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ABSTRACT

KNOWLEDGE MANAGEMENT FOR TEXPROS

by
Jianshun Hu

Most of the document processing systems today have applied AI technologies to support

their system intelligent behaviors. For the application of AI technologies in such systems,

the core problem is how to represent and manage different kinds of knowledge to support

their inference engine components' functionalities. In other words, knowledge

management has become a critical issue in the document processing systems. In this

dissertation, within the scope of the TEXt PROcessing System (TEXPROS), we identify

knowledge of various kinds that are applicable in the system. We investigate several

problems of managing this knowledge and then develop a knowledge base for

TEXPROS. In developing this knowledge base, we present approaches to representing

and managing different kinds of knowledge to support its inference engine components'

functionalities.

In TEXPROS, a dual-model paradigm is used, which contains the folder

organization and the document type hierarchy, to represent and manage documents. We

introduce a new System Catalog structure to represent and manage the knowledge for

TEXPROS. This knowledge includes the system-level information of the folder

organization and the document type hierarchy, and the operational level information of

the document base itself. A unified storage approach is employed to store both the

operational level information and system level information. Such storage is to house the

frame template base and frame instance base.



An enhanced two-level thesaurus model is presented in this dissertation. When

dealing with special kinds of data in processing documents, a new structure

"DataDomain" is presented, which supports the extended thesaurus functionalities,

pattern recognition and data type operations. Based on the dual-model paradigm of

TEXPROS, a concept of "Semantic Range" is presented to solve the sense ambiguity

problems. In this dissertation, we also present the approaches to implement the general

KeyTerm transformation and approximate term matching of TEXPROS.

Finally, a new component "Registration Center" at the knowledge management

level of TEXPROS is presented. The registration center aims to help users handle

knowledge packages for specific working domain and to solve the knowledge porting

problem for TEXPROS. This dissertation is concluded with the future research work.
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CHAPTER 1

INTRODUCTION

In the information era of today, large amounts of documents are produced, stored and

circulated among offices in the office environment. There is a significant need to use an

intelligent document processing system to manage these documents. Many document

systems have been developed [2, 5, 12, 52, 53, 56, 57, 68, 74, 79], which are intended to

relieve the burdens for processing and managing these documents, either in a hard copy or

digital format. The application domains of these systems are quite specific. For example,

several systems, such as Diamond [65], MULTOS [20, 66, 67], MINOS [6] were

developed to handle the multimedia information documents. There are various text-based

and bibliographic document retrieval systems, such as the automatic text structure and

retrieval [54, 56, 57], the Kabiria's distributed client/server architecture [3, 4], the

retrieval system RUBRIC [43], the Intelligent Interface for Information Retrieval (I3R)

[12], the Grant [11], and the IS RUSSIA [13]. For filtering and sorting electronic message

documents, there are a variety of systems, such as AGORA [46], electronic mail systems

[48, 70], MAFIA [40], electronic information services [42, 69], INFORMATION LENS

[41], electronic publication systems [68,80], Digital Library [19, 27] and teleconferencing

systems [1, 58]. These document processing systems focus on finding solutions for the

problem areas of the user-friendly and intelligent system behaviors: document

representation, document organization, retrieval space narrowing, storage efficiency,

friendly user interface and cooperating user-query answering. Artificial intelligence

technologies are commonly applied to develop the intelligent document processing
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systems. Knowledge-based techniques and methods for processing and managing

documents embody some aspects of human knowledge and expertise to perform tasks,

which are ordinarily done by human experts [64]. A typical knowledge-based system

contains a knowledge base and an inference engine [10, 18, 28, 32, 33, 50, 60, 62, 64,

81]. The inference engine has a set of functional components that operate upon the

knowledge in the knowledge base.

A file system can be viewed as a conventional document processing system. Tree

structures are used to organize documents as files, which allow users to use a simple

approach to retrieve and browse these documents. Such a file system does not support any

intelligent behaviors since it does not have any knowledge base. For example, to

categorize a collection of documents, a user could only organize the files manually without

any help from the file system. Also, to locate documents of interest, a user must browse

through the file system hierarchy to search for these documents, one at a time. Even

though there are some tools available to retrieve documents in the current file systems, the

retrieval methods are simple and naive.

Compared with the conventional document processing systems, an intelligent

document processing system employs knowledge-based techniques and methods, and

inference engine components, which operate on the knowledge, to provide the system

with a user-friendly interface and intelligent system behaviors. These intelligent system

behaviors include automatic document classification and extraction, intelligent document

categorizing and filing, cooperative query answering, etc. These techniques and methods

and the capabilities of performing the intelligent system behaviors empower the document

processing systems to process and manage documents in the office environments. Thus,
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knowledge management becomes the central and essential part of these systems. The

representation of the knowledge, the organization of the knowledge, and the use of

inference engine components for deriving the applicable knowledge are the central issues

of investigating and developing an intelligent document processing system.

1.1 Related Work

To apply AI technologies to ease the document management and retrieval, an effective

approach uses a knowledge base to support the conceptual model for describing both

documents and other conceptual information. For example, MULTOS [20, 66, 67]

employs a knowledge base to support multimedia document filing and retrieval according

to various search parameters. Besides the logical and layout structures, defined according

to the Office Document Architecture (ODA) standard, it introduces a conceptual structure

to capture the semantics of document contents. It divides the filing system into three

categories to deal with the small amount of documents by a single user, recently accessed

documents and the whole document base. Kabiria[3, 4] employs a knowledge base to

store static knowledge, procedure knowledge and domain knowledge. The knowledge

helps the system to classify the documents, create the instances and define the roles and

the relationships of the documents, which allow users to browse documents at the class

and instance levels. RUBRIC [43] employs a knowledge base to build a semantic concept

tree structure. Production rules are employed to map the semantic concepts into text

patterns. Users can enter a concept to initiate a search process on the concept tree. The

production rules are repeatedly applied to browse the concept tree until the related

document information is found. The limitation of these systems is as follows: Although
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these systems provide approaches to classifying documents based on their conceptual

structures (even with the working procedures in Kabiria), these systems fail to provide

users with ways of representing a document organization (such as, the folder organization

in TEXPROS) from the user's viewpoint. By allowing a user to create their own document

organization, it will greatly facilitate the users to manage the documents and to expedite

the search of documents by narrowing the searching space. In addition, in contrast with

the consistent way used by the TEXPROS, these systems handle the meta-data and

documents in different ways, which limit the user' behaviors to browse and maintain the

meta-data knowledge.

In general, it is reasonable to assume that knowledge about the working domain is

incomplete or unavailable during the system design. Many of these systems are designed

for a specific working domain. For example, GRANT [11] is developed to handle a set of

documents which are submitted in response to a grant request for scientific research, and

therefore the number of documents is limited. Based on the assumption that domain

knowledge is available during the system design and the working domain is focussed on

flight control, CoBase[7, 8, 9] provides a framework for integrating the class-oriented

data grouping and subject-oriented knowledge grouping to support cooperative query

answering. The framework is characterized by a three-layer organization. The object layer

consists of a database, and the subject layer has a knowledge base. The dynamic linkage

between them is handled at the object-subject layer. The limitation of these systems is their

domain dependency. These systems are designed based on the availability of the domain

knowledge, during the system design. This could limit porting these systems from one
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domain to another without any difficulty. This also could limit the user's behaviors to

extend the knowledge base to tailor the working domain.

Thesaurus is widely used in both commercial and experimental information retrieval

(IR) and document processing systems. A group of research work focuses on the

application of thesaurus technology in indexing documents. IS RUSSIA system [13] is a

thesaurus-based indexing text retrieval system for automatic processing of Russian official

texts. Its search engine includes thesaurus-based components, such as subject headings, a

list of described topics, main and specific thematic nodes, mentioned descriptors and

relations between topics. The thesaurus for Sociopolitical Life is pre-defined. Upon the

arrival of a text, the system will go through four steps: identification of terms in texts,

disambiguation of terms using thesaurus projection, construction of thematic nodes and

determination of status of the thematic nodes. After the four steps, the thematic

representation of the text is created, which will be used for indexing, categorizing and

summarizing the text. Users are allowed to retrieve these documents through the index

and category. Semantic Forests [59] is a topic-labeling software for text retrieval system.

The Semantic Forests system processes a given text to derive a list of topics for the

indexing. Before the Semantic Forests processes it, the text must be preprocessed. By

filtering the document, only the <TEXT> portion is selected and formatted. Then, the

numbers that are represented as words are converted into their numeric values. The next

step is to transform multiword units into single tokens, which are derived either by hand or

by the frequencies of their occurrences in the text. After the preprocessing, the Semantic

Forests reads in every word of the preprocessed document. Using the thesaurus

dictionary, the system builds a weighted-topic tree based on the definitions and the
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frequencies of the occurrences of the words. Finally, the obtained trees are merged

together to form a common graph. Based on the weighted-topic graph, the documents are

indexed using the topic lists and are ready to be retrieved. The limitation of these systems

is that they need a complete, pre-defined thesaurus to build the target domain. In other

words, these systems are domain dependent. It limits the user's behaviors to extend the

thesaurus to other application domains. Also, the use of the thesaurus for indexing the

texts cannot represent all the information that a document contains, such as its layout

information or its document type, etc. It limits the user's retrieval behaviors, such as

finding the "student-transcript" documents.

In automatically constructing a thesaurus for text information retrieval, a formal term

dependence model, based on relevance judgements [53, 55, 82], is proposed. The

frequency of the occurrence of terms in relevant and non-relevant documents is used to

estimate the probability of terms, which are similar to the terms stored in documents,

appeared in a given query. But the drawback of this model is that it works under the

assumption that the degree of full relevance is available. Such full relevance information

may not be always available in the real world. Other relevant research efforts include

automatic term classification [30, 31], the co-occurrence of terms [51], the similarity

matrix between terms [47] and the association thesaurus [29]. These systems are term-

collection-dependent. The thesaurus used in these research works is constructed based on

probability of having the similarity among the terms. The derivation of the similarity

among the terms is based upon the probability present a problem. The thesaurus model is

not precise. These systems require a large collection of documents available to build the

thesaurus, which is domain-dependent and is not available for most of the working
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environments, such as the personal document-processing environment. Besides these

systems, the applications of AI technologies to address various problems are commonly

used by many researchers in their work.

Sense ambiguity is considered to be an Al problem that occurs in retrieving the

document information. To retrieve a document, it is very common that the retrieved

documents do not have the exact terms that are used in the query; however, they have the

same concepts (senses) represented by these terms (or called words interchangeably).

Terms are sometimes ambiguous. The ambiguity of terms can cause the problem of

retrieving irrelevant documents. To solve this problem, there are a number of approaches

to dealing with the sense ambiguity problem. For example, the Word Experts System [61]

uses a procedural approach to handling the sense disambiguation. In the system, each

word has its own meaning. When an ambiguous case occurs, messages are exchanged

among the related words in an attempt to get the correct sense. The spreading activation

and semantic networks are used to solve the sense disambiguation [26]. But these systems

only use the information derived from words to solve the sense ambiguity problem. It is

very often that the information extracted from documents is very helpful to solve this

problem. This information includes the context of a document, its document type, its

document semantic range, etc. There are some research efforts which take into account

the special data type of words from the documents. Precise understanding of words will

greatly enhance, and thus ease, the management of documents and empower the process

of retrieving documents. For example, the Semantic Forests can preprocess the words

whose type is only a number or a date. No other type of words is considered. However,
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there are special data types, which are specific to certain working domains only. So, we

propose to extend the domain knowledge to deal with the problem.

Knowledge porting and augmenting are investigated for processing document

information. A method for porting and augmenting the thesaurus knowledge is proposed

[49] for processing medical information. Three existing medical information systems, such

as MeSH, CMIT and SNOMED, use three different thesauri. They intended to integrate

these thesauri as a unit, based on the relational schema. But, they did not take other kinds

of knowledge into consideration, and did not give a general model for knowledge porting

and augmenting.

1.2 TEXPROS Approach

TEXt PROcessing System (TEXPROS) is an intelligent knowledge-based document

processing system [34, 37]. It automates the process of processing, managing and

retrieving documents for the general working domain such as in an office environment.

TEXPROS has a powerful knowledge base coupled with an inference engine. It has

several functionality components, including the SCAN/OCR, classification, extraction,

filing, retrieval process, browser and synthesizer. It employs a dual model [44, 45] to

capture the conceptual information from documents and manage these documents. The

SCAN/OCR [37, 77] component is employed to deal with the hard copy documents.

Upon the arrival of any document, this component drives the scanner to scan the hard

copy document, which is saved as an image file. The OCR software is used to read text

from the image files. This step is omitted if the document is already in an electronic text

format, for example email.
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The classification component [21, 22, 23, 24, 78] is used to classify documents into

different document types based on their layout structures and conceptual structures. (Each

type is defined in terms of a frame template.) This component creates a mapping block

graph for each of the documents using its block structure, which is the OCR's reading

result. Based on the knowledge (or a block of knowledge) from each frame template, the

classification component classifies a document by matching its block structure graph

against each frame template. By classifying a document, we mean to find its document

type, and therefore, the frame template of its type is identified.

The extraction component [21, 25] is employed to extract key information from

documents. Given a document, the frame template of its document type is identified.

Based on the definition of the frame template, TEXPROS will extract information from

the document to create a frame instance. A frame instance of a document consists of key

information pertinent to the users. It can be considered as an index of the document.

When receiving the frame instance of a document, TEXPROS will invoke the

automatic filing [14, 15, 16, 17, 34, 83, 84, 85] component to file the document into the

corresponding folders. The user constructs a folder organization to represent his/her view

of his/her own document organization. A folder organization consists of folders, each of

which is associated with a criterion specified in terms of a predicate. This predicate is

defined to govern the kind of documents that will be deposited into its associated folder.

Therefore, this automatic filing procedure is a predicate driven process. In fact, the

storage is a three-leveled architecture [15, 16, 17]. At the bottom level, it consists of an

original document base. At the top level, a logical representation of the storage is created,

which is called the folder organization. The intermediate level is a frame instance base,
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which is a depository of all the frame instances. Each frame instance has a pointer pointing

to its corresponding original document, which is stored in the document base. The folders

in the folder organization contains only pointers pointing to the frame instances, which

qualify their associated predicates.

Given a three-level architecture of the storage, documents and information from the

documents can be retrieved using the retrieval component [35, 38, 39] and browsing

component [34, 35, 36, 38, 71, 72, 73]. The retrieval component provides users with a

formal query language. This system is capable of processing incomplete and imprecise

queries. Without a familiarity with the meta-data, database itself, or the formal query

language, a user can use the browsing component to submit topics of a vague query.

When the system generates a null answer, the generalizer sub-component will be employed

to give users cooperative answers.

The synthesizer component [35, 74, 75] is used to synthesize information obtained

from the related documents. For example, after finding all the related documents about the

meeting schedule of a user, the synthesizer component is able to pack together all the

information about these meetings.

To support these functional capabilities of TEXPROS, a powerful knowledge base is

presented to be an organization of the system catalog, the frame template/instance base,

the thesaurus, the semantic range, the DataDomain, the registration center, etc. Therefore,

the knowledge base plays a major role in processing and retrieving documents by

supporting the functionality of the inference engine components. Representing and

managing this knowledge become essential and critical issues in the success of the
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development of TEXPROS. This motivates us to investigate the knowledge management

for TEXPROS.

In dealing with the knowledge management for TEXPROS, we focus on the

following concerns:

• The use of various kinds of knowledge to support the intelligent behaviors of the

inference engine components.

• The use of these knowledge to support all the inference engine components. From

the integration standpoint, we investigate the representation and organization of the

knowledge for improving the system performance and maintaining the system

consistency.

• TEXPROS is an intelligent document processing system for the general working

domain. We investigate and develop a method of knowledge management in such a

way that the system can be applied to different working domains. The extension of

the domain knowledge, and the knowledge porting are to be investigated.

1.3 Organization of this Dissertation

The rest of the dissertation is organized as follows. In Chapter 2, we briefly introduce the

TEXPROS document model and then describe the system catalog structure, frame

template base and frame instance base. In Chapter 3, we investigate various problems of

the thesaurus model of TEXPROS, and then propose their solutions. The semantic range

and the usage of semantic range evaluation for solving sense ambiguity are presented in

Chapter 4. In Chapter 5, the structure of DataDomain and DataDomain Agent are
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presented. In Chapter 6, A KeyTerm Transformation Component is presented to

cooperate with thesaurus, semantic range and DataDomain, and to solve the general

KeyTerm transformation problem. In Chapter 7, we investigate the use of existing

techniques to implement the approximate term matching in TEXPROS. The registration

center is proposed in Chapter 8 for solving the knowledge porting problem of TEXPROS.

Finally, the conclusion and future research work are described in Chapter 9.



CHAPTER 2

SYSTEM CATALOG

In this chapter, we shall introduce an intelligent TEXt PROcessing System. We then

present an extension of the System Catalog and the implementation of a frame template

and a frame instance bases.

2.1 TEXPROS Document Model

The document model for TEXPROS employs a dual modeling approach for storing,

classifying, categorizing, filing, browsing and retrieving, and reproducing documents, as

well as extracting, browsing, retrieving and synthesizing information from a variety of

documents of a pre-defined application document [34, 37, 44, 45] . This model consists of

two hierarchies: a document type hierarchy and a folder organization. The document type

hierarchy (DTH) depicts the structural organization of the documents and the folder

organization represents the user's document filing system in the real world.

In a user's working environment, by identifying common properties for each kind of

document type, documents are partitioned into different classes. Each document class is

represented by a frame template, which describes the common properties in terms of

attributes of the documents of the class and is referred to as the document type of that

class. As a powerful abstraction for sharing similarities among document classes while

preserving their differences, the frame templates are related by specialization and

generalization and are organized as a document type hierarchy (DTH). The frame

templates, which are the members of the document type hierarchy, are related by an is-a

13
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relationship. This is-a relationship and the mechanism of inheritance help to reduce the

complexity of models and redundancy in specifications [63]. Figure 1 shows a sample

document type hierarchy for an office environment.

Figure 1 A Sample Document Type Hierarchy

Upon the arrival of a document, the classification component of TEXPROS

recognizes its document type (frame template). Based on its frame template, the significant

and static information is extracted from this document to yield a synopsis of the document,

which we called a frame instance. The frame instance of a document is an instantiation of

that particular frame template. Figure 2 shows the frame template and the frame instance

of a meeting memo document.

After extraction, the frame instances of documents of different document types will

be saved into the instance bases. However, through the automatic filing process, the frame

instances are filed into the folder organization [15, 16, 17], by depositing the frame

instances into folders if they qualify the criteria of the folders. In fact, the folder
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organization contains only pointers, which point to the locations where the frame instances

are deposited in the frame instances base.

New Jersey Institute of Technology 
Department of Computer and Information Science

Ext 3322

MEMORANDUM

TO: 	 John Smith, Graduate Office
FROM: Mark Sam
SUBJ: 	 TA Ship Assignment
DATE: 	 April 21, 1992
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Cullimore.

Please make every effort to attend. If you cannot attend,
please contact Mary Armour, ext. 3275.

Cc:	 Thomas Armstrong
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Cc Thomas Armstrong

Subject TA Ship Assignment

MemoDate April 21, 1992

MtgDescription

MtgDay
MtgDate June 10,1992

MtgTime 10:00 a.m.

MtgPlace Room 504 Cullimore

Synopsis

Remark If can not attend, contact Mary Armour, ext 3275

(c)

Figure 2 (a) An Original Meeting Memo Document (b) Its Corresponding Frame

Template (c) Its Corresponding Frame Instance
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The system provides users with the flexibility for creating their folders, which can be

naturally organized as a folder organization. A folder can be considered as a particular set

of frame instances. The frame instances can be homogeneous or heterogeneous. That is,

the frame instances in a folder may be over different frame templates. Frame instances are

grouped into a folder on the basis of its user-defined criteria, specified as predicates,

which determines when a frame instance belongs to a folder.

To cope with file organization and to automate document filing (i.e., placing an

incoming frame instance into an appropriate folders), we implement the logical folder

organization using an agent-base architecture. Each folder is monitored by a filing agent.

Each agent has its criteria and private data structures for holding the frame instances, and

operations for manipulating the data structures. The criteria are used to govern the

placement of a frame instance in appropriate folders. The repository contains frame

instances that satisfy the agent's criteria, but do not satisfy its children's criteria. The

agents communicate with each other through message passing. Figure 3 shows a sample

folder organization.

The original documents and their related frame instances are stored in the original

document base and frame instance base, respectively. In TEXPROS, the storage

architecture is organized into three levels: at the first (lowest) level is an original document

base; the second level is a frame instance base, and the folder organization is at the third

(highest) level. Based on the user's viewpoint, the documents are categorized to enhance

greatly the retrieval and browsing performance.



17

Figure 3 A Sample Folder Organization

2.2 System Catalog Structure

System Catalog is an important part of the knowledge base of TEXPROS. It is employed

to describe the meta-data of the actual folder organization and document type hierarchy,

which are combined to be the dual models of TEXPROS. In TEXPROS, we employ the

concept of frame templates and frame instances at the operational level (both are

considered as inference engine components) and the system level (both are used to

describe the information in system catalog). At the operational level, the concept of frame

templates is used to form the document type hierarchy for classifying the given documents;

and the concept of frame instances is used to describe the key information of a particular

document based on its document type which is specified in terms of a frame template for

its class of documents. Similarly, at the system level, the concept of frame templates is
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used to classify the information stored in the system catalog. And the concept of frame

instances is used to contain the information about the folder organization and the

document type hierarchy. This uniform approach to describe both the operational

knowledge of the structures and content of documents, and the system knowledge about

the classification and the repositories of documents. This consistent approach of

representing the documents and the system organization allows the system catalog to be

directly stored into the storage base in the same way as the frame instances are stored into

the frame instance base. It also gives users a great flexibility to classify, file and retrieve

the meta-data information in the same way as the documents are classified, filed and

retrieved.

Figure 4 depicts the structure of System Catalog. System Catalog can be considered

as a collection of sets of system frame instances, whose types are of the system frame

templates. These system frame instances are employed to store the information of the

folder organization and the document type hierarchy. The frame instances of the type

SYSFOLDERS contain the information of each folder in terms of the folder name, and its

filing predicate and threshold. It also describes the types of frame instances in the folder in

terms of frame templates. They are specified in terms of the attributes "FTNames" and

"FrameInstanceIDs", which are repeatable attributes.

A set of frame instances of the type SYSFOLDERHIERARCHY is used to describe

the structure of a folder organization. The repeatable and composite attribute

"Depends_On" is used to specify the parent folders of a folder in terms of the parent

folder name, and their linkage information in terms of the link type with a label. The

repeatable and composite attribute "Parents_Of' is used to specify the children folders of a
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folder and their linkage information. Specifically, the ROOT of the folder organization is a

root folder, which has no parent folder. A leaf folder is a folder which has no child folder.

Figure 4 System Catalog Structure

A frame instance of the type SYSFRAMETEMPLATES describes a frame template,

which is defined by a set of attributes. So, in this type, a repeatable and composite

attribute "Attribute" is used to describe the detailed information of each attribute
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contained in the frame template, "FTName". The detailed information includes the name of

the attribute, "AttributeName", the ancestor attribute names, "Ancestors" of this attribute,

whether this attribute is repeatable, "Whether_Rept", whether this attribute is a composite

attribute, WhetherS/C", the DataDomain for specifying the domains of the values of these

attributes, and the user-defined composition template. This frame template also has an

attribute "FolderNames" to describe the information about the folders over this frame

template and an attribute "FrameInstanceIDs" to specify all the frame instances whose

type is of this frame template. These two attributes are repeatable.

A set of frame instances of the type SYSFTHIERARCHY describes the structure of

a document type hierarchy. For each frame template, "FTName", it stores its only parent

frame template, "Parent_FTName", and a number of its children frame templates,

"Child_FTNames". Here we should note that there is only one frame template that has no

parent frame template. It is the ROOT of the document type hierarchy. A set of frame

instances of the type SYSATTRIBUTES gives all the frame templates, "FTNames",

which have the attribute, "AttributeName". A set of frame instances of the type

SYSFRAMEINSTANCES describes the folders "FolderNames" which have the frame

instance, specified in terms of "FramelnstanceID" of the type "FTName. It also specifies

the original document from which this frame instance is extracted. This is not for the frame

instance base. It only stores the information of the relationship between this frame

instance, its type, the folders where it is deposited, and the original document it

represented.



StudentlD

StudentName
LastName

FirstName

PhoneNumber*

Semester*

SemesterlD

Course*

CourseID

CourseName

CourseGrade

* The attribute marked by asterisk means it is a repeatable group

DataDomain(StudentlD) = SSN
DataDomain(PhoneNumber) = PhoneNum
DataDomain(SemesterID) SemesterlD
DataDomain(CouserGrade) = Grade

CompositionTemplate(StudentName) = <null, "FirstName", " ", "LastName", nun>
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2.3 Frame Template Base

TEXPROS uses the uniform approach to handling the operational knowledge about the

documents and the system information about the folder organization and the document

type hierarchy. In other words, the concepts of frame templates and frame instances are

used at the operational and system levels. For implementing the TEXPROS prototype, at

the lowest level, the relational database is used as storage base. In the remaining chapter,

we will discuss the construction of a frame template base and a frame instance base, based

upon this storage base, so that we can store and manage all the meta-data knowledge

information and document information to support all the inference components.

Figure 5 Frame Template "Transcript"

Conceptually, a frame template consists of a set of attributes describing the

characteristic properties of a kind of documents. Based on this conceptual definition, it
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seems that a frame template can possibly be mapped directly into a relational database

table. In implementing the frame templates, we found that, in additional to the attribute

names, they must include detailed information that is also very critical to users.

Consider an example in Figure 5. It is a frame template for "Transcript" documents.

As shown in the figure, the definition of a frame template is far more complex than a

relational database table. The first issue is that the composite attribute is widely used in the

frame template definition in TEXPROS. For example, in frame template "Transcript",

there is a composite attribute "StudentName", which consists of two child attributes,

"LastName" and "FirstName". By means of the concept of composite attribute, users are

allowed to specify an aggregate information, which is a block of information closely

related to each other. Users are also allowed to define multi-level composite attributes to

structure the composite attributes and attributes in a hierarchical structure. For example,

The composite attribute "Course" is a child of the composite attribute "Semester", which

consists of attributes (called atomic or simple attributes) "CourselD", "CourseName" and

"CourseGrade". But the relational database doesn't support the concept of composite

attributes. The second issue is that the concept of repeatable attributes is used to specify

more than one value for an attribute. For example, in the definition of the "Transcript"

frame template, the attribute "PhoneNumber" is a repeatable attribute. This anticipates

that some transcript documents may contain more than one student phone number. For

this case, we may call it a multi-valued attribute. It violates the first normal form of the

relational database. Moreover, a composite attribute can be a repeatable attribute. For

example, the repeatable composite attribute "Semester" means the student transcript

contains one or more semesters of grade information. The students may take many courses
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per semester. Therefore the "Course" must be a repeatable composite. Thirdly, various

important features, such as the DataDomain and the CompositionTemplate, are not

supported by relational database. We will present this knowledge in the later chapters. The

fourth issue is that the sequences of attributes must be kept in order to fully reproduce the

frame templates. It is used to indicate the position of the attributes in the frame template

or in the corresponding composite attribute block.

Based on these considerations, it is impractical to map each frame template directly

to a relational database table. Instead, we define a relational database schema for the frame

template base to include the complete definition of each frame template (that is, the full

knowledge about the frame template). This knowledge is managed at the knowledge

management level, which stores and reproduces the frame templates when the inference

engine components need them. So, the complete details of frame template definitions and

the storage details of the frame templates are hidden in the knowledge base, and are

transparent to the inference engine components. That is, the components simply see the

well-designed frame templates.

The relational schema for the frame template base is as follows:

(FT_Name, Att_Name, Ancestors, WhetherRep, WhetherS/C, Seq, DataDomain,

CompTemplate).

This relational schema is based on the conceptual definition of frame template. It

allows the system to store the details of frame template knowledge. According to this

schema, each record is for an attribute of a frame template. "Ancestors" is used to reflect

the composite attribute structure. "WhetherRep" and "WhetherS/C" are used to indicate

whether this attribute is repeatable and whether this attribute is a simple attribute or a
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composite attribute, respectively. "Seq" is used to indicate the position of an attribute in

the frame template or the composite attribute block to which an attribute belongs.

"DataDomain" and "CompTemplate" are used to store the knowledge of DataDomain and

composition template. Based on this schema, we can store the complete knowledge of a

frame template in the frame template base. Figure 6 shows the representation of the frame

template "Transcript" in the frame template base.

Figure 6 Frame Template "Transcript" in Frame Template Base

From this example, we can see that the complete information about the frame

template "Transcript" is kept in the frame template base. When the inference engine

components need this frame template, we can access the complete information of the

template "Transcript" from the frame template base. Using the information of the

"Ancestors" and "Seq", we can fully reproduce the frame template structure. Other

information, such as the DataDomain and composition template, etc. can also be restored.
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2.4 Frame Instance Base

Every frame instance is kept in the frame instance base. Conceptually, a frame instance

consists of a set of two-tuples <attribute name, value>. It will be used to store both the

system catalog knowledge and the information extracted from documents.

Consider an example of a sample "Transcript" frame instance as shown in Figure 7.

The complete information of this frame instance is much more complex than the

conceptual two-tuples definition. Firstly, the system has to deal with the representation of

composite and repeatable attributes. Analogous to the way of handling the attributes of a

frame template, in the case of a frame instance, all the attribute information, including the

set of two-tuples <attribute name, value>, will be stored into the frame instance base.

Secondly, sequence information is necessary to be stored to fully reproduce the frame

instance. Thirdly, the system stores a frame instance as an internal frame instance, which

consists of a set of three-tuples <attribute name, original value, key value>, instead of the

two-tuple definition of a frame instance. The detailed discussion will be given in the

following chapters. Fourthly, the aggregate of values, as a block of values is very common

and critical to a frame instance. In TEXPROS, users are allowed to define a composite

attribute for specifying an aggregate of the related information as a block. Also, the

composite attribute is allowed to be repeatable. So, the same block of attributes may

appear in the frame instance a finite number of times. At that time, the attribute name

"AttributeName" and ancestors "Ancestors" are insufficient to be the unique key for the

values. Additional information is needed to indicate which values belong to the same block

(we call it a value block).
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ATTRIBUTE VALUE

StudentID 777987777

StudentName
LastName Hu
FirstName Jason

PhoneNumber 973-5961111
PhoneNumber 9735961112
PhoneNumber 9735961113

Semester

SemesterID 1996 Fall

Course

CourselD CIS610

CourseName Data Structure

CourseGrade A

Course

CourselD CIS630

CourseName Operating System

CourseGrade B+

Course

CourselD CIS650

CourseName Computer Architecture

CourseGrade A

Semester

SemesterID 1997 Spring

Course

CourselD CIS601

CourseName C++ Programming

CourseGrade A

Figure 7 A Sample Frame Instance of Type "Transcript"

For example, in the example of the "Transcript" frame instance, the

"Semester##Course##Grade" of the CourselDs "CIS610", "CIS630", "CIS650" and

"CIS601" are "A","B+","A" and "A". The annotation of these courses is

"Semester##Course##CourselD". These grades and courses have the same attribute

names and ancestors, "Semester##Course##Grade" and "Semester##Course##CourselD"



27

respectively. Without the value block information, we have no way to retrieve in which

course the student received a grade of "B+". So, the value block information is kept to

indicate which values are in the same block. For example, the values "CIS630",

"Operating System" and "B+" are in the same value block.

Based on these considerations, we define a relational database schema for the frame

instance base to represent all the frame instances. The precise information which is

represented by the frame instance bases are managed at the knowledge management level,

and the frame instances could be reproduced when they are needed by the inference engine

components. Analogous to the frame templates, all the detailed information is hidden from

the inference engine components. The components access only the actual frame instances,

each of which corresponds to a document in the original document base.

The relational schema for the frame instance base is:

(FI_ID, Att_Name, Ancestors, Orig_Value, Key_Value, Seq, End_Seq).

This schema contains the conceptual definition of frame instance. Each record

corresponds to an attribute-value pair of a frame instance. FI_ID is the unique identity for

each frame instance. Att_Name and Ancestors are for the attribute name and their

corresponding ancestors. Key_Value is the internal representation of the Orig_Value,

which will be discussed in the following chapter. Seq and End_Seq are used to specify the

sequence information and value block information. There are some default rules for the

"Seq" and "End_Seq". If an attribute is not a composite attribute, then the "End_Seq" is

marked as -1. If an attribute is a composite attribute, then the "Seq" and "End_Seq" are

marked as the sequence of the first value and the last value that are in the range of this

composite attribute value block. Using this approach, the information about blocks of
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values is completely kept. Also, this approach can be used to keep the multi-level value

block information and repeatable value block information. Figure 8 shows the complete

information of the sample "Transcript" frame instance, which is shown in Figure 7, in the

frame instance base.

Based on this example, most of the information of a frame instance kept in the frame

instance base is hidden from the inference engine components. When the inference engine

components can access a frame instance of all the relevant attribute-value pairs from the

frame instance base by means of the frame instance ID. Then the information of the "Seq"

and "End_Seq" is used to fully reproduce the frame instance structure.

Also, in frame instance base, the usage of "Seq" and "End_Seq" gives another

strong support to the vague query retrieval. Originally, upon the arrival of a query, the

browsing or retrieval component can retrieve only at the document level. But with the help

of "Seq" and "End_Seq", the retrieval process can operate precisely at a block level. For

example, let consider a query "CIS 60I with A". At the frame instance level, without "Seq"

and "End_Seq", the system may find a bundle of transcript documents of those students,

who took CIS601 and received all possible grades ranging from A to F, but had an "A" in

one of the other courses. On the other hands, at the block level, with the "Seq" and

"EndSeq", the system will find CIS601 is at sequence 18 and an "A" at sequence 20,

which are both in the same block "Course", whose sequence ranges from 18 to 20. It

should be noted that the relationship of values in the same block is stronger than those at

the frame instance level, and therefore they fit better the user's retrieval request.



FI_ID Att_Name Ancestors Orig_Value Key_Value Seq nd_S

10001 StudentID 777987777 777-98-7777 1 -1

10001 StudentName Jason Hu Jianshun Hu 2 3

10001 PhoneNumbe 973-5961111 973-5961111 4
11111=

6

-1

-1
10001 PhoneNumbe 9735961112 973-5961112

10001 PhoneNumbe 9735961113 973-5961113

10001 Semester 7 16

10001 SemesterlD Semester 1996 Fall 1996F 7 -1

10001 Course Semester 8 10

10001 CourseGrade Semester##Course CIS610 CIS610 8 -1

10001 CourseGrade Semester##Course Data Structure Data Structure 9 -1

10001 CourseGrade Semester##Course A A 10 -1

10001 Course Semester 11 13

10001 CourseGrade Semester##Course CIS630 CIS630 11 -1

10001 CourseGrade Semester##Course Operating System Operating System 12 -1

10001 CourseGrade Semester##Course B+ B+ 13 -1

10001 Course Semester 14 16

10001 CourseGrade Semester##Course CIS650 CIS650 14 -1

10001 CourseGrade Semester##Course Computer Architecture Computer Architecture 15 -1

10001 CourseGrade Semester##Course A A 16 -1

10001 Semester 17 20

10001 SemesterlD Semester 1997 Spring 1997S 17 -1

10001 Course Semester 18 20

10001 CourseGrade Semester##Course CIS601 CIS601 18 -1

10001 CourseGrade Semester##Course C++ Programming C++ Programming 19 -1

10001 CourseGrade Semester##Course A A 20 -1

Figure 8 A Sample "Transcript" Frame Instance in Frame Instance Base

29



CHAPTER 3

THESAURUS MODEL

A thesaurus consists of a collection of sets of items (phrases or words) and relations

between these items. It is widely used in the area of document information retrieval [13,

29, 47, 51, 59, 30, 82]. Using a thesaurus, both exact word matching and sense matching

can be used to determine the exact internal representation of indexed terms. Therefore, a

good thesaurus model will improve the retrieving performance of the system. There is a

great deal of research and commercial IR products that use a thesaurus. In [35], a basic

thesaurus model for the TEXPROS was proposed and used. But, this thesaurus model has

several shortcomings.

• The thesaurus model, which is proposed in [35] does not considered the difference

between the general domain and the personal working domain of thesaurus, which is

essential for the system to handle the thesaurus knowledge extension.

• This thesaurus model has difficulty keeping the information in the thesaurus

consistent. This model does not support, and therefore can not provide such

operations as merge, delete, and modify the terms and the synonymous groups in the

thesaurus, which are important to users.

• This thesaurus model considers only the simple attribute cases without taking

composite attribute cases into consideration. And in fact, this thesaurus model will

fail when handling the composite attributes.

• This thesaurus model ignores the sense ambiguity.

30
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Although it is inadequate to be used in the real world, this basic thesaurus model

gives us an insight and a clue for defining a reasonable and powerful thesaurus component

that is feasible in our application. In this chapter, we present a way to create an enhanced

two level thesaurus model for 'TEXPROS. In contrast to the basic model, the enhanced

model separates the thesaurus of a specific working (application) domain from the general

working (application) domain. This allows users to easily extend the thesaurus knowledge

for specific working domains. The enhanced model supports the operations, such as,

modify, delete and merge operations, etc. We will also discuss how to solve the

information consistency problem during the application of these operations. Some other

problems existing in the basic model, such as the composite attribute problems and sense

ambiguity problems etc., will also be solved in this enhanced thesaurus model.

Synonym is the most important part in the thesaurus of TEXPROS. It refers to a set

of words that have the same meaning. They are exact and reliable. During processing

documents, synonyms from the thesaurus base are often used for classifying, filing and

retrieving documents, extracting information from the documents, and browsing through

information. In this dissertation, we build our thesaurus model on the synonym relation. In

the future research, we will extend the thesaurus model to other relations, such as related

terms (RT), narrow term (NT), etc.

3.1 Two Level Thesaurus Model

Synonyms are sets of words or phrases (which are referred to as terms here) that have the

same meaning between them. (USA, United States of America, US is an example of a

set of synonyms. There are two kinds of synonyms. One is for the general application



32

domain and the other is for the specific application domain. The synonyms of the USA are

examples of a general application domain, because they are widely applicable everywhere.

Most of the synonyms in the thesaurus dictionary are of the general domain. But there is

another kind of synonyms, which are of specific domain. For example, in the Computer

and Information Science (CIS) Department of the New Jersey Institute of Technology

(MIT) as the specific domain, the name of Professor Peter Ng can be written in various

forms, such as {PNg, PANg, Peter Ng, Peter A. Ng, P. Ng}, which is a set of synonyms

within the specific domain. Outside the New Jersey Institute of Technology, PNg may not

refer to Peter Ng, but Philip Ng. Therefore, this set of synonyms may not be synonyms

when they are not within this specific domain.

Figure 9 Examples of Frame Instances for Thesaurus Model.

Based on the discussion above, we divide the thesaurus model into two levels of

thesaurus. The first level of a thesaurus consists of those synonyms for the general
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domain. The second level consists of those synonyms for the specific domain. In

TEXPROS, two frame templates are created to represent and store this two-leveled

thesaurus (synonyms), as shown in Figure 9. The two system frame templates are

SYSGENSYNONYMS (KeyTerms , S ynTerms (Repeatable) ) and

SYSSPESYNONYMS(KeyTerm, SynTerms(Repeatable), SmRange(Repeatable)). These

two frame templates have the same structure, except the SmRange. SynTerms is a

repeatable attribute, which has a set of words or phrases that have the same meaning.

KeyTerm is one of the SynTerms, and is selected to be the unique and internal

representation of this synonym group. All the thesauruses (synonyms) are stored as the

frame instances, whose type is either of SYSGENSYNONYMS or

SYSSPESYNONYMS. The critical difference between these two frame templates is the

frame instances. The frame instances of the SYSGENSYNONYMS type are used to store

the synonyms of the general domain. The frame instances of the SYSSPESYNONYMS

are used to store the synonyms of the specific domain. In frame template

SYSSPESYNONYMS, SmRange is used to store the semantic range, which will be

discussed later.

The characteristic overview of a two level thesaurus model is depicted in Figure 10.

At the level 1, the thesaurus for the general domain can be created before the system is

delivered to the users. The synonyms of a general domain can be derived from a thesaurus

dictionary. For each group of synonyms, there corresponds a frame instance, whose type is

of SYSGENSYNONYMS. A synonym is selected from each group of synonyms to be the

default KeyTerm. Such a synonym is a common, unique, the most meaningful or

semantically well-expressed term in the group. In fact, the thesaurus for the general
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domain is a fixed knowledge base, which supports the entire system. It is predefined and

loaded into the system before the system is in use. Users are not allowed to modify, delete

or merge the synonyms of this part. The system will automatically handle the control to

maintain the consistency of the thesaurus between the two levels.

Figure 10 Two Level Thesaurus Model

At the level 2, the complex thesaurus is for the specific domain. This part of

thesaurus concerns the different knowledge of different users' application domains. There

are two ways for dealing with the default values (knowledge) of this part. Firstly, some of

the default knowledge for this part can be created for the user before the system is

delivered. This knowledge is obtained from the end users. The synonyms of this type are

grouped to form frame instances of SYSSPESYNONYMS type. They will be registered at

the registration center (which will be discussed later) of the system. The second way is to
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leave this part empty for users to create their thesauruses of specific (application) domain.

Users are allowed to extend and update the thesaurus for their specific application domain,

when the system is in operation. A friendly interface is provided to deal with all these

operations. The internal process of the system will automatically deal with the consistency

between these synonyms (which will be discussed in the next section). By means of these

operations, users can incrementally empower the thesaurus knowledge and the TEXPROS

system.

Since the system allows users to extend and update the thesaurus for the specific

application domain, it is possible for the user to create something that conflicts with the

thesaurus for the general application domain. Conflicts arise if the same word or phrase,

which is occurred in both general and specific domains, has a different meaning. To solve

the problem, the system applies the rule that the thesaurus for the specific application

domain (at the level 2) always has a higher priority than the thesaurus for the general

application domain (at the level 1). In other words, when the system looks in the

thesaurus, it will always check the thesaurus of the specific domain first until the KeyTerm

is found. Otherwise, the system looks in the general domain thesaurus. So, if there is a

conflict, the one for the specific domain, which has the higher priority, will be used.

Otherwise, the user has to state explicitly that the thesaurus of the general domain should

be used.

This two-level thesaurus allows the system searching for documents using either

exact word matching or sense matching. For example, when a user wants to find every

document related to a word, he/she is generally not interested in retrieving documents that

exactly match the same word, but with the concept (sense) that the word represents.
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Without the thesaurus, the system can only apply the exact word matching to give users

the documents related to exact word. Obviously, this will not generate a satisfactory

result. A thesaurus describes the relationships between the senses of the words, rather than

words. With the thesaurus' help, the system can find all the documents related to professor

Peter Ng, regardless whether the user gives the query specified in the exact word "P.Ng".

And in fact, the sense matching takes the user's specific application domain into account.

That is, "P.Ng" is with the CIS department at NJIT. Obviously, the sense matching gives

users a lot more satisfactory retrieval results than exact word matching does. The sense

matching is also very useful in the document classification component, filing component,

etc.

In TEXPROS, the thesaurus is organized as a separated component in the system.

So, all the synonyms stored in the component can be used to support the entire system.

Also, this component is reusable, which means the synonym groups can be stored once

and used by various components of the system.

The thesaurus empowers the TEXPROS in classifying documents into various types,

extracting information from documents, automated filing frame instances, retrieving

information and documents from the document base. But it also has its performance

problem. For example, there are two synonym groups, { CIS, C_IS, CS, Computer and

Information Science, Computer Science) and {PNg, PANg, Peter Ng, Peter A. Ng, P.

Ng}. Assume that the user wants to find all of the documents, which are related to "PANg

<and> C_IS. Because of the "and" operator, there are 5*5=25 possible combinations here.

For the worst case, this requires the system going over all documents ten times, even if the
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query processing is optimized. The performance will be extremely slow and is

unacceptable. To improve the system performance, the notion of KeyTerm is employed.

Definition 1 (KeyTerm) A KeyTerm is the internal representation of a synonym group. In

the TEXPROS' thesaurus model, a synonym group consists of a group of words or

phrases in the synonym group that have the same meaning; and different synonym groups

cannot share the same meaning. Therefore, the term for a KeyTerm must be unique. It is

also the unique representation of the meaning for the synonym group.

We should note that, in the thesaurus of the level 1, all the KeyTerms are pre-defined

and do not allow users to change them. In the thesaurus of the level 2, users can create

their preferred word or phrase as the KeyTerm of a synonym group. Since it is the unique

representation of the meaning for its synonym group, in general, KeyTerm should be the

most exact and meaningful word or phrase in the group. In addition to its representation,

KeyTerm is also used to improve the system performance.

Here, we shall give the algorithm for finding the KeyTerm for a given Term from the

two leveled thesaurus model.

Algorithm transformToKeyTerm( term source}

BEGIN



RETURN { sfi [ KeyTerm] I sfi = f ;

synonym in the thesaurus. So, return itself. *1

RETURN term source;

END

In the remaining section, we shall define the notion of internal frame instances, and

then give an example to show how the KeyTerm is used as the internal representation of

value for improving the system performance.

Definition 2 (Internal Frame Instance) An internal frame instance is the internal

representation of a frame instance in the frame instance base. Each internal frame instance

is a set of 3-tuples < Attribute, Original Value, Key Value>, where Attribute is an element

(attribute name) of a frame template (i.e., the document type); Original Value contains the

value extracted from the original document; and Key Value is either the KeyTerm for the

Original Value or the original value itself.

In this example, we have two sets of frame instances as shown in Figure 11 and

38

Figure 12. On the left-hand side are the original frame instances, which are extracted
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directly from two given original documents, respectively. On the right-hand side are the

corresponding internal frame instances after incorporating the Key Values of the

KeyTerms from the thesaurus component, which will finally be stored into the frame

instance base. The column of Key Value in the frame instance is transparent to the user.

Given a frame instance of a set of 2-tuple (Attribute, Orig Value), there corresponds a

frame instance, which consists of a set of 3-tuple (Attribute, Orig Value, Key Value). Each

tuple contains an attribute name, its original value and the key value of the original value.

For example, "James Bond" is the KeyTerm of the synonym group containing the term "J.

Bond". Also, "Computer and Information Science" is the KeyTerm of the synonymous

group containing the terms "CS" and "C_IS". So, the system can recognize that both the

"CS" and "C_IS" from the original frame instances share the same meaning, based on their

corresponding Key Values contained in the internal frame instances. This mechanism

provides an effective and useful approach for the TEXPROS' retrieval process.

Figure 11 An Example of Internal Frame Instance
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Frame Instance 	 Internal Frame Instance

Figure 12 Another Example of Internal Frame Instance

Consider the previous query example, "PANg <and> C_IS". Before the process of

matching takes place, "PANg <and> C_IS" is transformed into internal representation

form "Peter A. Ng <and> Computer and Information Science", which is used to match

into the Key Values contained in the relevant frame instances. The system can find all the

possible combinations by going over all the frame instances once to find these two frame

instances, in comparison with twenty-five times required to traverse all the frame instances

without using the internal representation. The system performance can be improve greatly

at the cost of additional storage for storing Key Values and the look up of the KeyTerms

for the terms used in the query.

There is a major difference between the previous basic thesaurus model [35, 37] and

this proposed new model. In the previous model, after the transformation, the frame

instances remain as sets of 2-tuple value pairs, in which the original values are deleted. In

the proposed new model, after the transformation, the frame instances are sets of 3-tuple

value pairs. The original values are used to support the thesaurus operations in order to
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keep the thesaurus consistent In Section 4.2, we shall discuss the operations and

consistency of the thesaurus.

Except for the frame instances, we have similar operations for the folder name,

frame template name and attribute name. A frame template, called SYSTERMASSOC, is

employed to handle them. The frame template SYSTERMASSOC has three attributes:

Term, IndexTm, IndexTmType and IndexTmType can be a "folder" type or a "frame

template" type, or an "attribute" type. IndexTm is used to store the original folder name,

the frame template name or the attribute name. Term is the KeyTerm corresponding to the

IndexTm. The details can be found in the previous work for TEXPROS [35, 37].

3.2 Thesaurus Operations and Consistency

To support intelligent document processing, users require a powerful and complete

thesaurus. For a general working (application) domain system, it is almost impossible to

pre-store a complete thesaurus before the system is in operation.

In the previous section, a two-leveled architecture for a thesaurus model is

presented. At the first level, the thesaurus is for the general domain, which can be

constructed based on the thesaurus dictionary. The thesaurus at this level is standard and

complete. We can pre-define and pre-store it in TEXPROS as a fixed knowledge base.

But at the second level, the thesaurus is for the specific working (application) domain, and

is not standard. Users of different application domains may require different thesaurus

knowledge at this level. Also, the knowledge at this level is continuously growing and

dynamically changing. So, it is almost impossible to pre-define a thesaurus at this level. It

is impossible to define it completely even if the users provide substantial information.
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Therefore, the system must provide users with a set of operations that allows them to

construct and modify their own thesaurus.

The previous thesaurus model [35] does not provide any operations, because it is a

one-level thesaurus model, without concerning the impossibility of pre-defining and

updating the specific domain thesaurus. Furthermore, the previous thesaurus has some

drawbacks on the consistency structure. The operations operated upon the previous model

can yield inconsistent results or suffer from information lost, which will be discussed in the

following "Computer and Information Science" example.

In contrast to the previous model, the consistency problem does not occur in the

newly proposed thesaurus model. Below, we shall define several operations for the

thesaurus. And we shall give algorithms with examples to show how to keep the system

consistent during the application of these thesaurus operations.

In this thesaurus mode, we define seven operations. They are the Set, Add, Merge,

Delete, Split, Destroy and Modify operations. All these operations are only allowed to

operate on the thesaurus of the specific domain (i.e., the thesaurus at level 2).

The Set operation allows user to replace the old KeyTerm with a preferred

KeyTerm, which is selected from the synonym group. Below is the algorithm for the

operation Set.

Algorithm Set(new_term, f)

/* new_term is a preferred term selected by a user, and f is the synonym frame instance of

the SYSSPESYNONYMS type, upon which this operation will be operated. */

BEGIN



IF new_term = sfi [ KeyTerm ] I sfi = f} THEN

RETURN ;

ELSE

KeyChange(new_term, sfi [ KeyTerm ] I sfi = f 1 ) ;

set f[KeyTerm] as new_term ;

END

Algorithm KeyChange(new_key, old key)

BEGIN

(SYSTERMASSOC) ) ;

FOR each frame instance fo in fog DO

set fo[Term] as new_key;

(SYSTERMASSOC) ) ;

FOR each frame instance fin in fmg DO

set fm[Term] as new_key;

(SYSTERMASSOC) ) ;

FOR each frame instance fa in fag DO

set fa[Term] as new_key;

43
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find those 3-tupe value pairs whose keyValue=old_key and put them into value pairs

group vpg

FOR each 3-tuple value pair vp in vpg DO

set vp[KeyValue] as new_key;

END

The Add operation allows a user to add a new term into a synonym group. Below is

the algorithm for the operation Add.

Algorithm Add(new_term, 0

1* new_term is the new term to be added into a synonym frame instance f, and is not

defined in the thesaurus at the level 2. f is the synonym frame instance of

SYSSPESYNONYMS type. *1

BEGIN

IF fg ≠ empty 	 THEN

put new_term into a term group tg ;

ConsistencyKeep({ sfi [KeyTerm] I sfi = f , tg }

ELSE

KeyChange({ sfi KeyTerm sfi = f } , new_term ) ;

add new_term into SynTerms of frame instance f ;

END
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Algorithm ConsistencyKeep(new_key, source_term_group)

BEGIN

FOR each term t in source_term_group DO

(SYSTERMASSOC) ) ;

FOR each frame instance fo in fog DO

set fo[Term] as new_key;

(SYSTERMASSOC) ) ;

FOR each frame instance fm in fang DO

set fm[Term] as new_key;

(SYSTERMASSOC) ) ;

FOR each frame instance fa in fog DO

set fa[Term] as new_key;

find those 3-tupe value pairs whose OrigValue=t and put them into value pairs

group vpg;

FOR each 3-tuple value pair vp in vpg DO

set vp[KeyValue] as new_key;

END
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The Merge operation allows a user to merge two groups of synonyms into one.

These two groups of the synonyms must be at the level 2 the thesaurus. Automatically,

the KeyTerm of the target group will be the KeyTerm of the new group. Below is the

algorithm for the operation Merge.

Algorithm Merge(ft, fs)

/* ft is the target frame instance, and fs is the source frame instance */

BEGIN

term group tg= { sfi SynTerms I sfi = fs } ;

FOR each term t in tg DO

add t into SynTerms of frame instance ft ;

KeyChange({ sfi [ SynTerms ] I sfi = ft },{ sfi [ SynTerms I sfi = fs })

delete frame instance fs ;

END

The Delete operation allows a user to delete a term from a synonym group at the

level 2 of the thesaurus. This term cannot be the KeyTerm. Below is the algorithm for the

operation Delete.

Algorithm Delete(term_source, f)

/* term_source is the term that needs to be deleted from the synonym group. f is the

synonym frame instance, whose type is SYSSPESYNONYMS, that the term_source will

be deleted */
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BEGIN

IF fg * empty	 THEN

put term source into a term group tg ;

ConsistencyKeep({ sfi [ KeyTerm I sfi = fg } tg }

ELSE

put term source into a term group tg ;

ConsistencyKeep(term_source , tg) ;

delete term source from SynTerms of frame instance f ;

END

The Split operation allows a user to split a synonym group into two groups. Below

is the algorithm for the operation Split.

Algorithm Split(f , source_term_group, new_key)

1* f is the synonym frame instance of the SYSSPESYNONYMS type to be split. A

source_term_group is the group of terms that will be split from the original synonym

group to form a new group. A new_key is a term in the source_term_group that is

selected as the KeyTerm for the newly formed synonym group *1

BEGIN

ConsistencyKeep(new_key , source_term_group) ;

add a new frame instance ff whose type is SYSSPESYNONYMS ;

set ff[KeyTerm] as new_key;
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FOR each term t in sourceiernigroup DO

add t into SynTerms of frame instance ff ;

delete t from SynTerms of frame instance f ;

END

The Destroy operation allows a user to destroy a synonym group. Below is the

algorithm for the operation Destroy.

Algorithm Destroy(f)

1* f is the synonym frame instance, whose type is SYSSPESYNONYMS , that will be

destroyed. */

BEGIN

term group tmg = sfi [ SynTerm ] I sfi = f } ;

FOR each term t in tmg DO

IF fg ≠  empty	 THEN

put t into a term group tg ;

ConsistencyKeep({ sfi [ KeyTerm ] I sfi = fg } , tg }

ELSE

put t into a term group tg ;

ConsistencyKeep(t tg) ;

delete frame instance f ;

END
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The Modify operation allows a user to modify a term in the synonym group. Below

is the algorithm for the operation Modify.

Algorithm Modify(term_source, term target, f)

/* term source is an old term to be modified. A term target is the term to replace the old

term, which is to be modified. The term should be unique (that is, it is never used before)

at the level 2 of the theasurus. f is the synonym frame instance of SYSSPESYNONYMS

type, upon which, the Modify operation is operated. */
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ELSE

put term source into a term group tsg ;

ConsistencyKeep(term_source , tsg) ; //  defined before in part 2)

END

Here, a simple example is given to show how the operation Modify works. This will

also show the cooperation of two level thesaurus and consistency control. Consider a

frame instance CBS of SYSGENSYNONYMS type, as shown in Figure 13. This is a

synonym group in the thesaurus of level 1. This is a fixed thesaurus delivered to the user

by the system.

Figure 13 "Columbia Broadcasting System" Synonym Group

On the other hand, this user is working closely with a computer and information

science at a university. A Computer and Information Science synonym group for his

specific domain is created as shown in Figure 14.

Unfortunately, the user makes a small typing mistake, as shown in Figure 14. He

typed CBS instead of CIS. Then, the user begins to store documents into the system. The
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thesaurus of the level 2 has the higher priority, in comparison with the thesaurus of the

level 1. The value "CBS", contained in the frame instances of the documents will be

converted to the KeyValue "Computer and Information Science". In addition, in the

thesaurus of the level 2, there is no system frame instance which defines the KeyValue for

the value "CIS", and therefore, by default, the KeyValue of all the "CIS" values are itself.

(In other words, its KeyValue is still "CIS").

Figure 14 "Computer and Information Science" Synonym Group before
Modification

Assume that in the frame instance base, there are three frame instances containing

the tuple <Corporation Name, Columbia Broadcasting System>; ten frame instances

containing the tuple <Department Name, Computer and Information Science>; seven

frame instances containing the tuple <Department, CS>; fourteen frame instances

containing the tuple <Affiliation, C_IS>; eight frame instances containing the tuple

<Company, CBS>; and nine frame instances containing the tuple <Department Name,

CIS>.

Applying the KeyChange algorithm for transforming a tuple <Attribute, Value> into

<Attribure, Orig Value, Key Value>, it yields their internal frame instances, which have

the corresponding tuples <Corporation Name, Columbia Broadcasting System, Columbia
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Broadcasting System>, <Department Name, Computer and Information Science,

Computer and Information Sciene>, <Department, CS, Computer and Information

Science>, <Affiliation, C_IS, Computer and Information Science>, <Company, CBS,

Computer and Information Science>, and <Department Name, CIS, CIS>.

Using the given term "C_IS" to search for all the frame instances of documents,

which are related to "Computer and Information Science", fails to retrieve the relevant

frame instances which have the "CIS" as their KeyValue. Moreover, the frame instances of

documents, which have the original value "CBS" will be retrieved. The reason is that the

KeyValue for the original value "CBS" is mistakenly defined as "Computer and

Information Science", because the term "CBS" should not be one of the SynTerms for the

"Computer and Information Science" as the KeyTerm in the frame instance of

SYSSPESYNONYMS type. Likewise, the term "CIS" is not one of the SynTerms for the

"Computer and Information Science" as the KeyTerm in the frame instance of

SYSSPESYNONYMS type. What has happened is simply due to the fact that the term

"CIS" is mistakenly entered as "CBS" as one of the SynTerms in the frame instance of

SYSSPESYNONYMS type. This type of common mistake can occur easily.

But, in the previous thesaurus model of TEXPROS, after transforming the original

values into their corresponding KeyValues, the original values are discarded from the

system. (That is, the frame instances contain only the KeyValues after the application of

transformation). Therefore, it is almost impossible to correct such a mistake. Based on the

previous thesaurus model, in this example, using the given term "C_IS", only thirty nine

frame instances are retrieved that are related to "Computer and Information Science".

Among this thirty nine frame instances, there are eight frame instances with the original
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value "CBS", which are related to "Columbia Broadcasting System", but not related to

"Computer and Information Science". Furthermore, nine frame instances with the original

value "CIS" are lost, that are related to "Computer and Information Science". Even the

thesaurus synonym group is modified correctly, there is no way to know, to identify and

then correct the frame instances in the frame instance base, that have "CBS" as the

original value.

The newly proposed model allows users to use the operation modify("CIS", "CBS",

f) to correct this mistake. The execution of the Modify operation will first find that the

current KeyTerm for "CBS" is "Computer and Information Science" from a frame

instance of SYSSPESYNONYMS type located in the thesaurus of the level 2. Secondly, it

will search through all the frame instances, in the frame instance base, for those tuples with

the term "CIS" as their Orig Value, and change their KeyValue to "Computer and

Information Science". Thirdly, it will find the KeyTerm for the term "CBS" from a frame

instance of SYSGENSYNONYMS type located in the thesaurus of the level 1. The

uniqueness property of the KeyTerms (i.e., every term in the SynTerms has a unique

KeyTerms) assures that the term "CBS" appears only once in the thesaurus of the level 2.

And therefore, there is unnecessary to search the term "CBS" in another frame instance of

the SYSSPESYNONYMS type. Assume that the operation finds the "Columbia

Broadcasting System" as the KeyTerm for the term "CBS" in a frame instance of

SYSGENSYNONTMS type. Fourthly, it will search through all the frame instances, in the

frame instance base, for those tuples with the term "CBS" as the Orig Value, and change

their KeyValue to "Columbia Broadcasting System". Finally, the operation will change the

term "CBS" to the term "CIS", that are obtained initially as a term of the SysTerms of a
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frame instance of SYSSPESYNONYMS type in the thesaurus of the level two. After the

application of the merge operation, the frame instance of SYSSPESYNONYMS type is

modified as shown in Figure 15.

Figure 15 "Computer and Information Science" Synonym Group after
Modification

For our example, the frame instance base, after the modify operation, contains the

internal frame instances, which have the corresponding tuples <Corporation Name,

Columbia Broadcasting System, Columbia, Broadcasting System>, <Department Name,

Computer and Information Science, Computer and Information Science>, <Department,

CS, Computer and Information Science>, <Affiliation, C_IS, Computer and Information

Science>, <Company, CBS, Columbia Broadcasting System>, and <Department Name,

CIS, Computer and Information Science>.

Clearly, the newly proposed thesaurus model provides users with a set of powerful

operations that operate on the thesauruses of two levels, and thus gives a strong support

to the data consistency by allowing to trace the erroneous data with correction capability.
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3.3 Thesaurus Support to Composite Attribute

The previous discussion has shown that the new thesaurus model supports the document

processing components, such as filing, classification, extraction and browsing etc. But all

the discussions so far are based on the simple attributes. The given examples show that

this thesaurus model can function well for all simple attribute cases. In this section, we

intend to demonstrate that the new thesaurus model can be extended to the application of

composite attributes. The frame template uses both the simple attributes and composite

attributes to characterize the properties of a document. A composite attribute is a special

kind of attribute, which is an aggregate of simple attributes and/or other composite

attributes, each of which is, in turn, an aggregate of attributes until all the attributes are of

simple attribute type. The use of composite attributes in the thesaurus is not as easy and

direct as simple attributes. In this section, we will discuss the simple and composite

attributes and their values. Also, we will discuss how the composite attributes can be used

in our new thesaurus model.

In TEXPROS, a frame template consists of a set of attributes. For example, a frame

template "Memo" consists of seven attributes {Sender, Sender's Dept, Receiver,

Receiver's Dept, Date, Content). These attributes are simple attributes, since none of

them is an aggregate of other attributes, which are called its child-attributes. Consider the

attribute NameOfApplicant{ Last Name, First Name in Figure 16. Here we have three

attributes, NameOfApplicant, Last Name, and First Name. The attribute NameOfApplicant

is the parent-attribute of the other two attributes Last Name and First Name, which are

simple attributes since they do not have any child-attribute. The attribute,

NameOfApplicant, is a composite attribute, which is an aggregate of the two child-
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attributes, Last Name and First Name. By introducing the concept of composite attributes,

for this case, we may retrieve the First Name and Last Name of applicants. And the

retrieved values have clear semantic meanings. For instance, Peter is the first name and Ng

is the last name of an applicant. Hence, the composite attributes are widely used in

documents, for example, Name{First Name, Last Name], BirthDate{Day, Month, Year].

We may view the composite attribute is a virtual container of its child-attributes.

However, there are many problems with using composite attributes in the thesaurus.

Consider the frame instance given in Figure 16. In this frame instance, we know that it is

related to "Peter Ng", whose Key Term should be "Peter A. Ng". But, because the

composite attribute NameOfApplicant is an aggregate of its child-attributes "Last Name"

and "First Name", which are simple attributes, these two simple attributes have their

Original Value "Ng" and "Peter". The KeyTerms for these Org Value "Ng" and "Peter"

are themselves, without taking the composite attribute NameOfApplicant into

consideration. That means, this frame instance has two Key Values "Ng" and "Peter".

Then a problem will arise if a user wants to find some documents related to "P. Ng"; this

document would not be retrieved because the Key Value of "P. Ng" is "Peter A. Ng",

which is neither "Ng" nor "Peter". So, the system will not retrieve this document. The

only way to find this document from the document base is that the user has to give the

query "Peter <and> Ng". Then, the system cannot find the documents, which are related

to "P. Ng" or "Peter A. Ng". In this case, the thesaurus fails to assist the retrieval

component by giving the unified Key Value for any terms used in query. Thus, the system

is not flexible as before.
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Figure 16 An Example of Composite Attribute

Before resolving this problem, we should investigate the purpose of having the

concept of composite attributes. Here is an example of a frame template "Transcript". In

TEXPROS, a composite attribute is a virtual container of its child-attributes. It allows

users to define the block structure in a frame template. For example, consider the frame

template "Transcript" as shown in Figure 17. The composite attribute "Semester" is an

aggregate of the child-attributes "SemesterlD" and "Course", where "Course" is a

composite attribute of its child attributes "CourselD", "CourseName" and "CourseGrade".

Here the composite "Semester" is used to specify a group of information together as a

block, which is related to a specific semester. Attribute "Semester" itself, it has no value.

This is the most common use of the composite attribute. It is a virtual container structure,

and has no value itself. It is a mechanism to help users group some related information

together. However, there is another way of using the concept of composite attributes,

which is referred to as value composition. For example, the composite attribute

"StudentName" is not only a virtual structure, but it aligns the values of its child-attributes
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"LastName" and "FirstName", and gives this new composed value to "StudentName",

which will later be used during the process of filing, browsing and retrieving.

Figure 17 Uses of Composite Attributes

In summary, there are two kinds of uses for the composite attribute in TEXPROS.

Firstly, the composite attribute is a virtual container, which could be used to group

together all the related information as a block of information. For example, a student may

take a number of courses. Each course has it own course id, course name and grade. This

block of information can be well represented by Course*, where the asterisk symbol is

used to denote this block of attributes {CourseID, CourseName, CourseGrade} is

repeatable. Likewise, a student has a complete transcript, which consists of his/her

coursework for a number of semesters. However, the composite attributes such as,

Semester and Course do not have values themselves. They are only the virtual blocks.

Secondly, the composite attribute helps users to align the values of its child-attributes
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together to form a value for itself, and we called it the value composition. From this view,

if our system can support the value composition and gives the composite attribute

"NameOfApplicant" the value "Peter Ng" for the previous example, then the problem will

be solved.

Here we shall give several definitions as follows:

Definition 3 (Simple Attribute) A simple attribute is an atomic attribute, which describes

a property of an entity. Assigned to each attribute, there is a value.

Definition 4 (Composite Attribute) A composite attribute A0 is an aggregate of a

composite attribute or a simple attribute.

The attributes A, , A2 ..., An are called the child-attributes of the composite attribute A0

given template, to form a new string.

Definition 6 (Value Composition) A value composition for a given composite attribute

is a kind of user-defined operation, which composes the values of the child-attributes of a

composite attribute. The result of value composition operation is a composed-value,
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which is a value assigned to that composite attribute as its value. This operation is based

on the "composition template" that user defined for that composite attribute.

Definition 7 (Value of Composite Attribute) In general, a composite attribute has no

value. This composite attribute is only a virtual container of a null value. But, If the

composite attribute has a user-defined Composition Template, then this composite

attribute has the value, which is obtained by applying the Value Composition operation on

the values of its child-attributes.

Figure 18 An Example of Value Composition

In Figure 18, given the composite attribute NameOfApplicant, a user can define a

composition template for this composite attribute. For example, a user defines this

composition template as < null, "First Name", " ", "Last Name", null >. (That means, a

string of the first name followed by a blank space and then followed by a string of the last
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name.) Then the composite attribute NameOfApplicant has a composite-value, which is

the Value Composition of the Original Values of its child-attributes. Also, the composed

value will be assigned as the Original Value of the composite attribute NameOfApplicant.

Then, using thesaurus, a Key Value, which is related to the composed Original Value, will

be found and assigned to "NameOfApplicant".

Having this frame instance, when a user wants to search for all the documents that

are related to "P. Ng", then this one won't be missing. We should note that the composite

attribute NameOfApplicant can also be used to define the folder predicate for document

filing.

When defining the composition template for a composite attribute, a user must

decide the following facts:

• Whether the value of a child-attribute should appear in the composite-value.

• The sequence of the values of the child-attributes that appear in the composite-value.

• The constant strings, which are used to connect the values of the child-attributes.

Also, because the composite attribute can be recursively defined, the Value

Composition operation supports the recursively defined composite attribute.

Consider the following example. For the composite attribute: Date{ Day, Month,

Year}, a composition template is defined as < null, "Month", "/", "Day", "1", "Year",

null>. It means that the values of its child-attributes will appear in the composite-value in

the order as stated in the composite template. The value of "Month" appears first,

followed by a special character "/", then followed by the value of "Day" with a special

character "I", and ends with the value of "Year". If the frame instance has abstracted
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Date{Day=23, Month=2, Year=1998 }, after applying the Value Composition operation,

which is based on the composition template: < null, "Month", "/", "Day", "/", "Year",

null>, then the composite-value for Date is 2/23/1998.



CHAPTER 4

SEMANTIC RANGE

4.1 Ambiguity of Senses

One of the users' requirements for our old thesaurus model is that a group of synonyms is

applicable on various different domains if it is applicable in an application domain. There is

no ambiguity in our old thesaurus model. This assumption allows us to create and handle

easily the thesaurus model. It is a reasonable assumption when the TEXPROS is in the

stage of prototyping the system. However, as the system grows in its applications to

various functional or application domains, there will be problems, which are caused by the

ambiguity of interpreting various terms using the thesaurus, and we call this Ambiguity of

Senses.

Consider the frame template Memo, which consists of the attributes "From" and

"To". These attributes are referred to as the sender and the receiver(s) of the memo,

respectively. However, this template could also use the attribute "Sender" and the

attribute "Receiver" instead of "From" and "To", respectively. To allow the attributes

"Sender" and "From", and the attributes "Receiver" and "To" to be used interchangeably,

the words "Sender" and "From" must appear in the same group of synonyms in the

thesaurus. Likewise, the words "Receiver" and "To" must appear together in another

group of synonyms. However, there are other frame templates, such as Shipment Invoice,

in which the attributes "From" and "To" refer to locations. They could be "Location

Prom" and "Location To", respectively. They could also be "City From" and "City To",

respectively. Or, they could be "Country From" and "Country To", respectively. That

63
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means, "From" can be in several different groups of synonyms. Likewise, "To" can also be

in the different groups of synonyms. Each has its own semantic meaning. Then, we need to

extend the thesaurus model in [35] to handle this sense ambiguity of the attributes "From"

and "To.

Here is another example. If "BBC" is an abbreviation of a company "Bernie Business

Corporation", then "BBC" and "Bernie Business Corporation" will appear in the same

group of synonyms in the thesaurus model. This allows users to use these two terms

interchangeably for most of the cases within the application domain of the company.

Assume that the British Broadcast Corporation is one of its clients. The term "BBC" is

also the abbreviation of the company "British Broadcast Corporation" if the application

domain is dealing with news documents. These terms "BBC" and "British Broadcasting

Corporation" should also be in the same group of synonyms in the thesaurus. If this is the

case, searching for documents related to the company, using the term "BBC", a user will

surprisingly find some documents which are related to the news.

Here is the third example. Professor Peter A. Ng is a faculty of the Department of

Computer and Information Science (CIS) at NJIT. The term "Peter Ng" (which is Peter

A. Ng) is commonly used in most of the documents in the CIS department. Assume that

there is also another professor whose name is Peter B. Ng in the Department of Electrical

Engineering (EE). Again, the term "Peter Ng" (which is Peter B. Ng) is also commonly

used in the documents of the EE department. Consider a user such as the Vice President

of Academic Affairs. He knows definitely that "Peter Ng" is either "Peter A. Ng" or

"Peter B. Ng" in dealing with the CIS documents or the EE documents. The thesaurus

model in [35] fails to deal with this ambiguous term. By grouping all these terms "Peter
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Ng", "Peter A. Ng" and "Peter B. Ng" in the same group of synonyms, the system could

draw an erroneous conclusion that "Peter A. Ng" is "Peter B. Ng. For this reason, we

must separate them into two groups of synonyms. But the thesaurus model in [35] did not

allow "Peter Ng" to have two KeyTerms.

In summary, the problem arises from the thesaurus model in [35] because it is based

on the assumption that, in the personal environment, a group of synonyms is applicable on

various different domains, if it is applicable in an application domain. There is no

ambiguity in our thesaurus model. This assumption helps us to create and handle easily our

thesaurus model. But in human language, a word can have different meanings. For

example, the precise representation of "Peter Ng can be "Peter A. Ng" or "Peter B. Ng",

depending on which department is referred to. Since a word has different meanings in

different applications, we face another problem: how to recognize which meaning of the

word should be used. The answer is the context environment. In reality, a user is usually

able to decide the meanings of ambiguous words from reading the document, i.e., from the

context environment. Consider the previous examples. For a document of the Memo type,

a user will know that the term "From" is the "Sender". In contrast, if the document is of

the Shipment Invoice type, then the user will know that the term "From" is "City From".

Also, in the example of precise representation of "Peter Ng", the term "Peter Ng" is

"Peter A. Ng", provided the document refers to the CIS department. If this document

refers to the EE department, then "Peter Ng" is "Peter B. Ng". For the "BBC" example, in

most cases, a user uses "Bernie Business Corporation" by default, except that the user will

use "British Broadcasting Corporation" when processing the news document.
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Unfortunately, there needs a great deal of research to be done on the problem how

to capture the precise meanings of words within a given context environment, which is

related to the natural language processing in AI. Today, some IR research works [13, 26,

61] are trying to deal with the sense ambiguity problem. They are attempting to use a

statistical approach at the word level to solve this problem. They need the pre-defined

working domain knowledge or a giant set of testing data to run the statistical approach on

it. But this approach doesn't fit for general domain personal document processing systems,

like TEXPROS. Also, some useful information at document level will also be helpful to

capture the context environment.

In TEXPROS, a thesaurus model is created to determine the precise meanings of the

words within the context environment. In TEXPROS, the concept of adopting dual

models gives an advantage for simulating the context environment over the other IR

systems. These dual models are the Document Type Hierarchy (DTH) and Folder

Organization (FO), which are created by users. Users create these dual models to

represent their views of the context environment of their personal world. We may be able

to find a way to solve the problem of sense ambiguity by taking using these dual models.

With this motivation, we introduce semantic range to TEXPROS, based on the concepts

of the dual models. The concept of semantic range is employed to solve the ambiguity

problem in the thesaurus of the TEXPROS.

4.2 Semantic Range

In the thesaurus model of TEXPROS, a user-defined range of semantic environment for

documents is called a semantic range, which is constructed based upon the dual models of
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TEXPROS. It is used to specify the valid range of a group of synonyms, and is used for

solving the ambiguity problem of the thesaurus. The formal definition of the semantic

range is given as follows.

Definition 8 (Semantic Range) Given the TEXPROS, a semantic range (SR) of two

given terms, say T1 and T2, is represented by a 5-tuple SR(T1 -> T2) = <Folder Range,

Frame Template Range, Attribute Range, Value Range, Time Range>, where the Folder

Range, specified by a folder name in the folder organization of TEXPROS, is the contents

and the documents contained in this folder and its descendent folders. The Folder Range is

valid for all the folders if it is empty (null). The Frame Template Range, specified by a

frame template name in the document type hierarchy of TEXPROS, is the contents and the

documents whose type is of the frame template and its descendent frame templates. The

Frame Template Range is valid for all the frame templates, if it is empty (null). The

Attribute Range(Ra), represented as a Boolean value, determines whether this semantic

range is valid for attribute names depending on its truth or falseness. The Value

Range(Rv), represented as a Boolean, determines whether this semantic range is valid for

values, depending on its truth or falseness. It should be noted that both the Attribute

Range and Value Range can be true; and they are meaningless if both are false

(Restriction: Ra EI Rv == true). The Time Range is represented by a starting date and an

end date; and it is valid for all the time, if it is a null.

In reality, given a group of synonyms (Ti, T2, ...,Tn, K}, in which K is the

KeyTerm, a user can define a set of Semantic Ranges SRI, SR2, ..., and SRn, which are
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the instances of <Folder Range, Frame Template Range, Attribute Range, Value range,

Time Range>, attached to this synonym group. Then we have SR(T1 -> K) = SR1,

SR(T2 -> K) = SR2, , SR(Tn -> K) = SRn if and only if in the semantic range SRj, Tj

and K share the same meaning for any j (1 <= j <= n).

There are two special Semantic Ranges. The first one is SRF = <null, null, true, true,

null>, which is called Full Semantic Range. It covers everywhere at any time. It is the

default semantic range for thesaurus terms. The thesaurus of the level 1 has the full

semantic range. The second one is SRN = NULL, which is called Null Semantic Range. It

is not valid for any place at anytime. In other words, it is an empty range.

Let us see the example of SR1(US President -> William Jefferson Clinton) = <null,

null, false, true, 1993-2000 > in Figure 19. Assume that there is a group of synonyms {

US President, Bill Clinton, William Jefferson Clinton }, in which "William Jefferson

Clinton" is the key term. The user attaches two semantic ranges to this synonym group,

which are <null, null, false, true, 1993-2000 > and SRF, respectively. So, we have SR(US

President -> William Jefferson Clinton) = <null, null, false, true, 1993-2000 > and SR(Bill

Clinton -> William Jefferson Clinton) = SRF. It means, the "US President" is a value

present in a document for the period of the year of 1993 to the year of 2000, and the "US

President" and "William Jefferson Clinton" share the same meaning. For "Bill Clinton",

because of the full semantic range, it always shares the same meaning with 'William

Jefferson Clinton".

In the example of SR2(Peter Ng -> Peter B. Ng) = <BE, null, false, true, null>, the

semantic range SR2 is attached to the group of synonyms group {Peter Ng, Peter B. Ng },

in which Peter B. Ng is the key term. It means that these two words share the same
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meaning if "Peter Ng" is a value appeared in a document, which is in the BE folder or its

descendent folders.

Figure 19 Semantic Range Examples

In contrast, the semantic range SR3(Peter Ng -> Peter A. Ng) = <CIS, null, false,

true, null> has the same meanings as for the SR2, and the terms Peter Ng and Peter A. Ng
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share the same meaning within the CIS folder and its descendent folders. So, using SR2

and SR3, we can represent that by the value type in folder range "EE", "Peter Ng" is

referred to "Peter B. Ng", and in the folder range "CIS", "Peter Ng" is referred to "Peter

A. Ng".

In the example of SR4(from -> Nationality) = <null, Immigration_Form, true, false,

nub, this semantic range is attached to the group of synonyms from, Nationality 4, in

which "Nationality" is the key term. It covers the frame template "Immigration Form" and

all its descendent frame templates. These two words share the same meaning if "from" is

an attribute name in the frame template range "Immigration_Form".

In the example of SR5(from -> sender) = <null, Memo, true, false, nub, the

semantic range SR5 is the same as the previous semantic range SR4, except that the frame

template range of the semantic range SR5 is "Memo". Using SR4 and SR5, we can

precisely interpret that the attribute name "from" is referred to the "sender" if the attribute

name is in the frame template "Memo" or its descendent frame templates; and is referred

to the "Nationality" if it is in the frame template "Immigration_Form" or its descendent

frame templates.

There are three operators applicable to Semantic Range. These operators are +, -

and &. The operator + is a binary operator for the semantic range. The result of this

operation is a semantic range, which is the sum range of the two parameter ranges. The

operator - is a binary operator for the semantic range. The result of this operation is a

semantic range, which is the range in the first parameter range but not in the second range .

The operator & is a binary operator for semantic range. The result of this operation is a

semantic range, which is the range in both the first and second parameter ranges.
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In the example of SR6 = <CIS, null, false, true, null> + <EE, null, false, true, null>,

the semantic range SR6 covers the folders CIS and EE and their descendent folders. Also,

it only works for the value type, but not for the attribute names.

In the example of SR7 = <null, Memo, true, false, null>-<null, MeetingMemo, true,

false, null>, the semantic range SR7 covers the frame template Memo and its descendent

frame templates, except the frame template MeeingMemo and its descendents. Also, it

only works for the attribute names, but not for the value type.

In the example of SR8 = <CIS, null, false, true, null> & <EE, null, false, true, null>

= <CIS_EE_JOINT_PROGRAM, null, false, true, null>, assuming that the

CIS_EE_JOINT_PROGRAM is the only common child folder of both CIS folder and EE

folder. The result of this & operation SR8 is the semantic range which covers the folder

CIS_EE JOINT_PROGRAM and its descendent folders.

There are several relationships between Semantic Ranges. They are cover, join and

disjoin. If the Semantic Ranges SRi and SRj satisfy the condition SRi+SRj=SRi, then the

Semantic Range SRi covers the Semantic Range SRj. We also say that the Semantic

Range SRj is covered by the Semantic Range SRi. Specifically, the Full Semantic Range

SRF covers any Semantic Ranges, and the Null Semantic Range SRN is covered by any

Semantic Ranges. If the Semantic Ranges SRi and SRj satisfy the condition SRI & SRj =

SRN, then both Semantic Ranges SRi and SRj are disjoined. Otherwise, we say that both

Semantic Ranges SRi and SRj are joined . These relationships will be used in the semantic

range evaluation, which will be discussed later.
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Having the definition of Semantic Range, we can use it to handle ambiguous terms in

our system. When we attach the Semantic Range to a group of synonyms, there are

several rules that must be followed.

• In the thesaurus model, KeyTerm must be unique. But a synonym term can have

more than one KeyTerm. (In other words, a synonym term can appear in different

groups of synonyms.)

• Users can attach Semantic Range only to the level 2 thesaurus. If there is no

Semantic Range attached (including the level 1 thesaurus), the default semantic

range is the Full Semantic Range is SRF.

• The Semantic Ranges of a synonym term are different, if the term has more than one

keyterms. In other words, within the same Semantic Range, a synonym term can

have only one KeyTerm. The only exception is in the Full Semantic Range SRF. For

this case, there are two KeyTerms kt 1 and kt2, where the KeyTerm kt1 is in level 1

and the KeyTerm kt2 is in level 2. Then, kt1 is hidden by kt2.

• When a user defines a Semantic Range to attach to a synonym group, this Semantic

Range can either be an atom Semantic Range, or several Semantic Ranges connected

by the Semantic Range operators. For the latter case, the system will evaluate the

operators operating on the Semantic Ranges, and give the result.

• For a synonym group, a user can define a set of semantic ranges attached to this

synonym group. Each semantic range will correspond to the pair of a term in this

group and the key term, respectively. The default semantic range is full semantic

range.
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4.3 Semantic Range Evaluation

In the previous section, the concept of Semantic Range was presented. We then described

how it is used to represent the ambiguous terms in the thesaurus. In this section, we will

present how the Semantic Range can be used to do the de-ambiguity and give stronger

support to the functional sub-components.

Basically, there are two ways for handling the Semantic Range in TEXPROS:

1. A user supplies the semantic range information to help the system to do the de-

ambiguity.

2. The system can uses the related unambiguous information to decide the semantic

range, and then do the de-ambiguity on the ambiguous terms.

The first approach is to get help from users. This is very useful in browsing and

retrieval. When a user gives a query to TEXPROS, the system wants the user to give the

exact information to narrow the retrieval result. But, in most cases, the user doesn't know

the exact terms used in the system. So, the thesaurus in TEXPROS is used to help users

specify queries. However, it is very common to have the user give ambiguous terms in the

query. For example, a user wants to find all the documents related to "Peter Ng". The user

may or may not know that there are two professors who have the identical name, "Peter

Ng" without knowing the middle initial of the name of "Peter Ng; one of the professors is

in CIS and the other one is in EE. In this case, without semantic range, TEXPROS has no

way but returns a bundle of documents to the user, some of the documents related to

"Peter A. Ng" and the other documents related to "Peter B. Ng". But with the help of

Semantic Range, the user can supply additional information to make the retrieval result
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more precise and exact. For example, if the user knows this "Peter Ng" is in "BE"

department, then during the retrieval, the user can supply a query such as "Peter Ng(folder

range: EE)". Given this query, TEXPROS can do the de-ambiguity by replacing "Peter B.

Ng" for the query "Peter Ng". This allows the system to give the user exactly what he/she

wants.

The second approach is to let the TEXPROS automatically handle the de-ambiguity.

The basic idea is that TEXPROS do the de-ambiguity by using the related unambiguous

information to decide the semantic range. The core of this approach is the Semantic Range

Evaluation.

We shall give an example to show how the second approach works.

In the example of Figure 20, a user wants to file a frame instance of a department

phone bill into the folder organization of TEXPROS. The folder organization is at the

upper location of the figure. The original frame instance is located on the left side of the

lower section. Before filing, the system creates the corresponding internal frame instance,

which is on its right. The internal frame instance contains the Key Values for those

unambiguous terms. For example, the Key Value for the terms "NJIT" and "CIS" are the

"New Jersey Institute of Technology" and "Computer and Information Science",

respectively. But till now, the internal frame instance has no Key Value for the ambiguous

term "Peter Ng". The system will use the Semantic Range Evaluation to do the de-

ambiguity.

Definition 9 (Semantic Range Evaluation) is an algorithm to evaluate the current

working semantic range and candidates of possible semantic ranges for an ambiguous
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term. It is used to narrow the candidates of the possible semantic ranges, step by step,

until the target semantic range is found for the ambiguous term.

Figure 20 An Example of Semantic Range Evaluation for Document Filing
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In document processing, such as TEXPROS, the target semantic range for an

ambiguous term is not always a one step hit. In the example of Figure 20, the ambiguous

term "Peter Ng" has two candidates of possible semantic ranges, <EH., null, false, true,

null> and <CIS, null, false, true, null>. Before filing, we have no way to know which

candidate is the target semantic range for this term. But we have the current working

semantic range, <null, null, false, true, null>, which represents the term before filing.

Using this current working semantic range, an internal frame instance is created. There is

no problem in finding all other terms except "Peter Ng". The semantic ranges for this

unambiguous term are the default SRF. Using this unambiguous information, the frame

instance is filed into the folder "NM'. Now, the current semantic range becomes <MIT,

Department_Phone_Bill, false, true, null>, which still cannot solve the ambiguous term.

Continuously using unambiguous information to file into "Department", the current

semantic range becomes <Department, Department_Phone_Bill, false, true, null> and is

still no help at all. The system continues the proceeding of filing by using the unambiguous

information to match the predicate of folder "CIS", "EE" and "ME". This frame instance

can not be filed into folder "EE" and "ME", but folder "CIS". Now the current working

semantic range becomes <CIS, Department_Phone_Bill, false, true, null>, which matches

one of the candidates of the semantic ranges for "Peter Ng". So, the target semantic range

for this term "Peter Ng" here is found to be <CIS, null, false, true, null>. We can use this

target semantic range to do the de-ambiguity and get "Peter A. Ng" to update the internal

frame instance. Then, the filing of this frame instance can proceed continuously, and this

frame instance will go into the folders "CIS Faculty" and "Peter A. Ng", etc.
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Sometimes, the semantic range evaluation is a one step hit. For example, a user

wants to define an frame template "Immigration_Application Form", which is a child of

the frame template "Immigration Form". In this frame template, a user defines an attribute

name "from". In this case, the working semantic range is begun with <null,

Immigration_Application_Form, true, false, null>, which hits directly at the <null,

Immigration Form, true, false, null>. Because the <null, Immigration_Application_Form,

true, false, null> is covered by <null, Immigration Form, true, false, null>, and it is

disjoined with the frame instance <null, Memo, true, false, null>. At this time, we know

that this "from" is "nationality", not "sender".

Also, this semantic range evaluation gives strong support to retrieval ranking. For

example, consider a user query "CIS & Peter Ng". In this query, "Peter Ng" is an

ambiguous term. Without the semantic range, all the documents about "Peter A. Ng" and

"Peter B. Ng" have the same ranking for the ambiguous term "Peter Ng". But with the

help of semantic range evaluation, the system will find that "CIS" is a folder name, which

has a match with the folder range of "Peter A. Ng". So, this information can be used to

help the ranking of retrieval results to yield more exact information for users. The

algorithm of semantic range evaluation is depicted in Figure 21.

The system uses the Semantic Range Evaluation to do the de-ambiguity for most

ambiguous terms. But in some cases, it still needs help from the user. From the algorithm

in Figure 21, when a SRw gets stuck, the Semantic Range Evaluation is no longer able to

solve the problem by itself, but needs help from the user.
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Figure 21 Algorithm for Semantic Range Evaluation
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Figure 22 An Example of Ambiguous Case for Semantic Range

Consider an example in Figure 22. We use the semantic range evaluation to find the

target range for "Peter Ng". But using the unambiguous information, the frame instance fi

is filed into the folder "CIS_EEJOINT_PROGRAI■ir, which is the child folder of both

"CIS" and "EE". And the current working semantic range is <

CIS_EE_JOINT_PROGRAM, FT, false, true, null>, which is covered by both SR2 and

SR3. Then the current working semantic range gets stuck and cannot proceed further. In
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other words, this ambiguous term cannot be solved by the semantic range evaluation

automatically, but needs help from the user.

An explanation for this case is given below.

• An author creates a document with a specific goal in his mind. He/she wants readers

to understand his written document. If the document is clearly in the unambiguous

semantic range (e.g., the memo is transmitted within the CIS department), the author

can use ambiguous terms for they can be understood by the reader and the system. If

the document is in the ambiguous semantic ranges (e.g., the memo was written by a

third party, who does not belong to CIS or EE departments), the author would not

use those ambiguous terms to confuse the readers and the system. As in the example

in Figure 22, the author will directly use "Peter A. Ng" or "Peter B. Ng" instead of

the ambiguous term "Peter Ng". So, the previous case would not happen for most

cases.

• For many special cases, if the author uses the ambiguous term, it is always possible

to find information from the structured text (e.g., the values for the attributes From,

To, Date, and Subject) to imply the unambiguity of the ambiguous term. However,

some of the information contained in the free text (i.e., unstructured text, such as the

content of the memo), which can imply the unambiguity of the ambiguous term, is

difficult for the system to recognize and understand. If this is the case, the system

will give all the candidates of the semantic ranges to the user, who will pick the

correct KeyTerm for the ambiguous term. Or if the user does not know the exact

KeyTerm, he/she can give some additional semantic range information to help the

system continue the evaluation until the problem has been solved.
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In summary, to solve the ambiguous term, the system can receive help from the user

or invoke the semantic range evaluation. These two approaches are tightly coupled and

are performed in an interwoven fashion. With the help of semantic range evaluation, the

user does not have to give the exact target range, in response to the request of additional

range information by the system. On the other hand, the Semantic Range Evaluation can

help the user to narrow the range information into more specific range, until the target

range is reached. Also, when Semantic Range Evaluation gets stuck in the process of

determining the unambiguity of an ambiguous term, the system can request help from the

user to re-initialize the Semantic Range Evaluation to proceed the process.
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DATADOMAIN

TEXPROS is an intelligent document processing system. Its intelligent capability is

derived from various functions for simulating human intelligence and capability to process

documents, such as filing, extraction, browsing, etc. The system provides users with these

functions. DataDomain is one of the important functional capabilities that TEXPROS

gives to its users. DataDomain and thesaurus are complementary to each other. It can

solve some of the problems that thesaurus can not solve; and thus it greatly enpowers the

TEXPROS' sub-components from different views. Also, it gives strong support to let

TEXPROS tailor to specific working (application) domains.

In this chapter, we shall introduce the concept of DataDomain into TEXPROS, and

present the detailed structure of DataDomain and DataDomain Agent.

5.1 Motivation

TEXPROS is an intelligent system that is used to handle document processing. Since the

primary source for TEXPROS is documents, what the system obtains from these

documents are mostly words or phrases. In other words, information obtained from these

documents are strings originally, which are insufficient to process the documents, at least,

not intelligently. Several examples of the merging problems are given.

Consider a user wants to find documents that are related to the Master students,

who have already completed more than 15 credit hours of coursework. But the system

fails to find them. Why? Because to the system, although there are many documents that

82
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are related to students, who have completed the number of credit hours, such as "12",

"20", "18", etc. But, these numbers are simply words (i.e., strings of characters). To the

system, the strings "18" and the string "United States of America" belong to the same data

type, called string. Without DataDomain, the system doesn't know that "18" is a number

which is bigger than the number "15"; but "United States of America" is a string of

characters, called words, which cannot be compared with a number such as "12".

Here is another example. A user wants to find the acceptance letters of the Ph.D

students, who were accepted before September 1995. But the system fails to find them.

There are some acceptance letters of Ph.D. students in the system and these letters are

dated as "January 1995", "December 1995", "September 1994" etc. However, the system

doesn't know which values are dates and which are not. More importantly, the system has

no way to compare the two dates, says "January 1995" and "September 1995", without

having any knowledge of a calendar.

Here is the third example. The system wants to find any documents which contain a

phone number "973 596-2990". But in the documents, there are several kind of forms for

this number, such as "973-596-2990", "(973) 596-2990", "973/5962990", etc. Given a

phone number "973 5962990", the system fails to find any documents that are related to

this phone number, which can be represented in different forms. This problem cannot be

solved using the thesaurus only, because there are millions of phone numbers in this world.

It is impossible to store different forms for each phone number.

Also, when extracting information from a document, the system needs help to

recognize the candidate string whether it belongs to a specific type. Without accessing the

knowledge of DataDomain, the system has no way to recognize the structure of the string.
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These problems arise nearly from all the components of TEXPROS. With this

motivation in mind, we shall introduce the concept of DataDomain for solving the

problems.

5.2 DataDomain Structure

DataDomain is a user-defined domain of data that is used to support the thesaurus

functionality, data type operations and pattern recognition. It may be for the general

working domain, such as "Date", "Number". It may be for the specific working domain,

such as "Semesterld", "Grade". DataDomain must be self-described, so it is flexible for

modification by users to tailor their specific working domain knowledge to TEXPROS.

Figure 23 DataDomain "Date"
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From object-oriented viewpoint, every DataDomain is a class. A DataDomain has

four parts, namely, the recognizer, the converter, the operators and the self-describer. We

shall define these parts and we shall use the DataDomain "Date", which is depicted in

Figure 23, as an example to illustrate them.

The recognizer of a DataDomain is a function that is defined to recognize whether a

term, irrespective of its form, belongs to this DataDomain or not. For example, "Date" is a

DataDomain. We all know that "January 2, 1998" is a "Date", but "USA" is not a "Date".

That means, a human is able to recognize a term whether it belongs to a DataDomain. or

not. We would like to have TEXPROS to recognize whether a term belongs to a

DataDomain or not. Also, for a DataDomain, there may be more than one form for

specifying the same value. For example, "January 2, 1998", "1/2/1998", and "Jan 2, 1998"

are the same value of a "Date". So, the recognizer should be able to recognize a term

irrespective of its possible forms.

The converter of a DataDomain is a function that is defined to convert a term of

different forms into the KeyForm of this DataDomain. In general, a data, which belongs to

the same DataDomain, may have several possible forms. For example, for a date, say,

"January 2, 1998" in DataDomain "Date", there are some other forms, such as "Jan. 2,

1998", "1-2-1998", "1/2/1998", etc. Although all of them are in different forms, they share

the same meaning (that is, they specify the same day, month and year). Since the domain

of the Date contains an unlimited or extremely large data set, it is inefficient to put them as

a group of synonyms into the thesaurus. To solve this problem, we introduce KeyForm of

DataDomain into TEXPROS.



86

Definition 10 (KeyForm) is one of the possible forms of a DataDomain, which is

designated as the internal representation form of the data in this DataDomain. The

KeyForm with respect to a DataDomain is similar to the KeyTerm of a synonyms group.

Consider the "Date" case, for an incoming term which could be in the form of "Jan.

2, 1998", "1-2-1998" or "1/2/1998", the converter will transform it into "January 2,

1998", assuming that "January 2, 1998" is their KeyForm. Clearly the recognizer and the

converter are important functions, which help the TEXPROS to recognize a data specified

in various different forms and to process documents efficiently because of the unique

internal representation of the data of the same value but different forms.

Here is a special case that we should concern. In most places and application

domains, the date format is in "MM/DD/YY". At that case, we have no problem to

convert "1/2/1998" to "January 2, 1998". But for some special application domains, users

need to handle not only the format "MM/DD/YY", but also "DD/MM/YY". At that case,

"1/2/1998" will be ambiguous, because we have no way to know whether it is "January 2,

1998", or "February 1, 1998". To handle these kinds of cases, here we give two solutions.

One solution is that users can define two DataDomains, "MDY_Date" and "DMY_Date",

to handle different formats. This solution is good in the case that different format date

appears in different type of documents, whose attributes related to date can be defined as

either "MDY_Date" or "DMY_Date" in the frame templates. In that way, all the values

can be converted without ambiguity. Another solution is when we do the conversion, if we

find the ambiguous date, a dialog will be pop up to users, let users decide which is the

correct format for this Date value. After users' selection, the converter of DataDomain
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will convert the term into its KeyForm, based on the format that users selected. So, in that

way, we will only have one KeyForm of the original term after the conversion. These are

the solutions to handle the special format cases, like "MM/DD/YY" and "DD/MM/YY".

In fact, in the real application domains, users mostly will not need to handle the ambiguous

format, because it is hard to recognize and convert even for human beings. So, in this

dissertation, we will not consider "DD/MM/YY" as a possible format for "Date". Our

discussion is based on the default format "MM/DD/YY".

The operators of a DataDomain are the optional functions that operate upon the

data of this DataDomain. Some meaningful operations are available to manipulate the data

of a DataDomain. We define operators for a DataDomain. For example, for the

DataDomain "Date", there are several meaningful operations, such as the operators >

(after), < (before), <= (no later than), etc. However, the operators for the DataDomains

are different; some of the DataDomain may require no operators. So, the operators of

DataDomain are optional.

Besides these three important parts, a DataDomain must be self-described. As we

discussed before, one of its important functions is to help TEXPROS tailor to the user-

specific working domain. However, the concept of DataDomains is not only used to

handle the common ones, such as Date, Time, etc., but also designed to handle those

special ones, which could be used for a specific working domain or for other special

purposes, such as extraction, operations or retrieving. Thus, DataDomain must be flexible,

allowing users to easily add, delete or change the DataDomain. We will give the detailed

discussion later in Registration Center section. In fact, the self-describer allows a
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DataDomain to define and describe its functionality itself, which makes it more

independent and easier to change and handle.

Definition 11 (DataDomain) is a user-defined domain of data, which is used to support

the thesaurus functionality, data type operations and pattern recognition in document

processing systems. A DataDomain has the following basic data structure.

Data Members:

• operationList: It contains operations that are available to the DataDomain.

• helpMessage: It contains the help messages, which are used for online help

Methods:

• recognizer: It is used to recognize whether an incoming term belongs to the

DataDomain or not.

• converter: It is used to convert the form of an incoming term into the KeyForm.

• getOperationList: It is used to indicate the available operations for the DataDomain.

• operation: It is used to deliver the incoming operator with its parameters to the

corresponding handler.

• handler: It is optional. Each DataDomain can have several handlers, each of which

corresponds to a specific operation.

5.3 DataDomain Agent

In the previous section, we presented the structure of DataDornains in TEXPROS. There

may exist numerous different DataDomains in the system. It means that any sub-

components must have sufficient knowledge about these DataDomains before they can
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apply them. It is not good for the modular system structure, nor is it flexible for users to

do modifications on DataDomains. To solve this problem, we introduce DataDomain

Agent into TEXPROS.

A DataDomain Agent is an intelligent agent that interacts with the DataDomain base

and all the TEXPROS' functional sub-components. It handles all the management and

functional issues for DataDomains. Also, in cooperating with the Registration Center,

which will be presented in chapter 8, it gives users a great deal of flexibility for to make

modifications on DataDomains. In general, the DataDomain Agent is a logical component

that hides the details of DataDomains at lower level, and creates a unified DataDomain

environment for all the functional sub-components.

Figure 24 Logical Level of DataDomain Agent in TEXPROS

In TEXPROS, there are many different DataDomains, but there is only one

DataDomain Agent. The DataDomain Agent satisfies the principle of information hiding,

in such a way that the functional sub-components do not have to know the detailed

knowledge about the DataDomains in the DataDomain base, before their applications. The
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DataDomain Agent provides the interactions between the functional sub-components and

the DataDomain base.

The functionalities of a DataDomain agent are twofold: it handles all the

management and functional issues for DataDomains. The detailed structure of

DataDomain Agent is depicted in Figure 25.

Figure 25 Detailed Structure of DataDomain Agent

The DataDomain Agent has three sub-functions to handle the management issues,

namely, initializing the DataDomain environment, maintaining the DataDomain

environment, and maintaining the current working DataDomain and its operation.
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• lnitializing the DataDomain environment. When the system starts up, the

DataDomain Agent begins to gather the necessary information and to initiate the

DataDomain environment. As we discussed before, all the DataDomains are self-

described to allow DataDomains flexible and easy for users to change, later.

Therefore, the DataDomain Agent should dynamically get any relevant information

from the binary coded representations of DataDomains. The DataDomain Agent

should find all the possible DataDomains and check whether these DataDomains

have the correct structures; in particular, each must have the three important parts,

recognizer, converter and operators. Then, the DataDomain Agent stores these

DataDomains in the available DataDomain list and initiates the standard error

message and help message. After these, the DataDomain environment is initiated and

wait for their applications to any functional sub-components of the TEXPROS.

• Maintaining the DataDomain environment. While the system is running, the

DataDomain Agent is responsible for maintaining the DataDomain environment. A

DataDomain is a user-defined domain of data that serves different purposes.

TEXPROS allows users to do modifications. Changing DataDomain is fully

controlled by the Registration Center (which will be discussed later). To cooperate

with the Registration Center, the DataDomain Agent is able to dynamically maintain

the environment by adding or deleting a DataDomain from the environment. Also,

the DataDomain Agent is able to provide the DataDomain with the structural

knowledge, such as, which DataDomain is available, or which operation is available

on a DataDomain.
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• Maintaining the currently working DataDomain and operation. Finally, the

DataDomain Agent will dispatch its entire functional jobs to each specific

DataDomain to handle. So, the currently working DataDomain and its operation

handlers are dynamically created and deleted. This maintenance is also an important

management job for DataDomain Agent.

The DataDomain Agent has four major components to deal with its functional

issues. These components are recognition, conversion, confirmation and operations.

The function of the recognition component is to recognize an incoming term and

determine which DataDomain it belongs to. It is widely used in browsing. Consider that a

user gives a query "(973) 5962990". The process of browsing would not be able to

process it, since there are possibly many different forms for the phone number. Without

transforming it into a KeyTerm of its data type, we will definitely miss many documents,

which contain the same phone number, but in other forms. So, the first step we should do

is to transform it into the KeyTerm. However, we find no corresponding term in the

thesaurus. At this point, we need help from the DataDomain base, which has a great

variety of different DataDomains. The question is, how do we know which one should be

used. Here, the DataDomain Agent will dispatch the item "(973) 5962990" to the

recognizer of each available DataDomain, receive a bundle of "False" signals, except the

"True" signal from the DataDomain "Date" and the system knows that it is a "Date". The

DataDomain Agent does not guarantee that there is always one found DataDomain for a

given term. There may be more than one possible candidates of DataDomains for a given

vague term. Consider the term "1997". It could be a "Number" or a "Date"(year 1997). In
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these situations, all found candidates of DataDomains will be returned to the user, who

has to decide which DataDomain to use.

The confirmation component of this DataDomain is used to confirm whether the

incoming term belongs to a specific DataDomain or not. This component is widely used in

the process of document classification, in which the physical structure will decide the brief

range and have a list of possible candidate frame templates. When going into the details to

decide which one of these candidate frame templates is hit, it needs help from the semantic

confirmation to make the decision. For example, for the "Memo" type document, the

value of the "Date" usually appears in the upper right hand portion of the document.

Suppose that the value "January 3, 1997" appears in the upper right hand portion of a

document. Then the classification sub-component will send the request to DataDomain

Agent to confirm whether "January 3, 1997" is a Date or not. DataDomain Agent will

dispatch this request to the recognizer of "Date" and get the "True" answer. This answer

returns to the classification sub-component and helps to decide that it is "Memo" type. If

the incoming term is "CIS683", the DataDomain will confirm that it is not Date, which

helps the classification sub-component to decide that the document is not the "Memo"

type, and could be the "Transcript" type.

This function of the conversion is to convert an incoming term, which belongs to a

specific DataDomain, to the KeyForm of this DataDomain. It is an extension of the

thesaurus. As we described earlier, thesaurus is very importantly applicable in the whole

system. But there are some problems that cannot be solved even with the aids of the

thesaurus. For example, there are a variety of different forms for representing the "Date"

and there are unlimited values for the "Date". It is almost impossible and certainly
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impractical to store every value of the "Date" in thesaurus. However, this class of

problems can be solved easily using the conversion of DataDomain Agent. When dealing

with the value "1-2-1997" and the "Date", the DataDomain Agent dispatches the value to

the converter of "Date", which transforms the value "1-2-1997" into the KeyForm

"January 2, 1997" and returns to the source sub-component ready for use. Consider

another example, the value "1997F" and "Semester". The DataDomain Agent dispatches

the value "1997F" to the converter of "Semester", which transforms the value into the

KeyTerm "1997 Fall". If the source sub-component is the extraction sub-component, then

this transformed value will be assigned as the KeyValue. If the source sub-component is

the browsing or retrieving sub-component, then this transformed value will be used to

match against the KeyValues to find the result of query. If the source is a folder predicate,

then this transformed value will be used to modify the predicate representation.

The operation function is used to manipulate the data type operations of a specific

DataDomain. It is widely used in the processes of browsing, retrieving and folder

organization predicate evaluation. For example, consider a query, such as "<send date> in

September 1995". In this example, the user wants to find all the documents, which

contains the send date in September 1995. If our system wants to process this query, it

must have the knowledge how to handle the operator "in" for two date parameters. To

solve this problem, the operation request and the parameters will be sent to the

DataDomain Agent, which will, in turn, dispatch them to the corresponding DataDomain

and their Operation handler. The corresponding DataDomain and Operation handler will

process the operation and return the boolean result. Then, the DataDomain Agent will

return this result to the source sub-component to help the processing continue.
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Basically, both the thesaurus and the DataDomain base are used to handle certain

specific data. The DataDomain base is an extension of thesaurus, for it is used to solve the

problems that could not be handled using the thesaurus. It also supports the pattern

recognition and data type operations. Users can use "DataDomain" to define any kind of

domain of data. Some common DataDomains are number, date, etc. Some DataDomains

are special for users' working domains; and they are such as grade, semester-id, course-id,

which are defined by the users for various purposes, such as the extraction, the thesaurus

support, the retrieving process. Users can use the "DataDomain" to define the preferred

domain of data. This enpowers TEXPROS to be tailored to different specific working

domains. Also, with the help of the DataDomain Agent, all the details of DataDomains are

hidden from the sub-components. DataDomain Agent handles all the management issues

and functional issues of DataDomain. Therefore, the sub-components don't have to know

the detailed information about the DataDomains; they simply interact with the

DataDomain Agent to get the strong support from DataDomain base.



CHAPTER 6

KEYTERM TRANSFORMATION COMPONENT

6.1 KeyTerm Transformation

In the previous chapters, we have presented a two-level thesaurus model, which allows the

system to find the key term, KeyTerm, for any given user's term using the exact term

matching or sense matching. We also presented the notation of KeyTerm and internal

frame instance to speed up the document retrieval for TEXPROS. Based on the presented

approach, when a document comes into our system, the classification and extraction

components create its corresponding frame instance and then create the internal frame

instance by transforming each original value into the obtained key value, and store it into

the frame instance base. Later, for retrieving documents, the system will also transform the

original query into a query, in which all the terms are KeyTerms. These KeyTerms are

used to match the KeyValues of internal frame instances during the search for the related

documents. Therefore, it is critical to determine a KeyTerm transformation procedure for

transforming an original term to its corresponding KeyTerm.. This KeyTerm

transformation is a major procedure for implementing the sense matching for TEXPROS,

which would be used by many other components of the TEXPROS.

In chapter 3, the "transformToKeyTerm" algorithm is presented. But that algorithm

is only used for the thesaurus part. It is inadequate for the general KeyTerm

transformation problem of TEXPROS. For example, finding all the documents with the

date " 1/20/1997 ", the system will begin to transform this query into the KeyTerm form.

But transforming " 1/20/1997 " into its corresponding KeyTerm requires more than a

96
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thesaurus. In chapter 5, the concept of DataDomain is presented to solve this kind of

problem. Also, for ambiguous terms, such as the term "Peter Ng", both the thesaurus and

the semantic range are used to help solve the problem of ambiguous terms. In other

words, we need a thesaurus, the DataDomain and Semantic Range to handle the general

KeyTerm transformation problem of TEXPROS. For each of them, we have described our

approaches in the previous chapters. In this chapter, a KeyTerm Transformation

component is presented that will integrate the thesaurus, DataDomain and Semantic

Range as an unit for finding the solution of the general KeyTerm transformation problem

of TEXPROS. We shall discuss the detailed design of the KeyTerm Transformation

component, the KeyTerm transformation process control and how the integration of the

three major parts for solving the KeyTerm transformation problem. In addition, we shall

define the KeyTerm transformation request and reply as unified input and output data

structure for KeyTerm Transformation component.

Before we go into the details of the KeyTerm Transformation component, we shall

extend the definition of KeyTerm. The TEXPROS' thesaurus consists of the definitions of

KeyTerm. Given an original term, the KeyTerm Transformation component obtains its

corresponding KeyTerm. In the following, we extend the KeyTerm definition from the

viewpoint of KeyTerm transformation.

In KeyTerm Transformation component of TEXPROS, for an original term, OT, and

its corresponding KeyTerm, KT,

• If OT appears in the thesaurus of TEXPROS, KT follows the KeyTerm definition of

thesaurus of TEXPROS. For example, the KeyTerm of the term "CIS" is "Computer

and Information Science".
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• If OT belongs to a specific DataDomain, KT is the KeyForm for that DataDomain of

OT. For example, the KeyTerm of the term "1/2/1998" is "January 2, 1998".

• If OT is an ambiguous term, KT is the target term, which is obtained after the

semantic range evaluation. For example, the target term of the ambiguous term

"Peter Ng" is "Peter A. Ng".

• If none of the previous conditions match, KT is the same as the OT. For example, the

KeyTerm of the term "software" is itself.

6.2 KeyTerm Transformation Request and Reply

The major job of KeyTerm Transformation component is to get the request from other

functional components, to transform an incoming original term to its corresponding

KeyTerm, and to reply it to the source component. But, based on different types of

requests, there requires different information for transforming a given term into its

corresponding KeyTerm. Also, the information responded to the functional components is

varied based upon the result of the transformation. To solve this problem, we define

KT_Request and KT_Reply as the standard input and output data structure for KeyTerm

Transformation component. With KT_Request and KT_Reply, we give the unified

KeyTerm transformation request and reply interfaces, which can ease the communication

between the KeyTerm Transformation component and functional components of

TEXPROS.
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6.2.1 KeyTerm Transformation Request

For different types of KeyTerm transformation requests, we define KT_Request as the

standard input data structure of Key Term Transformation component.

KT_Request {

request_type;

original term;

DD_Name; (DataDomain Name)

SRT_ID; (Semantic Range Task ID)

SRw; (Current Working Semantic Range)

}

The KT_Request is used to handle three types of possible KeyTerm transformation

requests. For the first type, DataDomainKnown type, the functional component already

knows the DataDomain that the original term belongs to. In this case, the request_type is

assigned with a value 1. The original term and DD_Name have the original term and its

corresponding DataDomain name as their values, respectively. And the other data

members will be NULL. For the second type, OTOnlyKnown type, the functional

component only knows the original term. In this case, the request_type is assigned with a

value 2. The orginal_term is used to store the original term. And the other data members

will be NULL. For the third type, AmbiguousTerm type, the requested original term has

already been sent to KeyTerm Transformation component before. But KeyTerm

Transformation component finds it is an ambiguous term; sends back a Semantic Range

Task ID (SRT_ID) and needs more working semantic range information to help

SRE(Semantic Range Evaluation) to solve the problem. In this case, upon having the
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updated working semantic range information, the functional component sends the request

again as the third type KeyTerm transformation request. So, for the third type of KeyTenn

transformation request, the "request_type" is assigned with a value 3. The orginal_term,

SRT_ID and SRw are used to store the original term, Semantic Range Task ID and the

current working semantic range. And the other data members are NULL.

In KT_Request, we also give the following three constructors:

• KT_Request(original_term, DD_Name); //DataDomainKnown

• KT_Request(original_term); //OTOnlyKnown

•KT_Request(original_term, SRT_ID, SRw); //AmbiguousTerm

Using these three constructors, the functional components of TEXPROS can easily

build the corresponding type of KeyTerm transformation requests and can send the

necessary information into the KeyTerm Transformation component. In the later sections,

we shall describe the details of the structures and process control of these types of

KeyTerm transformation requests.

6.2.2 KeyTerm Transformation Reply

For different types of KeyTerm transformation reply, we define KT_Reply as the standard

output data structure of KeyTerm Transformation component.

KT_Reply {

key_term;

status; (status is successful or ambiguous or failed)

SRT_ID; (Semantic Range Task ID)
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For most cases, our KeyTerm Transformation component will find the

corresponding KeyTerm of the original term in the KT_Request. At that time, key_term is

used to store the found KeyTerm; status is marked as successful and SRT_ID is NULL. If

the KeyTerm Transformation component finds the original term is an ambiguous term, the

KT_Reply will return the ambiguous status and a Sematic Range Task ID, from the data

member SRT_ID. The other data members are NULL. Then the functional component is

fully aware that the requested term is an ambiguous term and the KeyTerm

Transformation component requires working semantic range information to handle the

ambiguity. When the functional component has the current working semantic range

information, based on the Semantic Range Task ID, the RT_Request of type 3 is

constructed and the KeyTerm Transformation component is requested to find the

KeyTerm for the ambiguous term. If the status is failed, the functional component

constructs a request of type 1, and finds the original term does not belong to the

DataDomain after the DataDomain recognition. In this case, the KT_Reply returns the

status "failed". Then the functional component knows that some errors happened for that

original term. A warning is given to the user, who should check the original document.

6.3 KeyTerm Transformation Component

In the previous section, we have defined KT_Request and KT_Reply as the standard input

and output data structure for KeyTerm Transformation component. In this section, we

shall describe the detailed structure and process control of KeyTerm Transformation

component.
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A KeyTerm Transformation component, in cooperating with the thesaurus and the

DataDomain Agent, consists of ten sub-modules and a Semantic Range Task Buffer. The

detailed structure is shown in Figure 26.

The first module is a Request Dispatcher. In the previous section, we defined three

types of KeyTerm transformation requests. Their processes and control are different.

When receiving the KT_Requests from the functional components, the Request Dispatcher

module dispatches the requests to the corresponding sub-modules based upon their type.

The KT_Request of type 1 (DataDomainKnown type) is dispatched to the DD Term

Conversion Controller module. The KT_Request to type 2 (OTOnlyKnown type) is

dispatched to the Transformation Controller module and KT_Request of type 3

(AmbiguousTerm type) is dispatched to the De-ambiguity Controller module.

Figure 26 KeyTerm Transformation Controller Structure
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Semantic Range Task Buffer is the buffer place for storing the semantic range task

information. In chapter 4, we have presented the approach which uses the Semantic Rang

and Semantic Range Evaluation to solve the sense ambiguity problem. Based on this

approach, when the KeyTerm Transformation component cannot find the corresponding

KeyTerm at once for an ambiguous term, the thesaurus is used for finding all the

candidates for that ambiguous term. At that time, a semantic range task is constructed and

is assigned with a unique ID. This task ID is returned to the functional component. Later,

when the functional component gets the updated working semantic range information, the

KT_Request is sent again, based on the task ID. Using this mechanism, the KeyTerm

Transformation component can continuously get the current working semantic range

information, and can use the Semantic Range Evaluation to narrow down the set of

candidates until the corresponding KeyTerm is found. During this procedure, the Semantic

Range Task Buffer is a temporary buffer, which is used by KeyTerm Transformation

component to store the information of semantic range tasks. The structure of the Semantic

Range Task Buffer is shown in Figure 27.

Figure 27 Semantic Range Task Buffer Structure
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The Semantic Range Task Buffer is a table-like structure, which contains four

columns, SRT_ID, Original_Term, Previous_SRw and Candidate_Set. Each semantic

range task will be stored as a record in this buffer. SRT_ID is used to store the semantic

range task ID, which is the unique ID for each semantic range task. Based on this unique

ID, we can find all of the information related to a specific semantic range task.

Original Term and Previous_SRw are used to store the original ambiguous term, and the

last current working semantic range that we obtained for this task, respectively. The latter

information will be used to recognize the bottleneck during the Semantic Range

Evaluation. Candidate_Set is used to store the remaining candidate set for the ambiguous

term. During the process of sense de-ambiguity, the information in the last two columns

will be continuously updated by the sub-module "De-ambiguity Controller".

For KeyTerm Transformation component, there are three types of KeyTerm

transformation requests. The "Request Dispatcher" module will dispatch the requests of

different types to their corresponding modules for their processing. In the following

sections, we will present how to use KeyTerm Transformation component to handle the

KeyTerm transformation requests of different types. At the same time, we will introduce

the detailed functions of each sub-module and how to control the process flow between

them.

6.3.1 First Type of KT_Request Handling

For the first type (DataDomainKnown type) KeyTerm Transformation Request, the

functional component already knows the DataDomain that the original term belongs to. In

this case, the functional component can use the constructor KT_Request(original_term,
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DD_Name) to create the KT_Request of type 1 which is sent to the KeyTerm

Transformation component. The Request Dispatcher module dispatches the request to the

DD_Term Conversion Controller module for further processing. Figure 28 shows how the

KeyTerm Transforamtion component handles the KT_Request of type 1.

Figure 28 First Type of KT_Request Handling

After receiveing the KT_Request, the DD_Term Conversion Controller module

contacts the DataDomain Agent and send the original term and its corresponding

DataDomain name to the agent. Based on the DataDomain name, the DataDomain Agent

will try to convert the original term into its corresponding KeyForm, which is returned to

the DD_Term Conversion Controller module. As the DD_Term Conversion Controller

module receives the KeyTerm from the DataDomain Agent, the module creates the

KT_Reply{ KeyTerm, successful, NULL }, which is returned to the functional

component.

Here is a special case. Based on the DataDomain name, the DataDomain Agent

cannot convert the original term into its KeyForm. In other words, the original term does

not belong to that specific DataDomain. If this happens, the DD_Term Conversion

Controller module will get the error message from the DataDomain Agent to create the

KT_Reply {NULL, failed, NULL }, which is returned to the functional component.
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6.3.2 Second Type of KT_Request Handling

For the second type (OTOnlyKnown type) KeyTerm Transformation Request, the

functional component knows only the original term. In this case, the functional component

can use the constructor KT_Request(original_term) to create the KT_Request of type 2,

which is sent to KeyTerm Transformation component. The Request Dispatcher module

dispatches this request to the Transformation Controller module for further processing.

Figure 29 shows how the KeyTerm Transformation component handles the KT_Request

of type 2.

Figure 29 Second Type of KT_Request Handling

In TEXPROS, most KeyTerm transformation requests belong to the second type.

The handling of the requests of type 2 is much more complex than the handling of the first

type of requests. Six modules are employed to handle this type of KT_Requests. The

Transformation Controller module is the central module here to control the transformation

process. It is also responsible to receive the KT_Request and then to create and return
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KT_Reply to the functional component. The Thesaurus Lookup module has the major

responsibility for checking the thesaurus to find the KeyTerm for the original term. Its

core algorithm is given in Chapter 3. The Semantic Range Task Initializer module has the

major responsibility for creating a semantic range task in the buffer when an ambiguous

term is found. The DD_Term Recognition Controller module is responsible for controlling

the DataDomain recognition for an original term. When an original term has more than

one DataDomain, the DD_User_Selection module will contact the user for making the

selection. The DD_Term Conversion Controller module was introduced in the previous

section.

The Request Dispatcher module will always dispatch the KT Request of type 2 to

the Transformation Controller module. Upon receiving a request, the Transformation

Controller module will extract the original term, which is sent to the Thesaurus Lookup

module first. Based on this original term, the Thesaurus Lookup module will check the

thesaurus for finding its corresponding KeyTerm. There may have three possibilities here.

Firstly, the Thesaurus Lookup module finds the corresponding KeyTerm in the

thesaurus, which is returned to Transformation Controller module. In this case, the

Transformation Controller module will create a KT_Reply { KeyTerm, successful, NULL

}, which is returned to the functional component. This ends the KeyTerm transformation

procedure.

Secondly, the Thesaurus Lookup module cannot find that original term in the

thesaurus and send this message back to the Transformation Controller module. From the

viewpoint of thesaurus, if an original term does not appear in the thesaurus, it means it

does not belong to any synonym group and its KeyTerm is defined by default as the
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original term itself. But in KeyTerm Transformation component, our processing is a little

different. In the previous section, we have extended the definition of KeyTerm. The

KeyTerm Transformation component employs not only the thesaurus, but also the

DataDomain and the Semantic Range. If an original term does not appear in the thesaurus,

it may belong to a specific DataDomain that is not supported by the thesaurus. When this

happens, the Transformation Controller module will not return the original term as default

KeyTerm immediately. Instead, the Transformation Controller module will send the

original term to the DD_Term Recognition Controller module. The DD_Term

Recognition Controller module will contact DataDomain Agent to check whether this

original term belongs to a specific DataDomain or not. There are three possible cases here.

Case 2.1: The DataDomain Agent finds that this original term belongs to a specific

DataDomain. Then the DD_Term Recognition Controller module will get this

DataDomain name and send it back to the Transformation Controller module. Then the

Transformation Controller module will send the original term and that DataDomain name

to the DD_Term Conversion Controller module, which will convert the original term to its

corresponding KeyForm, and then return the KeyTerm to the Transformation Controller

module. Finally, the Transformation Controller module will create the KT Reply {

KeyTerm, successful, NULL }, which is returned to the functional component. This ends

the transformation procedure.

Case 2.2: The DataDomain Agent finds that this original term belongs to more than

one DataDomain. In this case, the DD_Term Recognition Controller module will send the

original term and all the candidate DataDomain names to the DD_User_Selection module

for user help. The user has to select from all the candidates, which DataDomain this
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original term belongs to. Then DD_Term Recognition Controller module will send this

DataDomain name back to the Transformation Controller. The rest of the process is the

same as Case 2.1.

Case 2.3: The DataDomain Agent finds that this original term does not belong to any

DataDomain. In this case, the DD_Term Recognition Controller module will send this

message back to the Transformation Controller module. Now the Transformation

Controller module knows that this original term does not belong to any DataDomain or

the thesaurus. Based on the KeyTerm definition, the Transformation Controller moduel

uses the original term itself as the default KeyTerm and creates KT_Reply { KeyTerm,

successful, NULL }, which is returned to the functional component. The transformation

procedure is ended.

Thirdly, when the Thesaurus Lookup module finds the original term to be an

ambiguous term and sends this message back to the Transformation Controller module.

Then the process control will go to the Semantic Range Task Initializer module. Based on

the original term, this module will extract its related information from the thesaurus; will

assign a unique semantic range task ID and will create a new task record in the semantic

range task buffer. Based on the semantic range task ID, the Transformation Controller

module creates KT_Reply { NULL, ambiguous, SRT_ID }, which is returned to the

functional component. This KT_Reply will inform the functional component that the

incoming original term is an ambiguous term and the KeyTerm Transformation component

needs additional working semantic range information to do the de-ambiguity. Processing

of the ambiguous terms will be discussed in the next section.
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6.3.3 Third Type of KT_Request Handling

For the third type (AmbiguousTerm type) KeyTerm Transformation Request, the

functional component knows not only the original term, but also the semantic range task

ID attached to it. It means this original term is an ambiguous term and the KeyTerm

Transformation component needs functional component to provide current working

semantic range information for doing the de-ambiguity. In this case, the functional

component can use the constructor KT_Request(original term, SRT_IC, SRw) to create

the KT_Request of type 3, which is sent to the KeyTerm Transformation component. The

Request Dispatcher module dispatches this request to the De-ambiguity Controller module

for further processing. Figure 30 shows how the KeyTerm Transformation component

handles the KT_Request of type 3.

Figure 30 Third Type of KT_Request Handling

When the De-ambiguity Controller module receives the KT_Request of type 3,

based on semantic range task ID, this module extracts the corresponding task record from

the Semantic Range Task Buffer to get all the related information. Firstly, the De-

ambiguity Controller module will check whether the current working semantic range of

the KT_Request is the same as the previous working semantic range. If the current
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working semantic range is the same as the previous one, it means that the functional

component cannot give further information to help us solve the ambiguity. In other words,

we find the bottleneck that our semantic range evaluation cannot solve. In this case, the

SR_User_Help module will be used to give all the candidates information to the user for

help. If the user gives more semantic range information, the De-ambiguity Controller

module will use the current working semantic range to continue the processing. If the user

directly picks a candidate as the KeyTerm of the original term, the De-ambiguity

Controller module will use this KeyTerm, to create the KT_Reply { KeyTerm, successful,

NULL }, which is returned to the functional component. So, the ambiguity is solved and

the corresponding semantic range task record will be deleted from the buffer.

If the current working semantic range is different from the previous one, the De-

ambiguity Controller module will send the current working semantic range and all the

candidates information to the Semantic Range Evaluation module. The details of the

Semantic Range Evaluation module were described in Chapter 4. The Semantic Range

Evaluation module will use the current working semantic range to evaluate the candidates

and try to narrow down continuously the candidate set. If the candidate set is reduced by

the evaluation module and the target KeyTerm could not be found, the new candidate set

will be sent back to the De-ambiguity Controller module. The De-ambiguity Controller

module will use the new current working semantic range and candidate set information to

update the corresponding semantic range task record in the buffer. Also, it will create

KT_Reply { NULL, ambiguous, SRT_ID }, which is returned to the functional

component. The functional component will be asked, in turn, for further working semantic

range information for doing the de-ambiguity. If the evaluation module narrows down the
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candidate set and at last finds the target KeyTerm. The De-ambiguity Controller module

will use this KeyTerm to create the KT_Reply I KeyTerm, successful, NULL }, which is

returned to the functional component. So, the ambiguity is solved and the corresponding

semantic range task record will be deleted from the buffer. This ends the transformation

process.

KeyTerm transformation is a critical procedure for implementing the sense matching

for TEXPROS. It gives strong supports to all the functional components and is frequently

used during the document processing of TEXPROS. To handle this problem, we need the

combination of the thesaurus, the Semantic Range and the DataDomain. In this chapter,

we presented the KeyTerm Transformation component, which integrates the thesaurus,

the Semantic Range and the DataDomain for solving the general KeyTerm transformation

problem of TEXPROS. We have discussed the detailed functions of ten modules of

KeyTerm Transformation component, the structure of the Semantic Range Task Buffer,

and how to control the transformation process between them. Also, we defined the

KT_Request and KT_Reply as the standard input and output data structure.

With the KeyTerm Transformation component, we hide the details of KeyTerm

transformation procedure from all the functional components of TEXPROS. The

functional components can use the KT_Request and the KT_Reply as the standard

interfaces, allowed to have an easy communication with the KeyTerm Transformation

component. The KeyTerm Transformation component will handle the detailed

transformation procedure to find the KeyTerm, which corresponds to the original term

requested by a functional component. In this way, the functional components do not have
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to know the detailed information about the transformation control, the thesaurus, etc.;

they simply interact with the KeyTerm Transformation component to get the KeyTerm

transformation support. Therefore, the KeyTerm Transformation component provides the

solution for the common problem in all the functional components. This greatly eases their

burden and allows them to focus on their specific areas of the document processing of

TEXPROS.



CHAPTER 7

APPROXIMATE TERM MATCHING

Currently, upon receiving a user's term, the exact term matching is used in TEXPROS to

find its matched terms which are used in the system. Although the thesaurus, the

DataDomain and the Semantic Range can help us to conduct term matching and sense

matching, we still need the first term to be exactly matched. However, in some cases,

without other accessory components, the system would fail to provide the users with

cooperative answers.

For example, a user wants to find some documents related to "software tester".

Unfortunately, he mis-types it as "software taster", which doesn't match any documents or

terms in our system. The system gives the user a NULL answer, without any further

assistance. Another example, a user wants to find some documents related to "Jianshun

Hu". But this name is difficult to remember and spell. However, the user can give an

approximate spelling "Jinsun Hu". For this case, our system surely cannot find terms and

documents related to the user's query and therefore gives a NULL answer.

Till now, when this sort of cases happens, the system cannot give users further

assistance. It therefore depends on the users to find the correct term. This system fails to

provide users with cooperative answers, especially in document browsing and retrieval.

For some special cases, like the "Jinsun Hu" example, without any help from the system,

the user can hardly find the correct term that he wants.

With this motivation, we designed an "approximate term matching" module to help

users find the terms used in the system. In this module, the users can give an original term

114
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to request the approximate term matching. TEXPROS will go through the terms used by

the system to find the approximately matched terms, rank them and give them back to

users. In this way, the system can assist users to find the system terms that they want.

Currently, there are some research and commercial software which support the

similar functionality. A famous one is the "spelling check" in Microsoft Word. All of these,

including our "approximate term matching", are from the approximate matching viewpoint

to give users assistance. But these systems, which are functionally different, have their

won application domains. For example, the "spelling check" targets at helping users to

correct spelling errors during the document creation. Because of this goal, the "spelling

check" will only be automatically triggered when the users spell the words wrongly. Also,

it will only check the word dictionary and some accessory terms inserted by the users. But

the "approximate term matching" targets at helping users to find the term used in the

system, not for the spelling correction. Hence, the original term can be a single word or a

complex term (such as, "software taster"). The original term may be spelled wrongly or

correctly. The users can apply the "approximate term matching" in all of these cases. Also,

unlike the "spelling check" nearly only searches in dictionary, the "approximate term

matching" will search all the system terms, which include folder names, frame template

names, attribute names, values, and thesaurus terms. Finally, the same core algorithms may

be used in different software, but the approximate term matching is a time consuming job

to accomplish different targets in different software environment. We need to design our

own processes to speed up and ease the matching procedure.

In TEXPROS, we employ two existing popular techniques, pattern matching and

edit distance comparison, to do the approximate term matching, and help users to find the
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approximate matched terms used in the system. In this chapter, we will present the details

of "approximate term matching" and some accessory processes we used to speed up and

ease the matching procedure.

7.1 Pattern Matching

Pattern matching is a popular technology used in the approximate term matching area. The

core idea is that the system supplies a group of pattern operators. When a user knows to

spell part of a term or wants to find a group of similar spelling team, he can use the

pattern operators to help create the original term pattern. The system will find all the

matched terms, based on the original term pattern.

In TEXPROS, we provide two pattern operators to the users. One is "/*", which is

used to substitute zero or more characters. The other is "/?", which is used to substitute

one character. For example, if a user gives the original term pattern such as "software

/*er", the system will find the matched terms like "software tester", "software engineer"

and "software manager", etc. If a user gives the original term pattern such as "Ji/?/ns/*n

Hu", the system will find the matched terms like "Jianshun Hu", etc. The core algorithm

for the pattern matching is already implemented by Java classes and SQL "like" operator

of Oracle, which can be easily used by the prototype of TEXPROS.

In the "approximate term matching" of TEXPROS, when the "pattern matching" is

used, the system provides its users three optional selections: letter case sensitive, blank

space sensitive and category selection. The "letter case sensitive" option is to tell the

system whether the user takes the upper case and lower case of letters into consideration.

The "blank space sensitive" option is to tell the system whether the user cares the blank
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space in the terms or not. The "category selection" option is given because sometimes the

user is only interested in part of all the system terms. For example, when a user gives the

original term pattern such as "Ji/?ns/*n Hu", he is only interested in folder names, values

and thesaurus terms, but not the others. Hence, the "category selection" option allows

users to select one or more from the five categories: folder name, frame template name,

attribute name, value and thesaurus term. The default one is for all the categories.

When proceeding the pattern matching, a user can use the pattern operators to

define the original term pattern and decide to use any selection from the three optional

selections. Upon receiving the information, firstly, the system will create the candidate set.

Based on the category selection, the system terms are selected from these categories to

create the candidate set. The candidate set does not contain any duplicate terms. If the

user wants the letter case to be insensitive, for all the terms in the candidate set and user's

original term pattern, the system will convert them into upper case form. If a user wants

the blank space to be insensitive, for all the terms in the candidate set and user's original

term pattern, the system will convert all the blank spaces in the middle of a term into one

blank character, and cut off all the blank spaces before or after the term. However, the

original forms of the candidate terms are still kept after the case processing and blank

space processing. At last, for each term in the candidate set and user's original term

pattern, we do the pattern matching to find all the matched terms, which are returned to

the user.
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7.2 Edit Distance Comparison

In the "approximate term matching" component, if the pattern matching is failed to

achieve their objectives for some reasons, TEXPROS provides users with another

approach, which is called the "edit distance comparison". The basic idea is that a user can

give an original term and a matching threshold, which is represented by a positive integer

number. The system will automatically find all the similar system terms, whose edit

distance from the original term is below the matching threshold; will rank them and return

to the users. In this way, users allow to give an approximate spelling without defining any

patterns, and the system can help users find the system terms they want.

In the "edit distance comparison", the core problem is how to determine the edit

distance between two strings as measured by the minimum cost sequence of "edit

operations" needed to change a string into the other, which is referred to as the "string-to-

string correction problem" in computer science. In [76], an algorithm is presented, which

calculates the edit distance between two strings. The edit operations they considered are:

(1) changing one character to another character; (2) deleting one character; (3) inserting

In TEXPROS, this algorithm [76] is used as the core algorithm for our "edit distance

comparison". However, this algorithm is for the general "string-to-string correction

problem". For applying this algorithm in our TEXPROS, we define their cost function as

are all 1. Based on this cost function in TEXPROS, the edit distance between two strings

is the minimum number of edit operations needed to change from one string into the other.
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Also, based on our cost function, we give a simplified version of this algorithm, which is

shown as follows:

ED_ALGO( term sub_st, term sub_ct)

This ED_ALGO algorithm is used as the core algorithm for the "edit distance

comparison" in TEXPROS. This algorithm calculates the edit distance between two

strings. In other words, the degree of similarity between two terms can be determined in

terms of edit distance between two terms. For example, the edit distance between

"software taster" and "software tester" is 1. The edit distance between "software taster"

and "software manager" is 4. Therefore, the string "software taster" is more similar to the

string "software tester" than the string "software manager". In this way, we can calculate
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the edit distance between the system terms and the original term supplied by a user; find

those similar system terms, rank them based on the edit distance and return them to the

users.

If the "edit distance comparison" is applied, the user needs to supply the original

term and a matching threshold. The matching threshold is the maximum edit distance

allowed between the original term and result terms. Also, the three optional selections for

"pattern matching": "letter case sensitive", "blank space sensitive" and "category

selection", can also be applied in the "edit distance comparison". Similar to the "pattern

matching", based on the three optional selections, the system will firstly create the

candidate set. Secondly, the length restriction will be used to narrow down the candidate

set. Generally speaking, the users provide the matching threshold, which is the maximum

edit distance allowed between the original term and result terms. Based on our algorithm,

if the matching threshold is mt, the length of result term must be in the range of

[length(orignal term) - mt, length(original term) + mt.]. So, using this length restriction, we

can delete the candidate terms, which do not fit in the length range. Thirdly, we shall do

the exact matching between the candidate terms and original term. There may be some

candidate terms, that differ from the original term only by the letter case and blank space,

such as "software tester" and "Software Tester". If we find such terms, we will delete

them from the candidate set and directly put into the result term list. In other words, they

satisfy the approximate matching with the highest priority. After all these, we will use

ED_ALGO algorithm to calculate the edit distance between the original term and each

term in the candidate set. For a candidate term, if the edit distance is larger than the

matching threshold, then this term does not satisfy the users' request and will be deleted
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from the candidate set. If the edit distance is not larger than the matching threshold, then

this term satisfies the users' request and will be kept in the candidate set. Finally, all the

terms left in the candidate set will be ranked by their edit distance and put into the result

term list. In this way, the system can return the result list to users and help them find the

system term that they want. For the previous "Jianshun Hu" example, a user can use the

"edit distance comparison" to get help from the system. Say, a user supplies the original

term as "Jinsun Hu" and a matching threshold 3, the system will return a resulting list as:

"Jianshun Hu", "Jinsheng Hu", etc. In thais way, a user can find the correct term that he

wants is "Jianshun Hu".

In the "edit distance comparison", there is another important feature, called the

history buffer. TEXPROS is a personal document processing system. Because of the

typing habit and term-usage habits, the approximate term matching, for a specific

application domain, can be possibly localized. For the "Jinsun Hu" example, even the

system found the correct term "Jianshun Hu" for the user, he still may not remember the

correct spelling. For the next time, this user is still using "Jinsun Hu". However, the most

possible result of the approximate term matching for "Jinsun Hu" is "Jianshun Hu", which

is the same as the last time. Although the "edit distance comparison" can find the correct

term for the user, it is a time consuming job. If we can store user's "edit distance

comparison" matching result in history buffer, for some cases, we can directly provide

users with suggestions from the history buffer. Without calculating edit distance, it will

greatly improve the system performance with a very small amount of overhead cost.

With this motivation, we design the history buffer for the "edit distance comparison"

of TEXPROS. The history buffer stores a list of (original term, result term) pairs. Each



122

time when users uses the "edit distance comparison", the original term and result term that

the user selected will be automatically added into the history buffer, if the pair does not

exist in the buffer. For example, the pair (Jinsun Hu, Jianshun Hu) will be automatically

stored into the history buffer. The usage frequency and latest usage time of these pairs

will be also stored for each pair, which is used to rank the list of the pairs in the history

buffer. With the history buffer, when user wants to use the "edit distance comparison", the

user's original term will be first used to exactly match the original term of each pair in the

history buffer. If we find some pairs in the history buffer contains the same original term as

user supplies this time, we will get their result terms, create the history list and return the

list to the user. For most cases, it will directly hit the user's request. If the user selects one

from the history list, the usage frequency and latest usage time of the corresponding pair in

the history buffer will be automatically modified. If the user does not want any term of the

history list, the system will ignore the history list and continue the edit distance

comparison.

In summary, our "approximate term matching" is based on two popular existing

techniques, the pattern matching and the edit distance comparison. It can assist users to

find the system terms that they want. In this way, when the system cannot find the related

terms and documents with respect to the users' original query or the users do not know

exactly what the terms they are looking for, TEXPROS can do the approximate term

matching and give users cooperative answers. Also, with the accessories processes

presented in this chapter, we can let users more precisely define their request, speed up

and ease our approximate matching procedure.
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In this dissertation, we only present the design of the "approximate term matching",

which focuses on the normal term cases. It is not extended to the special kinds of data yet.

In TEXPROS, the DataDomain handles the knowledge of special kinds of data, which is

not supported by the thesaurus. To implement the approximate matching in DataDomain,

the basic idea is to define a [0,1] similarity function for the recognizer of every

DataDomain. Therefore, we can tell the similarity between the original term and the

DataDomain, instead of a "True/False" answer. However, TEXPROS targets at the

general working (application) domain. Users can define any kind of DataDomain. So, we

will exploit in our future research how to define a general [0,1] similarity function or

several kinds of functions to cover all these cases. Also, our current implementation is

based on two existing popular techniques: pattern matching and edit distance comparison.

There exist some other techniques, such as soundex, which may improve our current

implementation. In our future research works, we will also exploit these techniques to

improve the approximate term matching for TEXPROS.



CHAPTER 8

REGISTRATION CENTER

TEXPROS is an intelligent knowledge-based document processing system. From the

system viewpoint, its architecture can be divided into an organization of three levels. At

the highest level, it has an inference engine, which includes several functional components,

such as SCAN/OCR, Classification, Extraction, Filing, Browsing, and others. The

knowledge base is at the lowest level, which includes system catalog, thesaurus,

DataDomains, etc. Between these two levels, there is a knowledge management level,

Figure 31 Current System Architecture for TEXPROS
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which is used to create a unified knowledge environment to support the inference engine

components. The three-level system architecture is shown in Figure 31.

Based on this system architecture, users are allowed to add or delete knowledge

from the knowledge base of TEXPROS only through the inference engine components.

Adding or deleting knowledge in or from the knowledge base is a kind of one-by-one (or,

one instance at a time) behavior. For example, to create a university folder organization, a

user must go to the Folder Organization and Filing component to create folders one by

one and then link them together. The Folder Organization and Filing component is a part

of the TEXPROS' inference engine. The knowledge about the folder organization is

created by the user in the inference engine and then stored into the knowledge base. To

create the document type hierarchy, a user should go to the DTH component, which is a

part of the inference engine, to create frame templates, one at a time, and then store them

into the knowledge base. Even to create the thesaurus (namely, the user defined second

level thesaurus), the user has to go to the inference engine to create them one at a time.

From these examples, we observe that TEXPROS fails to provide users with the flexibility

to handle large amounts of knowledge or knowledge packages. In other words, this type

of knowledge management structure in TEXPROS is a relatively closed structure.

There are a number of research or commercial knowledge-based systems that

employ the closed knowledge management structure [11, 13]. Most of these systems are

for a specific working domain. The knowledge for a specific working domain is known

and pre-defined before the system is implemented and delivered to the users. In other

words, when the users use the system, most of the knowledge is already built into the

knowledge base. They need only process the knowledge from the base; and they do not



126

need to make any changes to it. Even though users need to add in some knowledge, the

amount of the knowledge is relatively very small. In this type of applications, the closed

knowledge management structure is perfectly suitable for the system.

But, in reality, this is not always the case for TEXPROS. TEXPROS targets at

document processing for general working domain. That is, TEXPROS is designed for

processing documents in any applications of general working domain. The system is not

limited to a specific area. Users can mount TEXPROS from one working domain to

another. Generally speaking, the application of TEXPROS to a specific working domain is

not as attractive as those systems designed for that specific working domain. For these

systems designed for a specific working domain, the working domain knowledge is already

pre-defined and therefore the systems are ready to be booted and run. But for TEXPROS,

before the system can be used, users must spend a significant amount of time creating,

step by step, the specific working domain knowledge. The reason is that TEXPROS

employs the closed knowledge management structure. All the knowledge must be added,

one by one, into the knowledge base, through the use of the inference engine components,

which are basically designed to process documents but not to handle knowledge,

especially large amounts of knowledge or knowledge packages. For some specific

knowledge, such as DataDomains, it is even very difficult for users to add additional

knowledge into the knowledge base through the use of the inference engine components

after the system is running.

Now, if TEXPROS requires to be for general working domain, which is a very good

feature, the major problem is how to make it easy to add the large amounts of knowledge
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or knowledge packages into the knowledge base. We will refer to this problem as the

knowledge package add-in problem.

To solve this problem, an easy "+" port is proposed. This easy "+" port is a back

door for users to add or delete a package of knowledge into the knowledge base. So, from

this viewpoint, TEXPROS is the core system for document processing. Users can use this

easy "+" port to add knowledge packages for any specific working domain.

Figure 32 Easy "+" Port for TEXPROS

Consider an example in Figure 32. Before TEXPROS is used by a pharmaceutical

company, the users can use this easy "+" port to add a knowledge package of the

pharmaceutical working domain into the knowledge base. Then, this TEXPROS becomes

an effective system that is applied in the pharmaceutical working domain. Before a law

firm uses TEXPROS, we can create a knowledge package for the legal documents

environment, and allow the attorneys and legal staffs to add the knowledge package

through the use of this easy "+" port. Further more, users can use this easy "+" port to add

multiple knowledge packages into the same TEXPROS. For the Legal TEXPROS
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example, users can further add a financial knowledge package into the same TEXPROS

through the easy "+" port. Then this Financial + Legal TEXPROS can fit in both the

financial and legal document environment. Most significantly, the procedure for adding

knowledge into the knowledge base uses this easy "+" ports to accomplish the addition

without going through the inference engine components. This requires only a little time,

possibly just a click. The procedure for adding knowledge via the easy "+" port is

designed to be user-friendly so users can easily handle it, without any need of assistance

from TEXPROS designers. With this easy "+" port, TEXPROS is flexible to be used for

general working domain. In addition to that, it can better compete against other available

systems for the specific working domain. Since this easy "+" port targets on the

knowledge management, this port should remain in the knowledge management level, not

in the inference engine.

Based on the previous discussion, we present the registration center as a component

of TEXPROS.

8.1 Registration Center Concept

Registration Center is a component which is used in the knowledge management level of

TEXPROS. It allows users to directly add, delete or port a knowledge package into or

from TEXPROS. Cooperating with other agents in the knowledge management level, the

registration center can dynamically create the unified knowledge environment to support

the inference engine components of TEXPROS. Therefore, the registration center is the

easy "+" port that we need for TEXPROS. As shown in Figure 33, with this registration

center, knowledge can be added into, deleted from, and obtained directly from the
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knowledge base by going through the inference engine components, but also directly from

the registration center in the knowledge management level. Most importantly, the

registration center implements the open knowledge management structure for TEXPROS.

Figure 33 Registration Center in TEXPROS

With the registration center, the overall view of TEXPROS is changed to a core

open system.

Here, the "core" means, with the general working (application) domain knowledge,

such as the first level thesaurus, all the components of the inference engine, such as

Scan/OCR, Classification, Extraction, Filing and Browsing, are combined to form the

heart of intelligent document processing system for any working domain. But TEXPROS
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is only a core. Using this core, TEXPROS can be operated, but inconvenient, for a specific

working domain. But through the registration center, if we add in a pharmaceutical

knowledge package, then TEXPROS becomes a PHARMACEUTICAL TEXPROS; if we

add in a legal knowledge package, then TEXPROS becomes a LEGAL TEXPROS. In

other words, TEXPROS is the bare bone system (or is an engine), which is flexible to

tailor to any specific working domain through the use of the registration center.

Here, the "open" means the knowledge management structure for TEXPROS is a

kind of open structure. Through the use of the registration center in the knowledge

management level, users can directly add or delete a knowledge package into or from the

knowledge base. The core TEXPROS provides users with a back door, which is always

open to any knowledge packages to be added or deleted conveniently, and gives users

great flexibility to tailor the system to any specific working domain.

In TEXPROS, the registration center can manage all kinds of knowledge, such as

the knowledge about the folder organization and the document type hierarchy, the

thesaurus, the DataDomains. Besides the knowledge packages, the targets of the

registration center will be extended to the resources, which include all kinds of knowledge

or accessory functional components used to support the work of the core TEXPROS.

Besides the knowledge base, there are some other accessory functional components

which can be used to support the work of the core. If we extend the applications of the

registration center to these other components, users will have great convenience to control

and enpower the system. For example, we can use the registration center to allow users to

control several scanners for one system at the same time. Users can use the registration

center to update the OCR software. Using the registration center, users can plug
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accessory components, such as the "voice recognition component" into TEXPROS. These

capabilities give users great convenience to control our core open system. This is the

reason why we wish to extend the applications of the registration center from knowledge

package to other resources. But basically, the registration center mainly focuses on the

control of knowledge packages. In the remainder of this chapter, we will restrict our

discussion in the area of knowledge for the registration center.

8.2 Structure of Registration Center

The Registration Center is a back door mechanism, which allows users to add knowledge

packages into the system or to delete any knowledge packages from the system. For the

convenience reason, it is directly used by the users. The end users of TEXPROS are naive

users who may make mistakes when using the Registration Center. For example, A user

wants to register a DataDomain, which in fact may be an irrelevant computer game, into

TEXPROS. Or a thesaurus user wants to register a thesaurus package, which is of the

form that cannot be recognized by the system. To prevent the problems of this sort, the

system must provide users with certain agreements. The requests to add the knowledge

into the system or delete the knowledge from the system must be clearly and well defined

in TEXPROS. Based on these requests, the system can determine whether the candidate

knowledge is acceptable for the system. In TEXPROS, this kind of requests is called a

knowledge protocol.

In TEXPROS, a knowledge protocol is a set of requests for its defined kind of

knowledge in an acceptable form of TEXPROS. Any knowledge source, which satisfies

the knowledge protocol, will be regarded as providing knowledge in an acceptable form of
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TEXPROS. The knowledge protocols can be knowledge items stored in database, or

protocol functions, depending upon the different protocol requests and their sophisticated

nature.

In TEXPROS, there are several kinds of knowledge, such as the folder organization,

the document type hierarchy, the DataDomain and the thesaurus. For each kind of

knowledge, there must be a knowledge protocol. These knowledge protocols are

contained in a knowledge protocol base, which is used to support the Registration Center.

This knowledge protocol base is pre-defined and fixed to users. Besides the knowledge

protocol base, another important part of the Registration Center is the management

services component. There are three parts of the management services of the Registration

Center. They are the protocol matching, the consistency checking, and the knowledge

updating.

Protocol matching is the first step, if a user wants to register in a knowledge source.

The Registration Center will get the proper knowledge protocol from the knowledge

protocol base, based upon the type of the knowledge. Then the management service will

interpret the protocol and make contact with the knowledge source to confirm whether

the coming source is in the acceptable knowledge form (i.e., whether it satisfies the

protocol). If it does not satisfy the protocol, then the request of the Registration Center

will be rejected and error information will be responded to the user.

Even if the source is in an acceptable knowledge form, it doesn't mean that it can be

added into the system or deleted from the system. The knowledge management level is

responsible for creating a unified knowledge environment for the inference engine

components. The add-in or delete-from operation of knowledge may result in
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inconsistency in the current knowledge environment. The consistency checking part of the

management service is responsible for checking whether the knowledge environment will

still keep the consistent after the operation.

One of the great features of the Registration Center is that it provides users with

flexibility and convenience to handle the knowledge base; and, therefore, a unified

knowledge environment should be kept dynamically, by means of the knowledge updating

management service. After the add-in or delete-from operation of knowledge, knowledge

updating management service will cooperate with various parts of the knowledge

management level, to update the knowledge base and recreate a unified knowledge

environment. Also, when a user wants to export a knowledge package, the knowledge

updating service will be responsible for exporting the knowledge and creating the

knowledge package.

Besides the management services and the knowledge protocol base, the Registration

Center also provides users with an interface. This Registration Center's user interface

consists of four parts. A register interface is used to let a user register the knowledge

source into TEXPROS. A de-register interface is used to let a user delete some

knowledge from the TEXPROS. An export interface is used to let a user export some

knowledge for creating a knowledge package. Finally, a testing interface is used to let a

user test the current knowledge environment. Figure 34 shows the structure of the

Registration Center.



Figure 34 Registration Center Structure

Because there are several kinds of knowledge used in TEXPROS, in the following

section, we will use DataDomains as an example to show how the Registration Center

works.

8.3 Registration Center for DataDomain

DataDomains can be referred to as a kind of knowledge in TEXPROS, which is used to

support the extended thesaurus functionality, pattern recognition and data type operations.

In this section, we shall use DataDomains as an example to show how to use the

Registration Center to control a specific kind of knowledge. We will focus on the heart of

the Registration Center, namely the knowledge protocols and the management services for

adding and deleting DataDomains. The discussion here is based on the prototype of

TEXPROS, in which we use Java to implement the Registration Center and DataDomains.
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8.3.1 Knowledge Protocols for DataDomains

The knowledge protocol for DataDomain consists of five items (namely, the recognizable

language, the file extension, the implemented interface, the data member and the root

interface).

• Recognizable language: Java

• File extension: .class

• Implemented interface: DataDomain

• Data member: operationList, helpMessage

• Root interface: DataDomain

public interface DataDomain

public boolean recognizer(String s);

public String	 converter(String s);

public Vector getOperationList();

public boolean operation(String operator, Vector parameters);

}

These five items can be divided into two groups. The first two items are used to

confirm that the incoming source of knowledge is written in Java language and is the

binary executable code. The last three items are used to define the class of a DataDomain

in Java language. Each DataDomain should support the functionality of the thesaurus, the

pattern recognition and the data type operations. This can be done by the Java Interface

"DataDomain", which is defined in item 5. In this DataDomain's root interface, we define

four methods, which are used to support the necessary functionality of DataDomains.
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Also, in item 3 the implemented interface, we force that the incoming source of knowledge

must inherit all the properties from the DataDomain's Root interface, which enforces the

incoming source of knowledge to have these functionalities (namely, the recognizer, the

converter, the getOperationList and the operation). In addition, the DataDomain must be

self-described. So, in item 4, we enforce the incoming source of knowledge to have these

two data members (operationList and HelpMessage), which are used for the self-

description.

This knowledge protocol defines what kind of DataDomain source is acceptable by

TEXPROS. It is used to support the protocol matching management service to confirm

whether a user's registration request satisfies the DataDomain knowledge protocol. Also,

it gives users a clear description what is an acceptable DataDomain in the system. Without

knowing the detail of the inside of the TEXPROS, the users can develop DataDomains

themselves and register them into TEXPROS, simply based on the knowledge protocols.

This gives the users great flexibility to tailor TEXPROS to their specific working domain,

and therefore enpowers TEXPROS.

8.3.2 Management Services for DataDomains

For DataDomains, there are three parts of management services in the Registration

Center, namely the protocol matching, the consistency checking and the knowledge

updating. These management services will cooperate with the DataDomain Agent, based

on the DataDomain knowledge protocols and the DataDomain base, to dynamically create

a unified DataDomain environment for the TEXPROS inference engine components.
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8.3.2.1 Protocol Matching for DataDomains: This management services component

supports user's request for registering a new DataDomain. When registering a new

DataDomain, the user will supply the information of the name and current source location

of the new DataDomain. Based on the name and location supplied by the user, the

management services component will first check the existence and accessibility of the

source of the new DataDomain. If there is no problem, the management services

component will load the DataDomain knowledge protocols from knowledge protocol base

and begin to match the DataDomain against the protocols. First, the management services

component will check whether the file extension of the DataDomain is a ".class", and it

will dynamically create the Java class from the source of DataDomain. This will confirm

that the source is a Java binary file. After obtaining the Java class for the source, the

management services component is able to get all the necessary information for confirming

whether the DataDomain source is satisfied with the last three protocol items. If all these

have no problem, it means the incoming source is an acceptable DataDomain to

TEXPROS. Then the management services component will proceed to the consistency

checking of registration. If there is a problem on any of these steps, the registration

procedure will stop and error information will be forwarded to the user.

8.3.2.2 Consistency Checking for DataDomains: 	 This management services

component supports user's request for registering a new DataDomain or de-registering an

existing DataDomain.

When registering a new DataDomain into TEXPROS, the management services

component checks whether the new DataDomain is already in the current DataDomain



138

base, based on the name of the new DataDomain. If it does not exist in the DataDomain

base, then proceed the registration procedure to the knowledge updating. If it is already in

the DataDomain base, the management services component will ask the user whether

he/she wants to use the new DataDomain to overwrite the old one. If the user refuses to

overwrite the old one, then the registration procedure is stopped. Otherwise, this

information will be forwarded to knowledge updating service.

When de-registering an existing DataDomain from TEXPROS, the management

services component uses the name of a DataDomain to check whether it exists in the

current DataDomain base. If so, the service component will further check whether there

are some other knowledge related to this DataDomain. For example, some attributes in a

frame template may use this DataDomain, or some folders' predicates may use this

DataDomain. If there is other knowledge that this DataDomain refers to, the system will

tell the user these related knowledge and reject the user's request to de-register this

DataDomain. Until the user first deals with these related knowledge, he can go back to de-

register this DataDomain.

8.3.2.3 Knowledge Updating for DataDomains: This management services component

is used to support users' request to register a new DataDomain or de-register an existing

DataDomain or export an existing DataDomain.

When registering a new DataDomain, the management services component will

check whether it would overwrite an existing DataDomain. If it is a purely new

DataDomain, the management services component will copy the source of the new

DataDomain into the DataDomain base; and then contacts the DataDomain Agent to add
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it into the current DataDomain environment. If it is an overwriting request, the services

component will first copy the source of the DataDomain over the old DataDomain, which

has the same name, in the DataDomain base. The old DataDomain will be kept a copy in a

temporary directory for the case that users still need it. Then the service component

proceeds to the knowledge base, finds those knowledge which is related to the overwritten

DataDomain, and updates the knowledge using the new DataDomain to keep consistency.

Finally, the management services component will contact the DataDomain agent to update

the current DataDomain environment.

When de-registering an existing DataDomain, the management services component

will delete it from the DataDomain base and contact with DataDomain agent to update the

current DataDomain environment. The deleted DataDomain will be kept a copy in a

temporary directory for the case that users still need it.

To export an existing DataDomain, the management services component will find

this DataDomain from the DataDomain base, make a copy and save it as the file that users

request.



CHAPTER 9

CONCLUSION AND FUTURE WORK

In today's information era, intelligent document processing systems have drawn much

attention in research and development. The systems are considered to be used for

processing, managing and retrieving documents in an office environment and on the Web.

The use of Artificial intelligence (AI) technologies in developing document processing

systems is to support the intelligent behaviors of the systems. To incorporate the AI

technologies into the systems, the central issue is how to create a powerful knowledge

base, and to represent and manage different kinds of knowledge to support the systems.

Thus, knowledge management itself has become a critical part in document processing

systems.

In this dissertation, we presented a new approach to creating the knowledge base

and managing different kinds of knowledge for the intelligent document processing

systems. Our research target is to design a powerful and applicable TEXt PROcessing

System (TEXPROS), which is a knowledge-based intelligent document processing system

for general working domain. TEXPROS employs the concept of dual models, which

consists of the folder organization and the document type hierarchy, for representing and

managing the documents. We introduce a new System Catalog structure to represent and

manage the knowledge of the dual models for the TEXPROS. We also present an

approach to creating the frame template base and the frame instance base, which are used

to represent and store the physical frame templates and frame instances, respectively.. To

compare with other document processing systems, the presented approach allows not only
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classifying the documents based on their conceptual types, but also helps users to

categorize (that is, file) the documents into a real-world document storage organization.

Also, the unified approach is used to represent and store both the operational and system

level information. This gives users greater flexibility to retrieve not only general document

information, but also the meta-data information.

We employ an enhanced thesaurus model to support the TEXPROS' functional

capabilities. To apply TEXPROS to the general working (application) domain, the new

thesaurus model is a two-level structure, which allows users to create and update the

knowledge tailored to a specific working domain. The concept of KeyTerm is discussed to

improve the performance of TEXPROS. Furthermore, we introduce several operations,

which operate on the thesaurus in TEXPROS, and then introduce the internal frame

instances to solve the inconsistency problem arising during the thesaurus operations. The

concept of Value Composition is also defined, which allows the use of the composite

attributes. The use of the composite attributes could be a critical issue in the frame

template of TEXPROS, if it is not treated properly.

Ambiguity of senses is a common AI problem encountered in document processing

systems. A lot of research works focus on the use of pre-defined working domain

knowledge or the statistical approach, which analyze words to solve this problem. This

statistical approach becomes less effective for a personal system, such as TEXPROS,

which does not have a large collection of testing data for specific working domains. In this

dissertation, we present an approach called the "Semantic Range" for solving the sense

ambiguity problem. This new approach is based on the dual models of TEXPROS, which

represent the real-world context environment of documents from the viewpoint of users. It
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employs the document level knowledge to solve the sense ambiguity problem without

requiring a large collection of testing data. We then present the algorithm of "Semantic

Range Evaluation".

Documents are composed of a bundle of text strings. In additional to the string

operations, the users need much more support to handle special kinds of data. Most

document processing systems lack this kind of support. In this dissertation, we present a

new structure "DataDomain" to solve this problem. DataDomain is employed to handle

the special kinds of data, and to support the extended thesaurus' functionalities, pattern

recognition and data type operations. Furthermore, users can employ DataDomain to

tailor the system to specific working domain knowledge. We also present a new agent

structure "DataDomain" Agent to hide the details of all DataDomains and maintain a

complete DataDomain environment to support the inference engine components. This

observes the information-hiding principle.

KeyTerm transformation is a major procedure of the implementation of sense

matching of TEXPROS. In this dissertation, we present a KeyTerm Transformation

component, which cooperates with thesaurus, Semantic Range and DataDomain, to solve

the general KeyTerm transformation problem of TEXPROS. Also, we define KT Request

and KT_Reply as the standard input and output of KeyTerm Transformation component.

In that way, TEXPROS' functional components can easily communicate with the

KeyTerm Transformation component and get KeyTerm transformation support for their

functionalities. In this dissertation, we also investigate the use of two existing popular

techniques: pattern matching and edit distance comparison, to implement the approximate
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term matching for TEXPROS. Some accessory processes are also given to speed up and

ease the approximate matching procedure.

TEXPROS is aimed to be used in a general working domain. A major problem is

how to help users port knowledge packages and tailor the system to a specific working

domain. To solve this problem, we introduce a component, "Registration Center" into

TEXPROS. Based on the "Registration Center", we change the knowledge management

structure of TEXPROS from a closed structure to an open structure. It gives users not

only greater flexibility to handle knowledge packages, but also helps system developers to

empower our system with the capability of integrating various components into our

system.

The prototype of TEXPROS is implemented using Java language on Window NT

platform. The testing of the prototype proves that the presented knowledge management

approach is applicable. It successfully manages the various kinds of knowledge employed

by TEXPROS, and greatly supports the intelligent behaviors of system functional

components. In the future, we will continue to improve our implementation and do the

performance testing based on large amounts of documents. However, there also exist

some limitations. In the following, we will discuss these limitations and future research

works to resolve them.

In this dissertation, we presented a two level thesaurus model that focuses on the

synonym relationship, which is a critical part in document processing systems. However,

we need to investigate some other relationships, such as narrow term (NT), broader term

(BT) and related term (RT). These thesaurus relationships are also very helpful in

document filing and retrieving. We intend to extend the thesaurus model to cover these
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relationships. Also, the current two level thesaurus model is designed to support

TEXPROS as a personal document processing system. When TEXPROS is used for

multi-user environment, the two-level structure is not enough. In our future research, we

will also investigate the multi-level thesaurus model to support TEXPROS as a multi-user

document processing system.

Currently, when dealing with ambiguous terms in TEXPROS, we only consider the

"system-ambiguous" cases. In other words, users are always responsible for giving the

correct KeyTerm in case system fails. But in the real world, in some cases, terms may be

also ambiguous to users, which we called "user-ambiguous" cases. How to handle these

"user-ambiguous" cases is another direction of our future research works.

Approximate term matching is employed to give users cooperative assistance to find

the system terms that they want. Till now, our design of "approximate term matching"

focus on the normal term cases. It is not extended to the special kinds of data yet. To

implement the approximate matching in DataDomain, the basic idea is to define a [0,11

similarity function for the recognizer of every DataDomain. Therefore, we can tell the

similarity between the original term and DataDomain, instead of a "True/False" answer.

But the problem is that TEXPROS targets at the general working (application) domain.

Users can define any kind of DataDomain. So, we will exploit in our future research how

to define a general [0,1] similarity function or several kinds of functions to cover all these

cases. Also, our current implementation is based on two existing popular techniques:

pattern matching and edit distance comparison. There exist some other techniques, such as

soundex, which may improve our current implementation. In the future, we will also

investigate these techniques to improve the approximate term matching for TEXPROS.
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