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ABSTRACT

PATTERN DISCOVERY IN TREES:
ALGORITHMS AND APPLICATIONS TO

DOCUMENT AND SCIENTIFIC DATA MANAGEMENT

by
Chia-Yo Chang

Ordered, labeled trees are trees in which each node has a label and the left-to-right

order of its children (if it has any) is fixed. Such trees have many applications in

vision, pattern recognition, molecular biology and natural language processing.

In this dissertation we present algorithms for finding patterns in the ordered

labeled trees. Specifically we study the largest approximately common substructure

(LACS) problem for such trees. We consider a substructure of a tree T to be a

connected subgraph of T. Given two trees T1 , T2 and an integer d, the LACS problem

is to find a substructure U 1 of T1 and a substructure U2 of T2 such that U1 is within

distance d of U2 and where there does not exist any other substructure VI of T1 and

V2 of T2 such that 1/1 and V2 satisfy the distance constraint and the sum of the sizes

of V1 and V2 is greater than the sum of the sizes of U 1 and U2. The LACS problem

is motivated by the studies of document and RNA comparison.

We consider two types of distance measures: the general edit distance and a

restricted edit distance originated from Selkow. We present dynamic programming

algorithms to solve the LACS problem based on the two distance measures. The

algorithms run as fast as the best known algorithms for computing the distance

of two trees when the distance allowed in the common substructures is a constant

independent of the input trees. To demonstrate the utility of our algorithms, we

discuss their applications to discovering motifs in multiple RNA secondary structures.

Such an application shows an example of scientific data mining. We represent

an RNA secondary structure by an ordered labeled tree based on a previously



proposed scheme. The patterns in the trees are substructures that can differ in

both substitutions and deletions/insertions of nodes of the trees. Our techniques

incorporate approximate tree matching algorithms and novel heuristics for discovery

and optimization. Experimental results obtained by running these algorithms on

both generated data and RNA secondary structures show the good performance of

the algorithms. It is shown that the optimization heuristics speed up the discovery

algorithm by a factor of 10. Moreover, our optimized approach is 100,000 times faster

than the brute force method.

Finally we implement our techniques into a graphic toolbox that enables

users to find repeated substructures in an RNA secondary structure as well as

frequently occurring patterns in multiple RNA secondary structures pertaining

to rhinovirus obtained from the National Cancer Institute. The system is imple-

mented in C programming language and X windows and is fully operational on SUN

workstations.
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CHAPTER 1

INTRODUCTION

Ordered, labeled trees are trees in which each node has a label and the left-to-right

order of its children (if it has any) is fixed.' Such trees have many applications

in vision, pattern recognition, molecular biology, natural language processing, Web

management, programming languages and natural language processing, including

the representations of images [36], patterns [8, 32] , secondary structures of RNA

[40], structured documents (e.g. HTML) [7], grammar parses [4] and sentences [15].

Identifying structural similarities in such trees helps in version management and

change detection. For example, in software maintenance where programs are repre-

sented as parse trees [35], comparing the parse trees helps detect the changes to

the code. As another example, a user of the World Wide Web may be interested

in knowing changes in an HTML document. Such changes can be detected by

representing the document as a tree based on its underlying markup language [7]

and by comparing the old and new version of the document (tree). In hypertext

authoring, a user may wish to find the common portions in the history list of an

HTML document or a set of documents. This may be accomplished by finding the

common substructures in the corresponding trees. Trees are frequently used in other

disciplines as well.

A large amount of work has been performed for comparing two trees based on

various distance measures [19, 28, 34, 50, 69]. [42, 48, 71] recently generalized one

of the most commonly used distance measures, namely the edit distance, for both

rooted and unrooted unordered trees. The work laid out a foundation that is useful

for comparing graphs [41, 66].

'Throughout the dissertation, we shall refer to ordered labeled trees simply as trees
when no ambiguity occurs.

1
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In this dissertation we extend the previous work by considering the largest

approximately common substructure (LACS) problem for ordered labeled trees. We

consider a substructure of a tree T to be a connected subgraph of T. Given two trees

T1 , T2 and an integer d, the LACS problem is to find a substructure U 1 of Ti and a

substructure U2 of T2 such that U1 is within distance d of U2 and where there does

not exist any other substructure V1 of Ti and V2 of T2 such that V1 and V2 satisfy the

distance constraint and the sum of the sizes of V1 and V2 is greater than the sum of

the sizes of U1 and U2. The LACS problem is motivated by the studies of document

and RNA comparison.

We consider two types of distance measures: the general edit distance and a

restricted edit distance originated from Selkow. We present dynamic programming

algorithms to solve the LACS problem based on the two distance measures. The

algorithms run as fast as the best known algorithms for computing the distance

of two trees when the distance allowed in the common substructures is a constant

independent of the input trees. To demonstrate the utility of our algorithms, we

discuss their applications to discovering motifs in multiple RNA secondary structures.

Such an application shows an example of scientific data mining. We represent

an RNA secondary structure by an ordered labeled tree based on a previously

proposed scheme. The patterns in the trees are substructures that can differ in

both substitutions and deletions/insertions of nodes of the trees. Various biologists

[24, 40] represent RNA secondary structures as trees. Finding common patterns (also

known as motifs) in these secondary structures helps both in predicting RNA folding

[24] and in functional studies of RNA processing mechanisms [40].

Previous methods for detecting motifs in the RNA molecules (trees) are based

on one of the following two approaches: (1) transforming the trees to sequences

and then using sequence alignment algorithms [39]; (2) representing the molecules

using a highly simplified tree structure and then searching for common nodes in the
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trees [24]. Neither of the two approaches satisfactorily takes the full tree structure

into account. By contrast, utilizing the proposed algorithm for pairs of trees enables

one to locate tree-structured motifs occurring in multiple RNA secondary structures.

Our experimental results concerning RNA classification show the significance of these

motifs [61].

1.1 Related Work

A large amount of work has been performed for comparing trees based on various

distance measures. Tai [46], for example, proposed to measure the distance between

two trees by the minimum cost sequence of edit operations needed to transform one

tree to the other. The set of allowable edit operations includes: (1) changing one

node into another node (changing the label of the node); (2) deleting one node from

a tree; and (3) inserting a node into a tree. Tai gave an algorithm for computing the

In a more recent paper, Zhang, Shasha and Wang [70] extended the tree

matching work to allow one of the trees (the pattern tree) to contain variable length

don't cares (VLDCs). When matching the pattern tree with a data tree, the VLDCs

may substitute for a portion of the data tree at no cost. Their algorithm runs as fast

as the best algorithm for tree matching without VLDCs [69]. The authors imple-

mented the algorithms into a graphics toolkit for querying lexical databases [62].

Cheng and Lu [8] studied a different distance measure based on node splitting

and merging; the distance between two trees is defined as the minimum number of

such operations needed to transform one tree to the other. The authors presented a

tree matching algorithm based on this metric and applied it to waveform correlation.
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Tanaka and Tanaka [50] considered a restricted edit distance with the condition

that two disjoint subtrees must be matched with two disjoint subtrees. They argued

that such a structure preserving matching is more meaningful when comparing two

classification trees. The authors presented an algorithm to calculate the restricted

Recently, Jiang et al. [19] proposed tree alignment as an alternative of tree

matching. Two trees are aligned by inserting a minimum number of extra nodes to

the two trees such that the resulting trees are topologically isomorphic. The metric

is an upward extension of sequence alignment [44] commonly used in biocomputing.

Other relevant distance measures for trees and efficient algorithms for computing the

distance measures can be found in [17, 20, 67].

1.2 Our Algorithmic Strategy

In this dissertation we present two algorithms for the LACS problem for ordered

labeled trees. One is based on the general edit distance and the other is based on

a restricted edit distance, referred to as the top-down edit distance, originated from

Selkow [33, 38]. The algorithms bear a spiritual kinship with the previous algorithms

surveyed in section 1.1 that we and others have proposed for tree pattern matching.

Nevertheless, fundamental differences exist because of the differences in the problem

goals themselves. In matching problems, we are given a pattern and need to find

a distance between the pattern and one or more objects; in discovery problems by

contrast, we are given two objects and a "target" distance and are asked to find the

largest portions of the objects that differ by at most that distance. Specializing the

discovery problem to a pair of trees, we want to find the largest connected component

from each tree such that the distance between them is under the target distance value.
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Let us consider the connected component in one of the trees. Since it is

connected, it must be rooted at a node n and is generated by cutting off some

subtrees in the subtree rooted at n. This means that a naive algorithm for pattern

discovery would have to consider all the subtree pairs and for each subtree pair all the

possible cuts of its subtrees. Since the number of such possible cuts is exponential,

the naive algorithm is clearly impractical.

Instead we use a compound form of dynamic programming called selective

memorization. By compound, we mean that dynamic programming is applied

1. to compute sizes of common patterns between two subtree pairs given a set of

cuts;

2. to find the cuttings that yield distances less than or equal to the target one;

cuttings for distances 0 to k — 1.

The memorization is selective in the sense that we only memorize the necessary

values. For example we do not compute the size values for cuttings that have a

distance larger than the target distance. For cuttings that give distance values within

the target value, we do not explicitly compute every one of them.

In the computation of an optimal solution for distance value k, we also have

to solve a problem which is unique for trees. Consider a pair of subtrees s 1 and s2

whose roots map to one another in the optimal solution for distance value k. Then,

in general, there are several (more than one) subtrees of s 1 and s 2 pairs which map to

one another. We have to determine how the distance value k should be distributed

to these several subtree pairs so that we can obtain the optimal solution. We solve

this problem by partitioning the subtrees of s 1 , respectively s2 , into a forest and a

subtree. We then compute the distance and size values from forest to forest and from

subtree to subtree.
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The rest of the dissertation is organized as follows. Chapter 2 describes the edit

operations, edit distance, top-down edit distance, and theorems for establishing their

relation. Chapter 3 presents the algorithms, theorems and the complexity for finding

patterns in two trees based on the edit distance. Chapter 4 presents the algorithms,

theorems and the complexity for finding patterns in two trees based on the top-down

edit distance. Chapter 5 presents the algorithms, theorems and experiments for

finding patterns in multiple trees. Chapter 6 describes a graphic toolbox for pattern

discovery in RNA secondary structures. Chapter 7 concludes the dissertation and

discusses our future work.



CHAPTER 2

BACKGROUND

In this chapter we first define the edit operations, the edit distance and mapping

between two trees. Then we review Selkow's restricted edit distance, and establish

the relationship between this restricted distance and the edit distance. Finally we

define the problem of identifying the largest approximately common substructures

of two trees and introduce the terms and notation used in the dissertation.

2.1 Edit Operations for Trees

The trees with which we are concerned are rooted, ordered, and labeled ones. Each

node in the trees has a label and the left-to-right order of its children, if it has

any, is fixed. The edit distance for trees is measured in terms of three types of edit

operations: relabel a node, delete a node, and insert a node [46, 69]. Let 1 represent

the alphabet of node labels. We represent the edit operations as u 	 v, where each

u	 v. Figure 2.1 illustrates the edit operations.

Let S be a sequence 8 1 , s2 ,	 , sk of edit operations. S transforms tree T to

notation for the specification. Here is the specification in full detail. Consider a single

insert operation is a little more complicated. We must specify the parent p of the

7



Figure 2.1 Examples illustrating the edit operations. (a)
Relabeling to change one node label b to another c. (b) Deletion
of a node. All children of the deleted node with label b become
children of the parent labeled r. (c) Insertion of a node. A
consecutive sequence of siblings among the children of the node
labeled r, namely those with labels a, e, f, become the children
of the newly inserted node labeled c.

8
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node n to be inserted and which consecutive sequence of siblings among the children

of p will be the children of n. If that consecutive sequence is empty, then we need to

specify the position of n among the children of p. However, we continue to use our

shorthand notation, because these other specifications are clear from the mapping

structure defined below.

transforming T to T' [46, 69].

2.2 Mappings

The edit operations correspond to a mapping that is a graphical specification of which

edit operations apply to each node in the two trees. For example, the mapping in

Figure 2.2 shows a way to transform tree T1 to tree T2. It corresponds to the sequence:

delete the nodes with labels a and m and then insert the nodes with labels a and m.

Let t[i] represent the node of tree T whose position in the left-to-right postorder

(or simply Me if the context is clear), where Me is any set of ordered pairs of integers
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preservation condition);

preservation condition).

Thus, for example, the mapping in Figure 2.2 is {(1, 1), (2, 2), (3, 3), (4, 5),

T1 to T2. Let I and J be the sets of nodes in T1 and T2 , respectively, not touched by

any mapping line in Me . Then we can define the cost of Me:

Figure 2.2 A mapping from tree T1 to tree T2 A dashed
line from a node u in Ti to a node v in T2 indicates that

unchanged if u = v. The nodes of T1 not touched by
a dashed line are to be deleted and the nodes of T2 not
touched by a dashed line are to be inserted.

Given S, a sequence of edit operations from Ti to T2 , it can be shown that



2.3 Selkow's Distance Measure

Selkow {38] proposed to impose the following restriction on the mapping conditions

(parent-child order preservation). Due to its nature, we will refer to the resulting

mapping as a top-down edit mapping. Figure 2.3 shows an example of a top-down

edit mapping Mt from tree T1 to tree T2 given in Figure 2.2.

1 1

Figure 2.3 A top-down edit mapping from tree T1 to tree T2.

Three notes follow. First, the definition of top-down edit mappings implies

Second, if a node n is to be deleted (inserted, respectively) in Mt , then the subtree

2par(i) is undefined if t[i] is the root.
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rooted at n, if any, is to be deleted (inserted, respectively). Third, a top-down edit

mapping is a mapping whereas a mapping may not satisfy the conditions of a top-

down edit mapping. For example, the mapping in Figure 2.2 is not a top-down edit

mapping since the nodes with labels a and m in 7'1 are deleted while their children

remain in the tree.

Let Mt be a top-down edit mapping from tree T1 to tree T2. Let I and J be

the sets of nodes in T 1 and T2 , respectively, not touched by any mapping line in Mt.

Then we can define the cost of M t :

the cost of a minimum cost top-down edit mapping from T1 to T2. This restricted

distance measure was originally proposed by Selkow [38] and will also be referred to

as Selkow's distance, or simply the top-down distance, throughout the dissertation.

Theorem 2.1 establishes the relationship between the edit distance of two trees T1

and T2 and their top-down edit distance.

Intuitively, the top-down edit distance gives more weight to upper level nodes

than to lower level nodes, i.e., the upper level nodes are more important than lower

level ones. For example, in Figure 2.3, if we delete the node labeled a in T 1 , then

the subtree with the nodes labeled b, c, d, e must be removed, too. However, if we

delete the node labeled, for example, d, then only d is removed. This is reasonable
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Figure 2.4 Cutting at node t[8] to get T' from T.

when comparing two hierarchically structured documents or programs. For example,

deleting a section of a document implies that one also removes all the paragraphs

within the section whereas deleting a paragraph simply removes that paragraph,

leaving the other paragraphs in the section intact.

2.4 Cut Operations

We define a substructure U of tree T to be a connected subgraph of T. That is, U is

rooted at a node n in T and is generated by cutting off some subtrees in the subtree

rooted at n. Formally, let T[i] represent the subtree rooted at t[i]. The operation of

cutting at node t[i] means removing T[i] (see Figure 2.4). A set S of nodes of T[k]

in T[k]. Intuitively, S is the set of all roots of the removed subtrees in T[k].

We use Cut(T, S) to represent the tree T with subtree removals at all nodes

in S. Let Subtrees(T) be the set of all possible sets of consistent subtree cuts in

T. Given two trees T1 and T2 and an integer d, the size of the largest approxi-



tively).
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largest approximately common substructure, within distance d, of T1 and T2 , that

U1 of T1 and the substructure U2 of T2 that achieve the maximum size. Here the

We will focus on computing the maximum size in solving the LACS problem.

By memorizing the size information during the computation and by a backtracking

technique, one can find both the maximum size and one of the corresponding

substructure pairs yielding the size in the same time and space complexity.



CHAPTER 3

FINDING PATTERNS IN TWO TREES BASED ON THE EDIT
DISTANCE

In this chapter we first describe some basic properties and then present the dynamic

programming algorithm to solve the LACS[e] problem, i.e. the problem for finding the

largest approximately common substructure of two trees based on the edit distance.

3.1 Notation

We use desc(i) to represent the set of postorder numbers of the descendants of the

node t[i] and 1(i) denotes the postorder number of the leftmost leaf of the subtree

definition of mappings for ordered forests is the same as for trees. Let F1 and F2 be

a minimum cost mapping from Fl to F2 [69].

Figure 3.1 An induced ordered forest.

15
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the sub-forest F with subtree removals at all nodes in S. Let Subtrees(F) be

the set of all possible sets of consistent subtree cuts in F. Define the size of the

largest approximately common root-containing substructures, within distance k, of
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..t, 0), we take the maximum of the corresponding sizes, which gives the formula

asserted by the lemma. 	 0



Figure 3.2 Illustration of the case in which one of T1[l(i)..s]
and T2[l(j)..t] is a forest and neither T1 [s] nor T2 [t] is removed.

18
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the maximum size.

20
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3.3 The Algorithm

From Lemma 3.4 and Lemma 3.6, we observe that when s is on the path from

trees or having a left sibling. Let keynodes(T) contain all such nodes of a tree T,
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When d is a constant, this is the same as the complexity of the best current

algorithm for tree matching based on the edit distance [34, 69], even though the

problem at hand appears to be harder than tree matching.

keynodes and the formulas as specified in Lemmas 3.3 and 3.4 is to prepare the

optimal sizes from forests to forests and store these size values in the array to be

used in calculating tsize e (s, t, k) for k 0. Even if one could incorporate the faster

algorithm into the Find-Largest[e] algorithm, the overall time complexity would not

be changed, because the calculation of tsize e (s, t, k) for k 0 dominates the cost.



CHAPTER 4

FINDING PATTERNS IN TWO TREES BASED ON THE
TOP-DOWN EDIT DISTANCE

We will first describe some basic properties and then present the algorithm for solving

the LACS[t] problem, i.e. the problem for finding the largest approximately common

substructure of two trees based on the top-down edit distance.

4.1 Notation

We use F[i] to represent the ordered forest obtained by deleting t [i] from T [i]

(Figure 4.1). 	 is the size of forest F. A set S of nodes of F is said to be a
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define the size of the largest approximately common root-containing substructures,

4.2 Basic Properties

Proof. Immediate from definitions. 	 ❑
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Proof. (i) is obvious since the largest approximately common root-containing

substructure of two empty trees or forests is empty. For (ii), in (a), the largest

is proved similarly as for (a). 	 ❑
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Suppose (i, k) and (h,j) are in M. Since t1 [i] is the root of TIM, t 1 [h] must be a

proper descendant of t 1 [i]. This implies that t 2 [j] is a proper descendant of t 2 [k]

by the ancestor order preservation condition on mappings described in Section 2.2.

This is impossible because t 2 [j] is the root of T2 [j]. So, h = i. By symmetry, k j

and hence (i,j) E Mt.

Next, note that the largest common root-containing substructure of F I N and
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The following two lemmas show the recurrence equations for calculating f sizes

and tsize t when the allowed distance k > 0.
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4.3 The Algorithm

We use dynamic programming to compute tsizet(i, j, k). The fsizet values computed

and used in the algorithm are stored in a temporary array that is freed once the

corresponding tsizet is computed. The tsizet values are stored in a permanent array.
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When d is a constant, the complexity is the same as that of the best known

algorithm for computing the top-down edit distance of two trees due to Selkow [38],

even though the LACS[t] problem addressed here appears to be harder than finding

the distance.

It should be pointed out that by memorizing the size information during the

computation and by a backtracking technique, one can find both the maximum size

and one of the corresponding substructure pairs yielding the size in the same time

calculates the recurrence formulas in Lemma 4.3 and Lemma 4.5 and finds out which

case yields the maximum value, thus determining the mapping corresponding to that

case.

4.4 Implementation

We have implemented the proposed algorithm into a graphics toolbox for comparing

structured documents such as SGML and HTML [7]. Our approach is to transform

the documents into ordered labeled trees based on the underlying markup language

and then compare the documents using the proposed algorithm. Specifically, we

represent the paragraph content of a document as a leaf node in the corresponding
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tree structure.' The contents of the paragraphs are encoded into signatures. Each

signature is an integer obtained by hashing the content of the corresponding

paragraph. Thus, if two paragraphs are the same, their signatures remain the

same. When the hash function chosen is perfect [13], two equivalent signatures also

imply the equivalence of the corresponding paragraphs. Likewise, the section and

subsection titles associated with the non-leaf nodes of the tree structure are encoded

into signatures. These signatures become the labels of the nodes. We then use the

proposed algorithm to compare two trees (documents), and display/highlight their

common portion through the graphical interface.

Based on the top-down edit distance, our system allows paragraph deletes,

inserts and mismatches to exist when finding the common portion of two documents.

In addition, the system is able to detect a paragraph move, which is an important

operation in document editing [63]. The underlying heuristic works by first finding

the mapping between two trees. For nodes not touched by mapping lines, we check

their signatures. Two paragraphs are related and labeled as "moved paragraphs" if

they have the same signature.

Our work requires a grammar based on which documents or programs can be

parsed into trees. Some electronic documents such as line-based documents may not

hold structural tags as those of SGML. Some documents, such as Latex, have very

liberal syntax rules, rendering the document comparison difficult. In such situations,

we create an artificial grammar embeddable to the documents, so that they are parsed

based on the same rules. The UNIX "cliff" program is a good tool that complements

our system. We have demonstrated the system in combination with "diff" in several

3 There are trade-offs concerning the leaf representation in terms of running-time,
mappings obtained, and semantics of the comparison. The choice is application-dependent
and we feel that representing paragraphs as leaves is suitable for document editing. In
our implementation, when the user wants to see a more detailed comparison between two
paragraphs, he/she can invoke the UNIX "diff" program to do so.
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conferences [54, 60, 63]. The executable code has been used by several researchers

in their labs and is available from the authors.



CHAPTER 5

FINDING PATTERNS IN MULTIPLE TREES

In this chapter we present techniques for finding patterns in multiple trees (more

precisely, RNA secondary structures). The distance measure used is the edit distance.

Finding approximately common patterns or frequently occurring patterns in RNA

secondary structures is an important problem in computational biology [6, 23, 30, 31].

For example, in predicting secondary structures for a given rnRNA, one may first

find a set of 'optimal' and 'suboptimal' structures using existing algorithms [72].

Then to determine which one among these structures is closest to the one occurring

naturally, one may search for common patterns in the structures [24]. These patterns

are assumed to be more stable in the intramolecular interactions between nucleotides

and therefore are more likely to be present in the actual structure. Finding common

patterns in secondary structures of different RNA molecules is useful as well. Often,

the information obtained from such patterns, in conjunction with results obtained

from sequence alignments, helps to conduct the phylogenetic study of the structure

for a class of sequences [21, 30, 40, 65].

To find the common patterns in RNA secondary structures by a computer,

we need a suitable representation for the structures. In this dissertation, we adopt

the tree representation proposed in [40]. Figure 5.1 illustrates an RNA secondary

structure and its tree representation. The structure is decomposed into five terms:

stem, hairpin, bulge, internal loop and multibranch loop [45]. A stem is a portion of

the RNA in which nucleotides are paired: G is paired with C and A is paired with

U. The nucleotides in the other four terms are unpaired. A bulge is a half loop that

sticks out of a stem. A hairpin is a closed loop connecting with a stem. It's like a

direct turn from one side of the stem to the other. An internal loop is connected with

two stems; it's a loop that does not make a direct turn like a hairpin. A multibranch

loop is connected with multiple stems or loops, cf. Figure 5.1(a).
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Figure 5.1 Illustration of a typical RNA secondary structure and its tree
representation. (a) Normal polygonal representation of the structure. (b)
Tree representation of the structure.

In our tree representation in Figure 5.1(b), H represents hairpin nodes, I

represents internal loops, B represents bulge loops, M represents multibranch loops,

R represents helical stem regions, which are shown as connecting arcs, and N is a

special node used to make sure the tree is connected. The tree is an ordered one in

which the order among siblings is significant [40]. The representation allows one to
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encode detailed information of RNA by associating each node with a property list.

Common properties may include sizes of loop components, sequence information and

energy.

5.1 Common Patterns in Trees

We consider a pattern in a tree T to be a substructure of T, viz., a subtree U

of T with certain nodes being cut. Cutting at a node n in U means removing n

and all its descendants i.e., removing the subtree rooted at n. We say a tree T

contains a pattern M within distance d, or M occurs in T within distance d, if there

exists a subtree U of T such that the minimum distance between M and U is less

than or equal to d, allowing zero or more cuttings at nodes in U. There is no cost

Example 5.1. (Common patterns in trees) Consider the set S of three trees in

Figure 5.2(a). Suppose only exactly coinciding substructures occurring in all the

three trees and having size greater than 2 are considered as 'common patterns.'

Then S contains two common patterns shown in Figure 5.2(b). If substructures

having size greater than 4 and occurring in all the three trees within distance one

are considered as common patterns, i.e., one relabeling, insertion or deletion of a
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node is allowed in matching a pattern with a tree, then S contains two common

patterns shown in Figure 5.2(c).

Figure 5.2 (a) The set S of three trees. (b) Two patterns exactly occurring in all the
three trees. (c) Two patterns approximately occurring, within discovery operation.

To discover such approximately common patterns in a database of trees, our

overall strategy is first to find candidate patterns among a small sample. From
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the candidates, locate a set of promising patterns. Then check if the promising

patterns exist in all the trees. Some previously published techniques may solve similar

problems when the patterns meet some restrictions, for example, when they are exact

matches [24], their topologies are known in advance [9, 30], or they are translated

into sequences where the tree structure is not considered during searching [21, 39]. In

contrast, our approach can discover approximately common substructures without

prior knowledge of their topologies, positions, or occurrence frequency in the trees.

In the next section we formalize the discovery queries of interest and then present

algorithms to process the queries.

5.2 The Basic Queries and Algorithms

5.2.1 Basic Query Type

Given a database D of trees, there exist various requirements on the sizes and forms

of patterns to be sought. The following parameters appear to be most significant;

all these parameter values are specified by the user:

• the form of patterns, in our case the substructures of trees;

• the minimum size of a pattern of interest Size, in our case the number of nodes

in the pattern;

• the distance metric, in our case edit distance between trees with unit cost;

• the allowed distance Dist;

• the minimum occurrence number Occur with respect to the distance and size

of a chosen pattern. The occurrence number, or activity, of a pattern M is the

number of trees in D that contain M within the allowed distance. Formally, we

say the occurrence number of a pattern M with respect to distance d and set
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within distance d. For example, consider again the set S of trees in Figure 5.2.

The basic query is to find the patterns M where M is within the allowed

the results of this query in several ways. For example, natural scientists may attempt

to evaluate whether the common patterns indeed occur in the actual structure of

RNA molecules. Computer scientists may use the patterns to classify RNA sequences

into one family or another.

5.2.2 Query Processing Algorithms

Our approach is a two phase process:

1. Find candidate patterns among a small sample A of the trees and search for

promising patterns from the candidates with respect to the sample.

2. Evaluate the activity of the promising patterns in all of the database 1, to

determine which promising patterns approximately characterize 7) as a whole.

Phase 1 consists of two subphases. In subphase A, we look for the candidate

patterns in the sample. In subphase B, we store the candidate patterns in an index

structure and locate the promising patterns by traversing the index structure.

5.2.2.1 Subphase A of Phase 1: In subphase A of phase 1, we divide the

of trees T1 and T2, we use the algorithms described in Chapter 3 to find the largest

approximately common substructures, within the allowed distance Dist, between
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patterns. For each candidate pattern M, the tree pairs from which M is discovered

are recorded.

5.2.2.2 Subphase B of Phase 1: In this subphase, we store the candidate

patterns into a prefix tree PRET, which is similar to Kosaraju's suffix tree for trees

[22]. Each candidate pattern M is decomposed into a collection of paths, called

p-strings. Each p-string contains a sequence of nodes starting at the root of M and

ending at a leaf of M. Figure 5.3(a) shows four candidate patterns; Figure 5.3(b)

shows the p-strings for one of the patterns.

The p-strings of candidate patterns are inserted into the PRET as into a trie [3,

Section 5.3] except that if a node has only one child, we collapse the child with the

parent and label the edge going down from the parent with a substring instead of a

single character. Figure 5.4 illustrates an example, in which the nodes with the labels

7 and 8 show the result of a collapsing. For each node v in the PRET, let string(v)

be the string on the edge labels from the root to v. We associate v with two fields:

patterns. The field count(v) shows the number of sample trees that contain string(v)

within the allowed distance. This field is calculated by traversing the PRET in a

bottom-up fashion, e.g., by a postorder traversal, and counting the values in the

field pattern(v) during the traversal. Specifically, the counting algorithm works as

follows. Recall that the tree pairs from which a candidate pattern is discovered are

recorded. For each string(v), we add up the numbers of distinct trees from which
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the candidate patterns in the field pattern(v) are discovered and assign the sum to

the field count(v).

Figure 5.3 (a) Four candidate patterns M 1 , M2 , M3 and
M4 . (b)	 p-strings.

The PRET can be constructed asymptotically in 0(N) time and space where

N is the total length of all p-strings contained in the candidate patterns in C [18, 22].

After constructing the PRET, we traverse the PRET in a top-down fashion, pruning
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unlikely candidate patterns using the optimization heuristics described in the next

section and finding a set of promising patterns. As we will see, a promising pattern

may be a candidate pattern or a substructure of a candidate pattern.

Figure 5.4 Illustration of the PRET, constructed by inserting the p-strings
of the patterns shown in Figure 5.3(a) into the PRET. Each node in the
PRET is labeled by its preorder number.

5.2.2.3 Phase 2: In this phase, we evaluate the promising patterns with respect

to the entire database D. In checking whether a promising pattern M occurs in a

compare V with T using the tree pattern matching algorithm developed in [70]. A

VLDC, conventionally denoted by "*", can be matched, at no cost, with a path or

portion of a path in T. The algorithm calculates the minimum distance between

allowing zero or more cuttings at nodes from T; see Figure 5.5.

The motivation for considering only the patterns found promising in the sample

is that comparing a VLDC pattern V with a tree T requires a dynamic programming
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time. Here Hv (HT, respectively) is the height and Lv (LT, respectively) is the

number of leaves of V (T, respectively). Screening out those unlikely candidate

patterns may save significant time in the overall computation. For example, in

our empirical study to be presented in Section 5.4, it is shown experimentally that

screening out the unlikely candidate patterns can save about 9/10 of the running

time.

Figure 5.5 Matching a VLDC pattern V and a tree T (both the
pattern and tree are hypothetical ones solely used for illustration
purposes). The root * in V would be matched with nodes r, x
in T, and the two leaves * in V would be matched with nodes
j and m, n in T, respectively. Nodes y, z, h, p in T would be

cut. The distance of V and T would be 1 (representing the cost
of changing c in V to d in T).

5.3 Optimization Heuristics

In phase 2 of our query processing algorithms, we compare the promising patterns

with the entire database. The main question from an optimization point of view
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is when to give up on a candidate and how to find the promising patterns. Our

strategies are as follows.

5.3.1 Pruning Unlikely Candidates

We consider the least possible occurrence number a qualifying pattern should have

reflect the whole database exactly however, we consider patterns that appear in at

this.

Worst Case Analysis. Let A l be the set of sample trees containing M within

Dist and let A2 be the set of sample trees not containing M within Dist. Obviously,

pairs, where both sample trees of each pair must contain M within Dist. Therefore

the occurrence number of M with respect to the sample A is, in the worst case,

Based on the above analysis, if a candidate pattern's occurrence number with
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be a qualifying pattern, i.e., satisfy the Occur constraint with respect to the whole

database. Therefore we discard it.

5.3.2 Eliminating Redundant Calculation of Occurrence Numbers

Observe that the most expensive operation in the query processing algorithms is to

find the occurrence number of a pattern with respect to the entire database, since

that entails comparing the pattern with all trees in the database. To reduce the

number of such comparisons, we introduce the notion of subpatterns for trees.

Definition 5.1. (Subpatterns for trees) Let T and T' be two trees. An embedded

mapping Mb from T to T' is a mapping from T to T satisfying the following

conditions:

1. all nodes in T are touched by a mapping line in Mb;

2. for any pair (i, j) in Mb,	 =

As an example, consider again the tree patterns in Figure 5.3. M4 is a subpattern

of M1, M2 and M3. Also each p-string P, which itself can be treated as a pattern, is

a subpattern of the candidate pattern containing P.
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subpattern of M', there must exist a subtree V of T such that V is a subpattern of U

Thus if M' is in the final output set, then we need not bother evaluating M,

since it will be too. If M is not in the final output set, then M' won't be either,

since its occurrence number will be even lower.

result follows.
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5.3.3 Our Optimized Approach

To incorporate the preceding optimization heuristics into our query processing

algorithms, we traverse the prefix tree PRET described in Section 5.2.2.2 in a top-

down fashion, e.g., by a preorder traversal. When visiting a node u in the PRET,

check the field count(u). This field tells the number of sample trees that contain

string(u) within the allowed distance Dist. Suppose that, based on the worst-case

analysis described in Section 5.3.1, it is estimated that the occurrence number of

string(u) with respect to the whole database is below the required activity Occur.

contain string(u). Let c be the first character of the substring on the edge between

u and its parent. We remove the subtree rooted at c from A, i.e., cut at node c

in M. Intuitively, this results in the removal of the unlikely portions from each of

these candidate patterns. This may result in some new candidate patterns which

were not discovered in subphase A of phase 1 of our query processing algorithms

described in Section 5.2.2.1.

strict superpatterns of string(u). The reason for doing so is that, by Propositions

5.1 and 5.2, these patterns have lower occurrence numbers than string(u), and as

a consequence the occurrence numbers are much smaller than Occur. This creates

another set of new candidate patterns composed of only parts of the patterns A.

Note that after cutting at c in the A, there is no need to visit the descendants of u

in the PRET. Upon completing the traversal of the PRET, we enumerate all possible

M's estimated occurrence number with respect to the database is greater than

Occur. This gives a set of promising patterns.
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Table 5.1 Actions taken during traversing the PRET in Figure 5.3; number(v)
represents the preorder number of the node v in the PRET.

Example 5.2. (Illustration of the Two Phase Optimized Approach) Consider again

the four patterns in Figure 5.3(a). Assume that these are the only patterns obtained

from the sample. Also assume that the field count(v) for each node v of the PRET

in Figure 5.4 is as shown in Table 5.1. Now suppose that, based on the worst-

case analysis described in Section 5.3.1, a qualifying pattern must occur in at least

three sample trees. Table 5.1 illustrates the steps and the actions taken at each

step during traversing the PRET in Figure 5.4. Figure 5.6(a) shows the resulting

patterns. Suppose a qualifying pattern must have size greater than 3. Figure 5.6(b)

shows the patterns obtained by cutting at nodes in the patterns of Figure 5.6(a) that

satisfy the size constraint. We then compare the patterns in Figure 5.6 with sample

trees and choose the promising ones to compare with all trees in the database.



Figure 5.6 (a) Resulting patterns after completing the
traversal of the PRET in Figure 5.4. (b) Patterns
obtained by cutting at nodes in the patterns in (a); M3
is obtained by cutting at r in M1 and M4 is obtained by
cutting at p in M1 .

5.4 Performance Analysis

We carried out a series of experiments to evaluate the effectiveness and speed of

our approach. The speed is measured by elapsed CPU time. The programs were

written in C and run on a SUN SPARC workstation under the SUN operating system
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version 4.1.2. The data was a set of randomly generated 80 trees. To make the

experiments manageable, the size of the trees was fixed at 15. Each node label of

the generated trees was drawn randomly from the range A to Z. To gain a better

understanding of the performance of our algorithms, we also tested the algorithms

on RNA secondary structures. Eighty secondary structures, represented as trees,

were selected randomly from the database in the National Cancer Institute [39,

40]. The sizes of the secondary structures ranged from 10 to 15. Table 5.2 shows

the parameters and base values used in the experiments. It was observed that the

results obtained from the generated and real data, for both the base values and other

parameter values, are rather consistent. As a consequence, we only present here the

results for the RNA molecules with the base values.

Referring to Table 5.2, the trees in the sample were chosen randomly from the

database. The parameter NumSample in the table indicates the number of samples

chosen for each database. In the experiments presented here, 20 samples were chosen

randomly. Each time one sample was used in running the database and the average

was plotted. The sample size was obtained by multiplying DBSize by SizeRatio.

Table 5.2 Experimental parameters and base values.
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The metric used to evaluate the effectiveness of our algorithms is

where NumDiscovered is the number of interesting patterns discovered by our

techniques. HitRatio stands for the percentage of the interesting patterns obtained

from the exhaustive search method. By exhaustive search, we mean selecting as

candidates all patterns in the database that satisfy the size constraint. One would

like this percentage to be as high as possible. It should be pointed out that we

have rejected approximately occurring patterns that never appear in the database

yet satisfy the Dist and Occur constraints in favor of those that obey the constraints

and do appear in the database. This is a theoretical limitation of our work that we

have introduced to save computation time, though this also seems pragmatically to

be a reasonable approach.

Figure 5.7 compares the effectiveness of our optimized approach with a non-

optimized approach for varying sample sizes. Figure 5.8 compares their running times

with that of the exhaustive search method. It can be seen in Figure 5.7 that very few

qualifying patterns were missed by the two proposed optimization heuristics. Both

heuristics sped up the discovery algorithm by a factor of 10. Moreover, our optimized

approach was 100,000 times faster than the brute force method (Figure 5.8).



Figure 5.7 Performance of the pruning techniques for varying sample sizes.

55



Figure 5.8 Comparison of the running times between the brute force method,
our optimized approach and the approach without optimizations.
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CHAPTER 6

A TOOLBOX FOR PATTERN DISCOVERY IN RNA SECONDARY
STRUCTURES

We have applied our algorithm to find motifs in multiple RNA secondary structures.

In this experiment, we examined three phylogenetically related families of mRNA

sequences chosen from GenBank [5] pertaining to the poliovirus, human rhinovirus

and coxsackievirus. Each family contained two sequences, as shown in Table 6.1.

Table 6.1 Data used in the experiment.

Under physiological conditions, i.e., at or above the room temperature, these

RNA molecules do not take on only a single structure. They may change their

conformation between structures with similar free energies or be trapped in local

minima. Thus, one has to consider not only the optimal structure but all structures

within a certain range of free energies. On the other hand, a loose rule of thumb

is that the "real" structure of an RNA molecule appears in the top 5% - 10% of

suboptimal structures of the sequence based on the ranking of their energies with the

minimum energy one (i.e. the optimal one) being at the top. Therefore, we folded

the 5' non-coding region of the selected mRNA sequences and collected (roughly)

the top 3,000 suboptimal structures for each sequence. We then transformed these

suboptimal structures into trees using the algorithms described in [39, 40].
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Figure 5.1 illustrates an RNA secondary structure and its tree representation.

The structure is decomposed into five terms: stem, hairpin, bulge, internal loop and

multi-branch loop [40]. In the tree, H represents hairpin nodes, I represents internal

loops, B represents bulge loops, M represents multi-branch loops, R represents helical

stem regions (shown as connecting arcs) and N is a special node used to make sure

the tree is connected. The tree is considered to be an ordered one where the ordering

is imposed based upon the 5' to 3' nature of the molecule. The resulting trees for

each mRNA sequence selected from GenBank were stored in a separate file, where

the trees had between 70 and 180 nodes (cf. Table 6.1). Each tree is represented by

a fully parenthesized notation where the root of every subtree precedes all the nodes

contained in the subtree. Thus, for example, the tree depicted in Figure 5.1(b) is

represented as (N(I(M(B(M(H)(H)))(H)))).

For each pair of trees Ti , T2 in a file, we ran the algorithm Find-Largest[e] on

T1 , T2 , finding the size of the largest approximately common substructures, within

and locating one of the corresponding substructure pairs yielding the size. These

substructures constituted candidate motifs. Then we calculated the occurrence

number4 of each candidate motif M by adding variable length don't cares (VLDCs)

to M as the new root and leaves to form a VLDC pattern V and then comparing V

with each tree T in the file using the pattern matching technique developed in [70].

(A VLDC (conventionally denoted by "*") can be matched, at no cost, with a path

or portion of a path in T. The technique calculates the minimum distance between

V and T after implicitly computing an optimal substitution for the VLDCs in V,

allowing zero or more cuttings at nodes from T (see Figure 5.5).) This way we can

4 The occurrence number of a motif M with respect to distance k refers to the number
of trees of the file in which M approximately occurs (i.e. these trees approximately contain
M) within distance k.
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locate the motifs approximately occurring in all (or the majority of) the trees in the

file. 5

We have incorporated the presented algorithms into a visualization toolbox for

pattern matching and discovery in scientific [55, 57, 58, 62] and document databases

[53, 59]. Figure 6.1, Figure 6.2 and Figure 6.3 show the screen layout of the toolbox.

In Figure 6.1, the lines connecting two nodes mean the two nodes are relabeled. The

colored nodes are nodes that need to be deleted or inserted. The executable software

packages of the toolbox are available from the author. For details, please visit the

Web site at http://www.cis.njit.edu/~discdb.

5One can speed up this method by encoding the candidate motifs into a suffix tree and
then using the statistical sampling and optimization techniques described in [61] to find
the motifs.
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Figure 6.2 Illustration of the discovery of repeatedly occurring 
sub-structures within one RNA secondary structure. 
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Fig ure 6 .3 Illustration of the discovery of frequently occurring 
sub-structures within a set of RNA secondary structures. 



CHAPTER 7

CONCLUSIONS

The algorithms presented in the dissertation assume a unit cost for all edit operations.

In practice, a more refined non-unit cost function can reflect more subtle differences

in the RNA secondary structures [40]. It would then be interesting to score the

measures in detecting common substructures or repeats in trees. Another interesting

problem is to find a largest consensus motif T3 in two input trees T1 and T2 where

T3 is a largest tree such that each of T1 and T2 has a substructure that is within a

given distance to T3. A comparison of the different types of common substructures

(see also [25, 26, 21), probably based on different metrics (e.g. [47, 48, 49] ), as well

as their applications remains to be explored.

This dissertation presented an example of scientific data mining: the discovery

of common patterns in a database of trees. The strategy we proposed here is first

to find candidate patterns satisfying structural constraints of size in a small sample.

From the candidates, we locate a set of promising patterns. Then evaluate the

promising patterns on the whole database. We applied the proposed techniques

to discovering approximately common patterns in both generated data and RNA

secondary structures. Our experimental results demonstrated the good performance

of the proposed algorithms.

Our work on scientific data mining is continuing. We have two main goals.

1. We would like to extend the discovery framework presented here to two and

three dimensional graphs. Finding common substructures in such graphs has

many applications in biology and chemistry [71]. Recently, we have obtained

some preliminary results along this direction [64].
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2. We want to apply the discovered substructures to clustering molecules. We are

currently extending our pattern discovery algorithms to cluster proteins and

RNA secondary structures.

The substructures defined in the dissertation are generated by applying the

"cut" operations to nodes in the trees. Cutting at node n from tree T means

removing n and all its descendants, i.e., removing the subtree rooted at n. In [691, a

relevant operation, called "prune" , was defined. Pruning at node n from tree T means

removing only the descendants of n; n itself remains in T. Thus, a pruning never

eliminates the entire tree. The formulas and algorithms presented in the dissertation

generalize easily to the "prune" case, though the resulting substructures differ as the

definitions for the two operations are different. We also plan to study applications

of the algorithms based on the pruning operation.



APPENDIX A

PROGRAM LISTINGS

This appendix contains:

• Programs that find the largest common substructures between two trees.

• Programs that find the frequently occurring patterns in a set of trees.
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* function to compute tree distance between subtree rooted at k
* and subtree rooted at 1 assuming that all subtree to subtree
* distance needed in computation is available in 'treedist' matrix.

* Results:
All subtree to subtree distance for subtree pair such that
they have same left most leave decandants. Result are in
'treedist' matrix.

*
* Side Effects:

In 'tempdist' matrix, from 1(k)-1, 1(1)-1 to k,1 will
be all forests distance generated in computation.
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be all forests distance generated in computation.
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* mapping --
*
* Function to produce mapping between subtree i and subtree j
* assuming that 'tree-dist' has been called before it.

* Results:
Mapping between subtree i and subtree j,
the result is in 'M'.

* Side Effects:
'tempdist' matrix will be changed.

107



* evamap

* Function to produce mapping. The function back tracking the
* forest distance matrix 'tempdist'.

* Results:
None.

*
* Side Effects:

Push some new triple to stack 'S'. Triple (i, j, 0) means
that pair (i, j) will be in mapping. Triple (i, j, 1)
means that best mapping between subtree i and subtree j
will be part of current mapping.
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* max_pos
*
* Give the position of the maximum elements in array "item".
*
* Results:

Potion of the maximum elements.
*

Side Effects:
* 	 None.
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/*
*

* popS --
*
* Pop one triple element out from stack 'S'.

* Results:
Return one triplr element.

*
* Side Effects:

See above.
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* emptyS

* Boolean funtion to test if stack 'S' is empty.

* Results:
Return 1 when 'S' is empty, else return 0.

*
* Side Effects:

none.

*   
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