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ABSTRACT

OBSERVERS FOR DISCRETE-TIME NONLINEAR SYSTEMS

by
Walter D. Grossman

Observer synthesis for discrete-time nonlinear systems with special applications to

parameter estimation is analyzed. Two new types of observers are developed. The

first new observer is an adaptation of the Friedland continuous-time parameter

estimator to discrete-time systems. The second observer is an adaptation of the

continuous-time Gauthier observer to discrete-time systems. By adapting these

observers to discrete-time continuous-time parameter estimation problems which

were formerly intractable become tractable.

In addition to the two newly developed observers, two observers already

described in the literature are analyzed and deficiencies with respect to noise

rejection are demonstrated. Improved versions of these observers are proposed and

their performance demonstrated.

The issues of discrete-time observability, discrete-time system inversion, and

optimal probing are also addressed.
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CHAPTER 1

INTRODUCTION
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adjustment of the process noise and measurement noise covariance matrices to

"mask" the nonlinearity of the system. Tuning is best achieved by running Monte

Carlo analysis and adjusting the noise matrices such that the statistical errors (the

statistical state covariance matrix) matches closely with that propagated by the

Riccati equation.

"Masking" the nonlinearity with process noise or measurement noise impairs

filter performance by failing to exploit all the knowledge one has of the system

process and measurement equations. The system and measurement equations,

though nonlinear, may be known very well, as in the case of satellite dynamics. Yet,

to fit the linear observer paradigm, this knowledge cannot be exploited to its fullest.

In other situations where the nonlinearity is "hard," such as a zero-velocity

stiction, the linearized observer may fail to converge.

Discrete-time observers for nonlinear systems are of interest because observers,

linear, nonlinear, continuous-time, or discrete-time are implemented with discrete-

time digital computers. Continuous-time observers are approximated by combining

high sample rates and low-order approximations to system dynamics. For low sample-

rate systems the techniques for implementing continuous-time observers are less clear.

1.1 Nonlinear Systems

The dynamics of many completely known systems are described by nonlinear

equations. The simple pendulum is described

where x1 = 0, the pendulum angle. In fact, the broad class of Lagrangian systems is

nonlinear and can be written [48]
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or in state-space form

Nonlinear systems also occur as a result of describing a parametrically-

uncertain linear system in terms of an unknown system parameter by augmenting

the system state vector with the unknown parameter. The simplest example is the

single-pole filter with an unknown pole p. If p is known, the dynamics are linear

If p is unknown it can be adjoined to the state vector. Letting x2 = p, the

previous system is described by the nonlinear equations

Sometimes nonlinear systems are both parametrically uncertain and intrin-

sically nonlinear. The coulomb model for friction is an example

where 0 is the unknown coefficient of coulomb friction.

It is important to note is that by augmenting the state vector with the system

parameters the parameter estimation problem can be considered as a subclass of the

general nonlinear estimation problem.
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1.2 Discrete-Time Systems

Many economic processes, chemical processes, and pharmacokinetic processes are

described better in discrete-time than in continuous time [30]. This class of discrete-

time systems usually involves discrete-time measurement and discrete-time control.

Sometimes the dynamic process is a combination of subprocesses which are completed

in discrete batches.

Most commonly, however, discrete-time nonlinear systems are derived from

discrete-time measurement and control of continuous-time systems. In many

situations a controller or an observer can be designed in continuous-time and

adapted to discrete-time by sampling "fast enough." The required sampling speed

is defined as that which works. The rule-of-thumb for the usual starting point is to

sample 10-20 times the faster than the fastest time constant of the system.

In other situations it is better to design the controller or observer using a "direct

digital" design. Such methods accounts for the effects of sampling and is particularly

appropriate for slow sampling systems.

Direct digital design is also appropriate when the vendor hardware functions in

discrete-time. A rate-integrating gyroscope outputs a discrete-time rotation pseudo-

vector

and the rigid-body kinematics are described in closed-form

where T is the attitude matrix and
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is the skew-symmetric matrix generated from the measured output of the rate-

integrating three-axis gyro.

1.3 Advantages of Direct Design of Discrete-Time Control Systems

In many practical circumstances the direct design of a discrete-time control system

is advantageous in comparison to the digital redesign by (rapid) sampling of the

continuous-time system. Slow sampling and accommodating vendor hardware are

two practical reasons for direct digital design. It is often difficult to calculate the

gains in the digital re-design of nonlinear systems leaving more of the design to the

"cut—and—try" method.

Certain problems have better theoretical formulation in discrete-time than in

continuous-time. Almost all work on system identification is developed for discrete-

time systems [2, 35]. Delayed or retarded systems are better formulated in discrete-

time where the theory is fairly complete [34, 14].

The impetus to the present work is one sentence from Friedland's "Advanced

Control System Design," [14], page 326. Describing parameter estimation in ARMA

models Friedland writes

Methods for estimating the parameters of a linear, discrete-time system
are available that have no obvious counterparts in continuous-time
systems.

This statement is true because discrete-time inputs and outputs are known at

every sampling interval. By comparison, the derivatives of the input and outputs of

continuous-time systems are rarely, if ever, completely available.

In 1993 Ciccarella et at [5] proposed a globally convergent continuous-time

observer. The observer is of general applicability except that its use is restricted to

systems of relative degree' r n, where n is the dimension of state. This restriction

'The relative degree of a system is equal to the minimum derivative of the output plus
one which is directly affected by the system input.
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precludes its application to the parameter estimation problem since, as seen in the

following example, the parameter estimation problem usually has relative degree

r < n.

1.3.1 Example

The dynamics of a two-pole filter are nonlinear if the proper state vector is augmented

with the unknown filter coefficients, i.e.,

The transformed variable z is the four element vector given by y and its first

three derivatives

The control input appears in the third element of the derivative vector making

this system one of relative degree r = 3. The state vector is four element, n = 4.

Since r < n this system does not satisfy the conditions for the Ciccarella observer.

For any system in which n > 1 and the dynamics are affine in the parameters,

the Ciccarella observer is inappropriate for estimating the parameters. Furthermore,

since most parameter estimation problems require persistent excitation to enhance

observability, the unforced version of the Ciccarella observer is of no utility.
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In spite of extensive research it was not possible to extend the Ciccarella

continuous-time results to systems of relative degree r < n. The difficulty arises when

r < n because the linearizing transformation upon which the Ciccarella results are

based is very complicated. The resulting observer requires explicitly the derivatives

of the input and the output of the system.

Moraal and Grizzle [42] and Ciccarella [6, 7] developed nonlinear discrete-time

observers which do not have a relative degree requirement. They did not, however,

address the practical implementation of their observers in real systems with noise.

Performance of their observers in practical applications is limited by measurement

noise and process uncertainty. Neither observer provides the right design "handle"

for implementation in a noisy environment.

In light of Friedland's above comment it appeared to this author that it may

be possible to cast the continuous-time Ciccarella observer into a discrete-time form

to overcome its relative degree limitations. In this present work this author develops

two new discrete-time observers which demonstrate excellent performance in systems

with noise. This author further demonstrates that the discrete-time observers of

Moraal/Grizzle and of Ciccarella , while not satisfactory for practical application in

their present form, can be modified to significantly enhance their noise robustness.

With this improved noise robustness the Moraal/Grizzle the Ciccarella observers can

be implemented in real systems.



CHAPTER 2

BACKGROUND

2.1 Observers for Time-Varying Linear Systems

Theory of observers for idealized time-varying linear systems with known dynamics

and measurement equations is fairly complete. Kalman's original work [29] was

written in terms of known, time-varying systems in which the statistics of the

process and measurement noise were zero-mean Gaussian with a known, possibly

time-varying covariance. Luenberger [37] coined the term "observer" and developed

the general, sub-optimal form.'

Current research in linear time-varying systems explores issues when the

systems of interest depart from this idealized model. Such issues include:

• Observer robustness with system or parametric uncertainty.

• Observer performance with non-Gaussian or incompletely known noise statistics.

• Observer performance of linearized approximations of nonlinear systems.

• Observer performance for linearized systems in which time-variation linear

system is "exchanged" for the time-invariant nonlinear system.

• Performance of reduced-order observers.

Since most practical systems represent a departure from the idealized model

presented by Kalman further important research continues in these areas.

2.2 Continuous-Time Nonlinear Observers

2.2.1 The Extended Kalman Filter

The earliest work on nonlinear observers, both discrete-time and continuous-time,

used some form of the extended Kalman filter (EKF). The extended Kalman filter

1It is interesting that Kalman developed the optimal form of the Luenberger observer
prior to Luenberger's development of the general, suboptimal form.

8
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was, in fact, invented by Swerling [49] to estimate satellite orbits before Kalman

developed the general theory. The term "extended" means that the filter dynamics,

the observation, or both are nonlinear and that the filter gains are calculated

by linearizing the equations about the current state estimate. Such filters have

been applied to intrinsically nonlinear systems and to systems made nonlinear by

state vector augmentation of unknown parameters. This method has been used

successfully by many practitioners and yet lacks a firm theoretical basis. Jazwinski

[27] provides an in-depth presentation of the EKF and its many variants with appli-

cation to the nonlinear problems of orbit determination and parameter estimation.

His presentation emphasizes continuous-time (possibly nonlinear) dynamics and

discrete-time, nonlinear observation updates—which are the most common appli-

cation in practice.

Ljung [35] further studied the theoretical asymptotic properties of the EKF in

parameter estimation. He demonstrated that in spite of its wide application, the

EKF can produce biased estimates or may even diverge.

2.2.2 Differential Geometry-based Nonlinear Observers

Isidori [26] presents a solution of the nonlinear observer problem using a nonlinear

transformation of coordinates to map the nonlinear system into the linear Brunowski

chain-integrator form. Linear observer theory is then used to assign eigenvalues of the

estimation error dynamics and guarantee convergence (but not necessary optimality.)

The example given by Isidori in [26] is an unforced system. The relative

degree of an unforced system is not defined or irrelevant since the input is zero by

construction. Isidori does not address the n-dimension forced system with relative

degree r < n, which is common for most parameter estimation problems. Parameter

estimation problems usually require some probing or persistent excitation to make

the system observable. A complete linearizing transformation for forced systems with
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relative degree r < n does not exist. (It may still be possible to linearize a portion

of the system.)

2.2.3 The Gauthier Observer

Gauthier et al [16] developed a fixed-gain nonlinear observer for continuous-time

systems and proved convergence. The observer requires nonlinear transformation

into Brunowski form (chain of integrators). A Sylvester equation, similar to the

steady-state Riccati equation is solved in the transformed coordinates to calculate

the fixed gain. An inverse transformation of coordinates is required to recover the

original states. In the general case, this inverse transformation requires the solution

of a set of partial differential equations.

2.2.4 The Ciccarella Observer

Ciccarella et al [5] extended Gauthier's work and improved upon it by eliminating

the nonlinear transformation. Ciccarella used nonlinear transformations to develop

his observer and to prove convergence. The final form of the observer, however, does

not require a nonlinear transformation.

2.2.5 Hybrid Coordinate Kalman Filter

The approaches of Gauthier and Ciccarella are forms of the hybrid approach used

by Grossman [23] for the bearings-only estimation problem. In [23] two coordinate

systems are used — one for the propagation of the dynamics and one for the

measurement update. The coordinate system for the dynamics propagation was

chosen to simplify mechanization of the integration of the state and covariance

equations. The coordinate system for the update is chosen for its good performance

under conditions of noisy measurements and poor observability. The covariance

matrix is propagated in the "dynamics" coordinate system and converted to the

"measurement" coordinate system using the Jacobian matrix relating the two
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systems. The Gauthier and Ciccarella observers use a similar approach where the

two systems are the native one and the one transformed to Brunowski normal form of

n derivatives of the output. (See section 8.1 for further discussion of this similarity.)

2.2.6 Reduced-Order Observers for Nonlinear Systems

In comparison with the large volume of work on full-order observers, very little

has been written about reduced-order observers, linear or nonlinear, despite their

great potential for simplifying controller design and improving controller robustness.

Friedland [12] derived the reduced order observer for linear systems. Properties of

the reduced-order Kalman Filter are summarized by Friedland in [13].

For nonlinear systems Friedland [14] developed the general form of the reduced-

order observer and described a new approach to parameter estimation for nonlinear

systems when the complete state is measurable and the system is affine in the

unknown parameter. 2

2.3 Discrete-time Nonlinear Systems Analysis

In contrast to the large volume of work on continuous-time nonlinear systems,

very little work has been done on the analogous problem of discrete-time nonlinear

observers.

A discrete-time system is one in which values for the state, the controlling

input, and the measured output are defined at discrete times. The general (possibly

nonlinear) discrete-time system of interest can be described
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The linear discrete-time system is a subset of the systems described above

Functions f and h in (2.1), (2.2) could be functions of the index k resulting in a

time-varying nonlinear discrete-time system.

The development of the differential geometric analysis of nonlinear systems in

the 1980's provided a new set of tools to analyze and develop nonlinear continuous-

time observers. Development of discrete-time nonlinear observers has not followed

their continuous time counterparts because little work has been done on the

analogous problem of discrete-time nonlinear system inversion. The reason is

that smoothness, continuity, existence of high-order derivatives is required for the

application of differential geometric analysis techniques. Discrete-time systems are

characterized by discrete jumps and thus cannot satisfy the typical smoothness

requirements.

Most of the limited amount of the literature in the field of nonlinear discrete-

time systems relates to system inversion applied to the controller design problem

with the presumption of full-state measurability. Scant attention has been given to

nonlinear discrete-time observer design and the fundamental issue of observability of

such systems.

The earliest work addressing the controller design problem is that of Grizzle et

al [20], [21] where they demonstrate that the willy-nilly application of the discrete-

time sample-and-hold on the input can destroy the linearization. Grizzle then

proposes a multirate scheme to mitigate the deleterious effects of the sample-and-

hold. Grizzle does not develop general theory, analogous to the differential geometry,

to be applied to discrete-time systems.
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More recently Kotta [30], [31] has developed a theoretical framework for

feedback linearization i.e., right inversion of discrete-time state-space systems. His

work applies to the feedback control problem under the assumption that full-state

feedback. is available. Kotta does not address the issue of nonlinear observers or the

inversion problem using partial state feedback.

Fleigner, Kotta, Nijmeijer have addressed the problem of feedback linearization

of discrete-time implicit systems [11].

The issue of observability of nonlinear discrete-time systems is addressed by

Sontag [47] and Nijmeijer [43]. Their results are summarized in chapter 3.

2.4 Parameter Estimation for Nonlinear Systems 3

Parameter estimation for closed-loop feedback control systems provided the original

impetus for this work on nonlinear discrete-time observers. In particular, this disser-

tation was motivated by a series of failed attempts to apply the continuous-time

Ciccarella observer 15] to estimate parameters in systems for which measurements

for all the states were unavailable. The cause of these failures, as stated in section

1.3 and section 5.1.2, was the conflicting requirements that the relative degree of

the augmented system be equal to the dimension the augmented state and that

the system be persistently excited. Formulating the problem in discrete-time and

applying a discrete-time observer, as shown in section 5.1.2, provides a means to

work around this conflict.

2.4.1 Parameter-Adaptive Control System Design

The notion of parameter-adaptive or "indirect-adaptive" control originated simul-

taneously with the birth of modern control theory. In 1958 Kalman wrote "Design

of a Self-Optimizing Control System" [28] in which he describes a system which

3See Åstr öm and Wittenmark [2], chapter 2, for further discussion of parameter
estimation as related to adaptive control and robust control.
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first identifies the pulse transfer function. 4 The article includes photographs of the

apparatus. In 1961 Kalman and Bucy wrote [29]

The generality of our results should be of considerable usefulness in the
theory of adaptive systems, which is as yet in a primitive stage of devel-
opment.
An adaptive system is one which changes its parameters in accordance
with measured changes in its environment. In the estimation problem,
the changing environment is reflected in the time-dependence of F, G, H,
Q, R. Our theory shows that such changes affect only the values of the
parameters but not the structure of the optimal filter. This is what one
would expect intuitively and we now have a rigorous proof. Under ideal
circumstances, the changes in the environment could be detected instan-
taneously and exactly. The adaptive filter would then behave as required
by the fundamental equations (I-IV) [the Kalman filter and variance
equations]. In other words, our theory establishes a basis of comparison
between actual and ideal adaptive behavior. It is clear therefore that a
fundamental problem in the theory of adaptive systems is the further study
of the properties of the variance equation (IV). [Emphasis in original
text].

Kalman does not address the methods by which "measured changes" in

environment (i.e., measurements) are to be processed to establish the time-dependent

values for system matrices F, G, H, Q, R from which his optimal filter is constructed.

This processing of "measured changes" into refined system and noise models has

been the subject of parameter-adaptive control system for the past thirty years. 5

41t is interesting to note that in this paper Kalman first raises the then unanswered
question of defining optimality of the controller once the system is identified. It is for design
of optimal systems rather than adaptive ones in which he made his greatest contribution
and for which he is best known.

5K alman does imply that the parameter estimation is not achieved by augmentation
of the state vector by the unknown parameters. For estimation of parameters in linear
systems, state vector augmentation is equivalent to exchanging the original linear time-
varying problem for a time-invariant nonlinear problem. Kalman developed the theoretical
optimal solution for the former and not the latter.

Many control systems are designed by substituting a (more tractable) time-varying
linear dynamics equation for the true nonlinear dynamics equation. State augmentation
techniques for parameter estimation is the opposite approach whereby a time-invariant
nonlinear system is substituted for a parameter-dependent, time-varying linear system. See
note 3.2, page 110 of [121 for further discussion of time-varying versus nonlinear systems.
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In 1965 Fel'dbaum hinted at a hierarchical control structure in which a super-

visory level "measures" the environment and establishes system parameters for which

the lower level optimal controller is designed [10], page 4. Implementation of this

hierarchy leads to the dual loop slow-loop/fast-loop adaptive controller structure

later developed by researchers in adaptive control:6

For a sufficiently slow change in the characteristics of the controlled
object, a primary controller can be constructed according to optimal
system theory, by providing it, however, with variable parameters. A
secondary controller-an automatic optimizer-by observing the operation
of the system, changes the parameters of the primary device, such that on
the whole the system remains close to optimal, in spite of an unexpected
variation in the characteristics of the controlled object.

2.4.2 Optimal Probing Signal Design

The issue of "optimal probing" input is an inherent part of dual control and has been

explored by many investigators. Fel'dbaum identified the requirement of probing

signals for parameter identification [9, 10]. Fel'dbaum [10], pages 30-31, expounded

the dual nature of the control input, i.e., the control input should be used probe

and characterize the system parameters as well as to drive the system to the desired

trajectory:

A study of the disturbance 2 [plant disturbance], i.e., by essentially
varying the characteristics of the object B [the plant] in an unexpected
manner, can be made...not by passive observations but by an active
method, by means of rational "experiments." The object would be
"sensed" by the actions ii, [plant input], having a trial perceptive
character, and the results p- [plant output] of these actions analyzed
by the controller A. The purpose of such actions is to further the more
rapid and precise "study" of the characteristics of the object B [the
plant], which will help to choose the best control law for the object.

Bar Shalom, Tse, et al [50], [52], [4], [51] extended Fel'dbaum's work and

derived "optimal probing" signals for identifying systems. Their work and the work

6This dual loop structure is based upon the separation of time constants between plant
parameters and proper state variables. It is ubiquitous in the adaptive control literature
and is featured on the front cover of [2].
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of Mehra [39], [40], [41] and Goodwin et at [18], [17] is based upon maximizing the

norm of the Fisher information matrix (the inverse covariance matrix). Asti'Om's

work [2] in persistent excitation is based upon minimizing the condition number

of the deterministic observability matrix. This approach is closely related to the

maximizing the norm of the Fisher information matrix. The issue of optimal probing

is not relevant to linear systems since the separation theorem proves that for a linear

system the optimal observer problem is independent of control [12, 33, 19].

It has not been generally recognized that for nonlinear systems which can

be feedback-linearized the "optimal" probing signal is the linearizing feedback. The

linearizing feedback transforms the nonlinear system into Brunowski Normal form

with an observability matrix equal to the identity matrix.'

For the continuous-time SISO system with relative degree r n, where n is

the order of the system



where v is the external input to this linearizing compensator.

In the z coordinates the system equations are

17

thus, no other probing signal can make z more observable.

The sensitivity of the x coordinates to changes in the z coordinates is an

important question in using feedback linearization control system design. The
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Jacobian of Ø  provides insight into this sensitivity. Define the Jacobian

which small changes in x, depending upon the direction, may hardly be visible from

the z coordinates and others greatly magnified. Also, cond J-1 = cond J so that

even if the z system is very observable, this observability may not translate well to

observability in the x coordinates. It is prudent to asses the condition number of J

prior to implementing inverse dynamics.

The same results apply to discrete-time systems.' The linearizing control is

the optimal probing input in terms of minimizing the condition number of the

observability matrix. Presumably, the caveats regarding sensitivity presented for

continuous-time systems also apply for discrete-time systems.

2.4.3 Methods of Parameter Estimation

Since the 1960's Å ström [2] et al developed much theory for estimating parameters

in discrete-time systems. This work is limited to systems which are affine in the

unknown parameters, i.e.,

where 0 is the vector of unknown parameters and is the vector of known functions

which may depend upon other known variables.

Å ström places particular emphasis on the identification of transfer functions.

His methods require direct measurement of the state variables in the functions. If

the system is transformed to a chain of output delays his techniques are applicable

using the measured system output and imposing an n stage delay. His work

8The theory regarding linearization of discrete-time nonlinear systems is not as mature
as that for continuous-time systems. Recent work by Kotta [30] describes methods for
applying feedback linearization to discrete-time nonlinear systems.
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is limited to discrete-time systems due to the practical simplicity of obtaining

Ljung and Söderstr öm [361 devote their entire book to the subject of recursive

identification. Their work is much along the lines of Å ström with similar applicability

and limitations.

Because the parameter estimation problem is a subclass of the general nonlinear

state estimation problem, the discrete-time observers developed in this dissertation

can be applied to parameter estimation. These new observers are, in fact, generalized

estimation methods of which the aforementioned methods of Å ström.Om, Ljung and

Söderstr öm are a subclass. As such, these new methods are free of many of the

limitations of the earlier methods.

2.5 Contribution of Present Work

2.5.1 Summary of Present State-of-the-Art

Much work has been done in applying extended Kalman filters (EKF) to discrete-

time problems, continuous-time problems, and mixed continuous-dynamics/discrete-

update problems. A strong theoretical foundation does not exist, but the observers

often work well when the nonlinearity is "soft" and initial estimates are "close."

The EKF may perform poorly or fail to perform completely when the nonlinearity

is "hard" or the initial estimates are not "close enough." [35, 22]

Gauthier and Ciccarella have developed observers for continuous-time nonlinear

systems with relative degrees equal to the state dimension. They have not addressed

the design of nonlinear observers for systems with relative degree less than the state

dimension. Such systems occur in the parameter estimation problem.

Moraal and Grizzle and Ciccarella et al have developed discrete-time nonlinear

observers which are applicable to systems with relative degree less than the state
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dimension but they did not address the essential issue of observer performance in

the presence of measurement noise or process uncertainty.

2.5.2 New Contributions

The original impetus for the present work was this author's consistent failure to

make continuous-time simultaneous parameter and state estimation work. The

good results obtained from the Ciccarella observer when applied to nonlinear

state estimation problem were not obtained when the observer was applied to the

parameter estimation problem. The parameter estimation problem when cast into

a state estimation problem by augmenting the state vector with the parameters

invariably yields a system with a relative degree r < n. The continuous-time

Ciccarella observer cannot be applied to such systems unless the input excitation

is zero. Typically parameters are not observable without persistent excitation and

the parameter states of the augmented vector are not observable with zero input.

Thus a conflict exists between the relative degree requirement of the continuous-

time Ciccarella observer and the persistent excitation requirement of parameter

estimation.

This problem is more tractable in the discrete-time formulation. The central

contribution of the thesis is the exploration and development of discrete-time

observers which solve this problem. Specifically, the primary contributions of this

present work are as follows:

1. Improvement of existing discrete-time observers

(a) Modification of the Moraal/Grizzle Observer to enhance noise rejection

thus enabling the reduction of the Moraal/Grizzle theory to practice.

(b) Modification of the Ciccarella Observer to enhance noise rejection by

solving a Riccati equation for the gain set and thus enabling the reduction

of theory to practice.
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2. Development of new discrete-time observers

(a) Adaptation of the Friedland parameter estimator to discrete-time systems

and demonstration that some previous well-known methods for parameter

estimation are a subset of this more general method. 9

(b) Development of the "Grossman Observer," the discrete-time version of the

Gauthier Observer (precursor to the Ciccarella observer) which allows for

the relaxation of the relative degree requirement of the continuous-time

Gauthier and Ciccarella observers.

Other contributions of this dissertation include:

1. Demonstration that the Cicarrella Observer is not generally appropriate for

the continuous-time parameter estimation problem (section 1.3.1).

2. Demonstration that for invertible systems the inverting control is the observ-

ability optimizing probe signal (section 2.4.2).

3. Elucidation of the relationship between the Ciccarella observer to earlier work

of Grossman regarding hybrid-coordinate system observers (section 8.1).

4. Elucidation of the relationship between the Friedland Parameter estimator

described on pages 318-324 of 1141 and the Friedland nonlinear reduced-order

estimator described on pages 183-187 of [14] showing that with a minor modifi-

cation of the latter, the former is a special case of the latter (section 8.3).

9Published in the AIAA Journal of Guidance, Control, and Dynamics [24].
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5. Extension the Friedland parameter estimator to provide for "parameter

dynamics" (section 8.2), i.e .. to systems of the form:



CHAPTER 3

OBSERVABILITY

3.1 Introduction and Background

Observability is well defined for discrete-time and continuous-time linear systems and

for continuous-time nonlinear systems which satisfy mild "smoothness" requirements.

The issue of observability for nonlinear, discrete-time systems is poorly addressed in

the control literature with the notable exceptions of one paper by Sontag [41 and

one paper by Nijmeijer [43].

Sontag [47] describes several forms of observability for polynomial systems.

1. Single-experiment observability.

2. Single-experiment observability with generic inputs.

3. Observability.

4. Finite observability.

5. Finite observability with generic inputs.

6. Algebraic observability.

7. Final-state determinability.

8. Final-state determinability with generic inputs.

The paper [47] is restricted to polynomial systems so that logically implicative

relationships among these various types of observability can be proven. In [47] it

is conjectured that the logically implicative relationships hold for non-polynomial

systems.

The paper [47] predates (slightly) the explosion of work in the 1980's in differ-

ential geometric system theory. Without this theory as extended to discrete-time

23
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systems, it is difficult to develop a simple definition of observability. It is interesting

to note that in [47] Sontag presents a rank test restricted to state-affine systems of

the form

Without the differential geometric system theory it was not simple to eliminate

this affine restriction. The rank test described in the sequel is not restricted to state-

affine systems and reduces to that presented in [47] for the subclass of state-affine

systems.

Nijmeijer [43] simplifies the definition of the observability using a discrete-

time approach parallel to the geometric system theory developed for continuous-

time systems [25], [32]. As stated in [43] this contribution is significant because this

definition of observability is a natural extension of that founded on the differential

geometric theory of continuous-time systems.

The definition of observability in [43] is restricted to autonomous discrete-

time nonlinear systems. The restriction simplifies the development of the work

but excludes the application of the definition to non-autonomous systems. This

restriction excludes the parameter estimation problem which usually requires

persistent input excitation.

The paper [43] describes an observability rank test for autonomous systems.

The rank test described in the sequel reduces to that presented in [43] for the subclass

of systems with zero-input excitation. Nijmeijer coined the term "strong local observ-

ability," which he defines for autonomous systems.
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3.2 Properties of Observability

Observability in the conventional sense is the canonical property of a measured

system by virtue of which it is possible to determine unambiguously, the system

dynamical state in a finite time from the external measurements, knowledge of the

system input, and knowledge of the process dynamics. The notion of observability

when extended and applied to nonlinear discrete-time systems should have this same

canonical property. Furthermore, this extended notion should reduce to the conven-

tional one when applied to linear discrete-time systems since such systems are a

proper subset of the larger class of nonlinear discrete-time systems.

3.3 Algebra for Discrete-time Nonlinear Systems

A causal discrete-time nonlinear SISO system is given by'



The vector of n successive outputs is given by
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where the discrete-time analog of the Lie derivative is introduced and defined recur-

sively

Allowing for a minor abuse of notation whereby a zero on the uk argument of



3.4 Observability of Nonlinear Discrete-time Systems

Now define a coordinate transformation

27

The system (3.1), (3.2) is then transformed to

Observability is defined in terms of being able to reconstruct the system state

x from the measured output {yk} and known input {uk}. Referring to (3.8), define

Definition 3.4.1



This definition is consistent with the rank test for linear systems
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State Xk is recovered by setting



3.5 Rank test for "Strong" Observability of Nonlinear
Discrete-time Systems

29

The observability rank test provides the sufficient condition for the existence

Definition 3.5.1

The implicit function theorem is the basis for this rank test. A rigorous proof

of the theorem can be found in most books on analysis [45]. The basis of the implicit

function theorem and this rank test is that for a small region about some point
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the sequence n then a local inverse exists and x is uniquely determined.

The rank test provides a sufficient condition for observability as defined in

section 3.4 and we define "strong" observability in terms of the rank test. The rank

test does not provide the necessary condition for observability as defined in section

3.4, i.e., a system can be observable in the sense of section 3.4 and fail the rank test

for "strong" observability as the following example illustrates.

Example
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The Jacobian

which is zero for xk = 0. This system fails the rank test so it is not strongly observable

as determined by the rank test. It is observable as defined in section 3.4 since the

and xk can always be reconstructed uniquely from output yk .

3.6 Degree of Strong Observability

The condition number of the Jacobian J, from (3.24), provides a continuous measure

of strong observability and the sensitivity of the reconstructed states to uncertainty

(noise) in the measured system outputs.

Strong observability is a necessary condition for the synthesis and numerical

stability of nonlinear discrete-time observers to be presented in chapters 4 and 5.

Synthesis of observers for nonlinear discrete-time systems which are observable but

not strongly observable is difficult since the state reconstruction at the singularity

point of the Jacobian is infinitely sensitive to small changes in the measured system

output.

The structure of Jacobian J, revealed by the singular value decomposition,

provides much information about observability. While cond J = ∞  and the system

is not strongly observable, some states may be very observable while others not.

These issues shall be explored further in chapter 7.



CHAPTER 4

MODIFICATIONS OF OBSERVERS FOR NONLINEAR
DISCRETE-TIME SYSTEMS

4.1 The Moraal/Grizzle Discrete-Time Nonlinear Observer

4.1.1 Original Form

The essence of the algorithm by Moraal and Grizzle is contained in their equations

(24), (27), (28) on page 398 of [42]. Consider the discrete-time nonlinear system

A window of n estimated successive system outputs starting with the k — n+ 1

output is generated from the retarded state xk-n+1 using multiple compositions of

the system forward dynamics (4.1) and the system output map (4.2)

32
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If the system is observable as defined in chapter 3 then in the noise-free situation

input/output windows Uk,Yk. The current value of the state can be recovered by

forward-propagating the retarded state n —1 times using multiple compositions of

(4.1).

In the Moraal/Grizzle observer the root of g is found using the multi-

dimensional Newton's method. A single Newton iteration is parametrically dependent

upon Uk, Yk and is a function of "seed" estimate of the retarded state zk =

The single step Newton iteration is described by equation (24) of [42] and is rewritten

below:

(4.8) with itself d times. 1 These Newton iterations yield the recursive relationship

By defining zk to be an n-delay retarded estimate of Xk , i.e., in the absence of
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In summary, the Moraal/Grizzle observer is composed of a Newton root finder

to bring the retarded estimate forward to the current time.

The block diagram of a single stage of the Moraal/Grizzle observer is shown

in figures 4.1. This block accepts the input/output windows, Uk, Yk, which act

and outputs a refined estimate of the retarded state, zk . The single Newton step

time.

The Newton solver can be iterated. This iteration is achieved by concatenating

single stage solvers, using the output of each prior stage as the seed for the next

stage. Again, these operations occur in zero sample time. This multiple iteration is

shown schematically in figure 4.2.

Figure 4.3 represents the combination of the Newton solver and state extrap-

olator which combine to form the Moraal/Grizzle observer.

Figure 4.1 Newton root finder — Input/Output form. The n-vectors Uk, Yk of system
inputs and outputs are "parameters" of the root equation.

Figure 4.2 d-stage Newton solver.



Figure 4.3 Moraal/Grizzle d-stage Newton observer.

4.1.2 Noise "Bandwidth" Properties of the Moraal/Grizzle Observer 2

The filtering properties of the Newton iteration can be understood analytically from a

static scalar example. Implementing a "slowing factor" a, the basic Newton iteration

If y is measurement then its true value is not known. Its measured value is its

35
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Substituting (4.19) into (4.17) leads to a first-order approximation of the error

dynamics of the noisy Newton iteration

The first term of (4.23) represents the free response of the first-order approx-

imation of the error dynamics. The second term represents the noise driving term.

converge to zero in at most n steps. Simultaneously, the input/output gain on the

system scaling. If g is noisy, this high gain can severely degrade system performance.

Example

The Newton observer is applied to the static scalar root search problem y - x3 = 0.

10-4 . Two thousand measurements were processed by the observer.

Figure 4.4 shows the first 200 samples of the observer and illustrates the effect

of varying slowing factor a on the observer convergence rate (transient response).

Figure 4.5 shows the last 1000 samples of the observer and illustrates the effect

of varying slowing factor a on the observer steady-state noise level.

Table 4.1 summarizes the effect of the slowing factor upon transient response

and steady-state noise level. Decreasing the a from 1 towards 0 yields a longer

transient response with improving noise rejection.
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Figure 4.4 Transient response of Moraal/Grizzle Newton observer applied to scalar

4.1.3 Modified Form

Modification of the number of iterations in the Newton root-finder is the only design

feature of the Moraal/Grizzle observer. It can be demonstrated that increasing the

number of iterations has a minimal effect upon observer performance and the effect

is not always a desirable one. Experience with iterated extended Kalman filters

has shown that a single Newton iteration improves the estimate of the "observation

also shown that multiple iterations increase the "bandwidth" of the Newton iteration

with deleterious effects to the system when noise is present.
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Figure 4.5 Steady state response of Moraal/Grizzle Newton observer applied to
scalar example illustrating the effect of different "slowing factors" a on noise level.

The state update and error dynamics for the single Newton step, (4.14), (4.23),

explain the poor noise performance of the Moraal/Grizzle observer and show the

method to improve this performance. Referring to the linear error dynamics, (4.23),

by setting a = 1, the fastest possible observer is achieved (in the linear approxi-

mation) but one with poor measurement noise rejection properties. By reducing a

such that 0 < a < 1 the observer is "slowed." This slowing provides mitigation of

the deleterious effects of measurement noise.

If 0 < a < 1, the error dynamics are still low-pass but lower bandwidth when

compared to a = 1. This reduced bandwidth is helpful in reducing the deleterious

effects of system noise for the Moraal/Grizzle observer and for iterated extended
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Table 4.1 Effect of "slowing-factor" a on Moraal/Grizzle observer transient response
and noise rejection for scalar example.

Kalman Filter. In addition, it reduces the input/output gain on the measurement

to α/f'(x) which is desirable when the measurements are noisy.

It is noteworthy that Moraal and Grizzle missed this important feature since it

is only major design feature of their observer. The number of iterations is the only

other feature of their observer over which the designer has control.

The slowing also manifests itself as a longer time for the transient response to

settle. In the presence of dynamic model mismatch the slower filter demonstrates

poorer tracking performance when compared to the filter with a 1 . Thus, as in

the case of linear filters, the gain selection represents a trade-off between mitigating

the effects of measurement noise and mitigating the effects of process uncertainty.

4.2 The Ciccarella Discrete-time Nonlinear Observer

4.2.1 Original Form

Ciccarella et al present two discrete-time forms of the nonlinear continuous-time

observer presented in [5]. The first form, described in [6], is a discrete-time version

of their continuous-time observer developed using a discrete-time version of the Lie

derivative operators. The development follows the continuous-time development, i.e.,
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1. Transform system into Brunowski normal form (chain of delays) using trans-

2. Develop a linear observer with stable gains in the transformed coordinate

system.

3. Transform system back to the original coordinates. Transform the linear gains

The second form of the discrete-time observer [7] uses an n-dimension

measurement vector synthesized from n successive measurements. This observer

is essentially a full-state feedback observer where the full state measurement is

"faked" by imposing a delay to collect the n-measurements and then propagating

forward the estimate. Ciccarella claims global convergence for the continuous-time

observer provided certain system properties were satisfied. In contrast, he claims

only local convergence for the discrete-time observer. Despite the lack of global

convergence, Ciccarella claims his observer to be advantageous in comparison with
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the Moraal/Grizzle observer in that no nonlinear equations need be inverted. The

Moraal/Grizzle observer is globally convergent if certain criteria are met but requires

the solution of a set of nonlinear equations. 3 Ciccarella further claims this "fake full-

state feedback" form of his observer is more robust than his single measurement form.

Cicarrella does not quantify robustness per se, but he demonstrated a parameter

estimation example in which his second observer performed well in contrast to his

first observer which performed poorly.

The structure of both forms of the Ciccarella observer is similar. Suppressing

the control inputs for clarity, the observer equations for the first Ciccarella observer

are written

3The importance of global convergence in comparison with local convergence should
not be overemphasized given the nature of most global convergence proofs. Typically some
Lipschitz criteria bounding linearly the norm of the error in some function of state to the
norm of the error in state is required in the proof. Satisfaction of these criteria for the
given nonlinear system is difficult if not impossible to ascertain theoretically. It is possible
to estimate this Lipschitz ratio constant and it is found that for convergent observers
the Lipschitz condition is satisfied and for divergent observers it is not. It is also found
that the divergent observers can be made to converge with closer initial estimates, and in
those circumstances, the Lipschitz condition is satisfied. Thus the practitioner is left with
the unconstructive result that the observer is globally convergent if the initial estimate
is sufficiently close enough to the true state. Moraal and Grizzle [421 provide precise
expression for this convergence radius and that is one of their significant contributions.
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The equations for the second form of the Ciccarella observer are the same

as those of the first except the measurement is the n dimensional "fake" full-state

feedback. Instead of the measurement represented yk , the system is updated with

vector Yk, where



The resulting observer equations are:
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The block diagram of the second form of the Ciccarella observer is shown in

figure 4.6.

In both forms of his observer Ciccarella considers output mapping functions

which are functions only of state and not input, i.e., y h(x) is considered but

y = h(x, u) is not. This simplification does not limit generality since the latter

mapping function can be written in terms of the former by augmenting the state

vector with h(x, 21).

4.2.2 Noise "Bandwidth" Properties of the Ciccarella Observer

The Ciccarella observer is driven "from both ends," i.e., from measurement Yk-n+1

and measurement yk+1 . In this manner the observer thus differs from the Luenberger



Figure 4.6 Block diagram of second "robust" form of the Ciccarella observer.

observer structure by virtue of the y k+1 "feedfo. rward" term. The Ciccarella observer

measurement update is written:

This departure from the Luenberger structure significantly affects the observer

by limiting performance when measurement noise is present. Whereas the eigenvalues

44

This unity gain provides a direct pass-through for the measurement noise.
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In neither of the two observer forms does Ciccarella specify how gains are to

be chosen other than to state that the eigenvalues of A — KC must be within the

unit circle. In the second form of the observer ("fake" full-state feedback) Ciccarella

describes a gain structure

Ciccarella uses this structure for the convenience to simply place all the closed-loop

eigenvalues of A — K (observation matrix C is the identity matrix on the second

the weighting of measurement i + 1 on element i of the state vector estimate. This

form of gain weighting provides some control of the filter "memory" and therefore

some control of the noise level and transient response of the state estimates. This

approach does not provide a quantitative method to select gains which balances the

state estimate noise level and state estimate transient response for some given metric

of the measurement noise and process uncertainty.

4.2.3 Modified Form

In the absence of measurement and process noise, the second version of the Ciccarella

observer works over a large variation of gain matrix K.

When noise is present, however, the Ciccarella observer performance is strongly

dependent upon the chosen gain matrix. As in the linear observer the gains should

represent some engineering compromise between the certainty of the process model

and the quality of the sensor measurement.
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In the presence of measurement noise and process uncertainty the performance

of the Ciccarella observer can improved by

1. Solving for the gain by propagating the Riccati equation in the transformed

coordinates.

The Riccati gain equation is developed as follows. The noise-free, untrans-

formed system dynamics are given (suppressing control u for clarity)

The system, subject to Gaussian noise with known statistics, is written

with

In this transformed system the process noise enters the system only through the

single nth state variable. The first order process noise covariance can be modeled as
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(For a first order approximation of the nonlinear transformation of the process

Now a Kalman filter is defined by the matrices of the transformed system

A, C, Q, W and some initial state covariance P. In practice the initial state covariance

can be some large diagonal matrix if no state knowledge is available. If state

knowledge is available P can be approximated

The gains are thus calculated at every cycle and the state covariance is updated

4.3 Coordinate Transformation, Noise, and Observability

The Moraal/Grizzle observer and the Ciccarella observers belong to a class of

observers synthesized by coordinate transformation. It was shown by this author

[22] that proper coordinate system transformation is crucial to assuring satisfactory

performance of the nonlinear observer operating with measurement noise. The conse-

quence of the work in [22] is that a noise-free nonlinear observer may demonstrate

excellent performance but if the observer uses an implicit or explicit coordinate

transformation, like the Moraal/Grizzle and Ciccarella observers, the noise distri-

bution may become pathological.' In these situations even small levels of noise can

degrade observer performance,

"It is important to note that in the absence of noise the nonlinear observer requires
only n measurements and, with knowledge of the control, the state is estimated once and
forever.
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The issue of noise is especially important for systems with marginal observ-

ability. The Jacobian matrix J,

is the observability matrix. For poorly observable systems the Jacobian matrix is

poorly conditioned and the state x may not be determined by the measurements

with great certainty. The inverse Jacobian, J -1 will amplify the noise greatly in

certain directions such that the noise will limit the performance and applicability of

the observer.

4.4 Extension of the Friedland Parameter Estimator to Discrete-Time
Systems with Special Structure

Friedland developed a continuous-time parameter estimator for systems in which the

entire state was accessible for measurement and the state dynamics were affine in

the unknown parameters [14]. In section 8.2 the continuous-time results of [14] are

extended to a broader class of general state estimation problems. With some modifi-

cations, the continuous-time results of section 8.2 can be adapted to the problem of

discrete-time nonlinear state estimation for systems with a special structure.



4.4.1 Observer Derivation

Define a discrete-time dynamic system:

where x 1 is the directly measured state and x 2 is not measured.

The following reduced-order observer is proposed

where K (y k ) is a nonlinear gain matrix dependent upon measurement y k .

The error dynamics are derived
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The resulting error dynamics are given
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4.4.2 The Newton Observer and Nonlinear Least-Square Observers as a
Subclass of the Discrete-Time Friedland Observer

For the discrete-time version of the original system studied by Friedland in section

10.2.2 of [14j it is possible to demonstrate that the Newton observer is a subclass of

the discrete-time Friedland observer with a special gain structure.

Consider the discrete-time dynamic system with unknown parameter vector p

Following section 4.4.1 the reduced-order observer is obtained

Equations (4.89), (4.90) can be combined to yield the observer form

Defining the extrapolated measurement (which equals the state in this full-state

the observer in (4.91) can be placed into "residual" form

The observer can assume one of three forms depending upon the relative

dimensions of the parameter and state vectors, viz., dimp dim x, dim p < dim s,

and dimp > dim s. These three cases are addressed below.
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4.4.2.1 Parameter Vector Dimension Equal to State Vector Dimension:

For the situation when the parameter vector and state vector are equal dimension

the proposed candidate expression for gain matrix K(yk ) is the scaled inverse of

forward dynamics matrix function f()

The resulting observer is given

For 0 < a < 1 the stability condition in (4.85) is satisfied trivially

The resulting scaled identity matrix is symmetric with all the eigenvalues equal to

a, which are within the unit circle by construction.

The observer described by (4.96), (4.97) is a Newton observer. By writing the

forward dynamics

This observer is similar to the Moraal/Grizzle observer except that here the

system is has an n-dimensional output vector, where n is the dimension of state. The

Moraal/Grizzle observer, by contrast, uses a "faked" full-state feedback synthesized

from n measurements of a single-output system.
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4.4.2.2 Parameter Vector Dimension Less Than State Vector Dimension:

For the situation when the parameter vector dimension is less than the state vector

dimension the proposed candidate expression for gain matrix K(yk) is the scaled left

pseudoinverse of forward dynamics matrix function f() of forward dynamics f

The resulting observer is given

The resulting scaled identity matrix is symmetric with all the eigenvalues equal'to

a, which is within the unit circle by construction.

4.4.2.3 Parameter Vector Dimension Greater Than State Vector Dimension:

For the situation when the parameter vector dimension is greater than the state

vector dimension the proposed candidate expression for gain matrix K(yk ) is the

scaled right pseudoinverse of forward dynamics matrix function f(-) of forward

dynamics f

The resulting observer is given
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For 0 < a < 1 the stability condition in (4.85) is satisfied. The closed-loop

error dynamics matrix is given by

Denoting np = dim p, nx = dim x, matrix M in (4.110) is a symmetric np x np

projection matrix with nx unity eigenvalues and n.3  — nx zero eigenvalues. Matrix

aM, with 0 < a < 1, is a symmetric scaled projection matrix with nx eigenvalues

of a and np — nx eigenvalues of zero. Matrix aM is therefore a contractor and the

observer is stable.

The observer described by (4.104), (4.105) is a nonlinear least-squares observer.

It is similar to the Newton observer except, for the situation where the state

dimension is greater than the parameter dimension, the inverse of the (square)

Jacobian matrix is replaced with the pseudoinverse of the (rectangular) Jacobian

matrix. A "quasi-optimal" observer which uses a pseudoinverse that is a function of

measurement noise and process uncertainty is proposed in section 8.4.

This similarity leads to question whether the Moraal/Grizzle observer and

the Ciccarella observer could have been implemented with a measurement vector of

dimension greater than the state dimension and what would the robustness properties

of this observer likely be. In the absence of measurement noise and process uncer-

tainty, the measurements would be dependent and would not contribute new infor-

mation. In the situation where measurement noise is present, process uncertainty

is small and observability is poor the extra measurements may be beneficial for

convergence. These issues shall require future research.



CHAPTER 5

A NEW OBSERVER — THE "GROSSMAN" OBSERVER

5.1 Introduction

5.1.1 Continuous-Time Origins of the "Grossman Observer"

Gauthier et al [16] and later Ciccarella et al [5] developed observers for continuous-

time nonlinear systems using state variable coordinate transformations to transform

the continuous-time nonlinear system to a linear system in Brunowski form

(integrator chain form). With the Gauthier observer the estimation is performed in

the linearized coordinates and the state estimate is recovered by applying the inverse

transformation to the estimated transformed state. With the Ciccarella observer

the estimation is performed in the original nonlinear system and only the fixed

gain matrix, calculated off-line in the linearized system, is transformed from the

linearized system to the original nonlinear system. This inverse transformation is a

simple matrix inversion and multiplication. Both observers are globally convergent

provided certain conditions are satisfied for the calculation of the gains.

The Gauthier and Ciccarella observers, when applied to forced systems, are

restricted to applications where the relative degree r = n, n being the dimension of

state. This limitation exists since for systems where r < n, the geometric transfor-

mation and linearization is not possible. These observers cannot be applied to the

parameter estimation problem where persistent excitation is, in general, required.

5.1.1.1 Gauthier Observer: Let
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The Gauthier observer is given

where Pc„, is the steady-state solution to the Sylvester equation'

for large K and,
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and

5.1.1.2 The Ciccarella Observer: Ciccarella et al [5] extends Gauthier's work

and improves upon it by eliminating the nonlinear transformation. Ciccarella uses

nonlinear transformations to develop his observer and prove convergence but the

final observer does not require a nonlinear transformation.

Referring to (5.1)-(5.3) the Ciccarella observer is given

where J is the observability matrix and is also the Jacobian relating the transformed

z coordinates to the original x coordinates

Matrix C is as given in (5.8). Fixed gain matrix L is chosen such that

is a stable matrix. Stability of A— LC is necessary but not sufficient. Gain matrix

L need be chosen so the eigenvalues are fast enough to account for the unknown

dynamics introduced by the estimate of the nth derivative of the output. In theory,

5.1.2 Tractability of Discrete-Time Formulation

Issues related to the system relative degree are more tractable using a discrete-

time formulation in comparison with the continuous-time formulation. The relative
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degree of a system for which r < n can always be increased by augmenting the state

vector with n — r values of the input sequence. This augmentation is equivalent to

imposing n r input delays to the system. The difference between the dimension

of the augmented system and the relative degree of the augmented system remains

unchanged, but now the system can be partially inverted. The part of the augmented

system which can be partially inverted is the original system.

Example2

Referring to the example in chapter 1, the dynamics of a discrete-time two-pole

filter are nonlinear if the proper state vector is augmented with the unknown filter

coefficients, i.e.,
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The transformed variable z is the four element vector given by the sequence of

four outputs y

The control input appears in the third element of the output sequence vector

making this system one of relative order r = 3, which is less than the state dimension,

n

If the augmented state vector in (5.14) is further augmented by a single control

sample, the relative degree is increased to r = 4, the dimension of the augmented

system is increase to n = 5. The augmented state vector is defined:
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The transformed variable z is the five element vector given by the sequence of

five outputs y

For n-dimensional observable system, as defined in chapter 3, only n output

samples are necessary to reconstruct the state. By imposing n — r delays on the

system input it is possible to create an augmented system, the partial inversion of

which provides the basis for the synthesis of an observer.

5.2 A New Observer for the General Discrete-time
Nonlinear Systems

The observers presented in this section are for the nonlinear discrete-time system

presented by (3.1), (3.2). The system equations under consideration are repeated

here for convenience:

5.2.1 The Unforced System

Theorem 5.1. If the nonlinear discrete-time system described by (5.28), (5.29) is:

H1 Observable as defined in chapter 3
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with 	 < 1

then there exists a finite gain matrix L = L* and matrices

such that the observer

converges asymptotically to system state x.

Proof: Define estimation error € = z — z. The error dynamics of the proposed

observer are derived



From (5.32)
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The left factor of (5.40) is always positive. To satisfy inequality relationship

(5.40) the right factor must be less than zero
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5.2.2 Observer for Forced Discrete-time Nonlinear Systems

Theorem 5.2. If the nonlinear discrete-time system described by (5.28), (5.29) is:

H1 Observable as defined in section 3.4

converges asymptotically to system state x for some finite gain matrix L.

Proof: Proof of theorem 5.2 is identical to that of theorem 5.1 with forcing

function g defined

estimate output by the observer is retarded by n — r delays.

Remark 2. In contrast to the continuous-time observer developed by Gauthier

[16] and Ciccarella [5] there is no relative degree requirement restricting application of

the discrete-time observer. Instead, the discrete-time observer requires n-1 delays to

estimate the state. This delay requirement need be considered in the overall control

system design but in practice is less restrictive than the relative degree requirement.

The "real-time" delay is the product of the n —1 delays and the sample period which

can made short enough such that the delay introduced by the observer has a minimal

effect.
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Remark 3. By transforming system (3.1), (3.2) using transformation z =

For this observer the closed-loop error dynamics are determined by matrix

A—LC. The observer problem is now a (possibly difficult) numerical analysis problem

inverse algebraic transformation, (5.49), is the discrete-time analog of the continuous-

time problem in the Gauthier observer of solving an nth order system of partial

differential to find the inverse transformation. In general, it is significantly easier

solving a nonlinear algebraic equation than it is to solve a system of partial differential

equation.

may not exist or may be difficult to find. As seen in chapter 3, .1 is the observability

test matrix for strong observability. If the system is not strongly observable some

method other than a Newton search will be required to solve for root of equation

be implemented in those situations.

5.2.3 Structure of Grossman Observer

The Grossman observer has the structure shown in figure 5.1. Comparing the

structure of the Grossman observer, figure 5.1 with the modified Moraal/Grizzle

observer, figure 4.3, the Grossman observer is essentially a nonlinear, low-pass pre-

filter concatenated with a Newton solver similar to that of Moraal and Grizzle. It

accepts two driving inputs, viz., a retarded measurement y k-n+1 and an estimate of
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the k + 1 measurement based upon the nonlinear function of the current estimate.

It is possible that often this latter driving term may be omitted.

Figure 5,1 Grossman observer combines a nonlinear low-pass filter with a nonlinear
equation solver. (Shown here with a Newton solver.) The low-pass filter provides for
noise mitigation.



66

5.2.4 Example

The forced nonlinear discrete-time system is given

where functions f (xk, uk), h(xk) are given by (5.52), (5.53), (5.54) below:

In this simulation the inputs are fixed to u1 = 0.2, u2 = —0.5. Following

This root finder requires a "seed" 	 The observer algorithm proceeds as follows:

end



Simulation results are shown in figure 5.2.
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Figure 5.2 Grossman observer state estimate (solid line) and true state (dotted line)
for example 5.2.4.



CHAPTER 6

APPLICATIONS

6.1 Discrete-time Friedland Observer for Identification of the
Characteristic Polynomial of an Autoregressive Filter 1

With slight modification the discrete-time version of the Friedland parameter

estimator developed in section 4.4 can be used to estimate parameters in systems

where the n-dimensional state vector is defined as the sequence of n successive

outputs. The modification requires inclusion of prior measured states and inputs

into the system dynamics. 2

and the observer is given

With this modified representation the autoregressive process with nonsta-

tionary poles is given

1This section is based upon the recent publication "Extension of the Friedland
Parameter Estimator to Discrete-Time Systems" [24].

2This formal modification is necessary since, strictly speaking, it is not possible to
have full-state measurement on a system in which the forward dynamics depends upon
states other than the present state. Availability of full-state measurement is the premise
underlying both the Friedland observer and the present work.
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where F(Xk )	 X. The proposed observer follows (4.65), (4.65). Define state-

dependent gain matrix M(x) for scalar L, 0 < L < 2, to be

then the observer is given as

The parameter error dynamics are given as

For L 1. and A (Xk ) = I. matrix C(Xk ) is a rank n-1 idempotent projection

guarantees marginal stability.

only marginal stability of the observer can be realized. The entire parameter vector

varies. This variation is achieved by nonzero input excitation.

Remark 6. The standard parameter estimation "projection algorithm"

presented in [2], [36] is a special case of the new observer presented here. By

combining observer (6.8), (6.9) the parameter estimation equation is
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The parameter identification algorithm from [2] is

The new observer, (6.12), (6.13) provides for an explicit forcing term and a state-

dependent parameter dynamics matrix.' The observer in [2] can be viewed as a

special case of the new observer for which the full n dimension-state vector in [2],

which is not directly measurable, becomes directly measurable by insertion of n unit

delays into the measurement epoch.

Remark 7. Matrix

is the scaled (by L) right pseudoinverse of the underdetermined equation

unity amplitude square wave, uk = sign(sin 270.1k) was applied. Convergence of the

noise-free parameter estimator is shown in figure 6.1.
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is difficult to generalize this noise sensitivity to the discrete-time Friedland observer

because gain matrix and forward dynamics matrix are problem dependent. The

application of the observer is premised upon availability of full state measurement

and, at least in this application, the measurements need be relatively noise-free.
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Figure 6.1 Convergence of estimates of ARMA characteristic polynomial coefficients
(solid) to actual coefficient values (dashed) using discrete-time Friedland observer.

Figure 6.2 Degraded convergence of estimates of ARMA characteristic polynomial
coefficients (solid) to actual coefficient values (dashed) using discrete-time Friedland
observer. Noise present.
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6.2 Simultaneous State and Parameter Estimation Applied
to an Autoregressive Filter

This observer is derived to estimate the states and the coefficients of the characteristic

polynomial of an autoregressive process. The given process is

The augmented state vector is

The (nonlinear) dynamics of the augmented system are given

6.2.1 Grossman Observer

The transformation of the augmented system given by (6.24), z = 0(x, u), into

Brunowski form is given
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Table 6.1 Grossman observer initial conditions for simultaneous ARMA parameter
and state estimation.

Newton's method is used to solve (6.26). Newton's method requires calculation

The Grossman observers was used to simultaneously estimate the states and

parameters of this filter (i.e., all the states from this augmented system.) The

initial conditions for the simulation are shown in table 6.1. A square wave, uk =

10 sign(sin 2π0.067k) was applied to the input and white Gaussian noise η, ηЄ

N{0, 0.30} was added to the measurement. Performance of the observer is shown in

figures 6.3-6.6.

5See appendix B for the MATLAB code.



Figure 6.3 Observer convergence of state xi .
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Figure 6.4 Observer convergence of state x2.



Figure 6.5 Observer convergence of parameter 231.
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Figure 6.6 Observer convergence of parameter p2.
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6.2.2 Modified Moraal/Grizzle Observer

Using the state vector definition of X from (6.23), the forward dynamics function

the extrapolated vector of four successive measurements as a function of retarded

Using the Jacobian given by (6.27), the single iteration modified Moraal/Grizzle

observer is given

The initial conditions and the input for this simulation were the same as those
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Table 6.2 Modified Moraal/Grizzle observer for ARMA parameter estimation.

applied to the input. Two simulations runs were made, one without noise and one

with noise. The noise process, η, , was white Gaussian, η  Є  N{0, 0.30} and it was

added to the measurement.

Figures 6.7-6.10 show the noise-free transient response of the estimates of the

observer as a function of slowing factor a. Figures 6.11-6.14 shows the same response

when the measurement is corrupted with the white Gaussian noise. Displayed in

these figures is the statistical estimate of the steady-state standard deviation based

upon the last fifty points of the simulation run (points 50:100).

Figures 6.7-6.10 demonstrate, as expected that the transient response is fastest

for α  = 1 and slowest for α  = 0.1. Figures 6.11, 6.12, and 6.14 demonstrate clearly the

beneficial effect the non-unity slowing factor has upon steady state noise mitigation.

Figure 6.13 represents an interesting anomaly where in the steady state the noise

mitigation for α  = 1 was superior to values α  < 1 for state estimate z 1 . It is also

interesting to note that for this estimate the steady-state noise responses for α  = 0.5

were generally worse than those for α  = 1. These results are summarized in table 6.2.
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Figure 6.7 Modified Moraal/Grizzle observer estimation of p 1 (solid) and true value
(dashed) for different values of a. No measurement noise.

Figure 6.8 Modified Moraal/Grizzle observer estimation of p2 (solid) and true value
(dashed) for different values of a. No measurement noise.
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Figure 6.9 Modified Moraal/Grizzle observer estimation error of state Si for
different values of a. No measurement noise.

Figure 6.10 Modified Moraal/Grizzle observer estimation error of state X2 for
different values of a. No measurement noise.
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Figure 6.11 Modified Moraal/Grizzle observer estimation of p i (solid) and true
value (dashed) for different values of a. Measurement noise present.

Figure 6.12 Modified Moraal/Grizzle observer estimation of p2 (solid) and true
value (dashed) for different values of a. Measurement noise present.
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Figure 6.13 Modified Moraal/Grizzle observer estimation error of state x1 for
different values of a. Measurement noise present.

Figure 6.14 Modified Moraal/Grizzle observer estimation error of state x2 for
different values of a. Measurement noise present.
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6.2.3 Modified Ciccarella Observer

Using the state vector definition of X from (6.23), the forward dynamics function

Observer was applied to this ARMA parameter estimation problem

The initial conditions and the input for this simulation were the same as those

applied to the input. Two simulations runs were made, one without noise and one

added to the measurement.

For the modified Ciccarella observer described in section 4.2.3 the feedforward

term is eliminated (B = 0). By eliminating this term the noise properties are
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improved but the stability of the observer can no longer be guaranteed. After

numerous attempts using different values for Q, W, and PG (initial covariance), a

stabilizing set was not found. The feedforward term was subsequently implemented

and then a stabilizing set was found. The necessity of this term and its implied unity

gain factor on the measurement noise leads to a steady-state noise floor on the state

estimates. This noise floor does not exist for the modified Moraal/Grizzle observer.

The need for this feedforward term in this application is understood from figures

6.15 and 6.16. Figure 6.15 shows very large transient responses of the state estimates.

In particular, the transient of estimate x 4 exceeds four orders of magnitude. (No

transient response of this magnitude has been seen for the modified Moraal/Grizzle

observer.) Figure 6.16 shows the condition number of the Jacobian used for this

observer and it too has a transient exceeding four orders of magnitude.' The

Jacobian of this estimator is the observability matrix so this transient in condition

number implies that the observer passes through a period of marginal observability.

Furthermore, this poor conditioning implies a very large sensitivity of the gains of

estimator to errors in residual since the effective gains on the residual are .1-1K.

Figures 6.17-6.20 demonstrate the performance of the observer in this appli-

cation. The results are summarized in table 6.3. For parameter estimates p i ,

p2, the modified Moraal/Grizzle observer demonstrated better steady-state noise

performance. For state estimates x i , x2 , the modified Ciccarella observer and the

modified Moraal/Grizzle observer demonstrated nearly equivalent performance. The

transient settling time of the modified Ciccarella observer was about equivalent to

that of the modified Moraal/Grizzle observer for α= 1. The magnitude of the

transient peaks of the modified Ciccarella observer were worse than that of the

modified Moraal/Grizzle observer.

6It is also interesting to note from this figure the effect of the control upon observability.
The observability in enhanced, in particular by the negative swings in the control input.
The observability deteriorates over the periods of constant input.
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Table 6.3 Transient peaks, transient response, and steady-state noise level for
modified Ciccarella observer applied to ARMA parameter estimation.

Figure 6.15 Modified Ciccarella observer error transient response for the ARMA
parameters and state estimation. No noise. Feedforward present.
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Figure 6.16 Condition number of observability matrix for the modified Ciccarella
observer. Excitation input (dashed), not to scale, is also shown.

Figure 6.17 Modified Ciccarella estimation of ARMA coefficient pi. (solid) and true
value (dashed), measurement noise present, feedforward present. Magnification in
bottom figure.
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Figure 6.18 Modified Ciccarella estimation of ARMA coefficient P2, measurement
noise present, feedforward present. Magnification in bottom figure.

Figure 6.19 Modified Ciccarella estimation of ARMA state x 1 , measurement noise
present, feedforward present. Magnification in bottom figure.
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Figure 6.20 Modified Ciccarella estimation of ARMA state X 2 , measurement noise
present, feedforward present. Magnification in bottom figure.
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6.3 Canine Blood Pressure Response to Nitropruside

In many problems in physiology, economics, and chemical processing the basic

principles underlying the plant dynamics are often not well understood. In such

instances system identification techniques using polynomial models are used to

describe the system. The following example, courtesy of Ü . Kotta, represents a

polynomial model of canine blood pressure response to the drug nitropruside. The

model was identified using the technique described in [8].

A dog was infused with the drug Nitropruside to control his blood pressure. The

control input is the infusion rate measured in units milliliters/hour. The measured

output is the main arterial blood pressure measured in units millimeters of mercury.

The following three-state polynomial system was identified which describes the dog's

response to the drug:
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Two sets simulations were performed for the Grossman observer, the Moraal/Grizzle

observer, and Ciccarella observer, with these latter two observers implemented

in their original and in their modified forms. In the first simulation, noise-free

measurements were used. In the second simulation, measurements were corrupted

with white Gaussian noise resulting in a 3 dB power signal-to-noise (S/N) ratio.

The observers were coded in Matlab (see appendix B). The code reveals the necessity

for the delays that the theory calls for and illustrates the propagation of the seed in

the nonlinear solver.

The control input consisted of a symmetric, 50% duty-cycle square wave of

unity amplitude, with a ten-sample period, i.e.,

Simulation runs with a uk = ±10 amplitude square wave were also performed with

results qualitatively similar to u1 = ±1. (See section A.4.)

The initial conditions for the three simulations were the same and are given in

table 6.4.
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Table 6.4 Initial conditions for Canine blood pressure observer simulation.

6.3.1 Grossman Observer

Figure 6.21 shows the convergence of the three state estimates to their true values

for this same simulation. Figure 6.23 shows the residual process of the filter.

Figure 6.24 shows the noisy measurement driving the observer (the noise-free

measurement is shown for reference.) Figure 6.25 shows the convergence of the state

estimates to their true values even with the 3 dB S/N of the measurement. Figure

6.26 shows the state estimation error. Figure 6.27 shows the residual process of the

filter with the noisy measurement.

tively) for the three state estimates given by the Grossman observer for different

values a and d in the Newton solver. From table 6.5 it is seen that for a given

a < 1, increasing d is detrimental to noise rejection. It is also seen that increasing d

compromises the achievable noise rejection improvement. Increasing iterations drives

the observer to the instantaneous solution for the noisy data and essentially "weighs"

the most recent measurements more than the past measurements.

6.3.2 Original Moraal/Grizzle Observer

Figure 6.28 shows the convergence of the three state estimates to their true values

for this same simulation. Figure 6.30 shows the convergence of the state estimates
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Table 6.5 Estimation statistics for three-state model of dog blood pressure response
to medication using Grossman Observer. Measurement noise present.

to their true values with the 3 dB S/N of the measurement. Figure 6.31 shows the

state estimation error.

6.3.3 Modified Moraal/Grizzle Observer

The Moraal/Grizzle observer was modified and implemented with the "slowing

convergence of the three state estimates to their true values for the noise-free run.

comparison between the estimation errors of the original observer, figure 6.29, with

the that of the modified observer, 6.33 shows that the original observer demonstrates

deadbeat response with the error converging to zero in three steps. The modified

observer shows a slower transient response.

Figure 6.34 shows the convergence of the three state estimates to their true

values for the run with measurement noise. Figure 6.35 shows the state estimation

error for the same run. The comparison between the estimation errors of the original

observer, figure 6.33, with the that of the modified observer, 6.35 shows that the

modified observer demonstrates superior noise rejection performance.
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Table 6.6 Estimation statistics for three-state model of dog blood pressure response
to medication using Moraal/ Grizzle Observer. Measurement noise present.

Thus, as expected, this example demonstrates that the non-unity "slowing

factor" a provides the capability to make the tradeoff between transient response

and noise rejection. For the parameter estimation problem, noise rejection in the

parameter estimates is critical but transient response is not. Thus in such situations

tively) for the three state estimates given by the Moraal/Grizzle observer for different

values a and d. From table 6.6 it is seen that for a given a < 1, increasing d is

detrimental to noise rejection. It is also seen that increasing d compromises the

achievable noise rejection improvement. Increasing iterations drives the observer to

the instantaneous solution for the noisy data and essentially "weighs" the most recent

measurements more than the past measurements.
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6.3.4 Original Ciccarella Observer

The robust form of the Ciccarella observer was implemented with a stable arbitrary

gain set. The gain set is given

was used to place the closed-loop eigenvalues of A — K at {0.3, 0.4, 0.5}.

Figures 6.36, 6.37 demonstrate the perform of the Ciccarella observer in the

absence of noise. The estimator converges more slowly than the n samples required

by the Moraal/Grizzle observer. The speed is a function of the gain set which, as

mentioned, was chosen rather arbitrarily.

Figures 6.38, 6.39 demonstrate the performance of the same observer in the

presence of 0 db S/N measurement noise. The observer estimates the general trend

of the state with nearly zero mean error. The state estimates are noisy.



Grossman Observer, a, 0.5, d 1, w/o noise
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Figure 6.21 Grossman observer state estimate (solid) and true state (dotted) for
three-state model of dog blood pressure response to medication. a = 0.5, d = 1, no
measurement noise present.



Grossman Observer. α = 0.5. d 1. w/o noise
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Figure 6.22 Grossman observer estimation error for three-state model of dog blood
pressure response to medication. a = 0.5, d = 1, no measurement noise present.
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Figure 6.23 Grossman observer residual process for three-state model of dog blood
pressure response to medication. No measurement noise.
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Figure 6.24 Measurement with 3 dB noise driving observer (solid). Noise-free
measurement shown for reference (dashed).
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Figure 6.25 Grossman observer state estimate (solid) and true state (dotted) for
three-state model of dog blood pressure response to medication. a = 0.5, d = 1,
measurement noise present.
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Figure 6.26 Grossman observer estimation error for three-state model of dog blood
pressure response to medication. a = 0.5, d = 1, measurement noise present.
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Figure 6.27 Grossman observer residual process for measurement with 3 dB S/N
ratio (solid) and with no noise (dotted).
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Figure 6.28 Moraal/Grizzle observer state estimate (solid) and true state (dotted)
for three-state model of dog blood pressure response to medication. a 1.0, d = 1,
no measurement noise present.
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Figure 6.29 Moraal/Grizzle observer estimation error for three-state model of dog
blood pressure response to medication. a = 1.0, d = 1, no measurement noise
present.



Moraal & Grizzle Observer, a = 1.0, d = 1, w/ noise
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Figure 6.30 Moraal/Grizzle observer state estimate (solid) and true state (dotted)
for three-state model of dog blood pressure response to medication. a = 1.0, d = 1,
measurement noise present.
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Figure 6.31 Moraal/Grizzle observer estimation error for three-state model of dog
blood pressure response to medication. a = 1.0,d = 1, measurement noise present.



106

Figure 6.32 Moraal/Grizzle observer state estimate (solid) and true state (dotted)
for three-state model of dog blood pressure response to medication. a = 0.1, d 1,
no measurement noise present.
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Figure 6.33 Moraal/Grizzle observer estimation error for three-state model of dog
blood pressure response to medication. α  = 0.1, d 1, no measurement noise
present.
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Figure 6.34 Moraal/Grizzle observer state estimate (solid) and true state (dotted)
for three-state model of dog blood pressure response to medication. a 0.1, d 1,
measurement noise present.
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Figure 6.35 Moraal/Grizzle observer estimation error for three-state model of dog
blood pressure response to medication. a 0.1, d = 1, measurement noise present.
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Figure 6.36 Ciccarella observer state estimate (solid) and true state (dotted), for
three-state model of dog blood pressure response to medication. Arbitrary gain set
(λ (A — K) Є  {0.3, 0.4,0.5}), no measurement noise present.



Ciccarella Observer w/o noise
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Figure 6.37 Ciccarella observer estimation error for three-state model of dog blood
pressure response to medication. Arbitrary gain set (λ(A — K) Є  {0.3, 0.4, 0.5}), no
measurement noise present.
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Figure 6.38 Ciccarella observer state estimate (solid) and true state (dotted), for
three-state model of dog blood pressure response to medication. Arbitrary gain set
(λ (A — K) E {0.3, 0.4, 0.5}), measurement noise present.
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Figure 6.39 Ciccarella observer estimation error for three-state model of dog blood
pressure response to medication. Arbitrary gain set (A(A K) E {0.3, 0.4, 0.5}),
measurement noise present.
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6.3.5 Modified Ciccarella Observer

In the first attempt to mitigate the estimation noise of the original observer the

feedforward term was eliminated by setting B 0. This modification represents a

departure from the theoretical basis of the Ciccarella observer and, in fact, figures

6.40, 6.41 demonstrate filter divergence. This observer was stabilized when the

feedback gain matrix was reduced in magnitude and set to

placing the closed-loop eigenvalues of A — K at {0.03, 0.04, 0.05). Figures 6.42, 6.43

demonstrate performance of this observer.

The modified Ciccarella observer using the Kalman gains and no feedforward

term (B = 0) was implemented for comparison. The Kalman filter noise matrices

used for this observer were

Figures 6.44, 6.45 demonstrate observer performance superior to the original

Ciccarella observer. State estimation noise is essentially eliminated. Figure 6.46

shows the gain history of the modified Ciccarella observer gain matrix K (The off-

diagonal elements were zero.) Elements K11, K22 vary over two orders of magnitude.

The gains reach steady state after three filter iterations.

Figures 6.47, 6.48 demonstrate the performance of the same observer when the

assumed process noise covariance matrix used in calculation of the gain is increased

by two orders of magnitude. The Kalman filter noise matrices used for this observer
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Filter tracking is worse than in the previous example which is expected since

by supposition the knowledge of the process-is inferior. Figure 6.49 shows the gain

history for this filter. The steady-state gains for this filter are an order of magnitude

larger than for the previous observer.

Figures 6.50, 6.51 demonstrate performance of the modified Ciccarella observer

when the feedforward term is include (B = [0 01]') and using noise matrices

In comparison to figures 6.44, 6.45, inclusion of the feedforward term appears detri-

mental to the observers noise rejection behavior. Inclusion of the feedforward term

does appear to improve the system transient response somewhat.
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Figure 6.40 Ciccarella observer state estimate (solid) and true state (dotted), for
three-state model of dog blood pressure response to medication. Arbitrary gain set
(λ (A -K)Є{0.3, 0.4, 0.5}), no measurement noise present, no feedforward(B =0).
Note divergence.
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Figure 6.41 Ciccarella observer estimation error for three-state model of dog blood
pressure response to medication. Arbitrary gain set (A(A K) E {0.3, 0.4, 0.5}), no
measurement noise present, no feedforward (B 0). Note divergence.
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Figure 6.42 Ciccarella observer state estimate (solid) and true state (dotted), for
three-state model of dog blood pressure response to medication. Reduced magnitude
gain set (λ (A- K) Є {0.03, 0.04, 0.05}), measurement noise present, no feedforward.
Observer is stabilized.
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Figure 6.43 Ciccarella observer estimation error for three-state model of dog
blood pressure response to medication. Reduced magnitude gain set ( λ (A- K) E
{0.03, 0.04, 0.05}) measurement noise present, no feedforward. Observer is stabilized.
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Figure 6.44 Modified Ciccarella observer estimate (solid) and true state (dotted),
for three-state model of dog blood pressure response to medication. Kalman gain
set, measurement noise present, no feedforward (B = 0). W 0.0183/, Q =
0.00018 diag( [0 0 1]).
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Figure 6.45 Modified Ciccarella observer estimation error for three-state model of
dog blood pressure response to medication. Kalman gain set, measurement noise
present, no feedforward (B = 0). W = 0.0183/, Q = 0.00018 diag([0 0 1]).
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Figure 6.46 Modified Ciccarella observer gain history. W = 0.01831, Q =
0.018 diag([0 0 1]).
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Figure 6.47 Modified Ciccarella observer estimate (solid) and true state (dotted),
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Figure 6.48 Modified Ciccarella observer estimation error for three-state model of



125

Figure 6.49 Modified Ciccarella observer gain history. W = 0.01831, Q =
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Figure 6.50 Modified Ciccarella observer estimate (solid) and true state (dotted),
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Figure 6.51 Modified Ciccarella observer state estimation error for three-state model



CHAPTER 7

NUMERICAL AND IMPLEMENTATION CONSIDERATIONS

At the heart of this new general observer for discrete-time nonlinear systems is the

related fields of numerical analysis [3] and nonlinear optimization[46] regarding this

Newton's Method and general Fixed-point methods are most common.

7.1 Newton's Methods of Solving Nonlinear Systems of Equations

To solve for x in the nonlinear scalar equation y = f (x) the problem is first converted

to the root-finding problem for g(x) where g(x) = f (x) — y. Newton's method then

yields improving estimates

Newton's method is extended to systems of equations by replacing the

derivative with the Jacobian

(Boldface is used here to indicate vector quantities.)

In the observer presented here a full rank condition on Jacobian J is the

definition of strong observability and is a prerequisite condition.
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7.2 Propagation of Solver Seed

Unlike "square" systems of linear equations, which have none, one, or an infinite

finite number (other than one) of solutions. The proposed observer may "stumbled"

onto one of the wrong solutions and yield very poor state estimates.

Formally this possibility does not exist in light of the observability requirement

as defined section 3.4. For nonlinear systems it is practically difficult to demonstrate

global strong observability and unless it is proved that multiple roots' don't exist

one should presume they may.

Newton's method, like all root solvers, requires a "seed" to estimate to start.

To be sure to converge to the proper root the seed need be within some unknown

"observability radius" of the true root. For proper convergence of this observer, the

seed must be within this radius at every time step.

It is not possible to guarantee convergence to the proper root. The best chance

of doing so is to use the best seed at every time step. In this observer the best seed

is achieved by seed propagation. For a system with state dynamics

certainly a reasonable estimate of x for the purpose of seeding the root solver for



CHAPTER 8

MISCELLANEOUS RESULTS

8.1 The Ciccarella Observer and the Hybrid Coordinate System
Kalman Filter—A heuristic Demonstration

This author introduced the Hybrid Coordinate System Kalman Filter [23) to estimate

the range to a target given the location of the observer and measured line-of-sight to

the target. For this problem, it was found empirically that it was better to perform

the time updates in a Cartesian reference frame and the measurement updates in

the so-called "modified polar" [1] reference frame. The states as described in the

two coordinate systems were related exactly to each other by nonlinear algebraic

equations. To the first order the covariance matrices associated with the states

were related by the Jacobian of the state transformation functions. The algorithm

demonstrated excellent performance.

This early work in the development of extended Kalman filter by state

coordinate transformation is closely related to the later work by Ciccarella [7].

To develop his proof Ciccarella transforms the system to the Brunowski form of

chain delays. The transformation presented in [23) was one which empirically

demonstrated specific beneficial robustness properties. Otherwise the observers were

essentially the same. 1

As is rule for most extended Kalman filter work, no rigorous proof of

convergence was provided in [23]. The rigor required for a proper mathematical

proof of a theorem often obfuscates an intuitive understanding of the theorem.

Ciccarella provides the rigorous proof of the convergence of his observer. Presented

1The interesting point remains that while the transformation to Brunowski form has
definite desirable mathematical properties, the effect of the transformation upon the noise
is ignored and remains a topic for future research. This future research may determine
that transformation to non-Brunowski forms, though a more difficult form from which to
develop mathematical proofs, may offer more desirable transformations of the noise and
better observer performance.
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here is a heuristic demonstration based upon the hybrid coordinate version of the

familiar Kalman filter. Alternatively, the situation can be viewed as Ciccarell a

providing a rigorous proof of the hybrid coordinate system Kalman filter.

A discrete-time nonlinear dynamic system is given:

The classic extended Kalman filter equations are given:

Assume a one-to-one transformation exists

the incremental mapping of small changes of x to small changes in z is given by



Define P as the state covariance matrix for variable z, i.e.,

For small errors, P is related to P and C is related to C

The measurement update equations in the z coordinates are:

132

Equation (8.27) relates the Kalman gain in the z coordinates to the Kalman

Gains in the x coordinates. It has a simple intuitive interpretation, viz. if the residual

change in state x for a given change for the residual p, i.e.,
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For transformation 0, Ciccarella uses the special linearizing transformation

which transforms system (8.1), (8.2) into the Brunowski normal form delay chain. He

8.2 Generalization of the Continuous-time Friedland Parameter
Estimator to Continuous-time State Estimation

The continuous-time parameter estimator developed in [14] can be extended to a

general state parameter observer when the unmeasured state appears affine in the

dynamics.

Define a dynamic system:

where x1 is the directly measured state and x2 is not measured.

The following reduced-order observer is proposed
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The observer is synthesized by choosing a function K(y) such that matrix

8.3 Unification of the Friedland Parameter Estimator and the
Friedland Nonlinear Reduced-Order State Estimator

8.3.1 The Generalized Friedland Nonlinear Reduced: order Observer

In [14], section 6.2, Friedland describes a nonlinear reduced-order observer applicable

to a general continuous-time nonlinear system where some of the state variables are

directly measured. In [14], section 10.2.2, and in [15] Friedland describes a nonlinear

parameter estimator for systems which are affine in the parameter and the state is

directly measured. It is shown here that with a minor modification of the former,

the latter is a subset of the former.

The Friedland reduced order observer is applicable to systems of the form:

The form of the reduced-order observer is



and K is chosen so that A(x2) is a stable matrix.

By modifying (8.53) to be

136

the results of section 6.2 of [14] are generalized. Matrix A(x2) is still required to be

stable but is now given by

Admitting a state-dependent gain K(y) provides for greater flexibility in designing

a stable observer than using a static gain K. The observer presented in section 6.2

of [14] is a special case of this generalized version where K(y) = Ky.
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8.3.2 Application of the Generalized Friedland Reduced-order Observer
to Parameter Estimation In Systems With Affine Structure

written in terms of the generalized observer of section 8.3.1

The observer has the same form as that in section 8.3.1

This result is identical to that presented in section 10.2.2 of [14] showing that this

results in section 10.2.2 of [14] is a special case of the generalization of observer

presented in section 6.2 of [14].

8.4 Quasi-Optimal Discrete-Time Friedland Observer

Consider the system

Following section 4.4.1 the reduced-order observer is obtained



138

Equations (8.71), (8.72) can be combined to yield the observer form

Defining the extrapolated measurement (which equals the state in this full-state

the observer in (8.73) can be placed into "residual" form

Assume that the statistics of the errors associated with measurements y and

estimates j3 are fairly well described by second order statistics with the properties: 2

Assume further that the dynamics function F(•) is not know perfectly and that

the associated uncertainty in propagation for a perfectly known p yields errors which

are fairly well described by second order statistics:

2For the nonlinear problems under consideration such statistical approximations will
have to suffice. The veracity of the assumption can be checked by Monte Carlo simulation.
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Following Kalman filter theory and making the bold assumption of no cross-

given by

The quasi-optimal discrete-time Friedland observer is then given by



CHAPTER 9

CONCLUSIONS AND RECOMMENDATIONS

9.1 Conclusion

This dissertation introduces four new observers for discrete-time nonlinear systems:

Observer 1 — The discrete-time extension of the Friedland observer applicable

to systems with a special affine structure,

Observer 2 — A general discrete-time observer which is based upon an extension

of the Ciccarella and Gauthier observers.

Observer 3 — A modified version of the Moraal/Grizzle observer.

Observer 4 — A modified version of the "robust" version of the discrete-time

Ciccarella observer.

These observers vary in complexity. Each observer may offer certain advantages

for a given application and generalizations are difficult. Table 9.1 summarizes their

properties and applicability.

This dissertation develops the general observer, Observer 2, in a manner which

closely parallels the 1980's development of the differential geometric system theory for

nonlinear continuous-time systems. With this new formulation the discrete-time and

continuous-time nonlinear system theory are represented in a conceptually analogous

form. For discrete-time nonlinear systems the output mapping function is applied to

a vector of multiple self-compositions of the forward dynamics function to transform

the system into a Brunowski chain of delays. For continuous-time nonlinear systems

the Lie derivatives of the system output are used to transform the system into a

Brunowski chain of integrators.

In many applications the observers presented here are better than other

commonly used state estimators. All the observers demonstrate convergence in the
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Table 9.1 Nonlinear discrete-time observer application summary chart.
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presence of "hard" nonlinearities in contrast to the discrete-time extended Kalman

filter which often diverges. These new observer can be applied to parameter

estimation problems requiring "probing signals" whereas the continuous-time

Gauthier and Ciccarella observers are limited in application by their restrictive

relative degree requirement.

In the discrete-time parameter estimation problem where the system relative

degree r is less than the system order n, implementation of the Observers 2,3, and

4 require insertion of n — r delay stages. When applied to a discretized continuous-

time systems, this delay limits applicability of the observer to systems in which the

dominant time constant is much greater than the sampling period. This limitation is

generally not restrictive given the great availability of fast and inexpensive analog-

to-digital converters and computers.

The Lipschitz requirement in theorem 5.2.1 and inequality (5.42) restricts

Observer 2 applicability. In practice it is not possible to know a priori whether these

conditions are satisfied and in some applications where the initial error is large these

conditions may not be satisfied. Fortunately, satisfaction of the Lipschitz condition

and inequality (5.42) is sufficient but not necessary for convergence and represents

upper bound on the on the radius of the closed-loop pole locations of A— LC. It is

a conservative upper bound.

Lastly, the primary significance of the work presented here is that it provides

a "toolbox" with which the systems practitioner can build observers. As illus-

trated by the ARMA filter example, section 6.2, some problems can be solved with

different estimation methods and not all the methods yield results of equal quality.

Furthermore, in these nonlinear estimation systems it is difficult to make general-

izations about observer performance thus the practitioner needs this "toolbox" of

methods from which to "cut and try" different solutions.
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9.2 Further Research

These new observers open questions for further inquiry. It is difficult to develop

a general line of inquiry into nonlinear systems and nonlinear observers since

each nonlinear dynamical system has a particular characteristic behavior different

from other nonlinear systems. Recent work on chaotic systems [44] offers some

general characterizations of nonlinear systems and perhaps concepts of "attractors,"

"Liapunov exponents" can be used in future observer design.' The only charac-

terization used in the Ciccarella work and the present work is the single Lipschitz

constant and its constraints.

It is difficult to perform further general research on Observer 1 since its gain

matrix function is completely application dependent. Two questions do arise:

needs to be a contractor. Does a general methodology exist to find this

contractor?

2. Is the methodology for picking the gain function using the inverse or pseudoinverse,

section 4.4.2, extendable to the continuous-time Friedland parameter estimator

by setting the sample time arbitrarily small?

How noisy can the measurement yk be? Does it need to be measured or can it

too be estimated by a dynamic observer?

With regards to Observer 2, three questions which remain unresolved are:
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2. Can the continuous-time Ciccarella and Gauthier results be recovered by

making the sampling time T vanishingly small? What is the relationship

between a numerical finite-difference solution of the partial differential equations

inherent in the Gauthier observer and the numeric root finding of this new

observer?

1 What is the relationship between static numeric root finding, static numeric

optimization (solutions to nonlinear least-squares) and this dynamic observer?

9.2.1 Optimal Pole Locations

Empirically, the Lipschitz requirement, (5.42), is satisfied by increasing the "speed"

of the observer, i.e., bringing all the poles of matrix Ad (see (5.32)) closer to the

origin of the unit circle. From understanding of linear systems it is well known that

manipulating a system dynamic response by pole placement is a tricky, uncertain

endeavor often leading to stable but non-robust behavior. The observer presented

and the continuous-time Ciccarella observer define only a minimum observer speed

over which convergence is guaranteed. In the continuous-time Ciccarella observer all

the poles must lie in a half-plane to the left of some maximum negative number. In

Observer 2, the poles must lie in a circle of some radius less than some maximum

number (which has to be less than unity.) Neither observer design requirement is

more specific about the pole locations.

Designing the optimal pole locations for Observer 2 is equivalent to adding

"directionality" to the Liapunov proof presented in chapter 5. Just as a suboptimal

observer "Kalman-like" observer using a spherical covariance matrix can be constructed,

the optimal Kalman Filter observer is obtained when the covariance matrix is hyper-

ellipsoidal, i.e., larger in directions of greater uncertainty.

This problem of optimal pole placement is further complicated when the

issue of stochastic convergence is addressed. What, for instance, are the important
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parameters characterizing the stochastic process? In all likelihood the probability

distribution of the noise is defined in the original coordinate system. What are the

Experience has shown that for "benign" transformations the central limit

theorem tends to transform Gaussian noise into some well-behaved nearly Gaussian-

like noise which is fairly well described by a mean and a standard deviation.

However, it is sufficient for the transformation z 0(x) to have an algebraic division

to transform the Gaussian noise into a poorly-behaved distribution like the Cauchy

distribution. In situations where transformation z = 0(x) maps the original noise

probability distribution into some poorly behaved singular distribution, the observer

is likely to fail.

9.2.2 Unification of Discrete-Time and Continuous-Time Observer
Theory

The continuous-time Gauthier Observer should be recoverable from Observer 2 in

the limit that sampling time T —4 0. Elucidating this relationship shall yield the

connection between partial differential equations of the Gauthier observer and the

nonlinear algebraic equations of Observer 2. It is likely that the algebraic equations

of Observer 2 are the same equations which would fall out from a finite-difference

discretization solution to the Gauthier PDEs.

9.2.3 Unification of the Quasi-optimal Discrete-time Friedland Observer
and the Continuous-time State-dependent Riccati Equation Filter

There is probably a link between the quasi-optimal discrete-time Friedland observer

presented in section 8.4 and the continuous-time State-dependent Riccati Equation

Filter where the former is a discrete-time version of the latter. This relationship

should be explored further to provide additional insight into the two observer

forms. Furthermore, the entire relationship among Newton observers, least-squares
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observers, discrete-time Friedland observers and state-dependent Riccati equation

filters can be understood and unified.

9.2.4 The Dynamic Observer and Static Root finding

The problem of finding the roots of a system of n equations f (x) = 0 can be posed as

a feedback observer problem with degenerate (i.e. static) dynamics. System f (x) = 0

can be written

An observer for this system is in the form

0 < a < 2. The closed-loop error dynamic matrix becomes (1 — a) I. The resulting

observer assumes the form

which is Newton's method.

The fixed point problem, h(x) = x is a variant of the root finding problem

h(x) = 0. For the fixed point problem the observer is written in terms of a residual p
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A state observer is more general and more powerful than a Newton's method

root finder. The observer does not require the entire state to be instantaneously

forward dynamics (i.e., the root can move) and a forcing term

Now the root-finding part of Observer 2 can be written as an observer and the

algorithm can be seen as an interplay of two observers—one static and one dynamic

or, viewed in another way — one that works in space and one that works in time.

From chapter 5, Observer 2 is written

In the dual observer form it is written
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In the present form of Observer 2 (9.17) is iterated until convergence. 2

Repeating the simulation on the dog's blood pressure reveals that the observer

performs better with a a single calculation of (9.17) than it does when (9.17) is

repeated to convergence.

This difference is not supported by theory and requires further investigation.

This behavior is reminiscent of the often observed (yet unexplained) performance

of iterated extended Kalman filters which shows they deteriorate as the number of

iterations is increased beyond one or two.

Equations (9.14), (9.17) represent a set of coupled difference equations.

Rewriting (9.14), (9.17) and suppressing forcing term uk yields

It would be interesting to determine whether this set of difference equations

relate observer properties to some general characteristics of this potential function.

2Actually, in the examples it is iterated 20 times having noted that in all cases it
converges in less than 20 iterations. It is easier to code a fixed number of iterations than
to check for convergence.



APPENDIX A

SIMULATION PLOTS

A.1 Introduction

In the course of this study of nonlinear discrete-time observers it was necessary

to perform many simulations. The study of nonlinear observers has a very large

"parameter space" to explore. Furthermore, nonlinear observer performance is

problem dependent.

By recommendation of Professor U. Kotta, 1 a researcher in the field of discrete-

time nonlinear control systems, the canine blood pressure problem was simulated

more extensively than other examples. Even in the limited scope of this one example,

the simulation parameter space of the three observers is quite large. Table A.1

lists the parameters subject to variation for each observer. The number of possible

simulations which cover all combinations of variations of these parameters is very

large.

Table A.1 Observer simulation "parameter space."

Observer Parameter Subject to Variation

Grossman Observer
Prefilter gains
Newton solver parameters α, d

Modified Moraal/Grizzle Observer Newton solver parameters α , d

Modified Ciccarella Observer
Fixed filter gains
Feedforward elimination
Parameters Po , Q, W
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In contrast to the parameter space, the "desired property" space is quite small.

The desired properties of observers includes:

1. Stable convergence.

2. Fast transient response.

3. High noise rejection.

4. Robustness to modeling errors.

5. Robustness to variations in input amplitude and problem scaling.

6. Simple implementation.

Property 1, stable convergence, is the sine qua non of any observer. The

importance placed on properties 2-6 is application dependent. Achievement of any

one of these properties usually requires compromise of another property (e.g., faster

transient response usually leads to reduced noise rejection). Achieving the best

compromise for any given application is the observer design problem.

The simulations presented in sections A.2, A.3 of this appendix explore the

compromise between achieving fast transient response and high noise rejection. In

section A.2, noise-free simulation runs were performed to establish the transient

response. In section A.3, Gaussian white noise added to the measurements to

establish noise rejection performance.

Only a small portion of the observer parameter space was explored. For the

Grossman and Moraal/Grizzle observers parameters a, d of the Newton solver were

varied. For the Ciccarella observer, parameters Q, W, and the feedforward gain

(0 or 1) were varied.

The simulations presented in section A.4 explore the sensitivity (or rather,

insensitivity) of the three observers to input scaling. This insensitivity may be

important in parameter estimation applications where a probing signal is required.
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Except for the observer run shown in figure A.27, all the observers were stable.

A.2 Observer Simulations Without Noise

A.2.1 Grossman Observer Prefilter

The Grossman observer, when implemented with a Newton root finder is similar to

the Moraal/Grizzle observer with a nonlinear prefilter operating on the input. The

effect of this prefilter is seen in the comparisons of figure A.1 with A.2 and figure A.13

with A.14. In these simulation runs, a = 1 which provides the maximum root-finding

step. In figures A.1, A.2, d = 1. In figures A.13, A.14, d = 5. By setting a = 1,

d = 5, the fastest root finding is achieved, the filtering effects of the root-finding are

minimized, and the effects of the prefilter of the Grossman observer are highlighted.

The effects of this prefilter are to slow convergence down such that response time is

about sixty sample steps for the Grossman observer compared with three steps for

the Moraal/Grizzle observer.

A.2.2 Effects of Slowing Factor a and Iteration Count d

Due to the presence of the prefilter in the Grossman observer the effect of varying

a, and d upon the filter response are less clear than in the Moraal/Grizzle observer.

The effect that varying a has upon convergence is seen by comparing figures

A.2 and A.10. In figure A.2, a = 1, d = 1, and the observer converges in three steps.

In figure A.10, a = 0.1, d = 1, and the observer converges in about eighteen steps.

Increasing the iteration counter from d = 1 to d = 5 counters the effect of decreasing

a and the deadbeat convergence in three steps is recovered as shown in figure A.22.

A.2.3 Noise-Free Ciccarella Observer Performance

In the noise-free situation the performance of the Ciccarella observer in it original

form was similar to that of the Moraal/Grizzle observer, as seen from comparison
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of figures A.2 and A.25. The Ciccarella observer converged in six steps rather than

three steps for the Moraal/Grizzle observer.

Removal of the feedforward term in the Ciccarella observer, improves the

measurement noise rejection but vitiates Ciccarella's local stability proof. Observer

divergence is shown in figure A.27. Recovery of filter stability was achieved by

reducing the filter gains, as shown in figure A.29.
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Figure A.1 Grossman observer state estimate (solid) and true state (dotted) for
three-state model of dog blood pressure response to medication. α  = 1.0, d = 1, no
measurement noise present.

Figure A.2 Moraal/Grizzle observer state estimate (solid) and true state (dotted)
for three-state model of dog blood pressure response to medication. a 1.0, d 1,
no measurement noise present.
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Figure A.3 Grossman observer state estimation error for three-state model of dog
blood pressure response to medication. a 1.0, d = 1, no measurement noise
present.

Figure A.4 Moraal/Grizzle observer state estimation error for three-state model of
dog blood pressure response to medication. a = 1.0, d = 1, no measurement noise
present.
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Figure A.5 Grossman observer state estimate (solid) and true state (dotted) for
three-state model of dog blood pressure response to medication. a = 0.5, d = 1, no
measurement noise present.

Figure A.6 Moraal/Grizzle observer state estimate (solid) and true state (dotted)
for three-state model of dog blood pressure response to medication. a = 0.5, d = 1,
no measurement noise present.
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Figure A.7 Grossman observer state estimation error for three-state model of dog
blood pressure response to medication. a = 0.5, d = 1, no measurement noise
present.

Figure A.8 Moraal/Grizzle observer state estimation error for three-state model of
dog blood pressure response to medication. a = 0.5, d = 1, no measurement noise
present.
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Figure A.9 Grossman observer state estimate (solid) and true state (dotted) for
three-state model of dog blood pressure response to medication. a = 0.1, d = 1, no
measurement noise present.

Figure A.10 Moraal/Grizzle observer state estimate (solid) and true state (dotted)
for three-state model of dog blood pressure response to medication. α = 0.1, d = 1,
no measurement noise present.
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Figure A.11 Grossman observer state estimation error for three-state model of
dog blood pressure response to medication. a 0.1, d = 1, no measurement noise
present.

Figure A.12 Moraal/Grizzle observer state estimation error for three-state model
of dog blood pressure response to medication. a 0.1, d = 1, no measurement noise
present.
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Figure A.13 Grossman observer state estimate (solid) and true state (dotted) for
three-state model of dog blood pressure response to medication. a = 1.0, d = 5, no
measurement noise present.

Figure A.14 Moraal/Grizzle observer state estimate (solid) and true state (dotted)
for three-state model of dog blood pressure response to medication. a = 1.0, d = 5,
no measurement noise present.
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Figure A.15 Grossman observer state estimation error for three-state model of
dog blood pressure response to medication. a = 1.0, d 5, no measurement noise
present.

Figure A.16 Moraal/Grizzle observer state estimation error for three-state model
of dog blood pressure response to medication. α  = 1.0, d = 5, no measurement noise
present.
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Figure A.17 Grossman observer state estimate (solid) and true state (dotted) for
three-state model of dog blood pressure response to medication. a = 0.5, d = 5, no
measurement noise present.

Figure A.18 Moraal/Grizzle observer state estimate (solid) and true state (dotted)
for three-state model of dog blood pressure response to medication. a = 0.5, d = 5,
no measurement noise present.
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Figure A.19 Grossman observer state estimation error for three-state model of
dog blood pressure response to medication. a = 0.5, d = 5, no measurement noise
present.

Figure A.20 Moraal/Grizzle observer state estimation error for three-state model
of dog blood pressure response to medication. α  = 0.5, d 5, no measurement noise
present.
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Figure A.21 Grossman observer state estimate (solid) and true state (dotted) for
three-state model of dog blood pressure response to medication. a = 0.1, d = 5, no
measurement noise present.

Figure A.22 Moraal/Grizzle observer state estimate (solid) and true state (dotted)
for three-state model of dog blood pressure response to medication. a = 0.1, d = 5,
no measurement noise present.
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Figure A.23 Grossman observer state estimation error for three-state model of
dog blood pressure response to medication. a = 0.1, d = 1, no measurement noise
present.

Figure A.24 Moraal/Grizzle observer state estimation error for three-state model
of dog blood pressure response to medication. a = 0.1, d 5, no measurement noise
present.
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Figure A.25 Ciccarella observer estimate (solid) and true state (dotted), for three-
state model of dog blood pressure response to medication. Arbitrary gain set (λ(A —
K) Є  {0.3, 0.4, 0.5}), no measurement noise present.

Figure A.26 Ciccarella observer state estimation error for three-state model of
dog blood pressure response to medication. Arbitrary gain set (λ(A — K) E
{0.3, 0.4, 0.5}), no measurement noise present.
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Figure A.27 Ciccarella observer estimate (solid) and true state (dotted), for three-
state model of dog blood pressure response to medication. Arbitrary gain set (.\(A —
K) E {0.3, 0.4, 0.5}), no measurement noise present, no feedforward (B = 0). Note
divergence.

Figure A.28 Ciccarella observer state estimation error for three-state model of
dog blood pressure response to medication. Arbitrary gain set (λ (A — K)

Є{ 0.3, 0.4,0.5}), no measurement noise present, no feedforward(B =0). Note
divergence.
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Figure A.29 Ciccarella observer estimate (solid) and true state (dotted), for three-
state model of dog blood pressure response to medication. Reduced magnitude gain
set (λ (A — K) E {0.03,0.04,0.05}), measurement noise present, no feedforward.
Observer is stabilized.
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A.3 Observer Simulations With Noise

A.3.1 Measurement Noise Mitigation in the Grossman and Modified
Moraal/Grizzle Observers

Though the Grossman observer and the Moraal/Grizzle observer are structurally

related, the Grossman observer at its conception relied upon the smoothing action

of its prefilter while the Moraal/Grizzle observer in its original form relied upon the

smoothing action of the n-point deadbeat dynamics of the Newton solver

The measurement noise mitigation property of both observers is enhance by

exploiting the filtering action of an incomplete Newton step (by setting a < 1) and

by exploiting the incomplete solution of the nonlinear input/output equations (by

setting d = 1). 2

By setting a = 1, d = 5, the filtering action of the Newton solver is minimized

and the noise mitigation effect of the prefilter in the Grossman observer becomes

most prominent. Comparisons of figure A.42 with A.43 and figure A.44 with A.45

noise on state estimate i 2 is not. Such mixed results are not uncommon in nonlinear

observers.

By setting a = 0.1, d = 1, the filtering action of the Newton solver is

maximized.3 Comparisons of figures A.42 with A.38 and figure A.43 with A.39

demonstrate the effective filtering action of the Newton solver in both observers. This

filtering comes at the expense of increased transient response time. Comparisons

of figures A.38 with A.39 and figure A.40 with A.41 demonstrate comparable

performance of both observers, with the Grossman observer perhaps exhibiting

somewhat better tracking performance towards the end of the simulation run.

2It is interesting that both observers benefit from an effect that neither Grossman nor
Moraal/Grizzle originally envisioned.

3Maximized for the values a E {0.1, 0.5,1.0}. Clearly a can be set to 0 < a < e with e
arbitrarily small.



169

Figure A.30 Grossman observer state estimate (solid) and true state (dotted) for
three-state model of dog blood pressure response to medication. a = 1.0, d = 1,
measurement noise present.

Figure A.31 Moraal/Grizzle observer state estimate (solid) and true state (dotted)
for three-state model of dog blood pressure response to medication. α  = 1.0, d = 1,
measurement noise present.
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Figure A.32 Grossman observer state estimation error for three-state model of dog
blood pressure response to medication. a = 1.0, d = 1, measurement noise present.

Figure A.33 Moraal/Grizzle observer state estimation error for three-state model
of dog blood pressure response to medication. a = 1.0, d 1, measurement noise
present.
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Figure A.34 Grossman observer state estimate (solid) and true state (clotted) for
three-state model of dog blood pressure response to medication. a = 0.5, d = 1,
measurement noise present.

Figure A.35 Moraal/Grizzle observer state estimate (solid) and true state (dotted)
for three-state model of dog blood pressure response to medication. a 0.5, d = 1,
measurement noise present.
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Figure A.36 Grossman observer state estimation error for three-state model of dog
blood pressure response to medication. a = 0.5, d = 1, measurement noise present.

Figure A.37 Moraal/Grizzle observer state estimation error for three-state model
of dog blood pressure response to medication. a 0.5, d = 1, measurement noise
present.
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Figure A.38 Grossman observer state estimate (solid) and true state (dotted) for
three-state model of dog blood pressure response to medication. α  = 0.1, d = 1,
measurement noise present.

Figure A.39 Moraal/Grizzle observer state estimate (solid) and true state (dotted)
for three-state model of dog blood pressure response to medication. a = 0.1, d = 1,
measurement noise present.
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Figure A.40 Grossman observer state estimation error for three-state model of dog
blood pressure response to medication. a = 0.1, d = 1, measurement noise present.

Figure A.41 Moraal/Grizzle observer state estimation error for three-state model
of dog blood pressure response to medication. α= 0.1, d 1, measurement noise
present.
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Figure A.42 Grossman observer state estimate (solid) and true state (dotted) for
three-state model of dog blood pressure response to medication. α  = 1.0, d = 5,
measurement noise present.

Figure A.43 Moraal/Grizzle observer state estimate (solid) and true state (dotted)
for three-state model of dog blood pressure response to medication. a = 1.0, d = 5,
measurement noise present.
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Figure A.44 Grossman observer state estimation error for three-state model of dog
blood pressure response to medication. a = 1.0, d = 5, measurement noise present.

Figure A.45 Moraal/Grizzle observer state estimation error for three-state model
of dog blood pressure response to medication. a = 1.0, d = 5, measurement noise
present.
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Figure A.46 Grossman observer state estimate (solid) and true state (dotted) for
three-state model of dog blood pressure response to medication. a = 0.5, d = 5,
measurement noise present.

Figure A.47 Moraal/Grizzle observer state estimate (solid) and true state (dotted)
for three-state model of dog blood pressure response to medication. a = 0.5, d = 5,
measurement noise present.
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Figure A.48 Grossman observer state estimation error for three-state model of dog
blood pressure response to medication. a = 0.5, d = 5, measurement noise present.

Figure A.49 Moraal/Grizzle observer state estimation error for three-state model
of dog blood pressure response to medication. a = 0.5, d = 5, measurement noise
present.
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Figure A.50 Grossman observer state estimate (solid) and true state (dotted) for
three-state model of dog blood pressure response to medication. a = 0.1, d = 5, no
measurement noise present.

Figure A.51 Moraal/Grizzle observer state estimate (solid) and true state (dotted)
for three-state model of dog blood pressure response to medication. a = 0.1, d = 5,
measurement noise present.
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Figure A.52 Grossman observer state estimation error for three-state model of dog
blood pressure response to medication. a = 0.1, d = 1, measurement noise present.

Figure A.53 Moraal/Grizzle observer state estimation error for three-state model
of dog blood pressure response to medication. a = 0.1, d = 5, measurement noise
present.
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A.3.2 Measurement Noise Mitigation in the Modified Ciccarella Observer

The modified Ciccarella observer provides process noise/measurement noise tuning

capability similar to that of the Kalman filter. It can be implemented with fixed or

variable gains, and it can be implemented with or without the feedforward term.4

Elimination of the feedforward term improves the noise mitigation properties of the

observer at the risk of potentially greater observer instability.

Figure A.54 demonstrates the performance of the unmodified Ciccarella

observer with a fixed gain and feedforward term. Comparison with unmodified

performance.

Figure A.56 demonstrates that when the feedforward term is eliminated and

the fixed gains are reduced to stabilize the estimator, the noise mitigation is greatly

improved. This noise mitigation is at the expense of the increased transient response

time.

Figure A.57 shows the performance of the modified, variable gain Ciccarella

observer without the feedforward term. The observer demonstrates near-complete

elimination of the measurement noise and a short, 30 step transient response. This

observer is the best performing observer of the three observers simulated.

Comparison of figure A.60 (Q = 0.018) with figure A.57 (Q = 0.00018) demon-

strates the effect of increasing the value of process noise parameter Q by two orders

of magnitude. As anticipated from Kalman filter theory, with the larger Q, the new

state estimate depend more upon the new measurement than when Q is small. The

increase in the gains caused by this increase in Q is seen by comparison of figure

A.59 (Q = 0.00018) with A.62 (Q = 0.018).

4When the "modified" Ciccarella observer is implemented with fixed gains and
feedforward, it is the original form of the filter proposed by Ciccarella and is no longer
in "modified" form.



182

The deleterious effect of the feedforward term upon the noise mitigation of the

modified Ciccarella observer is seen in the comparison of figures A.57 (no feedforward)

and A.63 (with feedforward).
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Figure A.54 Ciccarella observer estimate (solid) and true state (dotted), for three-
state model of dog blood pressure response to medication. Arbitrary gain set ( λA —
K) Є  {0.3, 0.4, 0.5}), measurement noise present.

Figure A.55 Ciccarella observer state estimation error for three-state model of
dog blood pressure response to medication. Arbitrary gain set ( λ (A- K) Є
{0.3, 0.4, 0.5}), measurement noise present.



184

Figure A.56 Ciccarella observer state estimation error for three-state model of dog
blood pressure response to medication. Reduced magnitude gain set ( λ (A — K) Є
{0.03, 0.04, 0.05}) measurement noise present, no feedforward. Observer is stabilized.

Figure A.57 Modified Ciccarella observer estimate (solid) and true state (dotted),
for three-state model of dog blood pressure response to medication. Kalman gain
set, measurement noise present, no feedforward (B = 0). W = 0.01831, Q =
0.00018 diag([0 0 1]).
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Figure A.58 Modified Ciccarella observer state estimation error for three-state
model of dog blood pressure response to medication. Kalman gain set, measurement
noise present, no feedforward (B = 0). W = 0.01831, Q = 0.00018 diag([0 0 1]).

Figure A.59 Modified Ciccarella observer gain history. W = 0.0183/, Q
0.00018 diag([0 0 1]).
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Figure A.60 Modified Ciccarella observer estimate (solid) and true state (dotted),
for three-state model of dog blood pressure response to medication. Kalman gain
set, measurement noise present, no feedforward (B = 0). W 	 0.01831, Q
0.018 diag([0 0 1]).

Figure A.61 Modified Ciccarella observer state estimation error for three-state
model of dog blood pressure response to medication. Kalman gain set, measurement
noise present, no feedforward (B = 0). W 0.01831, Q 0.018 diag([0 0 1]).
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Figure A.62 Modified Ciccarella observer gain history. W 	 0.01831, Q =
0.018 diag([0 0 1]).

Figure A.63 Modified Ciccarella observer estimate (solid) and true state (dotted),
for three-state model of dog blood pressure response to medication. Kalman
gain set, measurement noise present, with feedforward. W 0.01831, Q =
0.00018 diag([0 0 1]).
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Figure A.64 Modified Ciccarella observer state estimation error for three-state
model of dog blood pressure response to medication. Kalman gain set, measurement
noise present, with feedforward. W = 0.0183/, Q = 0.00018 diag([0 0 1]).
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A.4 Observer Simulations With Increased Input Amplitude

Simulations of the three observers were made with measurement noise. The input

amplitude was increased by a factor of ten over the previous runs. Specifically, the

control input consisted of a symmetric, 50% duty-cycle square wave of amplitude

ten, with a ten-sample period, i.e.,

The measurement noise was the same power as the previous runs, but due to

the increased amplitude of the output response, the signal-to-noise ratio was effective

increased from 3dB to 25 dB. 5 All three observers converged with response times less

than those of the previous runs with unity input.

5This increase in signal-to-noise ration demonstrates the technique of increasing input
amplitude and system response to overcome a sensor noise floor.
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Figure A.65 Grossman observer state estimate (solid) and true state (dotted) for
three-state model of dog blood pressure response to medication. a = 0.1, d = 1,
measurement noise present. Input amplitude u =E {-10,10}.

Figure A.66 Moraal/Grizzle observer state estimate (solid) and true state (dotted)
for three-state model of dog blood pressure response to medication. a = 0.1, d = 1,
measurement noise present. Input amplitude u =E {-10,10}.



191

Figure A.67 Modified Ciccarella observer state estimation error for three-state
model of dog blood pressure response to medication. Kalman gain set, measurement
noise present, no feedforward. W 0.01831, Q = 0.00018 diag([0 0 1]). Input
amplitude u =E { -10, 10}.



APPENDIX B

MATLAB CODE

B.1 Discrete-time Friedland Observer for Identification of the
Characteristic Polynomial of an Autoregressive Filter
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B.2 Scalar Example of Newton Observer
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B.3 Discrete-time Friedland Observer for Identification of the
Characteristic Polynomial of an Autoregressive Filter
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BA Simultaneous State and Parameter Estimation Applied to an
Autoregressive Filter

B.4.1 Grossman Observer
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