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ABSTRACT

VIBRATION CONTROL OF ULTRA-HIGH PRECISION MAGNETIC
LEADSCREW USING RECURRENT NEURAL NETWORK

by
Bhaskar Vinayak Dani

Ultra-high precision positioning is of strategic importance to modern industrial

processes such as semiconductor manufacturing. Traditional drives with mechanical

transmission elements exhibit nonlinearities such as friction, backlash and hysteresis

which limit the system performance significantly. The magnetic leadscrew in this

work belongs to the class of contactless drives which overcome the above mentioned

limitations of contact-type drives. The operation is based on leadscrew/nut coupling

but unlike mechanical leadscrews, the threads of the nut and the leadscrew are

aligned magnetically and do not come in contact. Thus, "hard" nonlinearities are

substantially reduced resulting in high precision and high resolution.

The dynamics of the system are, however, lightly damped and result in

vibration of the nut upto tens of microns peak-to-peak. Due to the high frequency

of the modes, typically a few hundred Hz, the dynamics are difficult to control

using conventional techniques, limited actuator bandwidth being one of the reasons.

Active control must therefore be employed. This work develops a passband control

scheme based on the Hilbert Transform which gives the orthogonal components of

the oscillating modes. The components are extracted using a neural network to

enhance the robustness of the controller.

Performance of the controller is evaluated under self-resonance, forced oscil-

lation and transient response. Self-resonance is shown to be completely eliminated

while for forced oscillation, the axial gain is shown to be reduced. Stabilization

time of the transient response is also significantly reduced, thereby confirming the

vibration suppression capabilities of the controller.
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CHAPTER 1

INTRODUCTION

1.1 Objective

This work addresses the issue of vibration control of an ultra-high precision

positioning system. The system under consideration is a contactless drive where

magnetic coupling is employed between a nut and a leadscrew to achieve a resolution

of about 10 nanometers over a range of 10 cm. Due to the use of aerostatic bearing

between the nut and the leadscrew, a number of resonances exist at the nut. It

was determined that the vibration of the nut is of the order of tens of microns

and therefore requires active control. A learning controller based on the recurrent

neural network scheme is implemented. The neural network separates the required

in-phase and quadrature components of the oscillating modes of the nut which are

then individually regulated regeneratively or degeneratively. Performance of this

controller in the presence of self-resonance and forced oscillation is evaluated.

1.2 Background Work

Contactless drives is the enabling technology for modern industrial processes such

as microlithography, precision manufacturing, optoelectronic assembly, etc. These

processes have to meet increasingly tighter positioning constraints such as end point

positioning in the range of microns or nanometers. It is difficult to achieve this

performance using conventional systems with mechanical bearings or belt drives.

This is primarily because systems with mechanical transmission elements exhibit

nonlinearities such as friction, backlash and hysteresis which are the primary factors

degrading the system performance thus making it difficult for these drives to conform

to the stringent requirements of end point confines. For example, it is projected that

manufacturing the next generation of DRAMs with capacities of 256 MB or 1 GB will

require a positioning reproducibility of 20-30 nanometers [2]. Motivation for research
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in contactless drives stems from the above mentioned difficulties in employing conven-

tional drives in precision applications.

In contactless drives, there is no physical contact between the transmitting

parts. This virtually eliminates the nonlinearities such as friction, backlash, etc.

resulting in very accurate positioning. Different technologies such as aerostatic and

hydrostatic bearings have been investigated which use externally pressurized fluids

for physical separation of the nut and the leadscrew [3]. Intense research is also

being pursued in the field of magnetic suspension. Magnetic suspension drives may

have two types: nut-leadscrew assemblies employing magnetic coupling and linear

motors. In conventional contact-type drives, the threads of the nut and the leadscrew

are mechanically meshed. However, in contactless drives, the threads are aligned

magnetically. This gives them the desired contactless property. Note, however, that

the drive's performance will be sensitive to the air gap between the nut and the

leadscrew.

Linear motors are an alternate approach for implementing magnetic suspension

drives. These are direct drive systems because the drive force is directly applied to the

payload. Also, because of the magnetic suspension, there is no theoretical limit on the

speed of these motors. Practically, the speed is limited by the bandwidth of sensors

employed and that of the power electronics driving the motor [4]. All this results in a

high speed-high accuracy system, ideal for precision positioning applications, Many

types of linear motors are available with applications ranging from merry-go-round

rides to semiconductor wafer stepping. Selection depends on the type of application.

For precision applications, linear servo motors are the most suitable. Most of the

current research in precision positioning using linear motors addresses the field of

semiconductor manufacturing. In [2], an xy-stage is outlined which has a positioning

reproducibility of 20 nanometers and uses three linear DC motors in an H-shaped

arrangement. Dual servo (piggyback) technique is employed with manometer range
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positioning achieved by PZT actuators. Similarly, [5] demonstrates a six degree-of-

freedom, permanent magnet levitated linear motor delivering r.m.s. positioning as

low as 5 nanometers. Extensive research is being pursued in the field and linear

motors with peak forces as high as 20 kN are available. These examples show that

linear motors are also proving to be promising for precision positioning applications.

Thus, magnetic leadscrews and linear motors are the two competing technologies

among magnetic suspension systems both taking advantage of their contactless

property. Linear motor technology is, however, expensive. With their advantages

in terms of performance, they also bring inherent undesired properties (e.g. force

ripple) which make their control more difficult than rotary motors [4]. Special drive

circuits are required for linear motors as against the standard rotary motor drives

required for magnetic leadscrews. Increasing the span-length of linear motors is

expensive since it requires additional magnetic tracks to be stacked adjacent to each

other. Further, each magnetic track requires separate cooling arrangement which

makes it even more expensive to achieve longer travels. Magnetic leadscrews do not

suffer from these limitations of linear motor drives. As mentioned before, they can

be driven with conventional rotary motor drive circuits. Increasing their span-length

amounts only to replacing the leadscrew with another having greater length, which

is a much more economical affair as compared to linear motors. Also, resolution of

the drive can be improved by improving the thread ratio between the nut and the

leadscrew. Typically, they can deliver forces of the order of 400 N and higher peak

forces may be achieved. In summary, magnetic leadscrews offer a cheaper option for

precision positioning applications delivering the desired properties of linear motors.

However, due to their contactless nature, magnetic leadscrews exhibit very low

damping. Friction between the transmitting parts is virtually eliminated resulting in

a lightly damped system which exhibits more vibration than conventional (contact-

type) drives. This is an undesirable property inherited by these drives due to their
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contactless nature, and, active control schemes must be resorted to for meeting the

stringent positioning demands on them. This is the issue addressed in this work.

Active control finds many applications like aircraft panel vibration control,

machinery vibration control, active noise control, etc. A summary of various appli-

cations can be found in [6]. Although active control has been employed for decades,

there is a renewed interest in this field because many control algorithms that were

difficult to implement earlier are now feasible with the availability of low cost, high

bandwidth Digital Signal Processors (DSPs). In a typical active control effort,

vibrating modes of the plant are identified first using a frequency sweep test or a

white noise excitation test. An algorithm is then devised for cancellation/control of

each of these modes. Both single-mode and multimode control can be performed and

has been demonstrated in the past, see e.g. [7]. A comparison of different algorithms

for independent modal space control (IMSC) may be found in [8].

This work addresses the issue by developing a learning controller. A neural

network is used to obtain suitable feedback components. The controller requires

only a rough idea about the location of the vibrating modes. Lead Zirconate, Lead

Titanate, Piezoelectric Ceramic (PZT) actuators are employed for the dual purpose

of controlling and/or injecting vibration at the resonant modes. PZTs have many

desirable properties such as high stiffness, precise controllable motion, high force

and high bandwidth. They are gaining wide acceptance as actuators for active

vibration control. Note however, that other actuators are also being examined for

their potential as actuators for vibration control, e.g., [9] demonstrates positioning

down to ±lnm using a voice-coil actuator used as secondary actuator in the system.
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1.3 General System Description

Instrumentation on the nut is as shown in Figure 2.1 while a cross-sectional view of

the nut is shown in Figure 2.4. The drive is supported by a combination of externally

pressurized air journal and thrust bearing on one end and by the nut on the other

end. The nut moves along a slide through a rectilinear air bearing. A capacitive

sensor and an accelerometer are mounted on the nut to measure the vibration in the

axial (z) direction. Two stacks of PZT actuators are mounted on either side of the

nut to inject or control the vibration as required. High voltage amplifiers (HVAs) are

employed to provide the drive power for the PZTs. The controller is implemented in

a PC-DSP data acquisition and signal processing board which uses the TMS320C31

floating point DSP from Texas Instruments. Figure Li shows a basic block diagram

of the system.

Figure 1.1 Basic Block Diagram of the System

Detailed hardware description of the system follows in Chapter 2. Chapter 3

explains the theory behind the neural network based controller and also the overall

controller structure. Software development is the subject of Chapter 4. Test results

and discussions are included in Chapter 5.



CHAPTER 2

HARDWARE DEVELOPMENT

This chapter describes the hardware platform for the project. An overview of the

system is given first followed by the description of each of the individual components.

The PC-DSP development system is explained in detail. A description of the exper-

imental setup consisting of the magnetic leadscrew, and the sensors and actuators,

along with their relevant interfacing circuitry, is given next. Parameter specifications

of individual components are included in Appendix A.

2.1 System Overview

Figure 2.1 shows the experimental setup of the system.

Figure 2.1 Experimental setup of the system

The system consists of a nut and a leadscrew which are magnetically coupled to each

other. The nut is mounted on a slide at the bottom and travels in the axial i.e. the

z-direction as shown. The system uses PZT actuators to control the nut vibration.

Two separate PZT stacks attached with the desired proof mass are mounted on either

side of the nut as shown. Each stack can serve the dual purpose of injecting the test

6
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disturbance into the plant (nut) or producing the control motion to cancel/control the

disturbance. A low G accelerometer and a capacitive sensor measure the vibration.

Figure 2.2 shows the functional block diagram of the system.

Figure 2.2 Block diagram of the system

The controller is implemented on a PC-DSP development platform which uses the

"Model 310 Data Acquisition and Signal Processing Board" from Dalanco Spry.

The board uses the TMS320C31 floating point DSP from Texas Instruments and is

designed for the ISA (PC-AT) bus of the host PC which has an Intel Pentium-MMX

CPU running at 166 MHz.

2.2 Components

2.2.1 PC-DSP Development System

The DSP board has 128 kword on-board RAM with provision for additional

expansion. It is interfaced to the ISA bus of the PC. The RAM is dual ported

and therefore is accessible by both the PC, as well as, the DSP. It is interfaced to the

16-bit ISA bus via a bus interface. Figure 2.3 shows a block diagram of the board.



Figure 2.3 Block diagram of the DSP board

A four channel differential multiplexer on the input side facilitates four 14-bit

ADC input ports while the output side has two 12-bit DAC ports. Simultaneous

Write cycles on the DAC ports in the same cycle are also possible. The voltage

range on both ADC and DAC ports is ± 5V. A programmable gain amplifier (PGA)

on the board enables low amplitude signals to be read. Gain ranges from 1 to 1000

with fixed intermediate values provided by the manufacturer. Note that the ADC

and the DAC are not dual ported in that they are accessible only by the DSP and

not the PC. The DAC can output data with a maximum rate of 140 kHz while the

ADC can read at a maximum rate of 300 kHz. The sampling rate for the ADC is

programmed from the C31.

The board can be mapped in the PC's I/O space on 8-byte boundaries.

Programming may be done in both C as well as assembly. The DSP board is

compatible with the Texas Instruments Optimizing C Compiler for the C31 [11].
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In addition, two user written libraries are used which contain the C code along

with optimized assembly fragments for certain routine functions. This facilitates

complete isolation of the programming environment from the architectural details of

the board.

2.2.2 C31 Features

The TMS320C31 is a 32-bit floating point DSP from Texas Instruments which

combines both system control and mathematical processing functions on a single

chip. Key mathematical processing features of the C31 include single cycle MAC

(multiply + accumulate) instruction, 32-bit barrel shifter, independent multiplier

and ALU units, eight external precision registers with 32-bit mantissa and 8-bit

exponent, for intermediate storage of operations and two independent Auxiliary

Register Arithmetic Units (ARAUs) for fast address generation in all addressing

modes. The separate multiplier and ALU units both handle 32-bit integer and

40-point floating point data. The key system control features which make the C31

a stand-alone single powerful processor include: on-chip 64-word instruction cache,

two 32-bit wide on-chip banks of 1 kword RAM and one 32-bit wide on-chip bank

of 4 kword ROM, two 32-bit memory-mapped timers, a full-duplex, bidirectional,

memory-mapped serial port and most importantly, an on-chip memory-mapped

DMA controller. The DMA controller is used to achieve CPU operation concurrent

with I/O. The DMA controller handles data transfers between the different on-chip

memory resources thereby relieving the CPU of I/O responsibilities. It also performs

memory-to-memory transfers and can access any on-chip/off-chip memory address or

memory mapped peripherals. The on-chip memory blocks can perform two memory

accesses in a single cycle. The serial port can transfer data as 8-bit, 16-bit, 24-bit

or 32-bit words. In the present system, the on-chip timer is used as a triggering

signal for the ADC conversion cycle. A toggle on the TCLK pin gives a "Start of
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Conversion" to the ADC. After "End of Conversion", data is sent from the ADC to

the serial port. A read operation copies the data in the CPU.

2.2.3 Magnetic Leadscrew

A cross-sectional view of the contactless drive is shown in Figure 2.4.

Figure 2.4 Magnetic Leadscrew

The drive is based on the principle of aerodynamic/magnetic suspension. In conven-

tional drive systems, the nut and the leadscrew are mechanically coupled. In the

present system, however, magnetic coupling is applied between the two to align the

threads of the nut and the leadscrew. This avoids any physical contact between

the leadscrew and the nut and eliminates the so-called "hard" nonlinearities such

as backlash, hysteresis and surface friction, present in contact-type (mechanically

coupled) drives. Superior performance is achieved as a result, giving high resolution,
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longer life due to lower wear and tear, lower cost as compared to the conventional

ball screw drives and also a wide range of travel. "The leadscrew and nut are made

of soft magnetic material with fine rectangular thread. Their spacing is filled with

non-magnetic epoxy. Permanent magnets are joined to the nut to supply energy to

the magnetic circuit formed by the leadscrew and nut pair. The operating point

and the subsequent performance of the permanent magnets depend on both the

physical installation of the magnetic circuit and the magnetization of the magnetic

circuit after assembly. As shown in the cross-sectional view above, the aerostatic

leadscrew system is supported on one end by a combination of externally pressurized

air journal and thrust bearing. It is also supported by the nut, with the nut acting

as an externally pressurized air journal bearing. The nut moves on a slide through

a rectilinear air bearing. High resolution linear movement is achieved by the pitch,

which is 0.1 mm in the present system." [1]

2.2.4 PZT and High Voltage Amplifier

The system uses the Lead Zirconate Lead Titanate (PZT) class of actuators to

inject/control the vibration of the nut. PZT belongs to the class of induced strain

actuators (ISAs). Among other members of this class are electrostrictive actuators,

magentostrictive actuators and also shape memory effects [10]. The multilayer stacks

of PZTs used in this system exhibit high force and low displacement. Since the

displacement (vibration) of the nut is within ± 25 microns, the stiffness requirement

of the PZTs is not as high as that for span-lengths exceeding hundreds of microns.

[2] Two separate piezoelectric stacks with suitable proof mass are mounted on either

side of the nut. One stack (PZT1) is used to inject test disturbance while the other

(PZT2) is used to produce the control motion. These functions can be interchanged.

The PZTs require high voltage of the order of hundreds of volts to provide the desired

control motion. The control inputs (from the DAC) and disturbance inputs (from
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the signal generator) are therefore fed to high voltage amplifiers with an amplifi-

cation factor of 100. Outputs of these High Voltage Amplifiers eventually feed the

command to the PZTs.

2.2.5 Sensors

As shown in Figure 2.1, two sensors are used to measure the vibration of the nut. A

low G accelerometer and a capacitive sensor are mounted on the drive as shown to

measure the axial (z-direction) acceleration and displacement the nut, respectively.

2.2.5.1 Capacitive Sensor: The capacitive sensor has a range of ± 25 microns

which corresponds to half rotation of the nut. A charge amplifier is used to convert

the capacitive sensor's output to a dual polarity voltage signal. The resulting sensi-

tivity is 0.4 V/micron. Parameter specifications are given in Appendix A.3.

Mounting of the capacitive sensor is a critical implementation issue. In the

present system, a magnetic stand is used to hold the capacitive sensor. The stand

is mounted on the same slide on which the nut travels. This reduces any common

mode disturbances that may be present. However, because of the magnetic stand,

the overall assembly is similar to a cantilever beam with the result that the vibration

modes of the magnetic stand also appear in the frequency spectrum obtained from

the capacitive sensor. If these modes "mix" with those of the nut then it becomes

difficult to identify the "true" modes of the nut. It is extremely important to identify

the correct resonant modes if proper cancellation is desired. Confronted with this

situation, we take the following precautionary steps: First, the capacitive sensor is

mounted as low as possible on the magnetic stand. This reduces the stand vibration

significantly. In addition, the frequency spectra as obtained from the capacitive

sensor and the accelerometer are compared. The accelerometer is mounted directly

on the nut and therefore does not introduce any erroneous modes in its spectrum.
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Lastly, the magnetic stand is placed at various positions and the position where the

spectra obtained from the two sensors are in agreement, is selected. Sensor placement

is an extremely critical part in the hardware implementation of this system.

2.2.5.2 Accelerometer: The system uses the model CXL04M3 triaxial accelerometer

from Crossbow Technology. The silicon micromachined accelerometer operates on

a single +5V supply and provides a direct analog output voltage which can be

interfaced to the ADC channels directly. It is epoxyed on the magnetic nut such

that the x-axis of the accelerometer is aligned with the z-direction of the nut. The

factory calibrated zero-G output on the x-axis is 2.475 G. Following relation is used

to calculate the output acceleration:

Scale factor for the x-axis is 500 mV/G. Despite factory calibration, the accelerometer

was re-calibrated before any tests were conducted and the zero-G voltage from the

x-axis (after mounting the accelerometer on the nut) is 2.48 V. Note that the DC

offset is adjusted (nullified in software) before any operations are performed on the

data.

Due to ground vibration and other external mechanical vibration, the accelerometer

data is extremely noisy for low amplitude vibrations. In such cases, a simple inverting

amplifier stage with a suitable gain is introduced between the accelerometer and

the ADC as shown in Figure 2.5. Parameter specifications of the accelerometer are

given in Appendix A.4.

2.3 Anti-aliasing Filter

An analog low-pass filter precedes ADC in order to avoid aliasing effects. The

controller operates at a 2 kHz sampling rate. Hence, an analog low-pass filter with an

ideal cut-off at Nyquist Frequency of 1 kHz is desirable. However, a cut-off frequency
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Figure 2.5 Amplifier Circuit

lower than this frequency is desirable for two reasons. First, the accelerometer has

a first-order low-pass characteristic with bandwidth set at 100 Hz. And second, in

its present position, the dominant modes of the magnetic stand used to mount the

capacitive sensor are at 225 Hz and 256 Hz. Hence, an analog low-pass filter with a

cut-off lower than these frequencies will facilitate the identification and later cancel-

lation of the true modes of the nut. In the present system, the filter is designed to

have a cut-off frequency of ≈ 200 Hz. Circuit diagram is shown in Figure 2.6.
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Figure 2.6 Anti-aliasing analog low-pass filter

fc = 200Hz R ≈ 170Ω.

We choose R = 160Ω  which gives fc = 213Hz.

Parameter Specifications of the various components discussed in this chapter

are given in Appendix A.



CHAPTER 3

CONTROL ANALYSIS

This chapter explains the theory behind the neural network based controller. Plant

structure is explained first and a low-frequency equivalent model is derived via the

Hilbert transform. This is the model used for passband control. The Neural Mode

Separator (NMS) is discussed next. Overall controller structure along with experi-

mental procedure is given at the end.

3.1 Model Development

The magnetic nut has an open -loop response as shown in Figure 3.1.

Figure 3.1 Open-loop response of the plant

We start by obtaining an approximate model for this response by implementing the

method of curve-fitting. This is done in Matlab on an iterative basis until the fit

matches/approximates the various slopes and breakpoints of the actual response. An

exact fit which includes the "weak" mode at 124 Hz results in a transfer function of

a very high order. Hence, only the two dominant modes at 61.5 Hz and 150 Hz are

used to obtain an approximate fit which is shown in Figure 3.2.
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Figure 3.2 Resonant modes of the nut for m = 0 kg

This fit results in an open-loop transfer function given in Equation 3.1.

where

A = —1.253 4 — 2.67 x 10 2 83 — 4.11 x 105 s2 — 6.21 x 107 s — 2.32 x 109

B = s 9 + 3.35 x 10 3 38 5.29 x 10 6 3 7 + 6.02 x 109 56 + 5.18 x 10 12 35 +

3 x 10 15 34 + 1.20 x 10 8 33 + 3.75 x 10 20 32 + 8.04 x 1022s 7.75 x 1024

The 9 th order open-loop transfer function has

zeros at:

—27.96 + j585.5,

—94.25 	 and

—62.83

17
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and poles at:

—28.65 ± j954.61,

—1053.69,

—1053.69,

—3.83 ± j383.25,

—565.49	 and

—303.48 ± j3.09 x 10'

Note that the transfer function is load dependent. In other words, whenever the

load on the nut changes, the transfer function in Equation 3.1 no longer holds in

its present form. This is because with change in the load conditions, the oscillating

modes of the nut shift to a different location. In other words, the plant dynamics are

variable. Hence, a controller based on an open loop transfer function of Equation 3.1

does not guarantee consistent performance which, in the present case, is stabilization

of the oscillating modes. It is, therefore, of general interest to seek a robust scheme

for the controller.

3.2 Passband Control

Vibration of the nut can be treated either as undamped/underdamped internal

dynamics of the plant or as external disturbance. The controller developed in this

work is based on the former approach and needs to have only a rough idea about the

number and location of dominant modes.

As mentioned in Chapter 1, the contactless drive is a lightly damped structure. Most

lightly damped structures have energy content in a number of separate passbands

which are band-limited. Each band can be considered to be a separate plant and a

modular structure can be obtained as shown in Figure 3.3.



is known Communication Systems community for the key role it plays in bandwidth

conservation in Single Sideband (SSB) modulation [12]. Using Hilbert Transform, we

can determine the pre-envelope and the baseband complex-envelope of a given signal

as will be explained in later sections. Therefore, we look at each oscillating mode as

a separate narrowband modulation frequency centered around a carrier frequency.

Hilbert Transform can then be used to obtain an equivalent model in the baseband

for each of the individual modes of the plant (subsections of the controller). We

proceed by defining a linear plant and identifying the control objectives.

3.2.1 Plant Definition

The plant is assumed to be linear and time invariant given by:
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This is the transfer function of the ith subsystem of Figure 3.3.

Advantage of parallel decomposition is that all Gi(s) are automatically decoupled in

the frequency domain [1]. Therefore, for the ith subsystem, we have,

Since the open loop system is lightly damped, the output of each subsystem can be

written in time domain as:

A low-frequency equivalent model is now derived.



pictorial representation of the Hilbert Transformer is shown in Figure 3.4.

Figure 3.4 Hilbert Transformer

Essentially, the Hilbert Transform performs the function of shifting the phase of the

input signal by 90°.

3.2.3 Low-Frequency Equivalent Model

Let the output of each individual section be denoted by y(t) and its Hilbert transform

21



22

Equations 3.15 and 3.16 are obtained using the frequency shifting property of the

In other words, any signal y i (t) can be shifted to the baseband using the low-frequency

in-phase and quadrature components. This is possible only because of the Hilbert

Transform since the complex envelope can only be derived from the pre-envelope

which is given by the Hilbert Transform. Equation 3.18 is the expression for the

output of each of the subsections of Figure 3.3.

Proceeding on the same lines, we can also decompose the impulse response matrix

of the section as:

Thus, the section output y i (t) can be expressed as:



Observe that
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passband.

The baseband equivalent model of the ith resonant section is now obtained as:

Therefore yi (t) can be extracted from z(t) by suitable band-pass filtering or "mode

separation".

Since the impulse response of Gi(t) is given by:
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If the in-phase (cosine) component only is used for feedback control, i.e.

it can be readily shown that the closed loop eigenvalues are given by:

Stabilization of the plant now requires shifting all N poles further into the left-half

plane. A bandwidth-conservative controller can now be synthesized for each of the

N resonant sections.

3.2.4 Fixed Regulator Synthesis

The low-frequency equivalent transfer function for the i th subsystem with the in-

phase component used for feedback is:

For regulation, i.e. for sustained oscillation, a PI controller may be employed [1]. This

supplies an equivalent closed-loop transmission zero at the origin. For the present

work, however, we need stabilization. Hence, the integral action has been eliminated

and a simple proportional controller has been employed. Successful functioning of

the bandwidth conservative controller now depends on the availability of the in-phase

component which is generally mixed at the output stage. The neural mode separator

does the job of extracting this component.

3.2.5 Neural Mode Separator (NMS)

The NMS belongs to the class of Recurrent Neural Networks [13]. A general n-input,

n-output neural network scheme is shown in Figure 3.5.



Figure 3.5 A general Recurrent Neural Network

The adaptation rule is given by:

The parameter p, represents the learning rate and a(.), 0(.) are odd, locally smooth

functions. For the case of n = 2, a robust update rule for the "blind separation" of

the elementary signals that are statistically independent [13].

For the present case, resonant modes are treated as elementary signals and orthogo-

nality between them is treated as statistical independence.

Since,
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the objective of the weight adaptation scheme is to force WH = PND where PN is a

general permutation matrix and D is a nonsingular diagonal matrix and the relations

obtained are:

This gives the required statistical independence condition: For the present case, it

translates to the following: each mode acts as one elementary signal. The other

elementary signal is obtained by employing a filter introducing an arbitrary phase-

shift. These two elementary signals can then be fed to the neural network whose

job will be to make them statistically independent i.e. orthogonal, thus giving the

desired in-phase and quadrature components.

3.2.6 Controller Structure

Overall controller structure is shown in Figure 3.6.

Figure 3.6 Overall controller structure

The controller is implemented in real-time inside the DSP. Output of the subsection

(mode) obtained using a suitable sensor is fed to a front-end digital low-pass filter

inside the controller. The cut-off frequency of the filter is designed to be higher than

the frequency of the mode since, for the present system, the purpose of the filter is not

to attenuate a particular component but only to introduce a phase-shift. (Note that
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an all pass filter may also be used to perform the same task but design of a digital all

pass filter is much more complicated than its counterpart). The original signal and

its phase-shifted version are fed to the neural network which adjusts the phase-shift

between the two signals to 90 0 . Selection of the parameter value (,a) for the neural

network is the deciding factor in the speed of learning. The issue is discussed in much

detail in Chapter 5. Scalar gains k 1 and k2 and the proceeding summing junction in

Figure 3.6 are used to obtain a linear combination of the in-phase and quadrature

components. This is required since these components, when applied individually, do

not appear in the correct phase at the nut due to the transmission delay between the

controller output at the DAC channel and the actuator mounted on the nut (plant).

This is explained in greater detail in Chapter 4.

3.3 Experimental Procedure

For each load condition, the resonant modes of the nut are identified. Test procedure

for identification of modes is given in Chapter 5. The digital low-pass filter coefficients

are selected for the particular mode under consideration. Tests are conducted for

self-resonance which is a ringing effect observed whenever additional mass (load)

is placed on the nut. For self-resonance, the sensor output is simply fed to the

filter. Suitable parameter value (p) is chosen for the neural network. Gains k 1 and

k2 are tuned to stabilize the ringing. For another set of tests, an external sinewave

disturbance is injected into the nut at the frequency of the desired mode and the same

procedure is repeated. Once the parameters k1, k2 and k r are tuned to obtain the

maximum reduction in vibration, a third test is performed where a step disturbance

is applied to the nut and the time required for stabilization of the transient part

of the response without control action is recorded with that under control action.

These test results are included in Chapter 5. Chapter 4 explains the software and

the various implementation issues arising in the implementation of the controller.



CHAPTER 4

SOFTWARE

The control program is developed in C. Some user written libraries with embedded

fragments of C31 assembly are also used. These libraries facilitate user friendly

interfacing of the DSP board with the PC. The PC is used for performing supervisory

functions, data acquisition and further processing while the DSP is used to implement

the control algorithm. The control Program is written in the PC and the compiled

code is downloaded into the DSP where the controller is implemented in real-time.

A brief description of the user written libraries is given first. Control program is

discussed next. Data exchange between the PC and the DSP is given in the end.

4.1 User Written C Library

This library performs two main tasks. First, it initializes the signal processing board

and second, it performs data exchange between the analog I/O channels and the

DSP. The interface provided by Dalanco - manufacturer of the board - for the I/O

channels is time consuming and complex. The C library overcomes this drawback by

encapsulating the required functions. This provides a high level interface between the

PC and the DSP and the user is isolated from the details of the board architecture.

Each of the functions implemented are now described in turn. Note that these

functions are a part of the "d310bio.h" header file which is included at the beginning

of the control program. Code listing for the header file is given in Appendix B.

4.1.1 DSP Board Initialization

The DSP board requires initialization which is performed by the InitDsp() function

in "d310bio.h" . The function call prototype is:

void InitDsp(void)
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Note that the ADC on the board is connected to the serial port of the DSP. Hence,

serial port, timer and the latch on the board need to be properly initialized during the

InitDsp() function. The function begins by initializing some pointers. The latch in

the DSP board contains two quantities: the current channel number of the ADC with

default set to channel° and the gain of programmable gain amplifier (PGA), default

being unity. Next, the function sets up the memory mapped chip registers of the

DSP. These are the timer registers and the serial port control registers. The pointers

mentioned above are used to write to the respective addresses of the register. This

completes the initialization of the communication between the DSP and the ADC on

the serial port. The ReadAdc() and WriteDAC() functions are now called as required

to perform analog I/O as explained in the following sections.

4.1.2 Analog Output

Analog output is generated on the DAC channels by means of the WriteDAC()

function which has the prototype:

int WriteDAC(int value, int channel)

The legal values for channel are 0 and 1 and those for value are in the range -2048 to

+2047. To avoid roll over effects, values greater than +2047 are clamped to +2047

and those less than -2048 are clamped to -2048. The WriteDAC() function writes to

only one channel at a time. If both channels are required to be updated in a single

cycle, the function WriteDACs() may be used. The function prototype is:

int WriteDACs(int value°, int valuel)

In a single cycle, both channel° and channell are updated with the values value0

and valuel respectively.
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4.1.3 Analog Input

To input analog values from the ADC, the function ReadAdc() is called which has

the following prototype:

int ReadAdc(int channel)

This reads the value from the ADC for the voltage applied on the specified channel

and returns values ranging from -2048 to +2047 for voltages ranging from -5 V to

+5 V. The necessary sign extension is performed internally in the function. To read

from more than one channel, multiple calls to ReadAdc() are necessary. Since the

ADC has four channels, legal values for channel are from 0 to 3. The voltage at the

ADC input is calculated by multiplying the ADC data by the scale factor (5/2047).

4.1.4 Determination of Sampling Rate

The sampling rate is determined by the constant TIMPERO specified at the beginning

of the control program. Since functions VVriteDAC() and ReadAdc() both wait for the

falling edge of the TCLK signal of the DSP, it is evident that Timer() register of the

DSP decides the sampling rate. The functions are active low. The function InitDsp()

puts the value of the constant TIMPERO into the TimerO register which is used as a

counter. The constant must be defined before the header file "d310bio.h" is included

in the control program in order to preempt the assignment of the default value for

the sampling rate which is declared in the header file. TIMPERO is calculated from

the formula:

cycle each. The factor numcalls in the above formula is the total number of reads

and writes taken together, in the control loop.
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4.2 Control Program

The control program has two parts: initialization section and the control loop.

4.2.1 Initialization

The DSP board is initialized first by the function InitDsp . Next, a suitable sampling

rate is selected for the controller. From Figure 5.1, we see that, for no load condition,

the frequency of the highest mode is 150 Hz. For any additional load, the modes

shift to lower frequencies. Hence, 150 Hz may be taken as the highest "frequency

of interest" . This gives a Nyquist Rate of 300 Hz. Hence, a sampling frequency

more than 200 Hz would meet the demands of the present application. However, too

small a sampling frequency results in longer delays in the signal path introducing

unnecessarily high phase shifts. Therefore a sampling frequency of 2 kHz is chosen for

this application. The corresponding value of TIMPERO as obtained from Equation

4.1 is 1250 with numcalls = 2 — the number of reads and writes in the present

control loop.

Coefficients of the digital filter and its desired order are initialized next.

Data storage in the DSP memory is done by means of pointers. During initialization,

pointers are assigned to memory locations in the DSP memory space. The size of

the data depends on the interval of time for which data is to be recorded. Care

should be taken that memory spaces do not overlap when multiple variables are

being stored. Next, the neural network parameter (p) is initialized to a suitable

value depending upon the desired speed of learning. Weights of the neural network,

declared as global pointers, are set to zero during initialization. Scalar gains for

the in-phase and quadrature components, k 1 and k2 , are also initialized to suitable

values. Note that k 1 , k2 and kp are declared as global variables because, once tuned,

their values remain constant throughout the control program. Hence, declaring them

locally during each iteration of the control loop is not lucrative keeping in mind the
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precious "time between samples" available to the controller. Weights of the neural

network are stored in global pointers since every "present" iteration refers to the

weights calculated in the "last" iteration.

4.2.2 Control Loop

The ADC data is read from the selected channel. Any DC bias present in the data

is removed by adding/subtracting the appropriate offset and the data is stored in

the DSP memory at the current pointer location. Note that since storage is done by

means of pointers, any other data of interest may also be stored by simply changing

the pointer assignments. Storage has been done in two ways. For storing the transient

response, storage begins as soon as control motion is applied and continues until the

transient part settles. On the other hand, for storing the steady-state response,

storage is disabled for the first few samples. The number of these samples depends

on the time required for the sensor output to settle to its steady state value.

The filter() function is placed outside the control loop and is invoked during

each iteration of the loop. Each sample is passed as an argument to filter°. The

prototype of the function is:

int filter(int)

As explained in Chapter 3, the neural network requires, at its inputs, the original

signal and its phase shifted version with an arbitrary phase shift between them. To

obtain this phase shifted signal, the control loop implements the digital low-pass

filter using the function filter°. The filter is implemented as a transposed direct

form II structure whose initial/starting coefficients are selected during initialization

of the control program and updated with successive iterations of the control loop.

Extreme care should be taken to ensure that the starting coefficients are designed

for the current sampling frequency since the same coefficients with a different

sampling frequency give an altogether different, sometimes even unstable filter. This



33

is especially important during debugging. A general second order transposed direct

form II transposed lattice structure is shown in Figure 4.1.

Figure 4.1 Structure of a second order transposed direct form II filter

Transfer function for this structure is given by:

This structure is preferred because it requires the least number of delay

elements (equal to the order of the filter N) and summation points or "taps" as

compared to other structures e.g. the direct form I structure which requires 2N

number of delay elements. In other words, the transposed direct form II structure

requires less memory and is therefore more suitable for real-time applications. Code

fragment implementing the filter() function is given below.

int filter(int u) //2nd order transposed direct form II filter
{

int y;
int i;

// calculate filter output
y = u * aryB [0] + aryZ [1] ;
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Notice that the code is flexible, in that, any order and any type (low-pass, high-pass,

band-pass, band-stop, etc.) can be implemented by simply switching the coefficient

values. Coefficients of the low-pass filter used in the present case, are selected using

the Matlab function

[b,a] = butter(n,wn)

where n is the order of the filter and wn is the cut-off frequency - a number between

0 and 1 - where 1 corresponds to the Nyquist Frequency which is half the sampling

frequency [15]. Note that since the purpose of the filter is only to shift the phase, a

simple second order Butterworth filter may be used. The cut-off frequency is selected

to be slightly higher than the frequency of mode under consideration. Order should

not be too high since it introduces noise. The filter() function is written outside

main( and is invoked during each iteration of the control loop.

As things stand, we now have two signals with the same frequency but different

phase. In other words, we have the so called "elementary signals" mentioned in

Chapter 3. We next make these signals "statistically independent" — a condition

which is relaxed to orthogonality for the present case. The task is performed by

the neural network which is implemented in the control program by the function

neural(). The original signal and the filter output are passed as arguments to

neural°. Like filter°, neural() too is implemented outside main() and is invoked

during each iteration of the control loop. The prototype for the function is:

void neural(int, int)
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The neural network bears a parameter p, which decides its rate of learning. Higher

the value of /2, faster do the network weights "adapt" to their final value, faster do the

outputs converge. Chapter 5 contains detailed plots showing the learning behavior

of the neural network including a comparison of simulated learning rates for different

parameter values. It is worth repeating that 1.1, is initialized to a suitable value in a

global variable during initialization section of the control program. Also, the weights

are stored globally by means of pointers and are set to zero during initialization.

Code fragment implementing the neural network is given below.

Any variables in the above fragment which are stored by means of pointers may

be stored in the DSP memory, if required, by suitable assignments. Both in-phase and

quadrature components obtained from the neural network can be used individually
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for feedback. However, as briefly mentioned in Chapter 3, it is observed that the

interface circuitry between the DAC and the PZT (which is actually mounted on

the nut), introduces a transmission delay between the command written to the DAC

channel and the command reaching the PZT. Hence, the in-phase or the quadrature

components do not appear at the nut in the correct phase when applied individually

and the desired cancellation is not achieved. As a remedy to this, each component is

multiplied by a scalar gain stored in the global variables k1 and k2 . Addition of the

scaled outputs is initially written to the DAC channel. The gain values k 1 and k2

are tuned so as to obtain maximum reduction in vibration of the nut as seen at the

sensor output which is used as the ultimate performance criterion. Once this desired

phase-shift is obtained, a proportional gain (k p ) is used to maximize the reduction.

A schematic of the foregoing is shown in Figure 4.2.

Figure 4.2 Combination of neural network outputs

Chapter 5 contains actual values for k 1 , k2 and k used to obtain the reduction of

each mode.

Lastly, the data (typically sensor output) stored in the DSP memory is

exchanged with the PC memory for further processing. This is explained in the next
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section. Program listing for the entire program is given in Appendix B. An overall

flowchart of the control program is shown in Figure 4.3.

Figure 4.3 Flowchart of the Control Program
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4.3 Data Exchange Between PC and DSP

Dalanco, manufacturer of the board, provides user libraries that have embedded

functions for data transfer between the PC and the DSP. Additionally, they include

functions for starting and halting the DSP. These functions are explained now.

4.3.1 Starting the DSP

The go320() function is used for starting the DSP. The function prototype is:

go320(unsigned baseio)

where baseio is the Base I/O address of Model 310B (300h at present). The function

reads a byte from the address (baseio+6). This causes the DSP to start execution

of the currently loaded program, provided the signal LORD is asserted. This logic

is implemented in hardware.

4.3.2 Halting the DSP

The DSP is halted by the function hlt320() which has the prototype

h1t320(unsigned baseio)

As before, baseio is the Base I/O address of Model 310B. This function reads a byte

from the address (baseio+7) causing the DSP to be halted.

4.3.3 Data Transfer between DSP Memory and PC Memory

Blocks of data can be exchanged by the PC with the DSP using the functions sendio()

and recvio(). Both these functions have identical prototypes as follows:
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where

x :

length :

start :

baseio :

sendio :

recvio :

an array of 32-bit words.

the number of words in array x. Altered depending on the length

of time interval for recording the data.

source start address in Model 310 memory. Altered as required.

the base I/O address of Model 310. This is jumper selectable and

is currently set to 300h in the PC's I/O space.

copies the contents of x into the DSP board's memory starting at

location start.

copies the DSP board's memory contents starting at memory

location start into x.

The function recvio() is used often to transfer the sensor data or any other inter-

mediate signals from the DSP into the PC. The function is embedded into the C

program "grab.c". The code for the program is self explanatory and is included in

Appendix B.3. Test results are now discussed in Chapter 5.



CHAPTER 5

TEST RESULTS

Test procedure of the magnetic leadscrew/nut stabilization experiment consists of

the following steps: First, the axial (z-direction) resonant modes are identified and

characterized with respect to a range of loading conditions. Second, the Neural

Mode Separator (NMS) passband control is applied to stabilize these modes under

two conditions: self resonance and forced oscillation. For self resonance, the nut is

allowed to go into undamped oscillation (driven by background noise). The control

objective here is to increase the damping so that "ringing" is minimized. In case

of forced oscillation, a sinewave tuned to the resonant frequency is injected into

the disturbance PZT so that an oscillation is observed at the sensors. The goal is to

reduce the transmission gain of the axial dynamics at the resonant frequencies. Plant

dynamics are shown first, followed by a discussion on the neural network's operation.

This is followed by tests for self resonance, forced oscillation and transient response.

5.1 Plant Dynamics

Resonant modes of the nut are shown in Figure 5.1.

Figure 5.1 Resonant modes of the nut; m = 0 kg
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These are the natural modes of the nut without any additional mass. Identifi-

cation of these modes consists of the following procedure: A large step disturbance

is applied to the nut which excites the resonant modes. An FFT is performed on the

response obtained at the sensor, which gives the desired mode plot. Plant dynamics

remain fixed for a given load condition. Hence, real-time FFT is not required. FFT

is performed in Matlab after "grabbing" the sensor output from the DSP memory

into the PC. Identical test procedure is followed for other load conditions. Matlab

code for FFT is included in Appendix B.5.

5.2 Neural Mode Separator

Figure 5.2 shows the Lissajous Figure for the phase shift between the sensor data

and its phase shifted version at the digital filter's output which are shown as yl and

y2, respectively, in the controller structure of Figure 3.6.

Figure 5.2 Initial phase-shift between filter outputs

These are the "elementary signals" mentioned in Chapters 3 and 4 that are fed

to the neural network. With statistical independence relaxed to orthogonality, the

Lissajous Figure must represent a normally centered ellipse. Figures 5.3 through 5.5

show the successive learning steps of the neural network for ,u = 10-12.



Figure 5.3 Neural Network outputs in learning mode: I
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Figure 5.4 Neural Network outputs in learning mode: II

Figure 5.5 Neural Network outputs in learning mode: III

As can be seen, the outputs of the neural network start with an initial phase

shift between each other that is equal to the phase shift between its inputs and

converge to the orthogonality condition (phase shift = 90 ° ) as the network learns.

The speed of learning of the network is determined by the parameter ii, whose value
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should be as high as possible for fastest possible convergence. Figure 5.6 shows the

simulation results for the rate of learning. For the set of results shown, with p = 0.01,

the network learns about three times faster than for µ  = 0.0025.

Figure 5.6 Simulation results showing rate of learning for different µ-values

However, there is an upper limit on the ,u-value beyond which the network's outputs

distort from the desired sinusoidal shape and eventually become unstable. Figure

5.7 shows the time domain plot of the network outputs for µ = 10-10.

Figure 5.7 Unstable output due to high µ-value (time domain plot)

The corresponding Lissajous Figure is shown in Figure 5.8. Proper operation of the

network must be ensured for all test conditions.



Figure 5.8 Unstable output due to high µ-value (Lissajous Figure)

5.3 Self Resonance Tests

The magnetic nut is subjected to considerable background noise and ground

vibration. This results in a pronounced "ringing effect" whenever additional mass

is placed on top of the nut. The ringing is undesirable considering the positioning

demands on the drive. It is, however, observed that it has a single frequency of

resonance and can therefore act as a candidate for external disturbance. Performance

of the controller is evaluated in the presence of this self resonance.

It was observed that µ = 10 -11 was the most suitable value for an appreciable

rate of learning and is the value for all tests conducted for both self resonance as

well as external disturbance.

5.3.1 m = 1.1 kg

A mass of 1.1 kg is added and the effect of control is observed. Figure 5.9 shows

the transient response of the nut to the control action. Both responses, with and

without control are shown for comparison.
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Figure 5.9 Self resonance cancellation (transient part); m = 1.1 kg

Figure 5.10 compares the steady state parts of the two responses.
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Figure 5.10 Self resonance cancellation (steady state part); m = 1.1 kg

A visibly convincing FFT of the nut response is shown in Figure 5.11. As can be

seen, self-resonance component is virtually eliminated.



Figure 5.11 FFT of self resonance; m = 1.1 kg

Parameter value for this case with a 150 Hz filter cut-off are:

b = [0.0413, 0.0825, 0.0413]

a = [1, -1.3490, 0.5140]

Gain values: k 1 = 1.4; k2 = -1; kp = -7.

5.3.2 m = 2 kg

A second test run is conducted with an overall additional mass of 2 kg. Consistent

performance is delivered by the controller as depicted in Figures 5.12 through 5.14.
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Figure 5.12 Self resonance cancellation (transient part); m = 2 kg



Figure 5.13 Self resonance cancellation (steady state part); m = 2 kg
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Figure 5.14 FFT of self resonance; m = 2 kg

Parameter values are:

Filter cut-off at 150 Hz gives:

b = [0.0413, 0.0825, 0.0413]

a = [1, -1.3490, 0.5140]

Gains: k 1 = 1.1; k2 = -1.3; kp = -4.
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5.4 Forced Oscillation Tests
5.4.1 m = 0 kg

Procedure for identifying the resonant modes was discussed in Section 5.1. The mode

plot was shown in Figure 5.1 and is repeated here in Figure 5.15.

Figure 5.15 Resonant modes of the nut; m = 0 kg

For forced oscillation, each mode is excited individually by injecting a sinewave into

the disturbance PZT at that particular frequency. Figure 5.16 shows the reduction

obtained with external disturbance at mode 1 (61.5 Hz).

Figure 5.16 Vibration control at mode 1; m = 0 kg

Parameter values with 70 Hz filter cut-off are:

b = [0.0104, 0.0209, 0.0104]

a = [1, -1.6910, 0.7327]

Gains values are: k 1 = -1; k2 = 1; lip = 6.
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As can be seen, an overall reduction of 9 dB is obtained. Figure 5.17 shows the

reduction obtained for external disturbance at mode 2 (150 Hz).

Figure 5.17 Vibration control at mode 2; m = 0 kg

With a 160 Hz cut-off for the filter, the parameter are:

b = [0.0461, 0.0923, 0.0461]

a = [1,-1.3073,0.4918]

Gains: k1 = 1; k2 = 3; lip = -6.

The attenuation in this case is 8 dB

Thus, consistent reduction of 8 to 9 dB is obtained in each case. Note that the

control objective here is to increase the damping on the nut by shifting the roots

further into the left-half plane which gives a reduced axial gain. The controller is not

designed to cancel a particular mode as in case of a servo compensator (notch filter)

approach. Hence, complete cancellation of the mode is not expected in presence of

externally injected disturbance.

5.4.2 m = 1.1 kg

A mass of 1.1 kg is now placed on top of the nut and the same tests as in Section 5.4

are conducted for single tone excitation at each mode. Figure 5.18 shows the mode

distribution. The modes shift down in frequency from their locations in the earlier
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(m = 0 kg) case. This confirms that all modes obtained in the earlier case are true

modes.

Figure 5.18 Resonant modes of the nut; m = 1.1 kg

Figure 5.19 shows the attenuation in mode 1 (60.5 Hz) under control action.

Figure 5.19 Vibration control at mode 1; m = 1.1 kg

With a 70 Hz filter cut-off, following parameters are obtained:

b = [0.0104, 0.0209, 0.0104]

a = [1,-1.6910,0.7327]

Gain values: k 1 = 0.3; k2 = - 1; kp = -15.

Lastly, Figure 5.20 shows the reduction in axial gain with external disturbance at

mode 2 (143 Hz) under control action.



Figure 5.20 Vibration control at mode 2; m = 1.1 kg

Filter cut-off is at 150 Hz. Overall parameters are:

b = [0.0413, 0.0825, 0.0413]

a = [1, -1.3490, 0.5140]

Gains values are: k 1 = 1; k 2 = 1; kp = -12.

5.4.3 Transient Response

A final test is conducted to examine the control of transient response. A step input is

applied using a pendulum which makes an impact on the nut with the same starting

angle each time. Results are shown in Figure 5.21.
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Figure 5.21 Control of transient response
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As can be seen, the time required for stabilization is significantly reduced under

control action. FFT of the two responses are shown in Figure 5.22.

Figure 5.22 FFT of nut response

For this particular test run, control is applied at mode 1 (62.5 Hz) which is the

dominant mode of the nut as shown in Figure 5.1 and is the significant mode

contributing to the vibration. For further improvement in the time to stabilize,

multimode control may be applied along with higher actuator power which are the

issues discussed in the Section 5.5.

A summary of test results and corresponding parameter values is given in Tables 5.1

and 5.2 respectively.

Table 5.1 Test Results

Test
Conditions Mass Mode

Without Control With Control
dB Ripple

Cum rms)
dB Ripple

(pm rms)
Self

Resonance
1.1 kg 141 Hz -0.9 0.9132 -63.5 0.0255
2 kg 136 Hz -8.2 0.3966 -66.6 0.0225

Forced
Oscillation

0 kg 61.5 Hz -3.1 0.8718 -11.9 0.3131
150 Hz -10.8 0.4504 -18.8 0.1846

1.1 kg 60.5 Hz -5.84 0.6481 -14.3 0.2496
143 Hz -3.79 0.7736 -15.34 0.2077



Table 5.2 Test Parameters
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5.5 Conclusions and Future Directions

Active vibration control of a contactless magnetic leadscrew is presented in this

thesis. A learning controller based on a recurrent neural network is developed. Its

ability to separate the required in-phase and quadrature components of the oscillating

modes is demonstrated. Self-resonance exhibited by the magnetic nut is cancelled

completely while a reduction of typically 8 to 9 dB is obtained in case of forced oscil-

lation. Significant improvement is also achieved in stabilizing the transient response

of the nut to a step disturbance which proves the vibration suppression capability of

the controller.

The natural first step in future research would be to attempt multimode control.

Multiple sets of sensor data, filter coefficients and neural network weights will have to

be stored and invoked in an interlaced fashion with commands for individual modes

being sent on the DAC channels on successive samples. Number of variables and,

consequently, the storage requirement will increase depending upon the intended

number of modes to be controlled and duration of data required.

To achieve higher attenuation of forced oscillation, PZT stacks with higher

peak force may be used along with additional proof mass. Other locations may also

be attempted for the actuators.
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Lastly, the present brushless DC motor may be connected to drive the

leadscrew. Travel lengths of a few centimeters may be tried initially and the

performance of the controller for online (during travel) vibration suppression may

be evaluated.



APPENDIX A

PARAMETER SPECIFICATIONS
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APPENDIX B

CODE LISTINGS

B.1 User Written C Library
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