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ABSTRACT

RADIATIVE PROPERTIES OF IR MATERIALS

by
Manish R. Babladi

The objective of this thesis is to study the radiative properties of materials of interest in the

infrared range of wavelengths. In particular, three distinct materials have been considered

here - Erbium oxide, alumina and quartz. Erbium oxide has unique selective line emission,

which gives a high emittance at a particular wavelength and low emittance in the rest of

the infrared spectrum. It has applications in the design and development of thermo-

photovoltaic (TPV) generators. Because of its selective emission properties, erbium oxide

assists in concentrating the radiant energy into a narrow band near the bandgap energy of

the TPV cell, and this results in an efficient energy conversion. Lucalox and sapphire

which are IR transparent materials are used as selective absorbers for increasing the

efficiency of TPV generators. A novel spectral emissometer has been utilized for

measurement of the temperature dependent radiative properties of erbium oxide, sapphire

and lucalox. The experimental results presented in this thesis showed that the

measurement of high temperature optical properties of these materials can be performed

reliably with a novel non-contact, real-time approach using the spectral emissometer. The

emissivity of erbium oxide is observed to be low and constant in the wavelength range of 2

to 5 microns and at various temperatures studied. Sapphire and lucalox exhibit almost

similar characteristics in 1 to 3.3 micron region. All the materials investigated in this

thesis are potential candidates for gate dielectrics in MOS technology.
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CHAPTER 1

INTRODUCTION

Optical properties of solids are usually determined by measurements of either the transmittance

or the reflectance. Each of these methods has advantages and disadvantages, depending upon

the spectral region and the nature of the material being studied. The simultaneous measurement

of reflectance, transmittance and hence emittance has obvious advantages. In the design of

infrared systems, the transmission, reflection and emittance of the optical materials must be well

known to select the best window or prism materials for a particular wavelength region.

All the materials considered in this study - erbium oxide, alumina and quartz are

potential candidates for gate dielectrics in MOS Technology. Their high values of dielectric

constant make them suitable for such applications.These dielectrics are of interest for use in

optical waveguides, antireflection coatings and metal oxide semiconductor (MOS) devices.

Thin films of these materials can offer several potential advantages over other dielectric media

for optical propagation. They have large bandgap and light of wavelength as short as 300 nm

could be propagated and the absorption loss in the visible spectrum can be quite low. The

optical losses due to scattering are very small.

One of the materials studied in this thesis, erbium oxide can concentrate the radiant

energy into a narrow band near the bandgap of the PV cell. This results in efficient TPV

conversion. Selective emitters or radiators comprising of rare-earth oxides such as erbium

oxide, ytterium oxide, samarium oxide and neodymium oxide can be used to construct

thermophotovoltaic (TPV) cells. For broad-band window and IR. filter applications, alumina

and quart 7 are aced in the TPV. Sapphire (crystalline alumina) and lucalox (poly-crystalline

1
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alumina) have very common and interesting properties. They have very similar optical

characteristics in the 1R region.

The objective of this thesis was to develop a reliable multi-wavelength pyrometer for

simultaneous measurement of the sample temperature and the radiative properties of these ER

materials in the wavelength range of 1 to 20 microns and temperature range of 30 to 1000°C.

The spectral emissometer was utilized for the measurement of the radiative properties of rare-

earth oxides such as erbium oxide and wide-band materials like sapphire and quartz. A C++

program was used for the deconvolution of the measured radiative properties into an

estimation of the fundamental optical constants. It has been demonstrated that the emissometer

yields reliable values of optical properties as a function of wavelength and temperature. The

samples were heated using a propane torch or an oxy-acetylene flame. Since there is no control

over the temperature attained, work aimed at replacing the currently used source of heating is

in progress. It may be possible to use CO2 laser.

The investigation of the temperature dependent optical properties of erbium oxide,

sapphire and quartz has been distributed over the next seven chapters. In chapter 2, the

background of thermophotovoltaic (TPV) generators and the methods for improving their

efficiency is discussed. In chapter 3, the selective emitter, erbium oxide and broadband

materials-sapphire and lucalox are discussed and their properties have also been presented. The

reason for the choice of erbium oxide being the material used in TPV is also discussed. In

chapter 4, the equations employed to deconvolute the measured radiative properties to yield

the refractive index (n) and extinction coefficient (k) are presented. The reason for interest in

the radiative properties is also discussed. In chapter 5, experimental details and methodology
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employed for the measurement of radiative properties of materials has been presented. In

chapter 6, the measured high temperature optical properties of erbium oxide, sapphire and

quartz are discussed. These measured properties have been compared with those available in

the literature. Conclusions and recommendations based on these studies are presented in

chapter 7.



CHAPTER 2

THERMO-PHOTOVOLTAIC CELLS

A thermo-photovoltaic power generation system converts thermal radiation directly into

electrical energy. The emitter which is excited by a thermal source provides photons for

photovoltaic (PV) cells. The PV cell then converts the photon energy into electricity.

Several advantages of a TPV system are easy counting to any thermal source, such as

combustion or solar, quite, nonpolluting, and easy n Lance (no moving parts)[2].

Natural gas flames burn clean creating minimum pollution. It would be nice if it

were possible to take a clean hot flame and produce electricity directly and the machine

doing this has no moving parts. It would become a reliable backup power source at

remote sites relying upon solar power and storage batteries.

Solar photovoltaics (solar cells) are limited by inherent problems with the source.

First, the sun is approximately 93 million miles away causing the energy reaching the earth

to be very small. Also, sun only shines during the day, and expensive battery storage is

required for extensive periods of cloud cover. Since the energy source for TPV energy

conversion is man-made, no such expensive storage is required.

2.1 Advantages of TPV

TPV has many advantages over conventional power systems [1]. Some of these

advantages are modularity, portability, wide choice of fuels, silent operation, reduced air

pollution, rapid startup and high energy density. TPV might be used for portable electric

4
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power, standby electric power, stand -alone electric generation, residential cogeneration

and clean electric vehicles.

2.2 TPV Generator

Unlike the bandgap of silicon solar cells that is tailored for a heat source of 6000K - the

bandgap corresponding to the sun's visible light - the temperature of the flame is on the

order of 1500K to 2500K. Cells built from the ternary compounds (with bandgaps that can

be tailored to be between 0.25 to 0.5 eV) provide a much more efficient and denser source

of electric power from the lower-temperature (compared with the sun) radiation source.

InGaAs cells operate on the low end of the temperature range with the long wavelength

infrared energy, while GaAs cells use IR energy which has higher temperatures and shorter

wavelengths. Scientists are considering very expensive, tandem cells, in which a GaSb cell

is located behind an InGaAs cell in order to get both long and short wavelength IR energy.

Fig. 1 shows the TPV electric generator which burns natural gas inside a silicon-carbide

tube and the emitter that glows red hot. The TPV cells receive IR photons from the

emitter.

The generator offers the following advantages over solar-to-electric power sources.

1. The radiation energy source is within 1 in. of the cells, whereas the sun is 93 million

miles away from the earth. The proximity of the cells to the IR source provides the cells

with radiant energy at 1000 times the power density of the energy they would receive from

the sun. The power density, in turn, increases the conversion efficiency of heat to

electricity.
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2. Unlike solar electric generators, the TPV operates on demand day or night, cloudy or

clear, not simply when sun is shining.

3. TPV generators also can supply heat for recreational vehicles, marine vehicles, and any

off-the-power-grid dwelling in varieties of climates.

2.3 TPV Efficiency

The overall efficiency of energy conversion for the TPV system is determined by emitter

photon power (P T) from the same emitter area,

and PV cell efficiency, n,, which is the ratio of photon power to output electric power.

The PV cell efficiency has been greatly improved using high quality and new bandgap

energy semiconducting materials. The emitter efficiency now becomes a key issue in TPV

research.

Using selective emitter to improve the overall efficiency of a TPV system has been

reported by many authors (Parent. and Nelson 1986, Chubb 1990, and Whiteand and

Schwartz 1967). Selective emitters concentrate the radiant energy into a narrow band near

the bandgap energy of the PV cell, and results in efficient TPV conversion. The most

promising selective emitters are the rare earth oxides. However, early studies have

reported low emitter efficiency even though the solid erbium oxide emitter has high output

power from its high erbium volume concentration.
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In addition to efficiency, the power emitted from the selective emitters also is an important

parameter. The higher power from the emitter means that more photons strike the PV cell

and more electric power can be generated. Therefore, understanding these basic

parameters is needed for improving the TPV systems. This thesis discusses the optical

properties of erbium oxide used for TPV generators. Results for the emittance,

transmittance, reflectance, spectral extinction coefficient and refractive index will be

reported in the later chapter.

Fig. I Schematic of Electric Thermo-Photovoltaic (TPV) Generator



CHAPTER 3

INFRARED MATERIALS

3.1 Erbium Oxide

Erbium Oxide (Er2O3 ) is a rare earth oxide. It is of interest because of its chemical and thermal

stability and high melting point of 2430 °C [3]. Some of the properties of erbium oxide are

resistance to chemical attacks. The low temperature stable phase for erbium oxide has a body

centered cubic (bcc) lattice. Erbium oxide undergoes a polymorphic transformation at 2320 °C

± 20 °C due to nucleation and growth which leads to a change in its crystal structure to

hexagonal close packed (hcp) crystal structure. The erbium oxide bee structure belongs to the

Ia 3 space group with a lattice constant of a=10.55 A°. The unit cell contains 80 atoms, where

32 erbium atoms are located on the 8b and 24d Wyckoff position and the 48 oxygen atoms are

on the 48e position. The closest packed planes are in the (110} family.

Few general advantages of rare earth oxides are [4]:

1.their refractive indices are in the range of 1.8 - 1.95;

2. they have good transparency over a wide spectral region;

3. when appropriately evaporated they have a very good stability with time;

4. they are characterized by high mechanical and chemical resistance; and

5. the conventional evaporation parameters when kept at a constant level allows one to

produce films with reproducible properties.

8
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3.1.1 Dielectric Behavior of Erbium Oxide

It is found that the values of dielectric constant co become higher with increasing thickness for

films in the thickness range of 100-700 A° [5], and it assumes a constant thickness-independent

value for films of thickness about 1300 A° and higher. However, in the intermediate region, i.e.

700-1300 A°, the value of a decreases and assumes a minimum value and later increases. This

is because of the amorphous to crystalline and fcc to bee crystalline transformation. Both these

transformations are thickness dependent [7].

3.1.2 Erbium Oxide Based Metal -Insulator Semiconductors

Recently, there has been a tremendous interest in developing high dielectric constant materials

as gate insulators for silicon VLSI technology. These high dielectric constant gate insulators

enhance the transconductance of metal-oxide-semiconductor transistors and reduce the size of

storage capacitors in dynamic random access memories. Dielectric properties of erbium oxide

in capacitor structures show interesting behavior with the dielectric constant increasing with

increasing dielectric thickness. A future study focusing on the device properties of erbium

oxide is required to establish this novel material as a candidate for VLSI Technology.

3.1.3 Optical Properties of Erbium Oxide

High purity ceramic oxides are among the most promising candidates as materials to be utilized

in high temperature environments commonly encountered in industrial and scientific endeavors

[6]. At high temperatures, thermal emission accounts for a large part of all heat transfer. In

space applications, radiant heat transfer is the only method of heating or cooling. A specific

feature of interest with the rare earth oxides such as erbium oxide, is their strong band
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emission, which ranges from the visible to near-infrared wavelength region. These bands permit

strong thermal excitation at temperatures compatible with high temperature stability of these

materials. Therefore, their use as a selective spectral radiation source has become a subject of

increasing interest. The emittance of a real body is defined as the ratio of real-body radiation to

blackbody radiation at the same true temperature.

Improvement in the experimental emittance of Er2O3 emitters will occur if the

temperature difference[1], AT across the emitters can be reduced. This temperature difference

is a function of the emitter material properties and physical dimensions and can be expressed as

where q is the heat transferred across a unit area, k is the thermal conductivity of the emitter

materials, and d is the thickness of the emitter. One way to reduce AT is to decrease the emitter

thickness, d. A reduction in porosity and optimization in thickness of the emitters can

significantly increase their emittance.

3.1.4 Infrared to Visible Upconversion in Erbium

There is a growing interest in rare-earth ion doped materials capable of converting infrared to

visible radiation by means of sequential excitation-upconversion [20]. Erbium is the most

commonly used rare-earth dopant and upconverted visible fluorescence has been observed in a

variety of Er' doped glasses and few oxide glasses. The mechanism of increasing emission

with Er3+ concentration is attributed to the energy transfer among excited Era' ions.
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3.2 Sapphire and Lucalox

Sapphire is a widely used optical material [14]. It is a direct bandgap material and its main

applications include infrared windows, substrate material for infrared detectors, light

emitting diodes, lasers [14] and its application as a selective absorber. High temperature

solar selective absorbers should be stable above 400°C and should have high solar

absorptance (greater than 0.9) and low emittance (less than 0.1) at the operating

temperature [15]. In Table 1, some of the properties of sapphire are summarized.

Table I. Summary of Properties of Sapphire [18, 19]
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3.3 Quartz

When earth was formed, and had begun to cool, the heavier elements such as iron were

pulled towards the center, while lighter elements such as silicon and oxygen came to the

surface [21]. It happens that silicon and oxygen bound very easily, forming SiO2

molecules. The SiO2 molecule naturally occurs in a lattice structure as crystal quartz.

Quartz crystal that is suitable for optical use is in very limited resources. In electronics, the

demand for higher quality systems and devices will require higher-grade quartz and quartz

glass. In many optical applications, natural quartz, and quartz glass made from natural

quartz, are useful. It also combines excellent elastic properties and high fatigue strength,

with exceptional chemical resistance to most chemicals. Table 2 lists the mechanical

properties of Quartz.

Table 2 Mechanical properties of Quartz



1 3

Fused quartz or silica has many optical advantages such as extremely wide spectral

transmission range in middle IR region. It has very high transmittance and very low

absorbance. It can withstand high temperature upto 1200°C and rapid changes in

temperature.



CHAPTER 4

OPTICAL PROPERTIES

4.1 A Blackbody: The Perfect Emitter

A blackbody emitter is useful for comparison with materials that do not emit perfectly at

all wavelengths, which is the case for most of the matter in the universe. Anything that

emits energy with a Planck distribution can be called a blackbody. If we used an infrared

spectrometer to measure this emitted energy and plotted the result, it would follow a

Planck distribution.

A blackbody is a perfect absorber of electromagnetic energy and also a perfect

emitter. Actually, it is the mathematical function for the spectral radiance of blackbodies.

area and wavelength radiated into the forward hemisphere from a blackbody at the

temperature can be found by summing up the energy emitted at each wavelength. This can

be done mathematically by integrating this Planck function with respect to wavelength.

The result is that the total energy radiation of a blackbody is proportional to its

14



15

absolute temperature to the fourth power (T 4). This is called the Stefan-Boltzmann

radiation law,

Boltzmann constant and T is in K.

4.2 Link between Radiative and Optical Properties

4.2.1 Optical Properties

If electromagnetic radiation is incident upon a solid body, some of the radiation is

reflected, some is absorbed, and the rest is transmitted. If we define the absorptance A as

the fraction reflected, and the transmittance T as the fraction transmitted,

A+R+T= 1.

The emittance E can be defined as the ratio of the thermal radiation per unit area emitted

by an object to that emitted by a blackbody at the same temperature [9].

E+R+T=1.	 ....(4)

The response of a solid to electromagnetic radiation is generally regarded as a

consequence of its microscopic elements with the electric field, and hence it can be

frequency of the wave, v[22].

The dielectric constant is not usually measured directly, and a number of other properties
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are used to describe the optical response of a material. The complex refractive index, 	 is

defined by the relation,

Where, frequency dependence of s r has been dropped for simplicity. The complex

refractive index can be written as

n,= n + jk
	

(7)

Where, n is the refractive index and k is the extinction coefficient. The refractive index is

equal to the ratio of phase velocity of the wave in vacuum to that in the material. The

relationships between the dielectric function and n and k is summarized by the equations,

For many practical problems, it is convenient to consider loss in a material as being

described by the absorption, a, which is defined by,

Where, k is the wavelength. a is a useful quantity to know because it is closely related to

the penetration depth of radiation in a given medium, since the intensity of the radiation

a is usually expressed in units of cm - '.

4.2.3 EMISSIVITY: The Temperature Equalizer

One of the ways to describe the infrared energy emitted by molecules is in terms of

radiance: watts of energy per unit of area. Changes in temperature lead to changes in
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radiance. For example, the radiance from a material at one temperature will be different

from that at another temperature. In order to make comparison of emission from materials

at various temperatures, we need to remove the temperature effect. This is done

mathematically by dividing the radiance spectrum of selective emitters by that of a

blackbody (perfect emitter) at the same temperature. This result is called an emissivity

spectrum. Emissivity then, is a fractional representation of the amount of energy from

some material vs. the energy that would come from a black body at the same temperature.

The places in an emissivity spectrum that have a value less than one are the wavelength

regions corresponding to molecules absorbing energy.

In general, in order to infer the temperature of the target from the measurement of

emitted radiation, the value of the surface emissivity must be known. It is a function of

wavelength and temperature. Hence, it is a property which must be known for accurate

temperature determination of an object by measurement of its emitted electromagnetic

radiation with a radiation thermometer. For normal incidence, the emissivity
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a is the absorption coefficient and t is the thickness of the material. When the radiant heat

transfer is in an equilibrium state, the emissivity of a perfect opaque body is given by

Hence

The experimentally measured values of transmittance and reflectance include effects such

as light trapping and multiple internal reflections depending on the angle of incidence,

surface roughness, presence of grains, grain boundaries, internal roughness, etc. The

[10].

The above equations (15) and (16) are the results of considering multiple internal

reflections. A simultaneous measurement of reflectance and transmittance can yield true

get real R and T from apparent R* and T* and is given by,
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from experimentally measured spectral properties [11]. Emissivity models can convey

to a process engineer information about films and thickness to achieve the desired

corresponding to the absorption edge, emissivity contributions are due to bandgap or

bandgap absorption. The free carrier absorption mechanism plays a dominant role in

doped semiconductors in the short-wavelength range [12]. In the long-wavelength

range(>10 microns), phonons contribute to the emissivity changes. These properties are

function of temperature.



CHAPTER 5

EXPERIMENTAL DETAILS

5.1 EMISSOMETER- Description of the Apparatus

A spectral emissometer has been used to measure the optical properties of the materials

investigated in this study. This instrument measures the radiative properties of a sample

over a wide spectral range, in the near and mid-infrared, from 12,500 cm"' to 500 cm' (

0.8 to 20 p.m). The schematic of the spectral emissometer is shown in Fig. 2. It consists of

a hemi-ellipsoidal mirror having two foci, both inside the mirror. At one focus, the

exciting source which is a near blackbody is placed and the sample under investigation at

the other focus. A microprocessor controlled motorized chopper facilitates to measure

radiance, reflectance and transmittance of the sample simultaneously. When the chopper

closes, the black body source, the detector detects only directional radiance of the sample

and when the chopper is open, the measured radiance will include both the emitted

radiation of the sample and the blackbody radiation reflected by the sample. The Fourier

allowing for the distinction of sample radiation from reflected/transmitted radiation. A

carefully adjusted set of five mirrors provide the optical path for measurement of the

optical properties. Three intersecting He-Ne laser beams are used to align the sample

precisely at the focal point of the mirror. A high resolution Bomem FTIR detector,

interfaced with a Pentium processor, permits data acquisition of the measured optical

20



Fig. 2 Schematic of Bcnchtop Emissometer.
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processor, permits data acquisition of the measured optical properties. This on-line

computer enables the user to flip the mirror to acquire transmission/reflection via a

software called Spectra Calc. This instrument has applications for: 1) industrial quality

control of radiative properties of processed materials, 2) research and development of new

materials, and 3) temperature measurements by optical techniques in the near and mid IR.

5.2 Methodology

Temperature Measurements:

By using the spectral emissometer, it is possible to measure radiance, reflectance,

transmittance and the temperature of the sample simultaneously. A microprocessor

controlled motorized chopper facilitates to measure the spectral properties of the sample.

When the chopper is closed, the directional spectral radiance of the sample is given as

follows[

temperature T.

When the chopper is open, the measured radiation is given by,
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The constant source radiation is quantified by replacing the sample with the perfect

condition.

The ratio of (3) to (4) results in the measurement of the directional hemispherical

reflectance of the sample, p„ at the unknown temperature T.

Once the spectral emissivity is known, the precise sample temperature can be determined

by rearranging (1).

Comparing (6) with Planck function leads to temperature evaluation:

where e l and c 2 are constants.

An on-line computer does all the mathematical operations on the raw data using Spectra

calc. It transforms the interferograms into spectra, calculates spectral emittance from

reflectance and transmittance data and automatically determines the temperature from

radiance data.



CHAPTER 6

EXPERIMENTAL RESULTS

6.1 Erbium Oxide

6.1.1 Experimental Data of Optical Properties

The optical properties of Er2O3 sample, 2.03 mm thick is investigated using spectral

emissometer at various wavelengths. The radiative properties at temperatures of 66, 360,

570 and 838°C while heating the sample and at temperatures of 517, 379 and 191°C

during cooling down the sample are shown in Figs. (3-6). The experimental data has been

deconvoluted to yield an estimate of the fundamental optical constants of this material. For

this material, the emissivity is low in the wavelength range of 1 to 5 p.m. At 10 1.1m, there

is a sharp peak in the emissivity. The emissivity is fairly constant and low in the

wavelength range of 2 to 5 µm.

By studying the optical properties at various temperatures, it can be observed that

the emissivity data remains the same. Thus, it is possible to say that erbium oxide is a

stable material and optical properties do not change much with temperature. This stability

of erbium oxide and its low and high emissivity in the IR region could be exploited for its

application as selective emitter in TPV. The rationale for measuring the high temperature

optical properties and then subsequently cooling the sample in air and recording the room

temperature data was to account for possible changes in the chemical composition of the

sample.
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Fig. 3 Temperature dependent optical properties of Erbium Oxide:
(a) 66°C (b) 360°C
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Fig. 4 Temperature dependent optical properties of Erbium Oxide'
(a) 570"C (b)8 38°C
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Fig. 5 Tcmperaturc dependent optical propertics of Erbium Oxide:
(a) 517°C (on cooling) (b)379°C (on cooling)
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Fig. 6 Temperature dependent optical properties of Erbium Oxide:
(a) 191 	 (b) I 03T

28



29

6.1.2 Comparative Study of Optical Properties

The measured values of emissivity of erbium oxide are in complete accordance with those

available in the literature [6]. The emittance of erbium oxide in the wavelength range of

0.5 - 1.9 microns as available in the literature is compared with those obtained from

experiments at different temperatures in the same wavelength range and they are found to

be similar. The deconvoluted values of refractive index at temperatures of 66, 379, 517

and 838 °C, are plotted as function of wavelength in Fig. 7 . In the wavelength range of 0.5

to 3.5 microns, the refractive index n is high.

6.2 Sapphire

6.2.1 Literature Data of Optical Properties

In this section, the data of the refractive index available in the literature [16] are presented.

Table 3 shows the refractive index of sapphire in the wavelength range of 1 to 6 microns.

6.2.2 Experimental Data of Optical Properties

The optical properties of a 2.1 mm thick sapphire was measured using the spectral

emissometer at different wavelengths and various temperatures. The measured optical

properties of sapphire at temperatures of 55, 466, 771, 994°C while heating and 368 and

13 8°C while cooling are presented. Sapphire is characterized by a very large transmission

in the IR with subsequent decrease at 6 pm. Sapphire is highly absorbing in the

wavelength range of 7 to 10 p.m. Its emissivity approaches 1 at about 8 p.m. The influence

of high temperature is to broaden the peak in the long wavelength absorption in sapphire.



Fig. 7 Refractive index, n of Er2O3 as a function of Wavelength (pin) at different temperatures.



Table 3 Refractive index values of Sapphire from literature [18]
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Cooling the sample to 138°C is seen to reproduce the low temperature optical data of

sapphire. Thus, heating the sapphire to 994°C and subsequent cooling has not changed the

chemical composition of the sample. The experimentally measured data of the optical

properties have been deconvoluted to yield the fundamental optical constants. In table 3

some of these optical constants at various wavelengths are presented. In Appendix A2, the

full range of data of the optical properties are given. The deconvoluted values of refractive
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index, at different temperatures are plotted as a function of wavelength in Fig. 13. In the

wavelength range of 12 to 18 microns, the refractive index, n of sapphire approaches high

value from its high reflectance.

6.2.3 Comparative Study of Optical Properties

The measured values of emissivity of sapphire are in complete accordance with those

available in the literature [13, 171 The experimental values of refractive index differ by

about ±1 %. This is reasonable because of the approximation used in deconvoluting the

experimental data to yield optical constants.

6.3 Comparison of Optical Properties of Sapphire and Lucalox

Lucalox is a very stable material as compared to sapphire and could withstand very high

temperature without degradation. Hence, it finds its application in vapor lamps as it can

withstand high temperature of ionization. Lucalox is a good candidate for replacing

sapphire. Figs. (8 - 11) compare the optical properties of sapphire with lucalox at various

temperatures. From the figures, it may be concluded that the two materials resemble each

other very closely. The deconvoluted values of refractive index are plotted as a function

of wavelength (microns) at different wavelengths in Fig. 11. From Figs. 12 and 13, we

could infer that the two materials behave the same in the IR region.



Fig. 8 	 Comparison of 	 propertics of (a)Sapphire and (b)Lucalox
(a)55°C (b)86 QC
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Fig. 9	 Comparison of optical properties of (a)Sapphirc and (b)Lucalox
(a)994 °C (b)945 °C
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Fig. 1() Comparison of optical properties of (a)Sapphire and (b)Lucalox
(a)466 °C (b)56I°C
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Fig. II Comparison of optical properties of (a)Sapphire and (b)Lucalox
(a)771 °C (b)720°C



Fig. 12 	 Refractive index, n of Lucalox as a function of Wavelength (µm) at different temperatures.



Fig. 13 Refractive index. n of Sapphire as a function of Wavelength (µm) at different temperatures.
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6. 4 Quartz

6.4.1 Literature Data of Optical Properties

In this section, the data on refractive index available in the literature [19] are presented,

Table 4 shows the refractive index of quartz between 1 to 20 microns wavelength range.

Table 4 Refractive Index of Quartz from the Literature [19].
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6.4.2 Experimental Data of Optical Properties

The optical properties of 3.2 rnm thick quartz crystal was measured using spectral

emissometer at different wavelengths and temperatures. In Figs. 14 -15, the measured

spectra of quartz at temperatures of 182, 521, 677 and 817 °C are presented. Fig. 16

compares the spectra of quartz at 182°C after heating and cooling. Thus, heating the

quartz crystal to 817 °C and subsequent cooling has not changed the chemical composition

of quartz. Quartz is characterized by a large transmission in the IR. region with subsequent

decrease at 9 microns. Quartz has a high emissivity approaching 1 at about 5 microns.

The experimentally measured data of the optical properties have been deconvoluted to

yield the fundamental optical constants. The measured values of k are strongly influenced

by the presence of impurity and defect absorption. For this reason, k values are zero in

the lower IR region. In appendix A4, the full range of the optical properties are given.

6.4.3 Comparative Study of Optical Properties

The measured values of emissivity of quartz are in complete accordance with those

available in the literature [19]. As seen from Fig. 17, the experimental results of the

wavelength dependent refractive index are in good agreement with those in the literature

[19]. The experimental values differ by literature values by about ± 1 % because of

approximation used in deconvoluting the experimental data to yield optical constants.



Fig. 14	 Temperature Dependent Optical Properties of Quart/
(a) 182T (13)521"C
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Fig. 15	 Temperature Dependent Optical Properties of Quart'.
(a)677 °C (b)817 °C



Fig. 16	 Temperature Dependant Optical Properties of Quarts.
(a) 182'C (on heating) (b)182°C (on cooling)
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Fig. 17 Refractive index, n of quartz as a function of Wavelength (p.m) at various temperatures



CHAPTER 7

CONCLUSIONS

The experimental results presented in this thesis showed that the measurement of high

temperature radiative properties over the wavelength range of 1 to 20 microns and

temperature range of 30 to 1500°C could be performed reliably with a novel approach

based on the use of a spectral emissometer. Methodology of obtaining temperature from

simultaneous measurement of reflectance, transmittance and radiance has been shown with

application to erbium oxide, sapphire and quartz. In general, results of the temperature

and wavelength dependent emissivity of erbium oxide, sapphire and quartz, and

comparison with studies in the literature, lead to following observations:

• Erbium oxide emitters have unique selectivity line emission, which gives a high

emittance at a particular wavelength and very low emittance in the rest of the infrared

spectrum. The highly selective line emission is matched well with some well developed

PV cells, e.g., erbium oxide matched with InGaAs cells. Obviously, using these

emitters can increase emitter efficiency.

• Erbium oxide is a very stable material, with the emissivity not varying much with

temperature. This property finds its application in TPV.

• Lucalox exhibits emissivity approaching 1 at 8 microns. In the wavelength range of 12

to 18 microns, the refractive indices of sapphire approach high values resulting from

its high reflectance. The optical properties of lucalox closely match that of sapphire.
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• Sapphire is highly absorbing in the wavelength range of 7 to 10 microns and its

emissivity reaches 1 at about 8 pm. In the wavelength range of 12 to 18 microns, the

refractive index of sapphire approaches high value from its high reflectance.

• Quartz has a high emissivity approaching 1 at about 3 microns. As the measured

values of k are strongly influenced by the presence of impurity and defect absorption, k

values are zero in the shorter IR region.



APPENDICES

Al: LUCALOX OPTICAL CONSTANTS AT 66 °C

A2: ERBIUM OXIDE OPTICAL CONSTANTS AT 54°C
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!APPENDIX LUCALOX OPTICAL CONSTANTS AT 54°C
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Fig. A2.2 Plot of wavelength (microns) v/s epsilonl at different temperatures



Fig. A2.1 Plot of wavelength (microns) v/s refractive index, n at different temperatures



APPENDIX A2 : ERBIUM OXIDE OPTICAL CONSTANTS AT 66°C
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Fig. Al.! Plot of wavelength (microns) v/s refractive index, n at different temperatures



Fig. Al. 3 Plot of wavelength (microns) v/s emissivity at different temperatures



Fig. A1.2 Plot of wavelength (microns) v/s epsilon1 at different temperatures
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