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ABSTRACT

IMPLEMENTATION AND PERFORMANCE STUDY OF IMAGE
DATA HIDING / WATERMARKING SCHEMES

by
Arkadiusz Edward Komenda

Two data hiding / watermarking techniques for grayscale and color images are

presented. One of them is DCT based, another uses DFT to embed data. Both

methods were implemented in software utilizing C/C++. The complete listings of

these programs are included. A comprehensive reliability analysis was performed

on both schemes, subjecting watermarked images to JPEG, SPIHT and MPEG-2

compressions. In addition, the pictures were examined by exposing them to common

signal processing operations such as image resizing, rotation, histogram equal-

ization and stretching, random, uniform and Gaussian noise addition, brightness

and contrast variations, gamma correction, image sharpening and softening, edge

enhanccement, manipulation of a channel bit number and others. Methods were

compared to each other. It has been shown that the DCT method is more robust

and, hence, suitable for watermarking purposes. The DFT scheme exhibits less

robustness, but due to its higher capacity is perfect for data hiding purposes.
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CHAPTER 1

INTRODUCTION

Data hiding sometimes also called steganography is a relatively new and quickly

growing field in digital image processing. The main task is to design a scheme which

effectively hides data in images without downgrading their quality [1, 2, 31. Moreover,

the hidden data should not be easily retrievable by just anyone. The method should

be complex enough to enable only authorized and debriefed individuals to extract

the hidden information. At the same time, hidden data should not be changed or

completely lost due to the common image processing operations such as compression,

image enhancement, filtering, etc. However, it is practically impossible to design a

method that would guarantee safety and correct detection of data subjected to every

possible image alteration. Therefore, as in the case of all new fields of application,

we aimed to design a steganographic scheme that shows itself to be robust, at least,

against to the most commonly encountered image processing operations.

1.1 Data Hiding Applications

Applications for data hiding in images are enormous, (Table 1.1). The most obvious

one is cataloging or indexing the images. The hidden information can contain the

type of the picture (cartoon, landscape, in-door, etc.), author's name, owner's name,

date and location it was taken, and so on. Steganography can also be used to prove

image ownership in the court of law. For example, the professional photographer

takes a picture in the digital form and posts it on its website for viewing by the

potential customers. If one of the customers wants to purchase the picture, he

pays the photographer a negotiated price and now is free to download the image for

commercial use. The website image contains a watermark which in case of a copyright

infringement can be used by the photographer to prove that he's the actual owner.

1
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Table 1.1 Data Hiding Applications
Data Hiding Applications

Cataloging

Image Ownership

Watermarking

Intelligent Agents

This scheme should protect the rightful owners from unauthorized use of their image

content.

This example brings us to the next application, namely watermarking. Water-

marking is a way of tagging an image for authenticity, copyright [4] or identification

purposes. It has a lot in common with data hiding; however, it is also subject to

attacks. Attacks in this instance encompass counterfeiting, altering and destroying

the watermark. Typical hidden data which is not a watermark might be exposed to

such attacks too; however, it is less likely, since changing the data might not bring

any financial gain or other benefits. This distinction is based on the assumption that

since the particular hidden data is not a watermark the ownership rights cannot be

resolved on its bases. Since the watermarks are much more likely to be attacked,

their embedding methods should be more complex and their survival rate under the

attack much higher than a typical data hiding application. Most common watermark

alteration attempts include compression, image reshaping, filtering, etc.

The fourth area of application for data hiding is of intelligent agents. In this

scenario, images are carriers of small executive programs (intelligent agents) that

perform specific tasks. For example, while displaying an image, the agent checks

whether the computer performing the operation is the one that belongs to the person

licensed to use the image. If not, it stop displaying operation and notifies the user

that he is not authorized to use the image. Another very appealing application for

intelligent agents is connected to e-commerce and Internet. For instance, a customer

would like to watch a movie that can be downloaded from a pay-per-view website.
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First, he pays for the movie, second downloads it, and then watches. Once the movie

is finished the intelligent agent hidden inside the computer video file, e.g. MPEG,

self-destructs the movie sequence. Since the viewer paid for only one viewing of the

movie, he is no longer authorized to have a viewable copy of it.

1.2 The S cope of Thesis

This work presents two data hiding schemes complete with their implementation

and performance analysis. The first scheme embeds data in low frequency image

coefficients in the DCT domain [5]. The detection of data is a non-linear, oblivious

operation. The second scheme uses maximally separable points of the signal constel-

lation for steganography in combination with FFT based cyclic correlation for the

detection operation [6, 7]. This method likewise does not require the original image

to be present during the detection stage. Both methods were implemented in C/C++

and program listings can be found in the appendices. However, the main objective

of this thesis is to present a thorough performance study of watermark and hidden

data survival rates under various image signal processing operations for these two

data hiding techniques. Watermarked pictures are exposed to various common

image processing operations such as JPEG and SPIHT compressions, brightness

and contrast manipulations, gamma correction, resizing, rotation, noise addition, to

name a few. All testing is performed on standard test images.



CHAPTER 2

OVERVIEW OF DATA HIDING TECHNIQUES FOR IMAGES

Over the years, there have been developed many techniques for hiding digital data

inside images. The first differentiation among them is based on data detection

procedure (Table 2.1). While extracting data or a watermark, the user might be asked

to provide an original, unwatermarked image which is necessary for the watermark

retrieval operation. Such scheme [8, 9] is categorized as a cover image escrow method.

On the other hand, the steganographic algorithm where the original image is not

needed [10, 11] for a successful watermark extraction is called an oblivious detection

scheme.

Table 2.1 Hidden Data Retrieval Methods
Hidden Data Retrieval Methods

Cover Image Escrow

Oblivious Detection

2.1 Classification of Data Hiding Techniques

Steganographic schemes can be divided into the following classes and subclasses:

• Spatial domain signature embedding

• Transform domain signature embedding techniques

—Discrete Cosine Transform (DCT)

—Wavelet transforms

—Other transforms

• Other approaches

4
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2.1.1 Spatial Domain Signature Embedding

The first data hiding methods were designed to operate in the spatial domain

(without decomposition). They were relying on modification of certain pixels' bits,

usually the least significant bits (LSB), to hide data. In Ref. [12], the authors present

two schemes to hide data in images. The first one replaces the least significant bits

of the image with an m-sequence while the second adds the m-sequence to the least

significant bits of the image and uses auto-correlation to detect it later on. In Ref.

[14], the author alters the LSB of sets of pixels selected by a random key in such

a way to increase their contrast. Famous "Patchwork" operates on pairs of pixels,

increasing the value of one and decreasing the value of the other one, in order to

hide a bit [13]. However, these methods are not too resistant to common image

processing operations, such as compression, addition of noise, and others.

2.1.2 Discrete Cosine Transform Based Techniques

The most popular approach to image steganography to date is through the use of

the DCT. The original image is transformed into the DCT domain in which the

actual data hiding takes place [5]. In Ref. [2], Cox et. al. apply a steganographic

method to both a video and audio signals. The signature is inserted into still pictures

using discrete cosine transform techniques. It is shown that the watermark can still

be recovered after various common processing operations such as scaling, PEG,

rotation, translation and clipping. Even when the image is printed, photocopied

and scanned, a signature is still recoverable. In Ref. [15] the authors use human

visual system's (HVS) characteristics to ensure that the watermark is invisible to

the human eye. The watermark's signature, added in the DCT domain, is of the

pseudo-noise form shaped by using HVS's frequency masking. Ruanaidh et. al. in

Ref. [16] present a watermark embedding scheme in the DCT domain by modulating

the transform coefficients with a bi-directional coding. In Ref. [17] the authors hide
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a signature inside the middle frequency DCT coefficients. This scheme is resistant

to JPEG compression and resizing.

2.1.3 Wavelet Transform Based Solutions

More and more data hiding algorithms incorporate wavelet transforms. Inoue

et. al. in Ref. [18] propose a discrete wavelet transform based method for

embedding a digital watermark inside an image. Data is hidden in the lowest

frequency components of the picture by using a controlled quantization process.

Detection is done in an oblivious mode by quantization and mean amplitude of the

lowest frequency components. In Ref. [19], the authors present two wavelet based

techniques for steganography. They divide wavelet coefficients into significant and

insignificant ones. In the first method, they hide data utilizing the insignificant

coefficients. While in the second scheme, they introduce a threshold and modify

significant coefficients for data hiding purposes. This method is shown to be robust

to JPEG compression. Swanson et. al. in Ref. [20] present a video watermarking

scheme in which a perceptual model determines where the strength of the watermark

can be enhanced within the image. The method performs well even in the event of

frame skipping.

2.1.4 Other Transforms

Another popular transform for data hiding is the Discrete Fourier Transform (DFT).

Real images generally give a complex valued coefficients after the application of the

DFT. Ramkumar et. al. in Ref. [7] use only the DFT magnitudes for data hiding

purposes. However, Ruanaidh et. al. in Ref. [21] propose hiding data in the phase

of the DFT coefficients. In Ref. [16], Hadamard Transform and Daubechies Wavelet

Transform are utilized.
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2.1.5 Other Approaches

A more novel approach has been presented by Voyatzis and Pitas [22, 23]. In this

case, the watermark is an image consisting of black and white pixels only. First,

the watermark is scrambled by chaotic transformation using toral automorphism.

Second, the scrambled watermark is combined with the original picture by changing

the gray levels to form a watermarked image. The mark is said to be resistant to

filtering and JPEG compression. Interestingly, Davern and Scott [24] use fractal

compression scheme for data hiding.

2.2 Summary

As we can see there are many various approaches to effective information hiding.

Each presents us with different benefits and immunities to certain signal processing

operations However, no one has yet came up with the scheme which would be

totally resistant to tampering. In this thesis it is aimed to come closer to the ideal

fully-robust data hiding/watermarking method.



CHAPTER 3

TWO NEW ROBUST DATA HIDING / WATERMARKING
METHODS

The following chapter introduces two steganographic techniques proposed in Ref. [5]

and [6, 7]. They were both implemented in C/C++ and multiple experiments were

conducted on watermarked images produced by those programs. The objective was

to analyze the performance and resistance of the watermarks and hidden data to

common signal processing attacks.

3.1 Method I: DCT Based Robust Watermarking Technique

The first data hiding method utilizes DCT transformation and its detection procedure

is oblivious in nature [5]. In a typical scenario, an 8x8 block DCT is performed on

the original image. Each block is then zigzag scanned so as to form 64 bands of

coefficients. The first 8 bands of coefficients with the highest energy levels except

the DC coefficient band are joined together to form a row vector. This vector is then

randomly mixed, i.e. the coefficients are moved from one position to another in a

random fashion. However, their original order is saved for later use in the reverse

reordering operation. Next, the mixed coefficient vector is subjected to an all-pass

filter scrambling. After all these operations, the vector is divided into segments with

128 coefficients in each. In each such a segment one bit of data is embedded. During

the embedding small magnitude coefficients are manipulated as to have correct signs.

For example, if we want to embed a '0' bit, we have to end up with the majority

of coefficients in the segment being negative. This is achieved by reversing the

positive sign of all small magnitude coefficients. To hide a '1' bit, the majority of

the segment's coefficients should be positive, so we reverse signs of all the negative

small magnitude coefficients (Figure 3.1).

8
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Figure 3.1 Method I - Data Hiding Scheme

After the embedding, the segments are put together to form a vector again.

This vector is then inverse all-pass filtered and reordered. The new 2 through 9

bands together with the rest of the other bands from the original image are unzigzag

scanned to form 8x8 blocks which are subjected to the inverse DCT. In this way a

watermarked image is obtained.

Detection proceeds along the lines of the procedure described in the first

paragraph of this section. However, instead of embedding, the bits are detected

on the bases of the dominant sign in the segment. If in a 128 coefficient segment

most of the coefficients are negative, then it is a '0' bit, otherwise it is a '1' bit

(Figure 3.2).

3.2 Method II: Novel DFT Based Data Hiding Technique

As in the previous method, the detection step of the DFT based scheme does not need

the original, unwatermarked image to be present for successful data extraction [6, 7].
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Figure 3.2 Method I - Data Detection Procedure

During the data hiding operation, the original picture undergoes 8x8 block DFT

transformation. From each block 34 unique coefficients are extracted and divided

into 34 bands. The end result is a 34 by number-of-8x8-blocks matrix. This matrix

is column-wise decorrelated using a KLT (Karhunen-Loeve Transform) matrix and

then row-wise decorrelated using Daubechies filter bank. In the next step, the matrix

is reshaped to form a single vector. The vector is randomly reordered (saving the

original coefficient ordering for later reverse reordering operation) and divided into

segments of length 2048 coefficients. In each segment, one 12 bit data-word is hidden.

The data hiding procedure uses a seed to generate a 2048 long binary sequence, which

is all-pass filtered. The 12 bit data-word is converted into its integer equivalent and

the binary sequence is then:

• cyclically shifted by the integer's value, if the integer is less than 2048,

• or multiplied by a negative sign and cyclically shifted by the 4095 - integer's

value amount, if the integer is greater than or equal to 2048.

After shifting, the new binary sequence is combined with the segment's coefficients

(Figure 3.3).
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Figure 3.3 Method II - Data Hiding Scheme

All segments are combined back into a vector which is then reverse reordered

and reshaped into a matrix. The matrix is correlated row-wise using Daubechies

filter bank and column-wise by KLT. Finally, 8x8 blocks are formed and the inverse

DFT performed on them to generate the watermarked image.

The detection part (Figure 3.4) goes along the lines of first paragraph in this

section. However, only 6 least significant bits of each of the coefficients in the segment

are used for data retrieval. The all-passed binary sequence is created using the same

seed (the seed is an input to be given by the user, or, rather, owner of the image) as

during the data hiding operation. Then the cyclic correlation of the binary sequence

is performed on the coefficient segment. The amount of shift which gives the highest

magnitude of correlation, is the hidden integer number. If the sign of the highest

magnitude correlation is:

• positive, then the integer number (amount of shift) converted into a 12 bit

data-word is the hidden data,
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• negative, then the result of 4095 - integer's value converted into a 12 bit data-

word gives the hidden data.

Figure 3.4 Method II - Data Detection Procedure



CHAPTER 4

SOFTWARE IMPLEMENTATION OF BOTH METHODS

Fully functional computer packages for both data hiding algorithms were built so

as to further test their robustness, conduct a thorough performance research and

find a means for easy distribution to all interested parties in our current research.

Software for DCT and DFT steganographic methods is based on a combination of C

and C++ languages. However, DCT and DFT packages were written separately and

for different systems. Hence, their inner code does not resemble each other. They

also function differently and, as will be shown, have different interfaces, although,

some parallels can be drawn between them.

4.1 Method I - DCT Windows-based Software Package

Software package (DHS1) for the first watermarking method was written for Windows

based systems. This includes:

• Windows 95,

• Windows 98,

• Windows NT 3.51 (Intel),

• Windows NT 4.0 (Intel).

DHS1 stands for Data Hiding Software 1. It is a fully functional, redistributable

application software complete with the installation and setup routines (Figure 4.1).

Version 1.10 of the software fits onto one 3.5" diskette with 1.44 MBytes of disk space.

After installation, simple double-clicking on DHS1.EXE file in Windows Explorer

runs the application (Figure 4.2).

13



Figure 4.1 DHS1 - Setup Splash Screen

4.1.1 DHS1: Usage

The program supports embedding data in both still images and sequences of images

(video). To embed data in just one image choose Image from the main screen's

menu bar, Figure 4.3; to hide data inside video frames select Video from the menu

bar. Choosing Image or Video from the main menu bar leads us to an operation

submenu (Figure 4.4) where choices are:

• Hide, for embedding data into an image,

• Detect, for extracting data from a picture.

Selecting Hide or Detect mode activates the block size submenu (Figure 4.5). The

data hiding algorithm was slightly modified to allow various DCT block sizes to be

used during the data hiding and extracting operation. It is up to the user to decide

what block size option to use. In the next chapter, the usage of various block sizes

and the corresponding data rate detection are investigated.

If we chose to hide data inside an image with the block size options of 8x8, 16x16

and 32x32 Figure 4.6 window will appear. Here we have an option of hiding data

inside a black-and-white picture (grayscale) with a pgm format or a ppm color picture.

14



Figure 4.2 DHS1 - Main Screen

Figure 4.3 DHS1 - Main Screen Menu Bar

Figure 4.4 DHS1 - Image Operation Submenu

15

Figure 4.5 DHS1 - Block Size Submenu



Figure 4.6 DHS1 - Data Hiding Inside an Image

A complete (with an extension) input file name of the original, unwatermarked image

has to be provided as well as the output file name under which the watermarked

image is to be saved. If the input file format is incorrect or the file does not exist an

appropriate error message will be displayed in the Message box. Original image width

and height has to be entered into the appropriate fields. Data to be hidden should

be written inside the Data for Hiding box. There is no length restriction during

entering the data. However, the program only hides the first n possible characters

depending on the image size, which determines the image capacity for hiding. Note

that the program will give an error if no data was provided for hiding. To proceed

with data hiding operation press Go, to return to the main screen press Back. The

progress of hiding can be followed on the Progress bar.

Detection operation follows similar steps. Press Image on the main screen

menu bar, then select Detect and the appropriate block size option, in this case,

8x8, 16x16, 32x32. The Figure 4.7 window will appear. Choose the file format,

pgm or ppm and enter the name of the watermarked file (with the correct extension).

Most importantly, select the block size which was used during the data hiding stage,

16
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Figure 4.7 DHS1 - Data Detection from an Image

otherwise the detected data displayed in the Data Detected field will be incorrect.

The correct width and height must also be entered in the assigned fields. Note that

width and height for the watermarked image is the same as that of the original,

unwatermarked image. To proceed with the detection press Go, to go back to the

main screen click on Back. Detection progress can be followed on the Progress bar.

Hiding data in the video frames is somewhat similar. First we choose Video

from the menu bar, then Hide and the block size option. Figure 4.8 window is

displayed. File formats available for input are pgm, ppm and . y.u.v. In the last file

format, one frame is stored in 3 separate files. The one with extension .y holds the

luminance data, .0 color difference between luminance and a red color, and .v color

difference between luminance and a blue color. For Common input file name enter

the name of the file with the changing frame numbers substituted by a percent sign,

%, see Table 4.1. In the case of .y.u.v format, after ,the file name put .y extension,

since the data is only being hidden in the luminance component. Common output file

name is governed by the same rules as the input file names (see Table 4.1). Provide

the image size in Height and Width fields. In First file's number and Last file's
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Figure 4.8 DHS1 - Data Hiding In Video

number do not enter the leading zeros if any. Data for hiding ought to be inserted

into Data for hiding box. As in the single image case, there is no restriction on the

length of inputed data, the program itself later determines how many characters it

can hide in the provided video sequence. Data hiding progress of the current frame

can be seen in Progress of a frame field. The progress of the whole movie can be

seen on the Progress of all frames bar. To begin steganography click on Go, to clear

all fields press Clear, to return to the main screen click on Back.

Table 4.1 Video Files Naming Convention



Figure 4.9 DHS1 - Data Detection In Video

Video detection screen Figure 4.9 can be reached by clicking on Video, then

Detect and the block size option used while hiding data. All the fields follow the

same rules as in the video data hiding window's case. A few points worth mentioning

are:

• select the same block size as during the hiding operation,

• Common input file name string must be the same as the Common output file

name used during the data embedding stage,

• Width and Height are the same as for the original data files,

• provide correct number of frames spanning between First file's number and

Last file's number (do not put leading zeros).

The detected data will be displayed in the Data Detected field.

4.1.2 DHS1: Inside Structure and Workings

The whole DHS1 program comprises of many source files whose listings can be found

in Appendix A. Before DHS1 was written in C/C++, a working copy was made in

19
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Matlab. This way, it was possible to troubleshoot C/C++ code for logical errors if

the results did not match with a Matlab program. Writing mathematical programs

in Matlab is considerably faster than in C/C++.

The maximum height of the picture that the program can take as an input is

1000 pixels. There is no limit in the horizontal dimension. The assumption was that

in practice pictures are usually wider than their vertical size. Hence, it is less likely

that the picture will have 1000 pixels vertically than horizontally. The maximum

height is controlled by the constant, ISIZE. The image is actually kept sideways in

the array, that is, throughout the program operations are done on the transpose

of the image. The reason is that only the number of rows of the array can be set

dynamically in C++. The number of columns is a constant that can't be changed

or manipulated from the inside of the program.

The program accepts pgm, ppm and .y.u.v (in the video case) file formats. These

are pretty popular graphical formats and can be displayed by many commercially

available graphics packages, for instance, Lview Pro and Paint Shop Pro. .y file

format can be displayed as a RAW file. The reason for entering width and height

of the images is that, first, . y.u.v files do not have size information embedded in

themselves and, second, the program has been built in such a way that RAW file

input format could be easily added. In addition, vertical and horizontal dimensions

do not have to be powers of 2. The program is written to handle any size. This is

done by using the maximum size of the image which is still divisible into an integer

number of blocks of the current block size. For example, for the 8x8 block size option,

for a 388x190 picture, the program only uses the 384x184 image portion.

For block sizes 8x8, 16x16, 32x32 and 64x64, 128x128 separate subroutines

were written to speed up the execution of the program. During the trial runs it

was noticed that a single subroutine for all different block sizes resulted in very long

execution times under 8x8 and 16x16 options. This led to a split of the subroutine
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into two as a necessity. The potential to use block sizes other than 8x8 makes the

program more universal and capable of investigating their properties.

The program also checks whether the minimum margin of majority of the

appropriate sign prevails in a segment after the embedding operation. If it is detected

that the hiding operation did not create large enough majority of the appropriately

signed coefficients, the data hiding operation is repeated and more coefficients' signs

are reversed.

Overall there are 15 source files, 14 header files, 4 resource files, 13 classes and

16 global functions. The total amount of written code verges on 7800 lines. This

reflects the complexity of the program (Figure 4.10).

Figure 4.10 DHS1 - Program Structure

4.2 Method II - DFT Web-based Software Package

For the second method's data hiding algorithm a Web-based package was built. You

can test run it at http://www.njcmr.org/dhs/. The software was written in ANSI



Figure 4.11 DHS5 - Main Screen

(American National Standards Institute) C/C++ for it to run on Unix machines.

However, this made the task more complex than it would have been under the

Windows-based system. ANSI standard does not support many convenient and

useful functions available in Windows. This necessitated their development. The

software package code named DHS5 (Data Hiding Software 5) uses CGI (Common

Gateway Interface) interface to allow a Web server to run a script on the server and

send the output to a user's Web browser.

4.2.1 DHS5: Interface

The package can be accessed via the Internet at http://www.njcmr.org/dhs/

(Figure 4.11). Data can only be embedded into single images. There is no video

sequence option, since CGI Timeout prevents time consuming operations over the

Internet causing a break in connection.

For steganography choose Hide Data link which will lead to Figure 4.12 screen.

Graphical file formats supported are: pgm for black-and-white images, ppm and .y.u. v

for color images. A detailed explanation of the . y. u. v format can be found in Section
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Figure 4.12 DHS5 - Data Hiding Screen

4.1.1. Note that if you would like to hide data inside a raw file, just change the file's

extension to .y and run the program under the . y.u.v color mode. This is possible

since the program hides data only in the luminance component which in the case

of .y.u.v is solely represented by the file with a .y extension. Hence .0 and .v files

are not used by the program at all. The program will treat data from the raw file

as the luminance data (as is the case in many instances) and perform the normal

embedding. In the Input image file name field enter the original, unwatermarked

image file name complete with the extension. For the .y.u.v case the extension ought

to be .y. An incorrect file name results in the display of the error screen. Output

file's name has to be provided in the Output image file name box. Enter width and

height of the original image into the appropriate fields. The data to be hidden goes

into the Data for hiding field. To proceed with the steganography press Go key, to

clear all entries click on Clear.

After a successful run the following window appears, see Figure 4.13. The name

of the file with hidden data inside, "lenaout.ppm", is provided in the upper portion
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Figure 4.13 DHS5 - Screen after Data Hiding

of the page. To hide data in the next file click on the Hide data in the next image

link, to proceed with data detection press on Detect data from a new image.

An alternative way to reach the detection screen (Figure 4.14) is to click on

Detect Data on the main screen. Select the appropriate Color mode and enter the

Input image file name which should be identical to the Output image file name used

at the data hiding stage. Width and height sizes must be equal to the ones of the

original image. To activate data extraction press Go, for clearing the entries click on

Clear. The retrieved data, "Testing run !!" , is shown on the first line of the screen

below the header, see Figure 4.15. To further detect data from other files click on

Detect data from the next image, to switch to hiding mode press Hide data

in a new image.

4.2.2 DHS5: Package Structure

The graphic file formats pgm and ppm were chosen as input files for their acceptance

in academic circles and popular availability in the commercial image editing software.

.y. u. v format was also incorporated in preparation for the next release of the software
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Figure 4.14 DHS5 - Data Detection Screen
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Figure 4.15 DHS5 - Screen after Data Detection
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for Windows-based systems (due to CGI Timeout issue, see Section 4.2.1) which

would include steganography in video sequences.

The need to input picture dimensions stems from their unavailability in .y.u.v

format and a plan to include raw file format as one of the input options. The DFT

is performed on the 8x8 blocks of pixels. However, this does not limit image sizes to

ones divisible into blocks of 8x8. This is possible due to the program's subroutine

which narrows used picture area, to include the largest feasible, but still divisible

into 8x8 blocks image portion, for data hiding. The rest of the picture is saved for

later use in the construction of the watermarked picture.

Similarly to DHS1, the DHS5 program operates on the transposed image. This

is a consequence of C/C++ limitation which allows only the array's row number to

be set dynamically, while the number of columns has to be fixed. Since it's more

likely that the picture is wider than higher, it was decided to set a vertical limit

for the picture to 1000 pixels and let the horizontal dimension be only limited by

hardware constraints. The only possible way of implementing this was by loading

the image into an array rotated by 90 degrees (transposed).

The whole package consists of about 3700 lines of code in both C/C++ and

HTML, and 17 different functions. It is divided into 3 standalone parts (Figure 4.16):

• main screen written in HTML with CGI,

• data hiding subprogram in C/C++ and HTML plus CGI,

• data extraction subprogram in C/C++ and HTML plus CGI.

A complete C/C++, HTML and CGI listing of the program can be found

in Appendix B. The Matlab equivalent which was used for testing integrity and

reliability of the Web-based system was also written.



Figure 4.16 DHS5 - Package Structure
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CHAPTER 5

A COMPARATIVE PERFORMANCE STUDY FOR TWO DATA
HIDING SCHEMES IN IMAGE AND VIDEO

A scrupulous analysis of both steganographic techniques was performed with a special

focus on hidden data survival under the JPEG and SPIHT compressions. In addition,

an MPEG-2 video compression was tested for the first method. Both schemes were

also subjected to an array of common image editing processes which included, but

were not limited to, resizing, rotation, noise addition, sharpening and bluring. In all

cases Paint Shop Pro Version 5.01 was used as an image editing tool.

5.1 Determination of the Majority Sign Threshold for Method I

The DCT technique has a majority sign threshold (dominance threshold) constant

that had to be determined experimentally, before the algorithm could be used. This

constant simply tells what the minimal number difference between the coefficients

with the correct signs and ones with the opposite signs within a segment should

be. For example, is there supposed to be 5, 10 or 20 more positive coefficients than

negative ones while embedding a '1' bit?

5.1.1 Case of JPEG Compression (Grayscale Images)

An experiment was conducted on 3 grayscale 256x256 test images, namely Lena,

Tree and Baboon, to determine the optimal majority sign threshold. In each image

a 64-bit long binary signature was hidden using an 8x8 DCT block transform. Then

the image was subjected to a JPEG compression with the quality value of 10. Next,

the image was decompressed into a pgm file and data detection was performed on

it. This procedure was repeated for the JPEG quality factors of 20, 30, 40, ...,

100. In addition different block sizes of 16x16, 32x32, 64x64 and 128x128 were also

experimented. And just to improve the reliability of data, the whole process was
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repeated for a new different signature. The thresholds tried were: 10, 22, 27, 32, 37,

42, 47, 52, 67, 72, 77, 82, 87, 92, 97, 102, 107, 112, 117, 122.

For results see Figures 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 5.10. It is seen

that the optimal value for the majority sign threshold constant is around 20. In

particular, see the last four figures for block sizes of 64x64 and 128x128.

Figure 5.1 JPEG DCT - 8x8: Testing Various Majority Sign Thresholds (Part 1)

Figure 5.2 JPEG DCT - 8x8: Testing Various Majority Sign Thresholds (Part 2)
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Figure 5.3 JPEG DCT - 16x16: Testing Various Majority Sign Thresholds (Part 1)

Figure 5.4 JPEG DCT - 16x16: Testing Various Majority Sign Thresholds (Part 2)
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Figure 5.5 JPEG DCT - 32x32: Testing Various Majority Sign Thresholds (Part 1)

Figure 5.6 JPEG DCT - 32x32: Testing Various Majority Sign Thresholds (Part 2)
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Figure 5.7 JPEG DCT 64x64: Testing Various Majority Sign Thresholds (Part 1)

Figure 5.8 JPEG DCT - 64x64: Testing Various Majority Sign Thresholds (Part 2)
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Figure 5.9 JPEG DCT - 128x128: Testing Various Majority Sign Thresholds
(Part 1)

Figure 5.10 JPEG DCT - 128x128: Testing Various Majority Sign Thresholds
(Part 2)
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5.1.2 Case of SPIHT Compression (Grayscale Images)

The same experiment was conducted for SPIHT compression. However, this time we

used:

• 7 grayscale 256x256 test images: Lena, Baboon, Tree, Splash, Tiffany, Girl and

Peppers,

• 10 different 64-bit long binary signatures,

• 5 different DCT block sizes: 8x8, 16x16, 32x32, 64x64, 128x128,

• 6 SPIHT bitrates: 0.25, 0.50, 0.75, 1.00, 1.25, 1.50.

For results see Figures 5.11, 5.12, 5.13, 5.14, 5.15, 5.16, 5.17, 5.18, 5.19, 5.20.

It can be seen that the optimal value for the majority sign threshold constant for

SPIHT is around 25, note figures for block sizes of 64x64 and 128x128.

Figure 5.11 SPIHT DCT - 8x8: Testing Various Majority Sign Thresholds (Part 1)
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Figure 5.12 SPIHT DCT - 8x8: Testing Various Majority Sign Thresholds (Part 2)

Figure 5.13 SPIHT DCT 16x16: Testing Various Majority Sign Thresholds
(Part 1)
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Figure 5.14 SPIHT DCT - 16x16: Testing Various Majority Sign Thresholds
(Part 2)

Figure 5.15 SPIRT DCT - 32x32: Testing Various Majority Sign Thresholds
(Part 1)
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Figure 5.16 SPIRT DCT - 32x32: Testing Various Majority Sign Thresholds
(Part 2)

Figure 5.17 SPIRT DCT 64x64: Testing Various Majority Sign Thresholds
(Part 1)
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Figure 5.18 SPIHT DCT - 64x64: Testing Various Majority Sign Thresholds
(Part 2)

Figure 5.19 SPIHT DCT 128x128: Testing Various Majority Sign Thresholds
(Part 1)
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Figure 5.20 SPIHT DCT - 128x128: Testing Various Majority Sign Thresholds
(Part 2)

5.1.3 Case of JPEG Compression (Color Images)

Similar experiment to the two previous ones was performed on color images which

underwent JPEG compression. The following options were used:

• 2 color (ppm) 256x256 images: Lena and Tree,

• 2 different 64-bit long binary signatures,

• 5 different DCT block sizes: 8x8, 16x16, 32x32, 64x64, 128x128,

• 10 JPEG quality factors: 10, 20, 30, ..., 100.

See Figures 5.21, 5.22, 5.23, 5.24, 5.25, 5.26, 5.27, 5.28, 5.29, 5.30 for results.

From the last 4 graphs it can be seen that the majority sign threshold constant

should be chosen to be 20.
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Figure 5.21 JPEG DCT 8x8: Testing Various Majority Sign Thresholds (Part 1)

Figure 5.22 JPEG DCT - 8x8: Testing Various Majority Sign Thresholds (Part 2)
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Figure 5.23 JPEG DCT - 16x16: Testing Various Majority Sign Thresholds (Part
1)

Figure 5.24 JPEG DCT 16x16: Testing Various Majority Sign Thresholds (Part
2)
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Figure 5.25 JPEG DCT - 32x32: Testing Various Majority Sign Thresholds (Part
1)

Figure 5.26 JPEG DCT - 32x32: Testing Various Majority Sign Thresholds (Part
2)
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Figure 5.27 JPEG DCT - 64x64: Testing Various Majority Sign Thresholds (Part
1)

Figure 5.28 JPEG DCT - 64x64: Testing Various Majority Sign Thresholds (Part
2)
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Figure 5.29 JPEG DCT - 128x128: Testing Various Majority Sign Thresholds
(Part 1)

Figure 5.30 JPEG DCT 128x128: Testing Various Majority Sign Thresholds
(Part 2)
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5.1.4 Case of SPIHT Compression (Color Images)

SPIHT compression was also used for finding the majority sign threshold. In this

case we used:

• 3 color (ppm) 256x256 images: Lena, Baboon and Tree,

• 2 different 64-bit long binary signatures,

• 5 different DCT block sizes: 8x8, 16x16, 32x32, 64x64, 128x128,

• 6 SPIHT bitrates: 0.25, 0.50, 0.75, 1.00, 1.25, 1.50.

Results can be seen in Figures 5.31, 5.32, 5.33, 5.34, 5.35, 5.36, 5.37, 5.38, 5.39,

5.40. The majority sign threshold constant was chosen to be equal to 25 to perform

well under SPIHT compression.

Figure 5.31 SPIHT DCT - 8x8: Testing Various Majority Sign Thresholds (Part 1)
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Figure 5.32 SPIHT DCT - 8x8: Testing Various Majority Sign Thresholds (Part 2)

Figure 5.33 SPIHT DCT - 16x16: Testing Various Majority Sign Thresholds
(Part 1)
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Figure 5.34 SPIRT DCT - 16x16: Testing Various Majority Sign Thresholds
(Part 2)

Figure 5.35 SPIRT DCT 32x32: Testing Various Majority Sign Thresholds
(Part 1)
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Figure 5.36 SPIHT DCT 32x32: Testing Various Majority Sign Thresholds
(Part 2)

Figure 5.37 SPIHT DCT - 64x64: Testing Various Majority Sign Thresholds
(Part 1)
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Figure 5.38 SPIHT DCT - 64x64: Testing Various Majority Sign Thresholds
(Part 2)

Figure 5.39 SPIHT DCT - 128x128: Testing Various Majority Sign Thresholds
(Part 1)



50

Figure 5.40 SPIHT DCT 128x128: Testing Various Majority Sign Thresholds
(Part 2)

5.2 Performance Results with Compression

In this section we present a thorough testing of DCT and DFT schemes subjected

to JPEG, SPIHT and MPEG-2 compression schemes.

5.2.1 JPEG Grayscale Image Tests

Method I was used to hide a 64-bit long binary signature inside a grayscale (pgm)

image, using a majority sign threshold (dominance threshold) constant set to 20.

JPEG compression was then applied to the image, followed by decompression back

into a pgm format. This procedure was repeated for:

• 7 black-and-white 256x256 images: Baboon, Lena, Tree, Girl, Splash, Tiffany

and Peppers,

• 10 different signatures,

• 5 different DCT block sizes: 8x8, 16x16, 32x32, 64x64, 128x128,

• 10 various JPEG compression quality factors: 10, 20, 30, 40, ..., 100.
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For image quality comparisons, see Figures 5.41, 5.42, 5.43. They display the

original, unwatermarked image, next to the DHS1 watermarked image. Note, that

the decrease in quality of the images due to the watermarking operation is minimal

(there is no compression applied to these pictures).

Results of the comprehensive testing procedure described above can be seen in

Figures 5.44, 5.45.

Figure 5.41 Original (left) and DHS1 Watermarked (right) 256x256 pgm LENA
Image

Figure 5.42 Original (left) and DHS1 Watermarked (right) 256x256 pgm BABOON
Image
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Figure 5.43 Original (left) and DHS1 Watermarked (right) 256x256 pgm TREE
Image

Figure 5.44 Probability of Bit Error vs. Different JPEG Quality Values for 8x8,
16x16, 32x32 DCT Block Sizes
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Figure 5.45 Probability of Bit Error vs. Different JPEG Quality Values for 64x64,
128x128 DCT Block Sizes

The same experiment was conducted for the data hiding Method II. In this

case we used:

• 13 black-and-white 256x256 images: Airplane, Baboon, Lena, Tree, Girl, Girl2,

Girl3, Couple, Splash, Tiffany, House, Sailboat and Peppers,

• 11 different signatures,

• 10 various JPEG compression quality factors: 10, 20, 30, 40, ..., 100.

For image quality comparisons, see Figures 5.46, 5.47, 5.48. They show the

original, unwatermarked image, next to the DHS5 watermarked image. Note, that

the decrease in quality of the images due to the watermarking operation is minimal

(there is no compression applied to these pictures).

For error probability rates under DHS5 see Figure 5.49.
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Figure 5.46 Original (left) and DHS5 Watermarked (right) 256x256 pgm LENA
Image

Figure 5.47 Original (left) and DHS5 Watermarked (right) 256x256 pgm BABOON
Image

Figure 5.48 Original (left) and DHS5 Watermarked (right) 256x256 pgm TREE
Image
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Figure 5.49 Probability of Bit Error vs. Different JPEG Quality Values for DFT
Data Hiding Scheme

From the graphs it can be seen that Method I performs much better than

Method II when the images are subjected to JPEG compression, irrespective of the

quality factor.

5.2.2 SPIHT Grayscale Image Tests

Similar experiment was conducted for SPIHT compression using DHS1 (majority

sign threshold constant set to 20). We used:

• 7 black-and-white 256x256 images: Baboon, Lena, Tree, Girl, Splash, Tiffany

and Peppers,

• 10 different signatures,

• 5 different DCT block sizes: 8x8, 16x16, 32x32, 64x64, 128x128,

• 6 various SPIHT bitrates: 0.25, 0.50, 0.75, 1.00, 1.25, 1.50.

For different DCT block sizes the results are shown in Figures 5.50, 5.51.
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Figure 5.50 Probability of Bit Error vs. Different SPIHT Bitrates for 8x8, 16x16
DCT Block Sizes

Figure 5.51 Probability of Bit Error vs. Different SPIHT Bitrates for 32x32, 64x64,
128x128 DCT Block Sizes
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Figure 5.52 Probability of Bit Error vs. Different SPIRT Bitrates for DFT Data
Hiding Scheme

Then, the procedure was repeated for Method II data embeded images, for:

• 13 black-and-white 256x256 images: Airplane, Baboon, Lena, Tree, Girl, Girl2,

Girl3, Couple, Splash, Tiffany, House, Sailboat and Peppers,

• 11 different signatures,

• 6 various SPIRT bitrates: 0.25, 0.50, 0.75, 1.00, 1.25, 1.50.

Results are depicted in Figure 5.52,

Method I shows again an advantage over Method II, however, at 1.25 and 1.50

bitrates both schemes perform equally well.

5.2.3 JPEG Color Image Tests

JPEG compression test was conducted on Method I hidden data inside color (ppm)

pictures using:

• 7 color 256x256 images: Baboon, Lena, Tree, Girl, Splash, Tiffany and Peppers,
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• 10 64-bit long binary different signatures,

• 5 different DCT block sizes: 8x8, 16x16, 32x32, 64x64, 128x128,

• 10 various JPEG compression quality factors: 10, 20, 30, 40, ..., 100.

Original images next to Method I modified ones can be seen in Figures 5.53,

5.54, 5.55. They show the original, unwatermarked image, next to the DHS1 water-

marked image.

Results of the comprehensive tests can be seen in Figures 5.56, 5.57.

Figure 5.53 Original (left) and DHS1 Watermarked (right) 256x256 ppm LENA
Image

Figure 5.54 Original (left) and DHS1 Watermarked (right) 256x256 ppm BABOON
Image
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Figure 5.55 Original (left) and DHS1 Watermarked (right) 256x256 ppm TREE
Image

Figure 5.56 Probability of Bit Error vs. Different JPEG Quality Values for 8x8,
16x16, 32x32 DCT Block Sizes
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Figure 5.57 Probability of Bit Error vs. Different JPEG Quality Values for 64x64,
128x128 DCT Block Sizes

The test was repeated for Method II images:

• 13 color 256x256 images: Airplane, Baboon, Lena, Tree, Girl, Girl2, Gir13,

Couple, Splash, Tiffany, House, Sailboat and Peppers,

• 11 different signatures,

• 10 various JPEG compression quality factors: 10, 20, 30, 40, ..., 100.

For quality reassurance, see the original and DHS5 modified images in

Figures 5.58, 5.59, 5.60.

The probability of error test outcomes are portrayed in Figure 5.61.

DCT method performs much better than the DFT method.
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Figure 5.58 Original (left) and DHS5 Watermarked (right) 256x256 ppm LENA
Image

Figure 5.59 Original (left) and DHS5 Watermarked (right) 256x256 ppm BABOON
Image

Figure 5.60 Original (left) and DHS5 Watermarked (right) 256x256 ppm, TREE
Image
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Figure 5.61 Probability of Bit Error vs. Different JPEG Quality Values for DFT
Method

5.2.4 SPIHT Color Image Tests

Finally, the test was done for SPIHT compression for color images using DHS1

(majority sign threshold constant set to 25). We used:

• 7 color 256x256 images: Baboon, Lena, Tree, Girl, Splash, Tiffany and Peppers,

• 10 different 64-bit long binary signatures,

• 5 different DCT block sizes: 8x8, 16x16, 32x32, 64x64, 128x128,

• 6 various SPIHT bitrates: 0.25, 0.50, 0.75, 1.00, 1.25, 1.50.

For different DCT block sizes the results are shown in Figures 5.62, 5.63.

Then, the procedure was repeated using DHS5 data embeded images, for:

• 13 color 256x256 images: Airplane, Baboon, Lena, Tree, Girl, Girl2, Girl3,

Couple, Splash, Tiffany, House, Sailboat and Peppers,

• 11 different signatures,

• 6 various SPIHT bitrates: 0.25, 0.50, 0.75, 1.00, 1.25, 1.50.
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Figure 5.62 Probability of Bit Error vs. Different SPIRT Bitrates for 8x8, 16x16
DCT Block Sizes

Figure 5.63 Probability of Bit Error vs. Different SPIHT Bitrates for 32x32, 64x64,
128x128 DCT Block Sizes
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Figure 5.64 Probability of Bit Error vs. Different SPIHT Bitrates for DFT Data
Hiding Scheme

Results are portrayed in Figure 5.64.

DHS1 is clearly better than DHS5 when it comes to the probability of error.

5.2.5 MPEG-2 Tests for Method I

Two movie sequences Coastguard and Mother 300 frames each were used for data

hiding using DHS1. Each frame in either sequence is of 176x144 size. It was

decided to try to hide 25 bits in such frame. Later the experiment was repeated for

steganography of 35 bits in a frame. Using different majority sign threshold (MST)

(dominance threshold) constants the outcomes are compared in Table 5.1. Table 5.2

gives the same information as Table 5.1, however this time the exact number of error

bits is given. This should highlight the robustness of DCT data hiding method to

MPEG-2 compression.

Sample original and watermarked frames can be seen in Figures 5.65, 5.66.

Figure 5.67 shows the results of Tables 5.1 and 5.2 in a graphical format.

Clearly, the more bits per frame we try to hide the higher the probability of

an error. Bigger MST means less errors since DCT coefficients are altered more,



Table 5.1 Probability of Bit Error after MPEG-2 Using DHS1
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however, the bigger MST means lower picture quality. Nonetheless, at MST equal

to 20 and bitrates of 25 and 35 bits per frame the picture quality is good and when

combined into a movie the interference associated with hidden data is insignificant.

Table 5.2 Exact Number of Bit Errors after MPEG-2 Using DHS1
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Figure 5.65 Original (left) and DHS1 Watermarked (right) 176x144 .y.u.v
COASTGUARD Video Frame 0 (no. of bits in a frame = 25, MST = 20)

Figure 5.66 Original (left) and DHS1 Watermarked (right) 176x144 .y.u.v
MOTHER Video Frame 0 (no. of bits in a frame = 25, MST = 20)
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Figure 5.67 Probability of Bit Error vs. MST Constant for: CG - 25 (coastguard
with 25 bits/frame), CG - 35 (coastguard with 35 bits/frame), MOT - 25 (mother
with 25 bits/frame), MOT - 35 (mother with 35 bits/frame)

5.3 Data Survival under Common Signal Processing Operations

In this section we investigate the survival of hidden data after various image editing

operations are performed on the data carrying image. We utilize commonly available

Paint Shop Pro Version 5.01 as an image altering tool, since software like this will

probably be an instrument of a hacker trying to destroy a watermark or hidden data.

All the tests are performed on a color (ppm) 256x256 LENA picture. DCT and DFT

methods are used and the data survival results are tabulated beside each other.

5.3.1 Resizing

Data is hidden in a 256x256 LENA picture which is then resized to the indicated

dimensions. The new image is saved and then resized back into the original 256x256

size which is again saved. Due to these operations the new LENA's quality is worse

than that of the original image, see Figures 5.68, 5.69. Results are shown in Table 5.3.
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Figure 5.68 Method I: Watermarked (left) and after Resizing (right) to 100x100
and Back to 256x256, LENA Image

Figure 5.69 Method II: Watermarked (left) and after Resizing (right) to 100)(100
and Back to 256x256, LENA Image
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Table 5.3 Resizing: Probability of Bit Error
Resize to

[pixels] Method I Method II
200x200 0.000 0.000
180x180 0.000 0.000
200x128 0.000 0.500
150x150 0.000 0.643
128x128 0.000 0.857
125x125 0.000 1.000
100x100 0.000 1.000
100x80 0.125 1.000
100x50 0.875 1.000
50x50 1.000 1,000

5.3.2 Rotation

LENA with hidden data was subjected to rotation after which data was tried to be

extracted from the picture. Influence of rotation on data is depicted in Table 5.4.

Table 5.4 Rotation: Probability of Bit Error
Rotate rightwards

[degrees] Method I Method II
0.01 0.000 0.000
0.10 0.000 0.000
0.50 1.000 1.000
1.00 1.000 1.000

5.3.3 Negative Image

The image was negated Figures 5.70, 5.71. Interestingly, for Method I all bits were

wrong, but for Method II they were all correctly detected.

5.3.4 Text Superimposed over an Image

The image was altered by addition of a text on top of it, Figure 5.72,. All data

under both steganographic schemes was correctly detected. More tests showed that



Figure 5.70 Method I: Watermarked (left) and Negated (right) LENA Image
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Figure 5.71 Method II: Watermarked (left) and Negated LENA Image
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Figure 5.72 Method I Text Altered Image (left) and Method II Text Altered Image
(right)

the schemes are immune to any alterations that involve additions of text to the

picture.

5.3.5 Random and Uniform Noise Addition

Varying degrees of random (Figure 5.73) and uniform (Figure 5.74) noise were

added to LENA. Both schemes are more immune to uniform noise than random

one, however, overall, DCT method exhibits higher tolerance to noise than the DFT

method.

5.3.6 Sharpen and Edge Enhancement

Either method's image when submitted to Paint Shop Pro's sharpening, sharpening

more (Figure 5.75), edge enhancement and edge enhancement more (Figure 5.76)

produces no errors upon information detection.

5.3.7 Blur and Gaussian Blur

For blur and more blur results of the experimentation can be seen in Table 5.5.

Figure 5.77 compares an effect of varying radius in Gaussian blur (Figure 5.78) on



Figure 5.73 Influence of Random Noise Addition on Probability of Bit Error
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Figure 5.74 Influence of Uniform Noise Addition on Probability of Bit Error



Figure 5.75 Method I (left) and Method II (right) Sharpened More Image
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Figure 5.76 Method I (left) and Method II (right) Edge Enhanced More Image
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Figure 5.77 Effect of Changing Radius in Gaussian Blur on Bit Error Rate

bit error rates for the two methods. Yet again, the first method displays superiority

of data preservation over the DFT technique.

5.3.8 Soften, Median Cut, Erode and Emboss

LENA images with Scheme T and II embedded data were softened, softened more,

subjected to a median filter, eroded (Figure 5.79) and embossed (Figure 5.80). Then,

the data was attempted to be extracted. All the results were tabulated in Table 5.6.

Interestingly, Method II is totally immune to embossing, while Method I gives all

errors. As expected, data hidden with the first method survives the other operations

much better than the DFT technique's data.
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Figure 5.78 Method I (left) and Method II (right) Gaussian Blur with Radius =
1.5

Figure 5.79 Method I (left) and Method II (right) Images Subject to Eroding

Figure 5.80 Method I (left) and Method II (right) Images Subject to Embossing



Table 5.6 Other Filters: Probability of a Bit Error
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Figure 5.81 Method I (left) and Method II (right) Images after Histogram Equal-
ization
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Figure 5.85 Effect of Channel Bit Number on Probability of Error
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Figure 5.86 Effect of Brightness Increase on Probability of Error
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Figure 5.87 Method I (left) and Method II (right) Images at Brightness +50%

Figure 5.88 Method I (left) and Method II (right) Images at Brightness +75%



Figure 5.89 Effect of Contrast Increase on Probability of Error
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Figure 5.90 Method I (left) and Method II (right) Images at Contrast +75%
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Figure 5.91 Method I (left) and Method II (right) Images at Contrast +100%



CHAPTER 6

CONCLUSION

In today's world more and more concern is being raised over intellectual property

protection. The companies are investigating means of effective enforcement of

copyrights that would stand in the court of law. Like in other areas, digital picture

and movie owners must somehow guard themselves against stolen and unauthorized

distribution of their works. This thesis studies the performance of two methods

suitable for this task. In addition, a full software implementation of the presented

algorithms is performed as a part of this study. The listings of the programs can

be found in the appendices. The watermarking schemes were tested and their

performance interpreted to provide a good understanding of their capabilities.

Both watermarking techniques preserve the original image quality with minor

exceptions. Their algorithms are complex enough to be virtually unbreakable by

an uninformed party. And most importantly, they offer a good degree of tamper

resistance for someone attempting to modify the image with intent to destroy the

watermark. Here, an assumption is made that during the picture modification, the

hacker does not want to destroy the image's commercial value. Since, it's trivial to

destroy the whole image, by which operation the watermark will be erased, too.

6.1 Capacity Estimates

Method I is based on a block -wise DCT coefficient manipulation. Into a 256x256

image only 64 bits of data constituting a watermark can be hidden. This means that

8 characters, 1 byte each, can be hidden in such a picture. Method II embeds data

using DFT magnitudes. 14 data-words can be hidden in a picture of 256x256 size.

Throughout chapter 5 these data-words were called bits. This is only true if we elect

for them to take on values of '0' or '1', which was done for the purpose of comparison
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between two data hiding schemes. However, each data-word can in fact store an

integer of value between 0 and 4095 (2 12 ). This means that when in chapter 5 we

spoke of an error bit we meant that the whole data-word is incorrect. Data-words

can be used as bits, bytes, or other measures due to their bases in integers. On the

other hand, data hidden by the first method are true bits, that is, they can only be

zeros or ones. Summarizing, in the first method 64 bits or 8 bytes or 8 characters

(8 bits each) can be stored inside a 256x256 picture. In Method II, 14 bits or 14

bytes or 14 characters (8 bits each) or 14 characters (12 bits each) can be hidden.

Therefore, if we are smart and combine single bits (zeros and ones) into decimal

numbers representing 12 bits at a time, we can in fact hide 168 bits of data in a

single 256x256 image (Table 6.1). This means that the second scheme has 2.6 times

more capacity than the first one. However, it should be remembered that if one

data-word is incorrectly detected, we will loose all 12 bits of information. Hence,

there is a trade off between capacity and amount of error when the detection fails

for one data-word..

Table 6.1 True Capacity of Both Schemes
Unit Method I Method II
bit 64 14

byte 8 14

character

(8 bits each) 8 14

character

(12 bits each) 5.3 14

6.2 Watermark Survival

It's been shown that the first scheme survives JPEG and SPIHT much better than

the second one. In fact, for JPEG 40 and up the watermarks survive errorless!

For SPIHT the performance is worse, however, at bitrate 1.0 the probability of an
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error is still below 0.05. For MPEG-2 the data hiding performance is superior.

Method II only at JPEG 90 achieves 100% reliable data detection. Under SPIHT at

bitrates 1.25 and 1.5 both techniques perform equally well. Summarizing, Scheme

I is outstanding for surviving JPEG and MPEG-2 compression and slightly worse

under SPIHT. Scheme II should not be used with JPEG below quality factor of 80,

however it's equally effective as Method I for SPIHT at 1.25 and 1.5 bitrates.

Data embedded by Method I showed remarkable immunity to image resizing.

The picture size had to be decreased by 70% for errors to appear. Only addition of

more than 40% of uniform noise would introduce errors in the watermark. Method

II watermarks are not as resistant to resizing as the first method's. However, under

Method II embossing and image negation has zero effect on hidden data while Method

I data is completely destroyed. Both schemes are equally resistant to rotations,

which result in errors if they exceed 0.1 degree. Superposition of text over the

images, sharpening, edge enhancement, histogram equalization, histogram stretching

and gamma correction do not introduce any errors in hidden data whether the first

or second data hiding scheme is used. It should be noted that Scheme I is more

resistant to noise addition be it a median filter, softening or Gaussian blur. However,

the second technique is more immune to contrast and brightness changes. At 80%

brightness and 100% contrast the watermark was perfectly reconstructible.

6.3 Conclusion and Future Work

Careful analysis of all the collected results leads to an obvious conclusion that

Method I DCT data hiding scheme would be much more suitable for watermarking,

while Method II DFT scheme for data hiding. DCT technique showed noteworthy

resistance to JPEG and MPEG-2 compressions, as well as its remarkable immunity

to resizing, noise introduction and other common signal processing operations. DFT

scheme is less resistant to JPEG and SPIHT, especially, at low bitrates, however
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its data survives intact many image editing operations and its capacity is 2.6 times

bigger than that of Method I.

In the future, an introduction of an error correcting scheme into the software

should greatly improve data survival rates. In addition, a Web-based software

package for the DCT method and a Windows-based package for the DFT method can

be developed. Further capacity experiments conducted on these schemes might also

increase their data hiding capacity. Finally, based on the results presented in this

work new data hiding / watermarking schemes can be developed, whose performance

surpasses that displayed by these two methods.



APPENDIX A

DHS1 C/C++ PROGRAM LISTINGS

C/C++ programs for DCT-based watermarking algorithm are presented here.
DHS1.cpp - main program:

// DHS1.cpp : Defines the class behaviors for the application.

II

#include "stdafx.h"

#include "DHS1.h"

#include "MainFrm.h"

#include "DHS1Doc.h"

#include "DHS1View.h"

#include "GD1gH8.h"

#include "GD1gD8.h"

#include "VDIgH8.h"

#include "VD1gD8.h"

#include "GD1gH64.h"

#include "GDIgD64.h"

#include "VD1gH64.h"

#include "VD1gD64.h"

#ifdef _DEBUG

#define new DEBUG_NEW

#undef THIS._ FILE

static char THIS_FILE[] = __FILE__;

#endif

/////////////////////////////////////////////////////////////////////////////
// CDHS1App

BEGIN_MESSAGE_MAP(CDHS1App, CWinApp)

//{{AFX_MSG_MAP(CDHS1App)

ON_COMMAND(ID_APP_ABOUT, OnAppAbout)

ON_COMMAND(ID_GRAY_8X8, OnGray8x8)

ON_COMMAND(ID_GRAY_8x8D, OnGRAY8x8D)

ON_COMMAND(ID_VIDE0_8X8, OnVideo8x8)

ON_COMMAND(ID_VIDEO_8X8D, OnVideo8x8D)

ON_COMMAND(ID_GRAY_64X64, OnGray64x64)

ON_COMMAND(ID_GRAY_64X64D, OnGray64x64D)

ON_COMMAND(ID_VIDEO_64X64, OnVideo64x64)

ON_COMMAND(ID_VIDEO_64X64D, OnVideo64x64D)

//}}AFX_MSG_MAP

// Standard file based document commands
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ON_COMMAND(ID_FILE_NEW, CWinApp::OnFileNew)

ON_COMMAND(ID_FILE_OPEN, CWinApp::OnFileOpen)

1/ Standard print setup command

ON_COMMAND(ID_FILE_PRINTSETUP, CWinApp::OnFilePrintSetup)END_MESSAGE_MAP()

//ii////////////////////////////////////////////////////////////////////////
/1 CDHS1App construction

CDHS1App::CDHS1App()

{

// TODO: add construction code here,

1/ Place all significant initialization in Initlnstance

}

//////////////////////i/i///i/i//////////////////////////////////////////////
// The one and only CDHS1App object

CDHS1App theApp;

/////////////////////////////////////////////////////////////////////////////
1/ CDHS1App initialization

1300L CDHS1App::Initlnstance()

{

AfxEnableControlContainer();

// Standard initialization

// If you are not using these features and wish to reduce the size

// of your final executable, you should remove from the following

// the specific initialization routines you do not need.

#ifdef .AFXDLL

Enable3dControls(); // Call this when using MFC in a shared DLL

#else

Enable3dControlsStatic(); // Call this when linking to MFC statically

#endif

// Change the registry key under which our settings are stored.

// TODO: You should modify this string to be something appropriate

// such as the name of your company or organization.

SetRegistryKey(_T("Local AppWizard-Generated Applications"));

LoadStdProfileSettings(); // Load standard INI file options (including MRU)

// Register the application's document templates. Document templates

// serve as the connection between documents, frame windows and views.

CSingleDocTemplate* pDocTemplate;

pDocTemplate = new CSingleDocTemplate(

IDR_MAINFRAME,

RUNTIME_CLASS(CDHS1Doc),

RUNTIME_CLASS(CMainFrame), // main SDI frame window
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RUNTIME_CLASS(CDHS1View));

AddDocTemplate(pDocTemplate);

// Parse command line for standard shell commands, DDE, file open

CCommandLinelnfo cmdInfo;

ParseCommandLine(cmdlnfo);

/1 Dispatch commands specified on the command line

if (!ProcessShellCommand(cmdlnfo))

return FALSE;

// The one and only window has been initialized, so show and update it.

m_pMainWnd->ShowWindow(SW_SHOW);

m_pMain'Wnd->UpdateVVindow();

return TRUE;

}

// CAboutDlg dialog used for App About

class CAboutDlg : public CDialog

{

public:

CAboutD1g();

1/ Dialog Data

//{{AFX_DATA(CAboutDlg)

enum { IDD = IDD_ABOUTBOX };

//}}AFX_DATA

// ClassWizard generated virtual function overrides

//{{AFX_VIRTUAL(CAboutDlg)

protected:

virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support

//}}AFX_VIRTUAL

// Implementation

protected:

//{{AFX_MSG(CAboutDlg)

// No message handlers

//}}AFX_MSG

DECLARE_MESSAGE_MAP()

1;

CAboutDlg::CAboutDlg() : CDialog(CAboutDlg::IDD)

{

//{{AFX_DATA_INIT(CAboutDlg)

//}}AFX_DATA_INIT

}

void CAboutDlg::DoDataExchange(CDataExchange* pDX)
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CDialog::DoDataExchange(pDX);

//{{AFX_DATA_MAP(CAboutDlg)

//}}AFX_DATA_MAP

}

BEGIN_MESSAGE_MAP(CAboutDlg, CDialog)

//{{AFX_MSG_MAP(CAboutDlg)

// No message handlers

//}}AFX_MSG_MAP

END_MESSAGE_MAP()

// App command to run the dialog

void CDHS1App::OnAppAbout()

{

CAboutDlg aboutDlg;

aboutDlg.DoModal();

///////////////////////////////////////////////////////////////////////////
// CDHS1App message handlers

void CDHS1App::OnGray8x8()

{

// TODO: Add your command handler code here

CGDlgH8 grayH8Dlg;

grayH8Dlg.DoModal();

void CDHS1App::OnGRAY8x8D()

{

// TODO: Add your command handler code here

CGDlgD8 grayD8Dlg;

grayD8Dlg.DoModal();

}

void CDHS1App::OnVideo8x8()

{

// TODO: Add your command handler code here

CVDlgH8 videoH8Dlg;
videoH8Dlg.DoModal();
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void CDHS1App::OnVideo8x8D()

{
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DHS5 C/C++ AND HTML PROGRAM LISTINGS
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