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ABSTRACT

A COMPARATIVE STUDY OF SEQUENCE ANALYSIS
TOOLS IN COMPUTATIONAL BIOLOGY

by
Wei-Jen Chuang

A biomolecular object, such as a deoxyribonucleic acid (DNA), a ribonucleic acid (RNA)

or a protein molecule, is made up of a long chain of subunits. A protein is represented as

a sequence made from 20 different amino acids, each represented as a letter. There are a

vast number of ways in which similar structural domains can be generated in proteins by

different amino acid sequences. By contrast, the structure of DNA, made up of only four

different nucleotide building blocks that occur in two pairs, is relatively simple, regular,

and predictable.

Biomolecular sequence alignment/string search is the most important issue and

challenging task in many areas of science and information processing. It involves

identifying one-to-one correspondences between subunits of different sequences. An

efficient algorithm or tool is involved with many important factors, these include the

following: Scoring systems, Alignment statistics, Database redundancy and sequence

repetitiveness.

Sequence "motifs" are derived from multiple alignments and can be used to examine

individual sequences or an entire database for subtle patterns. With motifs, it is

sometimes possible to detect distant relationships that may not be demonstrable based on

comparisons of primary sequences alone.

A more comprehensive solution to the efficient string search is approached by

building a small, representative set of motifs and using this as a screening database with

automatic masking of matching query subsequences. This technology is still under

development but recent studies indicate that a representative set of only 1,000 — 3,000

sequences may suffice and such a database can be searched in seconds.
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CHAPTER 1

INTRODUCTION

Biomolecular sequence alignment is among the most important and challenging tasks in

computational biology; it involves identifying one-to-one correspondences between

subunits of different sequences [33]. This procedure is essential to many tasks of

biological data analysis [21,25,47], for example, retrieving a database to determine the

species of unknown sequences, and discovering highly conserved subregious or patterns

related to molecular structures and functions. Even by using genetic tools, forensic

scientists can now examine the DNA in this biological evidence and tell almost certainly

whether it came from a given individual [31].

A biomolecular object, such as a deoxyribonucleic acid (DNA), a ribonucleic acid

(RNA) or a protein molecule, is made up of a long chain of subunits. In molecular

sequence studies, sequence subunits are represented by characters from a domain which

is denoted by L. For example, the characters used to represent the nucleotides in DNA

sequences are A (Adenosine), G (Guanine), C (Cytidine) and T (Thymidine), and L is

the set {A,G,C,T} [52]. A protein is represented as a sequence made from 20 different

amino acids (see Table 1.1), each represented as a letter.

By contrast, the structure of DNA, made up of only four different nucleotides that

occur in two pairs, is relatively simple, regular, and predictable. In aligning biomolecular

sequences, a function of scores (or distances) is needed to measure the goodness of

alignments [20,43,48]. For a set of sequences, the optimal alignment is the one which

maximizes the score (or minimizes the distance) [13,42]. To achieve a high score value,

some subunits in different sequences are matched, and some sequences are considered to

have insertions, deletions, and substitutions [1,40]. The following illustrates an alignment

of three sequences.

Sequence 1 ATGCAGGC
Sequence 2 ATGAXGXC
Sequence 3 ATGAXGGC
Column 1 2 3 4 5 6 7 8

1
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In the alignment columns 1,2,3,6, and 8 indicate character matches, column 4

indicates that a substitution has occurred in the first sequence (A-C, T-G), column 5

indicates that a subunit has been inserted into the first sequence, column 7 indicates that a

subunit has been deleted from the second sequence. To represent insertion and deletion,

the character X is introduced.

Table 1.1 List of 20 Amino Acids
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String search is an important operation in many areas of science and information

processing. It occurs naturally as part of data processing, text editing, lexical analysis and

information retrieval [51]. In molecular biology this computational problem is associated

with the analysis, search and comparison of biosequences, which can be considered as

texts made up of only four characters in the case of nucleic acid, and twenty, in the case

of proteins [34]. While the particular algorithm used is of course important, the

effectiveness of database searches is dependent as well on a large number of correlative

factors, many of which tend to be overlooked or dealt with an inefficient or ad hoc

manner [5]. An efficient algorithm or tool involves many important factors, which

include the following :

Scoring systems: The molecular biologist is often confronted with the task of

searching a database of DNA or protein sequences for those most similar to a given one.

The most straightforward definition of similarity between two sequences attributes a

"score" to each of the possible ways of aligning them, including the possibility of

arbitrarily long insertions/deletions at any position. Most database search algorithms rank

alignments by a score, whose calculation is dependent upon a particular scoring system.

Usually there is a default system, but it may not be ideal for a user's particular problem.

For example, haemoglobin subunits are used to be regarded as "typical" proteins and are

still often used as benchmark query sequences for evaluating new database search

techniques and scoring systems [23]. However, today it is more common to encounter

much larger and more complex sequences and therefore those methods developed and

optimized for small, uniformly-conserved, single-domain proteins are inadequate.

Optimal strategies for detecting similarities between DNA protein-coding regions differ

from those for non-coding regions [4,30]. A database search program should therefore

make a variety of scoring systems available and users should be aware of which ones are

best suited to their problems.

Alignment statistics: Given a query sequence, most database search programs will

produce an ordered list of imperfectly matching database similarities, but none of them

need have any biological significance. An important question is how strong a similarity is

necessary to be considered surprising.
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Database: The use of an up-to-date sequence database is clearly a vital element of

any similarity search. Sequence relationships critical to important discoveries have on

occasion been missed because old or imcomplete databases were employed [8,50]. The

variety of available databases, and their overlapping coverage, has the potential to render

similarity searching cumbersome and inefficient. However, today one can download

sequences from the Internet (See Table 1.2. and Table 1.3.). Timely access to complete

and "nonredudant" sequence databases has become relatively simple and inexpensive.

Database redundancy and sequence repetitiveness: Surprisingly strong biases

exist in protein and nucleic acid sequence database. Many of these reflect fundamental

mosaic sequence properties that are of considerable biological interest in themselves,

such as segments of flow compositional complexity or short-period repeats. Databases

also contain some very large families of related domains, motifs or repeated sequences, in

some cases with hundred of members. In other cases there has been a historical bias in

the molecules that has been chosen for sequencing. In practice, unless special measures

are taken, these biases very commonly confound database search methods and interfere

with the discovery of interesting new sequence similarities. Problems include the

occurrence of misleading, spuriously-high scores, ambiguities in the phase of sequence

alignments and overwhelmingly large output lists in which interesting results may be

inconspicuously buried. Failure to deal properly with the factors described above can

result in chance similarities being claimed significant, or biological important

relationships being overlooked.

There are a number of important issues in searching DNA and protein sequence

databases, but the most important is access to a comprehensive and up-to-date data

repository [3]. We will use the SDISCOVER program [10,49] to find motifs in DNA

sequences and use those motifs to form a local database to try to find a better way that

can speed up the database search. We will also compare the motifs found by

SDISCOVER with the motifs/patterns stored in Prosite protein database.

So far, there are many tools that can do the query sequences search or alignment.

One can easily find a tool that suits for his needs from the Internet (Table 1.2, Table 1.3)



Table 1.2 Selected World Wide Web Sites
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Table 1.3 Selected Molecular Biology FTP Servers

6

Most of those programs are required to be run on a UNIX system or need to

retrieve the database from the Internet. Our goals are to combine the SDISCOVER sets

into one efficient tool and run it on PC. Second, we want to evaluate a new approach that

can improve the performance of database search.



CHAPTER 2

MODIFYING THE SDISCOVER PROGRAM

Sequence "motifs" are derived from multiple alignments and can be used to examine

individual sequences or an entire database for subtle patterns. With motifs, it is

sometimes possible to detect distant relationships that may not be demonstrable based on

comparisons of primary sequences alone [15,29,41].

The SDISCOVER program is used to find motifs of the query sequences and run

on UNIX system. It includes two separate C programs. These two programs making up

the SDISCOVER tool are termed, the control module (including the user-interface

module or command line and a similarity-score-calculation module) , and the sorting

module which eliminates the substrings. The user-interface module, collects the input

from the user, and the criteria used in the computation of similarity scores and then writes

out the results. In the present version of SDISCOVER tool, the query sequence is read by

the user-interface module. The control module receives the input data/query sequence

from the user-interface module and relays the query sequence and information for the

calculation of similarity scores to each of the similarity-score-calculation modules. Once

all sequences have been processed, the control module sends the list of scoring sequences

to the user-interface module.

In the original SDISCOVER tool, the user first enters the query sequences from

the input interface to fmd the motifs. After motifs are found, the sorting program is used

to sort/elinimate the substrings (as shown in Figure 2.1 and Figure 2.2). We combine

these two steps into one to simplify the procedure but keep the original algorithm and

modify it to run on PC. We do this not only because the Windows operation system is the

most popular operating system but also because users may not have the access to the

UNIX system (Figure 2.3).

Our test environment: CPU Pentium 200 Pro, 128 Mb RAM, Operating system

Windows 95.

7



Figure 2.1 The Input Interface of SDISCOVER
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Figure 2.2 Illustration of Executing the Sorting Program

In this example the sorting module uses the default output file from the control

module as input file, in this example: data.out. After eliminating the substrings, the

program write the results to output file, sorted.out.

A substring is a shorter sequence which can be found in a longer sequence and

these two sequences' occurrence numbers are the same. Then we say the shorter one is a

substring of the longer one.



Figure 2.3 Illustration of Executing the Modified Program
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CHAPTER 3

FINDING MOTIFS AND DATABASE EVALUATION

3.1. Searching for Motifs

Our test environments: CPU Pentium 200 Pro, 128 Mb RAM, Operating system Win95,

and Sun Sparc Ultra-2 Pentium II 300 MHz with 512 Mb RAM.

GenBank, the EMBL nucleotide sequence database, and the DNA Database of

Japan (DDBJ) are three partners in a long-standing collaboration to collect and distribute

all publicly-available sequence data [6,38]. All of the sequences we use (both DNA and

protein sequences) in this experiment are download from GenBank at NCBI homepage

(see Appendix B for a complete list of Human DNA). There is a total number of 181423

sequences stored in NCBI until May 7. The DNA sequences we used as query sequences

to find motifs from the database are as following:

And the output of all sequences used to find motifs and query parameters after being

organized are shown in Table 3.1.

11



Table 3.1 Lists of All Results of Finding the Motifs
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3.2. Converting the Output Into FASTA Format and Forming a Local Database 

After fmding the motifs of the query sequences, we convert the outputs into FASTA 

format (Figure 3.2.1) because the FASTA format already becomes a DNA sequence 

standard format (see Appendix C for a detailed description of FAST A) and the alignment 

tool we use can recognize this format. Then we use the motifs we found to form a local 

database by using NCBI Tools (Figure 3.2.2). Forming a local database has many 

advantages; for example, the user may not have the access to the Internet orland can 

reduce-fue traffic of the Internet and can update the database more easily. 

Figure 3.2.1 A Screen Shot of Converting Output to FASTA Format 
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Figure 3.2.2 Using NCBI Tool Formatdb to Form a Database for BLAST 2 (continued) 
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3.3. Evaluating the Database

After the local database for Blast 2 is formed we now can use Hs.12716 and Hs.112341

as query sequences to retrieve the database. Our test environment: CPU Pentium 200 Pro,

128 Mb RAM, Operating system Win 95. We use BLAST (Basic Local Alignment

Search Tool) as our alignment tool to test the database because BLAST is the most

popular sequence mining tool. BLAST takes a nucleotide sequence (the query sequence),

and its reverse complement, and searches them against a nucleotide sequence database. It

not only can process query sequences from Internet but also can be transferred from the

NCBI anonymous FTP server and installed on a local machine.

We download the source codes of NCBI tool kit and compile it using Microsoft

Vival	 5.0 to make three programs: Formatdb, BlastAll, and BlastGap.

Formatdb: Used to format the FASTA databases for both protein and DNA databases for

BLAST 2.0. This must be done before blastall or blastpgp can be run locally.

BlastAll: May be used to perform all five flavors of blast comparison. (See Appendix D

for Blast Family)

BlastGap: Blastpgp performs gapped blastp searches and can be used to perform

iterative searches in psi-blast mode.

We use Hs.12716 and Hs.112341 as our sample DNA query sequences to test

both our local database we constructed and the database stored in NCBI. Hs.12716

include two sequences found only in library 651: NCI_CGAP_Me13; melanoma,

metastatic to bowel (sequences shown in Figure 3.3.1). Hs.112341 include 19 sequences

and can be found in many libraries, such as Larynx, Colon, Skin, and Adipose (sequences

shown in Figure 3.3.2).

Figure 3.3.1 Sequences Data of Hs.12716



Figure 3.3.1 Sequences Data of Hs.12716 ( continued )
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Figure 3.3.2 Sequences Data of Hs.112341
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3.4. Results 

This stand alone database we created can produce results/reports that look very similar to 

those generated by the original BLAST engine; however, in our case the actual results are 

quite different. Figure 3.4.1 shows the BLAST 2 query screen in our local machine. And 

Figure 3.4.2 and Figure 3.4.3 show the results from our local database for Hs.12716 and 

Hs.112341 respectively. Also we use Hs.12716 and HS.112341 as query sequences to do 

the alignment in NCBI homepage via the Internet. Figure 3.4.4 and Figure 3.4.5 show the 

query screen in NCB I homepage and Appendix A.I and Appendix A.2 show the query 

results for Hs.12716 and HS.112341 respectively. 

! string: , , Program Name 

, string: ' Database' ,' 

File 'In: ' Query Ale 

Aoat Expectation value (E) 

: Integer: allgnmentviewoptlons: 0 == pairwise. '1 = master-slave showing identltles~2 :: master~sJave no identities. 3 ;"flat master-! 
. . 

. Ale Out 'BLAST reportOlrtpUt Ale 

string: Filter query sequence (DUST With blastn. SE G with others) .' 
. . . . 

Integer. 'CosHo open a gap (zero invokes default behavior) • 

Integer. Cost to extend a,gap(zero invokes defaUlt behavior) 

,Integer: X drop off value for gapped alignment On bitS) (zero Invokes' default behavior) 

r ShowGl's In deflines 

Integer. . PenaltY for a nucleotide mismatch (blastn only) 

Integer. ReWard fora nucleotide match (blastn on1y) . 

Integer. . Number of ontHlne descrlptlons,{V) 

Integer. Nurnberof alignments to show (Bl 

Figure-3.4.1 Screen Shot of BLAST 2 Query Screen 
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1
0 
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.. 
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.. string: Ma'lrt . . 
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1 

11 1 
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Figure 3.4.1 Screen Shot of BLAST 2 Query Screen (continued) 
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. ... . ....•..• . ·. :=1: =~===~· r ,Integer: QUery·Gerietic code to use .·,' 
. . '.' 

Integer-DS Genetic code (for tbl8St[ruc] only) . 

.·Integer:· .. Number of processors to use ' . . , " 111 

AleOUt:· .. SeqAlign file . ..' II' . .. 

C Selleve the query deftlne 

String: Matrlx , IBLOSUM62! .. ' 

, Integer. Word size; default Ifiero . ' .. . . '. . .. .,. .... ',., •. 10 , " 
Integer: EffectIVe length of the database (use zero for the reai size) :=Io========,=:, 

Figure 3.4.1 Screen Shot of BLAST 2 Query Screen ( continued) 



Figure 3.4.2 Query Results of Hs.12716 in Our Local Machine
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Figure 3.4.2 Query Results of Hs.12716 in Our Local Machine ( continued )
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Figure 3.4.3 Query Results of Hs.112341 in Our Local Machine
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Figure 3.4.3 Query Results of Hs.112341 in Our Local Machine ( continued )
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Figure 3.4.3 Query Results of Hs.112341 in Our Local Machine ( continued )

The query sequences for this searching have been filtered. Filtering eliminates

low complexity regions that commonly give spuriously high scores that reflect

compositional bias rather than significant position-by-position alignment. Filtering can

eliminate these potentially confounding matches (e.g., hits against proline-rich regions or

poly-A tails) from the blast reports, leaving regions whose blast statistics reflect the

specificity of their pairwise alignment.
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CHAPTER 4

COMPARING MOTIFS RETRIEVED FROM PROSITE
WITH MOTIFS FOUND BY SDISCOVER

In some cases the sequence of an unknown protein is too distantly related to any protein

of known structure to detect its resemblance by overall sequence alignment [14,45,52],

but it can be identified by the occurrence in its sequence of a particular cluster of residue

types which is variously known as a pattern, motif, signature, or fmgerprint [37]. These

motifs arise because of particular requirements on the structure of specific region(s) of a

protein which may be important, for example, for their binding properties or for their

enzymatic activity. These requirements impose very tight constraints on the evolution of

those limited (in size) but important portion(s) of a protein sequence. The use of protein

sequence patterns (or motifs) to determine the function(s) of proteins is becoming very

rapidly one of the essential tools of sequence analysis.

Currently, the largest collection of sequence motifs in the world is PROSITE

which contains a lot of families of protein [9,28]. PROSITE can be accessed via either

the ExPASy WWW server or anonymous FTP site. In comparing the difference between

motifs that are stored in Prosite database and motifs that we found by using SDISCOVER

tool, we use the protein family, which include 4 protein sequences, COAGULATION

FACTOR X PRECURSOR as our first sample sequences (Figure 4.1).

Figure 4.1 Sequences of COAGULATION FACTOR X PRECURSOR
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Figure 4.1 Sequences of COAGULATION FACTOR X PRECURSOR ( continued )

By using SDISCOVER, the query parameters and results are as follows:

Minimum length: 10

Minimum occurrence number: 2

Number of mutations allowed: 1

Total number of sequences: 4

Motifs found: 51147

motifs checked: 52759

After sorted: 166

The motifs, after sorted (eliminating substrings), are shown in Figure 4.2. A

symbol # followed by a number indicates the motif number and another number

preceding the motif indicates the occurrence numbers.
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Figure 4.2 Motifs of Protein Sequences Found by SDISCOVER
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Figure 4.2 Motifs of Protein Sequences Found by SDISCOVER ( continued )
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Figure 4.2 Motifs of Protein Sequences Found by SDISCOVER ( continued )
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Figure 4.2 Motifs of Protein Sequences Found by SDISCOVER ( continued )
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Figure 4.2 Motifs of Protein Sequences Found by SDISCOVER ( continued )
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Figure 4.2 Motifs of Protein Sequences Found by SDISCOVER ( continued )
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Figure 4.2 Motifs of Protein Sequences Found by SDISCOVER ( continued )

34



Figure 4.2 Motifs of Protein Sequences Found by SDISCOVER ( continued )
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Figure 4.2 Motifs of Protein Sequences Found by SDISCOVER ( continued )
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Figure 4.2 Motifs of Protein Sequences Found by SDISCOVER ( continued )

We use the tools in PRATT homepage (http://www2.ebi.ac.uk) to retrieve the

motifs stored in Prosite database and the query results are shown in Appendix A.3. The

outputs of protein motifs are in Prosite format. Here is a brief description of Prosite

format.

- The symbol 'x' is used for a position where any amino acid is accepted.

- Ambiguities are indicated by listing the acceptable amino acids for a given position,

between square parentheses ' [ ]'. For example: [ALT] stands for Ala or lieu or Thr.

- Ambiguities are also indicated by listing between a pair of curly brackets ' }' the

amino acids that are not accepted at a given position. For example: {AM} stands for

any amino acid except Ala and Met.

- Each element in a pattern is separated from its neighbor by a '-'.

- Repetition of an element of the pattern can be indicated by following that element

with a numerical value or a numerical range between parenthese. Examples: x(3)

corresponds to x-x-x, x(2,4) corresponds to x-x or x-x-x or x-x-x-x.

- When a pattern is restricted to either the N- or C-terminal of a sequence, that pattern

either starts with a '<' symbol or respectively ends with a 	 symbol.

- A period ends the pattern.
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From Appendix A.3 query results we can find out that we retrieve 50 motifs from

the query sequences. And these are marked by numbers from A 1 to x 50 as following:
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In this case, all the motifs/patterns retrieved from Prosite match the motifs found by
SDISCOVER. Table 4.1 lists their match numbers.
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Table 4.1 Motifs Found by SDISCOVER that Match Prosite Signatures



Table 4.1 Motifs Found by SDISCOVER that Match Prosite Signatures ( continued )
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Table 4.1 Motifs Found by SDISCOVER that Match Prosite Signatures ( continued )
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In this second test, we choose three proteins from three different families. The

first one is Coagulation Factor X Precursor, the second one is Gamma-Carboxy glutamic

Acid-Containing Protein, and last one Prothrombin Precursor. See Figure 4.3 for

sequences of those three proteins.

Figure 4.3 Sequences of Three Proteins from Different Families

The motifs found by SDISCOVER are as follows: total 8 motifs (after sorted)

After we retrieve the motifs from Prosite database in Pratt website, they have the

same reports as in the previous example. We then reorganized the results as shown in

Figure 4.4.



Figure 4.4 Motifs Retrieved from Prosite in Pratt WebSite
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Figure 4.4 Motifs Retrieved from Prosite in Pratt WebSite ( continued )

In this example, the query protein sequences retrieve 47 motifs from the database.

Comparing these 47 motifs with the 4 motifs found by SDICOVER, we only find g 33,

p 42, and t 46 match all the motifs found by SDISCOVER, in our case from #1 to #4.
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CHAPTER 5

CONCLUSION AND FUTURE WORKS

With data throughput that may soon approach hundreds of megabytes a year and

sequence data that comes from a variety of sources (including the US and European

Patent Offices), a major challenge will be to provide up-to-date and unique annotation for

this sequence data. Next in importance to the sequence database itself is the computer

program used to search it. A number of different search algorithms have been developed

over the years, and further information about them may be found in Altschul et al. [1,3] ,

Schuler et al. [44], and references therein.

Database searching can be performed efficiently in phase, with a query first

compared to a small database containing domains representative of large sequence

families. Subsequences of a query that match one or more of these domains can then be

masked prior to full-scale searching, thereby eliminating most of the redundant output [3].

A more comprehensive solution to the problem is approached by building a small,

representative set of motifs and using this as a screening database with automatic

masking of matching query subsequences. This technology is still under development but

recent studies indicates that a representative set of only 1,000 — 3,000 sequences may

suffice and such a database can be searched in seconds.

Computer databases, networks, and software tools are essential resources for all

aspects of genome analysis [7] . The consequent abiding interest in the exhaustive

alignment approach has prompted the use of powerful and expensive highly-parallel

computers to make its application to sequence similarity searches through large databases

feasible [39]. A cheaper alternative may be represented by the cooperative use of

ordinary workstations, possibly even PCs, connected by a network; this way, the

computational load mat be distributed over two or more computers, perhaps from

different vendors, allowing the user to take advantage of whatever is available [49]. But,

due to the bottleneck of Internet traffic, there is also a shortcoming for using Internet to

do sequence querying. In our experiment, we encounter some difficulties (Figure 5.1 and

Figure 5.2). An alternate approach is to construct one's own local database and download

up-to-date sequence data or add one's own sequence data to the local database.
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As we mentioned in Chapter 1, databases contain some very large families of
related domains, motifs or repeated sequences. Unless special measures are taken, these
biases very commonly confound database search methods and interfere with the
discovery of interesting new sequence similarities [22]. And due to the error-prone nature
of these sequence fragments, identifying redundancy in these databases is a more difficult
task [24,35]. A good example is in Chapter 3. Hs.12716 include two sequences found
only in library 651: NCI_CGAP_Me13; when we used it as a query sequence to test the
NCBI database, it generated many misleading results. Practically, there are two ways to
avoid this problem. First, create a smaller and non-redundant database [5,36]. Second,
process the query sequence for the presence of known domains and mask these prior to
searching [26]. In our case, it also needs increase the database records and future studies.

One of the most important advances in database similarity searching during the
past several years has been the introduction of methods for the automatic masking of low
complexity sequences [18]. Anyone who does a lot of database searching will have
encountered problematic query sequences that result in hundreds (or thousands) of
spurious matches to nebulous entities with names like "proline-rich protein" that may
obscure more subtle but biologically interesting matches. An increasingly important use
of motifs in the future will be to "preprocess" query sequences for the presence of
obvious known domains and then mask these regions prior to a full-scale search [19,53].
This should simultaneously increase the speed of the search while improving the ability
to detect subtle matches that would otherwise be swamped out by abundant, strong
matches to other sequence regions [7,22,28].
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APPENDIX A.l 

QUERY RESULTS OF HS.12716 IN NCBI HOMEPAGE 
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APPENDIX A.2 

HS.112341, QUERY RESULT SCREEN IN NCBI HOMEPAGE 
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APPENDIX A.3

MOTIFS RETRIEVED FROM PROSITE IN PRATT WEBSITE
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APPENDIX B

A COMPLETE LIST OF HUMAN DNA
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APPENDIX C

FASTA FORMAT DESCRIPTION

A sequence in FASTA format begins with a single-line description, followed by lines of

sequence data. The description line is distinguished from the sequence data by a greater-

than (">") symbol in the first column. It is recommended that all lines of text be shorter

than 80 characters in length. An example sequence in FASTA format is:

Sequences are expected to be represented in the standard IUB/IUPAC amino acid and

nucleic acid codes, with these exceptions: lower-case letters are accepted and are mapped

into upper-case; a single hyphen or dash can be used to represent a gap of indeterminate

length; and in amino acid sequences, U and * are acceptable letters (see below). Before

submitting a request, any numerical digits in the query sequence should either be

removed or replaced by appropriate letter codes (e.g., N for unknown nucleic acid residue

or X for unknown amino acid residue).

The nucleic acid codes supported are:
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For those programs that use amino acid query sequences (BLASTP and

TBLASTN), the accepted amino acid codes are:

A alanine
B aspartate or asparagine
C cystine
D aspartate
E glutamate
F phenylalanine
G glycine
H histidine
I isoleucine
K lysine
L leucine
M methionine
N asparagine

P proline
Q glutamine
R arginine
S serine
T threonine
U selenocysteine
V valine
W tryptophan
Y tyrosine
Z glutamate or glutamine
X any
* translation stop
- gap of indeterminate length



APPENDIX D

THE BLAST FAMILY

The BLAST family of programs allows all combinations of DNA or protein query

sequences with searches against DNA or protein databases:

Blastp: compares an amino acid query sequence against a protein sequence database.

Blastn: compares a nucleotide query sequence against a nucleotide sequence database.

Blastx: compares the six-frame conceptual translation products of a nucleotide query

sequence (both strands) against a protein sequence database.

Tblastn: compares a protein query sequence against a nucleotide sequence database

dynamically translated in all six reading frames (both strands).

Tblastx: compares the six-frame translations of a nucleotide query sequence against the

six-frame translations of a nucleotide sequence database.

Some of the most commonly used blastall options are:

blastall arguments:
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