00E+02	800.	1.25E+00	12.392	11.096	10.614	7.076	10.213	8.411	8.620	12.402
1.00E+02	1000.	1.00E+00	12.274	11.697	11.287	8.330	10.818	9.729	9.821	12.333
1.00E+02	1500.	6.67E-01	11.577	12.113	11.848	9.808	11.077	10.905	10.800	12.131

Chemical Activation Reaction ($CH_3CjO + O_2$) Rate Constants : log rate constants vs Pressure at specified Temperatures

T (K)	1000/T	P (ATM)	CCOQJ	CH3CO+02	CH2CO+HO2	CC*00J+0.	CJCOQ	CH2CO+HO2	OCYCO+OH	QRRK (forw)
298.	3.36E+00	1.00E-04	10.923	12.046	12.015	-2.203	10.537	8.081	11.585	12.187
298.	3.36E+00	1.00E-03	11.786	11.964	11.893	-2.203	11.176	8.012	11.272	12.238
298.	3.36E+00	1.00E-02	12.268	11.613	11.422	-2.205	11.016	7.588	10.242	12.350
298.	3.36E+00	1.00E-01	12.400	10.895	10.594	-2.223	10.251	6.423	8.590	12.410
298.	3.36E+00	1.00E+00	12.421	9.963	9.626	-2.370	9.291	4.680	6.668	12.422
298.	3.36E+00	1.00E+01	12.423	8.972	8.630	-2.958	8.296	2.722	4.679	12.423
298.	3.36E+00	1.00E+02	12.423	7.973	7.630	-3.884	7.296	.727	2.680	12.423
T (K)	1000/T	P (ATM)	CCOQJ	CH3CO+02	CH2CO+HO2	CC*00J+0.	CJCOQ	CH2CO+HO2	OCYCO+OH	QRRK (forw)
400.	2.50E+00	1.00E-04	10.281	12.062	12.027	1.201	10.009	8.997	11.603	12.175
400.	2.50E+00	1.00E-03	11.237	12.043	11.991	1.200	10.875	8.977	11.501	12.189
400.	2.50E+00	1.00E-02	11.979	11.919	11.781	1.200	11.221	8.818	10.986	12.260
400.	2.50E+00	1.00E-01	12.321	11.504	11.209	1.190	10.825	8.148	9.809	12.368
400.	2.50E+00	1.00E+00	12.409	10.747	10.350	1.108	10.001	6.784	8.127	12.414
400.	2.50E+00	1.00E+01	12.422	9.800	9.376	. 673	9.032	4.964	6.200	12.422
400.	2.50E+00	1.00E+02	12.423	8.807	8.379	191	8.036	2.992	4.209	12.423
T (K)	1000/T	P (ATM)	CCOQJ	CH3CO+02	CH2CO+HO2	CC*00J+0.	CICOO	CH2CO+HO2	OCYCO+OH	QRRK (forw)
500.			9.709	12.089	12.013	3,545	9.492	9.559	11.579	12.153
500.	2.00E+00	1.00E-03	10.693	12.084	12.002	3.545	10.441	9.553	11.545	12.157
500.		1.00E-02	11.577	12.043	11.919	3.544	11.106	9.495	11.317	12.189
500.		1.00E-01	12.147	11.840	11.587	3.540	11.115	9.157	10.578	12.292
500.	2.00E+00	1.00E+00	12.367	11.311	10.916	3.498	10.541	8.207	9.249	12.388
500.	2.00E+00	1.00E+01	12.416	10.477	10.015	3.216	9.658	6.643	7.488	12.418
500.	2.00E+00	1.00E+02	12.422	9.507	9.031	2.456	8.676	4.740	5.535	12.423
T (K)	1000/T	P (ATM)	CCOQJ	CH3CO+02	CH2CO+HO2	CC*00J+0.	CJCOO	Сн2СО+нО2	осусо+он	QRRK (forw)
	1.67E+00		9.183	12.112	11.997	5,441	8.994	9.950	11.548	12.133
600.		1.00E-04 1.00E-03	10.177	12.112	11.993	5.441	9.974	9.948	11.536	12.134
600.	1.67E+00		11.126	12.097	11.962	5.441	10.813	9.927	11.443	12.146
600.		1.00E-01	11.875	12.008	11.793	5.439	11.168	9.773	11.025	12.212
600.	1.67E+00	1.00E+00	12.269	11.685	11.331	5.424	10.903	9.178	10.063	12.336
	1.67E+00		12.397	11.022	10.563	5.294	10.187	7.950	8.566	12,406
	1.67E+00		12.420	10,118	9.620	4.757	9.253	6.210	6.716	12.421
T (K)	1000/T	P (ATM)	CCOQJ	CH3CO+02	CH2CO+HO2	CC*00J+0.	CYCOO	CH2CO+HO2	OCYCO+OH	QRRK (forw)
800.	1.25E+00		8.230	12.140	11.972	7.328	8.073	10.458	11.482	12.103
800.	1.25E+00	1.00E-03	9.229	12.140	11.971	7.328	9.069	10.458	11.480	12.104
800.		1.00E-02	10.220	12.138	11.967	7.328	10.034	10.455	11.465	12.105
800.		1.00E-01	11.150	12.124	11.933	7.328	10.809	10.427	11.361	12.120
800.	1.25E+00	1.00E+00	11.866	12.036	11.771	7.324	11.117	10.245	10.954	12.194
800.	1.25E+00	1.00E+01	12.256	11.728	11.344	7.292	10.883	9.632	10.052	12.325
800,	1.25E+00	1.00E+02	12.392	11.096	10.614	7.076	10.213	8.411	8.620	12.402

T (K)	1000/T	P (ATM)	CCOQJ	CH3CO+O2	CH2CO+HO2	CC*00J+0.	CJCOQ	CH2CO+HO2	OCYCO+OH	QRRK (forw)
1000.	1.00E+00	1.00E-04	7.387	12.156	11.955	8.412	7.297	10.764	11.409	12.085
1000.	1.00E+00	1.00E-03	8.387	12.156	11.955	8.412	8.296	10.764	11.408	12.085
1000.	1.00E+00	1.00E-02	9.385	12.156	11.954	8.412	9.287	10.763	11.406	12.085
1000.	1.00E+00	1.00E-01	10.366	12.154	11.948	8.412	10.213	10.758	11.381	12.088
1000.	1.00E+00	1.00E+00	11.260	12.135	11.905	8.411	10.880	10.708	11.237	12.109
1000.	1.00E+00	1.00E+01	11.919	12.031	11.728	8.403	11.092	10.453	10.773	12.198
1000.	1.00E+00	1.00E+02	12.274	11.697	11.287	8.330	10.818	9.729	9.821	12.333
T (K)	1000/T	P (ATM)	CCOQJ	CH3CO+O2	CH2CO+HO2	CC*00J+0.	CJCOQ	CH2CO+HO2	OCYCO+OH	QRRK (forw)
1500.	6.67E-01	1.00E-04	5.861	12.166	11.943	9.817	6.009	11.137	11.218	12.074
1500.	6.67E-01	1.00E-03	6.861	12.166	11.943	9.817	7.008	11.137	11.218	12.074
1500.	6.67E-01	1.00E-02	7.861	12.166	11.943	9.817	8.007	11.137	11.218	12.074
1500.	6.67E-01	1.00E-01	8.859	12.166	11.943	9.817	8.998	11.136	11.216	12.074
1500.	6.67E-01	1.00E+00	9.848	12.165	11.940	9.817	9.929	11.132	11.201	12.075
1500.	6.67E-01	1.00E+01	10.786	12.158	11.925	9.816	10.668	11.096	11.113	12.083
1500.	6.67E-01	1.00E+02	11.577	12.113	11.848	9.808	11.077	10.905	10.800	12.131
T (K)	1000/T	P (ATM)	CCOQJ	CH3CO+02	СН2СО+НО2	CC*00J+0.	CJCOQ	CH2CO+HO2	OCYCO+OH	QRRK (forw)
2000.	5.00E-01	1.00E-04	5.002	12.144	11.961	10.487	5.233	11.294	11.068	12.100
2000.	5.00E-01	1.00E-03	6.002	12.144	11.961	10.487	6.233	11.294	11.068	12.100
2000.	5.00E-01	1.00E-02	7.002	12.144	11.961	10.487	7.233	11.294	11.068	12.100
2000.	5.00E-01	1.00E-01	8.002	12.144	11.961	10.487	8.230	11.294	11.068	12.100
2000.	5.00E-01	1.00E+00	8.999	12.144	11.960	10.487	9.208	11.293	11.064	12.100
2000.	5.00E-01	1.00E+01	9.983	12.142	11.958	10.487	10.102	11.283	11.041	12.101
2000.										

Adduct (CCOQj) Dissociation Reaction Rate Constants : log rate constants vs Temperature at specified Pressures

P (ATM)	T (K)	1000/T	CH3CO+O2	CH2CO+HO2	CC*00J+0.	CJC00	CH2CO+HO2	остсо+он	QRRK (forw)
1.00E-04	298.	3.36E+00	-13.040	-8.998	-30.463	-8.752	-18.173	-10.896	-8.555
1.00E-04	400.	2.50E+00	-7.159	-3.973	-20.822	-3.850	-11.229	-5.423	-3.600
1.00E-04	500.	2.00E+00	-3.925	-1.259	-15.220	-1.234	-7.313	-2.501	933
1.00E-04	600.	1.67E+00	-1.921	.376	-11.079	. 285	-4.817	755	. 652
1.00E-04	800.	1.25E+00	.274	2.054	-6.617	1.690	-1.950	1.050	2.244
1.00E-04	1000.	1.00E+00	1.312	2.719	-4.206	2.112	468	1.815	2.869
1.00E-04	1500.	6.67E-01	2.302	3.113	-1.260	2.034	1.167	2.373	3.269
1.00E-04	2000.	5.00E-01	2.709	3.191	.205	1.619	1.900	2.492	3.397
	2000.								
P (ATM)	T (K)	1000/T	CH3CO+O2	CH2CO+HO2	CC*00J+0.	CJCOQ	CH2CO+HO2	OCYCO+OH	QRRK (forw)
1.00E-03	298.	3.36E+00	-12.172	-8.850	-29.463	-8.661	-17.256	-11.160	-8.443
1.00E-03	400.	2.50E+00	-6.202	-3.593	-19.822	-3.559	-10.258	-5.187	-3.269
1.00E-03	500.	2.00E+00	-2.941	683	-14.220	735	-6.323	-1.945	394
1.00E-03	600.	1.67E+00	~.927	1.083	-10.079	. 957	-3.821	.000	1.348
1.00E-03	800.	1.25E+00	1.273	2.906	-5.617	2.611	951	1.985	3.123
1.00E-03	1000.	1.00E+00	2.312	3.648	-3.206	3.159	. 531	2.797	3.827
1.00E-03	1500.	6.67E-01	3.302	4.100	260	3.124	2.167	3.371	4.265
1.00E-03	2000.	5.00E-01	3.709	4.188	1.205	2.704	2.900	3.491	4.397
P (ATM)	T (K)	1000/T	CH3CO+O2	CH2CO+HO2	CC*00J+0.	CJCOQ	CH2CO+HO2	OCYCO+OH	QRRK (forw)
1.00E-02	298.	3.36E+00	-11.682	-8.822	-28.465	-8.644	-16.760	-11.923	-8.422
1.00E-02	400.	2.50E+00	-5.455	-3.452	-18.823	-3.450	-9.479	-5.535	-3.146
1.00E-02	500.	2.00E+00	-2.055	363	-13.221	459	-5.418	-1.896	095
1.00E-02	600.	1.67E+00	.023	1.577	-9.080	1.413	-2.861	. 356	1.826
1.00E-02	800.	1.25E+00	2.264	3.638	-4.617	3.344	.041	2.714	3.860
1.00E-02	1000.	1.00E+00	3.310	4.501	-2.206	4.069	1.529	3.690	4.702
1.00E-02	1500.	6.67E-01	4.302	5.060	.740	4.246	3.166	4.355	5.247
1.00E-02	2000.	5.00E-01	4.709	5.175	2.205	3.894	3.900	4.487	5.393
25 (3 mm.t)	m (3r)	1000/T	CH3CO+O2	CH2CO+HO2	CC*00J+0.	CJCOQ	CH2CO+HO2	осусо+он	QRRK (forw)
P (ATM) 1.00E-01	т (K) 298.	3.36E+00	-11.547	-8.818	-27.483	-8.642	-17.071	-12.877	-8.420
1.00E-01	400.	2.50E+00	-5.110	-3.421	~17.832	-3.426	-9.337	-6.303	-3.118
1.00E-01	500.	2.00E+00	-1.483	246	-12.225	~.354	-4.923	-2.357	.020
1.00E-01	600.	1.67E+00	.773	1.834	-8.082	1.657	-2.134	.220	2.084
1.00E-01	800.	1.25E+00	3.194	4.186	-3.617	3.898	.972	3.094	4.416
1.00E-01	1000.	1.00E+00	4.292	5.243	-1.206	4.846	2.510	4.366	5.460
1.00E-01	1500.	6.67E-01	5.300	5.986	1.740	5.285	4.164	5.274	6.194
	2000.	5.00E-01	5.708	6.150	3.205	5.048	4.899	5.459	6.381
1.00E-01	2000.	3.00E-01	3.706	0,130	3.203	3.040	*.033	J. 4 JJ	U. JQI
P (ATM)	T (K)	1000/T	CH3CO+02	CH2CO+HO2	CC*00J+0.	CJCOQ	СН2СО+НО2	OCYCO+OH	QRRK (forw)
1.00E+00	298.	3.36E+00	-11.526	-8.818	-26.629	-8.641	-17.903	-13.871	-8.419
1.00E+00	400.	2.50E+00	-5.022	-3.417	-16.913	-3.423	-9.902	-7.248	-3.113
1.00E+00	500.	2.00E+00	-1.263	220	-11.271	331	-5.145	-3,157	.051
1.00E+00	600.	1.67E+00	1.168	1.922	-7.101	1.742	-2.012	348	2.187

1.00E+00	800.	1.25E+00	3.911	4.506	-2.622	4.232	1.601	3.044	4.766
1.00E+00	1000.	1.00E+00	5.185	5.808	208	5.449	3.370	4.716	6.054
1.00E+00	1500.	6.67E-01	6.288	6.852	2.739	6.263	5.141	6.052	7.085
1.00E+00	2000.	5.00E-01	6.706	7.103	4.205	6.195	5.891	6.365	7.351
P (ATM)	T (K)	1000/T	CH3CO+02	CH2CO+HO2	CC*00J+0.	CJCOQ	СН2СО+НО2	осусо+он	QRRK (forw)
1.00E+01	298.	3.36E+00	-11.523	-8.818	-26.214	-8.641	-18.880	-14.871	-8.419
1.00E+01	400.	2.50E+00	-5.009	-3.416	-16.345	-3.422	-10.809	-8.240	-3.113
1.00E+01	500.	2.00E+00	-1.213	216	-10.570	328	-5.895	-4.110	.057
1.00E+01	600.	1.67E+00	1.295	1.941	-6.255	1.760	-2.524	-1.194	2.217
1.00E+01	800.	1.25E+00	4.301	4.642	-1.666	4.373	1.644	2.584	4.944
1.00E+01	1000.	1.00E+00	5.845	6.155	.779	5.823	3.842	4.670	6.455
1.00E+01	1500.	6.67E-01	7.227	7.603	3.738	7.113	6.003	6.594	7.874
1.00E+01	2000.	5.00E-01	7.689	8.006	5.204	7.294	6.837	7.131	8.280
P (ATM)	T (K)	1000/T	CH3CO+02	CH2CO+HO2	CC*00J+0.	CJCOQ	CH2CO+HO2	остсо+он	QRRK (forw)
1.00E+02	298.	3.36E+00	-11.523	-8.818	-26.139	-8.641	-19.877	-15.871	-8.419
1.00E+02	400.	2.50E+00	-5.007	-3.416	-16.209	-3.422	-11.797	-9.240	-3.113
1.00E+02	500.	2.00E+00	-1.207	216	-10.345	328	-6.851	-5.103	.057
1.00E+02	600.	1.67E+00	1.319	1.944	-5.845	1.762	-3.399	-2.162	2.222
1.00E+02	800.	1.25E+00	4.437	4.680	937	4.412	1.113	1.800	5.005
1.00E+02	1000.	1.00E+00	6.200	6.316	1.672	5.997	3.746	4.217	6.669
1.00E+02	1500.	6.67E-01	8.018	8.181	4.723	7.755	6.550	6.805	8.509
1.00E+02	2000.	5.00E-01	8.619	8.812	6.199	8.251	7.609	7.662	9.124

Adduct (CCOQj) Dissociation Reaction Rate Constants : log rate constants vs Pressure at specified Temperatures

T (K)	1000/T	P (ATM)	CH3CO+O2	CH2CO+HO2	CC*00J+0.	CJCOQ	CH2CO+HO2	OCYCO+OH	QRRK (forw)
298.	3.36E+00	1.00E-04	-13.040	-8.998	-30.463	-8.752	-18.173	-10.896	-8.555
298.	3.36E+00	1.00E-03	-12.172	-8.850	-29.463	-8.661	-17.256	-11.160	-8.443
298.	3.36E+00	1.00E-02	-11.682	-8.822	-28.465	-8.644	-16.760	-11.923	-8.422
298.	3.36E+00	1.00E-01	-11.547	-8.818	-27.483	-8.642	-17.071	-12.877	-8.420
298.		1.00E+00	-11.526	-8.818	-26.629	-8.641	-17.903	-13.871	-8.419
298.		1.00E+01	-11.523	-8.818	-26.214	-8.641	-18.880	-14.871	-8.419
298.		1.00E+02	-11.523	-8.818	-26,139	-8.641	-19.877	-15.871	-8.419
T (K)	1000/T	P (ATM)	CH3CO+O2	CH2CO+HO2	CC*00J+0.	CJCOO	CH2CO+HO2	OCYCO+OH	QRRK (forw)
400.		1.00E-04	-7.159	-3.973	-20.822	-3.850	-11.229	-5.423	-3.600
400.	2.50E+00	1.00E-03	-6.202	-3.593	-19.822	-3.559	-10.258	-5.187	-3.269
400.		1.00E-02	-5.455	-3.452	-18.823	-3.450	-9.479	-5.535	-3.146
400.		1.00E-01	-5.110	-3.421	-17.832	-3.426	-9.337	-6.303	-3.118
400.		1.00E+00	-5.022	-3.417	-16.913	-3.423	-9.902	-7.248	-3.113
400.			-5.022 -5.009	-3.416	-16.345	-3.422	-10.809	-8.240	-3.113
400.	2.50E+00	1.00E+01	-5.009 -5.007	-3.416 -3.416	-16.209	-3.422	-11.797	-9.240	-3.113
400.	2.505+00	1.006+02	-3.007	~3.410	-10.209	-3.422	-11.191	-9.240	3.113
~ (T)	1000/T	P (ATM)	CH3CO+02	CH2CO+HO2	CC*00J+0.	CJCOQ	CH2CO+H02	осусо+он	QRRK (forw)
T (K)	•		-3.925	-1.259	-15.220	-1.234	-7.313	-2.501	933
500.	2.00E+00			683	-14.220	735	-6.323	-1.945	394
500.	2.00E+00	1.00E-03	-2.941	863 363	-13.221	459	-5.418	-1.896	095
500.	2.00E+00	1.00E-02	-2.055				-4.923	-2.357	.020
500.			-1.483	246	-12.225	354		-2.357 -3.157	.051
500.		1.00E+00	-1.263	220	-11.271	331	-5.145		
500.	2.00E+00	1.00E+01	-1.213	216	-10.570	328	-5.895	-4.110	.057
500.	2.00E+00	1.00E+02	-1.207	216	-10.345	328	-6.851	-5.103	.057
							######################################	001100101	000# (6)
T (K)	1000/T	P (ATM)	CH3CO+02	CH2CO+HO2	CC*00J+0.	CJCOQ	CH2CO+H02	OCACO+OH	QRRK (forw) .652
600.	1.67E+00		-1.921	.376	-11.079	.285	-4.817	755	
600.	1.67E+00	1.00E-03	927	1.083	-10.079	.957	-3.821	.000	1.348
600.	1.67E+00	1.00E-02	.023	1.577	-9.080	1.413	-2.861	.356	1.826
600.			.773	1.834	-8.082	1.657	-2.134	.220	2.084
600.	1.67E+00		1.168	1.922	-7.101	1.742	-2.012	348	2.187
600.	1.67E+00		1.295	1.941	-6.255	1.760	-2.524	-1.194	2.217
600.	1.67E+00	1.00E+02	1.319	1.944	-5.845	1.762	-3.399	-2.162	2.222
T (K)	1000/T	P (ATM)	CH3CO+02	CH2CO+HO2	CC*00J+0.	CJCOQ	CH2CO+H02	OCYCO+OH	QRRK (forw)
800.	1.25E+00		.274	2.054	-6.617	1.690	-1.950	1.050	2.244
800.	1.25E+00	1.00E-03	1.273	2.906	-5.617	2.611	951	1.985	3.123
800.	1.25E+00	1.00E-02	2.264	3.638	-4.617	3.344	.041	2.714	3.860
800.	1.25E+00	1.00E-01	3.194	4.186	-3.617	3.898	. 972	3.094	4.416
800.	1.25E+00	1.00E+00	3.911	4.506	-2.622	4.232	1.601	3.044	4.766
800.	1.25E+00	1.00E+01	4.301	4.642	-1.666	4.373	1.644	2.584	4.944
800.	1.25E+00	1.00E+02	4.437	4.680	937	4.412	1.113	1.800	5.005

T (K)	1000/T	P (ATM)	CH3CO+O2	CH2CO+HO2	CC*00J+0.	CJCOQ	CH2CO+HO2	OCYCO+OH	QRRK (forw)
1000.	1.00E+00	1.00E-04	1.312	2,719	-4.206	2.112	468	1.815	2.869
1000.	1.00E+00	1.00E-03	2.312	3.648	-3.206	3.159	.531	2.797	3.827
1000.	1.00E+00	1.00E-02	3.310	4.501	-2.206	4.069	1.529	3.690	4.702
1000.	1.00E+00	1.00E-01	4.292	5.243	-1.206	4.846	2.510	4.366	5.460
1000.	1.00E+00	1.00E+00	5.185	5.808	208	5.449	3.370	4.716	6.054
1000.	1.00E+00	1.00E+01	5.845	6.155	.779	5.823	3.842	4.670	6.455
1000.	1.00E+00	1.00E+02	6.200	6.316	1.672	5.997	3.746	4.217	6.669
T (K)	1000/T	P (ATM)	CH3CO+02	Сн2со+но2	сс*00J+0.	CJCOQ	CH2CO+HO2	осусо+он	QRRK (forw)
1500.	6.67E-01	1.00E-04	2.302	3.113	-1.260	2.034	1.167	2.373	3.269
1500.	6.67E-01	1.00E-03	3.302	4.100	260	3.124	2.167	3.371	4.265
1500.	6.67E-01	1.00E-02	4.302	5.060	.740	4.246	3.166	4.355	5.247
1500.	6.67E-01	1.00E-01	5.300	5.986	1.740	5.285	4.164	5.274	6.194
1500.	6.67E-01	1.00E+00	6.288	6.852	2.739	6.263	5.141	6.052	7.085
1500.	6.67E-01	1.00E+01	7.227	7.603	3.738	7.113	6.003	6.594	7.874
1500.	6.67E-01		8.018	8.181	4.723	7.755	6.550	6.805	8.509
T (K)	1000/T	P (ATM)	CH3CO+02	CH2CO+HO2	сс∗∞л+о.	CJCOQ	CH2CO+HO2	OCYCO+OH	QRRK (forw)
2000.	5.00E-01	1.00E-04	2.709	3.191	.205	1.619	1.900	2.492	3.397
2000.	5.00E-01	1.00E-03	3.709	4.188	1.205	2.704	2.900	3.491	4.397
2000.	5.00E-01	1.00E-02	4.709	5.175	2.205	3.894	3.900	4.487	5.393
2000.	5.00E-01	1.00E-01	5.708	6.150	3.205	5.048	4.899	5.459	6.381
2000.	5.00E-01	1.00E+00	6.706	7.103	4.205	6.195	5.891	6.365	7.351
2000.	5.00E-01	1.00E+01	7.689	8,006	5.204	7.294	6.837	7.131	8.280
2000.	5.00E-01	1.00E+01	8.619	8.812	6.199	8.251	7.609	7.662	9.124

Adduct (CjCOQ) Dissociation Reaction Rate Constants : log rate constants vs Temperature at specified Pressures

P (ATM)	T (K)	1000/T	CCOOJ	CH3CO+O2	СН2СО+НО2	CC*00J+0.	CH2CO+HO2	OCYCO+OH	ORRK (forw)
1.00E-04	298.	3.36E+00	-5.046	-9.369	-5.876	-26.948	-12.441	-5.943	-4.941
1.00E-04	400.	2.50E+00	-1.500	-4.732	-1.703	-18.298	-6.983	-1.936	-1.200
1.00E-04	500.	2.00E+00	.277	-2.257	.474	-13.389	-3.959	.142	.797
1.00E-04	600.	1.67E+00	1.210	775	1.706	-10.233	-2.070	1.327	1.947
1.00E-04	800.	1.25E+00	1.848	.756	2.792	-6.521	.037	2.451	2.991
1.00E-04	1000.	1.00E+00	1.799	1.444	3.095	-4.454	1.127	2.888	3.327
1.00E-04	1500.	6.67E-01	1.112	2.128	3.134	-1.771	2.463	3.268	3.563
1.00E-04	2000.	5.00E-01	.408	2.362	3.018	422	3.099	3.378	3.692
2.002	2000.								
P (ATM)	T (K)	1000/T	CCOQJ	CH3CO+02	CH2CO+HO2	CC*00J+0.	CH2CO+HO2	осусо+он	QRRK (forw)
1.00E-03	298.	3.36E+00	-4.928	-8.715	-6.488	-25.949	-11.501	-5.717	-4.852
1.00E-03	400.	2.50E+00	-1.146	-3.859	-1.884	-17.299	-6.002	-1.463	924
1.00E-03	500.	2.00E+00	.863	-1.305	. 612	-12.390	-2.966	.821	1.257
1.00E-03	600.	1.67E+00	1.984	.206	2.076	-9.233	-1.073	2.149	2.554
1.00E-03	800.	1.25E+00	2.876	1.752	3.473	-5.521	1.037	3.407	3.802
1.00E-03	1000.	1.00E+00	2.939	2.443	3.946	-3.454	2.127	3.877	4.247
1.00E-03	1500.	6.67E-01	2.266	3.128	4.106	771	3.463	4.267	4.552
1.00E-03	2000.	5.00E-01	1.550	3.362	4.011	.578	4.099	4.378	4.690
P (ATM)	T (K)	1000/T	CCOQJ	CH3CO+02	CH2CO+HO2	CC*00J+0.	CH2CO+HO2	OCACO+OH	QRRK (forw)
1.00E-02	298.	3.36E+00	-4.904	-8.850	-7.366	-24.967	-10.848	~5.661	-4.833
1.00E-02	400.	2.50E+00	-1.005	-3.491	-2.432	-16.305	~5.151	-1.264	803
1.00E-02	500.	2.00E+00	1.200	624	.417	-11.392	-2.026	1.210	1.543
1.00E-02	600.	1.67E+00	2.519	1.055	2.166	-8.234	098	2.719	3.006
1.00E-02	800.	1.25E+00	3.714	2.720	3.937	-4.522	2.032	4.228	4.496
1.00E-02	1000.	1.00E+00	3.969	3.435	4.625	-2.454	3.126	4.811	5.080
1.00E-02	1500.	6.67E-01	3.507	4.127	5.008	.229	4.463	5.259	5.517
1.00E-02	2000.	5.00E-01	2.860	4.362	4.977	1.578	5.099	5.376	5.683
P (ATM)	T (K)	1000/T	CCOQJ	CH3CO+O2	CH2CO+HO2	сс∗оол+о.	СН2СО+НО2	осусо+он	ORRK (forw)
1.00E-01	298.	3.36E+00	-4.901	-9.601	-8.344	-24,114	-10.641	-5.653	-4.830
1.00E-01	400.	2.50E+00	972	-3.860	-3.273	-15.363	-4.699	-1.214	773
1.00E-01	500.	2.00E+00	1.335	584	158	-10.417	-1.350	1.366	1.662
1.00E-01	600.	1.67E+00	2.819	1.438	1.891	-7.245	.732	3.029	3.264
1.00E-01	800.	1.25E+00	4.355	3.511	4.150	-3.524	2.992	4.837	5.040
1.00E-01	1000.	1.00E+00	4.848	4.368	5.133	-1.455	4.115	5.611	5.813
1.00E-01	1500.	6.67E-01	4.671	5.119	5.826	1.229	5.461	6.217	6.445
1.00E-01	2000.	5.00E-01	4.151	5.360	5.905	2.578	6.099	6.365	6.664
	•								
P (ATM)	T (K)	1000/T	CCOQJ	CH3CO+02	CH2CO+HO2	CC*00J+0.	CH2CO+HO2	OCYCO+OH	QRRK (forw)
1.00E+00	298.	3.36E+00	-4.901	-10.557	-9.341	-23.794	-10.611	-5.653	-4.830
1.00E+00	400.	2.50E+00	967	-4.671	-4.238	-14.743	-4.591	-1.207	769
1.00E+00	500.	2.00E+00	1.368	-1.134	-1.004	-9.614	-1.091	1.402	1.688
1.00E+00	600.	1.67E+00	2.931	1.203	1.254	-6.343	1.185	3.138	3.357

1.00E+00	800.	1.25E+00	4.758	3.849	4.004	-2.549	3.767	5.199	5.377
1.00E+00	1000.	1.00E+00	5.545	5.057	5.378	463	5.033	6.210	6.386
1.00E+00	1500.	6.67E-01	5.765	6.057	6.525	2.228	6.449	7.090	7.305
1.00E+00	2000.	5.00E-01	5.425	6.340	6.769	3.577	7.095	7.319	7.619
P (ATM)	T (K)	1000/T	CCOQJ	СН3СО+О2	CH2CO+HO2	CC*00J+0.	CH2CO+HO2	остсо+он	QRRK (forw)
1.00E+01	298.	3.36E+00	-4.901	-11.552	-10.341	-24.243	-10.608	-5.653	-4.830
1.00E+01	400.	2.50E+00	966	-5.636	-5.233	-14.875	-4.577	-1.206	769
1.00E+01	500.	2.00E+00	1.373	-2.009	-1.968	-9.428	-1.042	1.407	1.692
1.00E+01	600.	1.67E+00	2.957	.503	.381	-5.880	1.313	3,159	3.375
1.00E+01	800.	1.25E+00	4.938	3.640	3.495	-1.741	4.178	5.342	5.517
1.00E+01	1000.	1.00E+00	5.988	5.295	5.272	.470	5.707	6.562	6.741
1.00E+01	1500.	6.67E-01	6.714	6.812	7.016	3.216	7.365	7.803	8.036
1.00E+01	2000.	5.00E-01	6.629	7.241	7.506	4.573	8.064	8.185	8.509
P (ATM)	T (K)	1000/T	CCOQJ	CH3CO+02	CH2CO+HO2	CC*00J+0.	CH2CO+HO2	осусо+он	QRRK (forw)
1.00E+02	298.	3.36E+00	-4.901	-12.551	-11.341	-25.138	-10.608	-5.653	-4.830
1.00E+02	400.	2.50E+00	966	-6.632	-6.233	-15.645	-4.575	-1.206	769
1.00E+02	500.	2.00E+00	1.373	-2.988	-2.964	-10.007	-1.037	1.407	1.692
1.00E+02	600.	1.67E+00	2.961	426	593	-6.210	1.333	3.161	3.378
1.00E+02	800.	1.25E+00	4.990	2.984	2.693	~1.525	4.299	5.374	5.551
1.00E+02	1000.	1.00E+00	6.196	5.039	4.794	1.074	6.031	6.698	6.892
1.00E+02	1500.	6.67E-01	7.419	7.238	7.205	4.117	8.070	8.284	8.567
1.00E+02	2000.	5.00E-01	7.650	7.947	8.027	5.530	8.920	8.882	9.264

Adduct (CjCOQ) Dissociation Reaction Rate Constants : log rate constants vs Pressure at specified Temperatures

T (K)	1000/T	P (ATM)	CCOQJ	CH3CO+02	CH2CO+HO2	CC*00J+0.	CH2CO+HO2	OCYCO+OH	QRRK (forw)
298.	3.36E+00	1.00E-04	-5.046	-9.369	-5.876	-26.948	-12.441	-5.943	-4.941
298.	3.36E+00	1.00E-03	-4.928	-8.715	-6.488	-25.949	-11.501	-5.717	-4.852
298.	3.36E+00	1.00E-02	-4.904	-8.850	-7.366	-24.967	-10.848	-5.661	-4.833
298.	3.36E+00	1.00E-01	-4.901	-9.601	-8.344	-24.114	-10.641	-5.653	-4.830
298.	3.36E+00	1.00E+00	-4.901	-10,557	-9.341	-23.794	-10.611	-5.653	-4.830
298.	3.36E+00	1.00E+01	~4.901	-11.552	-10.341	-24.243	-10.608	-5.653	-4.830
298.		1.00E+02	-4.901	-12.551	-11.341	-25.138	-10.608	-5.653	-4.830
T (K)	1000/T	P (ATM)	CCOQJ	CH3CO+02	CH2CO+HO2	CC*00J+0.	CH2CO+HO2	OCYCO+OH	QRRK (forw)
400.	2.50E+00	1.00E-04	-1.500	-4.732	-1.703	-18.298	-6.983	-1.936	-1.200
400.	2.50E+00	1.00E-03	-1.146	-3.859	-1.884	-17.299	-6.002	-1.463	924
400.	2.50E+00	1.00E-02	-1.005	-3.491	-2.432	-16.305	-5.151	-1.264	803
400.	2.50E+00	1.00E-01	972	-3.860	-3.273	-15.363	-4.699	-1.214	773
400.	2.50E+00	1.00E+00	967	-4.671	-4.238	-14.743	-4.591	-1.207	769
400.	2.50E+00	1.00E+01	966	-5.636	-5.233	-14.875	-4.577	-1.206	769
400.	2.50E+00	1.00E+02	966	-6.632	-6.233	-15,645	-4.575	-1.206	769
T (K)	1000/T	P (ATM)	CCOQJ	CH3CO+02	CH2CO+HO2	CC*00J+0.	CH2CO+HO2	OCYCO+OH	QRRK (forw)
500.	2.00E+00	1.00E-04	.277	-2.257	.474	-13.389	-3.959	.142	.797
500.		1.00E-03	.863	-1,305	.612	-12.390	-2.966	.821	1.257
500.	2.00E+00	1.00E-02	1.200	624	.417	-11.392	-2.026	1.210	1.543
500.	2.00E+00	1.00E-01	1.335	584	158	-10.417	-1.350	1.366	1.662
500.	2.00E+00	1.00E+00	1.368	-1.134	-1.004	-9.614	-1.091	1.402	1.688
500.	2.00E+00	1.00E+01	1.373	-2.009	-1.968	-9.428	-1.042	1.407	1.692
500.	2.00E+00	1.00E+02	1.373	-2.988	-2.964	-10.007	-1.037	1.407	1.692
T (K)	1000/T	P (ATM)	CCOQJ	CH3CO+02	CH2CO+HO2	CC*00J+0.	CH2CO+HO2	OCYCO+OH	QRRK (forw)
600.	1.67E+00	1.00E-04	1.210	775	1.706	-10.233	-2.070	1.327	1.947
600.	1.67E+00	1.00E-03	1.984	.206	2.076	-9.233	-1.073	2.149	2.554
600.	1.67E+00	1.00E-02	2.519	1.055	2.166	-8.234	098	2.719	3.006
600.	1.67E+00	1.00E-01	2.819	1.438	1.891	-7.245	.732	3.029	3.264
600.	1.67E+00	1.00E+00	2.931	1.203	1.254	-6.343	1.185	3.138	3.357
600.	1.67E+00	1.00E+01	2.957	.503	.381	-5.880	1.313	3.159	3.375
600.	1.67E+00	1.00E+02	2.961	~.426	593	-6.210	1.333	3.161	3.378
T (K)	1000/T	P (ATM)	CCOQJ	CH3CO+02	CH2CO+HO2	CC*00J+0.	CH2CO+HO2	OCYCO+OH	QRRK (forw)
800.	1.25E+00	1.00E-04	1.848	.756	2.792	-6.521	.037	2.451	2.991
800.	1.25E+00	1.00E-03	2.876	1.752	3.473	-5.521	1.037	3.407	3.802
800.	1.25E+00	1.00E-02	3.714	2.720	3.937	-4.522	2.032	4.228	4.496
800.	1.25E+00	1.00E-01	4.355	3.511	4.150	-3.524	2.992	4.837	5.040
800.	1.25E+00	1.00E+00	4.758	3.849	4.004	-2.549	3.767	5.199	5.377
800.	1.25E+00	1.00E+01	4.938	3.640	3.495	-1.741	4.178	5.342	5.517
800.	1.25E+00	1.00E+02	4.990	2.984	2.693	-1.525	4.299	5.374	5.551

T (K)	1000/T	P (ATM)	CCOQJ	CH3CO+O2	CH2CO+HO2	CC*00J+0.	CH2CO+HO2	OCYCO+OH	QRRK (forw)
1000.	1.00E+00	1.00E-04	1.799	1.444	3.095	-4.454	1.127	2.888	3.327
1000.	1.00E+00	1.00E-03	2.939	2.443	3.946	~3.454	2.127	3.877	4.247
1000.	1.00E+00	1.00E-02	3.969	3.435	4.625	-2.454	3.126	4.811	5.080
1000.	1.00E+00	1.00E-01	4.848	4.368	5.133	-1.455	4.115	5.611	5.813
1000.	1.00E+00	1.00E+00	5.545	5.057	5.378	463	5.033	6.210	6.386
1000.	1.00E+00	1,00E+01	5.988	5.295	5.272	.470	5.707	6.562	6.741
1000.	1.00E+00	1.00E+02	6.196	5.039	4.794	1.074	6.031	6.698	6.892
T (K)	1000/T	P (ATM)	CCOQJ	CH3CO+O2	CH2CO+HO2	CC*00J+0.	CH2CO+HOZ	OCYCO+OH	QRRK (forw)
1500.	6.67E-01	1.00E-04	1.112	2.128	3.134	-1.771	2.463	3.268	3.563
1500.	6.67E-01	1.00E-03	2.266	3.128	4.106	771	3.463	4.267	4.552
1500.	6.67E-01	1.00E-02	3.507	4.127	5.008	.229	4.463	5.259	5.517
1500.	6.67E-01	1.00E-01	4.671	5.119	5.826	1.229	5.461	6.217	6.445
1500.	6.67E-01	1.00E+00	5.765	6.057	6.525	2.228	6.449	7.090	7.305
1500.	6.67E-01	1.00E+01	6.714	6.812	7.016	3.216	7.365	7.803	8.036
1500.	6.67E-01	1.00E+02	7.419	7.238	7.205	4.117	8.070	8.284	8.567
T (K)	1000/T	P (ATM)	CCOQJ	CH3CO+02	CH2CO+HO2	cc*00J+0.	Сн2со+но2	OCACO+OH	QRRK (forw)
2000.	5.00E-01	1.00E-04	.408	2.362	3.018	422	3.099	3.378	3,692
2000.	5.00E-01	1.00E-03	1.550	3.362	4.011	.578	4.099	4.378	4.690
2000.	5.00E-01	1.00E-02	2.860	4.362	4.977	1.578	5.099	5.376	5.683
2000.	5.00E-01	1.00E-01	4.151	5.360	5. 9 05	2.578	6.099	6.365	6.664
2000.	5.00E-01	1.00E+00	5.425	6.340	6.769	3.577	7.095	7.319	7.619
2000.	5.00E-01	1.00E+01	6.629	7.241	7.506	4.573	8.064	8.185	8.509
2000.	5.00E-01	1.00E+02	7.650	7.947	8.027	5.530	8.920	8.882	9.264

REFERENCES (PART THREE)

- 1. Benson, S. W. *Thermochemical Kinetics*; 2nd ed. John Wiley and Sons: New York, 1976.
- 2. Slagle, I. R.; Ratajaczak, E.; Gutman, D. J. J. Phys. Chem., 1986, 90, 402.
- 3. Lightfoot, P. D.; Cox, R. A.; Crowley, J. N.; Destriau, M.; Hayman, G. D.; Jenkin, M. E.; Moortgat, G. K.; Zabel, F. *Atmospheric Environ.*, 1992, 266A, 1805-1964.
- 4. Atkinson, R. A Review, Atmospheric Environ. 1990, 24a, 1-41.
- 5. Slagle, I. R.; Feng, Q.; Gutman, D. J. Phys. Chem., 1984, 88, 3648.
- 6. McAdam, G. K.; Walker, R. W. J. Chem. Soc., Far. Trans. 2, 1987, 83, 1509.
- 7. Plumb, I. C.; Ryan, K.R. Int. J. Chem. Kinet. 1981, 13, 1011.
- 8. Kaiser, E. W.; Rimai, L.; Wallington, T. J. J. Phys. Chem., 1989, 93, 4094.
- 9. Kaiser, E. W.; Rimai, L.; Wallington, T. J. J. Phys. Chem., 1990, 94, 3394.
- 10. Gutman, D. J. Chim. Phys., 1987, 84, 409.
- 11. Gulati, S. K.; Walker, R. W. J. Chem. Soc., Far. Trans. 2, 1988, 84, 401.
- 12. Bozzelli, J. W.; Dean, A. M. J. Phys. Chem. 1990, 94, 3313.
- 13. Wagner, A.F.; Slagle, I. R.; Sarzynski, D.; Gutman, D. J. Phys. Chem., 1990, 94, 1853.
- 14. Bozzelli, J. W.; Dean, A. M. J. Phys. Chem. 1993, 97, 4427.
- (a) Bozzelli, J. W.; Pitz W. J. 25-th Symp. (Intern) on Comb., 1994, 783. (b)
 Mobel, A. M.; Dian, E. W. G.; Lin, M. C.; Morokuma, K. J. Am. Chem. Soc. 1996, 118, 9673
- 16. McMillan, G. R.; Calvert, J. G. Oxidation and Combustion Review, 1965, 83.
- 17. Gilbert, R. G.; Smith, S. C. Theory of Unimolecular and Recombination Reactions; Oxford Press: Boston, MA, 1990.

- 18. Gilbert, R. G.; Smith, S. C. UNIMOL, 1990.
- 19. Gilbert, R. G.; Luther, K.; Troe, J. Ber. Bunsen-Gas. Phys. Chem. 1983, 87, 169
- 20. Stewart, J. J. P. MOPAC 6.0, Frank J. Seiler Research Lab., US Air Force Academy, Colorado, 1990.
- 21. Frisch, M.j.; Truck, G. W.; Head-Gordon, M.; Gill, P. M. W.; Wong, M. W.; Foresman, J. B.; Johnson, B. G.; Schelgel, H. B.; Robb, M. A.; Peplogle, E. S.; Gromperts, R.; Andres, J. L., Raghavachari, K.; Binkley, J, S., Gonzalez, C.; Martin, R. L.; Fox, D. J.; Defrees, D. J.; Baker, J.; Stewart, J. J. P.; Pople, J. A.; Eds., Gaussian 94 Computer Program, Revision C 2, Gaussian Inc.: Pittsburgh, 1995.
- 22. Ochterski, J. W.; Petersson, G. A.; Montgomery, Jr., J. A. J. Chem. Phys. 1996, 104, 2598.
- 23. Nyden, M. R. Petersson, G. A. J. Chem. Phys. 1991, 75, 1843.
- 24. Petersson, G. A. J. Chem. Phys. 1994, 94, 6081.
- 25. Montgomery, J. A.; Petersson, G. A. J. Phys. Chem. 1994, 101, 5900.
- 26. Hehre, W. J.; Random, L.; Schleyer, P. R.; Pople, J. A. *Ab-Initio Molecular Orbital Theory*; John Wiley & Sons: New York, NY, 1986.
- 27. Pitzer, K. S.; Gwinn, W. D. J. Chem. Phys. 1942, 10, 428.
- 28. Hirschfelder, J. O.; Curtiss, C. F.; Bird, R. B. *Molecular Theory of Gases and Liquids*; 2nd ed., Wiely: London, England, 1963.
- 29. Reid, R. C.; Prausnitz, J. M.; Sherwood, T. K. *The Properties of Gases and Liquids*; McGraw-Hill Co.: New York, NY, 1979.
- 30. Rodgers, A. S. Selected Values for Properties of Chemical Compounds; Thermodynamic Research Center, Texas A&M University: College Station, TX, 1982.
- 31. Pedley, J. B.; Naylor, R. O.; Kirby, S. P. *Thermodynamic Data of Organic Compounds*; 2nd ed. Chapman and Hall: London, 1986.
- 32. Stull, D. R.; Prophet, H. *JANAF Thermochemical Tables*; 2nd Ed.(NSRDS-NBS37). U.S.Government Printing Office: Washington D.C., 1970.
- 33. Lay, T. H.; Bozzelli, J. W. J. Phys. Chem. A 1997, 101, 9505-9510.

- 34. (a) Zhong, X.; Bozzelli, J. W. J. Phys. Chem. A 1998, 102, 3537. (b) Bozzelli, J. W.; Chang, A. Y.; Dean, A. M. Int. J. Chem. Kint. 1997, 29, 161.
- 35. Sehested, I.; Christensen, L. K.; Nielsen, O. J.; Wallington, T.J. Int. J. Chem. Kinet. 1998, 30, 913.
- 36. McDade, C. E.; Lenhardt, T. M.; Bayes, K. D. J. Photochem. 1982, 20, 1.
- 37. Atkinson, R.; Baulch, D. L.; Cox, R. A.; Hampson, R. F.; Kerr, J. A.; Rossi, M. J.; Troe, J. J. Chem. Phys. Ref. Data 1997, 26, 521.
- 38. Tyndall, G. S.; Orlando, J. J.; Wallington, T. J.; Hurley, M. D. Int. J. Chem. Kinet. 1997, 29, 655.
- 39. Maricq, M. M.; Szente, J. J. J. Chem. Phys. Lett. 1996, 253, 333.
- 40. Tyndall, G. S.; Staffelbach, T. A.; Orlando, J. J.; Calvert, J. G. Int. J. Chem. Kinet. 1995, 27, 1009.
- 41. Atkinson, R.; Baulch, D.L.; Cox, R. A.; Hampson, R. F., Jr.; Kerr, J. A.; Troe, J. J. Phys. Chem. Ref. Data 1989, 18, 881.
- 42. Bartels, M.; Hoyermann, K. An. Asoc. Quim. Argent. 1985, 73, 253.
- 43. Michael, J. V.; Keil, D. G.; Klemm, R. B. J. Chem. Phys. 1985, 83, 1630.
- 44. Slagle, I. R.; Gutman, D. J. Am. Chem. Soc., 1982, 104, 4741.
- 45. Zhu, L.; Johnston, G. J. Phys. Chem. 1995, 99, 15114.
- 46. Villalta, P. W.; Howard, C. J. J. Phys. Chem. 1996, 100, 13624.

PART IV

THERMOCHEMICAL AND KINETIC ANALYSIS ON CjCHO + O₂ REACTION

CHAPTER 1

ABSTRACT FOR PART FOUR

Reaction pathways and kinetics are analyzed on CjCHO + O₂ reaction system using density functional and ab initio calculations to determine thermodynamic properties of reactants, intermediate radicals, and transition state (TS) structures. Enthalpies of formation (ΔH_f°₂₉₈) are determined using the CBSQ composite method and also by density functional calculations with isodesmic reactions for radical species. Entropies (S°_{298}) and heat capacities $(Cp^{\circ}(T) 300 - 1500 \text{ K})$ are determined using geometric parameters and vibrational frequencies obtained at the HF/6-31G(d') level of theory. Quantum Rice-Ramsperger-Kassel (QRRK) analysis is used to calculate energy dependent rate constants, k(E). The formyl methyl radical CjCHO adds to O₂ to form a CQjCHO peroxy radical ($\Delta H_f^{\circ}_{298} = -21.01$ kcal/mole in CBSQ). The peroxy radical can undergo dissociation back to reactants, decompose to products, CH₂CO + HO₂ via HO_2 elimination (Ea,rxn = 48.2 kcal/mole in CBSQ) or isomerize via hydrogen shift (Ea,rxn = 19.39 kcal/mole in CBSQ) to form a CQCjO isomer ($\Delta H_f^{\circ}_{298} = -21.81$ kcal/mole in CBSO). This isomer CQCjO can undergo β-scission to products, $CH_2CO + HO_2$ (Ea,rxn = 24.32 kcal/mole in CBSQ) or decompose to $CO + CH_2O +$ OH (Ea.rxn = 9.57 kcal/mole in CBSQ). Rate constants are estimated as function of pressure and temperature using QRRK analysis for k(E) and modified strong collision analysis for fall-off. Important reactions are stabilization of CQjCHO peroxy adduct at low temperature and CO + CH₂O + OH products via H shift and ketene + HO₂

products via H shift at high temperature. Rate constants at 1atm pressure are $(k=A(T/K)^n \exp(-Ea/RT), \ A \ in \ cm^3/(mole-s), \ Ea \ in \ kcal/mole): \ k_1=(2.87\times 10^{37})(T/K)^{-8.73} e^{-6.42/RT} \ for \ CjCHO + O_2 => CQjCHO \ ; \ k_6=(2.68\times 10^{-6})(T/K)^{5.46} e^{-21.76/RT} \ for \ CjCHO + O_2 => CH_2CO + HO_2 \ ; \ k_7=(1.25\times 10^{14})(T/K)^{-1.05} e^{-4.99/RT} \ for \ CjCHO + O_2 => CQCjO$ => CO + CH₂O + OH ; \ k_8=(2.07\times 10^{14})(T/K)^{-3.74} e^{-2.71/RT} \ for \ CjCHO + O_2 => CQCjO

CHAPTER 2

INTRODUCTION FOR PART FOUR

Important initial products from pyrolysis, oxidation, or photochemical reactions of saturated and unsaturated hydrocarbons are the corresponding radicals. The subsequent reactions of the hydrocarbon radicals with molecular oxygen are complex and difficult to study experimentally and present a source of controversy with regard to both pathway and reactions rates. These reactions, furthermore, represent the principal pathways of the radical conversion in many hydrocarbon oxidation and combustion processes^{1, 2} and also in atmosphere. Acetaldehyde and the corresponding radical species that result via loss of hydrogen atoms from the two different carbon sites in CH₃CHO are also common products (intermediates) from oxidation processes of higher molecular weight hydrocarbon species in both combustion and in atmospheric photochemistry. The acetaldehyde and its two radicals are also produced by molecular weight growth from C₁ carbon combustion and mild oxidation processes where the slow reaction of methyl radical with O₂ to $CH_3O + O$ or $CH_2O + OH$. The slow conversion of $CH_3OO \bullet (methyl peroxy radical)$ to products, results in an equilibrium between CH₃ + O₂ and CH₃OO• where entropy favors the reactants at higher temperatures. As a result methyl radicals often buildup in the radical pool until combination occurs forming ethane and ethyl + H. Acetaldehyde is one of the important oxidation products of ethane and ethylene. Acetaldehyde and acetyl radicals are important intermediates in the overall

breakdown processes of higher molecular weight and C₁ hydrocarbons to CH₂O, CO, CO₂ and H₂O. The radical reactions with oxygen also serve as model reactions for larger aldehydic molecule systems.

Tyndall et al.³ studied the reaction of OH radical with methyl glyoxal and acetaldehyde in a low pressure (c.a. 3 torr) flow reactor at temperatures from 260 to 333 K. They report rate constants for OH abstractions from the parent molecules and also report data on further reactions of the radicals formed from the abstractions by OH. They infer that only the acetyl radical is formed and further reaction of acetyl radical with O₂ leads to noticeable regeneration of OH; from observations showing reduced loss of the OH versus time. Some chamber experiments with FTIR monitoring showed no evidence of OH radical production. Absolute rate constants of Fluorine atom reaction with acetaldehyde were studied by Sehested and coworkers⁴ using pulse radiolysis combined with transient ultraviolet absorption. They report production of two radicals - formyl methyl at 35% and acetyl at 65% (both \pm 9%). We note that for reactions where chlorine atom is abstracting hydrogen atoms. Chlorine atoms usually have similiar A factors and similar or lower Ea's when the reactions are exothermic which they are in all cases in this study. In the case of acetaldehyde, for example, k_{298} for Cl atom abstraction is reported as 4.58×10^{13} [5] at 298K, while abstraction by F atom is 5.00 x 10¹³[6]. The H--Cl bond is 103 kcal/mole, while the carbonyl C--H and methyl C--H bonds on acetaldehyde are 88 and 94 kcal/mole respectively. Chlorine should, therefore, readily abstract from both hydrogen sites of acetaldehyde. Michael et al.7 studied the reaction of OH with acetaldehyde in a low pressure discharge flow reactor with resonance fluorescence

monitoring. He also studied the reaction of radical(s) generated via the OH reaction with O_2 . The total reaction rate constant for OH with acetaldehyde was A = 3.3 x10¹², with a small negative energy of activation of 610 cal/mole. Michael et al. report near complete regeneration of OH radical in the OH + acetaldehyde experiments when O₂ was present to further react with the indicated acetyl radical formed. In separate studies with Cl atom reacting with acetaldehyde, they observed production of OH radical on further radical reaction(s) with O₂. They considered and rejected possible formation of formyl methyl radicals based on work of Gutman's research group and an assumed bond energy of the H--C bond on the methyl group of 98 kcal/mole. Slagle and Gutman⁸ studied formation of acetyl radical from acetaldehyde in reaction of Cl atoms from 1082 cm⁻¹ IR multiphoton decomposition of CF₂Cl₂ of C_6F_5Cl . They monitored the radical profiles with photoionization mass spectrometry. Verification of CH₃CjO radical versus formyl methyl was by use of deuterated acetaldehyde, CH₃CHO. They observed CH₃CjO and could not detect CjCHO; but did not estimate lower limits of its detection. Reaction kinetics of acetylperoxy radicals with nitric oxide and nitrogen dioxide were studies by Maricq and Szente⁹, where the peroxy radicals were generated via reaction of acetyl radical with O2. Acetyl radicals were generated by reaction of acetaldehyde with Cl atoms and Cl atoms were produced by 351 nm eximer laser pulses ca 300 mJ/pulse. Maricq and Szente provide data on nitric oxide plus acetyl and methyl peroxy radical decay and NO₂ formation versus time for modeling comparisons.

Formyl methyl radicals, the other possible radical that may be formed by abstraction of H atoms from acetaldehyde, were generated by photodissociations of methyl-vinyl

ether by Zhu and Johnston¹⁰. CH_3 -O- C_2H_3 + hv \Longrightarrow CH_3 + C_2H_3O . Here the vinoxy radical undergoes rapid electron rearrangement to the lower energy form (ca 18 kcal/mole loser in energy) formyl methyl radical. Kinetic studies on this formyl methyl radical with O_2 show slower reaction, $k_2 = 1.2 \times 10^{11}$ cm³/mole-sec, than rate constants reported for acetyl radical $k_1 = 1 \times 10^{12}$ cm³/mole-sec. They suggest that if formyl methyl radicals are produced in reactions of Cl atoms or OH with acetaldehyde, they will react about one tenth as fast with O_2 , probably leading to small or no corrections to the faster acetyl + O_2 reactions.

Photo dissociation of PAN, (PeroxyAcetylNitrate) was used by Villalta and Howard¹¹ to generate acetylperoxy radicals for study of reaction kinetics with nitric oxide. Rate constants determined by this method agreed well with other reported values. This agreement of kinetic data where acetylperoxy radicals are generated by a very different and positive mechanism supports the assumption of Maricq and Szente⁷, Sehested et al.⁴, Tyndall et al.³, Michael et al.⁷, and Slagle and Gutman⁸, that primarily acetyl radicals are generated by reaction with OH, or Cl atoms. This study focuses on reaction mechanism of formyl methyl radical association with O2. Thermodynamic properties are estimated for reactants, intermediate, products and transition states along the reaction pathway. The thermodynamic parameters are used to calculate high-pressure limit rate constants using canonical Transition State Theory. Rate constants as a function of temperature and pressure are estimated using a multi frequency Quantum RRK analysis with modified strong collision analysis of Gilbert et al. 12-14 for fall off. The data at relevant pressures and temperatures should be useful to both atmospheric and combustion modelers.

CHAPTER 3

CALCULATION METHOD FOR PART FOUR

3.1 Determination of Enthalpies of Formation

Enthalpies of formation (ΔH_f°₂₉₈) for reactants, intermediate radicals, transition states and products are calculated using CBS-Q composite method and density functionals. The initial structure of each compound or transition state is determined using ROHF or UHF/PM3 in MOPAC¹⁵, followed by optimization and vibrational frequency calculation at HF/6-31G(d') level of theory using GAUSSIAN 94¹⁶. Transition State (TS) geometries are identified by the existence of only one imaginary frequency, structure information and the TST reaction coordinate vibration information. Zeropoint vibrational energies (ZPVE), vibrational frequencies and thermal contributions to enthalpy from harmonic frequencies are scaled by 0.91844 as recommended by Petersson et al.¹⁷. Single point energy calculation are carried out at the B3LYP/6-31G(d'). The complete basis set (CBS-Q) method of Petersson and coworkers for computing accurate energies¹⁸⁻²⁰ are chosen as our primary for determining enthalpies.

The CBS-Q calculation sequence is performed on the MP2/6-31G(d') geometry and followed by single point calculations at the theory level of QCISD(T)/6-31+G(d'), MP4(SDQ)/CbsB4 and MP2/CBSB3 CBSExtrap=(Nmin=10,Pop).

The isodesmic reactions are used to determine the heat of formation ($\Delta H_f^{\circ}_{298}$) for intermediate radicals. For estimation of C(OOH)H₂C(=O)H [defined CQCHO, Q=OOH (hydroperoxy group)]

$$C(OOH)H_2C(=O)H + CH_3CH_3 \iff CH_3C(=O)H + CH_3CH_2OOH \dots (1)$$

For estimation of $C(OOH)H_2C\bullet(=O)$ [defined CQCjO, j : radical site]

$$C(OOH)H_2C(=O)H + CH_3C \bullet H_2 \iff C(OOH)H_2C \bullet (=O) + CH_3CH_3 \dots (2)$$

For estimation of $C(OO \bullet)H_2C(=O)H$ [defined CQjCHO, $Qj:-OO \bullet$]

$$C(OOH)H_2C(=O)H + CH_3OO \bullet \iff C(OO \bullet)H_2C(=O)H + CH_3OOH \dots (3)$$

The method of isodesmic reactions relies upon the similarity of bonding environment in the reactants and products that leads to cancellation of systematic errors in the ab initio MO calculations. The basic requirement of the isodesmic reaction is that the number of bonds of each formal chemical bond type is conserved in the reaction. In reaction (1), ab initio calculations with ZPVE and thermal correction are performed for all of four compounds. Since $\Delta H_f^{\circ}_{298}$ of three compounds excepting CQCHO have been experimentally or theoretically calculated, the unknown $\Delta H_f^{\circ}_{298}$ of CQCHO is obtained. The remaining two radicals are calculated in the same manner.

The $\Delta H_f^{\circ}_{298}$ of transition state compounds are estimated by evaluation of $\Delta H_f^{\circ}_{298}$ of the stable radical adducts plus difference of total energies with ZPVE and thermal correction between these radical species and the transition state (TS).

TCQjCHOS: A peroxy radical CQjCHO isomerize to form a CQCjO isomer via hydrogen shift.

TCQjCHOE: A peroxy radical CQjCHO decompose to products, CH₂CO + HO₂ via HO₂ elimination.

TCXQCjO : A CQCjO isomer undergo β-scission to products, CH₂CO + HO₂

TCQXCjO : A CQCjO isomer undergo β -scission to products, CO + CH₂O + OH

3.2 Determination of Entropy and Heat Capacity

The contributions of external rotation and vibrations to entropies and heat capacities are calculated from scaled vibration frequencies and moments of inertia for the optimized HF/6-31G(d') structures. Contributions from frequencies corresponding to hindered internal rotation are replaced with contributions calculated from the method of Pitzer and Gwinn²² for S and Cp(T). Number of optical isomers and spin degeneracy of unpaired electrons are also incorporated.

3.3 High-Pressure Limit A Factors (A_{∞}) and Rate Constants (k_{∞}) Determination For the reactions where thermodynamic properties of TS are calculated by *ab initio* or density functional methods, $k_{\infty}s$ are fit by three parameters A_{∞} , n, and E_a over temperature range from 298 to 2000K, $k_{\infty} = A_{\infty}(T)^n \exp(-E_a/RT)$ Entropy differences between reactant and TS are used to determine the pre-exponential factor, A, via conventional transition state theory (TST) for unimolecular and bimolecular reactions $A = (k_b T/h_p) \exp(\Delta S^{\sharp}/R)$ and $A = (ek_b T/h_p) \exp(\Delta S^{\sharp}/R)$, respectively. h_p is Plank's constant and k_b is the Boltzman constant.

3.4 Kinetic Analysis

Once the potential energy surface and thermochemical properties are evaluated, forward or reverse rate for each, elementary reaction step are determined, Multi-frequency Quantum Rice-Ramsperger-Kassel (QRRK) analysis is then used for k(E) and modified strong collision analysis of Gilbert et. al¹²⁻¹⁴ used for fall-off; to obtain rate constants as a function of temperature and pressure. Reactions which incur a change in number of moles, such as unimolecular dissociation, have energy of activation calculated as delta Urxn plus an Ea for the reverse addition, where U is internal energy.

A modified QRRK analysis we use in this srudy is described by Zhong and Bozzelli. 23 It is shown to yield reasonable results and provides a framework by which the effects of temperature and pressure can be evaluated in complex reaction systems. The current version of the QRRK computer code utilizes a reduced set of vibration frequencies which accurately reproduce the molecule (adduct) heat capacity data, with inclusion of one external rotation to calculate density of states $\rho(E)$. Comparisons of ratios of these $\rho(E)/Q$ (partition function Q) with direct count $\rho(E)/Q$ are shown to be in good agreement. Nonlinear Arrhenius effects resulting from changes in the thermodynamic properties of the respective TST's relative to the adduct with temperature are incorporated using a two parameter Arrhenius preexponential factor (A, n) in AT^n .

CHAPTER 4

RESULT AND DISCUSSION FOR PART FOUR

4.1 Geometries of Two Intermediate Radicals and Transition States Figure 4.1 to 4.5 show MP2/6-31G(d') determined geometries of CQjCHO, CQCjO, TCQjCHOS, TCQjCHOE and TCQXCjO respectively.[names are defined in section 3.1] Figure 4.1 and Figure 4.2 show the optimized geometries of two intermediate radicals, CQjCHO and CQCjO, respectively. Figure 4.3 shows TCQjCHOS structure for isomerization (H shift) reaction. The H₄ atom is in a bridge structure shifting from C_2 to radical site O_5 . The leaving bond length H_4 - C_2 is calculated as 1.29Å with MP2/6-31G(d') determined geometry; where the H-C bond length in CQjCHO is calculated as 1.11Å. The forming bond length H₄-O₅ is calculated as 1.36Å. All bond lengths are from MP2/6-31G(d') determined geometries. The normal bond length H-O in COCjO is calculated as 0.97Å. Figure 4.4 shows TCQjCHOE structure, HO₂ elimination of CQjCHO --> CH₂CO + HO₂. The leaving bond length of C₂-H₆ is calculated as 1.31Å and the C-H bond length in CQjCHO is calculated as 1.11Å. The leaving bond length of C₁-O₇ is calculated as 2.31Å and the C-O bond length in CQiCHO is calculated as 1.45Å. The leaving O_7 - O_8 bond length is calculated as 1.26Å and the O-O bond length in CQCjO is calculated as 1.45Å. Again all bond lengths are from MP2/6-31G(d') determined geometries.

CQjCHO [Qj = OO. (peroxy), j : radical site]

 $C(OO.)H_2C(=O)H$

Geometry optimization at the MP2/6-31G(d') level of theory.

***************************************	Bond Length (Å)		Bond Angle (deg)	Dihedral Angle (deg)
C2-O1	1.21			
C3-C2	1.52	C3-C2-O1	121.7	
O4-C3	1.45	O4-C3-C2	111.1	O4-C3-C2-O1 179.5
O5-O4	1.30	O5-O4-C3	110.0	O5-O4-C3-C2 -65.1
H6-C2	1.11	H6-C2-O5	122.9	H6-C2-O5-C3 -179.6
H7-C3	1.10	H7-C3-C2	110.6	H7-C3-C2-O1 58.3
H8-C3	1.10	H8-C3-C2	110.7	H8-C3-C2-O1 -63.8

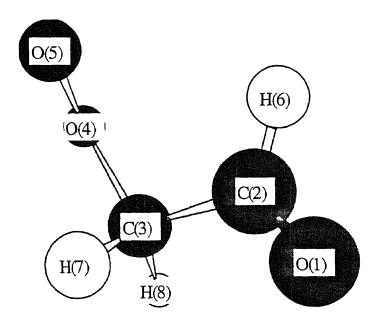


Figure 4.1 Structure for CQjCHO

CQCjO [Q = OOH (hydroperoxy group), j : radical site]

$C(OOH)H_2C.(=O)$

Geometry optimization at the MP2/6-31G(d') level of theory.

	Bond Length (Å)		Bond Angle (deg)	Dihedral Angle (deg)
C2-C1	1.54			
O3-C2	1.41	O3-C2-C1	112.3	
O4-O3	1.45	O4-O3-C2	105.1	O4-O3-C2-C1 66.8
O5-C1	1.19	O5-C1-C2	125.9	O5-C1-C2-O3 178.4
H6-C2	1.10	H6-C2-C1	109.1	H6-C2-C1-O3 -116.4
H7-C2	1.10	H7-C2-C1	108.7	H7-C2-C1-O3 123.7
H8-O4	0.97	H8-O4-O3	100.3	H8-O4-O3-C2 -105.2

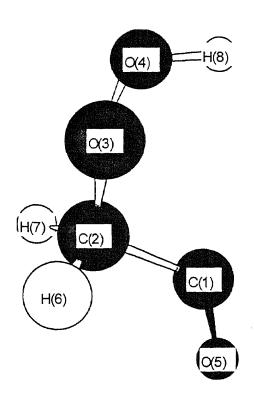


Figure 4.2 Structure for CQCjO

TCQjCHOS $C(OO.)H_2C(=O)H \rightarrow [TCQjCHOS]^\# \rightarrow C(OOH)H_2C.(=O) < H \ Shift \ Isomerization > Geometry \ optimization \ at the \ MP2/6-31G(d') \ level \ of \ theory.$

	Bond Length (Å)		Bond Angle (deg)		Dihedral Angle (deg)
C2-C1	1.60				
O3-C2	1.18	O3-C2-C1	131.6		
H4-C2	1.29	H4-C2-C1	90.9	H4-C2-C1-O3	-176.2
O5-H4	1.36	O5-H4-C2	126.8	O5-H4-C2-C1	3.3
06-05	1.37	O6-O5-H4	92.2	O6-O5-H4-C2	-31.1
H7-C1	1.09	O7-C1-C2	114.5	O7-C1-C2-O3	-39.8
H8-C1	1.10	H8-C1-C2	104.9	H8-C1-C2-O3	84.7

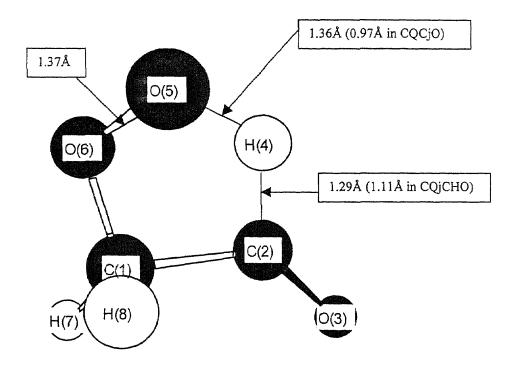


Figure 4.3 Structure for TCQjCHOS

TCQjCHOE

 $C(OO.)H_2C(=O)H \rightarrow [TCQjCHOE]^\# \rightarrow CH_2=C=O+HO_2 < HO_2 Elimination >$ Geometry optimization at the MP2/6-31G(d') level of theory.

	Bond Length (Å)		Bond Angle (deg)	Dihedral Angle (deg)
C2-C1 H3-C1 H4-C1 O5-C2 H6-O2 O7-H6 O8-O7	1.39 1.08 1.08 1.20 1.31 1.97 1.26	H3-C1-C2 H4-C1-C2 O5-C2-C1 H6-C2-C1 O7-H6-C2 O8-O7-H6	120.8 120.8 146.9 97.6 113.0 42.9	H4-C1-C2-H3 -174.9 O5-C2-C1-H3 -92.7 H6-C2-C1-H3 87.4 O7-H6-C2-C1 0.0 O8-O7-C2-C2 180.0

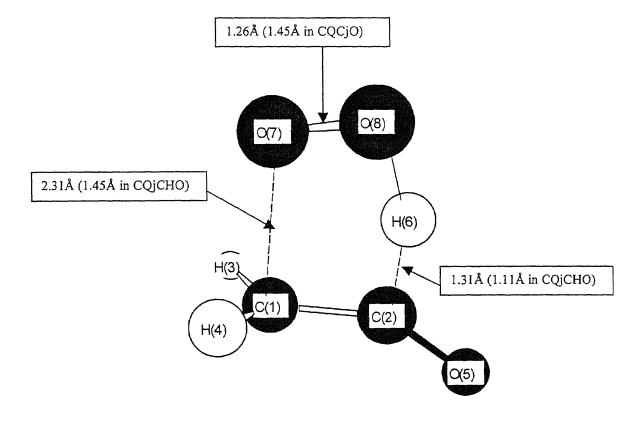


Figure 4.4 Structure for TCQjCHOE

TCQXCjO $C(OOH)H_2C.(=O) \rightarrow [TCQXCjO]^{\#} \rightarrow CO + CH_2OOH$

Geometry optimization at the MP2/6-31G(d') level of theory.

	Bond Length (Å)		Bond Angle (deg)	Dihedral Angle (deg)
C2-C1	2.32			
O3-C2	1.36	O3-C2-C1	103.4	
04-03	1.45	O4-O3-C2	108.6	O4-O3-C2-C1 -73.8
O5-C1	1.16	O5-C1-C2	106.8	O5-C1-C2-O3 19.3
H6-C2	1.09	H6-C2-C1	99.5	H6-C2-C1-O3 -120.7
H7-C2	1.09	H7-O2-C1	103.1	H7-O2-C1-O3 114.9
H8-O4	0.98	H8-O4-O3	99.6	H8-O4-O3-C2 92.2

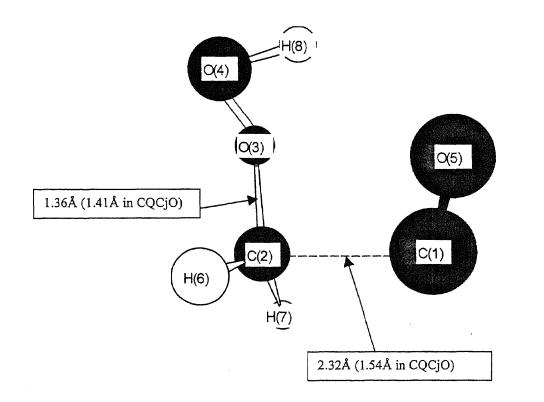


Figure 4.5 Structure for TCQXCjO

Figure 4.5 shows TCQXCjO structure, β -scission of CQCjO --> CO + CH₂OOH. The leaving bond length C₁-C₂ is calculated as 2.32Å and the C-C bond length in CQCjO is calculated as 1.54Å. The C₂-O₃ bond is calculated as 1.36Å and the C-O bond length in CQCjO is calculated as 1.41Å.

4.2 Estimation of Entropy (S°₍₂₉₈₎) and Heat Capacity (Cp(T)'s, 300 - 1500K)

S°₍₂₉₈₎ and Cp(T)'s are calculated based on vibration frequencies and moments of inertia of the optimized HF/6-31G(d') structures. (Table 4.1 and Table 4.2)

The calculation results using MP2/6-31G(d') determined geometries and HF/6-31G(d') determined frequencies are summarized in Table 4.3. TVR represents the sum of the contributions from translations, vibrations and external rotations for S°₍₂₉₈₎ and Cp(T)'s. Symmetry, optical isomer and electronic spin are incorporated in estimation of S°₍₂₉₈₎ as described in Table 4.3. Contributions of internal rotation for S°₍₂₉₈₎ and Cp(T)'s are calculated based on rotational barrier heights, moments of inertia of the rotors using the method of Pitzer and Gwinn's²². (Table 4.4)

4.3 Estimation of Enthalpy of Formation (ΔH_f°₂₉₈) using Total Energies and Isodesmic Reactions

The overall energy diagram for the CjCHO + O_2 reaction system is illustrated in Figure 4.6.

CBSQ calculations are performed on the MP2/6-31G(d') determined geometries and HF/6-31G(d') determined frequencies. Density functionals are performed on the B3LYP/6-31G(d) determined geometries and frequencies.

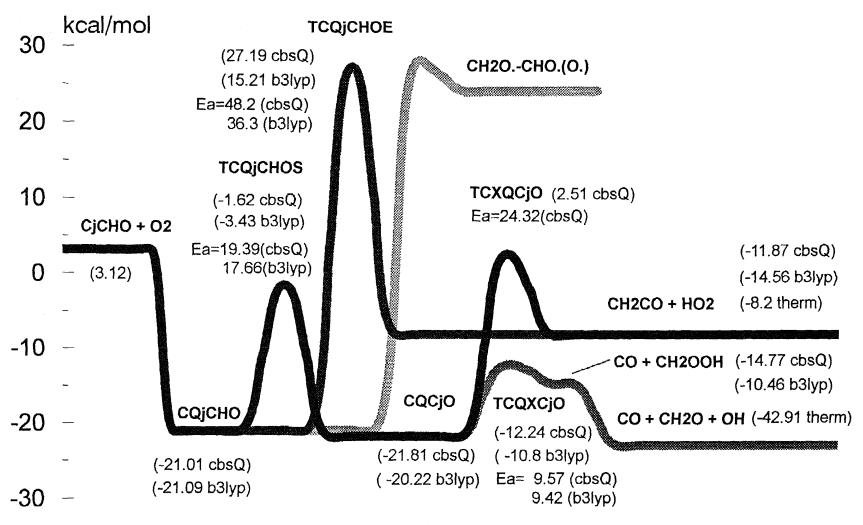


Figure 4.6 Potential Energy Diagram CjCHO + O₂
[Q=OOH, Qj=OO., j=radical site]

Table 4.1 Vibrational Frequencies^a (v cm⁻¹) HF/6-31G(d') level of calculation

Species						Vibrati	onal	Frequ	encies									
СјСНО	522	536	769	1015	1051	1214	1424	1546	1599	3223	3325	3437						
CQCHO	74	86	181	336	459	620	810	1047	1134	1230	1246	1394	1468	1540	1588	1612	2035	3170
	3239	3298	4113															
CQjCHO	70	132	336	476	637	811	1088	1126	1240	1280	1400	1470	1542	1591	2038	3172	3258	3322
CQCjO	110	188	242	341	452	622	938	978	1067	1258	1388	1475	1576	1592	2156	3236	3305	4094
TCQjCHOS ^b	-3103.6 ^f	216	389	413	587	743	881	998	1062	1207	1215	1347	1427	1597	1826	2174	3226	3325
TCQjCHOE ^c	-3393.3 ^f	64	111	164	274	350	422	617	783	879	1023	1159	1412	1551	1623	2110	3313	3420
TCXQCjO ^d	-761.3 ^f	54	141	288	391	435	496	725	989	1085	1145	1188	1556	1602	2255	3316	3408	4060
TCQXCjO°	- 858.9 ^f	19	30	40	87	101	252	362	439	899	1209	1243	1381	1566	2423	3296	3433	4097
СН2ООН	160.8 ^f	282	526	853	1045	1289	1314	1560	1620	3302	3440	4105						

 $^{^{\}rm a}$ non-scaled. $^{\rm b,c,d,e}$ Transition State Structure described in results section.

Table 4.2 Moments of Inertia (amu-Bohr²) HF/6-31G(d') level of calculation

Species	I_{A}	I_{B}	$I_{\mathbf{C}}$	Species	I_{A}	I_{B}	$I_{\rm C}$
СјСНО	26.75	155.67	182.43	TCQjCHOE	196.29	651.84	835.95
CQCHO	120.40	607.17	672.79	TCXQCjO	177.37	566.48	690.74
CQjCHO	103.48	609.46	665.24	TCQXCjO	158.53	945.93	1092.42
CQCjO	111.26	609.24	678.83	CH2OOH	31.28	154.47	181.22
TCQiCHOS	133.47	485.29	589.56				

^f Transition State, one imaginary frequency.

Table 4.3 Ideal Gas Phase Thermodynamic Properties Obtained by CBSQ Calculation^a and by Therm*

Species		ΔHf ^o ₂₉₈ ^b	S°298°	Cp ₃₀₀ °	Cp ₄₀₀	Cp ₅₀₀	Cp ₆₀₀	Cp ₈₀₀	Cp ₁₀₀₀	Cp ₁₅₀₀
(s, e, OI) ^g										_
СјСНО**	TVR ^d		61.25	11.77	14.21	16.32	18.07	20.76	22.71	25.71
(C.H2-C(=O)H)	Internal Rotor 1 ^f		4.69	1.64	1.42	1.30	1.21	1.12	1.08	1.03
(1,1/2,1)	Total		65.94	13.41	15.63	17.62	19.28	21.88	23.79	26.74
	THERM	3.12	61.79	12.93	15.35	17.44	19.24	22.10	24.17	27.14
CQCHO***	TVR		69.25	15.10	18.82	22.20	25.05	29.44	32.58	37.30
(C(OOH)H2-C(=O)H)	Internal Rotor 1,2,3		13.56	3.99	5.82	5.92	5.93	5.84	5.68	5.20
(1,0,2)	Total	-56.61	82.81	19.09	24.64	28.12	30.98	35.28	38.26	42.50
	THERM	-57.15	82.24	22.34	25.60	28.29	30.68	34.77	37.81	
CQjCHO***	TVR		68.79	14.86	18.37	21.49	24.10	28.06	30.81	34.77
(C(OO.)H2-C(=O)H)	Internal Rotor 1,2		11.34	1.99	1.94	1.80	1.66	1.44	1.32	1.15
(1,1/2,1)	Total	-21.01	80.13	16.85	20.31	23.29	25.76	29.50	32.13	35.92
	THERM	-21.05	82.46	20.29	22.76	24.74	26.59	30.05	32.84	
CQCj0	TVR		70.40	14.64	17.81	20.58	22.89	26.39	28.88	32.62
(C(OOH)H2-C.(=O))	Internal Rotor 1,2,3		11.38	5 .90	6.35	6.49	6.45	6.09	5.59	4.59
(1,1/2,2)	Total	-21.81	81.78	20.54	24.16	27.07	29.34	32.48	34.47	37.21
	THERM	-20.25	80.85	22.15	24.75	26.70	28.47	31.56	33.92	
TCQjCHOS	TVR		70.09	17.85	21.71	24.96	27.58	31.41	33.98	37.51
(1,1/2,2)	Total	-1.62	70.09	17.85	21.71	24.96	27.58	31.41	33.98	37.51
TCQjCHOE	TVR		81.23	22.66	25.70	28.18	30.17	33.12	35.15	38.05
(1,1/2,2)	Total	27.19	81.23	22.66	25.70	28.18	30.17	33.12	35.15	38.05
TCXQCjO	TVR		70.81	16.98	19.98	22.41	24.37	27.35	29.52	32.89
(1,1/2,2)	Internal Rotor 1,2		5.34	3.60	4.06	4.33	4.46	4.37	4.07	3.33
	Total	2.51	76.15	20.58	24.04	26.74	28.83	31.72	33.59	36.22
TCQXCjO	TVR		85.82	20.33	22.39	24.17	25.69	28.12	30.01	33.10
(1,1/2,2)	Internal Rotor 1,2,3		11.38	5.90	6.35	6.49	6.45	6.09	5.59	4.59
	Total	-12.24	97.20	26.23	28.74	30.66	32.14	34.21	35.60	37.69
CH2OOH	TVR		61.46	11.15	13.22	15.05	16.57	18.93	20.68	23.52
(1,1/2,2)	Internal Rotor 1,2		4.77	3.61	4.05	4.33	4.48	4.45	4.19	3.44
	Total		66.23	14.76	17.27	19.38	21.05	23.38	24.87	26.96
	THERM	15.20	65.41	15.60	18.12	20.15	21.79	24.14	25.65	27.65

^{* :} therm values for stable species are included for comparison

^{**} j: radical site, *** Q = OOH (hydroperoxy group), Qj = OO.(peroxy)

a: Thermodynamic properties are referred to a standard state of an ideal gas of pure enantiometer at 1 atm.

b: Units in kcal/mol c: Units in cal/mol-K

d: Sum of contributions from translations, vibrations, and external rotations.

f: Contribution from internal rotation

g: Symmetry number, optical isomer and electronic spin are taken into account,

⁻Rin(s), Rin2, Rin2, respectively.

s = number of symmetry, e = electronic spin, OI = number of optical isomer

Table 4.4 Moments of Inertia (amu-A²) and Rotational Barriers (kcal/mole) for Internal Rotors

Species	Rotor	I_A	$ m I_B$	V	nª
CjCHO ^b	C.H2C(=O)H	1.75	18.90	1.20	2
CQCHO ^c	CHOC(OOH)H2	18.90	114.36	13.00	6
	CHOC(H2)OOH	114.63	1.56	2.50	3
	CHOC(H2)OOH	120.00	0.86	6.38	1
CQjCHO ^d	CHOC(OO.)H2	18.90	108.88	13.00	6
	CHOC(H2)OO.	114.63	1.47	2.50	3
CQCjO	C.OC(OOH)H2	23.81	114.36	3.26	3
	C(C.O)H2OOH	116.71	1.56	5.40	3
	C(C.O)H2OOH	100.00	0.86	6.38	1
TCXQCjO	C(C.O)H2OOH	116.71	1.56	5.40	3
	C(C.O)H2OOH	100.00	0.86	6.38	1
TCQXCjO	C.OC(OOH)H2	23.81	114.36	3.26	3
	C(C.O)H2OOH	116.71	1.56	5.40	3
	C(C.O)H2OOH	100.00	0.86	6.38	1
CH2OOH	C.H2OOH	1.75	1.56	6.46	2
	С.Н2ООН	27.44	1.10	5.98	1

^a n: foldness

b "j" stands for radical site.

^{° &}quot;Q" stands for hydroperoxy group(OOH).

^d "Qj" stands for peroxy (OO.)

Table 4.5 List of Total Energy, ZPVE, and Thermal Correction of CBSQ Calculation^a

Species	Total Energy at 0K ^b	ZPVE°	Thermal Correction ^d	Total Energy at 298Kb
C _i CHO ^e	-152.9289585	0.0447890	0.0043670	-152.9245915
CQCHO ^f	-303.7676261	0.0698900	0.0068810	-303.7607451
CQiCHO ^g	-303.1306731	0.0569290	0.0061780	-303.1244951
CQCjO	-303.1274466	0.0569890	0.0065010	-303.1209456
TCQjCHOS	-303.0965504	0.0515610	0.0053710	-303.0911794
TCQjCHOE	-303.0514196	0.0439090	0.0073810	-303.0440386
TCXQCjO	-303.0889178	0.0526960	0.0067360	-303.0821818
TCQXCjO	-303.1128718	0.0483070	0.0071840	-303.1056878
CH2OOH	-189.9367183	0.0444130	0.0051750	-189.9315433

^a Unit in Hartree 1 HF=627.51 kcal/mol.
^b Scaled ZPVE are included. Scaling factor is recommended as 0.91844 by Petersson et.al [22]

^c Non-scaled.

d Non-scaled.

e "j" stands for radical site.
f "Q" stands for hydroperoxy group(OOH).

g "Qj" stands for peroxy(OO.).

Isodesmic reactions are applied to accurately estimate $\Delta H_f^o_{298}$ of CQCHO and two intermediate radicals, CQCjO and CQjCHO. Zero point Vibration energies (ZPVE's) and thermal corrections to 298.15 K are taken into account. The total energies at 0 K including scaled ZPVE's, nonscaled ZPVE's, thermal corrections to 298.15 K, and total energies at 298 K including scaled ZPVE's are shown in Table 4.5 for CBSQ calculations. Frequencies are scaled by 0.91844 for HF/6-31G(d') determined frequencies as recommended by Petersson et al.¹⁷

Table 4.6 Molecule Considered to Have Known ΔH_f°₂₉₈ for Use in Isodesmic Reactions.

Compounds	ΔH _f ° ₂₉₈ (kcal/mole) [reference]
CH ₃ CH ₃	-20.03 [24]
$CH_3C(=O)H$	-39.72 [24]
CH₃CH₂OOH	-39.9 [25]

The evaluated enthalpies of formation for the molecules considered to have known $\Delta H_{\rm f}^{\circ}_{298}$ values, for use in the isodesmic reaction, are: -20.03[24], -39.72[24], and -39.9[25] for CH₃CH₃, CH₃C(=O)H, and CH₃CH₂OOH, respectively. A low or zero $\Delta H^{\circ}_{\rm frxn,298}$ supports the hypothesis of group additivity and increases credibility of the calculations.

The CBSQ and density functionals determined enthalpy of reaction (1) is -2.98 and -3.16 kcal/mole, respectively. $\Delta H_{f}^{\circ}_{298}$ [CQCHO] is evaluated from

$$\Delta H^{\circ}_{frxn,298} = \Delta H_{f}^{\circ}_{298} [CH_{3}C(=O)H] + \Delta H_{f}^{\circ}_{298} [CH_{3}CH_{2}OOH]$$

$$-\Delta H_{f}^{\circ}_{298} [CQCHO] - \Delta H_{f}^{\circ}_{298} [CH_{3}CH_{3}] = -2.98 \text{ or } -3.16$$

$$= -39.72 + (-39.9) - X - (-20.03) \text{ kcal/mole}(4)$$

The enthalpy of formation of CCOQ obtained is -56.61 and -56.43 kcal/mole in CBSQ and density functionals calculations, respectively.

The enthalpy of formation of two intermediate radicals, CQCjO and CQjCHO by CBSQ and density functionals are obtained from use of isodesmic reactions (2) and (3) and bond dissociation energy of C₂H₅—H(101.6 kcal/mole) and CH₃OO—H(86.3 kcal/mole) The data results in enthalpy values are -21.81 and -20.22 for CQCjO, -21.01 and -21.09 for CQjCHO, in CBSQ and density functionals calculations, respectively.

Formation of CQjCHO adduct has a well depth of 24.13 kcal/mole.

The activation energy for isomerization, TCQjCHOS, is estimated from both the reactant CQjCHO and the product CQCjO. The averaged result is 19.39 and 17.66 kcal/mole in CBSQ and density functionals, respectively. The activation energy for direct HO₂ elimination, TCQjCHOE, is estimated by taking the difference of total energy with ZPVE and thermal correction between transition state(TS) and peroxy reactant, resulting in 27.19 and 15.21 kcal/mole in CBSQ and density functionals, respectively. The activation energy for HO₂ elimination from the hydroperoxide isomer, TCXQCjO, is estimated by taking the difference of total energy with ZPVE and thermal correction between transition state(TS) and reactant, resulting in 24.32 kcal/mole via CBSQ. The activation energy for β -scission to CO + CH₂OOH, TCQXCjO, is estimated by taking the difference of total energy with ZPVE and thermal correction between transition state(TS) and hydroperoxide isomer, resulting in 9.57 and 9.42 kcal/mole in CBSQ and density functionals, respectively.

4.4 QRRK Calculation Results

QRRK calculations for k(E) and modified strong collision analysis of Gilbert et. al¹²⁻¹⁴ for fall-off are performed on the CjCHO + O_2 reaction to obtain rate constants as a function of temperature and pressure and results are listed in Table 4.7. ΔE down of 400 cal/mole is used for bath gas N_2 .

Plots of rate constants at 1atm pressure versus 1000/T are illustrated in Figure 4.7. Stabilization (CQjCHO), reverse dissociation, and CO + CH₂O + OH products via H shift are important at lower temperatures, 1atm pressure, with reverse dissociation, CO + CH₂O + OH products via H shift and ketene + HO₂ products via H shift important at higher temperatures.

Plots of rate constants at 298 K versus pressure are illustrated in Figure 4.8.

The figure illustrates that stabilization is the dominant path at high pressures, while stabilization (CQjCHO), reverse dissociation, and CO + CH_2O + OH products via H shift are important at low pressures.

Plots of rate constants at 1000 K versus pressure are illustrated in Figure 4.9. The figure illustrates that stabilization decreases as pressure is decreased. Reverse dissociation and $CO + CH_2O + OH$ products via H shift are most important at both high and low pressures.

Table 4.7 Input Parameters^a and High-Pressure Limit Rate Constants $(K_{\infty})^b$ for QRRK Calculations^c and the Resulting Rate Constants (Temp=298K): CBSQ Result (adjusted)

Input parameters for QRRK calculations

High-pressure Limit Rate Constants						
		k∞				
Reaction	A[S ⁻¹ or cm ³ /(mole s)]	n	Ea (kcal/mole)			
1 CjCHO + $O_2 => CQjCHO^d$ -1 CQjCHO => CjCHO + O_2^e 2 CQjCHO => CQCjO ^f 3 CQjCHO => CH ₂ CO + HO ₂ ^f 4 CQCjO => CO + CH ₂ O + OH ^f 5 CQCjO => CH ₂ CO + HO ₂ ^f	1.57E+11 1.96E+13 5.00E+5 4.99E+5 8.47E+10 1.47E+10	0.0 0.0 2.14 2.74 2.04 0.65	0.0 23.03 18.57 47.48 9.40 24.61			

Calculated Reaction Parameters at P = 1atm, $k=A(T/K)^n \exp(-Ea/RT)$ (T=298-2000K)

Reaction	A	n	Ea (kcal/mole)	k ₂₉₈ (s ⁻¹ or cm ³ /(mole s)
$1 \text{ CjCHO} + O_2 => \text{CQjCHO}$	2.87E+37	-8.73	6.42	1.41E+11
$6 \text{ CjCHO} + \text{O}_2 \Rightarrow \text{CH}_2\text{CO} + \text{HO}_2$	2.68E-06	5.46	21.76	9.00E-09
$7 \text{ CjCHO} + O_2 => \text{CO} + \text{CH}_2\text{O} + \text{OH}$	1.25E+14	-1.05	4.99	6.90E+07
$8 \text{ CjCHO} + O_2 => \text{CQCjO}$	2.07E+14	-3.74	2.71	1.19E+03
2 CQjCHO => CQCjO	3.11E+29	-8.48	22.88	5.00E-09
$3 \text{ CQjCHO} \Rightarrow \text{CH}_2\text{CO} + \text{HO}_2$	1.02E+16	-1.64	48.33	3.19E-24
$4 \text{ CQCjO} \Rightarrow \text{CO} + \text{CH}_2\text{O} + \text{OH}$	3.44E+18	-2.90	6.93	1.90E+06
$5 \text{ CQCjO} \Rightarrow \text{CH}_2\text{CO} + \text{HO}_2$	5.57E+09	-1.92	21.86	9.17E-12

^aGeometric mean frequency (from CPFIT, Ref.[34]: 529.0 cm⁻¹(6.962); 1518.5 cm⁻¹ (8.074); 3999.8 cm⁻¹ (1.964). Lennard-Jones parameters: σij=5.19Å, ε/k=533.08

^bThe units of A factors and rate constants k are s⁻¹ for unimolecular reactions and cm³/(mole s) for bimolecular reactions.

^cAE down of 400 cal/mole is used.

d k_{∞.1}: Baulch et al. [26]

 $^{^{\}mathbf{c}}$ $_{\mathbf{k}_{\infty,1}}$: thermodynamics and microscopic reversibility <MR>

^f A is calculated using TST and entropy of transition state, ΔS^{2}_{298} from HF/6-31G(d') (see Table 4.3); Ea is from CBSQ calculation (see Table 4.3 and description for determination of Ea in Results section). All parameters A, n, Ea, are fit over the temperature range of 298-2000K.

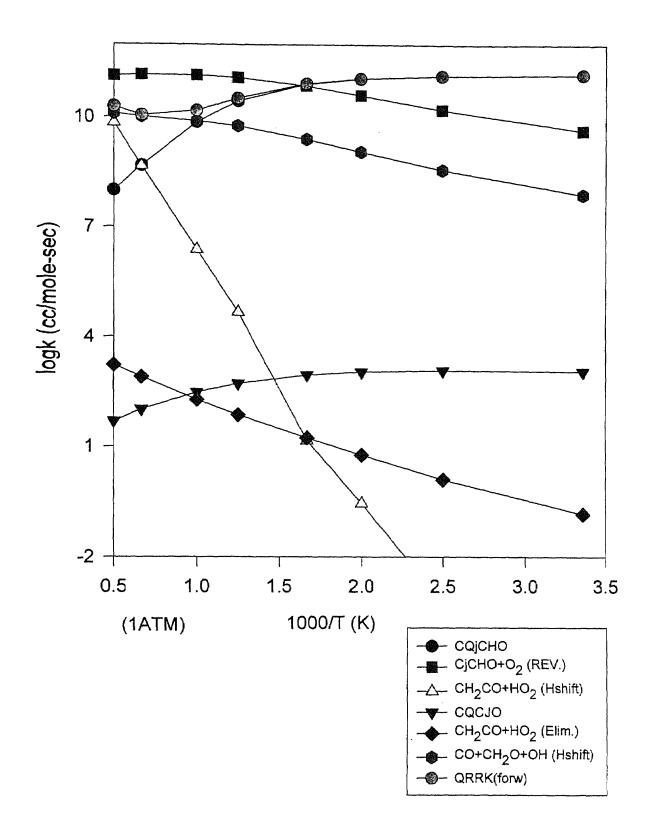


Figure 4.7 k vs. Temperature at 1atm CjCHO + O₂

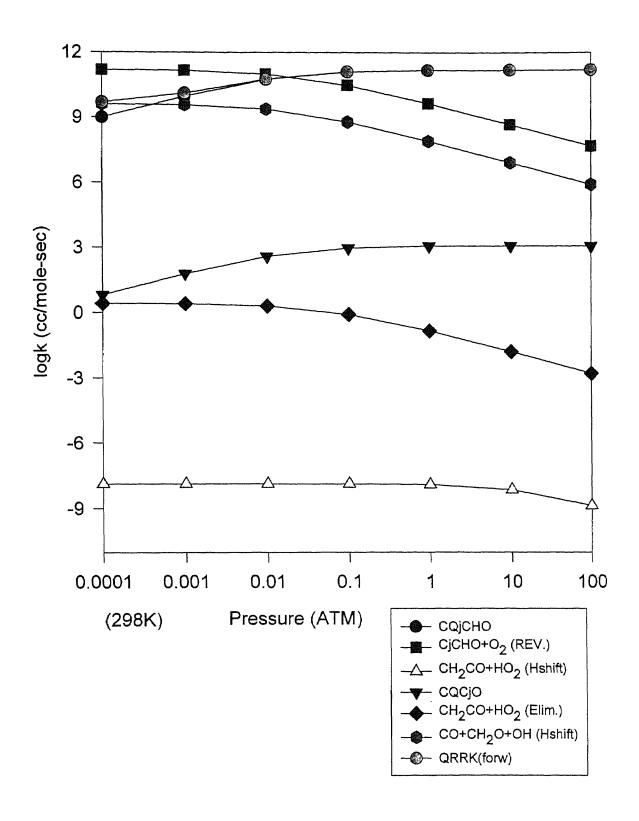
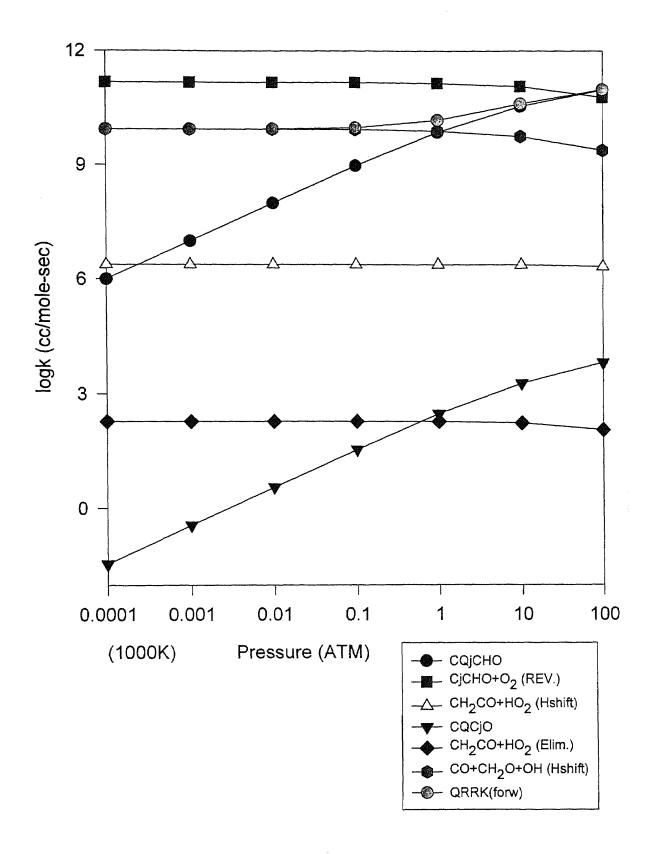



Figure 4.8 k vs. Pressure at 298K CjCHO + O₂

Fifure 4.9 k vs. Pressure at 1000K CjCHO + O₂

CHAPTER 5

SUMMARY FOR PART FOUR

Thermodynamic properties of stable radicals and transition states on CjCHO + O_2 reaction system are calculated using density functional and *ab initio* methods. Enthalpies of formation (ΔH_{f^0298}) are determined using the CBSQ composite method and density functional calculations with isodesmic reactions. Entropies (S°_{298}) and heat capacities (Cp(T) 300 –1500 K) are determined using geometric parameters and vibrational frequencies obtained at the HF/6-31G(d') level of theory. Reaction pathways and kinetics are analyzed on CjCHO + O_2 reaction system using QRRK for k(E) and modified strong collision analysis of Gilbert et. al¹²⁻¹⁴ for fall-off. Major reaction paths at 1atm pressure are stabilization of CQjCHO peroxy adduct at low temperature and CO + CH₂O + OH products via H shift and ketene + HO₂ products via H shift at high temperature.

APPENDIX 4.1

THERMODYNAMIC ANALYSIS FOR CJCHO + O2 REACTION

```
THERMODYNAMIC ANALYSIS for REACTION
```

Rx CJCHO + O2 = CQJCHO Hf {Kcal/mol} 3.120 .000 -21.010 S {cal/mol K} 65.940 46.630 80.130

dHr {kcal/mol} (298K) = -24.13 dHr avg (298., 1500. K) = -24.82 dU (dE) {kcal/mol} (") = -23.54 dUr avg (298., 1500. K) = -23.03 dSr {cal/mol K} (") = -32.44 dSr avg (298., 1500. K) = -33.85 dGr {kcal/mol} (") = -14.46 dGr avg (298., 1500. K) = 5.61 Af/Ar (") = 5.401E-03 Af/Ar avg (298., 1500. K) = 8.024E-03

T (K) dH(Kcal/mol) dU(Kcal/mol) dS(cal/mol K) (Af/Ar) dG(Kcal/mol) 300.00 -2.414E+01 -2.354E+01 -3.247E+01 5.359E-03 -1.440E+01 400.00 -2.453E+01 -2.374E+01 -3.360E+01 4.032E-03 -1.109E+01 500.00 -2.483E+01 -2.383E+01 -3.427E+01 3.613E-03 -7.693E+00 600.00 -2.504E+01 -2.385E+01 -3.466E+01 3.550E-03 -4.245E+00 800.00 -2.531E+01 -2.372E+01 -3.505E+01 3.895E-03 2.733E+00 1000.00 -2.543E+01 -2.344E+01 -3.519E+01 4.539E-03 9.760E+00 1200.00 -2.548E+01 -2.310E+01 -3.524E+01 5.319E-03 1.680E+01 1500.00 -2.550E+01 -2.252E+01 -3.525E+01 6.595E-03 2.738E+01 2000.00 -2.545E+01 -2.148E+01 -3.522E+01 8.920E-03 4.500E+01

APPENDIX 4.2

KINETIC ANALYSIS FOR CJCHO + O₂ REACTION

THERMODYNAMIC ANALYSIS for REACTION

Rx CQJCHO = TCQJCHOS

Hf {Kcal/mol} -21.010 -1.620

S {cal/mol K} 80.130 70.090

 $dHr \{kcal/mol\} (298K) =$ 19.39 dHr avg (298., 1500, K) =20.79 dUr avg (298., 1500. K) = $dU(dE) \{kcal/mol\} (") =$ 19.39 20.79 $dSr \{cal/mol K\} (") =$ dSr avg (298., 1500. K) =-10.04 -8.36 dGr avg (298., 1500. K) = $dGr \{kcal/mol\} (") =$ 22.38 28.31 Af/Ar (") = 6.391E-03 Af/Ar avg (298., 1500. K) = 1.488E-02 : A = 1.380E-04 n = .63 alpha = -5.650E-04 avg error 3.62 %Fit Af/Ar w/ddU: A = 2.963E-06 n = 1.31 alpha = -4.459E-04 avg error 5.51 %

T (K) dH(Kcal/mol) dU(Kcal/mol) dS(cal/mol K) (Af/Ar) dG(Kcal/mol) 300.00 1.939E+01 1.939E+01 -1.003E+01 6.411E-03 2.240E+01 400.00 1.951E+01 1.951E+01 -9.694E+00 7.608E-03 2.339E+01 500.00 1.966E+01 1.966E+01 -9.352E+00 9.035E-03 2.434E+01 600.00 1.985E+01 1.985E+01 -9.015E+00 1.071E-02 2.526E+01 800.00 2.030E+01 2.030E+01 -8.373E+00 1.479E-02 2.700E+01 1000.00 2.082E+01 2.082E+01 -7.795E+00 1.978E-02 2.861E+01 1200.00 2.137E+01 2.137E+01 -7.293E+00 2.547E-02 3.012E+01 1500.00 2.219E+01 2.219E+01 -6.681E+00 3.466E-02 3.221E+01 2000.00 2.350E+01 2.350E+01 -5.926E+00 5.067E-02 3.535E+01

The model fitted is for uni-molecular reaction.

Temp(K)	AF(T)	T K^n	k calc(T)	k fit
300.00	4.008E+10	2.046E+05	2.984E-04	$\overline{3.041}$ E-04
400.00	6.341E+10	3.790E+05	1.384E+00	1.357E+00
500.00	9.413E+10	6.116E+05	2.386E+02	2.341E+02
600.00	1.338E+11	9.041E+05	7.864E+03	7.796E+03
800.00	2.465E+11	1.675E+06	7.016E+05	7.089E+05
1000.00	4.122E+11	2.703E+06	1.162E+07	1.183E+07
1200.00	6.369E+11	3.996E+06	8.165E+07	8.297E+07
1500.00	1.083E+12	6.447E+06	6.327E+08	6.354E+08
2000.00	2.112E+12	1.195E+07	5.706E+09	5.588E+09

THERMODYNAMIC ANALYSIS for REACTION Rx CQCJO = TCQJCHOS Hf {Kcal/mol} -21.810 -1.620

70.090

S {cal/mol K} 81.780

 $dHr \{kcal/mol\} (298K) =$ 20.19 dHr avg (298... 1500. K) =20.14 $dU(dE) \{kcal/mol\} (") =$ 20.19 dUr avg (298., 1500. K) =20.14 $dSr \{cal/mol K\} (") =$ dSr avg (298., 1500. K) =-11.69 -12.31 $dGr \{kcal/mol\} (") =$ 23.68 dGr avg (298., 1500. K) =31.21 Af/Ar (") = 2.786E-03 Af/Ar avg (298., 1500. K) = 2.038E-03A = 3.897E + 01 n = -1.78 alpha = -1.860E - 03 avg error 4.41 % Fit Af/Ar w/ddU: A = 1.595E+04 n = -2.94 alpha = -3.409E-03 avg error 12.67 %

```
T(K) dH(Kcal/mol) dU(Kcal/mol) dS(cal/mol K) (Af/Ar) dG(Kcal/mol)
                   2.018E+01 -1.171E+01
300.00
       2.018E+01
                                          2.762E-03
                                                     2.370E+01
400.00
        1.992E+01
                   1.992E+01 -1.246E+01
                                          1.891E-03
                                                     2.491E+01
500.00
                   1.970E+01 -1.295E+01
                                          1.475E-03
        1.970E+01
                                                     2.618E+01
600.00
        1.953E+01
                   1.953E+01 -1.326E+01
                                          1.262E-03
                                                     2.749E+01
800.00
        1.937E+01
                   1.937E+01 -1.351E+01
                                          1.116E-03
                                                     3.018E+01
1000.00
        1.942E+01
                   1.942E+01 -1.346E+01 1.144E-03
                                                     3.288E+01
                    1.962E+01 -1.327E+01
                                          1.256E-03
1200.00
        1.962E+01
                                                     3.555E+01
                    2.008E+01 -1.293E+01
                                           1.491E-03
1500.00
       2.008E+01
                                                     3.948E+01
                   2.108E+01 -1.236E+01
2000.00
        2.108E+01
                                           1.987E-03
                                                     4.580E+01
```

The model fitted is for uni-molecular reaction.

The 3 parameters for the model equation of A(T) = Aprime * T^n * exp(-Ea/RT) Aprime = 1.1349E+08 n = .82014 Ea = 1.9946E+04

Temp(K)	AF(T)	T_K^n	k_calc(T)	k_fit
300.00	1.726E+10	1.075E+02	3.398E-05	3.586E-05
400.00	1.576E+10	1.362E+02	2.045E-01	1.950E-01
500.00	1.536E+10	1.635E+02	3.745E+01	3.543E+01
600.00	1.578E+10	1.899E+02	1.208E+03	1.168E+03
800.00	1.860E+10	2.404E+02	9.493E+04	9.692E+04
1000.00	2.384E+10	2.887E+02	1.359E+06	1.431E+06
1200.00	3.141E+10	3.352E+02	8.371E+06	8.858E+06
1500.00	4.660E+10	4.026E+02	5.520E+07	5.667E+07
2000.00	8.279E+10	5.097E+02	4.113E+08	3.823E+08

THERMODYNAMIC ANALYSIS for REACTION

Rx CQJCHO = TCQJCHOE Hf {Kcal/mol} -21.010 27.190 S {cal/mol K} 80.130 81.230

 $dHr \{kcal/mol\} (298K) =$ 48.20. dHr avg (298., 1500, K) =50.17 $dU(dE) \{kcal/mol\} (") =$ 48.20 dUr avg (298., 1500. K) =50.17 $dSr \{cal/mol K\} (") =$ 1.10 dSr avg (298., 1500. K) =4.21 $dGr \{kcal/mol\} (") =$ 47.87 dGr avg (298., 1500. K) =46.39 Af/Ar (") = 1.740E+00 Af/Ar avg (298., 1500. K) = 8.327E+00: A = 7.022E-08 n = 3.08 alpha = 1.545E-03 avg error 4.29 % Fit Af/Ar w/ddU: A = 3.717E-13 n = 5.35 alpha = 3.562E-03 avg error 15.55 %

T(K) dH(Kcal/mol) dU(Kcal/mol) dS(cal/mol K) (Af/Ar) dG(Kcal/mol) 300.00 4.821E+01 4.821E+01 1.136E+00 1.772E+00 4.787E+01 400.00 4.877E+01 4.877E+01 2.746E+00 3.983E+00 4.767E+01 500.00 4.927E+01 4.927E+01 3.866E+00 6.999E+00 4.734E+01 600.00 4.972E+01 4.972E+01 4.682E+00 1.055E+01 4.691E+01 800.00 5.047E+01 5.047E+01 5.766E+00 1.821E+01 4.585E+01 1000.00 5.106E+01 5.106E+01 6.432E+00 2.546E+01 4.463E+01 1200.00 5.155E+01 5.155E+01 6.875E+00 3.182E+01 4.329E+01 1500.00 5.214E+01 5.214E+01 7.323E+00 3.986E+01 4.116E+01 2000.00 5.289E+01 5.289E+01 7.753E+00 4.950E+01 3.738E+01

The model fitted is for uni-molecular reaction.

The 3 parameters for the model equation of A(T) = Aprime * T^n * exp(-Ea/RT) Aprime = 4.9884E+05 n = 2.74176 Ea = 4.7476E+04

Temp(K)	AF(T)	T_K^n	k_calc(T)	k_fit
300.00	1.107E+13	6.190E+06	8.314E-23	7.955E-23
400.00	3.320E+13	1.362E+07	7.460E-14	7.770E-14
500.00	7.291E+13	2.511E+07	2.114E-08	2.210E-08
600.00	1.319E+14	4.140E+07	1.022E-04	1.048E-04
800.00	3.035E+14	9.111E+07	4.948E+00	4.860E+00
1000.00	5.305E+14	1.680E+08	3.669E+03	3.520E+03
1200.00	7.957E+14	2.769E+08	3.253E+05	3.112E+05
1500.00	1.246E+15	5.106E+08	3.143E+07	3.078E+07
2000.00	2.063E+15	1.124E+09	3.427E+09	3.633E+09

THERMODYNAMIC ANALYSIS for REACTION

Rx CQCJO = TCXQCJO Hf {Kcal/mol} -21.810 2.510 S {cal/mol K} 81.780 76.150

 $dHr \{kcal/mol\} (298K) =$ 24.32 dHr avg (298., 1500. K) =23.89 $dU(dE) \{kcal/mol\} (") =$ 24.32 dUr avg (298., 1500. K) =23.89 $dSr \{cal/mol K\} (") =$ -5.63 dSr avg (298., 1500. K) =-6.09 $dGr \{kcal/mol\} (") =$ dGr avg (298., 1500. K) =26.00 29.37 Af/Ar (") = 5.881E-02 Af/Ar avg (298., 1500. K) = 4.656E-02 : A = 8.471E-02 n = -.04 alpha = 3.522E-04 avg error 1.56 %Fit Af/Ar w/ddU: A = 1.711E-01 n = -.15 alpha = 4.561E-04 avg error 2.80 %

T(K) dH(Kcal/mol) dU(Kcal/mol) dS(cal/mol K) (Af/Ar) dG(Kcal/mol) 300.00 2.432E+01 2.432E+01 -5.629E+00 5.884E-02 2.601E+01 400.00 2.432E+01 2.432E+01 -5.637E+00 5.860E-02 2.657E+01 500.00 2.428E+01 2.428E+01 -5.708E+00 5.654E-02 2.714E+01 600.00 2.423E+01 2.423E+01 -5.804E+00 5.389E-02 2.771E+01 800.00 2.409E+01 2.409E+01 -6.005E+00 4.869E-02 2.889E+01 1000.00 2.393E+01 2.393E+01 -6.188E+00 4.441E-02 3.011E+01 1200.00 2.375E+01 2.375E+01 -6.347E+00 4.099E-02 3.137E+01 1500.00 2.347E+01 2.347E+01 -6.558E+00 3.687E-02 3.330E+01 2.289E+01 -6.887E+00 2000.00 2.289E+01 3.125E-02 3.667E+01

The model fitted is for uni-molecular reaction.

Temp(K)	AF(T)	T_K^n	k_calc(T)	k_fit
300.00	3.678E+11	4.039E+01	7.028E-07	6.958E-07
400.00	4.884E+11	4.867E+01	2.522E-02	2.548E-02
500.00	5.890E+11	5.625E+01	1.428E+01	1.441E+01
600.00	6.737E+11	6.331E+01	1.003E+03	1.007E+03
800.00	8.116E+11	7.629E+01	2.126E+05	2.116E+05
1000.00	9.253E+11	8.817E+01	5.454E+06	5.408E+06
1200.00	1.025E+12	9.924E+01	4.836E+07	4.797E+07
1500.00	1.152E+12	1.147E+02	4.385E+08	4.368E+08
2000.00	1.302E+12	1.382E+02	4.101E+09	4.148E+09

THERMODYNAMIC ANALYSIS for REACTION

Rx CQCJO = TCQXCJO Hf {Kcal/mol} -21.810 -12.240 S {cal/mol K} 81.780 97.200

 $dHr \{kcal/mol\} (298K) =$ 9.57 dHr avg (298., 1500. K) =10.72 $dU(dE) \{kcal/mol\} (") =$ 9.57 dUr avg (298., 1500. K) =10.72 $dSr \{cal/mol K\} (") =$ dSr avg (298., 1500. K) =15.42 17.53 $dGr \{kcal/mol\} (") =$ 4.97 dGr avg (298., 1500. K) =-5.04 Af/Ar (") = 2.346E+03 Af/Ar avg (298., 1500. K) = 6.790E+03A = 2.001E-03 n = 2.57 alpha = 1.720E-03 avg error = 8.13 %Fit Af/Ar w/ddU: A = 2.173E-07 n = 4.30 alpha = 3.502E-03 avg error 22.46 %

T(K) dH(Kcal/mol) dU(Kcal/mol) dS(cal/mol K) (Af/Ar) dG(Kcal/mol) 300.00 9.581E+00 9.581E+00 1.546E+01 2.388E+03 4.944E+00 400.00 1.009E+01 1.009E+01 1.692E+01 4.991E+03 3.319E+00 7.842E+03 500.00 1.049E+01 1.049E+01 1.782E+01 1.579E+00 600.00 1.080E+01 1.080E+01 1.840E+01 1.049E+04 -2.341E-01 800.00 1.124E+01 1.124E+01 1.904E+01 1.449E+04 -3.986E+00 1000.00 1.152E+01 1.152E+01 1.935E+01 1.693E+04 -7.828E+00 1200.00 1.170E+01 1.170E+01 1.951E+01 1.839E+04 -1.171E+01 1500.00 1.188E+01 1.188E+01 1.964E+01 1.966E+04 -1.759E+01 2000.00 1.205E+01 1.205E+01 1.974E+01 2.067E+04 -2.744E+01

The model fitted is for uni-molecular reaction.

The 3 parameters for the model equation of A(T) = Aprime * T^n * exp(-Ea/RT) Aprime = 8.4672E+10 n = 2.04186 Ea = 9.3533E+03

Temp(K)	AF(T)	T_K^n	k_calc(T)	k_fit
300.00	1.493E+16	1.143E+05	1.563E+09	1.483E+09
400.00	4.159E+16	2.056E+05	1.280E+11	1.349E+11
500.00	8.170E+16	3.243E+05	2.127E+12	2.239E+12
600.00	1.311E+17	4.705E+05	1.521E+13	1.560E+13
800.00	2.415E+17	8.466E+05	2.046E+14	1.995E+14
1000.00	3.527E+17	1.335E+06	1.071E+15	1.021E+15
1200.00	4.597E+17	1.938E+06	3.402E+15	3.246E+15
1500.00	6.143E+17	3.056E+06	1.143E+16	1.122E+16
2000.00	8.615E+17	5.498E+06	4.157E+16	4.424E+16

APPENDIX 4.3

KINETIC DATA FOR CjChO + O_2 REACTIONS ARRHENIUS FORM

Chemical Activation CjCHO + O_2

СЈСНО+О2	<=>	COJCHO	1.08E+32	-8.43	2907.	!		(1.00E-04)	atm,	298-2000 K,	18% err	•	
CJCHO+O2	<=>	СОЈСНО	1.63E+33	-8.48	3021.	Ţ	1.00E-03	(1.00E-03)	atm,	298-2000 K,	18% err	•	
СЈСНО+О2	<=>	СОЈСНО	2.06E+35	-8.79	3762.	!	1.00E-02	(1.00E-02)	atm,	298-2000 K,	19% err	, 1.00	x N2
CJCHO+O2	<=>	СОЈСНО	9.57E+37	-9.24	5435.	•	1.00E-01	(1.00E-01)	atm,	298-2000 K,	18% err	•	
CJCHO+02	<=>	СОЈСНО	2.87E+37	-8.73	6423.	•	1.00E+00	(1.00E+00)	atm,	298-2000 K,	14% err	, 1.00	x N2
СЈСНО+02	<=>	СОЈСНО	3.54E+32	-6.94	5815.	1	1.00E+01	(1.00E+01)	atm,	298-2000 K,	19% err	•	
CJCHO+O2		СОЛСНО	8.79E+24	-4.41	3987.	!	1.00E+02	(1.00E+02)	atm,	298-2000 K,	20% err	, 1.00	x N2
CJCHO+O2	<=>	СЈСНО+О2	2.95E+11	10	74.	!	1.00E-04	(1.00E-04)	atm,	298-2000 K,	1% err	, 1.00	x N2
СЈСНО+О2	<=>	сјсно+02	4.22E+11	14	165.	1	1.00E-03	(1.00E-03)	atm,	298-2000 K,	1% err	, 1.00	x N2
CJCHO+O2	<=>	СЈСНО+02	4.55E+12	44	784.	!	1.00E-02	(1.00E-02)	atm,	298-2000 K,	2% err	, 1.00	x N2
СЈСНО+02	<=>	CJCHO+O2	2.02E+15	-1.18	2569.	ţ.	1.00E-01	(1.00E-01)	atm,	298-2000 K,		, 1.00	
CJCHO+O2	<=>	сјсно+02	2.55E+17	-1.74	4762.	•	1.00E+00	(1.00E+00)	atm,	298-2000 K,	7% err	, 1.00	x N2
CJCHO+02	<=>	СЈСНО+О2	4.13E+15	-1.14	5804.	į	1.00E+01	(1.00E+01)	atm,	298-2000 K,	27% err	, 1.00	x N2
CJCHO+O2	<=>	СЈСНО+О2	8.80E+08	.88	4968.	!	1.00E+02	(1.00E+02)	atm,	298-2000 K,	51% err	, 1.00	x N2
CJCHO+O2	<=>	CH2CO+HO2	1.81E-06	5.50	21640.	Ţ	1.00E-04	(1.00E-04)	atm,	298-2000 K,	79% err	•	
CJCHO+O2	<=>	CH2CO+HO2	1.81E-06	5.50	21640.	!	1.00E-03	(1.00E-03)	atm,	298-2000 K,	79% err	, 1.00	x N2
СЈСНО+О2	<=>	CH2CO+HO2	1.82E-06	5.50	21641.	•	1.00E-02	(1.00E-02)	atm,	298-2000 K,	79% err	, 1.00	x N2
CJCHO+O2	<=>	CH2CO+HO2	1.89E-06	5.50	21653.	į	1.00E-01	(1.00E-01)	atm,	298-2000 K,	79% err	•	
CJCHO+O2	<=>	CH2CO+HO2	2.68E-06	5.46	21760.	1	1.00E+00	(1.00E+00)	atm,	298-2000 K,	79% err	, 1.00	x N2
CJCHO+02	<=>	CH2CO+HO2	2.16E-05	5.20	22475.	!	1.00E+01	(1.00E+01)	atm,	298-2000 K,	80% err	•	
CJCHO+02	<=>	CH2CO+HO2	2.97E-05	5.22	23754.	!	1.00E+02	(1.00E+02)	atm,	298-2000 K,	99% err	•	
СЈСНО+02	<=>	cocio	1.21E+07	-2.91	-1374.	!	1.00E-04	(1.00E-04)	atm,	298-2000 K,	16% err	•	
СЈСНО+О2	<=>	cocio	1.82E+08	-2.96	-1265.	!	1.00E-03	(1.00E-03)	atm,	298-2000 K,	17% err	•	
СЈСНО+02	<=>	CQCJO	2.34E+10	-3.28	-545.	•	1.00E-02	(1.00E-02)	atm,	298-2000 K,	18% err	•	
СЈСНО+О2	<=>	COCIO	2.95E+13	-3.85	1228.	•		(1.00E-01)	atm,	298-2000 K,	16% err	•	
СЈСНО+02	<=>	COCIO	2.07E+14	-3.74	2711.	ŗ	1.00E+00	(1.00E+00)	atm,	298-2000 K,		, 1.00	
СЈСНО+О2	<=>	CÓCIO	6.03E+10	-2.34	2695.	!		(1.00E+01)		298-2000 K,	17% err	•	
СЈСНО+02	<=>	CQCJO	3.56E+03	.11	1146.	Ţ	1.00E+02	(1.00E+02)	atm,	298-2000 K,	30% err		
СЈСНО+02	<=>	CH2CO+HO2	1.40E-09	3.67	-180.	!	1.00E-04	(1.00E-04)	atm,	298-2000 K,	12% err		
CJCHO+O2	<=>	CH2CO+HO2	1.77E-09	3.64	-123.	!		•	atm,	298-2000 K,	11% err	•	
СЈСНО+О2	<=>	CH2CO+HO2	9.74E-09	3.43	297.	!		(1.00E-02)	•	298-2000 K,	9% err	-	
CJCHO+O2	<=>	CH2CO+HO2	2.72E-06	2.73	1777.	•		(1.00E-01)	•	298-2000 K,	5% err	•	
СЈСНО+02	<=>	CH2CO+HO2	5.40E-03	1.81	4208.	!		(1.00E+00)	•	298-2000 K,	6% err		
СЈСНО+02	<=>	CH2CO+HO2	1.77E-02	1.73	6059.	!		(1.00E+01)		298-2000 K,	24% err		
СЈСНО+О2	<=>	CH2CO+HO2	2.92E-07	3.21	6000.	1	1.00E+02	(1.00E+02)	atm,	298-2000 K,	55% err	•	
СЈСНО+02	<=>	CO+CH2O+OH	5.19E+09	.13	558.	!		(1.00E-04)	atm,	298-2000 K,		, 1.00	
СЈСНО+02	<=>	CO+CH2O+OH	7.76E+09	.08	664.	į			atm,	298-2000 K,	6% err	•	
СЈСНО+О2	<=>	CO+CH2O+OH	1.02E+11	24	1372.	ļ			atm,	298-2000 K,	7% err	•	
СЈСНО+О2	<=>	CO+CH2O+OH	2.33E+13	90	3200.	!		,	atm,	298-2000 K,	6% err	•	
СЈСНО+02	< = >	CO+CH2O+OH	1.25E+14	-1.05	4991.	1		,	atm,	298-2000 K,	10% err	•	
CJCHO+O2	<=>	CO+CH2O+OH	4.62E+10	.04	5421.	!		• • • • • • •	atm,	298-2000 K,	30% err	•	
СЈСНО+О2	<=>	CO+CH2O+OH	1.11E+03	2.33	4177.	ŗ	1.00E+02	(1.00E+02)	atm,	298-2000 K,	50% err	, 1.00	x N2

Dissociation

СОЈСНО	<=> CJCHO+O2	1.49E+34 -8.46	25999.	! 1.00E-04 (1.00E-04) atm, 298-2000 K, 21% err, 1.00 x N2
СОЛСНО	<=> CJCHO+O2	2.21E+35 -8.51	26108.	! 1.00E-03 (1.00E-03) atm, 298-2000 K, 22% err, 1.00 x N2
солсно	<=> CJCHO+O2	2.61E+37 -8.82	26829.	! 1.00E-02 (1.00E-02) atm, 298-2000 K, 23% err, 1.00 x N2
СОЛСНО	<=> CJCHO+O2	1.25E+40 -9.27	28497.	! 1.00E-01 (1.00E-01) atm, 298-2000 K, 20% err, 1.00 x N2
СОЛСНО	<=> CJCHO+O2	3.97E+39 -8.76	29493.	! 1.00E+00 (1.00E+00) atm, 298-2000 K, 14% err, 1.00 x N2
СФЭСНО	<=> CJCHO+O2	5.00E+34 -6.98	28888.	! 1.00E+01 (1.00E+01) atm, 298-2000 K, 16% err, 1.00 x N2
CQJCHO	<=> CJCHO+O2	1.25E+27 -4.45	27061.	! 1.00E+02 (1.00E+02) atm, 298-2000 K, 17% err, 1.00 x N2
СОЈСНО	<=> CH2CO+HO2	6.84E+11 -1.59	48214.	! 1.00E-04 (1.00E-04) atm, 298-2000 K, 22% err, 1.00 x N2
СОЛСНО	<=> CH2CO+HO2	6.84E+12 -1.59	48214.	! 1.00E-03 (1.00E-03) atm, 298-2000 K, 22% err, 1.00 x N2
СОЈСНО	<=> CH2CO+HO2	6.87E+13 -1.59	48215.	! 1.00E-02 (1.00E-02) atm, 298-2000 K, 22% err, 1.00 x N2
COJCHO	<=> CH2CO+HO2	7.14E+14 -1.60	48226.	! 1.00E-01 (1.00E-01) atm, 298-2000 K, 22% err, 1.00 x N2
СОЈСНО	<=> CH2CO+HO2	1.02E+16 -1.64	48330.	! 1.00E+00 (1.00E+00) atm, 298-2000 K, 22% err, 1.00 x N2
СОЈСНО	<=> CH2CO+HO2	1.03E+18 -1.92	49047.	! 1.00E+01 (1.00E+01) atm, 298-2000 K, 23% err, 1.00 x N2
СОЈСНО	<=> CH2CO+HO2	8.48E+19 -2.15	50550.	! 1.00E+02 (1.00E+02) atm, 298-2000 K, 16% err, 1.00 x N2
СОЈСНО	<=> CQCJO	9.81E+35 -12.88	22341.	! 1.00E-04 (1.00E-04) atm, 298-2000 K, 33% err, 1.00 x N2
СОЛСНО	<=> CQCJO	3.41E+40 -13.57	24714.	! 1.00E-03 (1.00E-03) atm, 298-2000 K, 26% err, 1.00 x N2
СОЈСНО	<=> CQCJO	9.53E+39 -12.75	25462.	! 1.00E-02 (1.00E-02) atm, 298-2000 K, 9% err, 1.00 x N2
СОЈСНО	<=> CQCJO	1.05E+35 -10.67	24395.	! 1.00E-01 (1.00E-01) atm, 298-2000 K, 8% err, 1.00 x N2
СОЈСНО	<=> CQCJO	3.11E+29 -8.48	22875.	! 1.00E+00 (1.00E+00) atm, 298-2000 K, 9% err, 1.00 x N2
СОЈСНО	<=> CQCJO	6.81E+23 -6.29	21177.	! 1.00E+01 (1.00E+01) atm, 298-2000 K, 8% err, 1.00 x N2
СОЈСНО	<=> CQCJO	1.27E+18 -4.11	19297.	! 1.00E+02 (1.00E+02) atm, 298-2000 K, 7% err, 1.00 x N2
СОЈСНО	<=> CH2CO+HO2	1.81E+08 -3.21	23315.	! 1.00E-04 (1.00E-04) atm, 298-2000 K, 24% err, 1.00 x N2
солсно	<=> CH2CO+HO2	2.57E+09 -3.25	23406.	! 1.00E-03 (1.00E-03) atm, 298-2000 K, 24% err, 1.00 x N2
СОЈСНО	<=> CH2CO+HO2	2.71E+11 -3.55	24038.	! 1.00E-02 (1.00E-02) atm, 298-2000 K, 26% err, 1.00 x N2
СОЈСНО	<=> CH2CO+HO2	7.91E+14 -4.24	25820.	! 1.00E-01 (1.00E-01) atm, 298-2000 K, 27% err, 1.00 x N2
COJCHO	<=> CH2CO+HO2	1.53E+17 -4.55	27767.	! 1.00E+00 (1.00E+00) atm, 298-2000 K, 19% err, 1.00 x N2
солсно	<=> CH2CO+HO2	1.83E+15 -3.62	28378.	! 1.00E+01 (1.00E+01) atm, 298-2000 K, 16% err, 1.00 x N2
СОЛСНО	<=> CH2CO+HO2	7.67E+08 -1.40	27215.	! 1.00E+02 (1.00E+02) atm, 298-2000 K, 23% err, 1.00 x N2
СОЈСНО	<=> CO+CH2O+OH	6.98E+40 -10.72	24722.	! 1.00E-04 (1.00E-04) atm, 298-2000 K, 28% err, 1.00 x N2
СОЈСНО	<=> CO+CH2O+OH	4.21E+44 -11.48	27150.	! 1.00E-03 (1.00E-03) atm, 298-2000 K, 25% err, 1.00 x N2
СОЈСНО	<=> CO+CH2O+OH	4.45E+43 -10.82	28115.	! 1.00E-02 (1.00E-02) atm, 298-2000 K, 20% err, 1.00 x N2
СОЈСНО	<=> CO+CH2O+OH	1.73E+38 -8.89	27311.	! 1.00E-01 (1.00E-01) atm, 298-2000 K, 19% err, 1.00 x N2
СОЛСНО	<=> CO+CH2O+OH	6.07E+31 -6.68	25971.	! 1.00E+00 (1.00E+00) atm, 298-2000 K, 21% err, 1.00 x N2
СОЈСНО	<=> CO+CH2O+OH	3.46E+24 -4.27	24253.	! 1.00E+01 (1.00E+01) atm, 298-2000 K, 23% err, 1.00 x N2
СОЈСНО	<=> CO+CH2O+OH	5.13E+16 -1.72	22146.	! 1.00E+02 (1.00E+02) atm, 298-2000 K, 18% err, 1.00 x N2
COCJO	<=> CQJCHO	2.87E+27 -9.98	10836.	! 1.00E-04 (1.00E-04) atm, 298-2000 K, 15% err, 1.00 x N2
COCJO	<=> CQJCHO	2.87E+29 -9.98	10836.	! 1.00E-03 (1.00E-03) atm, 298-2000 K, 15% err, 1.00 x N2
COCJO	<=> CQJCHO	2.87E+31 -9.98	10836.	! 1.00E-02 (1.00E-02) atm, 298-2000 K, 15% err, 1.00 x N2
COCJO	<=> CQJCHO	2.87E+33 -9.98	10836.	! 1.00E-01 (1.00E-01) atm, 298-2000 K, 15% err, 1.00 x N2
CÓCJO	<=> CQJCHO	2.87E+35 -9.98	10836.	! 1.00E+00 (1.00E+00) atm, 298-2000 K, 15% err, 1.00 x N2
COCJO	<=> CQJCHO	2.87E+37 -9.98	10836.	! 1.00E+01 (1.00E+01) atm, 298-2000 K, 15% err, 1.00 x N2
COCJO	<=> COJCHO	2.87E+39 -9.98	10836.	! 1.00E+02 (1.00E+02) atm, 298-2000 K, 15% err, 1.00 x N2
COCIO	<=> CJCHO+O2	7.01E+11 -4.09	22120.	! 1.00E-04 (1.00E-04) atm, 298-2000 K, 24% err, 1.00 x N2
COCJO	<=> CJCHO+O2	1.05E+13 -4.14	22225.	! 1.00E-03 (1.00E-03) atm, 298-2000 K, 24% err, 1.00 x N2
COCJO	<=> CJCHO+O2	1.36E+15 -4.45	22929.	! 1.00E-02 (1.00E-02) atm, 298-2000 K, 26% err, 1.00 x N2
	-			

CQCJO	<=> CJCHO+O2	3.08E+18	-5.11	24751.	!	1.00E-01	(1.00E-01)	atm,	298-2000 K,	25% err, 1.00 x N2
COCJO	<=> CJCHO+O2	1.61E+20	-5.25	26533.	!	1.00E+00	(1.00E+00)	atm,	298-2000 K,	11% err, 1.00 x N2
COCIO	<=> CJCHO+02	5.06E+17	-4.15	26929.	!	1.00E+01	(1.00E+01)	atm,	298-2000 K,	9% err, 1.00 x N2
COCJO	<=> CJCHO+O2	1.03E+11	-1.84	25636.	!	1.00E+02	(1.00E+02)	atm,	298-2000 K,	25% err, 1.00 x N2
COCJO	<=> CH2CO+HO2	3.52E-01	01	46342.	!	1.00E-04	(1.00E-04)	atm,	298-2000 K,	19% err, 1.00 x N2
COCJO	<=> CH2CO+HO2	3.53E+00	01	46342.	!	1.00E-03	(1.00E-03)	atm,	298-2000 K,	19% err, 1.00 x N2
COCJO	<=> CH2CO+HO2	3.54E+01	01	46343.	!	1.00E-02	(1.00E-02)	atm,	298-2000 K,	19% err, 1.00 x N2
cocto	<=> CH2CO+HO2	3.68E+02	01	46354.	ţ	1.00E-01	(1.00E-01)	atm,	298-2000 K,	19% err, 1.00 x N2
COCJO	<=> CH2CO+HO2	5.31E+03	06	46459.	į	1.00E+00	(1.00E+00)	atm,	298-2000 K,	19% err, 1.00 x N2
COCJO	<=> CH2CO+HO2	5.68E+05	35	47184.	!	1.00E+01	(1.00E+01)	atm,	298-2000 K,	20% err, 1.00 x N2
COCJO	<=> CH2CO+HO2	6.69E+07	62	48744.	!	1.00E+02	(1.00E+02)	atm,	298-2000 K,	12% err, 1.00 x N2
COCJO .	<=> CH2CO+HO2	5.57E+05	-1.92	21863.	į	1.00E-04	(1.00E-04)	atm,	298-2000 K,	16% err, 1.00 x N2
COCJO	<=> CH2CO+HO2	5.57E+06	-1.92	21863.	!	1.00E-03	(1.00E-03)	atm,	298-2000 K,	16% err, 1.00 x N2
COCJO	<=> CH2CO+HO2	5.57E+07	-1.92	21863.	ţ	1.00E-02	(1.00E-02)	atm,	298-2000 K,	16% err, 1.00 x N2
COCJO	<=> CH2CO+HO2	5.57E+08	-1.92	21863.	ţ	1.00E-01	(1.00E-01)	atm,	298-2000 K,	16% err, 1.00 x N2
COCJO	<=> CH2CO+HO2	5.57E+09	-1.92	21863.	!	1.00E+00	(1.00E+00)	atm,	298-2000 K,	16% err, 1.00 x N2
COCJO	<=> CH2CO+HO2	5.58E+10	-1.92	21863.	!	1.00E+01	(1.00E+01)	atm,	298-2000 K,	16% err, 1.00 x N2
COCJO	<=> CH2CO+HO2	5.63E+11	-1.92	21865.	ţ	1.00E+02	(1.00E+02)	atm,	298-2000 K,	16% err, 1.00 x N2
COCJO	<=> CO+CH2O+OH	3.39E+14	-2,90	6929.	!	1.00E-04	(1.00E-04)	atm,	298-2000 K,	29% err, 1.00 x N2
cocro	<=> CO+CH2O+OH	3.39E+15	-2.90	6929.	!	1.00E-03	(1.00E-03)	atm,	298-2000 K,	29% err, 1.00 x N2
COCJO	<=> CO+CH2O+OH	3.39E+16	-2.90	6929.	!	1.00E-02	(1.00E-02)	atm,	298-2000 K,	29% err, 1.00 x N2
coco	<=> CO+CH2O+OH	3.40E+17	-2.90	6929.	ţ	1.00E-01	(1.00E-01)	atm,	298-2000 K,	29% err, 1.00 x N2
COCJO	<=> CO+CH2O+OH	3.44E+18	-2.90	6932.	!	1.00E+00	(1.00E+00)	atm,	298-2000 K,	29% err, 1.00 x N2
COCJO	<=> CO+CH2O+OH	3.91E+19	-2.91	6963.	ţ	1.00E+01	(1.00E+01)	atm,	298-2000 K,	29% err, 1.00 x N2
COCJO	<=> CO+CH2O+OH	1.20E+21	-3.05	7233.	!	1.00E+02	(1.00E+02)	atm,	298-2000 K,	31% err, 1.00 x N2

APPENDIX 4.4

LOG RATE CONSTANTS VS PRESSURE AND TEMPERATURE FOR CjCHO + $\mathbf{O_2}$ REACTION

$Chemical\ Activation\ Reaction\ (\ CjCHO+O_2\)\ Rate\ Constants: log\ rate\ constants\ vs\ Temperature\ at\ specified\ Pressures$

P (ATM)	T (K)	1000/T	CQJCHO	CJCHO+O2	CH2CO+HO2	CQCJO	CH2CO+HO2	CO+CH2O+OH	QRRK (forw)
1.00E-04	298.	3.36E+00	8.990	11.182	-7.875	.808	.414	9.596	9.692
1.00E-04	400.	2.50E+00	8.515	11.179	-3.201	.340	.768	9.752	9.777
1.00E-04	500.	2.00E+00	8.063	11.176	539	094	1.092	9.834	9.842
1.00E-04	600.	1.67E+00	7.618	11.174	1.166	480	1.385	9.878	9.881
1.00E-04	800.	1.25E+00	6.760	11.173	4.662	-1.067	1.885	9.915	9.915
1.00E-04	1000.	1.00E+00	5.998	11.171	6.373	-1.448	2.276	9.936	9.936
1.00E-04	1500.	6.67E-01	4.698	11.165	8.663	-1.984	2.897	10.012	10.031
1.00E-04	2000.	5.00E-01	4.004	11.139	9.836	-2.314	3.224	10.099	10.288
P (ATM)	T (K)	1000/T	CQJCHO	CJCHO+O2	CH2CO+HO2	CQCJO	CH2CO+HO2	CO+CH2O+OH	QRRK (forw)
1.00E-03	298.	3.36E+00	9.958	11.159	-7.875	1.778	.399	9.568	10.107
1.00E-03	400.	2.50E+00	9.501	11.171	-3.201	1.328	.765	9.741	9.938
1.00E-03	500.	2.00E+00	9.056	11.173	539	.900	1.091	9.830	9.897
1.00E-03	600.	1.67E+00	8.615	11.173	1.166	.517	1.385	9.876	9.899
1.00E-03	800.	1.25E+00	7.759	11.172	4.662	068	1.885	9.915	9.918
1.00E-03	1000.	1.00E+00	6.998	11.171	6.373	448	2.276	9.936	9.936
1.00E-03	1500.	6.67E-01	5.698	11.165	8.663	984	2.897	10.012	10.031
1.00E-03	2000.	5.00E-01	5.004	11.139	9.836	-1.314	3.224	10.099	10.288
P (ATM)	T (K)	1000/T	CQJCHO	CJCHO+O2	CH2CO+HO2	CQCJO	CH2CO+HO2	CO+CH2O+OH	QRRK (forw)
1.00E-02	298.	3.36E+00	10.741	10.998	-7.875	2.576	.295	9.374	10.760
1.00E-02	400.	2.50E+00	10.390	11.107	-3.201	2.229	.734	9.651	10.463
1.00E-02	500.	2.00E+00	9.999	11.149	539	1.853	1.082	9.789	10.208
1.00E-02	600.	1.67E+00	9.586	11.164	1.166	1.495	1.382	9.858	10.044
1.00E-02	800.	1.25E+00	8.751	11.171	4.662	.928	1.884	9.911	9.940
1.00E-02	1000.	1.00E+00	7.996	11.171	6.373	.551	2.276	9.935	9.940
1.00E-02	1500.	6.67E-01	6.698	11.165	8.663	.015	2.897	10.012	10.031
1.00E-02	2000.	5.00E-01	6.004	11.139	9.836	314	3.224	10.099	10.288
P (ATM)	T (K)	1000/T	CQJCHO	CJCHO+O2	CH2CO+HO2	CQCJO	CH2CO+HO2	CO+CH2O+OH	QRRK (forw)
1.00E-01	298.	3.36E+00	11.100	10.483	-7.879	2.966	091	8.784	11.102
1.00E-01	400.	2.50E+00	10.945	10.826	-3.203	2.830	.569	9.280	10.954
1.00E-01	500.	2.00E+00	10.708	11.009	540	2.609	1.019	9.574	10.739
1 000 01	600	1 677.00	10 105	11.100	1.166	2.355	1.360	9.743	10.491
1.00E-01	600.	1.67E+00	10.405	11.100	1.100				
1.00E-01 1.00E-01	600. 800.	1.6/E+00 1.25E+00	9.690	11.160	4.662	1.888	1.882	9.884	10.099
		1.25E+00					1.882 2.276	9.884 9.929	10.099 9.975
1.00E-01	800.		9.690	11.160	4.662	1.888	1.882 2.276 2.897	9.884 9.929 10.011	10.099 9.975 10.032
1.00E-01 1.00E-01	800. 1000.	1.25E+00 1.00E+00	9.690 8.975	11.160 11.169	4.662 6.373	1.888 1.540	1.882 2.276	9.884 9.929	10.099 9.975

P (ATM)	T (K)	1000/T	СОЈСНО	CJCHO+O2	CH2CO+H02	COCJO	CH2CO+H02	СО+СН2О+ОН	ORRK (forw)
1.00E+00	298.	3.36E+00	11.183	9.645	-7.911	3.067	838	7.898	11.184
1.00E+00	400.	2.50E+00	11.148	10.207	-3.220	3.080	.100	8.565	11.149
1.00E+00	500.	2.00E+00	11.063	10.605	550	3.038	.766	9.055	11.067
1.00E+00	600.	1.67E+00	10.913	10.862	1.160	2.950	1.238	9.396	10.926
1,00E+00	800.	1.25E+00	10.439	11.093	4.660	2.716	1.859	9.758	10.521
1.00E+00	1000.	1.00E+00	9.859	11.152	6.372	2.476	2.271	9.890	10.176
1.00E+00	1500.	6.67E-01	8.675	11.164	8.663	2.008	2.897	10.009	10.047
1.00E+00	2000.	5.00E-01	7.999	11.138	9.836	1.685	3.224	10.099	10.290
P (ATM)	T (K)	1000/T	CQJCHO	CJCHO+O2	CH2CO+HO2	CQCJO	CH2CO+HO2	CO+CH2O+OH	QRRK (forw)
1.00E+01	298.	3.36E+00	11.195	8.673	-8.149	3.081	-1.786	6.915	11.195
1.00E+01	400.	2.50E+00	11.190	9.321	-3.362	3.140	705	7.639	11.190
1.00E+01	500.	2.00E+00	11.174	9.876	637	3.194	.171	8.248	11.175
1.00E+01	600.	1.67E+00	11.132	10.318	1.106	3.247	.850	8.753	11.134
1.00E+01	800.	1.25E+00	10.917	10.855	4.648	3.308	1.734	9.427	10.931
1.00E+01	1000.	1.00E+00	10.545	11.066	6.368	3.270	2.236	9.748	10.609
1.00E+01	1500.	6.67E-01	9.588	11.155	8.662	2.973	2.893	9.991	10.150
1.00E+01	2000.	5.00E-01	8.971	11.136	9.836	2.677	3.223	10.095	10.306
P (ATM)	T (K)	1000/T	CQJCHO	CJCHO+O2	CH2CO+HO2	CQCJO	CH2CO+HO2	CO+CH2O+OH	QRRK (forw)
1.00E+02	298.	3.36E+00	11.196	7.676	-8.866	3.082	-2.780	5.917	11.196
1.00E+02	400.	2.50E+00	11.195	8.339	-3.940	3.148	-1.669	6.650	11.195
1.00E+02	500.	2.00E+00	11.193	8.940	-1.085	3.225	712	7.290	11.193
1.00E+02	600.	1.67E+00	11.187	9.479	.771	3.333	.105	7.868	11.187
1.00E+02	800.	1.25E+00	11.133	10.313	4.544	3.613	1.336	8.803	11.135
1.00E+02	1000.	1.00E+00	10.974	10.780	6.333	3.823	2.065	9.386	10.985
1.00E+02	1500.	6.67E-01	10.357	11.099	8.655	3.843	2.866	9.908	10.495
1.00E+02	2000.	5.00E-01	9.871	11.118	9.832	3.631	3.213	10.068	10.413

$Chemical\ Activation\ Reaction\ (\ CjCHO+O_2\)\ Rate\ Constants: log\ rate\ constants\ vs\ Pressure\ at\ specified\ Temperatures$

T (K)	1000/T	P (ATM)	CQJCHO	CJCHO+O2	CH2CO+HO2	CQCJO	CH2CO+HO2	СО+СН2О+ОН	QRRK (forw)
298.	3.36E+00	1.00E-04	8.990	11.182	-7.875	.808	.414	9.596	9.692
298.	3.36E+00	1.00E-03	9.958	11.159	-7.875	1.778	.399	9.568	10.107
298.	3.36E+00	1.00E-02	10.741	10.998	-7.875	2.576	.295	9.374	10.760
298.	3.36E+00	1.00E-01	11.100	10.483	-7.879	2.966	091	8.784	11.102
298.	3.36E+00	1.00E+00	11.183	9.645	-7.911	3.067	838	7.898	11.184
298.	3.36E+00	1.00E+01	11.195	8.673	-8.149	3.081	-1.786	6.915	11.195
298.	3.36E+00	1.00E+02	11.196	7.676	-8.866	3.082	-2.780	5.917	11.196
					* * * * * *				
T (K)	1000/T	P (ATM)	CQJCHO	СЈСНО+О2	СН2СО+НО2	CQCJO	CH2CO+HO2	СО+СН2О+ОН	QRRK (forw)
400.	2.50E+00	1.00E-04	8.515	11.179	-3.201	.340	.768	9.752	9.777
400.	2.50E+00	1.00E-03	9.501	11.171	-3.201	1.328	.765	9.741	9.938
400.	2.50E+00	1.00E-02	10.390	11.107	-3.201	2.229	.734	9.651	10.463
400.	2.50E+00	1.00E-01	10.945	10.826	-3.203	2.830	.569	9.280	10.954
400.	2.50E+00	1.00E+00	11.148	10.207	-3.220	3.080	.100	8.565	11.149
400.	2.50E+00	1.00E+01	11.190	9.321	-3.362	3.140	 705	7.639	11.190
400.	2.50E+00	1.00E+02	11.195	8.339	-3.940	3.148	-1.669	6.650	11.195
T (K)	1000/T	P (ATM)	CQJCHO	CJCHO+O2	CH2CO+HO2	CQCJO	CH2CO+HO2	CO+CH2O+OH	QRRK (forw)
500.	2.00E+00	1.00E-04	8.063	11.176	539	094	1.092	9.834	9.842
500.	2.00E+00	1.00E-03	9.056	11.173	539	.900	1.091	9.830	9.897
500.	2.00E+00	1.00E-02	9.999	11.149	539	1.853	1.082	9.789	10.208
500.	2.00E+00	1.00E-01	10.708	11.009	540	2.609	1.019	9.574	10.739
500.	2.00E+00	1.00E+00	11.063	10.605	 550	3.038	.766	9.055	11.067
500.	2.00E+00	1.00E+01	11.174	9.876	637	3.194	.171	8.248	11.175
500.	2.00E+00	1.00E+02	11.193	8.940	-1.085	3.225	712	7.290	11.193
T (K)	1000/T	P (ATM)	CQJCHO	CJCHO+O2	CH2CO+HO2	CQCJO	CH2CO+HO2	со+сн2о+он	QRRK (forw)
600.	1.67E+00	1.00E-04	7.618	11.174	1.166	480	1.385	9.878	9.881
600.	1.67E+00	1.00E-03	8.615	11.173	1.166	.517	1.385	9.876	9.899
600.	1.67E+00	1.00E-02	9.586	11.164	1.166	1.495	1.382	9.858	10.044
600.	1.67E+00	1.00E-01	10.405	11.100	1.166	2.355	1.360	9.743	10.491
600.	1.67E+00	1.00E+00	10.913	10.862	1.160	2.950	1.238	9.396	10.926
600.	1.67E+00	1.00E+01	11.132	10.318	1.106	3.247	.850	8.753	11.134
600.	1.67E+00	1.00E+02	11.187	9.479	.771	3.333	.105	7.868	11.187
	1000/-						200001000	00.00000	ODDIE (C
T (K)	1000/T	P (ATM)	CQJCHO	CJCHO+O2	CH2CO+HO2	CQCJO	CH2CO+HO2	СО+СН2О+ОН	QRRK (forw)
800.	1.25E+00	1.00E-04	6.760	11.173	4.662	-1.067	1.885	9.915	9.915
800.	1.25E+00	1.00E-03	7.759	11.172	4.662	068	1.885	9.915	9.918
800.	1.25E+00	1.00E-02	8.751	11.171	4.662	. 928	1.884	9.911	9.940

800. 800.	1.25E+00 1.25E+00	1.00E-01 1.00E+00	9.690 10.439	11.160 11.093	4.662 4.660	1.888 2.716	1.882 1.859	9.884 9.758	10.099 10.521
800. 800.	1.25E+00 1.25E+00	1.00E+01 1.00E+02	10.917 11.133	10.855 10.313	4.648 4.544	3.308 3.613	1.734 1.336	9.427 8.803	10.931 11.135
T (K)	1000/T	P (ATM)	CQJCHO	CJCHO+O2	CH2CO+HO2	CQCJO	CH2CO+HO2	CO+CH2O+OH	QRRK (forw)
1000.	1.00E+00	1.00E-04	5.998	11.171	6.373	-1.448	2.276	9.936	9.936
1000.	1.00E+00	1.00E-03	6.998	11.171	6.373	448	2.276	9.936	9.936
1000.	1.00E+00	1.00E-02	7.996	11.171	6.373	.551	2.276	9.935	9.940
1000.	1.00E+00	1.00E-01	8.975	11.169	6.373	1.540	2.276	9.929	9.975
1000.	1.00E+00	1.00E+00	9.859	11.152	6.372	2.476	2.271	9.890	10.176
1000.	1.00E+00	1.00E+01	10.545	11.066	6.368	3.270	2.236	9.748	10.609
1000.	1.00E+00	1.00E+02	10.974	10.780	6.333	3.823	2.065	9.386	10.985
T (K)	1000/T	P (ATM)	СОЈСНО	CJCHO+O2	CH2CO+HO2	COCJO	CH2CO+HO2	СО+СН2О+ОН	ORRK (forw)
1500.	6.67E-01	1.00E-04	4.698	11.165	8.663	-1.984	2.897	10.012	10.031
1500.	6.67E-01	1.00E-03	5.698	11.165	8.663	984	2.897	10.012	10.031
1500.	6.67E-01	1.00E-02	6.698	11.165	8.663	.015	2.897	10.012	10.031
1500.	6.67E-01	1.00E-01	7.695	11.165	8.663	1.015	2.897	10.011	10.032
1500.	6.67E-01	1.00E+00	8.675	11.164	8.663	2.008	2.897	10.009	10.047
1500.	6.67E-01	1.00E+01	9.588	11.155	8.662	2.973	2.893	9.991	10.150
1500.	6.67E-01	1.00E+02	10.357	11.099	8.655	3.843	2.866	9.908	10.495
T (K)	1000/Т	P (ATM)	СОЈСНО	CJCHO+O2	CH2CO+HO2	COCJO	CH2CO+HO2	CO+CH2O+OH	ORRK (forw)
2000.	5.00E-01	1.00E-04	4.004	11.139	9.836	-2.314	3.224	10.099	10.288
2000.	5.00E-01	1.00E-03	5.004	11.139	9.836	-1.314	3.224	10.099	10.288
2000.	5.00E-01	1.00E-02	6.004	11.139	9.836	314	3.224	10.099	10.288
2000.	5.00E-01	1.00E-01	7.004	11.139	9.836	.686	3.224	10.099	10.289
2000.	5.00E-01	1.00E+00	7.999	11.138	9.836	1.685	3.224	10.099	10.290
2000.	5.00E-01	1.00E+01	8.971	11.136	9.836	2.677	3.223	10.095	10.306
2000.	5.00E-01	1.00E+02	9.871	11.118	9.832	3.631	3.213	10.068	10.413

Adduct (CQjCHO) Dissociation Reaction Rate Constants : log rate constants vs Temperature at specified Pressures

			_					
P (ATM)	T (K)	1000/T	CJCHO+O2	CH2CO+HO2	CQCJO	CH2CO+HO2	CO+CH2O+OH	QRRK (forw)
1.00E-04	298.	3.36E+00	-5.900	-27.540	-12.398	-16.867	-3.895	-3.891
1.00E-04	400.	2.50E+00	-2.030	-18.608	-9.626	-12.778	513	500
1.00E-04	500.	2.00E+00	.040	-13.455	-8.402	-10.504	1.204	1.233
1.00E-04	600.	1.67E+00	1.267	-10.080	-7.859	-9.078	2.148	2.201
1.00E-04	800.	1.25E+00	2.488	-5.991	-7.606	-7.469	2.946	3.076
1.00E-04	1000.	1.00E+00	2.974	-3.616	-7.730	-6.612	3.131	3.361
1.00E-04	1500.	6.67E-01	3.369	349	-8.274	-5.444	3.028	3.533
1.00E-04	2000.	5.00E-01	3.532	1.434	-8.822	-4.750	2.931	3.631
P (ATM)	T (K)	1000/T	CJCHO+02	CH2CO+HO2	CQCJO	CH2CO+H02	CO+CH2O+OH	QRRK (forw)
1.00E-03	298.	3.36E+00	-4.930	-26.540	-11.252	-15.891	-3.736	-3.709
1.00E-03	400.	2.50E+00	-1.044	-17.608	-8.244	-11.787	103	056
1.00E-03	500.	2.00E+00	1.034	-12.455	-6.787	-9.507	1.848	1.910
1.00E-03	600.	1.67E+00	2.264	-9.080	-6.074	-8.079	2.954	3.035
1.00E-03	800.	1.25E+00	3.487	-4.991	-5.663	-6.469	3.897	4.040
1.00E-03	1000.	1.00E+00	3.974	-2.616	-5.746	-5.612	4.118	4.353
1.00E-03	1500.	6.67E-01	4.369	.651	-6.276	-4.444	4.027	4.532
1.00E-03	2000.	5.00E-01	4.532	2.434	-6.822	-3.750	3.931	4.631
P (ATM)	T (K)	1000/T	CJCHO+O2	CH2CO+HO2	CQCJO	CH2CO+HO2	CO+CH2O+OH	QRRK (forw)
1.00E-02	298.	3.36E+00	-4.141	-25.540	-10.229	-15.060	-3.708	-3.572
1.00E-02	400.	2.50E+00	152	-16.609	-7.147	-10.860	.011	.238
1.00E-02	500.	2.00E+00	1.978	-11.455	-5.553	-8.539	2.113	2.352
1.00E-02	600.	1.67E+00	3.236	-8.080	-4.667	-7.092	3.400	3.626
1.00E-02	800.	1.25E+00	4.479	-3.991	-3.948	-5.471	4.647	4.872
1.00E-02	1000.	1.00E+00	4.972	-1.616	-3.865	-4.612	5.021	5.298
1.00E-02	1500.	6.67E-01	5.369	1.651	-4.298	-3.444	5.013	5.528
1.00E-02	2000.	5.00E-01	5.531	3.434	-4.830	-2.750	4.928	5.631
P (ATM)	T (K)	1000/T	CJCHO+O2	CH2CO+HO2	CQCJO	CH2CO+HO2	CO+CH2O+OH	QRRK (forw)
1.00E-01	298.	3.36E+00	-3.777	-24.544	-9.224	-14.606	-3.701	-3.436
1.00E-01	400.	2.50E+00	.409	-15.610	-6.117	-10.183	.055	.568
1.00E-01	500.	2.00E+00	2.692	-10.455	-4.473	-7.714	2.223	2.819
1.00E-01	600.	1.67E+00	4.059	-7.080	-3.512	-6.181	3.600	4.188
1.00E-01	800.	1.25E+00	5.419	-2.991	-2.573	-4.490	5.083	5.584
	000.							
1.00E-01	1000.	1.00E+00	5.952	616	-2.263	-3.616	5.685	6.139
1.00E-01 1.00E-01				616 2.651 4.434	-2.263 -2.425 -2.882	-3.616 -2.444 -1.750	5.685 5.932 5.908	

P (ATM)	T (K)	1000/T	CJCHO+O2	CH2CO+H02	CQCJO	CH2CO+HO2	CO+CH2O+OH	QRRK (forw)
1.00E+00	298.	3.36E+00	-3.692	-23.574	-8.223	-14.469	-3.699	-3.394
1.00E+00	400.	2.50E+00	.613	-14.624	-5.107	-9.856	.073	.723
1.00E+00	500.	2.00E+00	3.048	-9.463	-3.432	-7.184	2.291	3.118
1.00E+00	600.	1.67E+00	4.568	-6.084	-2.418	-5.482	3.745	4.629
1.00E+00	800.	1.25E+00	6.170	-1.992	-1.342	-3.592	5.402	6.238
1.00E+00	1000.	1.00E+00	6.837	.384	886	-2.647	6.168	6.921
1.00E+00	1500.	6.67E-01	7.347	3.651	745	-1.447	6.728	7.441
1.00E+00	2000.	5.00E-01	7.526	5.434	-1.041	750	6.844	7.611
P (ATM)	T (K)	1000/T	CJCHO+O2	CH2CO+HO2	CQCJO	CH2CO+HO2	CO+CH2O+OH	QRRK (forw)
1.00E+01	298.	3.36E+00	-3.681	-22.796	-7.223	-14.447	-3.699	-3.389
1.00E+01	400.	2.50E+00	.656	-13.747	-4.105	-9.767	.077	.757
1.00E+01	500.	2.00E+00	3.160	-8.530	-2.421	-6.964	2.312	3.218
1.00E+01	600.	1.67E+00	4.788	-5.121	-1.380	-5.094	3.812	4.832
1.00E+01	800.	1.25E+00	6.649	-1.004	191	-2.898	5.635	6.689
1.00E+01	1000.	1.00E+00	7.523	1.379	.408	-1.778	6.582	7.570
1.00E+01	1500.	6.67E-01	8.259	4.650	.829	466	7.454	8.323
1.00E+01	2000.	5.00E-01	8.498	6.433	.717	. 245	7.733	8.570
						_		
P (ATM)	T (K)	1000/T	CJCHO+O2	CH2CO+HO2	COCJO	CH2CO+HO2	CO+CH2O+OH	QRRK (forw)
1.00E+02	298.	3.36E+00	-3.680	-22.492	-6.224	-14.445	-3.700	-3.388
1.00E+02	400.	2.50E+00	.661	-13.279	-3.105	-9.754	.077	.762
1.00E+02	500.	2.00E+00	3.179	-7.910	-1.419	-6.916	2.315	3.235
1.00E+02	600.	1.67E+00	4.843	-4.374	372	-4.968	3.827	4.883
1.00E+02	800.	1.25E+00	6.865	103	.868	-2.512	5.738	6.896
1.00E+02	1000.	1.00E+00	7.953	2.340	1.579	-1.139	6.847	7.985
1.00E+02	1500.	6.67E-01	9.028	5.640	2.298	.441	8.072	9.074
1.00E+02	2000.	5.00E-01	9.398	7.428	2.391	1.211	8.544	9.459

Adduct (CQjCHO) Dissociation Reaction Rate Constants : log rate constants vs Pressure at specified Temperatures

m /17/	1000/T	P (ATM)	CJCHO+02	CH2CO+HO2	CQCJO	CH2CO+H02	СО+СН2О+ОН	QRRK (forw)
T (K)								
298.	3.36E+00	1.00E-04	-5.900	-27.540	-12.398	-16.867	-3.895	-3.891
298.	3.36E+00	1.00E-03	-4.930	-26.540	-11.252	-15.891	-3.736	-3.709
298.	3.36E+00	1.00E-02	-4.141	-25.540	-10.229	-15.060	-3.708	-3.572
298.	3.36E+00	1.00E-01	-3.777	-24.544	-9.224	-14.606	-3.701	-3.436
298.	3.36E+00	1.00E+00	-3.692	-23.574	-8.223	-14.469	-3.699	-3.394
298.	3.36E+00	1.00E+01	-3.681	-22.796	-7.223	-14.447	-3.699	-3.389
298.	3.36E+00	1.00E+02	-3.680	-22.492	-6.224	-14.445	-3.700	-3.388
T (K)	1000/T	P (ATM)	CJCHO+O2	CH2CO+HO2	CQCJO	CH2CO+HO2	со+сн2о+он	QRRK (forw)
400.	2.50E+00	1.00E-04	-2.030	-18.608	-9.626	-12.778	513	500
400.	2.50E+00	1.00E-03	-1.044	-17.608	-8.244	-11.787	103	056
400.	2.50E+00	1.00E-02	152	-16.609	-7.147	-10.860	.011	.238
400.	2.50E+00	1.00E-01	.409	-15.610	-6.117	-10.183	.055	.568
400.	2.50E+00	1.00E+00	.613	-14.624	-5.107	-9.856	.073	.723
400.	2.50E+00	1.00E+01	. 656	-13.747	-4.105	-9.767	.077	.757
400.	2.50E+00	1.00E+02	.661	-13.279	-3.105	-9.754	.077	.762
		2002						
T (K)	1000/т	P (ATM)	CJCHO+O2	CH2CO+H02	CQCJO	CH2CO+HO2	CO+CH2O+OH	QRRK (forw)
500.	2.00E+00	1.00E-04	.040	-13.455	-8.402	-10.504	1.204	1.233
500.	2.00E+00	1.00E-03	1.034	-12.455	-6.787	-9.507	1.848	1.910
500.	2.00E+00	1.00E-02	1.978	-11.455	-5.553	-8.539	2.113	2.352
500.	2.00E+00	1.00E-01	2.692	-10.455	-4.473	-7.714	2.223	2.819
500.	2.00E+00	1.00E+00	3.048	-9.463	-3.432	-7.184	2.291	3.118
500.	2.00E+00	1.00E+01	3.160	-8.530	-2.421	-6.964	2.312	3.218
500.	2.00E+00	1.00E+02	3.179	-7.910	-1.419	-6.916	2.315	3.235
T (K)	1000/T	P (ATM)	CJCHO+O2	CH2CO+HO2	CQCJO	CH2CO+H02	CO+CH2O+OH	QRRK (forw)
600.	1.67E+00	1.00E-04	1.267	-10.080	-7.859	-9.078	2.148	2.201
600.	1.67E+00	1.00E-03	2.264	-9.080	-6.074	-8.079	2.954	3.035
600.	1.67E+00	1.00E-02	3.236	-8.080	-4.667	-7.092	3.400	3.626
600.	1.67E+00	1.00E-01	4.059	-7.080	-3.512	-6.181	3.600	4.188
600.	1.67E+00	1.00E+00	4.568	-6.084	-2.418	-5.482	3.745	4.629
600.	1.67E+00	1.00E+01	4.788	-5.121	-1.380	-5.094	3.812	4.832
600.	1.67E+00	1.00E+02	4.843	-4.374	372	-4.968	3.827	4.883
T (K)	1000/T	P (ATM)	CJCHO+O2	CH2CO+HO2	CQCJO	CH2CO+HO2	CO+CH2O+OH	QRRK (forw)
800.	1.25E+00	1.00E-04	2.488	-5.991	-7.606	-7.469	2.946	3.076
800.	1.25E+00	1.00E-03	3.487	-4.991	-5.663	-6.469	3.897	4.040
800.	1.25E+00	1.00E-02	4.479	-3.991	-3.948	-5.471	4.647	4.872

800.	1.25E+00	1.00E-01	5.419	-2.991	-2.573	-4.490	5.083	5.584
800.	1.25E+00	1.00E+00	6.170	-1.992	-1.342	-3.592	5.402	6.238
800.	1.25E+00	1.00E+01	6.649	-1.004	191	-2.898	5.635	6.689
800.	1.25E+00	1.00E+02	6.865	103	.868	-2.512	5.738	6.896
T (K)	1000/T	P (ATM)	CJCHO+O2	CH2CO+H02	CQCJO	CH2CO+HO2	CO+CH2O+OH	QRRK (forw)
1000.	1.00E+00	1.00E-04	2.974	-3.616	-7.730	-6.612	3.131	3.361
1000.	1.00E+00	1.00E-03	3.974	-2.616	-5.746	-5.612	4.118	4.353
1000.	1.00E+00	1.00E-02	4.972	-1.616	-3.865	-4.612	5.021	5.298
1000.	1.00E+00	1.00E-01	5.952	616	-2.263	-3.616	5.685	6.139
1000.	1.00E+00	1.00E+00	6.837	.384	886	-2.647	6.168	6.921
1000.	1.00E+00	1.00E+01	7.523	1.379	.408	-1.778	6.582	7.570
1000.	1.00E+00	1.00E+02	7.953	2.340	1.579	-1.139	6.847	7.985
T (K)	1000/T	P (ATM)	CJCHO+O2	CH2CO+H02	CQCJO	CH2CO+H02	CO+CH2O+OH	QRRK (forw)
1500.	6.67E-01	1.00E-04	3.369	349	-8.274	-5.444	3.028	3.533
1500.	6.67E-01	1.00E-03	4.369	.651	-6.276	-4.444	4.027	4.532
1500.	6.67E-01	1.00E-02	5.369	1.651	-4.298	-3.444	5.013	5.528
1500.	6.67E-01	1.00E-01	6.367	2.651	-2.425	-2.444	5.932	6.503
1500.	6.67E-01	1.00E+00	7.347	3.651	745	-1.447	6.728	7.441
1500.	6.67E-01	1.00E+01	8.259	4.650	.829	466	7.454	8.323
1500.	6.67E-01	1.00E+02	9.028	5.640	2.298	.441	8.072	9.074
T (K)	1000/T	P (ATM)	CJCHO+O2	CH2CO+H02	CQCJO	CH2CO+HO2	CO+CH2O+OH	QRRK (forw)
2000.	5.00E-01	1.00E-04	3.532	1.434	-8.822	-4.750	2.931	3.631
2000.	5.00E-01	1.00E-03	4.532	2.434	-6.822	-3.750	3.931	4.631
2000.	5.00E-01	1.00E-02	5.531	3.434	-4.830	-2.750	4.928	5.631
2000.	5.00E-01	1.00E-01	6.531	4.434	-2.882	-1.750	5.908	6.627
2000.	5.00E-01	1.00E+00	7.526	5.434	-1.041	750	6.844	7.611
2000.	5.00E-01	1.00E+01	8.498	6.433	.717	.245	7.733	8.570
2000.	5.00E-01	1.00E+02	9.398	7.428	2.391	1.211	8.544	9.459
		· · -						

Adduct (CQCjO) Dissociation Reaction Rate Constants : log rate constants vs Temperature at specified Pressures

P (ATM)	T (K)	1000/Т	CQJCHO	CJCHO+O2	CH2CO+HO2	CH2CO+H02	СО+СН2О+ОН	QRRK (forw)
1.00E-04	298.	3.36E+00	-5.241	-14.595	-34.554	-15.114	2.160	2.160
1.00E-04	400.	2.50E+00	-4.354	-10.751	-25.690	-11.095	3.339	3.339
1.00E-04	500.	2.00E+00	-4.126	-8.734	-20.638	-8.905	3.817	3.817
1.00E-04	600.	1.67E+00	-4.167	-7.525	-17.335	-7.530	4.012	4.012
1.00E-04	800.	1.25E+00	-4.523	-6.159	-13.233	-5.876	4.125	4.125
1.00E-04	1000.	1.00E+00	-4.941	-5.380	-10.716	-4.875	4.170	4.170
1.00E-04	1500.	6.67E-01	-5.822	-4.373	-7.216	-3.524	4.279	4.279
1.00E-04	2000.	5.00E-01	-6.593	-3.967	-5.491	-2.924	4.331	4.331
P (ATM)	T (K)	1000/T	СОЈСНО	CJCHO+02	CH2CO+HO2	CH2CO+H02	СО+СН2О+ОН	QRRK (forw)
1.00E-03	298.	3.36E+00	-3.241	-13.623	-33.554	-14.114	3.160	3.160
1.00E-03	400.	2.50E+00	-2.354	-9.762	-24.690	-10.095	4.339	4.339
1.00E-03	500.	2.00E+00	-2.126	-7.739	-19.638	-7.905	4.817	4.817
1.00E-03	600.	1.67E+00	-2.167	-6.527	-16.335	-6.530	5.012	5.012
1.00E-03	800.	1.25E+00	-2.523	-5.159	-12.233	-4.876	5.125	5.125
1.00E-03	1000.	1.00E+00	-2.941	-4.380	-9.716	-3.875	5.170	5.170
1.00E-03	1500.	6.67E-01	-3.822	-3.373	-6.216	-2.524	5.279	5.279
1.00E-03	2000.	5.00E-01	-4.593	-2.967	-4.491	-1.924	5.331	5.331
P (ATM)	T (K)	1000/T	CQJCHO	CJCHO+02	CH2CO+HO2	CH2CO+H02	СО+СН2О+ОН	QRRK (forw)
1.00E-02	298.	3.36E+00	-1.241	-12.816	-32.555	-13.114	4.160	4.160
1.00E-02	400.	2.50E+00	354	-8.851	-23.690	-9.095	5.339	5.339
1.00E-02	500.	2.00E+00	126	-6.780	-18.638	-6.905	5.817	5.817
1.00E-02	600.	1.67E+00	167	-5.545	-15.335	-5.530	6.012	6.012
1.00E-02	800.	1.25E+00	523	-4.162	-11.233	-3.876	6.125	6.125
1.00E-02	1000.	1.00E+00	941	-3.381	-8.716	-2.875	6.170	6.170
1.00E-02	1500.	6.67E-01	-1.822	-2.373	-5.216	-1.524	6.279	6.279
1.00E-02	2000.	5.00E-01	-2.593	-1.967	-3.491	924	6.331	6.331
P (ATM)	T (K)	1000/T	CQJCHO	СЈСНО+О2	CH2CO+HO2	CH2CO+HO2	СО+СН2О+ОН	QRRK (forw)
1.00E-01	298.	3.36E+00	.759	-12.404	-31.558	-12.114	5.160	5.160
1.00E-01	400.	2.50E+00	1.646	-8.219	-22.691	-8.095	6.339	6.339
1.00E-01	500.	2.00E+00	1.874	-5.992	-17.639	-5.905	6.817	6.817
1.00E-01	600.	1.67E+00	1.833	-4.658	-14.336	-4.530	7.012	7.012
1.00E-01	800.	1.25E+00	1.477	-3.190	-10.233	-2.876	7.125	7.125
1.00E-01	1000.	1.00E+00	1.059	-2.387	-7.716	-1.875	7.170	7.170
1.00E-01	1500.	6.67E-01	.178	-1.373	-4.216	524	7.279	7.279
1.00E-01	2000.	5.00E-01	593	967	-2.491	.076	7.331	7.331

D (7001)	m (77)	1000 /m	GO TOUO	CJCHO+O2	CH2CO+H02	CH2CO+HO2	CO+CH2O+OH	ORRK (forw)
P (ATM)	T (K)	1000/T	CQJCHO 2.759	-12.289	-30.588	-11.114	6.160	6.160
1.00E+00	298.	3.36E+00	3.646	-7.933	-21.706	-7.095	7.339	7.339
1.00E+00	400.	2.50E+00		-7.533 -5.510	-16.646	-4.905	7.817	7.817
1.00E+00	500.	2.00E+00	3.874		-10.646	-3.530	8.012	8.012
1.00E+00	600.	1.67E+00	3.833	-4.005			8.125	8.125
1.00E+00	800.	1.25E+00	3.477	-2.317	-9.234	-1.876		
1.00E+00	1000.	1.00E+00	3.059	-1.427	-6.717	875	8.170	8.170
1.00E+00	1500.	6.67E-01	2.178	377	-3.216	.476	8.279	8.279
1.00E+00	2000.	5.00E-01	1.407	.032	-1.491	1.076	8.331	8.331
P (ATM)	T (K)	1000/T	CQJCHO	CJCHO+O2	CH2CO+HO2	CH2CO+HO2	CO+CH2O+OH	QRRK (forw)
1.00E+01	298.	3.36E+00	4.759	-12.271	-29.809	-10.114	7.152	7.154
1.00E+01	400.	2.50E+00	5.646	-7.858	-20.826	-6.095	8.337	8.338
1.00E+01	500.	2.00E+00	5.874	-5.317	-15.711	-3.905	8.817	8.817
1.00E+01	600.	1.67E+00	5.833	-3.651	-12.375	-2.530	9.012	9.012
1.00E+01	800.	1.25E+00	5.477	-1.656	-8.244	876	9.125	9.125
1.00E+01	1000.	1.00E+00	5.059	579	-5.721	.125	9.170	9.170
1.00E+01	1500.	6.67E-01	4.178	.602	-2.217	1.476	9.279	9.279
1.00E+01	2000.	5.00E-01	3.407	1.027	491	2.076	9.331	9.331
P (ATM)	T (K)	1000/T	CQJCHO	CJCHO+O2	CH2CO+HO2	CH2CO+HO2	СО+СН2О+ОН	QRRK (forw)
1.00E+02	298.	3.36E+00	6.759	-12.270	-29.504	-9.115	8.086	8.106
1.00E+02	400.	2.50E+00	7.646	-7.847	-20.353	-5.095	9.322	9.331
1.00E+02	500.	2.00E+00	7.874	-5.276	-15.082	-2.905	9.813	9.818
1.00E+02	600.	1.67E+00	7.833	-3.539	-11.617	-1.530	10.010	10.013
1.00E+02	800.	1.25E+00	7.477	-1.293	-7.334	.124	10.125	10.126
1.00E+02	1000.	1.00E+00	7.059	.038	-4.755	1.125	10.170	10.171
1.00E+02	1500.	6.67E-01	6.178	1.504	-1.224	2.476	10.279	10.279
1.00E+02	2000.	5.00E-01	5.407	1.994	.505	3.076	10.331	10.331
· -								

Adduct (CQCjO) Dissociation Reaction Rate Constants : log rate constants vs Pressure at specified Temperatures

T (K) 298. 298. 298. 298.	1000/T 3.36E+00 3.36E+00 3.36E+00 3.36E+00	P (ATM) 1.00E-04 1.00E-03 1.00E-02 1.00E-01	CQJCHO -5.241 -3.241 -1.241 .759	CJCHO+O2 -14.595 -13.623 -12.816 -12.404	CH2CO+HO2 -34.554 -33.554 -32.555 -31.558	CH2CO+HO2 -15.114 -14.114 -13.114 -12.114	CO+CH2O+OH 2.160 3.160 4.160 5.160	QRRK (forw) 2.160 3.160 4.160 5.160
298.	3.36E+00	1.00E+00	2.759	-12.289	-30.588	-11.114	6.160	6.160
298.	3.36E+00	1.00E+01	4.759	-12.271	-29.809	-10.114	7.152	7.154
298.	3.36E+00	1.00E+02	6.759	-12.270	-29.504	-9.115	8.086	8.106
T (K)	1000/T	P (ATM)	CQJCHO	CJCHO+O2	CH2CO+HO2	CH2CO+HO2	CO+CH2O+OH	QRRK (forw)
400.	2.50E+00	1.00E-04	-4.354	-10.751	-25.690	-11.095	3.339	3.339
400.	2.50E+00	1.00E-03	-2.354	-9.762	-24.690	-10.095	4.339	4.339
400.	2.50E+00	1.00E-02	354	-8.851	-23.690	-9.095	5.339	5.339
400.	2.50E+00	1.00E-01	1.646	-8.219	-22.691	-8.095	6.339	6.339
400.	2.50E+00	1.00E+00	3.646	-7.933	-21.706	-7.095	7.339	7.339
400.	2.50E+00	1.00E+01	5.646	-7.858	-20.826	-6.095	8.337	8.338
400.	2.50E+00	1.00E+02	7.646	-7.847	-20.353	-5.095	9.322	9.331
T (K)	1000/T	P (ATM)	CQJCHO	CJCHO+O2	CH2CO+HO2	CH2CO+HO2	CO+CH2O+OH	QRRK (forw)
500.	2.00E+00	1.00E-04	-4.126	-8.734	-20.638	-8.905	3.817	3.817
500.	2.00E+00	1.00E-03	-2.126	-7.739	-19.638	-7.905	4.817	4.817
500.	2.00E+00	1.00E-02	126	-6.780	-18.638	-6.905	5.817	5.817
500.	2.00E+00	1.00E-01	1.874	-5.992	-17.639	-5.905	6.817	6.817
500.	2.00E+00	1.00E+00	3.874	-5.510	-16.646	-4.905	7.817	7.817
500.	2.00E+00	1.00E+01	5.874	-5.317	-15.711	-3.905	8.817	8.817
500.	2.00E+00	1.00E+02	7.874	-5.276	-15.082	-2.905	9.813	9.818
T (K)	1000/T	P (ATM)	CQJCHO	CJCHO+O2	CH2CO+HO2	CH2CO+HO2	CO+CH2O+OH	QRRK (forw)
600.	1.67E+00	1.00E-04	-4.167	-7.525	-17.335	-7.530	4.012	4.012
600.	1.67E+00	1.00E-03	-2.167	-6.527	-16.335	-6.530	5.012	5.012
600.	1.67E+00	1.00E-02	167	-5.545	-15.335	-5.530	6.012	6.012
600.	1.67E+00	1.00E-01	1.833	-4.658	-14.336	-4.530	7.012	7.012
600.	1.67E+00	1.00E+00	3.833	-4.005	-13.340	-3.530	8.012	8.012
600.	1.67E+00	1.00E+01	5.833	-3.651	-12.375	-2.530	9.012	9.012
600.	1.67E+00	1.00E+02	7.833	-3.539	-11.617	-1.530	10.010	10.013
	1000 %					011000.1100	go : gri00 : c	ODDIE 15
T (K)	1000/T	P (ATM)	CQJCHO	CJCHO+O2	CH2CO+HO2	CH2CO+HO2	CO+CH2O+OH	QRRK (forw)
800.	1.25E+00	1.00E-04	-4.523	-6.159	-13.233	-5.876	4.125	4.125
800.	1.25E+00	1.00E-03	-2.523	-5.159	-12.233	-4.876	5.125	5.125
800.	1.25E+00	1.00E-02	523	-4.162	-11.233	-3.876	6.125	6.125

800.	1.25E+00	1.00E-01	1.477	-3.190	-10.233	-2.876	7.125	7.125
800.	1.25E+00	1.00E+00	3.477	-2.317	-9.234	-1.876	8.125	8.125
800.	1.25E+00	1.00E+01	5.477	-1.656	-8.244	876	9.125	9.125
800.	1.25E+00	1.00E+02	7.477	-1.293	-7.334	.124	10.125	10.126
T (K)	1000/T	P (ATM)	CQJCHO	CJCHO+O2	CH2CO+HO2	CH2CO+HO2	CO+CH2O+OH	QRRK (forw)
1000.	1.00E+00	1.00E-04	-4.941	-5.380	-10.716	-4.875	4.170	4.170
1000.	1.00E+00	1.00E-03	-2.941	-4.380	-9.716	-3.875	5.170	5.170
1000.	1.00E+00	1.00E-02	941	-3.381	-8.716	-2.875	6.170	6.170
1000.	1.00E+00	1.00E-01	1.059	-2.387	-7.716	-1.875	7.170	7.170
1000.	1.00E+00	1.00E+00	3.059	-1.427	-6.717	875	8.170	8.170
1000.	1.00E+00	1.00E+01	5.059	579	-5.721	.125	9.170	9.170
1000.	1.00E+00	1.00E+02	7.059	.038	-4.755	1.125	10.170	10.171
T (K)	1000/T	P (ATM)	CQJCHO	CJCHO+02	CH2CO+HO2	CH2CO+HO2	CO+CH2O+OH	QRRK (forw)
1500.	6.67E-01	1.00E-04	-5.822	-4.373	-7.216	-3.524	4.279	4.279
1500.	6.67E-01	1.00E-03	-3.822	-3.373	-6.216	-2.524	5.279	5.279
1500.	6.67E-01	1.00E-02	-1.822	-2.373	-5.216	-1.524	6.279	6.279
1500.	6.67E-01	1.00E-01	.178	-1.373	-4.216	524	7.279	7.279
1500.	6.67E-01	1.00E+00	2.178	377	-3.216	.476	8.279	8.279
1500.	6.67E-01	1.00E+01	4.178	.602	-2.217	1.476	9.279	9.279
1500.	6.67E-01	1.00E+02	6.178	1.504	-1.224	2.476	10.279	10.279
T (K)	1000/T	P (ATM)	CQJCHO	CJCHO+O2	CH2CO+HO2	CH2CO+HO2	CO+CH2O+OH	QRRK (forw)
2000.	5.00E-01	1.00E-04	-6.593	-3.967	-5.491	-2.924	4.331	4.331
2000.	5.00E-01	1.00E-03	-4.593	-2.967	-4.491	-1.924	5.331	5.331
2000.	5.00E-01	1.00E-02	-2.593	-1.967	-3.491	924	6.331	6.331
2000.	5.00E-01	1.00E-01	593	967	-2.491	.076	7.331	7.331
2000.	5.00E-01	1.00E+00	1.407	.032	-1.491	1.076	8.331	8.331
2000.	5.00E-01	1.00E+01	3.407	1.027	491	2.076	9.331	9.331
2000.	5.00E-01	1.00E+02	5.407	1.994	.505	3.076	10.331	10.331

REFERENCES (PART FOUR)

- 1. Benson, S. W. *Thermochemical Kinetics*; 2nd ed. John Wiley and Sons: New York, 1976.
- 2. Slagle, I. R.; Ratajaczak, E.; Gutman, D. J. J. Phys. Chem., 1986, 90, 402.
- 3. Tyndall, G. S.; Staffelbach, T. A.; Orlando, J. J.; Calvert, J. G. Int. J. Chem. Kinet. 1995, 27, 1009.
- 4. Sehested, I.; Christensen, L. K.; Nielsen, O. J.; Wallington, T.J. Int. J. Chem. Kinet. 1998, 30, 913.
- Atkinson, R.; Baulch, D. L.; Cox, R. A.; Hampson, R. F., Jr.; Kerr, J. A.; Troe, J. J. Phys. Chem. Ref. Data 1989, 18, 881.
- 6. Bartels, M.; Hoyermann, K. An. Asoc. Quim. Argent. 1985, 73, 253.
- 7. Michael, J. V.; Keil, D. G.; Klemm, R. B. J. Chem. Phys. 1985, 83, 1630.
- 8. Slagle, I. R.; Gutman, D. J. Am. Chem. Soc., 1982, 104, 4741.
- 9. Maricq, M. M.; Szente, J. J. J. Chem. Phys. Lett. 1996, 100, 12380.
- 10. Zhu, L.; Johnston, G. J. Phys. Chem. 1995, 99, 15114.
- 11. Villalta, P. W.; Howard, C. J. J. Phys. Chem. 1996, 100, 13624.
- 12. Gilbert, R. G.; Smith, S. C. Theory of Unimolecular and Recombination Reactions; Oxford Press: Boston, MA, 1990.
- 13. Gilbert, R. G.; Smith, S. C. UNIMOL, 1990.
- 14. Gilbert, R. G.; Luther, K.; Troe, J. Ber. Bunsen-Gas. Phys. Chem. 1983, 87, 169.
- 15. Stewart, J. J. P., MOPAC 6.0, Frank J. Seiler Research Lab., US Air Force Academy, Colorado, 1990.
- 16. Frisch, M.j.; Truck, G. W.; Head-Gordon, M.; Gill, P. M. W.; Wong, M. W.; Foresman, J. B.; Johnson, B. G.; Schelgel, H. B.; Robb, M. A.; Peplogle, E. S.; Gromperts, R.; Andres, J. L.; Raghavachari, K.; Binkley, J, S.; Gonzalez, C.; Martin, R. L.; Fox, D. J.; Defrees, D. J.; Baker, J.; Stewart, J. J. P.; Pople, J. A.;

- 17. Ochterski, J. W.; Petersson, G. A.; Montgomery, Jr., J. A. J. Chem. Phys. 1996, 104, 2598.
- 18. Nyden, M. R.; Petersson, G. A. J. Chem. Phys. 1991, 75, 1843.
- 19. Petersson, G. A. J. Chem. Phys. 1994, 94, 6081.
- 20. Montgomery, J. A.; Petersson, G. A. J. Phys. Chem. 1994, 101, 5900.
- 21. Hehre, W. J.; Random, L.; Schleyer, P. R.; Pople, J. A. *Ab-Initio Molecular Orbital Theory*; John Wiley & Sons: New York, NY, 1986.
- 22. Pitzer, K. S.; Gwinn, W. D. J. Chem. Phys. 1942, 10, 428.
- 23. (a) Zhong, X.; Bozzelli, J. W. J. Phys. Chem. A 1998, 102, 3537. (b) Bozzelli, J. W.; Chang, A. Y.; Dean, A. M. Int. J. Chem. Kint. 1997, 29, 161.
- Rodgers, A. S. Selected Values for Properties of Chemical Compounds;
 Thermodynamic Research Center, Texas A&M University: College Station, TX, 1982.
- 25. Lay, T. H.; Bozzelli, J. W. J. Phys. Chem. A 1997, 101, 9505-9510.
- Baulch, D. L.; Cobos, C. J.; Cox, R. A.; Esser, C.; Frank, P.; Just ,Th.; Kerr, J. A.;
 Pilling, M. J.; Troe, J.; Walker, R. W.; Warnatz, J. J. Phys. Chem. Ref. Data 1992, 21, 411.