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ABSTRACT

LONG TERM RISK ASSESSMENT OF BROWNFIELD CONTAINMENTS

by
Shailesh Chirputkar

The sites at which the development is hindered by real or perceived contamination are

called as Brownfield sites. It is a common trend in industry to develop these types of sites

with surface and peripheral containments. It might prove unwise to develop the sites in

this manner from a long term perspective without considering the associated risk.

Because of this, a model has been proposed for long term risk assessments of brownfield

containments.

Objectives of this study were to develop a contaminant transport model for flow

of contaminants towards the surface and peripheral containments inside the site, a model

for flow of contaminants through the containments and calculate the risk using CalTOX

model.

The model consists of two parts i.e. flow of contaminants towards peripheral

containments and surface containments. The flow of contaminants towards surface

containments is based on a process based model and flow of contaminant towards surface

containments is based on Richard's equation. The peripheral containment model was

applied to three case histories. The risk was acceptable in one case, unacceptable in

another case and on the borderline in the third case. Thus the model was able to project

the risk towards long term scenario.

Flow of contaminants towards surface containments in the vadoze zone can be

modeled by Richard's equation that is a nonlinear, transient, partial differential equation



of parabolic type. The equation was solved using the finite difference technique. The

surface containment model was applied to a fictitious site and to a real case involving

hexavalent chromium contamination. The model was able to predict the flow of

contaminants in the vadoze zone. Risk was calculated using CaITOX model with

modified fugacity approach.

CalTOX model utilized for risk, in the original form utilizes only residential

exposure scenarios and only for organic chemicals. This model was modified to

incorporate industrial exposure factors and inorganic chemicals.
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CHAPTER 1

INTRODUCTION AND STATEMENT OF THE PROBLEM

1.1 Introduction

There are a number of sites across United States that once were used for industrial and

commercial purposes and now have been abandoned or are underused. Such sites occupy

respectively about 7000 acres and 25,000 acres of land in urban counties in New Jersey

and United States respectively. Some of these sites are contaminated and/or perceived to

be contaminated. If there is a potential for environmental concerns, industry and

developers do not consider the site for development. This is due to the uncertainty of

added costs or potential undefined future long-term liabilities. Such sites are called as

Brownfield sites. In short, a Brownfield site can be defined as an abandoned, idled or

under-used industrial and commercial site where expansion or redevelopment is

complicated by real or perceived contamination. (USEPA, 1998a)

1.2 Statement of the Problem

There are major barriers legal, financial, practical, real or perceived that currently impede

the developers from participating in and investing financial resources in the cleanup and

redevelopment of the site that are or potentially subject to Superfund program and

CERCLA (Comprehensive Environmental Response, Compensation Liability Act)

program.



The stringency of EPA Superfund clean-up standards is often cited as major

impediment to the cleanup and redevelopment of brownfield sites. Contaminated sites

that are developed under Superfund program must meet standards known as ARARs

("Applicable or Relevant and Appropriate Regulations -). Also CERCLA prefers a

remedial action in the form of treatment or elimination of the contaminants or reduction

to a specified level in ARAR for each contaminant. Prospective developers state that the

cost of meeting the stringent standards makes or may make the project economically

infeasible. Though there are several other factors that dominate the decision to proceed or

not to proceed in a particular project, the cost of remediation can be a dominating factor.

The stringent Superfund standards and preference for active treatment may be

appropriate for cleaning up sites that are heavily contaminated and near residential areas

where frequent human exposure is likely. Superfund standards are perceived as

inappropriate for many brownfield sites that may or may not be seriously contaminated

and where human and environmental exposure can be limited through various

mechanisms. However, CERCLA and Superfund programs, as implemented, provide

little flexibility to set alternative cleanup standards based on reasonable distinctions

among the level of risk at each site based upon the severity of contamination and

likelihood of human exposure to the contamination.

Though the regulatory agencies have stipulated cleanup standards for Superfund

sites, the present regulatory trend is to utilize risk-based remediation. This is commonly

referred to as RBCA (Risk Based Corrective Action). It is now possible for Brownfield

sites to be cleaned up to standards far less stringent than those applied for Superfund

sites. However, the stipulations of federal regulations such as RCRA (Resource
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Conservation and Recovery Act) and CERCLA that make the owner responsible for

possible risk in the long term from adverse effects resulting from contamination still

apply. The higher the level of cleanup, the higher is the cost of cleanup and the lower the

risk. The developer will have to make decisions regarding development taking the cost

and risk into account.

Based on the authors' discussions with consultants and developers, it has been

noted that the cheapest way of developing a Brownfield site is to contain it with bentonite

slurry walls and asphalt caps. In this way, the time and expenses required for cleanup can

be optimized. There are two types of peripheral containments that can be utilized. Figure

1.1 below shows a site with active containment consisting of a slurry wall and an asphalt

cap. Plan shows hot spots of the contamination in the site. The pathways from a source to

the containment are shown in the Figure. The structural integrity of the containment may

be impaired in the long term not only by the chemical action between the contaminant

and the containment material but also due to poor construction and cracking. An active

containment is used to prevent contamination from escaping out of the Brownfield site.

A passive containment prevents contaminant from entering the development from

an adjacent site. This is illustrated in Figure 1.2 where the sources of contamination are

concentrated in one part of the site. The portion of the site that is highly contaminated is

covered by asphalt cap and is separated from the remaining portion of the site by a slurry

wall. Brownfield development, in this case, is on the portion of the site that is not

contaminated or lightly contaminated. The contaminant may enter through the bentonite

slurry wall or may escape through asphalt cap and cause problems for the development.



Thus in a Brownfield site either with an active or a passive containment, the

contaminant will migrate to the surface and wall in time. As the containment deteriorates

structurally with the passage of time. the contaminant will leak through the containment.

If the contaminant flowing through the wall causes adverse effects. full or partial

remediation to reduce leakage may be required. The degree of remediation will depend

upon the acceptable risk. There are no tools available to estimate the concentrations of

the contaminant coming out of the containment. For this purpose, a contaminant transport

model will be developed in this study for an active containment. This model can also be

used for a passive containment.

Fig. 1.1 Active Containment at a Contaminated Site



J

1.3 Scope of this Study

For this study. it is proposed that long-term risks of a Brownfield site will be studied

using contaminant transport and risk modeling. The scope of this study is as follows,

Develop a methodology for risk calculation in Brownfields for capping and containment.

(i) Develop a model for flow of contaminants in the site.

(ii) Develop a model for flow of contaminants through capping/containment.

(iii)	 Calculate the risk using CalTOX model.

Fig. 1.2 Passive Containment at a Contaminated Site

In the following sections of this proposal, a brief review of available literature on

this subject will be presented. This will be followed by a succinct discussion on the

methodology to be adopted for this study.
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Techniques for estimating the flow of contaminant towards and through wall were

developed in this research. Results from case studies have been presented. For estimating

the flow towards the surface containment. Richard's equation for flow through capillary

zone was solved adopting finite difference formulations developed for this study. A case

study for this condition has been presented. A methodology was outlined for determining

long term risk utilizing CaITOX model based on flow data regarding the contaminants. In

all case studies, various scenarios for possible development taking long term risk into

account have been discussed.



CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

In this chapter, relevant literature regarding Brownfields development will be discussed.

Then available risk models such as CaITOX, their capabilities and limitations will be

presented. Risk assessment procedures recommended by EPA will be reviewed. This will

be followed by a discussion on the available contaminant transport models. After this,

pertinent information regarding the containment and capping will be reviewed.

2.2 Brownfields Development

A very good discussion regarding Brownfields is provided in the Publication "Expediting

Cleanup and Redevelopment of Brownfields- Addressing the major barriers to Private

Sector real or Perceived" (USEPA, 1998b). Legislation regarding Brownfields was

enacted in order to utilize the contaminated sites for meaningful and economically viable

development while at the same time minimizing the effects of contamination on the

surrounding environment. Brownfields are also subject to legislation that classifies the

site as either a Groundwater Classification Exception area or Environmentally Restricted

areas. In such cases, the use of land and/or groundwater is subject to certain restrictions.

2.3 Different Models Available for Risk Assessment

Various types of software are available in the industry, such as Hazard-Expert, Ramas-

age, RBCA toolkit and CalTOX. Hazard-Expert can be used for processing and

evaluating the expected hazardous effects of organic chemical compounds through
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toxicokinetic and toxicodynamic investigation. Ramasage can be used to analyze

ecological risks of biological species. RBCA toolkit is a risk based correction analysis

tool kit to carry out risk analysis according to ASTM and EPA procedures. CaITOX is

developed by Department of Toxic Substances, California. The software has been utilized

vastly in academic and industry circles. CalTOX has been selected for the present study

for a number of reasons which are listed in next section. A review of the CaITOX model

is presented in the following section.

2.4 CaITOX Model and Risk Calculation

Even though several models are available to carry out risk assessment, CaITOX model

has been utilized for this study for a number of reasons. This model is an innovative

spreadsheet model developed by the California Department of Toxic Substances. It

computes the human health risks for a given concentration of a contaminant in a soil. The

transport model in this package is intended for application over long time scales, several

months to a decade. This model is intended for application over long time scales, several

months to decades. It is not applicable for areas less than 1000 m 2 and greater than 10'

m2 . CaITOX model is not suited for land plots having greater than 10% watershed area.

Most of the Brownfield sites satisfy the above two criteria.

The CaITOX model has three main features, Multimedia transport and

transportation model, Exposure Scenario models and Sensitivity and Uncertainty

analysis. The multimedia transport and transformation model assesses time varying

concentrations with constant input and uses equations based on conservation of mass and

chemical equilibrium. It determines the chemical concentrations of contaminants in
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various exposure media. From these concentrations, a daily intake of the contaminant is

calculated. With daily intake and the corresponding toxicity data, the risk is calculated for

the carcinogenic chemicals. For non-cancer causing chemicals, risk is expressed as

Hazard Ratio. EPA calls it Hazard Index (EPA, 1989). CaITOX has the ability to carry

out uncertainty analysis of the properties of contaminants used for risk analysis. These

properties such as partition coefficients, Henry's constant, etc. are contained in the

CalTOX software.

2.4.1 Risk Calculation

CalTOX model uses a concept based on fugacity for organic chemicals and a modified

fugacity approach for inorganic chemicals, metals and radionuclides. Fugacity is a way of

expressing concentration of chemicals.

Where,

C= Concentration of a chemical measured in terms of moles.

f= Fugacity measured in terms of Pascal

Z= Fugacity capacity expressed in terms of concentration per unit energy.

The physical interpretation of fugacity can be arrived at in the following manner:

The fugacity capacity in units of mol/m3-Pa for a nonionic organic chemical in pure air is

given by,

Where,



1 0

(2.3)

The ideal gas equation is

PV = NRT

Where,

P = Pressure exerted by a gas.

V = Volume occupied by a gas.

N = moles of a gas

PV = capacity of a gas to perform the work, i.e. energy.

Hence,

Fugacity capacity can be defined as the amount of energy required to change the

concentration of a chemical. Hence the greater the amount of energy required to change

the concentration of a chemical, the less mobile the chemical is. In other words, fugacity

capacity is a measure of immobility of a chemical and fugacity is a measure of mobility

of a chemical.

For nonionic organic chemicals the fugacity capacity in other mediums such as

surface water, soil, ground water is calculated based upon the fugacity capacity of air. For

ionic organic chemicals, inorganic chemicals, metals and radionuclides the fugacity

capacity is calculated based upon the fugacity capacity in water. Mackay and Diamond

(1989 ) define the fugacity capacity of water as 1 mol/m3-Pa as base. Based upon the
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fugacity capacity in water, the fugacity capacity in other mediums can be calculated by

using equation 2.5.

Z ip = KDi * Psi * Zwater * 1 m 3 /1000 L water	 (2.5)

Where.

i = different compartments such as ground water, surface water, soil, sediments.

plants, etc. and p corresponds to particle of each medium.

K = sorption coefficient in a medium for a particular contaminant.

p si = density of a medium.

Sorption coefficient in a medium can be calculated by using organic carbon

content in a medium and organic carbon partition coefficient.

2.5 Risk Assessment Procedures

According to the Superfund Risk Assessment Manual (USEPA, 1989), risk assessment

process consists of four main stages as shown in Figure 2.1. CalTOX model only

considers residential exposure scenarios and thus does not address industrial exposure

scenarios. Brownfield sites are usually developed for industrial purposes. Hence it is

proposed that industrial exposure scenarios would be built in CalTOX to carry out quick

assessment. One such industrial exposure scenario is given in Table 2.1 (CalTOX, 1998).

Toxicity assessment has been incorporated in the CalTOX model. Additional data

regarding toxicity is available on http://www.tera.org (1998). CalTOX is capable of

performing risk characterization. But it can only be performed for one contaminant at a

time. USEPA procedures (USEPA, 1989) allow adding the risks for individual

contaminants to



Figure No. 2.1



Table 2.1 Industrial Exposure Scenarios

13

come up with a single cancer risk and/or noncancer hazard index for a particular site with

a number of contaminants. Cleanup goals can be established based on risk in Brownfield

sites.
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2.6 Statistical Approach to Clean Up Goals

Pre-remediation concentrations can be represented as a lognormal distribution (Bowers

et. al.(1996)). Response goal can be described by a function of geometric mean and

geometric standard deviation of a lognormal distribution and desired reduction in

exposure, which is defined as the ratio of average post-remediation concentration to

average pre-remediation concentration. Exposure is always a function of the arithmetic

mean concentration over a predefined exposure area, regardless of the type of

distribution that best describes the contaminant concentration. Post remediation

concentrations form a lognormal distribution. This post remediation distribution is

truncated at a response goal with another distribution which represents the concentration

of the contaminant in the backfill or cover. The average concentration of post remediation

distribution is a weighted average of the portion of pre-remediation distribution with

concentration below response goal and the concentration of backfill/cover which replaces

all pre-remediation concentration that exceed the response goal.

2.7 Contaminant Transport Models

Contaminant transport occurs by advection (bulk movement due to fluid flow), diffusion

and adsorption. Deterministic and stochastic approaches have been utilized to model

contaminant transport phenomenon. Deterministic approaches include closed form

solutions, numerical techniques such as Finite difference and Finite Element Methods.

Closed form solutions are always elegant and easy to use. But they are difficult to obtain.

Numerical solutions require computational resources and every problem has to be solved
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making it time consuming. Since contaminant transport is a function of coordinates in

space and time, both analytical and numerical techniques tend to become complex.

Deterministic approaches are sometimes considered impractical due to the amount of data

required to specify actual heterogeneity of geological materials. In such cases,

probabilistic approaches become handy.

A deterministic and macroscopic model for pollutant transport in a heterogeneous

medium including diffusion, advection and adsorption was developed by Auriault and

Lewandowska (1996). To evaluate the design thickness of earthen barriers, Shackelford

(1990) used error functions to solve the traditional transport phenomenon and performed

transit-time analyses. Khandelwal and Rabideau (1996) modeled diffusion dominated

transport in soil-bentonite slurry walls. Weber and Smith (1987) provided a review of

different models available for adsorption processes. Leo and Booker (1996) developed a

time-stepping finite element method for analysis of contaminant transport in fractured

porous media. Kemblowski and Wijedasa (1995) applied Bayesian analyses for

determining contaminant travel time. Ghanem and Dham (1995) performed stochastic

characterization of multiphase flow in random porous media. Papers abound in literature

that tend to characterize the properties of the geological medium as stochastic variables

(Nibori, 1994, Benson, 1991, Bogard, 1990).

2.8 Containment and Capping

For this study, it will be assumed that the site will be peripherally contained by a slurry

wall. The top surface will be contained by asphalt cap.
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The material in the containment may be subject to forces which could lead to

significant changes in material properties over the lifetime of containment facility. For

example. long term creep of the compacted soil on the inclined portion of a barrier may

tend to alter the permeability of soil. Also, the leachate from buried waste may react

chemically with soil, causing changes in microscopic structure and material properties

affecting flow. For example, some strong acids, bases organic and inorganic fluids may

interact adversely with soil, causing increases in the permeability. (Meegoda and

Rajapaske. 1993). Changes in cation valence or electrolyte concentration of soil water

caused by permeation with inorganic liquids increase hydraulic conductivity (Anderson

1980. Daniel 1990). According to Anderson et. al. (1980), permeability of soil increases

by two orders of magnitude with time upon contact with acetic acid due to the dissolution

of soil followed by piping of the particle fragments.

Construction defects in containment and cap may cause structural distress. These

defects are a function of quality assurance of construction techniques adopted and

materials utilized. Tachavises and Benson (1997) report that permeability increases by

several orders of magnitude due to poor construction. They also show that, in such cases,

the results approximate the situation with no wall. Giroud and Bonaparte (1989)

concluded that 1 defect per 10 meter of seam can be expected for geomembrane liners

installed without independent quality assurance. As the thickness of containment

decreases over a period of time, efficiencies of the containment and the cap decrease.

Efficiency of capping contaminated sediments as a function of cap thickness was

computed by Thoma et. al, (1993).
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2.9 How towards Caps

Liquid contaminants can migrate upward from the soil towards the cap by capillary

action. Inorganic contaminants can flow towards the cap by capillary action. The

movement of contaminants in capillary zone can be tracked by following equation

proposed by Terzaghi,

Where,

t = time required for meniscus of capillary water to rise to the height z above the

free water level,

n = porosity,

k = coefficient of permeability,

= height of capillary rise,

z = distance of capillary meniscus from groundwater level.

The height of capillary rise can be calculated by following equation,

Where,

}lc is Capillary head, e is void ratio and D10 is diameter at 10% passing.

C is a constant varying from 0.1 to 0.5.

Raghu and Hsieh (1988) report that tests conducted in the laboratory indicate that

chromium migrates in upward direction in the soil pores upto 5' causing swelling. Due to

this, damage to slabs and pavements results.

Flow of volatile contaminants and gases to the cap can be calculated by using air

permeability of soil. The flow of air in the continuos air phase form is governed by
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concentration or pressure gradient. Both Fick's and Darcy's law can be used to describe

the airflow. More details regarding this will be furnished in Chapter 3. According to

Corey (1977). the air phase can be treated as continuous as degree of saturation reduces

to around 85% or lower.

2.9.1 Flow towards Caps

In order to reach the cap the contaminants have to flow up. In most cases. this flow would

be in the capillary zone. Flow towards caps can be modeled by Richard's equation which

overcomes the shortcomings of Terzaghi's equation. This equation was employed to

model the capillary flow. More details are provided in Chapter 4.

2.9.2 Flow through Caps

It is common practice to provide a layer of stone below the asphalt cap. This layer will

enhance the structural integrity of the asphalt pavement as well as act as a capillary break.

The gravel layer will also tend to collect the liquid and the gaseous contaminants flowing

towards the cap. In such cases, as well as the cases where gas venting is provided in soil,

the flow to the cap will be reduced significantly and the flow through the cap may not

even has to be considered for Brownfield development.

Flow of chemicals through the cap is a remote possibility. Air permeability of

asphalt and concrete is 10 -6 to 10 -7 cm/s (Meegoda, 1993). Hence flow of gases through

the cap will be insignificant. Cap can crack after sometime. Once this happens, liquids will

flow up through the cracks. Organic chemicals can flow up through the cap by

volatilization. Under these conditions, flow through cap can be negligible.



CHAPTER 3

DEVELOPMENT OF MODELS FOR FLOW FOR TOWARDS AND THROUGH
PERIPHERAL CONTAINMENTS

3.1 Introduction

In this chapter, the following methodologies will be developed sequentially:

a. Contaminant Transport model for flow towards and through the peripheral

containment (at the boundary).

b. Determination of cancer risk/ hazard ratio based on exposure and

concentration.

For this study, the methodology presented for items above is based on the

information presented in a paper by Chirputkar and Raghu (1998).

3.2 Contaminant Transport Model for Flow towards and through the
Peripheral Containment

Figure 3.1 portrays the flow chart for contaminant to travel to the face of the peripheral

containment/cap and for the flow of contaminant through the peripheral containment/cap.

19



20

Fig 3.1 Process Tree for contaminant to travel to the face of the wall and for the flow of
contaminant through the wall

3.3 Transport Model

The contaminant travels through the soil by advection and diffusion. A process based

model can be developed based on the site data. Effects of changes in material properties

will be included in the transport model. Adsorption is not considered By neglecting

adsorption, contaminant transport model would predict higher flow rate and hence higher

risk than actual. This is conservative and hence the assumption is acceptable. Similarly,

the risk is predicted conservatively by neglecting degradation. However, in this study the

source concentration is indirectly accounted in the source concentration data.

A maximum time period has to be chosen for all calculations involving flows. In

this case, this period would be assumed to be 30 years. This is based on the fact that EPA

stipulates post remediation monitoring period (post closure) to be 30 years.
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3.4 ►dvection Process

Under this process, bulk movement of contaminant through the soil occurs due to fluid

flow. If the contaminant is a volatile contaminant, then it will travel under the pressure

head. The flow of contaminant through the soil can be calculated by using equation 3.l.

The following equation was derived based on an equation given by Daniel (1990). The

details are shown in appendix.

Where

n is porosity.

Based on this data, process function C versus time for use in this study can be

obtained. Sample data curves for seepage velocity and concentration are provided in

figure 3.2 and 3.3 respectively.



Fig 3.2 Seepage Velocity vs. Time for Cl-
(Data from Mitchell, 1990)
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Fig. 3.3 Concentration vs. Time for
(After Huebner et. al., 1995)



3.4.1 Point Sources vs. Concentration Contours

In previous section, the contamination is assumed to originate from a point source. In

order to utilize the point source model, field data in form of concentration contours has to

be converted to equivalent point sources. This can be accomplished in following manner.

Where,

C is equivalent source contaminant concentration.

Al and C i are respectively area and concentration of a subarea within a contour.

The locations of the sources are calculated by following formulae,

Where X 1 and Y, are respectively the coordinates of the center of gravity of a subarea

within a concentration contour and X and Y are respectively the coordinates of the center

of the gravity of the concentration contour.

3.4.2 Multiple Point Sources

There can be multiple point sources at a given site. Concentration contours can be

converted to multiple point sources as shown in section 3.4.l.

3.4.3 Travel Time from Source to Wall

The contaminant will travel from different sources to the wall and reach different

locations of the wall at different times. It will be assumed conservatively that

contaminants from different sources will arrive at the same location of the wall. But they
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will arrive during different times. Hence it will be necessary to calculate the travel times

of the contaminant from different sources to the wall to obtain the total quantity of

contaminant at the wall from different sources as a function of time.

Seepage velocity V s can be expressed as,

Substituting for V S(t) from equation (5), and integrating

d = Distance traveled.

3.5 Diffusion Process

Only chemical diffusion process has been considered. Changes in the contaminant

gradient vs. time have been shown in Figures 3.6 and 3.7.

The concentration of a contaminant by diffusion can be calculated using equation

Where,

G(t) = Chemical gradient of a contaminant which is a function of time.

C d(t) = Concentration of a contaminant in diffusion process which is a function of time.

C(t) = concentration of a contaminant which is a function of a time.



Fig. 3.4 G vs. Time
(Calculated from data provided by Anderson)

8C/8x values for two different sites were computed based on the available data.
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Fig. 3.5 G(t) vs. Time
(Calculated from data provided by Anderson)

Based on above Figures 3.6 and 3.7, δC/δx vs. time data for use in this study, can be

obtained.
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3.6 Determination of Concentrations at the Outer Face of the Wall

The concentrations at the outer face of the wall are influenced, in addition to the quality

of construction of the wall, by the concentrations at the inner face of the wall and the

dimensions of the wall. For this study. two different scenarios will be analyzed. One will

be for the condition corresponding to the wall built with good quality of construction and

100% structural integrity of the wall (no aging). The other case will represent walls

constructed with poor quality of construction and structural integrity of the wall impaired

by aging. Also, the contaminant coming out of the wall may accumulate if there is a

marsh like soil condition. On the other hand, the contaminant will drain away if there are

favorable soil conditions on the outside of the wall. Each of the above two cases are

analyzed for the two scenarios presented above. These four conditions represent the best

and the worst possible situations.

For good construction,

Thickness Fraction T = 1, for 0=< time =< 20 years

Thickness Fraction T = (1- (59/60) x (t-20) t>20 years 	 (3.9)

Thickness fraction is the ratio of thickness at a given time to the initial thickness.

For poor construction, the wall function is assumed as follows,

Thickness Fraction T = 1 for 0=< time =<5 years

Thickness of wall T = (1-(0.033 x (t-5)) t>5 years	 (3.10)

Equations 3.7 and 3.8 are based on the assumption and data in literature that a

wall built with good construction practices will deteriorate after a period of 20 years.

Whereas a wall built with poor construction practices is assumed to deteriorate after a
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period of 5 years. These values as a functions of time are called Wall functions and are

shown in Figure 3.8 below

Fig. 3.6 Wall Functions

The concentrations at the outer face of the wall taking advection and diffusion into

account can be calculated using following equation,

Where,

Co(t) = Concentration of a contaminant on outside face of a slurry wall as

a function of time.

Ci(t) = Concentration of a contaminant on inside face of a slurry wall as a

function of time.

V s(t) = Seepage Velocity as a function of time and

n(t)	 = Porosity of the wall expressed as function of time.



Where,

h(t), e(t). n(t) and T(t) are respectively thickness. void ratio, porosity, and wall function at

any time t and e0 is the initial void ratio of the slurry wall.

Derivation for equation 3.11 and 3.12 are presented in Appendix B.

Cumulative concentrations will indicate the effects of accumulation of

contaminant at the outside of the containment. Concentrations for the four different

scenarios considered for each contaminant can thus be determined.

3.7 Determination of Risk/Hazard Ratio

The relevant contaminant concentrations will be input to a CalTOX model. Risk/hazard

ratio will be the output from the model. Details of these calculations for applications will

be explained in Chapter 5. For each contaminant, risk and/or hazard ratio vs. time plot

will be obtained. An attempt will be made to quantify the total absolute risk/hazard ratio

for the site. It is possible to utilize this process for different treatment/containment

scenarios. Results obtained can be used as a decision making tool for the development of

Brownfield Sites.



CHAPTER 4

DEVELOPMENT OF MODEL FOR SURFACE CONTAINMENTS

4.1 Introduction

In this chapter, the following methodologies will be developed sequentially:

a. Contaminant Transport model for flow towards and through the upper surface

containment.

b. Determination of cancer risk/ hazard ratio.

4.2 Contaminant Transport Model for Flow towards and through the
Surface Containments

Figure 4.1 portrays the process tree for contaminant to travel to the face of the cap and for

the flow of contaminant through the cap.
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Fig 4.1 Process Tree for contaminant to travel to the face of the wall and for the flow of
contaminant through the cap.

4.3 Flow of Contaminants in Capillary Zone

The concept of capillary action and surface tension are widely known. These principles

have been applied to a satisfactory extent to represent the movement of liquids in

unsaturated zone in upward direction.

If a soil in the state of a dry powder is brought into contact with water, the water

will at once tend to be drawn into the voids by capillary action. The velocity with which

the water is absorbed into the soil is dependent on the pore size of the soil. As the height

increases, the degree of saturation decreases considerably. Finally, there is a limiting

value above which water can not be drawn.
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4.4 Richard's Equation

Richard's Equation overcomes most of the limitations of Terzaghi's equation. It is

derived by the concept of mass conservation. This equation contains various terms for

moisture contents, soil suction, and permeability as variable. The moisture content in

Richard's equation is expressed as a volumetric moisture content. However, this moisture

content is related a gravimetric moisture content. The gravimetric moisture content can

be easily measured in the laboratory. Moisture content and soil suction are related to each

other by a curve known as soil suction curve.

Richard's equation can be used to describe the flow in unsaturated soils. The

equation has been extensively used to model infiltration. However, the same equation has

not been solved to model the capillary flow.

As discussed in Chapter 2 earlier, liquid and gaseous contaminants from the soil

flow up towards the cap. Flow of liquids in the vadose zone can be modeled by Richard's

equation. (Jury, Gardener and Gardener 1991). This equation, presented below, relates

water fluxes, storage changes, and sources and sinks of water.

Where,

0 is the volumetric water content, h is the matrix suction and z is the vertical

dimension respectively. The volumetric water content, 8 is defined as ratio of volume of

water to volume of solids.
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Equation 4.l can not be solved in the form it is in. because it contains two

unknowns 0 and h and only one equation. This difficulty may be overcome by

expressing it in either water characteristic or matric potential form.

The water content form of Richard's Equation is as follows:

K(0) = Permeability of soil as a function of water content.

Solution of the equation 4.2 will yield 0, the water content, as a function of "z"

and "t". Knowing the water content, the concentration of a contaminant per liter can be

determined.

The matric potential form of Richard's equation is as follows,

Where,

Cw(h) = Water capacity function

K(h) = Permeability of soil expressed as a function of matric potential.

4.5 Solution of Richard's Equation

There are three types of partial differential equations, elliptic, parabolic and hyperbolic

differential equations.

Any partial differential equation can be represented by Equation 4.4.
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= Second Order Partial Derivative of a Function u with respect to x

u,, = Second Order Partial Derivative of a Function u with respect to y

u„ = Second Order Partial Derivative of a Function u with respect to x and y

u, = First Order Partial Derivative of a Function u with respect to x

u, = First Order Partial Derivative of a Function u with respect to y

A. B. C, D. E and F are constants.

The partial differential equation can be classified using the discriminant as shown below:

Table 4.l classifies the partial differential equation on discriminant (Gustafson, 1976)

Table 4.1 Types of Partial Differential Equations

Discriminant Equation Type

d > 0 elliptic

d = 0 parabolic

d < 0 hyperbolic

Based on the above table, Richard's equation is parabolic a partial differential

equation and is of the nonlinear second order type. The equation itself does not have any

expression for maximum value of capillary rise. Hence the maximum capillary rise,

calculated from expression containing particle size, was imposed as boundary condition.

Analytical solutions can not be obtained for nonlinear partial differential equation

such as Richard's equation. Hence numerical methods have to be looked at. Solution of

partial differential equation can be obtained by various numerical methods such as finite
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element method, finite difference method. The difficulty with Richard's equation is that it

does not fit into any standard form of equation such as heat equation. wave equation or

Laplace's equation. A brief review of prior work done involving solution of Richard's

equation by numerical techniques will be provided.

4.5.1 Prior Work Done in Solving Richard's Equation

Lim and Lee (1993) used Galarkin Method to solve the problem of one dimensional,

vertical flow of water and mass transport of reactive and nonreactive solutes in

unsaturated porous media. Numerical approximations based on different forms of

governing differential equation can result in remarkably different solutions although they

are equivalent in continuos forms.

Van Dijke and Van Zee (1995) used Richard's equation for air injection into

groundwater in a homogeneous axially symmetric porous medium. A numerical method

based on mixed form of Richard's equation was obtained. However, the results they

obtained were compared with those for steady state solutions.

Lam and Barbour (1979) et. al. presented a saturated-unsaturated finite element

model to simulate the movement and distribution of the contaminants in groundwater

flow systems. The finite element solution was obtained by using Galarkin weighted

residual method. The nonlinear equation was solved using iterative techniques. However,

the drawback was that material properties were assumed as constant.

Tim and Mostagini (1989) presented a finite element model based on Galarkin's

weighted residual technique to predict the advective-dispersive transport and
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transformation of pesticides and metabolites in the unsaturated zone. However, material

properties were assumed as constant.

Energy methods are not suited very well for solving time dependent problems.

For instance. most dynamics problems utilize finite difference technique for time

dependence. This may be due to problems in developing variational formulations based

on energy for nonlinear time dependent equations. Hence finite difference methods were

employed for this study.

The functional relationship between suction, water content and permeability

allows one to handle nonlinearity in equation elegantly by utilizing finite difference

technique.

4.5.2 Formulation of Richard's Equation

The final form of formulation of Richard's equation is given in equation 4.6. Detailed

derivation is given in Appendix C.



h = Normalized Matric Suction i.e. a ratio of matric suction at a given water content to

maximum value of matric suction
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permeability grid constant and is also a dimensionless constant.

4.5.3 Choice of Time Step

The choice of time step At is important. If At is too large, the solution may not converge

in case of explicit differential equation formulation. In case of implicit differential

equations, the iteration process may converge for nonlinear problems. On the other hand,

if the time step is too small, extra effort may be required.

For Euler forward explicit time integration scheme, it is recommended that the

value of dimensionless fourier number (KHΔt/Δz 2) should be less than 0.25 (Adina Ref.

Manual, 1995).

Where,

K = Saturated Permeability

H = Maximum Suction



z = vertical grid spacing.

4.5.4 Determination of Soil Parameters

There are two versions of the program to determine the soil parameters. In the first

version of the program, the soil suction and permeability are expressed as functions of the

water content. Each value is calculated from a curve fitting expression. The second

version of the program takes the raw laboratory data for soil suction and unsaturated

permeability and calculates water content using numerical interpolation.

4.5.5 Finite Difference Schemes

Two numerical schemes, forward difference scheme and predictor corrector scheme were

employed for solution of Richard's equation. Details of the implementation of the model

are given in chapter 6.

4.5.5.1 Forward Difference Scheme: In this method, the derivatives at any node are

computed from the values at the node and at the forward node. Utilizing these values,

volumetric water content at the next time step is calculated from those at the previous

time step.

4.5.5.2 Predictor Corrector Method: In this method, at first the volumetric water

contents are computed based on forward difference technique. Then, the derivatives of

the various functions are computed for the average value of the water content between

37
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time step were computed again from the previous step. These values were compared with

the previously determined values. If the differences between these values are greater than

l%. this process of calculation is continued until the required accuracy is obtained.

4.6 Calculation of Contaminant Concentration

The contaminant concentration will be calculated by following equation

Where,

C = Contaminant Concentration at surface

θf = Final water content

e1= Initial water content.

Concentration of contaminant in dissolved groundwater is obtained from field

data.

4.7 Installation of a Gravel Bed

It is well known that a gravel layer under any pavement would tend to distribute the loads

and to minimize the extent of cracking of the course. In our study, the gravel layer would

also the following additional functions,

1. It would serve as a collector for volatiles in case if venting system is used.

2. This gravel layer can also function as a drain for the contaminants flowing towards

the top in the vadoze zone. The impact of this layer on risk and development on

Brownfield site will be discussed in Chapter 6.
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4.8 Determination of Risk/Hazard Ratio

The contaminant concentration calculated by equation no. 4.9 will be provided to

CalTOX model and risk/hazard ratio will be calculated as discussed.

4.8.1 Determination of Risk Due to Chromium Contamination

CalTOX model in the present form can not determine risk due to hexavalent chromium.

So this model was modified. For this purpose, a modified fugacity approach for inorganic

chemicals (Mackay and Diamond, 1989) was utilized. Properties required were obtained

from literature from literature (Lehman A., 1979, Diamond and Lamprecht, 1996). For

the determination of acceptable risk, data regarding contaminants as a function of time

shown in figure 4.2 is utilized. Risk vs. time data generated from the above data is shown

in figure 4.3. Some details of this approach are presented in Appendix D. According to

this method. a hexavalent chromium concentration of 26 ppm is acceptable and

concentration above this limit causes cancer. The corresponding allowable concentration

according to EPA is 10 ppm.
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Fig 4.2 Concentration of Contaminant (Cr + at Inner Surface of Surface Containment vs.

Time

Fig. 4.3 Risk vs. Time at Inner Surface of Surface Containment vs. Time for Cr +6



CHAPTER 5

RESULTS AND DISCUSSIONS FOR FLOW TOWARDS AND THROUGH
PERIPHERAL CONTAINMENTS

5.1 Introduction

In this chapter, three case studies were analyzed by the model proposed. In case study

No. 1, anthracene was the main contaminant from a single source. In case study, No. 2

trichloroehylene (TCE) with multiple sources was the dominant contaminant. In case

study No. 3, benzene, was the targeted contaminant determined from contamination

contours.

5.2 Case Study No. 1

5.2.1 Site Description

The site chosen for this study is in Northern New Jersey and has an area of nine acres. It

slopes towards and is located adjacent to a river as shown in Figure 5.l. A small jetty

connects the site and the river. The site was closed in 1988 down due to contamination. A

preliminary investigation of the site was performed in 1991. This was followed by a

remedial investigation in 1996.

Fig. 5.1 Schematic Diagram of Site
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Later on, a developer showed an interest to build an industrial warehouse on this

site, as it was located in an industrial area. The developer proposed to install a thick

asphalt cap with a gravel bed under the cap as a capillary break. Surface soil samples

were collected with decontaminated stainless steel spoons. Fill materials consisting of

silty clay were observed in of the surface soil samples collected in preliminary

investigation and remedial investigations. A layer of stiff red clay occurred at

approximately 10 feet below the ground level and bedrock was encountered at 20 feet

below ground level. Ground water was observed at 3 to 4 feet below ground surface and

pH of the ground water was found to be between 4 to 4.5. The main contaminant at the

site is toluene.

The contaminant is mostly concentrated in a corner of the building and thus it has

been modeled as a point source as shown in Figure 5.1. A bentonite slurry wall extending

to bedrock is proposed to be installed in this site to prevent flow of contaminant to the

river. In this study, the movement of anthracene through the slurry wall is modeled and

the risk due to the movement of contaminant is determined. Due to the proposed

provision of a capillary break under the cap and due to the fact that capillary water was

not observed, the risk due to contaminant flowing to and through the cap was not

modeled. The transport model for flow to and through the slurry wall is presented below.
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5.2.2 Seepage Velocity

Fig 5.2 is the plot of. V, as a function of time obtained from site data, can be represented

as in Equation below:

Where,

Fig. 5.2 Seepage Velocity vs. Time Considered for this Study

5.2.3 Source Concentration

Concentration versus time, a process a function, is determined from the site concentration

contours and can be represented as:

Where,
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The source concentration vs. time data was obtained from site data utilized for our

study is shown in Figure 5.3.

Fig. 5.3 Concentration vs. time considered for this Study

5.2.4 Chemical Gradient

Based on the Figures 3.2 and 3.3, chemical gradient is represented by the

following equation,
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t = Time at any given instant.

The plot in Figure 5.4 shows the chemical gradient data used for this study. obtained

from figure 3.4 and 3.5.

Fig. 5.4 Chemical Gradient vs. Time Plot Utilized for Present Study

5.2.5 Determination of Concentration at Inner Face of Wall

All the above processes, such as advection and diffusion, are considered as independent

processes. Hence the concentration inside the face of the wall is given by:

Concentration at the inner face of the wall = Eqn.5.1 * Eqn.5.2 Eqn.5.2* Eqn.5.3 (5.4)

Values of concentration at the inner face of the wall were computed and are presented in

figure no. 5.5.



Fig 5.5 Contaminant Concentration at the Inner Surface of Containment vs. Time

5.2.6 Determination of Concentrations at the Outer Face of the Wall

For computing output concentrations from equation 3.13, initial thickness (h o) of wall has

been taken to be 600 mm. The thickness fraction T(t) values were obtained from equation

3.11 and 3.12. For the wall, diffusion coefficient D * equal to 10 -9 m2/sec was considered

(Shackleford, 1990). For the ranges of interest in this study, values of n, computed from

equation 3.14, varied from 0.84 to 0.95. Therefore a constant value of 0.95 was used.

In order to estimate the seepage velocity through the wall, the following,

procedure was adopted. It was assumed that the permeability of the wall was about 5

orders of magnitude less than that of soil. The permeability of the wall increases by 4

orders of magnitude upon cracking. (Tachavises and Benson 1997) Hence the

permeability of the wall after cracking was taken to be one order of magnitude less than

that of the soil. Since the seepage velocity is proportional to the permeability, the seepage

velocity through the wall was taken as 1/10 of that through the soil.

The output concentrations for the four scenarios discussed previously are

presented below in Figures 5.6 and 5.7 respectively. The concentration vs. time data was

input to the CaITOX model and risk, in terms of hazard indices, were determined and
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presented in Figures 5.8 and 5.9 respectively. To assess the overall potential for non-

carcinogenic effects posed by more than one chemical a hazard index approach has been

developed based on EPA's "Guidelines for Health Risk Assessment of Chemical

Mixtures". Maximum permissible value for Hazard Index is l.

Fig. 5.6 Concentration of Contaminant, Carried Away from Face of Wall
(High Permeability Soil)

Fig.5.7 Concentration of Contaminant, Accumulating at Outer Face of Wall
(Low Permeability Soil)



Fig. 5.8 Hazard Index at Outer Face of Wall, Contaminant Carried
Away from Face of Wall (High Permeability Soil)
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Fig. 5.9 Hazard Index at Outer Face of Wall, Contaminant. Accumulating
at Outer Face of Wall (Low Permeability Soil)

Comparing Figures 5.5, 5.6 and 5.7, the concentrations at the inner surface of the

wall and those at the outer surface of the wall due to poor construction follow a normal

trend. It is to be noted that in the latter case, the concentrations are only one half of those

in the former case. This illustrates that, in a poorly constructed wall even with drainage or

a high permeability soil on the outside, significant leachate of contaminant occurs. This

coupled with information in figure 5.8, points out the importance of drainage outside the

wall. Thus, it is advisable to have a leachate collection system outside the wall, especially

if the quality of construction is poor and the soil outside the wall is of low permeability.
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5.2.7 Determination of Risk/Hazard Index

Figures 5.8 and 5.9 show the risk in terms of hazard index for the four scenarios

discussed in this paper. The trend of risk seems to follow the trend of the concentrations

at the outer surface of the wall. For all the scenarios analyzed the risk is below 1 and

hence it is acceptable. If it is not, suitable measures such as pretreatment of contaminant

in the site and/or proper disposal of leachate collected at the outside of the wall may be

needed.

5.3 Case Study No. 2

5.3.1 Site Description

The site under study is located in a highly industrialized area in Northern New Jersey.

The top 15 feet is underlain with fill materials consisting of silty sand. Below the fill is a

layer of red silty clay about 10 feet thick. The bedrock, which is the Newark Formation of

the New Brunswick Shale, underlies the clay. Water table was at a level of 8 feet below

the ground surface.

Figure 5.10 represents a schematic location of the site considered for this study.

Trichloroethylene (TCE) was detected in the fill at 4 borehole locations that were utilized

for sampling. The initial concentrations in the locations l, 2, 3 and 4 were respectively

11,000 ppm, 14,000 ppm, 11,000 ppm and 11,000 ppm respectively. These pollutants

were generally at a depth of about of 8 feet below the ground surface. These locations

have been treated as point sources of contamination. Flow of pollutants has been assumed

to occur through the groundwater in the fill through the silty sand layer. Because of this,
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advection is considered to be the prominent phenomena. Flow due to capillary action is,

not considered since the soil at site consisted of sand.

Fig. 5.10 Schematic Representation of Site

5.3.2 Seepage Velocity

The input data for V, adopted for this study is shown in Figure 5.11.

used is shown in Figure 5.11 below (Barry et. al., 1997).



Fig 5.11 Seepage Velocity vs. Time
(After Barry et. al., 1997)

Based on the above data, the seepage velocity, which is a process function, can be

represented as in Equation 5.4 below.
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5.3.3 Source Concentrations

Source concentration versus time, a process a function , is shown in Figure 5.12 for the

sources l, 2, 3 and 4. The variation of concentratrion with time was determined based on

interpolation of available data.

Fig. 5.12 Concentration vs. Time for TCE source 1. 2, 3 and 4.

5.3.4 Contaminant Concentration at Inner Surface

Time required t to travel a given distance d from a source can be calculated from equation

3.6. Travel times from sources 1, 2, 3 and 4 have been determined to be respectively 65

days, 200 days, 769 days, and 1000 days. in other words, the quantity of contamination

reaching the wall will be due to source 1 from 65 to 200 days and will be due to sources 1

and 2 from 200 days to 769 days. Flow due to sources 1, 2 and 3 reaching the wall will be

from 769 to 2000 days and flow due to sources 1, 2, 3 and 4 reaching the wall will be

after 2000 days. This has been computed and shown in Figure 5.13. Spikes are observed

corresponding to 200, 769 and 1000 days respectively in the Figure 5.13 below due to

flows reaching the wall from sources 2, 3 and 4.



Fig. 5.13 Contaminant Concentration at Inner Face of Wall

5.3.5 Determination of Contaminant Concentration at Outer Surface for Multiple
Point Sources

This is determined from equation No. 3.13. The diffusion data utilized was the same as

that shown in Figure 5.4.

Of the four scenarios considered for case history no.1, the following two are analyzed,

1. Poor Construction with contaminant carried away from the outer face of the wall.

2. Poor Construction with contaminant accumulating at the outer face of the wall.

The above two are considered as worst cases scenarios. Figures 5.14 and 5.15 show the

results for the above two cases. For computing output concentrations, h 0 has been taken to

be 600 mm. The thickness fraction T(t) values were obtained from equation 3.12. A

diffusion coefficient D * equal to 10 -9 m2/sec. was considered. For the ranges of interest in

this study, values of n, computed from equation 3.14, varied from 0.84 to 0.95.

Comparing Figures 5.14 and 5.15, it is observed that the source concentration as

well as the concentration at the inner surface of the wall exhibit an exponentially

decreasing trend with time. In fact, it appears that the inside concentration at any time is

about l/200 times the source concentration. The reduction factor of 1/200 can be

attributed to the very low initial seepage velocity of about 60 mm/year.
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Fig. 5.14 Contaminant with Multiple Point Sources Carried Away from the Face of the
Wall (High Permeability Soil) with Poor Construction.
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Fig 5.15 Contaminant with Multiple Point Sources Accumulating at the Face of the Wall
(Low Permeability Soil) with Poor Construction.

5.3.6 Determination of Risk/Hazard Ratio for Multiple Point Sources

The concentration vs. time data was input to the CaITOX model and cancer risk was

determined and presented in Figure 5.16. Maximum permissible value for cancer risk

is 1 0 -6 . From the results, it is observed that the risk at any time is unacceptable. There is

need for remediation. The same conclusion can be reached for the case shown in figure

5. 1 7.



Fig. 5.16 Cancer Risk vs. Time (Contaminant Carried Away from Outer Face of the
Wall)
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Fig. 5.17 Cancer Risk vs. Time (Contaminant Accumulating at Outer Face of the Wall)

This is a case where treatment is needed. This could be accomplished by treatment of

contaminated soil in the site to reduce the risk. It may be possible to determine the

concentration of contaminant at the outer and inner face corresponding to acceptable risk.

Preliminary determination by CalTOX indicates that the concentration at the outer face is

to be 97 ppm.
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5.4 Case Study No. 3: Galloway Township Site

5.4.1 Site Description

The geological profile at the Galloway Township site mainly consists of sand. The top

layer consists of brown clayey sand 7' thick. This layer is underlain by medium white

sand 20' thick. A clayey sand layer 15' thick occurs below the white sand. This clayey

sand layer is underlain by medium white sand. Water table was found to be fluctuating

between 8' to 20' below the ground level. The surface of the site can be considered to be

flat. The hydraulic gradient at the site is less than 0.0005. The targeted contaminant at the

site is benzene. The contaminant is located at 20' below the ground level. The thickness

of contamination is about 1-2 cm. Contamination at this site is from an underground tank.

All the information presented in this section is from literature (USGS, 1995). A

peripheral containment system is provided at the site. A schematic diagram of the site is

shown in Figure  5.17.

Fig. 5.18 Schematic Diagram of Galloway Township Site
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5.4.2 Seepage Velocity

Seepage velocity was calculated from fluctuations in available groundwater data and is

shown in Figure 5.19. Steady groundwater table was assumed to be at 20' below ground

level. Water level was assumed to fluctuate seasonally above the steady water level.

From this data, the hydraulic head was obtained. Gradient was calculated from the

hydraulic head and the distance from the source to the peripheral containment.

Permeability was estimated for the soil present at the site.

Fig. 5.19 Seepage Velocity vs. Time (Galloway Township)

5.4.3 Source Concentration

Source of contamination is tank at the site. In order to determine the source concentration

vs. time plot, quantity of contaminant leaking vs. time graph was generated. Quantity of

contaminant leaking at any given time out of the tank was calculated from area of the

corresponding concentration contours and corresponding thickness of product. These

values were determined for three different dates (January 90, July 90 and April 91) and

are shown in figure 5.19. Extrapolating this plot, to zero on the x axis, the time at which

the tank started to leak was determined. This is illustrated in the figure 5.20. Utilizing this
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information and data from concentration contours, source concentration vs. time plot

shown in Fig 5.21 was obtained.

Fig. 5.20 Leaked Contaminant vs. Time

Fig. 5.21 Source Concentration vs. Time

5.4.4 Chemical Gradient

Chemical gradient data utilized here was the same as that used for case history no. l.

5.4.5 Contaminant Concentration at Inner Surface

Contaminant concentration at inner surface was calculated by equation 5.4. The results

follow an exponential trend as shown in figure 5.22.



Fig. 5.22 Contaminant Concentration at the Inner Face of the Wall

5.4.6 Contaminant Concentration at Outer Surface

Flow thorough wall was calculated using the equation 3.11, 3.12 and 3.13. The four

scenarios utilized for case history no. 1 were considered for this study. Results obtained

have been shown in figure 5.23, 5,24, 5.25 and 5.26 respectively.
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Fig. 5.23 Contaminant Concentration vs. Time, Contaminant Carried Away from the
Face of the Wall with Poor Construction
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Fig. 5.24 Contaminant Concentration vs. Time, Contaminant Accumulating at the Face of
the Wall with Poor Construction

Fig. 5.25 Contaminant Concentration vs. Time, Contaminant Accumulating at the Outer
Face of the Wall with Good Construction.

Fig. 5.26 Contaminant Concentration vs. Time, Contaminant Carried Away from the
Outer Face of the Wall with Good Construction.
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5.4.7 Calculation of Risk/Hazard Ratio

Data from figures 5.23, 5.24. 5.25 and 5.26 were input to CalTOX to calculate cancer

risk. Results obtained are presented in figures 5.27, 5.28, 5.29 and 5.30 respectively.

Fig. 5.27 Cancer Risk vs. Time for Contaminant Carried Away from the Face of the Wall
with Bad Construction

Fig 5.28 Cancer Risk vs. Time for Contaminant Accumulating at the Face of the Wall
with Bad Construction

Fig. 5.29 Cancer Risk vs. Time for Contaminant Carried Away from the Face of the Wall
with Good Construction



Fig. 5.30 Cancer Risk vs. Time for Contaminant Accumulating at the Face of the Wall
with Good Construction

Maximum risk occurs for the condition of wall with bad construction with contaminant

accumulating at the outer face of wall. The second worst case also happens for wall with

bad construction but with contaminant carried away from the face of the \‘'all. For any of

these cases, the risk exceeds allowable limit. Hence QA/QC for construction is necessary

and essential. For good construction with contaminant accumulating, behind the outer face

of wall, the risk is higher than that acceptable for a period of time over 3000 days. For

this case, remediation is essential. Hence it becomes obvious that with good construction

and collecting the contaminant flowing through the outer face would keep risk lower than

that allowable.
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CHAPTER 6

RESULTS AND DISCUSSIONS FOR FLOW TOWARDS AND THROUGH
SURFACE CONTAINMENTS

6.1. Preamble

In this chapter, implementation of the model proposed in chapter 4 and application of this

model to two case studies have been presented. Contaminant concentrations at the lower

faces of the top containment have been calculated. This data was provided to the CaITOX

model to determine risk. Results obtained have been discussed.

6.2. Case Study Number 1

6.2.1. Introduction

The model developed for this research was applied to a hypothetical site. Three different

soil conditions, (sandy soil, silty soil and clayey soil) were assumed at the site. For each

case, the time required for maximum capillary rise to occur was determined by solving

the Richard's equation with the model developed for this study. Soil suction (matric

suction) characteristics for sand, silt and clay were obtained from Literature (Jury et.al.,

1990, Nakano et.al., 1986)

6.2.2. Input Data for the Program

Input data was provided as an input file. Initial volumetric water content profile, soil

suction and water content-permeability curves, height of maximum capillary rise,

maximum time (maximum time is the time after which the program will be terminated),

Az, and At have been provided. This has been shown in tables 6.1, 6,2 and 6.3 below:
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Table 6.1 Input File for Sand
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Table 6.2 Input Data for Silt
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Initial	 Coefficient	 Soil
Water	 of	 Suction (cm)
Content	 Permeability
Profile	 (cm/day)

0.1 0.001 10000.0
0.2 0.005 900.0
0.'3 0.01 500.0
0.4 0.8 80.0

Table 6.3 Input Data for Clay
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Where,

H, is maximum capillary rise.

D 1 0= Diameter corresponding to 10% finer.

n is Porosity .

For this case history, D 10 values of 0.045 mm, 0.00225 mm and 0.0012 mm were

assumed for typical sand, silt and clay respectively. Porosity values of 0.4, 0.4 and 0.55

were assumed for sand, silt and clay respectively.

6.2.3 Results Obtained and Discussion of Results

It is seen from the results that at the end of the maximum time specified for the program,

the volumetric water contents at the topmost layer became almost equal to those at 100%

saturation. For the purpose of this study, the time for maximum capillary rise to occur

was determined as time at which the value of volumetric water content for the top layer

did not change in sixth decimal for fifteen successive time steps.

The times for maximum capillary rise to occur determined from the results and

those computed form Terzaghi's equation are shown in table 6.4.

Where,

t = time required for meniscus of capillary water to rise to the height z above the

free water level,

n = porosity,

k = coefficient of permeability,
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h = height of capillary rise,

z = distance of capillary meniscus from groundwater level.

The value of k was taken as 10 -2 cm/s for sand. 10 -5 cm/s for silt, 7.5 * 10 -6 cm/s for clay.

The values of capillary rise were calculated by equation 6.1 and are 15 cm, 102 cm and

300 cm for sand silt and clay respectively.

Table 6.4 The time for maximum capillary rise obtained from the results and
corresponding values computed from Terzaghi's Equation, Predictor Corrector Method.
Forward Difference Method.

In order to validate the results by an independent source, the time taken for

capillary rise to occur computed from Terzaghi's equation was compared with that from

Richard's equation. The differences in between these values can be explained as follows:

Terzaghi's equation (Equation 6.2) has some limitations. First of all, it does not consider

the degree of saturation. The permeability value is assumed as constant even though it

changes with degree of saturation. Terzaghi's equation assumes maximum suction in the

capillary zone as He the height of capillary rise. This means that Terzaghi's equation

considers matric suction as a product of density of water and capillary rise, which is not

true. All of these above limitations are overcome by Richard's equation.
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6.2.3.1 Effect of Diffusivity on Results: The problem was solved for diffusivity values

of 0.0625, 0.125, 0.25 and 0.5 respectively. Final volumetric water contents for the top

layer for these different values are presented in the tables 6.5 through 6.7 respectively. It

is seen that these results were not practically affected by diffusivity values in the range

considered.

Table 6.5 Effect of Diffusivity Volumetric Water Content on Sand at t. = 1.03 Hours.

Table 6.6 Effect of Diffusivity Volumetric Water Content on Silt at t = 99 Days

Table 6.7 Effect of Diffusivity Volumetric Water Content on Clay at t = 2187 Days
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For some initial value problems, diffusion coefficient values of 0.25 have been

recommended (Adina Software Manual, 1995). Based on the results of this study, a

decision has been made to use the results obtained with a diffusivity coefficient of 0.125.

6.2.3.2 Effect of Az/h on Results: The formulation proposed in this study for the solution

of Richard's equation is a function of diffusivity and Δz/h. In the previous section, the

effect of diffusivity on the results was presented. Now the effect of Δz/h on the results

will be discussed.

The problem was solved for sand, silt and clay for diffusivity of 0.125 in the

following manner.

Values of water content at the top layer for these conditions are presented in tables 6.8.

6.9 and 6.10 respectively.

Table 6.8 Volumetric Water Content at the top of Capillary Surface for Sands after 1.03
Hours
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Table 6.9 Volumetric Water Content at the top of Capillary Surface for Silts after 99
days

Table 6.10 Volumetric Water Content at the top of Capillary Surface for Clays after 2187
days

Based on these results, a Δz/h value of 0.17 was chosen for this study. Thus the

permeability grid constant value of (1/8) (1/6) (l/48) is utilized. For this condition, the

final volumetric water contents at the top layer for different time intervals have been

shown in tables 6.11 through 6.13 respectively. These results are plotted in Figures 6.1

through 6.3 respectively. This plot illustrates that the capillary rise in silt and clay take a

very long time to occur. During this time, water table can fluctuate and can cause

conditions to change. In these materials, thus capillary action never fully materializes.

For risk determination, it is thus sufficient to assume the water table to be constant and at

the highest level based on seasonal fluctuations. From the water content profiles, the

quantity of contaminant moving in upward direction can be calculated. The results can be

provided to CaITOX model to calculate the risk or hazard ratio.



Table 6.11 Water Content Profile for sand at diffusivity = 0.125 and .62./h = 0.17
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Fig. 6.1 Depth vs. Water Content for Sand

Table 6.12 Water Content Profile for silt at diffusivity = 0.125 and Δz/h = 0.17



Fig. 6.2 Depth vs. Water Content for Silt

Table 6.13 Water Content Profile for clay at diffusivity = 0.125 and Δz/h = 0.17
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Fig. 6.3 Depth vs. Water Content for Clay
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6.3 Case Study No. 2

6.3.1 Site Description

The site is located in Northern New Jersey. The top 5"-10' below the ground level is fill

consisting of slag, cinder, fine sand with traces of gravel. This is underlain by an 8' thick

clayey silt layer with traces of sand. Below this, brown peat was encountered. Water table

fluctuates between 5' to 10' below the ground level. For this study, the highest location of

water table (5' below ground level) is assumed. This has been done to include the effect

of infiltration due to rain on water table. Soil was modeled as fine silty sand in the zone

of capillary rise and suction and permeability characteristics utilized for this study were

obtained from literature. (Jury, Gardner and Gardener, 1990, Houston, 1995, 1997).

Maximum height of capillary rise was computed from equation 6.1 with D 10 equal to

0.0045 and n equal to 0.4. The target contaminants at the site were Cr 3÷ and Cr6+ .

Chromium was detected at approximately 5" below the soil. The concentration of

contaminant (hexavalent chromium) was observed to be varying from 4 ppm to 40 ppm

in groundwater. For the purpose of risk calculations, a maximum concentration of 40

ppm of Cr6+ has been assumed. A subsurface profile for the site is shown in Fig. 6.4.



Fig. 6.4 Subsurface Profile for Case Study No. 2

6.3.2 input File

The input file is provided as below:

Table 6.14 Input file for Case History Number 2
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6.3.3 Results Obtained and Discussion of Results

The problem was solved for diffusivity values of 0.0625, 0.125, 0.25 and 0.5 respectively

with predictor corrector and forward difference techniques. Final volumetric water

content values for the top layer for these different values obtained from predictor

corrector method are presented in the Table 6.15. It is seen that these results were not

practically affected by diffusivity values in the range considered. Hence it was decided to

use a diffusivity value of 0.125.

Table 6.15 Effect of Diffusivity on Volumetric Water Content after 1.03 hours

For a diffusivity value of 0.125, water content profiles were obtained for different
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Table 6.16 Volumetric Water Content at the top of Capillary Surface for Case Study No.
2 after l.03 Hours

Based on these results, it was decided to use the results obtained with a diffusivity value

in Table 6.17. For these conditions, the water content profile obtained is shown in figure

6.5.

Results obtained indicate that the maximum capillary rise occurs in about l.03

hours. At this time, since height of capillary rise is 5'. soil at the ground surface becomes

completely saturated by capillary action. Hexavalent chromium dissolved in water moves

upto the ground surface due to capillary effects. Then water level drops, causing the top

level of capillary zone to fall below ground level. Change in water pressure decreases the

solubility of hexavalent chromium, which then comes out of solution. This causes streaks

of chromium, yellow and green in color, to appear at the ground surface. This

phenomenon has been discussed in the literature (Raghu and Hsieh, 1989).

Observations at site indicate that streaks of chromium appear after 2 to 3 hours

after rain. Our results show the time for maximum capillary rise to be 1.03 hours. This

rise occurs after water table rises by infiltration. Accounting for times for infiltration and

capillary rise obtained from our study, a period of 2-3 hours for the occurrence of streaks

after rain seems reasonable.



Fig. 6.5 Depth vs. Water Content for Case Study No. 2

From the results of water contents presented in Table 6.17 and in Figure 6.6. the

contaminant concentrations as a function of time can be determined and are presented in

Figure 6.7. These results are input to CalTOX model.

Table 6.17 Volumetric Water Content Profile for diffusivity  = 0.125 and Δz/h = 0.17
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Fig. 6.6 Volumetric Water Content vs. Time

6.3.4 Calculation of Risk

For determination of risk due to hexavalent chromium contamination, the model

developed in section 4.8.1 of this study was used. Results are presented in figure 6.8. It is

seen that maximum risk occurs about 1 hour after rain and it is acceptable.
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Fig. 6.7 Concentration vs. Time for Case Study No. 2



Fig 6.8 Risk vs. Time for Case Study Number 2

The preceding sections discussed the contaminant concentration at the inner face

of cap. When the cap cracks, the contaminants reach the outer face of cap. In order to

determine this. occurrence of degradation of cap is discussed in the following section.

6.4 Strategies for Development based on Model

Results obtained from this model yield the risk as a function of time. Most often, risk is

acceptable in the beginning. As the contaminant travels to the top, the risk becomes

unacceptable. This could be mitigated in the following three ways:

I. By treating the contaminant and reducing the contaminant concentration so that the

risk is acceptable, since risk can be calculated by our model as a function of contaminant

concentration,

2. By providing a capillary break at the bottom of the cap and collecting the contaminant.

Periodically, the concentrations of contaminants can be monitored. When the

contaminant concentration increases, it can be pumped out for treatment and proper

disposal. Our model can provide guidance and information required for this option and
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3. By increasing the height of fill and preventing capillary rise to the top. Our model can

determine contaminant concentration and risk for this option also.

Before developing the Brownfield site, the above options can be considered. The

most feasible option would be the one that is practical, economical and for which the risk

is acceptable. The most appropriate strategy can be chosen for development.



CHAPTER 7

CONCLUSION

7.1 Conclusions

Based on this study, following conclusions can be drawn,

I. It is possible to develop a process based model for transport of contaminants

towards and through peripheral containments that can include the processes

such as advection and diffusion. Quality of construction and aging of walls

can be also incorporated in the model. The concentrations of contaminant can

be calculated at the inner and outer face of the containment. Equations were

developed for flow of contaminants through containments. These

concentrations can be provided as input to CalTOX model for determination

of risk as a function of time. CalTOX model utilizes residential exposure

scenario for organic chemicals. However, the same model can be modified for

industrial exposure scenario and inorganic compounds or metals.

2. It is possible to apply Richard's equation that is nonlinear transient partial

differential equation of the parabolic type, to capillary phenomena in soils.

The solution of this equation can be obtained by finite difference technique.

Various properties of soil such as permeability, soil suction can be obtained

from the laboratory tests as well as literature and can be provided to the

model. Water content profiles in vadoze zone can be obtained as function of

time. Based upon this, the concentrations of contaminant can be determined.

These data can be provided to CalTOX model and risk due to surface

containment can be calculated.
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3. The recommended values for diffusivity and permeability grid constant for

solving Richard's equation are respectively 1/8 and 1/48.

7.2 Recommendation for Future Study

Following topics may be considered for future research,

1. Laboratory studies to determine capillary rise as a function of time.

2. More field verification of the results of model.

3. Laboratory and literature studies for evaluation of diffusion coefficient and

verification of correlation between diffusion coefficient, coefficient of consolidation

and molecular weight.



APPENDIX A

DERIVATIONS

A.1 Contaminant Flow through the Wall

This is assumed to occur both by advection and dispersion,



A.2 Relationship between Volumetric Water Content and Gravimetric Water
Content
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APPENDIX B

FINITE DIFFERENCE FORMULATION FOR SOLUTION OF
RICHARD'S EQUATION

Fig B.1: Nodes for Finite Difference Formulation

Fig 13.2: Nodes for finite difference formulation at node I, J
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APPENDIX C

ACTIVITY EQUATIONS

AW Acivity of water
AS = Acivity of sedimet
AA = Acivity of air
AI = Acivity of water inflow
ABS = Bullk sediment Acivity Value
ABW = Bulk water acivity value
EW = Direct emissions
DB = Sediment Burial
DS = Sediment Transformation
DR = Sediment resuspension
DT = Sediment to water diffusion
DD = Sediment deposition
DW Water Transformation
DV = Air to water absorption
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DJ = Water outflow
DY = Water particle outflow
DM = Rain dissolution
DC = Wet particle deposition
DQ = Dry particle deposition
DI = Water inflow
DX = Water particle inflow
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