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ABSTRACT

DEVELOPING TECHNIQUES FOR ENHANCING
COMPREHENSIBILITY OF CONTROLLED MEDICAL

TERMINOLOGIES

by
Huanying Gu

A controlled medical terminology (CMT) is a collection of concepts (or terms)

that are used in the medical domain. Typically, a CMT also contains attributes

of those concepts and/or relationships between those concepts. Electronic CMTs

are extremely useful and important for communication between and integration of

independent information systems in healthcare, because data in this area is highly

fragmented. A single query in this area might involve several databases, e.g., a clinical

database, a pharmacy database, a radiology database, and a lab test database.

Unfortunately, the extensive sizes of CMTs, often containing tens of thousands

of concepts and hundreds of thousands of relationships between pairs of those

concepts, impose steep learning curves for new users of such CMTs. In this disser-

tation, we address the problem of helping a user to orient himself in an existing large

CMT. In order to help a user comprehend a large, complex CMT, we need to provide

abstract views of the CMT. However, at this time, no tools exist for providing a user

with such abstract views. One reason for the lack of tools is the absence of a good

theory on how to partition an overwhelming CMT into manageable pieces.

In this dissertation, we try to overcome the described problem by using a three-

pronged approach. (1) We use the power of Object-Oriented Databases to design a

schema extraction process for large, complex CMTs. The schema resulting from this

process provides an excellent, compact representation of the CMT. (2) We develop

a theory and a methodology for partitioning a large OODB schema, modeled as

a graph, into small meaningful units. The methodology relies on the interaction



between a human and a computer, making optimal use of the human's semantic

knowledge and the computer's speed. Furthermore, the theory and methodology

developed for the schema-level partitioning are also adapted to the object-level of a

CMT. (3) We use purely structural similarities for partitioning CMTs, eliminating

the need for a human expert in the partitioning methodology mentioned above.

Two large medical terminologies are used as our test beds, the Medical Entities

Dictionary (MED) and the Unified Medical Language System (UMLS), which itself

contains a number of terminologies.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Controlled Medical Terminologies (CMTs) are collections of concepts that can be

used to unify and consolidate disparate terminologies in the medical domain [26, 27,

33, 34]. CMTs have been used to encode drugs, diagnoses, procedures, etc. CMTs

are core components of computer-based tools in the healthcare industry. They are

used to reduce healthcare costs, provide better medical services, assess the quality of

healthcare providers, and deliver healthcare services more efficiently. Large CMTs

have been emerging as important resources for use in medical informatics appli-

cations, such as hospital department systems, electronic patient record systems,

expert systems, and medical information systems [37].

While a CMT offers tremendous benefits, these benefits do come at a price. A

CMT can be quite extensive and can contain an overwhelming amount of structural

and semantic complexity. CMTs typically comprise on the order of tens of thousands

to hundreds of thousands of interconnected concepts. The scopes and complexities

of CMTs pose serious comprehension problems for users and even developers. It is

difficult to maintain and use a CMT without a solid understanding of its overall

structure and its content. Designers, maintainers, and users of CMTs will need

tools to help with their work. There are tools for retrieval and manipulation of the

contents of CMTs [113, 122, 123, 135, 138]. However, such tools are not sufficient.

Rather, tools must be developed, that help professionals reach a level comprehension

essential to performing their tasks.

The goal of our research is to make a large, complex CMT comprehensible.

We aim at providing users of a large, complex CMT (both those whose job it is to

maintain the CMT and those who build applications using it) with abstract views of

the CMT to help them comprehend it. Our approach to achieve comprehension of a

1



Figure 1.1 A small piece from a vocabulary

large, complex CMT is based on partitioning it into a collection of manageable and

meaningful parts that can be used to derive an abstract view of the CMT. Thus, to

comprehend a CMT, the user can start by studying the abstract view and then go

on to study the details of parts that are interesting to him.

1.2 Background and Literature Review

A controlled terminology ) [33, 34, 37, 38, 112] or an ontology [62, 63, 64] is a

large network of concepts derived from a subject area of human knowledge. It

typically contains an IS-A hierarchy which organizes the space of concepts (a concept

taxonomy). In Figure 1.1, we show a small piece of a vocabulary. A concept should

be seen as an unambiguous word sense. A concept is denoted by a primary term,

while other terms referring to it are considered synonyms of the primary term.

2

1 "Terminology" and "vocabulary" have similar meanings, referring to a body of related
terms within a subject area. Both of them are used interchangeably in this dissertation.
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In addition, vocabularies may contain (1) Attributes (holding literal data

values) attached to a concept, which define the nature of the concept in more

detail (umls-code, synonyms, etc. in Figure 1.1); (2) Relationships between concepts

(storing references to other concepts, for example, measured-by, etc. in Figure 1.1);

(3) Rules, constraints, or axioms, which add further grounding of a concept and

make the vocabulary directly accessible to a reasoning engine.

Ontologies or controlled vocabularies appear in different areas. For instance,

CYC [61, 85, 86, 87] is a general ontology for common sense knowledge to facilitate

reasoning; WordNet [2, 103] is an online reference system that is one of the most

comprehensive lexical ontologies; TOVE (Toronto Virtual Enterprise) [1, 47, 48, 49]

is an ontology for enterprise modeling that is able to deduce answers to queries about

the information in the model; and [13] describes an ontology from the law domain.

The healthcare informatics community has developed large concept taxonomy-

based vocabularies for handling the ever-increasing glut of medical terms [37, 40,

112]. Examples of CMTs include Medical Subject Headings (MeSH) [105], the

Systematized Nomenclature of Medicine (SNOMED) [42], SNOMED International

[43], Physicians' Current Procedural Terminology (CPT) [6], International Classi-

fication of Diseases: 9th Revision, Clinical Modification (ICD-9-CM) [67], etc.,

that are integrated into the Unified Medical Language System (UMLS) [71, 73,

89, 136], GALEN's (General Architecture for Languages, Enclopedias, and Nomen-

clatures in Medicine) CORE (COncept REference) Model [120] (expressed in GRAIL

(GALEN Representation And Integration Language) [121]), and the Medical Entities

Dictionary (MED) [37, 40].

Most CMTs use structures that organize concepts into concept hierarchies.

However, the hierarchies vary in the type of hierarchical relationship used between

a parent and a child. In certain CMTs, such as MED [37, 40] and GRAIL [121], the

relationship is called IS-A; in other CMTs, such as MeSH [105], the relationship is
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unspecified and differs for different parent-child pairs. A child may have only one

parent, such as in ICD-9-CM [67] and SNOMED [42]. Concepts in such terminologies

form strict hierarchies or trees. On the other hand, a child may have more than one

parent, as in terminologies or terminology models (e.g., MED and GRAIL) that

reflect directed acyclic graphs.

Codes, names, and unique identifiers are common features in CMTs. In most

CMTs, a code identifies a concept uniquely, such as in ICD-9-CM, SNOMED, MED,

etc. Some of the older systems, such as ICD-9-CM and SNOMED, use the code not

only to identify a concept uniquely, but also to indicate where in the hierarchy it

is. This practice has the disadvantage of limiting placement of a concept to only

one place in the hierarchy. If the code has a fixed number of digits, and each digit

indicates a level in the hierarchy, the number of levels in the CMT will be limited.

Newer systems, such as the MED and SNOMED-RT (SNOMED Reference Termi-

nology) [134], do not use the code to indicate hierarchical location.

Several CMTs have long histories. For example, the International Classification

of Diseases (ICD) was first initiated in 1853. It was intended as a list of causes of

death, not as a full nomenclature of diseases or clinical findings. The World Health

Organization assumed sponsorship of ICD in 1948 and continued to enrich its content,

adding terms and codes for morbidity and for indexing hospital patients. In 1968,

ICD was adopted for use in the United States. It was dramatically expanded by

adding a large number of terms relevant to clinical medical practice. This modifi-

cation was made to the 9th revision of ICD, and hence, has been referred to as

ICD-9-CM (Clinical Modification). ICD-9-CM contains more than 10,000 terms for

diagnoses and procedures. Terms have no cross-references. Each child has only one

parent. All terms are in a strict, numerically coded hierarchy with five levels. Other

examples of CMTs with long history are MeSH, dating back to 1960, and SNOMED
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derived from the Systematized Nomenclature of Pathology, which itself was created

in 1965 [41].

Among medical terminological systems, the UMLS (the Unified Medical

Language System of the US National Library of Medicine) [71, 73, 89, 140] is

of special importance, because it integrates a number of existing medical standards.

The purpose of the UMLS is to aid the development of systems that help health

professionals and researchers to retrieve and integrate electronic biomedical infor-

mation from a variety of sources. The UMLS strategy focuses on the development of

machine-readable knowledge sources that can be used by a wide variety of application

programs to overcome the retrieval problems caused by differences in the way the

same medical concept may be expressed in different sources [72]. That makes it easy

for users to link disparate information systems, including computer-based patient

records, bibliographic databases, factual databases, and expert systems.

The UMLS contains four knowledge sources: The Metathesaurus, the Specialist

Lexicon, the Semantic Network, and the Information Sources Map. The UMLS

knowledge sources are designed as multi-purpose tools, to facilitate the development

of more effective biomedical information systems [98].

The UMLS Metathesaurus (META) provides a uniform, integrated distribution

format for more than 40 biomedical vocabularies and classifications and links many

sets of different names for the same concepts. The Metathesaurus is the largest and

most complex among the four knowledge sources and is the foundation of the UMLS.

It is a compilation of names, relationships, and associated information from a variety

of biomedical naming systems representing different views of biomedical practice or

research. The Metathesaurus is a machine-created, human edited and enhanced

synthesis of authoritative biomedical terminologies. As such, it is a resource for

maximizing the usefulness of existing vocabularies [107, 108, 125, 136, 137, 139].
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The UMLS Semantic Network contains information about the types or

categories (e.g., Disease or Syndrome, Virus) to which all Metathesaurus

concepts have been assigned, and the permissible relationships among these types

(e.g., Virus causes Disease or Syndrome) [95, 96, 97]. It provides a consistent

categorization of all concepts found in the Metathesaurus and provides a set of useful

links between these concepts at the level of the semantic types. Each concept in the

Metathesaurus is assigned to one or more semantic types from the UMLS Semantic

Network.

The UMLS knowledge sources have been applied in a wide variety of research

and development environments to many different tasks, including vocabulary devel-

opment, knowledge representation, clinical data capture, linking patient data to

knowledge sources, curriculum analysis, natural language processing, automated

indexing, and information retrieval. [28] describes the preliminary results of the

attempt to reuse the UMLS Semantic Network as an ontology for the knowledge

base of a patient education system. The MED [37], a controlled medical vocabulary

developed and presently in use at Columbia-Presbyterian Medical Center (CPMC),

was based on the UMLS. (Since we use it as a test bed in Chapter 2, we will describe

details of the MED later.) [39] describes ways to apply an expert system approach to

vocabulary integration and management by using the UMLS. [33] demonstrates that

the UMLS structural model is appropriate for representing CPMC vocabularies and

patient data and shows that the UMLS concepts provide excellent coverage of CPMC

concepts in many areas. [75, 76, 77] show how to design conceptual models using

the conceptual graph formalism [132], and how to implement computational models

for information retrieval in large medical information databases. These models are

based on the UMLS knowledge sources. In Chapter 3, we will describe how to model

the Metathesaurus and Semantic Network as an OODB and what advantages there

are to doing so.
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CMTs have served diverse needs for many years. They are becoming larger and

more complex as they evolve, and the demands placed upon them by the pursuit of

the Electronic Medical Record (EMR) are enormous. It is difficult to maintain and

use them. Tools are needed to support comprehension and maintenance of CMTs. At

present, few commercial tools exist. All thoses tools and environments aid developers

in construction of CMTs and provide support for managing and enhancing termi-

nologies. Also, they facilitate distributed-development tasks. For example, [123]

describes the Voser project for designing a CMT server. MEME II (Metathesaurus

Enhancement and Maintenance Environment, Version II), described in [135], is a

tool to support Metathesaurus maintenance and enhancement. It allows remote

enhancements to a terminology to be incorporated locally, and local enhancements to

be shared remotely. [114] describes how to manage the updating of large scale CMTs.

In [93], K-Rep, a knowledge representation system based on a description logic,

is used to model CMTs. This approach increases semantic consistency and infer-

ential capability. Galapagos is a configuration management and conflict resolution

environment built on top of K-Rep [25]. It provides support for handling the

inevitable conflicts generated by concurrent development of enhancements to a termi-

nology. A proof-of-concept of Galapagos is shown using an example in [25]. The use of

semantic-based methods for managing concurrent terminology development to avoid

disadvantages of traditional lock-based approaches common in database systems

is presented in [24]. [29, 65] discuss problems in reconciling the needs of natural

language understanding with more general requirements of concept representations

for medical information. [65] introduces a knowledge-based approach to medical

text understanding. [29] describes using syntactic-semantic tagging to transform a

linguistic representation of surgical procedure expressions into conceptual represen-

tations.
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An object-oriented knowledge representation framework has been used as a

modeling vehicle for thesauri that were employed in (natural) language-to-language

translation [45, 46]. A terminology editor called TEDI was also built in that context

as a tool for extracting relevant information from hypermedia documents [104]. In

[149], an electronic dictionary system (EDS) was developed with object-oriented

database [15, 79, 148] techniques based on ObjectStore [82, 131].

1.3 Dissertation Overview

Controlled medical terminologies are fundamental to computer-based systems that

support healthcare. However, CMTs are always large and complex, and working with

them can be daunting. It is important to provide a means for orienting terminology

designers and users to the terminology's contents. In order to help a user comprehend

a large, complex CMT, we need to show him abstractions of the original CMT.

This dissertation focuses on theories and methodologies for partitioning a CMT into

manageable and meaningful pieces which form an abstract view of the original CMT.

This dissertation is an amalgamation of five papers. They are organized as

follows. The published journal paper [56] is Chapter 2 which presents benefits of an

OODB representation for CMTs. Chapter 3 contains the journal paper [58] (to be

submitted shortly) which describes how to model the UMLS as an OODB and what

the advantages of such a model are. The paper [57] (to be submitted to a journal

shortly), which describes a theoretical framework and a human-computer interactive

methodology for partitioning a large OODB schema into sub-schemas, is presented in

Chaper 4. The published journal paper [59], adapting the theoretical framework and

the methodology for partitioning an OODB schema to CMTs, appears in Chapter 5.

Chapter 6 is the submitted conference paper [55] that describes another approach to

partitioning a CMT into trees, based on structural similarity. Finally, conclusions of

this dissertation will appear in Chapter 7.
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1.3.1 An OODB Representation for Controlled Medical Terminologies

In our research, we are exploring the use of an object-oriented database (OODB)

paradigm for representing CMTs to make large, complex CMTs understandable. We

develop a theoretical framework for transforming a CMT into an OODB. OODBs

have a data layer and a schema layer. In database systems, the schema always

exists before the data. In our approach, the data (CMT) exist first, and a schema is

abstracted from it.

An OODB schema which captures the structure of a controlled vocabulary in a

compact way improves comprehension of the gestalt of a large controlled vocabulary.

We use the MED [37] as our test bed and convert it into an OODB. Using the high-

level view of a CMT afforded by the schema, one can gain insight into the CMT's

overarching organization and better comprehend it. In Chapter 2, we show how

the comprehension that the MED OODB schema provides uncovers some errors and

inconsistencies made in the vocabulary's original modeling. This enabled designers

to easily correct the mistakes and improve the original vocabulary content.

1.3.2 Representing the UMLS as an OODB

Since the UMLS of NLM combines many well established authoritative medical infor-

matics terminologies in one knowledge representation system, it is very valuable

to the healthcare community and industry. To support the comprehension and

navigation of the UMLS, in Chapter 3, we use an OODB representation to represent

the two major components of the UMLS, the Metathesaurus and the Semantic

Network.

The UMLS OODB schema is based on the existing UMLS Semantic Network.

To model the Metathesaurus and the Semantic Network as an OODB, we represent

each semantic type in the Semantic Network as a semantic type class in the OODB

schema. In Chapter 3, we will discuss why this straightforward approach to modeling
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the UMLS is insufficient, and introduce a more sophisticated approach. All concepts

assigned to only one semantic type become instances of the corresponding semantic

type class. Each concept assigned to multiple semantic types becomes an instance

of a new kind of class, called an intersection class. Furthermore, we introduce a rule

to systematically define subclass relationships for all intersection classes.

As a result of this modeling, all classes abstract semantically uniform sets

of concepts. The resulting UMLS OODB schema has a deeper and more refined

structure than the Semantic Network of the UMLS. This is a modeling improvement

which is completely in line with the design goals of the UMLS [98]. The UMLS

OODB schema also supports the improved comprehension and navigation of the

Metathesaurus. Furthermore, the intersection classes expose some problems existing

in the current UMLS, such as concept omissions, classification errors, and ambiguities

of concepts.

1.3.3 Partitioning Based on Semantics

OODB schemas are helpful in making CMTs comprehensible, but they are not

sufficient. Sometimes even an OODB schema can be too large to understand (e.g.,

the UMLS OODB schema contains more than 1,000 classes). In order to maximize

human comprehension, we need to partition a large OODB schema into disjoint

meaningful, manageably sized parts (called contexts) which form a macro structure

of the original OODB schema.

Our framework for partitioning an OODB schema is based on two concepts:

informational thinning and partitioning. We first eliminate certain kinds of

properties from the representation resulting in a directed acyclic graph (DAG)

of all classes and subclass relationships between them. Then we find a forest of trees

to replace this DAG, based on a set of three rules of disciplined modeling. We prove

that, adhering to these three rules, such a forest can always be found. Based on
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our partitioning framework, we develop a methodology that relies on an interaction

between a user and the computer for finding a forest hierarchy. Such a hierarchy

functions as a skeleton of the schema and supports comprehension and partitioning

efforts. We will demonstrate our methodology by applying it to a subschema of a

university database and the MED OODB schema.

Since the number of instances of classes may be large (e.g., an average class

in the MED schema has 500 instances), it is still hard to understand. Thus, further

partitioning efforts are needed to enhance comprehension. In Chapter 5, we adapt

the theoretical paradigm and methodology developed for schemata to an extensive,

complex vocabulary itself. By using the adapted methodology, we can partition a

large, complex vocabulary into a collection of small contexts such that each context

consists of a meaningful group of related concepts and fits onto a single screen. This

enables the user to study and comprehend one of these groups (called contexts) at a

time and step by step build a comprehension of the whole vocabulary.

1.3.4 Partitioning Based on Structure

Since the above human-computer interactive methodology needs to use a human

expert to make decisions, it is very expensive. We want to automate this process.

A structural analysis of a large hierarchy of concepts shows that there are "natural

breakpoints" in the hierarchy. Our structural method for automating the partitioning

of a vocabulary is based on a definition of the similarity of a pair consisting of a

child concept and its parent concept in the vocabulary. These kinds of similarities

can be measured numerically. In Chapter 6, we compare both the structure and

values of every concept with those of all its parents. In some cases, concepts will

be very similar to their parents, in that they have the same structure (attributes,

relationships) and inherit all values. In other cases, concepts may be quite different

from their parents, because they introduce new structure, and they override inherited
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values. A distribution over these similarities for all pairs is then computed. Based

on this distribution, the vocabulary can be partitioned into manageable pieces. The

results of applying this approach are similar to the results of applying the approach

described in Chapter 5.



CHAPTER 2

BENEFITS OF AN OODB REPRESENTATION FOR CONTROLLED
MEDICAL TERMINOLOGIES

2.1 Introduction

Controlled medical terminologies (CMTs) have been recognized as important

tools in a variety of medical informatics applications ranging from patient-record

systems to decision-support systems. CMTs are typically organized in semantic

network structures consisting of tens to hundreds of thousands of concepts. This

overwhelming size and complexity can be a serious barrier to their maintenance and

wide-spread utilization.

In this chapter, we address some of the problems of terminology compre-

hension by presenting a methodology for representing a CMT, modeled using the

semantic network paradigm [83, 133, 144], as an object-oriented database (00DB)

[15, 79, 148]. We refer to such a representation as an Object-Oriented Healthcare

Terminology Repository (OOHTR) [90, 91]. One of the most important components

of the OOHTR is its schema, which provides an abstraction layer through which the

CMT can be viewed and studied. This compact presentation of the CMT helps to

shed light on its overarching structure.

We will use the Medical Entities Dictionary (MED) as our test bed. Studies

have shown that users of the MED at Columbia-Presbyterian Medical Center

(CPMC) have trouble navigating through its constituent semantic network to find

desired concepts [70]. The complexity of the MED also presents challenges to its

maintenance personnel who often find it difficult to add concepts or create links

without a clear understanding of the underlying terminology structural model.

Others approaching the MED have encountered similar difficulties [78]. In this

chapter, we will demonstrate how the OOHTR's schema was used to uncover some

conceptual errors and inconsistencies in the MED—some that had been introduced

13
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initially and others that had crept in over time. These discoveries led directly to

improvements in the MED's design.

The rest of the chapter is organized as follows. In the next section, we give an

overview of the structural characteristics of CMTs, like the MED, that are modeled as

semantic networks. Section 2.3 describes our methodology for modeling a CMT as an

OODB, and presents the results of applying the methodology to the MED to produce

an OOHTR. Finally, in Section 2.4, we discuss how the OOHTR's schema helped

in the improvement of the MED design by exposing errors which were subsequently

corrected. In Section 2.5 we compare our approach with approaches based on the

use of Description Logics. Summary appears in Section 2.6.

2.2 Semantic Network CMTs

A CMT that is amenable to our methodology must have the structure of a semantic

network. Such a CMT is a collection of medical concepts, each of which consists

of properties that are either attributes (holding literal data values) or relationships

(storing references to other concepts). One attribute needed in each concept contains

the concept's associated term (or textual denotation) [46]. In the MED this attribute

is called name. Another attribute, called synonyms in the MED, needs to hold

additional denotations for a concept. As an example of a relationship in the MED,

is-measured-by connects the concept Chemical to the concept Chemistry Test.

Let us note that, throughout the chapter, terms will be written in a bold font.

Property names will appear in italics and will be written strictly in lowercase letters.

The CMT's concepts must be organized into a concept subsumption hierarchy:

a directed acyclic graph (DAG) composed of concepts (nodes) and IS-A links, each

connecting a concept to its superconcept. The IS-A links provide the means for

the inheritance of attributes and relationships, and they support subsumption-

based reasoning. A concept may have more than one parent in the hierarchy. For
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example, in the MED, Chemical IS-A Measurable Substance and Chemical

IS-A Etiologic Agent. We will assume that all CMTs are singly-rooted. The

MED's IS-A hierarchy is rooted overall at the concept Medical Entity.

CMTs tend to be large and complex in scope. At the time of our research, the

MED comprised about 43,000 concepts,' which were connected by over 71,000 (non-

hierarchical) relationships. The IS-A links totaled over 61,000. Figure 2.1 shows

a small portion of the MED (68 concepts or about 0.16% of the entire MED). In

Figure 2.2 we present the notational conventions used for semantic networks.

Figure 2.1 contains the six concepts CPMC Drug: Benadryl 25MG

Cap, Pancreatin, Calcification of Pericardium, Amylase, Allen Serum

Specimen, and Allen Serum Amylase Measurement, along with most of their

ancestors in the IS-A hierarchy and some of the relationships between the respective

concepts. Included are concepts for laboratory tests, medications, and diagnoses.

For brevity, some details have been omitted, including: additional children of the

ancestor concepts, all attributes, and some relationships. Furthermore, the names

of relationships have been written as numerical codes, whose meanings can be found

in Table 2.1 in Section 2.3.1 .

As discussed in [37], the content of a CMT should satisfy the following seven

basic requirements:

1. Domain completeness: There should be no numerical limitation on the size
of any of the CMT's dimensions. (E.g., no limit on the depth of the IS-A
hierarchy.)

2. Synonymy: Concepts can be recognized by multiple names.

3. Nonvagueness: Each concept must have a well-formed meaning.

4. Nonredundancy: No two concepts may have the same meaning.

5. Nonambiguity: Each concept may have no more than one meaning.

6. Multiple classification: Concepts may have more than one superconcept in the
IS-A hierarchy.

'This was the 1996 version; the MED has since grown to over 59,000 concepts.



Figure 2.1 Sample of the MED content (see Figure 2.2 for legend of symbols)



Figure 2.2 Legend of symbols in figures of semantic networks

7. Consistency of views: A concept should appear the same (and have the
same properties and children) no matter how the concept is arrived at in the
hierarchy.

We will also assume that a CMT satisfies the following rule regarding the

introduction of properties.

Rule 1: A given property x (whether it be an attribute or a relationship) can be

introduced at only one concept in the CMT. ❑

This requirement is not limiting, because if several concepts need to introduce

the property x, then an "artificial" parent of them can be added to accommodate the

unique introduction [35]. The MED, to which we will be applying our methodology,

satisfies Rule 1.

2.3 The OOHTR Schema

2.3.1 Initial OOHTR Schema

The strategy that we chose for modeling a CMT as an OOHTR utilizes special

concepts as the basis for the definitions of object classes in the schema. It, in fact,

produces an abstraction of the underlying pattern in which properties are introduced

into the CMT.
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In general, the purpose of an object class in an OODB schema is to abstractly

define a collection of properties for a group of objects (or instances) that exhibit

those exact properties and have a common semantics. In a CMT, there are some

concepts which function in an analogous role: Each introduces (defines) attributes

and relationships that are exhibited by all its children and descendants in the IS-

A hierarchy (due to the inheritance mechanism). We call such concepts property-

introducing concepts. As will be discussed further below, very few concepts in a

CMT are property-introducing. Almost all of them inherit all their properties.

A property-introducing concept also plays the role of the most general

conceptual entity among its descendants. In this way, it captures the overarching

semantics of the descendants.

Due to these facts, it is sensible to construct object classes with respect to

all the property-introducing concepts appearing in the CMT. Toward that end, we

define the notion of area to be a set containing one property-introducing concept

plus all that concept's descendants which have the same properties. Note that some

descendants can have more properties than the property-introducing concept; in such

cases, the descendants do not belong to the area. The property-introducing concept

of an area is called the area's root since it is the area's highest concept in the IS-A

hierarchy (i.e., the property-introducing concept's parents are not in the same area

because they lack the properties it introduces). An area will also be named by its

property-introducing concept. An area with property-introducing concept A will be

called "Area A" or "A Area."

To illustrate the notations of property-introducing concept and area, we show

an excerpt from the MED in Figure 2.3. The figure contains six property-introducing

concepts: Medical Entity, Drug Allergy Class, Event Component, Radiology

Term, Pharmacy Order Observation, and Pharmacy Allergy Observation.

It also contains the concept Pharmacy Order Component which is not property-



Figure 2.3 Six areas of the MED (see Figure 2.2 for legend of symbols)

introducing. Other concepts are left unlabeled. The concept Medical Entity,

the root of the entire MED, introduces the attributes name, med-code, and

umls-code(among others). The conceptDrug Allergy Classintroduces the attribute

allergy-class-code and the relationship allergy-observed-in directed to the concept

Pharmacy Allergy Observation. The concepts Event Component, Radiology

Term, and Pharmacy Order Observation each introduce a single attribute.

Finally, Pharmacy Allergy Observation introduces the relationship observed-

allergy, the converse of allergy-observed-in.

There are six areas in Figure 2.3, each of which is enclosed in a large, dashed

rectangle. The area rooted at concept Medical Entity extends down to, but

excludes, concepts Drug Allergy Class, Event Component, and Radiology

Term. Those three concepts are roots of areas of their own. Examples of some of the
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Drug Allergy Class Area's concepts, not shown in the figure, are Glucocorticoids,

Codeine, Morphine, Barbiturates, Tetracyclines, and Phenothiazines. The

Event Component Area extends down to include the concept Pharmacy Order

Component, which is the parent of Pharmacy Order Observation, the root

of the Pharmacy Order Observation Area. The last area is rooted at Pharmacy

Allergy Observation.

Once the property-introducing concepts and their respective areas have been

identified, object classes can be created to represent them. Such a class will serve the

dual purposes of defining the properties for an area and holding the area's concepts—

all of which have identical structure and semantic similarity—as its instances. For

this reason, we refer to a class in the OOHTR schema as an area class.

To be more precise: For each area in the CMT, we define an object class whose

instances will be exactly the area's concepts, including its root. The class's name is

formed by concatenating the name of the area's root and "_Area." The properties

defined by an area class are identical to those introduced by the area's root within the

CMT. So, for example, the Medical Entity Area would have the corresponding class

Medical_Entity_Area, which would define the properties name, med-code, umls-code,

etc.

Let us note that the root of an area exhibits all the properties that it itself

introduces plus the properties that it inherits from its parent(s). The area's other

concepts, of course, also have these same properties. To reflect this situation, we

utilize the standard subclass inheritance of OODB schemata. A given area class

A_Area, corresponding to Area A, is made a subclass of each area class that contains

a parent of the root of Area A. As we discussed above, a concept may have more

than one parent, and the subclass hierarchy induced by this process is therefore

not necessarily a tree. That is, an area class can have multiple area classes as
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superclasses. In addition to the properties that it defines intrinsically, an area class

has all the properties of its superclasses through inheritance.

Figure 2.4 Area classes corresponding to the MED areas in Figure 2.3 (see Figure 2.5
for legend of symbols)

In Figure 2.4, we show the schema corresponding to the six areas in Figure 2.3.

Note that the schema is represented using our OOdini-2 graphical notation [66].

In Figure 2.5 we show the notation used for OODB schemas. With OOdini-2,

a class is represented as a rectangle, and a relationship, as a labeled arrow. A

subclass relationship is drawn as a bold arrow directed upward from the subclass

to the superclass. An attribute is listed inside its class rectangle beneath the

Figure 2.5 Legend of symbols in figures of OODB schemas
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class's name. We can see that there are six object classes, one for each area

in Figure 2.3. The classes have the properties introduced by the corresponding

roots (again, see Figure 2.3). For example, the class Medical_Entity_Area has the

attributes name, med- code, umls - code, etc. As another example, the class Pharmacy.

Allergy_Observation_Area has the relationship observed- allergy directed to the class

Drug_Allergy_Class_Area, and it is a subclass of Pharmacy_Order_Observation_

Area from which it inherits the attributes name, med - code, umls - code (and so on),

event- component- display-name, and pharmacy - observation - code.

The overall OOHTR schema produced by this mapping turns out to be very

compact in its number of classes, particularly when one compares that number to the

MED's tens of thousands of concepts. The compactness results from the fact that

the total number of distinct properties in the MED is only 150. This implies that

there are at most 150 property-introducing concepts, out of the 43,000 in the entire

terminology. So, it can be seen that most concepts in the MED are not property-

introducing. Because some concepts introduce multiple properties, the number of

property-introducing concepts is actually just 53. The above process thus identifies

53 areas for the MED's 43,000 concepts, and the OOHTR schema consists of only

53 area classes.

Figure 2.6 presents the entire OOHTR schema obtained via the above described

mapping. To save space, only numeric codes of attributes and relationships are

shown. For example, attribute "9" is lab-procedure - code; relationship "18" is result-

of-tests. Table 2.1 gives the codes and corresponding names for all attributes and

relationships. The area class Medical_Entity_Area that corresponds to the MED's

overall root Medical Entity becomes the top class in the OOHTR schema's class

hierarchy. As we mentioned, an area class can have more than one superclass. This

is demonstrated by the class Chemical_Area which has the superclasses Measurable.

Entity_Area and Etiologic_Agent_Area (Figure 2.6).



Figure 2.6 Schema derived from the areas of the MED (see Figure 2.5 for legend of symbols)
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In [90], we presented a program called the 0 OHTR Generator which automat-

ically generates the OODB schema for a given CMT. That program was used to

build the MED's OOHTR schema shown in Figure 2.6. It has also been applied to

the InterMED [90].

The MED's IS-A hierarchy served as the basis for the mapping into the

OOHTR schema. In fact, the mapping constituted the identification of the

property-introducing concepts and a "collapsing" of the inheritance paths between

them. Thus, the OOHTR schema can be seen as an abstraction of the property

definitions and accompanying inheritance that occur within the MED. We call

this kind of schema a network abstraction schema. In order to preserve the actual

IS-A connections between concepts from within the source CMT, a pair of converse

relationships has-superconcept and has-sub concept is added to the area class Medical,

Entity_Area (see Figure 2.6). Due to this, the two properties are exhibited by all

concepts in the OOHTR. The relationships are used to connect a given concept

to its parents and children, respectively. If the concept A IS-A B in the CMT,

then the object representing A in the OOHTR refers to the object denoting B via

has-superconcept. Conversely, B relates to A through has-sub concept.

2.3.2 Extended OOHTR Schema

One complication in the above mapping arises because of the multiple inheritance

which occurs in the CMT's IS-A hierarchy. (Recall that it is a DAG, not a tree.)

The problem is illustrated for the MED in Figure 2.7, which expands Figure 2.3 to

include the concept Radiology Event Component (and some of its descendants).

It will be noted that Radiology Event Component is not a property-introducing

concept. It is, however, a child of two property-introducing concepts, Event

Component and Radiology Term, and inherits its properties from both of them.

The latter point gives rise to the difficulty. Since Radiology Event Component



Table 2.1 Names of properties in Figure 2.6
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inherits from Event Component, it has a different set of properties than its parent

Radiology Term and is therefore not in the Radiology Term Area. Likewise, it is

not in the Event Component Area, either. In fact, Radiology Event Component

does not reside in any area! As such, it currently has no representation within the

OOHTR. The same is true of its descendants.

Figure 2.7 Expanded version of Figure 2.3 (see Figure 2.2 for legend of symbols)

Our solution is to introduce a new kind of area to include concepts like

Radiology Event Component. In general, such a concept is characterized by the

fact that its property set differs from the property sets of all property-introducing

concepts in the CMT. While such a concept does not introduce any new properties of

its own, it does lie at the juncture of "independent" inheritance paths and uniquely

collects groups of properties. For this reason, we call such a concept an intersection

concept. Note that we preclude a concept from being an intersection concept if it

has an intersection concept ancestor with the same set of properties. For example,
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in Figure 2.7, Radiology Event Component's two children, whose names are

Radiology Report Event Component and Radiology Service Modifier, are

not intersection concepts.

We now define a new kind of area (called an intersection area) to be a set

containing one or more intersection concepts having the same set of properties and

all their descendants with the same properties. The intersection concepts residing

in an intersection area will be called the roots of the area because they are the

area's highest concepts in the IS-A hierarchy (i.e., their parents do not belong to the

area). An example of an intersection area is the one containing the root Radiology

Event Component, its two children Radiology Report Event Component and

Radiology Service Modifier, and an additional 79 descendants. This intersection

area contains just one root; however, an intersection area can be multi-rooted. As an

example, the three concepts Antihistamine Drugs, Anti-Infective Agents, and

Autonomic Drugs are children of the two property-introducing concepts AHFS

Service Class and Formulary Drug Item. Hence, all three are intersection

concepts, have the same set of properties, and root the same intersection area. In

fact, there are 28 other intersection concepts that also have this property set, and

therefore this particular intersection area has a total of 31 roots.

As with the areas rooted at property-introducing concepts, a separate class is

created in the OOHTR schema for each intersection area. This new kind of class is

referred to as an intersection (area) class. The concepts in the intersection area

become instances of this intersection class, which, interestingly, does not define

any new properties [just like its root(s)]. Instead, it gets its properties entirely

via 00 subclass inheritance. The subclass relationships for an intersection class

are determined by the parentage of its root(s) in an analogous manner to that for

ordinary area classes. Another interesting point is that an intersection class must

have at least two superclasses in the schema's subclass hierarchy. Hence, the presence
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Figure 2.8 Schema for the areas in Figure 2.7 (see Figure 2.5 for legend of symbols)

of intersection concepts in the CMT implies multiple inheritance within the OOHTR

schema.

If an intersection area has a unique root, then its corresponding intersection

area class will naturally be denoted using the root's name (concatenated with

"_Area" ). Otherwise, one of the roots—say, the one appearing first in some search of

the CMT—is arbitrarily selected as the name of the intersection class. In Figure 2.8,

we show the classes for the areas appearing in Figure 2.7. The only addition to the

schema from Figure 2.4 is the class Radiology_Event_Component_Area, representing

the intersection area rooted at the concept Radiology Event Component. Note

that it is a subclass of both Event_Component_Area and Radiology_Term_Area.

The entire OOHTR schema for the MED comprises a total of 90 area classes,

37 of which are intersection classes, and 131 subclass relationships. Of the 37 inter-

section classes, 22 contain a single root and 15 are multi-rooted. Even though the

schema is large, one should bear in mind that it abstracts a CMT of 43,000 concepts—

a network 632 times the size of the excerpt of 68 concepts shown in Figure 2.1. Each

class contains about 477 concepts on average.



Figure 2.9 Excerpt from the OOHTR schema (see Figure 2.5 for legend of symbols)
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In Figure 2.9, we show a large portion of the OOHTR schema's subclass

hierarchy, with attributes and relationships omitted by applying "information

thinning" [117, 59]. The figure contains about half of the property-introducing

classes and the intersection classes. The area classes above the dashed line represent

areas rooted at property-introducing concepts. Those below the line are intersection

classes.

Let us point out that intersection concepts may lie at the juncture of three or

more inheritance paths. The intersection class for such an area will be a subclass

of at least three other classes. An example is Microorganism.Area which is a

subclass of Measurable_Substance_Area, Etiologic_Agent_Area, and Culture_Result_-

Area (Figure 2.9). It is also possible for an intersection class to be a subclass of

another intersection class. For example, in Figure 2.9, Anemia_Area is a subclass of

the intersection class Abnormal_Blood_Hematology_Area.

2.4 CMT Improvement Based on the OOHTR Schema View

The development of specialized views, such as network abstraction schemas, is of

more than theoretical interest. The maintenance of a CMT like the MED at CPMC is

a complex and difficult task. The challenges faced by maintenance personnel include

updating the CMT (e.g., [122] ), adding terms and relationships [138], and in general

developing a change model for CMTs [113]. Furthermore, proper maintenance should

include improving a CMT's organization, and uncovering and correcting inconsis-

tencies and errors in its content. All of these require an understanding of the CMT's

underlying structure. However, providing users of terminologies with comprehensible,

comprehensive views remains difficult. This situation is true for terminology admin-

istrators as well as for those who would build applications or knowledge bases with

respect to the CMTs.



Figure 2.10 Partial OOHTR schema showing the area classes which account for Figure 2.1 (see Figure 2.5 for legend of 	 c,,,
I-,symbols)
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In our approach, an existing CMT is partitioned by using the OODB represen-

tation. This partitioning supplies an abstract view of the CMT, which helps the user

understand the CMT. As we mentioned in the previous section, the OOHTR schema

is very compact compared to the overall size of the MED: 90 area classes for 43,000

concepts. In Figure 2.10, we present another portion of the schema which comprises

24 area classes, corresponding to the 68 concepts of the MED shown in Figure 2.1.

These 24 classes amount to 26% of the whole OOHTR schema and represent not

only the 68 concepts in Figure 2.1 but also an additional 27,900 concepts or 65%

of the entire MED. Compared to the complicated network in Figure 2.1 and, even

more, compared to a semantic network of about 28,000 concepts, Figure 2.10 is much

simpler and easier to understand; even so, it still completely and correctly captures

the structure of a significant portion of the MED.

In the following subsections, we will discuss how the OOHTR schema facilitated

various improvements of the MED [54] design. Specifically, we will present examples

of support for updating the MED, improving its general design, and correcting errors.

2.4.1 Support for Updating the CMT

The MED comprises over 43,000 concepts with 88 different kinds of attributes, 62

different kinds of relationships (divided into 31 pairs of reciprocal relationships),

61,000 IS-A links, and 71,000 non-hierarchical links. Therefore, understanding the

"big picture" of the MED is difficult. When new concepts are to be added, or when

someone needs to find appropriate concepts in the MED , any lack of understanding

becomes immediately apparent. The situation is often worsened because those people

who maintain and use the MED may not be the same people who modeled a particular

aspect originally.

Some ability to provide users with a manageable, high-level view of a CMT, like

the MED, is needed to support user orientation. The OOHTR's network abstraction
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schema affords such a view. By reducing the MED hierarchy about 500-fold, one can

quickly see what the important areas (as represented by area classes in the schema)

are and what attributes and relationships they exhibit. Someone looking to add a

new concept to the MED can easily traverse these areas. During that traversal, the

user can review the areas' properties to determine the appropriate area for the new

concept. For example, a user faced with the task of adding a new laboratory panel

to the MED can traverse the 90 class schema to find which area should contain the

concept to be added; then the person can switch to traversing the concepts inside

the area. Such traversal is easier and faster than a traversal of the whole terminology

hierarchy of 43,000 concepts. This is analogous to commuting on the highways until

reaching the vicinity of the destination and then taking an exit and continuing the

ride on the local roads to the destination.

In our example (see Figure 2.6 in Section 2.2), we start in the Medical_Entity_Area

and move to the Diagnostic_Procedure_Area and then to the Lab_Diagnostic-

_Procedure_Area. This area has two children Single_Result_Lab_Test_Area and

CPMC_Lab_Diagnostic_Procedure_Area. Scanning the attributes of these two

candidate areas reveals that the latter has an attribute lab -procedure- code (encoded

in Figure 2.6 as "9"). Since the concept to be entered is known by the user

to have such an attribute, this area is clearly the appropriate one to choose.

It has a child Antibiotic_Sensitivity_Panel_Area which is obviously not relevant

to the new concept. We therefore switch to traversing the concepts within the

CPMC_Lab_Diagnostic_Procedure_Area to find the proper position in the hierarchy

where this new concept should be added. In this example, we need only traverse five

areas to find the appropriate position for the new concept. Compared to a traversal

of the CMT's hierarchy of concepts, the schema traversal is more efficient for such

an update. Thus, the OOHTR schema can be seen to provide a valuable gestalt of

the MED complexity, an understanding of which is needed to support updates.
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2.4.2 Improving the CMT Organizational Structure

The MED content has grown steadily, averaging 500 additional concepts per month

over the past ten years. Much of this growth has been the result of work by a

variety of individuals, at times using automated mechanisms for adding concepts.

When several people share the task of maintaining a content domain, and each has a

slightly different organizational philosophy (e.g., "lumpers" versus "splitters"), it is

easy for concepts to be characterized differently depending on who added them. The

network abstraction schema provides a way for different people to share the same

high-level view of the MED and to identify differences in their personal views. It

also makes the MED's overall organization simpler to follow for all parties.

For example, the laboratory system at CPMC has concepts for individual

laboratory tests (like Serum Glucose Test) and other concepts for orderable

collections of tests (such as CHEM-7, a panel of 7 individual tests). These concepts

are all represented in the MED with attributes appropriate to each (e.g., tests

have units of measurement and normal ranges, while panels have codes used for

billing). The concepts are linked to each other via relationships, e.g., Tests are

part-of Panels, and Tests measure Measurable Substances. Users of the MED

are often confused about the differences between tests and panels (the latter are

also called "procedures" by some and "batteries" by others) [70, 78]. This confusion

is exacerbated by the fact that individual tests can be ordered separately and can

therefore take on the characteristics of both tests and panels.

In the schema, the tests belong to the class Single-Result_Lab_Test_Area and

the panels are contained in the class CPMC_Lab_Diagnostic_Procedure_Area. The

schema grouped the tests that have the properties of panels into the intersection class

which is a subclass of Single-Result_Lab_Test_Area and CPMC_Lab_Diagnostic_Proce-

dure_Area (see Figure 2.10). In the case where an intersection class has a unique root,

that concept's name is chosen to name the area class. Otherwise, one of the roots is
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arbitrarily chosen as the name. In our example, the intersection area is indeed multi-

rooted and is named the Allen_Serum_Amylase_Measurement_Area. When the inter-

section area classes were displayed, it was realized that an implicit, natural grouping

of tests with panel properties exists. The MED could be simplified by making this

group explicit. However, in the MED, there was no single concept which is the parent

of these particular tests. This situation was achieved by creating a new concept in

the MED called Orderable Tests as a child of both Single-Result Lab Test

and CPMC Lab Diagnostic Procedure. All the tests in Allen_Serum_Amylase_

Measurement_Area (such as Allen Serum Amylase Measurement Test) were

then linked to Orderable Tests as its children. When the schema was redrawn (see

Figure 2.11), the Allen_Serum_Amylase_Measurement_Area took on the new name

Orderable_Tests_Area, since that concept was now the single root of the area. Having

such an intersection class in the schema as a subclass of its parent classes Single-

Result_Lab_Test_Area and CPMC_Lab_Diagnostic_Procedure_Area helps to clear up

for the user the confusion about tests, panels, and orderable tests. Interestingly,

soon after the Orderable Tests concept was added to the MED, New York State

required that CPMC make explicit to its physicians and computer systems how the

previously "bundled" tests could be ordered and reported individually. Thanks to

the Orderable_Tests_Area class, the transition was relatively painless and completely

transparent to CPMC's information systems.

From the above, we derived a general rule for dealing with multi-rooted inter-

section areas in the MED and the OOHTR schema. Instead of picking an arbitrary

concept to name the area class, we create in the MED a new general parent concept

to summarize all the concepts in the area. This new area root will then be used in

the OOHTR to name the area class.



Figure 2.11 Improved version of schema from Figure 2.10 (see Figure 2.5 for legend of symbols)



37

2.4.3 Finding Inconsistencies and Errors in the CMT

Given the ambiguities that often occur in medical terminology, it is likely that the

MED contains a concept with a name that has multiple meanings—in contradiction

to the non-ambiguity condition required for the MED (see Section 2.2). Since the

inception of the MED model [40], it was thought that such ambiguity could be

detected through automated means. The intersection areas have provided the basis

for such a method.

As an example, it can be seen from the schema in Figure 2.10 that Calcifica-

tion_of_the_Pericardium_Area contains all concepts which are both heart diseases and

anatomical structures (40 in all). Until the MED was viewed from this perspective,

no one realized that the same concepts were listed as both diseases and anatomical

structures! This is an example of ambiguity as the concept Calcification of the

Pericardium (and its descendants) has one meaning as a body part and another

meaning as a heart disease. This is not consistent with the original design of the

MED in which a disease can be linked to body parts as the site of the disease,

but can not itself be a body part. Thus, one or the other of the parent-child

links had to be removed from the MED. Upon closer inspection of the Calcifica-

tion_of_the_Pericardiurn_Area, we found that there are many such "Calcification of

the X" concepts in the MED, all of which are included as descendants of Calcifi-

cation of Body Part. This concept is a child of Body Part, and both are in

the Anatomical_Structure_Area. Calcification of Body Part has 40 children (and

three grandchildren) that are also classified as diseases, while other children are not.

The discovery of this intersection class led directly to a study of these 40 concepts

and their reclassification as either body parts or diseases, as deemed appropriate by

external domain experts. So, for example, the link between Calcification of the

Pericardium and Heart Disease was removed. Doing this caused Calcification

of the Pericardium to be in a single area, namely, the Anatomical_Structure_Area.
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Therefore, it no longer defined an intersection area of its own. When the schema was

re-created (Figure 2.11), there was no longer any intersection area class that was a

subclass of both Heart_Disease_Area and Anatomical_Structure_Area.

Let us look at another ambiguity example. In the schema (Figure 2.12), Black_

Piedra_Area is an intersection area class which has two superclasses, Smear_Result_Area

and Wuchereria_Bancrofti_Area. Wuchereria_Bancrofti_Area itself is an intersection

area class which contains diseases caused by organisms. That means all concepts in

Black_Piedra_Area are classified as smear results and diseases caused by organisms.

After viewing the schema, the designer decided to disambiguate this situation by

letting the concept Black Piedra refer only to the organism and not the disease

caused by the organism (that disease now being called Black Piedra Infection).

So, as an organism, Black Piedra is under the concept Microorganism. There is

a class of things which are seen under the microscope on microbiology lab tests; they

are called "smear results" because the specimens are "smeared" on the slides, stained,

and examined. Not all smear results are organisms, and not all microorganisms (e.g.,

viruses) are seen on smears. Thus, the concept Organisms Seen on Smear was

created. The concept Black Piedra became a child of Organisms Seen on Smear

in the MED and sits in the intersection area class Organisms_S een_on_Smear_Area,

which is the subclass of Microorganism_Area and Smear_Result_Area in the schema

(Figure 2.13).

The process of adding concepts to the MED was done by various experts in

different fields, sometimes using automatic mechanisms to integrate concepts from a

variety of sources. As a result, it is not surprising that inconsistencies and outright

errors have crept into the MED. An example of an error discovered through the

use of the schema was the Pancreatin_Area intersection area class (Figure 2.10). In

the MED, it had been decided that medications (such as those classified by their

DEA Controlled Substance category) would have chemicals as their pharmaceutic
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Figure 2.12 Partial OOHTR schema detecting the ambiguity of "Black Piedra" (see
Figure 2.5 for legend of symbols)

Figure 2.13 Improved version of schema from Figure 2.12 (see Figure 2.5 for legend
of symbols)
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components, but medications themselves would not be chemicals. The OOHTR

schema (Figure 2.10) clearly shows that Pancreatin_Area violates this rule. On

closer inspection, it was found that the concept Pancreatin Preparations was

properly classified as a medication and that it was linked appropriately to the

concept Pancreatin. However, the concept Pancreatin was classified not only

as a chemical (which allowed it to have the pharmaceutic-component-of relationship

to Pancreatin Preparations) but also as a medication (as shown in Figure 2.1).

Once this error was seen, it was corrected quite easily by removing the IS-A link

between Pancreatin and DEA Class 0. Since Pancreatin was the only concept

in the MED to have attributes of both chemicals and medications, Pancreatin_Area

had only one concept prior to the correction. After the correction, the intersection

area class no longer existed since the concept Pancreatin was now included in

Chemical_Area (Figure 2.11).

2.5 OODBs Versus Description Logics

A number of approaches to medical terminologies are based on the use of Description

Logics. Description Logics are close descendants of KL-ONE [143, 18, 21] which is

itself a descendant of Quillian's original semantic network [119]. Quite a number

of KL-ONE descendants exist, which makes this probably the largest and most

successful family of implemented knowledge representation systems. Two excellent

overviews are [133, 84], while some of the family members are described in [17, 18,

19, 52, 106] [141, 145] [7, 8, 80, 115] [14]. Several other semantic networks that do not

belong to the family of Description Logics exist, such as those described in [126, 142].

Our own choice of using Object-Oriented Databases instead of Description

Logics is based on two kinds of reasons, which may be summarized under the

labels of abstraction ability and commercial viability. Concerning abstraction ability,

databases naturally come with two layers of representation, the schema layer and the
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data layer. As was explained in Section 2.3.1, the schema is by orders of magnitude

smaller than the data. This makes the schema a valuable orientation aid to users,

maintainers, and newly hired or trained developers of a medical terminology.

In traditional database applications, the OODB schema is developed first, and

then the database is populated by instances of the schema classes. It is the strength

of our approach that we are deriving a schema after the fact from terminology data

that already exists. Thus, we are supplying a road map for information that was

not designed with a schema in mind, and which is therefore naturally harder to

understand. We note that the abstraction supplied by a schema is different in nature

from the abstraction supplied by the top level classes of a Description Logic network,

because the schema registers "significant structural changes" in the terminology, no

matter at what level they occur. This is not the case for Description Logic networks,

because looking at the top levels gives just that, the top levels. Furthermore, inter-

sections of top level concepts at lower levels are not reflected at the top levels, while

they are reflected in our schema approach.

The commercial viability of OODBs seems to be better than that of Description

Logics. There are a number of vendors that deliver "full service Object-Oriented

Database systems." Those systems incorporate basic database features such as

persistence and multiuser access. Some of them go far beyond these features,

including, e.g., versioning and schema evolution. Documentation and help lines are

standard for most of these systems. We mention as the most widely advertised

products ORION/ITASCA, GemStone, ONTOS, ObjectStore, VERSANT, Jasmine

and 0 2 . While Description Logics have recently become more available as commercial

products, the balance still tilts towards OODB systems. We mention tools for

the maintenance of Description Logic-based medical terminologies from Lexical

Technologies2 and Ontyx. 3 Some Description Logics, e.g., K-Rep [93], have been

2 http://www.lexical.com
3 http://www.ontyx.com
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extended to include persistence and other OODB features. There are also freely

available prototypes, both of OODBs (e.g., ODE [4]) and Description Logics (e.g.

LOOM4 [53]).

Naturally, the Description Logic approaches are superior to OODBs in what

we might label reasoning-based support. They make better use of inheritance than

OODBs, as their notion of inheritance is based on structure and values, while OODB

inheritance is purely structural. The classification algorithm of Description Logics is

an outstanding achievement which has not been duplicated in OODBs. However, a

reasoning layer can be added on top of an OODB representation.

However, the nature of Description Logics themselves imposes severe limitations

on their abilities in those areas that are considered their strengths. Specifically, as

Levesque and Brachman discussed in their fundamental paper [20] on the tradeoff

between representation and reasoning, "... subsumption of descriptions in FL is

intractable,...." The only way to make the appropriate algorithms computable

in polynomial time is to severely limit the power of the representation language.

Secondly, Description Logics thrive in areas where the Aristotelian view of catego-

rization, by necessary and sufficient conditions, is most applicable. When the number

of natural kinds ("primitive concepts" in KL-ONE [147]), which cannot be defined

that way, increases then classification algorithms lose some of their usefulness. In an

area like medicine, many terms are highly subjective ("pain" comes to mind), and

therefore cannot be defined by necessary and sufficient conditions.

Even in the face of these limitations, Description Logics are valuable and inter-

esting experimental, scientific and commercial vehicles. Thus, we consider OODBs

for medical terminologies as complementary to Description Logics.

4 http://www.isi.edu/isd/LOOM
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2.6 Summary

The job of maintaining a controlled medical terminology (CMT) can be daunting due

to the typical CMT's large size and extensive scope. Among the tasks that need to

be performed by maintenance personnel are updating the CMT with new concepts,

re-organizing its design to enhance usability, and correcting mistakes which can arise

from various sources. In order to handle these chores, a person must have a solid

understanding of the overall structure of the CMT and its content.

Toward that end, we have proposed the use of the object-oriented database

(OODB) paradigm for the representation of CMTs. We have introduced the notion

of an Object-Oriented Healthcare Terminology Repository (OOHTR): A CMT

represented in the form of an OODB. An OOHTR is derived from an underlying

CMT through a partitioning process based on the pattern in which properties are

introduced and distributed among the CMT's constituent concepts. In that context,

we defined the notions of property-introducing concept and intersection concept.

From these emerged the basic unit of the partitioning process called an area, a

collection of concepts that have the same set of properties.

The partitioning process yields an OODB schema that captures the CMT's

overall structure. The benefit of the schema is that it provides an extra level of

abstraction and summarization for the CMT. After applying our methodology to

the MED to produce an OOHTR, we demonstrated how the view afforded by the

schema facilitated a variety of improvements. In general, the OOHTR schema can

serve as an important mechanism for enhancing comprehension of a large CMT by

users and maintainers alike.



CHAPTER 3

REPRESENTING THE UMLS AS AN OODB: MODELING ISSUES
AND ADVANTAGES

3.1 Introduction

The Unified Medical Language System (UMLS) [71, 73, 89, 140] designed by the

National Library of Medicine (NLM) combines many well established medical infor-

matics terminologies in a unified knowledge representation system. It consists of

four Knowledge Sources (the Metathesaurus, the Semantic Network, the Specialist

Lexicon, and the Information Sources Map) that provide information about medical

terminologies. The UMLS can be used by a wide variety of application programs to

overcome the retrieval problems caused by differences in the way the same medical

concept is expressed in different sources [72]. Such a resource is very valuable to

medical researchers and the healthcare industry.

However, the UMLS is large and complex. The scope and complexity of

the UMLS pose serious comprehension problems for users and even developers.

The magnitude of presented knowledge is overwhelming for human comprehension

capabilities. It is difficult to maintain and use the UMLS without proper compre-

hension. Designers, maintainers and users of the UMLS need tools to help with their

work. There are tools for retrieval and manipulation of the content of the UMLS

[27, 122, 125, 135, 138, 139]. However, such tools are insufficient. Rather, tools

should also help professionals reach a level of comprehension essential to performing

their tasks.

In previous chapter and [90, 91], we have developed a methodology for repre-

senting Controlled Medical Terminologies (CMTs) [33, 34] as Object-Oriented

Databases (OODBs) to provide support for comprehending them. The compre-

hension support was achieved by the two layers of the OODB representation of a

CMT, the schema layer and the concept layer. The schema layer gives an abstract

44
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view of the source CMT, which aids in the comprehension of the structure and

content of a large and complex CMT. At the concept layer, users can directly access

objects which denote concepts of the original CMT and obtain any detailed medical

knowledge they require.

In this chapter, we utilize an OODB representation to capture the knowledge

of the two major components of the UMLS, the Metathesaurus and the Semantic

Network, in a simplified and homogeneous way. The Metathesaurus is the largest

and most complex of the Knowledge Sources. It is a compilation of terms, concepts,

relationships, and associated information drawn from over 40 medical terminologies

and classifications. In the 1998 release of the Metathesaurus, there are 1,051,901 term

names mapped into 476,313 concepts. The Semantic Network contains information

about types or categories (e.g., Disease or Syndrome, Virus) and the permissible

relationships among these types (e.g., Virus "causes" Disease or Syndrome) [95,

96, 97]. Each concept in the Metathesaurus is assigned to one or more semantic types

from the Semantic Network. The 1998 release of the Semantic Network contains 132

semantic types and 53 relationships.

To model the Metathesaurus and the Semantic Network as an OODB, we

represent all semantic types in the Semantic Network as classes in the OODB schema.

In the chapter, we will discuss why this straightforward approach to modeling the

UMLS is insufficient. We introduce a more sophisticated approach. All concepts

assigned to only one semantic type become instances of the corresponding class.

Each concept assigned to multiple semantic types becomes an instance of a new kind

of class, called intersection class. As a result of this modeling, all classes abstract

semantically uniform sets of concepts. In this chapter, we also describe a rule to

systematically define subclass relationships for all intersection classes. The resulting

UMLS OODB schema has a deeper and more refined structure than the Semantic

Network of the UMLS. We will explain why this is a modeling improvement which
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is completely in line with the design goals of the UMLS [98]. The UMLS OODB

schema also supports the improved comprehension and navigation of the Metathe-

saurus. Furthermore, the intersection classes expose some problems existing in the

current UMLS, such as concept omissions, classification errors, and ambiguities of

concepts.

The rest of this chapter is organized as follows. Sections 3.2 describes the

derivation of the classes of the UMLS OODB schema. Section 3.3 presents the

rule to specify the subclass relationships between classes. Benefits of the OODB

representation of the UMLS are described in Section 3.4. Section 3.5 contains the

summary.

3.2 OODB Class Representation of the Semantic Types

The Semantic Network and the Metathesaurus are two components of the UMLS, the

connection between which is described in [98] as follows: "The Semantic Network

encompasses and provides a unifying structure for the Metathesaurus constituent

vocabularies." An OODB system also consists of two layers, the schema layer,

describing the structure of the data and the instance layer, containing the data itself

organized as objects with properties. This analogy suggests the use of an OODB to

model the Semantic Network and the Metathesaurus. This modeling will unify the

two components into one system which will offer several natural advantages for the

UMLS. In this section, we will describe the process which derives the classes of the

OODB.

3.2.1 The Semantic Type Classes

As previously noted, the Metathesaurus and the Semantic Network of the UMLS are

related by associating each concept of the Metathesaurus with one or more semantic

types. The Semantic Network provides a high level abstract view of the Metathe-
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saurus. In general, a class in an OODB schema represents a group of objects (or

instances) which exhibit the same properties and have a common semantics. The

OODB schema gives an abstract view of a database. In order to model the UMLS

as an OODB, it is sensible to represent the semantic types as classes in the OODB

schema, and the concepts as instances of those classes. In other words, the Semantic

Network, including its relationships (hierarchical and non-hierarchical), will serve as

(a major part of) the OODB schema. In the next subsection, we will describe the

remaining part of the classes.

The Semantic Network of the UMLS contains 132 semantic types which are

arranged in a IS-A hierarchy. Entity and Event are two roots of the hierarchy.

Figure 3.1 shows a few semantic types of the Semantic Network. In the modeling

process, every semantic type in the Semantic Network is mapped into a class of

the OODB schema. Names of classes are preserved. That is, the name of the

class in the OODB schema is identical to the name of the corresponding semantic

type in the Semantic Network. This kind of a class is called a semantic type class.

Every IS-A link in the Semantic Network is mapped into a subclass relationship

in the OODB schema. E.g., Substance IS-A Physical Object and Physical

Object IS-A Entity in the Semantic Network are mapped as follows. In the

OODB schema, "Substance," "Physical Object," and "Entity" are three semantic

type classes. "Substance" is a subclass of "Physical Object" and "Physical Object"

is a subclass of "Entity."

After we map all semantic types into the OODB schema, we obtain an OODB

schema with two root classes "Entity" and "Event" since the hierarchy of Semantic

Network concepts contains two roots. For traversal purposes, we assume a hierarchy

to be singly rooted. Thus, we need to introduce an artificial root into the schema.

A new class called "Thing" is added into the schema. The root classes mentioned

above become the subclasses of "Thing." At this point, an OODB schema with 133
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Figure 3.1 Extract of the Semantic Network. A semantic type is represented by a
rounded-corner rectangle with its name written inside; an IS-A link is a bold arrow
directed from a semantic type to a parent semantic type.

Figure 3.2 A subschema of the OODB schema corresponding to Figure 3.1. A class
is represented as a rectangle and a subclass relationship is drawn as a bold arrow
directed upward from the subclass to the superclass.

semantic type classes corresponding to all semantic types in the Semantic Network

has been created. Figure 3.2 is a partial schema. Since the concept hierarchy of the

Semantic Network consists of two disjoint trees, the corresponding OODB schema is

also a tree.

Now, we need to assign the concepts of the Metathesaurus to classes. As

mentioned before, each concept is assigned to at least one semantic type. If a concept

is assigned to only one semantic type, we can immediately make it an instance of

the corresponding semantic type class. For instance, the concept Air is assigned to

the semantic type Substance and the concept Chimera is assigned to the semantic

type Organism. After mapping, Air becomes an instance of the class "Substance"

and Chimera becomes an instance of the class "Organism." In this way, 357,804
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concepts in the Metathesaurus which are assigned to only one semantic type can be

immediately represented as instances of the corresponding semantic type classes in

the OODB schema.

However, concepts may belong to more than one semantic type. E.g.,

the concept Cotton belongs to two semantic types Substance and Plant; the

concept Norepinephrine preparation belongs to four semantic types Organism,

Pharmacologic Substance, Neuroreactive Substance or Biogenic Amine,

and Hormone. Of the 476,314 concepts in the Metathesaurus (1998 release),

118,510 are assigned to two or more semantic types. For more details on the concept

distribution, see Table 3.1.

Due to the possibility of additional semantic types, the concepts of one

semantic type may be non-uniform. For example, the semantic type Experimental

Model of Disease has 39 assigned concepts (see Table 3.2). Besides this semantic

type, the concept Radiation Injuries, Experimental has one additional semantic

type Injury or Poisoning. The concept Water Deprivation has one additional

semantic type Diagnostic Procedure. Another 27 concepts have one additional

semantic type, Neoplastic Process. The concept Lesion, NOS has two additional

semantic types Functional Concept and Sign or Symptom. Only 9 concepts

belong exclusively to the semantic type Experimental Model of Disease. It is

difficult to comprehend and use the information contained in such a non-uniform

semantic type. The problem we face is how to represent concepts with multiple

semantic types in the OODB system.

3.2.2 The Intersection Classes

Following the above approach, a concept which is assigned to more than one semantic

type should be represented as an instance of more than one class in the OODB



Table 3.1 The distribution of concepts in the Semantic Network

50

schema. However, in OODBs all instances of a class must have the same structure

and the same semantics.

In the UMLS using OODB, the semantics of a concept, describing its meaning,

is provided by its semantic types. If a concept may belongs to only one semantic

type, then it has a simple semantics. Otherwise, if a concept belongs to a set of

semantic types, it has a compound semantics defined by the combination of its

different semantic types. Thus, looking at the example we gave before, the concepts

of the semantic type Experimental Model of Disease do not share the same

semantics. E.g., the concept Alloxan Diabetes has the simple semantics of "Exper-

imental Model of Disease" and the concept Radiation Injuries, Experimental has

the compound semantics of "Experimental Model of Disease n Injury or Poisoning."

The symbol "n" indicates the intersection, meaning that the concept Radiation

Injuries, Experimental is both an "Experimental Model of Disease" and "Injury

or Poisoning." In Figure 3.3, we show all intersections among six semantic types,

Experimental Model of Disease and five other semantic types which it intersects

with. Each intersection contains concepts which belong to two or more semantic

types. From the figure, we see that all 39 concepts of Experimental Model of

Disease are classified into five groups with different semantics. The concepts of
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Table 3.2 All concepts assigned to the semantic type Experimental Model of Disease



Figure 3.3 Semantic types and intersections among them

one group have a simple semantics, while the four other groups express compound

semantics.

Thus, we cannot assign concepts of a given semantic type but with different

semantics to the same class, corresponding to this semantic type. We need to differ-

entiate these concepts and represent them as instances of different classes in the

schema. Each of these classes needs have a uniform semantics.

In OODBs, each object must be an instance of one and only one class. Making

concepts instances of more than one class violates this restriction. This OODB

restriction follows from the need of semantic uniformity explained above. Thus, each

concept, even if it has multiple semantic types, can only be represented as an instance
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of one class. The current "semantic type classes" corresponding to the semantic types

are therefore not sufficient for representing all concepts. An additional kind of classes

is needed.

In this chapter, we call the set of instances of a class C the extent E(C), the

set of concepts of a semantic type S the extent E(S), and the set of all concepts of

the Metathesaurus M the extent E(M). To keep the concepts corresponding to a

semantic type class uniform, we remove all concepts belonging to several semantic

types from the extent of all semantic type classes. Hence, each semantic type class

will correspond to concepts belonging only to this semantic type. In order to fulfill the

above goal of representing all concepts as instances of classes of uniform semantics,

a new kind of class, called an intersection class, is introduced into our schema. Such

a kind of class represents the combination of two or more semantic types.

To restate, the purpose of introducing intersection classes is to accommodate

the concepts which are assigned to more than one semantic type. For this reason,

the creation of intersection classes is based on those concepts. Every concept that

belongs to more than one semantic type will be represented as an instance of one

intersection class. In order to create intersection classes, all concepts with multiple

semantic types are partitioned into groups such that each group contains the concepts

belonging to the same set of semantic types. That means, the concepts in one group

are uniform and have the same compound semantics. After we obtain the groups

from the partitioning process, the corresponding intersection classes are created to

represent all those concept groups. Furthermore, the concepts in each group become

the instances of the corresponding intersection class. Table 3.3 lists the concepts

belonging to the semantic type Experimental Model of Disease, partitioned into

classes with uniform semantics. Table 3.3 represents a refined classification of the

concepts of the original semantic type, listed in Table 3.2.



Table 3.3 Partitioning result of table 3.2
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In Figure 3.3, we show six semantic types and nine intersections among them.

In our modeling process, all concepts residing in the intersections are removed

from the extents of the original semantic type classes. All six original semantic

types are represented as six semantic type classes "Experimental Model of Disease,"

"Neoplastic Process," "Injury or Poisoning," "Diagnostic Procedure," "Functional

Concept," and "Sign or Symptom." Each concept belonging to only one of these

six semantic types is represented as an instance of the corresponding semantic type

class. Nine intersection classes are created to represent the nine intersections in

Figure 3.3. They are "Experimental Model of Disease n Diagnostic Procedure,"

"Experimental Model of Disease fl Neoplastic Process," "Experimental Model of

Disease fl Injury or Poisoning," "Experimental Model of Disease fl Sign or Symptom

n Functional Concept," "Diagnostic Procedure fl Sign or Symptom," "Sign or

Symptom n Functional Concept," "Injury or Poisoning fl Sign or Symptom,"

"Injury or Poisoning n Functional Concept," and "Neoplastic Process fl Injury or

Poisoning." All concepts residing in the intersections of Figure 3.3 become the

instances of the corresponding intersection classes.

After the creation of the intersection classes, all 476,314 concepts in the

Metathesaurus are represented, each as an instance of one class in the schema. The

whole schema consists of 1,296 classes. Among them, 1,163 are intersection classes.

It may seem that with the intersection classes we lose the access to the extents of

the original semantic types. However, in the next section, we will show that this

information can be reconstructed upon demand from the OODB schema.
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3.3 The Subclass Relationships in the UMLS OODB Schema

3.3.1 Straightforward Model: One Level of Intersection Classes

After introducing the intersection classes, we face the problem how to determine the

subclass relationships originating with an intersection class in the schema. In other

words, we need to decide what the superclasses of an intersection class are.

As we described previously, an intersection class represents the combination of

more than one semantic type. Its semantics is more specific than that of each original

intersected semantic type class. Now we need to decide what the superclasses of

each intersection class are. One feasible approach is to use all its original intersected

semantic type classes. We call this approach the "straightforward model." Thus,

an intersection class is one level lower than its intersected semantic type classes in

the initial schema. In this approach, there are no intersection classes which are

superclasses of other intersection classes. The extended schema has only one more

level than the initial schema. For example, in Figure 3.4 the intersection class "Sign

or Symptom n Functional Concept" has two superclasses "Sign or Symptom" and

"Functional Concept." The intersection class "Experimental Model of Disease n Sign

or Symptom n Functional Concept" has three superclasses "Experimental Model of

Disease," "Sign or Symptom," and "Functional Concept." For Figure 3.4 one extra

level of intersection classes and 19 additional subclass relationships are added to the

original schema. Table 3.4 shows the distribution of classes in each level of the UMLS

schema which is the result of the above approach. Table 3.5 lists the the number of

the superclasses of all classes including both semantic type classes and intersection

classes of the UMLS schema.

The initial schema of semantic type classes was a tree with a depth of

9. Tables 3.4 and 3.5 show that 1,163 intersection classes and 2,874 subclass

relationships are added to the initial schema, resulting in a 10-level DAG schema.

The designers of the UMLS considered desirable to increase the depth of the Semantic



Figure 3.4 One feasible solution of adding subclass relationships
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Table 3.4 The distribution of classes in each level of the UMLS schema in the
straightforward model

Table 3.5 Number of superclasses for all classes in the UMLS schema in the straight-
forward model
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Network of the UMLS [98]. Thus, even the straightforward UMLS OODB schema

represents a modeling improvement over the Semantic Network.

3.3.2 A Refined Model: Intersection Classes of Intersection Classes

In OODBs the subclass relationships are pointing from specific classes to general

classes. By transitivity, every specific class is implicitly a subclass of all ancestors

of its superclasses. (By ancestors we refer to classes reachable following a chain

of superclass relationships.) Because of that, we do not need explicit subclass

relationships to ancestors of the superclasses. For example, in Figure 3.4, we see

intersection classes "Experimental Model of Disease n Sign or Symptom n Functional

Concept," which is a subclass of three classes "Experimental Model of Disease," "Sign

or Symptom" and "Functional Concept." The class "Sign or Symptom n Functional

Concept" is a subclass of "Sign or Symptom" and "Functional Concept." If we

compare these two intersection classes, we see that the semantics of "Experimental

Model of Disease 11 Sign or Symptom n Functional Concept" is more specific than

the semantics of "Sign or Symptom n Functional Concept." Hence, it is natural to

have a subclass relationship from the more specific intersection class to the more

general intersection class. In Figure 3.4, "Experimental Model of Disease n Sign

or Symptom in Functional Concept" should become a child of "Sign or Symptom in

Functional Concept" (Figure 3.5).

We will now explain why the resulting modeling is correct. Since "Sign

or Symptom in Functional Concept" is a subclass of "Sign or Symptom" and

"Functional Concept," the transitivity implies that "Experimental Model of Disease

11 Sign or Symptom in Functional Concept" is a subclass of both "Sign or Symptom"

and "Functional Concept." Thus, there is no need to have an explicit subclass

relationships from "Experimental Model of Disease in Sign or Symptom in Functional

Concept" to "Sign or Symptom" and "Functional Concept" as in Figure 3.4.
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Figure 3.5 shows the alternative modeling. In view of this example, we will discuss

an alternative approach for defining subclass relationships for the intersection classes.

The refined model is designed to capture semantic relationships between inter-

section classes which were not reflected in the straightforward model. We make an

intersection class a subclass of another intersection class. As a result, intersection

classes appear in multiple levels. We do not want a class to have an unnecessary

subclass relationship to a more general class if this relationship is implied by transi-

tivity. For a class which is an intersection of two, it is necessary to make it a

subclass of those two classes. For instance, in Figure 3.5, the intersection class

"Sign or Symptom n Functional Concept" is a subclass of "Sign or Symptom" and

"Functional Concept." However, for the intersection of more than two, there may be

more than one alternative to define the subclass relationships. In such a case, some

subclass relationships which are unnecessary due to transitivity may be eliminated.

In order to systematically define the subclass relationships of intersection classes, we

need a rule to determine the superclasses of an intersection class.

Before we describe such a rule, we first need to give the definitions of the

maximal subsets of a set and the minimal superclasses of a class.

Let U be a universal set of elements and let F be a given family of sets over

U. (By family, we mean it is a set of sets). That is F is a subset of the power set of

U (F c 2u).

In the context of the UMLS, the universal set U is the set of all concepts

of the Metathesaurus, and the universal family F is the family of the extents of

all semantic types. (F	 {E (Si ), E(S2), . , E(Sn)}; n is the number of semantic

types.) For a given family of sets G (G	 -{E(Si,),E(Si,),..., E(Sik )}(k < n))

which is a subfamily of F, the family intersection IG is the intersection of all extents

in G.
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In our OODB modeling of the UMLS a semantic type class Csi corresponds

to the corresponding semantic type S i . An intersection class corresponds to the

intersection of several semantic types. (E.g., C10 corresponds to /G .) When an

intersection class is given, it is possible to identify all its potential superclasses for

which there may exist an implied subclass relationship. E.g., for intersection class

GIG , each of the semantic type classes Csi  (1 < j < k < n) is a potential superclass

of GIG . Furthermore, for each D such that D is a subfamily of G, the intersection

class CID is a potential superclass of GIG.

Definition 1 (Maximal Subset): Let A and B be sets in F, such that A is a

subset of B. If there does not exist any set C in F such that A is a proper subset

C and C is a proper subset of B, then we call A a maximal subset of B in F. (E.g.,

if {X, Y, Z}, {X, Y}, and {X} are three sets in F, {X, Y} is a maximal subset of

{X, Y, Z} and {X} is not.)

Now we define the notion of minimal superclass of an intersection class, corre-

sponding to the above definition of maximal subset of a set.

Definition 2 (Minimal Superclass): Let GIG be an intersection class corre-

sponding to the family intersection IG. If CID is a potential superclass of GIG , then

C ID is a minimal superclass of GIG if D is a maximal subset of G.

Intuitively, a minimal superclass of a class C is a superclass that is most similar

to C. As such it maximized the number of classes to which C does not need a direct

link.

Note that as a special case, D may be a family of the extent of only one semantic

type, say Si . In this case, Gin degenerates to a semantic type class Csi rather than

an intersection class. We have chosen simplify the above definition by not explicitly

considering this special case. Assuming that CID =Csi is a degenerate intersection

class, our definition still works.
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Subclass Definition Rule: Let CT be an intersection class in the schema. Then

subclass relationships are defined from CT to all its minimal superclasses in the

schema.

This rule is guaranteed to increase the depth of the schema by transforming

intersection classes of more than two semantic type classes into subclasses of other

intersection classes. As McCray [98] notes, it is considered desirable to increase

the depth of the Semantic Network. For example (see Figure 3.5), the classes

"Sign or Symptom n Functional Concept" and "Experimental Model of Disease"

are the only two minimal superclasses of the intersection class "Experimental Model

of Disease n Sign or Symptom n Functional Concept." Compared with Figure 3.4,

with 19 subclass relationships, Figure 3.5 contains only 18 subclass relationships.

In [58, 59, 117], we defined the complexity of a schema as the ratio between the

number of relationships and the number of classes of the schema. Thus, when two

schemas contain the same number of classes, the one with more relationships will

be of higher complexity. Hence, the schema in Figure 3.5 is simpler than the one in

Figure 3.4. Furthermore, the schema is more accurate, semantically, as it captures

subclass relationships between intersection classes.

Unfortunately, there is no guarantee that the subclass definition rule will always

result in a schema of lower complexity. It may result in a schema of higher complexity.

For instance, if we assume that there is one intersection class which is an intersection

of all six semantic type classes in Figure 3.4, six more subclass relationships are

added, yielding a total of 25 subclass relationships when using the straightforward

modeling approach. However, eight more subclass relationships are added, yielding

26 subclass relationships, if we use the refined modeling approach! Nevertheless, we

shall see that in the UMLS schema obtained, the first situation occurs more often

than the second and the total number of subclass relationships is reduced, resulting

in a schema of lower complexity.



Figure 3.5 An improved solution of adding subclass relationships
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Table 3.6 Number of classes in each level of the UMLS schema, using the refined
modeling approach

Tables 3.6 and 3.7 show some details of the refined schema. Following the

refined approach, we get an OODB schema with depth 14. To obtain this schema,

2,677 relationships are added. Comparing Tables 3.4 and 3.6, we see that intersection

classes are pushed to lower levels in the refined schema. The numbers of intersection

classes in the levels 5 to 9 are reduced, while the number of intersection class in

level 10 grows from 70 to 212 classes. The new levels 11 to 14 contain 109 classes.

Comparing Tables 3.5 and 3.7, we see a systematic reduction in the number of

intersection classes with more than two superclasses. The number of intersection

classes with 2 superclasses increases from 714 to 857. The number of intersection

classes with 3, 4, and 5 superclasses is reduced. One class with 7 superclasses, not

existing in the straightforward schema, is created. This class demonstrates the rare

phenomenon of creating a class with an increased number of superclasses mentioned

before.
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Table 3.7 Number of superclasses for all classes in the UMLS schema, using the
refined modeling approach

To summarize, we created 1,163 intersection classes and added 2,677 new

subclass relationships. All 476,314 concepts in the Metathesaurus are represented

as instances of unique classes. The whole schema contains 1,296 classes. Compared

with the straightforward approach where all intersection classes are subclasses of

non-intersection classes, the refined approach adds more layers and fewer subclass

relationships to the initial schema. Both approaches produce semantically more

accurate schemas than the original Semantic Network. However, the refined approach

produces a schema of lower complexity than the straightforward approach.

Figure 3.6 is a subschema of the resulting UMLS schema. It contains 15

semantic type classes and 6 intersection classes distributed over 11 levels. For

comparison see Figure 3.7, where the same classes appear in a schema modeled

by the straightforward approach. This schema has only 9 levels and 2 additional

subclass relationships compared to Figure 3.6.

In Section 3.2.2, we discussed an apparent loss of information caused by our

improved modeling. To recover the extent of a semantic type, we combine the extent

of its semantic type class with the extents of all the intersection class descendants



Figure 3.6 A subschema of the UMLS schema using the refined approach
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Figure 3.7 A subschema of the UMLS schema obtained by using the straightforward
approach
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(which, as ancestors, are defined with regards to the subclass relationships) of its

semantic type class.

3.4 Advantages of the OODB Representation

3.4.1 Deeper Schema

In [98], McCray and Nelson say "The current scope of the [Semantic] Network is quite

broad, yet the depth is fairly shallow. We expect to make future refinements and

enhancements to the Network, based on actual use and experimentation." Intro-

ducing intersection classes and intersection classes of intersection classes provides

extra refinement and extra layers to the information contained in the Semantic

Network. The resulting UMLS schema has larger size and depth than the Semantic

Network.

3.4.2 Uniform Semantic Classification

As we discussed before, the concepts belonging to a semantic type are not uniform

since some of them belong to one or more additional semantic types. It is difficult

for a user to comprehend and use the set of concepts of such a semantic type due

to this lack of uniformity. Because all concepts are represented as instances of inter-

section classes, or of the semantic type classes, all extents extents are uniform since

they contain only instances of one semantic type or one combination of semantic

types. Having such classes simplifies the comprehension and use of the information

contained in their concepts.

3.4.3 Reduced Average Extent Size

In the original Semantic Network, the sets of concepts of many semantic types are

too large for comprehension. In the 1998 version, on average, every semantic type

corresponds to about 5,000 concepts (Remember that many concepts belong to more
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than one semantic type). Since the sizes of the extents of semantic types are not

uniform, some of them corresponding to many more than 5,000 concepts. Thus, it is

difficult for a user to comprehend those concepts.

Adding the intersection classes to the UMLS schema reduces the average

number of concepts per semantic type class to about 2,700. The average number of

concepts in each intersection class is 100, which is comparatively small. Having a

schema with a reduced average number of instances per class improves comprehension

and simplifies the use of the Metathesaurus.

3.4.4 Traversal

Since the Semantic Network and the Metathesaurus are unified into an OODB,

the OODB representation enables a combined traversal of the schema layer and

the instance (concept) layer. This combined traversal is faster and shorter than a

traversal of the Metathesaurus itself since the OODB schema is smaller than the

Metathesaurus by 2 orders of magnitude.

Suppose that a user wants to find an item of information which is stored in the

UMLS, but he does not know the name of the concept of this item of information.

He would however, recognize the information if he encounters it. For this purpose,

the user needs to traverse the hierarchies of the Metathesaurus, using his knowledge

about the target to guide his choices at different levels of the Metathesaurus. Instead

of traversing the Metathesaurus through its many levels, we recommend a better

approach. Utilizing the OODB representation of the UMLS, the user can traverse

the OODB schema until the proper class, say S, is identified. A user will normally

be able to do this, as he only needs to make a very general judgment about whether

the concept that he is looking for fits into the given class or not. At this point,

the user needs to switch to the subnetwork of the instance level which contains only
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the concepts belonging to the class S. The traversal runs through the levels of this

subnetwork until the desired concept is recognized (or its absence is noted).

As traversal requires repeated scanning through lists of children and chosing

one of them, traversal is faster at the schema level than at the instance level. This is

because the number of subclasses of a class in the schema is typically much smaller

than the number of children of a concept in the Metathesaurus. To give an intuitive

analog, think about driving on a major highway to reach a goal. Usually, after exiting

the highway in the vicinity of the goal, a person will need to travel on local streets.

Using the schema is like driving on a highway, while traversing the subnetwork of

the Metathesaurus is comparable to driving on local roads. Traveling to a remote

goal using local roads is usually slower than using a highway.

Let us demonstrate a traversal example, looking for the concept Delusion

of self-accusation. We will now list a sequence of Metathesaurus concepts corre-

sponding to this traversal. For each concept we list in "0" the number of its

children. The user needs to scan this list to pick one child at every step of

his traversal. Starting at Medical Subject Headings (15), traversing through

Diseases (MeSH Category) (45), Symptoms and General Pathology (38),

Disease (124), Mental Disorders (226), and Delusions (19), finally leading to

the target Delusion of self-accusation. The traversal of this path of 7 concepts

requires the user to scan a total of 467 children.

We will now contrast the above traversal with another traversal to the same

target, using the OODB schema in the first phase of the traversal. We start with the

root class, "Thing" (2), of the OODB schema. (The number inside the parentheses

is the number of subclasses of the given class.) The traversal path from "Thing"

is: "Event" (2), "Phenomenon or Process" (3), "Natural Phenomenon or Process"

(1), "Biologic Function" (2), "Pathologic Function" (3), "Disease or Syndrome"

(2), "Mental or Behavioral Dysfunction" (14), and the intersection class "Mental
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or Behavioral Dysfunction n Sign or Symptom." At this stage in our traversal, we

switch to the concept level. The concept Delusions (19) is a root of the concept

network of this intersection class. We continue on to the child Delusion of self-

accusation which is the concept we are looking for.

This traversal passes through 9 classes with a total of 29 children and 2 concepts

with a total of 19 children. The total number of scanned children (29+19=48) is much

smaller than the number 467 that we found before. The combined traversal search

path is longer than before, due to the fact that the Metathesaurus has many roots

and the search starts at Medical Subject Headings. However, this disadvantage

is clearly outweighted by the smaller number of children scanned. Altogether, the

combined traversal supported by the UMLS schema enables a faster traversal.

3.4.5 Exposing Problems in the Current UMLS

Representing the intersection classes and their instances enables researchers to study

the compound semantics of such intersection classes. In our previous experience

[54, 56] with the CPMC MED [37] this has led to the identification of modeling

problems. We have found a few such problems, which will be described below, and

we conjecture that more problems will be found. The correction of these problems

by domain experts would lead to a better new release of the UMLS.

3.4.5.1 Omissions: Let us give an example of omissions. In the UMLS schema,

there is an intersection class "Body Part, Organ, or Organ Component n Medical

Device." Studying the extent of this class, we found that there are only four concepts

in this class. They are Dental abutments, Conduit with xenograft valve,

Conduit with homograft valve, and Incubator.pediatric. However, there are

many more medical devices in body parts missing, e.g., heart valve. These missing

concepts should be added as instances of this intersection class. The extents of
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intersection classes will give the professionals in charge of the maintenance of the

UMLS a useful view to discover omissions from the Metathesaurus.

3.4.5.2 Redundant Classifications: By creating intersection classes, we

uncovered the phenomenon that 8,622 concepts in the Metathesaurus are assigned

to several semantic types which stand in parent-child or ancestor-descendant

relationships in the UMLS Semantic Network. For example, in Figure 3.6 the

intersection class "Organic Chemical n Organophosphorus Compound" has two

superclasses "Organic Chemical" and "Organophosphorus Compound." However,

"Organophosphorus Compound" is itself a subclass of "Organic Chemical." The

creation of this intersection class was due to the fact that there are 127 concepts

assigned to both the semantic types Organic Chemical and Organophosphorus

Compound. This situation is not in line with the intentions of the UMLS designers.

In [98], when discussing the assignment of concepts to semantic types, it is stated

that "In all cases the most specific semantic type available in the hierarchy is

assigned to a term." Therefore, those 127 concepts should only be assigned to the

semantic type Organophosphorus Compound. As a result, the intersection class

"Organic Chemical n Organophosphorus Compound" will cease to exist. Thus, we

get a new subschema (see Figure 3.8) replacing the previous one in Figure 3.6.

If all those redundant classifications are removed from the UMLS (that is, if

all those 8,622 concepts are only assigned to one semantic type), 77 intersection

classes will disappear from the UMLS schema. We believe that these redundant

classifications resulted from the fact that the assignment of concepts to semantic

types was done by different experts for the different UMLS sources. However, the

use of intersection classes helped us to uncover such redundancies.
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Figure 3.8 The subschema corresponding to Figure 3.6 after removing redundant
classification

A list of the above 8,622 concepts and their correct semantic types was

submitted to NLM. We have been notified that these redundant classifications will

be removed from the next version of the UMLS.

3.4.5.3 Classification Errors: Intersection classes highlight some classification

errors in the UMLS. For example, the concept Encephalities Viruses is the only

instance of the intersection class "Virus n Disease or Syndrome." But it is only a

virus and should not be classified as a disease. Hence, it should be an instance of

the "Virus" semantic type class. Furthermore, Encephalities Viruses is the only

instance of the intersection class "Virus n Disease or Syndrome," this intersection

class is not needed.

Another example of a classification errors is the concept Scotch Tape Mount.

It is the only instance of the intersection class "Bacterium n Laboratory Procedure."



73

However, it is not a bacterium and should be an instance of the class "Laboratory

Procedure." Thus, the intersection class "Bacterium n Laboratory Procedure"

should not exist either. Similarly, the concept Urea formaldehyde resin is the only

instance of the intersection class "Organism n Biomedical or Dental Material." But

it is not an organism and should belong only to "Biomedical or Dental Material."

Thus, the intersection class "Organism n Biomedical or Dental Material" is not

needed anymore. The concept Alagille Syndrome is the only instance of the

intersection class "Congenital Abnormality n Body Location or Region n Disease or

Syndrome." However, it is not a location. Thus, it should be an instance of the inter-

section class "Congenital Abnormality n Disease or Syndrome" and the intersection

class "Congenital Abnormality n Body Location or Region n Disease or Syndrome"

is not needed either.

3.4.5.4 Ambiguity: Intersection classes helped us discover ambiguities of

concepts in the UMLS. E.g., the intersection class "Plant n Disease or Syndrome" has

only one instance Toxicodendron. However, Toxicodendron, known popularly

as poison ivy, refers to two different concepts, one is a plant and the other is the

name of a disease. In order to differentiate them, two concepts should be created

such that one is an instance of the class "Plant" and the other is an instance of the

class "Disease or Syndrome." Since the intersection class has only this instance, it

will be eliminated. Let us look at another example. The concept Paronychia of

toe is the only instance of the intersection class "Anatomical Structure n Disease

or Syndrome." The classification exposes the need for two different concepts. One

is the diseased toe, which is a body part and should be an instance of the class

"Anatomical Structure." The other is the disease of the toe which should be an

instance of the class "Disease or Syndrome." Thus, no such intersection class is

necessary.



74

3.4.5.5 Non-uniform Classification: For some intersection classes their extents

indicate that a non-uniform classification was employed for some concepts in the

UMLS. For example, the concept Prematurity is the only instance of the inter-

section class "Organism Attribute n Temporal Concept." The classification of

Prematurity to both semantic types "organism attribute" and "temporal concept"

is definitely legitimate. However, if this organism attribute is modeled as a temporal

concept, then there exist other organism attributes which should be also classified

as temporal conceps, e.g., the concept Senility. Hence, while the extend of the

intersection class does not expose an error, it exposes non-uniformity in the way

concepts were classified into semantic types in the UMLS. This non-uniformity is not

surprising, when considering that many experts were involved in the classification

of concepts into semantic types. Such feedback should be communicated to domain

experts who should try to change the classification to be more uniform either by

adding other relevant concepts to the intersection class or deleting the existing one

in which case the intersection class will become empty.

3.4.5.6 Sample of Intersection Classes: In the UMLS schema, there are 422

intersection classes with only one instance. One of the authors, Dr. Cimino, checked

the first 100 such intersection classes and their instances. For 11 intersection classes

out of 100, the classification of concepts is correct. For 55 of these intersection

classes, the multiple classifications are wrong. For 32 intersection classes the classified

concepts indicate non-uniform classifications as explained in Section 3.4.5.5. There

are 2 intersection classes which are redundant classification cases.

3.5 Summary

The Unified Medical Language System (UMLS) integrates many medical termi-

nologies and coding systems. It plays a major role in overcoming terminological
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differences in the design of computerized healthcare information systems. However,

the size and complexity of the UMLS make it difficult to maintain and use. To

help overcoming this problem, we have developed a methodology for representing

two components of the UMLS, the Metathesaurus and the Semantic Network, as a

unified OODB. the resulting UMLS OODB schema enhances the Semantic Network

by adding more layers and providing more refinment than available in the Semantic

Network. The UMLS OODB schema also supports a fast two level traversal of the

Metathesaurus. It makes comprehension of the Metathesaurus easier, by partitioning

it into semantically uniform classes. The latter, in turn, has led to the recognition

of possible improvements of the UMLS.



CHAPTER 4

PARTITIONING AN OODB SCHEMA INTO CONTEXTS BY
IDENTIFYING A FOREST HIERARCHY

4.1 Introduction

Object-Oriented Database (OODB) systems help manage complex, large bodies of

information. However, comprehending the contents of an OODB system is a difficult

task for a user, whenever it contains large amounts of complex information. The

OODB schema, providing an abstraction of the OODB system, plays a major role

as a tool for comprehending the contents of the OODB. However, an OODB schema

itself may be large and hard to comprehend.

The graphical representation of a schema can help the user in obtaining an

orientation in the schema. Thus, we assume that OODB schemas are represented

graphically and manipulated with a graphical schema editor.

Unfortunately, for a large OODB schema whose graphical representation does

not fit on a single screen (page), the advantages of the graphical representation are

less significant. Thus, even with the help of a graphical representation, the user will

still encounter schemas of large size and complexity which will cause comprehension

problems.

Our work is motivated by the desire to comprehend large schemas of OODBs

by developing methods to make them understandable for users. We present both

a theoretical paradigm and a methodology to aid comprehension of existing large

schemas. Our approach to achieve comprehension of graphical schemas is based on

combining two concepts: informational thinning (i.e. display only high priority

elements of the schema) and partitioning. A preliminary presentation of the

theoretical paradigm only appeared in [117].

Our methodology is based on partitioning a large OODB schema into disjoint

meaningful, manageably sized parts. Thus, to comprehend the schema, the user can
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start to study the details of selected small parts. More specifically, the components

of the partition are all trees, and each of these trees can ordinarily fit easily to a

single computer screen.

In this chapter, we present a new technique for modeling, called disciplined

modeling. Based on the rules of disciplined modeling, we develop a theoretical

paradigm to support the existence of a meaningful forest hierarchy within the special-

ization hierarchy based on our paradigm. We present a methodology for finding such

a forest hierarchy. This methodology relies on an interaction between a user and

the computer. A user is asked to refine the specialization hierarchy of an OODB

schema according to the rules of disciplined modeling. The resulting forest hierarchy

represents a partitioning of the specialization hierarchy into trees. Such a hierarchy

functions as a skeleton of the schema and supports comprehension efforts. We will

demonstrate our methodology by applying it to the subschemas of a university

database and the MED (Medical Entities Dictionary) [37]. In [59] we presented

a methodology for partitioning a vocabulary modeled as a Semantic Network. The

different model required a different theoretical paradigm although similar.

The rest of this chapter is organized as follow. In Section 4.2, we describe the

notions of informational thinning and partitioning. The rules of disciplined modeling

are introduced in Section 4.3. Section 4.4 presents the proof that the rules of disci-

plined modeling guarantee the existence of a forest structure. Our methodology for

partitioning the OODB schema into trees are described in Section 4.5. In Sections 4.6

and 4.7, we apply the methodology to the subschemas of a university database

and the MED. Section 4.8 describes how the forest structure helps comprehension.

Section 4.9 contains our conclusions.
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4.2 Informational Thinning and Partitioning

4.2.1 Schema Complexity

To get a handle on what it means for a schema to be large and complex, we measure

the size of the schema by the number of its classes. Our experience is that compre-

hension difficulty for a large and complex schema stems more from the density of the

relationships than from the volume of the classes. We define the complexity, c, of a

schema as the ratio of the number of the relationships between classes to the number

of classes. For two schemas of equal size we conjecture, based on our experience,

that a more complex schema is more difficult to comprehend.

In this chapter, we will demonstrate our techniques on two schemas. In our

previous work [99, 100] we used a large OODB schema describing a university

environment. Figure 4.1 shows a subschema of the university OODB schema concen-

trating on some of the academic aspects of the university structure. It contains 36

classes and is about a third in size of the whole schema. (Note that the schema was

simplified by omissions. For example, only few details of publications and education

records appear.) In [56, 91, 90], we developed an OODB schema, containing 124

classes, for modeling a controlled medical vocabulary MED [37]. We will apply our

methodology to the above two schemas.

One method that has been widely used to make schemas comprehensible is

to use a graphical representation. We note, e.g., the popularity of the Entity

Relationship model and its graphical representation [30] and graphical case tools for

object-oriented programming such as OMT [124] and ROSE [16]. The two schemas

are presented using our graphical OODB language OOdini [66]. In OOdini, a class is

represented as a rectangle, and a set class, as a double line rectangle. A relationship

is represented as a labeled thin arrow, and a multivalued relationship, as a double

thin arrow. A subclass relationship is drawn as a bold arrow directed upward from
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the subclass to the superclass. An attribute is listed inside its class rectangle beneath

the class's name.

Figure 4.1 contains 36 classes and 74 relationships, and thus its complexity

ratio is c = 74/36 = 2.06. A user needs a substantial effort to obtain an orientation

in this schema. This is rather distressing, because, besides the fact that this is only

a subschema of the original schema, Figure 4.1 has been further simplified by not

showing the attributes of the classes (except one).

One way for imposing an order on the human understanding process can be

described as follows. We select a subschema of lower complexity. After the human

has gained an understanding of this subschema he will find it easier to comprehend

the original schema.

4.2.2 Informational Thinning

We will now discuss informational thinning. Informational thinning tries to eliminate

information from the whole schema by prioritizing various kinds of properties of the

classes and displaying only high priority kinds of properties.

One of the major concepts supported in OODBs is the notion of general-

ization/specialization. The specialization hierarchy of an OODB schema serves as

the basis for property inheritance. It is the backbone of an OODB schema. Infor-

mational thinning lets us concentrate on the specialization hierarchy of a schema by

removing all other properties and leaving only the subclass relationships. Since only

the classes and the subclass relationships of the schema of Figure 4.1 are displayed in

the schema of Figure 4.2, Figure 4.2 shows a specialization hierarchy of Figure 4.1.

We call it the hierarchical (sub)schema of a schema. Note that the complexity of

Figure 4.2 is c = 26/36 N 0.72. This subschema has the same size as the original

schema but a lower complexity and it is easier to comprehend. Furthermore, it is

easier to comprehend due to the uniform nature of the hierarchy relationships, in



Figure 4.1 A subschema of a university database
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contrast to the various semantics. of the rest of the relationships which are user-

defined. Due to this difference, the designer does not have to label the subclass

relationship, which is identified by a special graphical icon, while for the user defined

relationships, labels are necessary to specify their semantics.

Since a class in an OODB schema can be specialized into a number of subclasses

and can also be generalized into a number of superclasses, the hierarchical subschema

of an OODB schema will be a directed acyclic graph (DAG). Thus, for large schemas

even the hierarchical subschema may be difficult to comprehend due to its size and the

existence of multiple superclasses for many classes. In graph theory, a hierarchical

schema has a forest structure if no class has more than one superclass. If such a

hierarchical schema is connected, then it forms a spanning tree of the DAG. It is

generally considered to be easier to comprehend a forest hierarchical schema than a

DAG schema of the same size, due to the fact that upward paths are not branching

in a forest structure.

4.2.3 Schema Partitioning

A second approach to simplify the comprehension of a complex large schema is

partitioning it into smaller subschemas. This applies to general and hierarchical

schemas alike. From the technical side, only a limited size subschema can be displayed

on a computer screen. From the conceptual side, human comprehension capacity

is limited and is functioning much better on a small subschema. Hence, we are

faced with the task of partitioning a large schema into smaller subschemas. In the

partitioning we typically have two purposes:

1. To identify small subschemas which comprise logical units of the original

schema.

2. To generate a minimal number of subschemas each of which fits on a computer

screen by itself, and which together comprise the complete schema.
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Figure 4.2 A subschema of a university database after applying informational
thinning
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Note that the need to achieve a logical partitioning of an existing schema

introduces a vicious cycle, as one needs to comprehend the schema in order to

partition it logically. Nevertheless, partitioning into logical subschemas tends to

minimize the number of relationships between different subschemas, i.e., between

a class from a subschema and a class of another subschema. Unfortunately, the

problem of partitioning a schema according to the above criterion or some similar

criteria is known to be NP-complete, that is, no efficient algorithm is known for it,

and it is conjectured that no such algorithm exists [50].

A possible line of action is to combine the two comprehension approaches

outlined above, informational thinning and partitioning, by trying to partition the

hierarchical subschema and then use this partition to impose a partition on the

original schema. Obviously, this partitioning problem is much simpler than the

original partitioning problem since the schema has lower complexity. However, unless

the hierarchical subschema has a forest structure, the partitioning problem in general

is still an NP-complete problem. On the other hand, if the hierarchical subschema

has a forest structure then there exist efficient algorithms for optimal partitioning

according to various criteria [3, 9, 10, 11, 12, 81, 92, 118]. In this chapter we will

describe an approach to show that in a hierarchical subschema of a general schema,

there exists such a forest hierarchical schema, the semantics of which helps to support

comprehension.

4.3 The Rules of Disciplined Modeling

4.3.1 The Category-of and Role-of Specialization Relationships

In order to identify a meaningful forest structure subschema of a hierarchical schema

we shall look into the nature of the specialization relationship. In previous research,

we as well other researchers [51, 109, 110, 111] identified two different kinds of special-

ization relationships, namely, category- of and role- of. According to our definition
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category-of is a specialization relationship used for refinement in case that both the

superclass and the subclass are in the same context. On the other hand, role-of is

the specialization relationship used in the case the superclass and the subclass are

in different contexts, and the subclass functions in a role-of the superclass.

How does a designer of an OODB schema determine whether a given special-

ization relationship is category-of or role-of? This depends on whether the two

classes connected by the relationship are in the same context or not. For example,

consider the classes in Figure 4.2. The class student is a subclass of the class person,

and the class graduate student is a subclass of the class student. However,

intuition tells us that information about the student and the graduate student are

both in the same context of learning, while person is in a different context of personal

life. Hence, the class graduate Student is category-of the class student, as it

represents a refinement, which in turn is role-of the class person. However, this

determination is not always so easy. In spite of extensive research, e.g., [22, 23, 60,

74, 94, 103, 128] there is still no definition of context which is widely accepted. One

line of research on context comes out of the CYC project [87]. There, an attempt

to build a gigantic knowledge base was found doomed to failure if contexts are not

introduced for structuring. Work following this line [22, 60, 94] assumes that a

context is a first class object used to parameterize axiom schemata. However, no

clarity about the nature of contexts themselves is gained by this approach. As a

workshop on the use of context in Natural Language Processing showed [74] the

best thing researchers in Natural Language Processing can currently do is to agree

that they disagree on what contexts are. Our approach is that we are not trying to

define the notion of context. Rather we are making the pretheoretical (axiomatic)

assumption that contexts exist in human thinking and we are trying to identify them.

We accept the situation that for some designers two classes are in the same

context while for others they are in different contexts, due to different views of the
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application, different emphasis and different levels of refinement. In our view, the

designer of a schema should have the freedom to determine for each class, to which

context it belongs.

Still, we believe that organizing for a user a complex schema into reasonable

contexts is still preferable to leaving him without such an organization. What we

are providing in this chapter is a theoretical paradigm for the existence of such

assignments of classes to contexts which will result in a forest subschema of the

DAG hierarchical schema, Also, we are introducing a methodology for finding such

a forest. The forest subschema will support comprehension of the schema.

In order to ensure that a forest hierarchical subschema can be identified, the

assignment of classes to contexts must always satisfy three rules which will be

introduced below. We refer to modeling which satisfies these rules as disciplined

modeling. As we shall show, a schema designer using the rules of disciplined modeling

can still model every situation which is modeled when these extra rules do not apply.

Only few modifications are required in the modeling, so that the rules of disciplined

modeling are satisfied. As we shall see, all three rules are concerned directly or

indirectly with the category- of relationship.

4.3.2 Contexts as Equivalence Relations

First we define a new mathematical relation equicontext, or "in the same context,"

between classes. A pair of two classes belongs to the equicontext relation if both

classes belong to the same context.

It is interesting to contrast the two relations category-of and "in the same

context." The category- of relation is directed and asymmetric while "in the same

context" is an undirected relation since it is symmetric. The category-of relation

between classes implies the equicontext relation between them, but the opposite is

not necessarily true. For example, if two classes A and B are both category- of class
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C, then A and B are in the same context since both are in the same context as class

C, but A and B are not category- of one another.

Rule 1: The equicontext relation between classes is an equivalence relation, that is,

it satisfies the three conditions of an equivalence relation: reflexivity, symmetry and

transitivity.

An equivalence relation partitions the elements of a set into disjoint subsets,

such that every two elements of the same subset are related and no two elements of

different subsets are related. Hence, Rule 1 implies Rule 1'.

Rule 1': The classes of a schema are partitioned by the equicontext relation into

disjoint contexts.

Rule 1' will force the designer into explicit specification of the contexts in

his schema and lead him to resolve some ambiguous situations in a systematic way.

Due to the symmetry and transitivity of the "in the same context" relation, any

two classes, between which there is a path of category-of relationships, where the

relationships have any orientation, are in the same context.

We do not claim to have a unique way of assigning classes to contexts. As we are

dealing with a problem of data modeling, there are usually different ways to model

the same real world environment. We further do not claim that contexts in an appli-

cation are naturally disjoint. To the contrary, in many applications and specially

in complex ones, contexts overlap. However, in order to achieve our purposes,

disciplined modeling requires the modeler to enforce disjoint contexts. Consider

for example the class teaching assistant in Figure 4.2. From one side it belongs to

the employment context as does its superclass assistant. On the other hand, it also

belongs to the teaching context as its superclass instructor is the root of this class.

However, Rule 1 forces the class teaching assistant to belong to one context only.

As we shall see later, this will be the employment context.
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As will be seen, the partitioning of classes into disjoint contexts is a difficult task

involving delicate analysis. It is possible that different modelers will make different

decisions according to their different views of the application, different emphasis

and different levels of refinement. We accept the possibility of differing partitions

by different modelers as a natural result of the non-uniqueness of data modeling

problems. However, we require each partitioning to satisfy the conditions for disci-

plined modeling, and we claim that any reasonable partitioning is better than a

completely unstructured schema.

4.3.3 A Category-of Refinement is Exclusive

The category-of relationship is used when we need to refine the concept represented

by the superclass when both the superclass and the subclass are in the same context.

This means that instances of the superclass are divided into being also instances of the

different category-of subclasses according to a distinction employed. In disciplined

modeling, we further require from such a categorization that the refinement will be

into mutually exclusive concepts.

Rule 2: Two classes which are category-of specializations of the same superclass

cannot both contain an instance representing the same real world object.

This means that an instance that belongs to the extent of a superclass cannot

belong simultaneously to the extent of more than one subclass. In other words, the

real world objects corresponding to the instances of the different subclasses form

disjoint sets. Rule 2 is essential for achieving our purpose that the set of category-of

relationships in a schema will form a forest structure.

Let us consider how to guarantee Rule 2 in disciplined modeling. For a case

of a class A which is a subclass of two classes B and C, by Rule 2 it cannot be

that both these subclass relationships are category-of. Thus we need to give the
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disciplined modeler guidelines how to deal with the modeling of such a situation.

Such guidelines will be discussed in Section 4.5.

Rule 3: For each context there exists one class R which is the major (or definitive)

class for this context such that every class in this context is a descendent of R.

In other words, each context has one class which is a "root" for this context, i.e.,

there is a directed path of category-of relationships from each class of the context to

this class. Note that we use here the notion of a directed tree where all the directions

are towards the "root" rather than away from it. I.e., in graph theory terms the root

is a sink.

Note that Rule 3 does not actually limit the modeling of the application. In

case that a context has several root classes, a new class R can be created with all

the root classes as its subclasses. Thus, R will become the new unique root of the

context.

4.4 Disciplined Modeling Results in a Forest Structure

In this section, we will prove the following theorem.

Theorem: Using disciplined modeling, a class has at most one superclass to which

it has a category-of relationship.

Proof: Suppose, to the contrary, that there exists a class A which is category-of

both class B and class C.

Hence class A and class B are in the same context. Similarly class A and class

C are in the same context. By the transitivity of the equicontext relation (Rule 1)

class B and class C are in the same context.

By Rule 3 the joint context of the classes B and C has a root class D such that

both classes B and C are descendents of D with regards to category-of relationships

(Figure 4.3). In other words there is a sequence of category-of relationships from

class B(C) up to class D. Let E(F) be a child class of the class D on the path of
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Figure 4.3 Schema demonstrating contradiction

category-of relationships from class B(C) to class D. In case E = F, let E and F

be the last classes to be distinct on the paths from classes B and C to the root class

D; let D be the parent class of the classes E and F.

In the following discussion we are going to use a relation "represents the same

real world object" defined for instances of a database. A pair of instances of the

database belongs to this relation if both instances represent the same real world

object. The relation represents the same real world object is obviously transitive.

Let a be an instance of class A. Then class B has an instance ba corresponding

to instance a of A, since A is category-of class B. In other words both instances a

and ba represent the same real world object.

Similarly, there exists an instance c a of class C which represents the same real

world object as the instance a of A. Thus both instances b a and ca represent the

same real world object, due to the transitivity of the relation represents the same

real world object.

As noted before, Class B (C) has a sequence of category-of relationships up

to class E (F). Hence, class E (F) contains an instance e a (fa ) corresponding to the

instance ba (ca ) of class B (C) where this correspondence is defined transitively from

the correspondence along the sequence of category-of relationships. Hence, both the

instances ea and b a (ca and fa ) represent the same real world object. But, as was

shown before, the instances ba and ca represent the same real world object. Thus
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it follows again from the transitivity of the relation represents the same real world

object that the instances ea and fa represent the same real world object.

But by Rule 2 the extents of the classes E and F which are both category-of

class D may not both contain an instance representing the same real world object,

so the previous conclusion contradicts our assumptions. Hence the class A cannot be

category-of the two classes B and C, however A can be only category of one class. ■

Corollary: The category-of hierarchy has a forest structure, i.e., consists of one or

several tree structures.

Proof: A directed graph which contains no cycles and each vertex has at most one

parent is a forest. Since the category-of hierarchy is a subhierarchy of the directed

acyclic subclass hierarchy, it has no cycle. By the theorem, each vertex has at most

one category-of superclass. Hence, the category-of hierarchy is a forest. ■

The tree structures of the forest serve as the backbones of the schema and will

be critical in our efforts to comprehend the schema and partition it into manageable

subschemas.

4.5 A Methodology for Finding a Forest Hierarchy

We have described a conceptual partitioning framework which guarantees that for

the price of following the rules of disciplined modeling, there can be found a forest

structure subschema of an OODB schema. This forest structure subschema serves as

a skeleton supporting the comprehension of the schema. Furthermore, the trees of

the forest represent contexts which are logical subschemas approximating all infor-

mation relevant to a specific subject area, further supporting the comprehension of

the original schema.

In this section, we will describe a methodology, based on our theoretical

paradigm, to identify a forest structure subschema of a given schema. By a

methodology we mean a process that involves human-machine cooperation. The
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human domain expert is called upon to make some judgement decisions based on

his understanding of the application while the computer supports the human by

providing results of algorithmic procedures for tasks which do not involve complex

intuitive decisions but might require many computational steps.

In the following description of the methodology, we will specify which parts are

performed by a computer and which are performed by a human expert. The result

of our methodology is a refinement of the specialization hierarchy of the OODB

schema. Every subclass relationship becomes either a category- of or a role-of. We

will differentiate between three kinds of role- of relationships. They are regular role-

of, role- of/intersection and role- of/category-of. However, for partitioning purposes,

they will all be treated in the same way. The category- of relationships will form a

forest, and all role- of relationships will be deleted.

Step 1: Informational thinning. (Computer)

All attributes and relationships other than subclass relationships are removed

from the OODB schema.

Step 2: Topological sort. (Computer)

The resulting subschema from Step 1 is arranged in topological sort order.

Step 3: Identify roots of contexts. (Human)

The subschema is scanned top-down according to the order from Step 2. In

this scanning, classes which are defining classes (roots) of contexts are identified.

The decision should be made by the meaning and importance of the class in the

application compared to its superclasses' meanings. These chosen classes start new

contexts rather than refining the contexts of their superclasses.

After these classes are identified, the subclass relationships from them to their

superclasses are changed to role- of relationships. This kind of role -of relationship

is a regular role - of , where the relationship models a switch of context, that is, the

relationship goes from a class in one context to a class in another context.
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Step 4: Multiple superclasses. (Computer)

All classes with multiple non-role-of relationships to superclasses are listed in

bottom-up order. (We will explain later why we are using bottom-up processing at

this point.)

Step 5: Identify major superclass. (Human)

For each class identified in Step 4, the expert needs to identify at most one

superclass which is in the same context as the class to conform with Rule 2. The

subclass relationship to this superclass will be defined as a category-of relationship

while all other subclass relationships of the class are defined as role-of .

In our experience, for most of the classes with multiple superclasses, an expert

can easily determine which of the superclasses is the major one, i.e., which should

have a category-of relationship directed to it. There is a minority of cases where

the decision about a major superclass of a given class is not easy. In such cases, we

try to distinguish which of the several superclasses, if any, should have a category-of

relationship pointing to it, based on the partial context information we have already

accumulated in our bottom-up processing. We provide the following guidelines.

Case 1: One of the superclasses is definitional, describing the essence or the

definition of the subclass, while the other superclasses describe the functionality or

usage of the subclass. Then we look at the partial context to which the class and its

descendants belong. (This is the reason for the bottom-up processing). We try to

determine whether the nature of the category-of relationships in this partial context

is functional or definitional. If it is definitional, the definitional superclass is chosen

as major superclass. If it is functional, then we will prefer the functional superclass.

If there are several functional superclasses, we will prefer the one which matches the

function appearing in the partial context of the class. If the class is currently the

only class in its context, we will choose the definitional superclass. As a result, one

superclass is chosen as major superclass. The class is made category-of this major
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superclass and role- of the other superclasses. This kind of role-of relationship is

called a regular role -of since a switch of context from the class to the superclass has

occurred.

For example consider the class teaching assistant which has two superclasses

assistant and instructor (see Figure 4.2). The superclass assistant is definitional

(Q: What is a teaching assistant? A: An assistant) and the superclass Instructor is

functional (Q: What does a teaching assistant do? A: He instructs). Thus, teaching

assistant should be category- of assistant and role -of instructor.

Case 2: Both superclasses are structural, however it is possible to distinguish

the major from the minor by linguistic analysis of the name of the subclass. For

example, when the concept of one superclass is expressed in the subclass name as a

noun while the concept of another superclass is expressed in the subclass name as an

adjective then the noun defines the major superclass. As another example, if both

concepts are expressed grammatically as nouns then the second noun is considered

the major concept' In this case we follow the structure of a noun phrase consisting

of a head noun, which appears last, and a modifier noun.

For example, reconsidering the above example, the class teaching assistant

has two superclasses assistant and instructor. Since assistant is a noun and

teaching is an adjective in the name of the class teaching assistant, according

to Case 2, the class assistant is chosen as the major superclass and the instructor

is a minor superclass.

Case 3: All superclasses are definitional, with the same importance or indis-

tinguishable importance, as each of them contributes to the definition of the class

in an equal or indistinguishable way. In that case, the semantics of the class is a

combination of the semantics of all its superclasses. In such a situation, the class with

multiple superclasses could belong to the context of any of its superclasses. However,

'There are well known exceptions to this rule. A toy gun is a toy and not a gun.
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by Rule 1 it cannot belong to more than one context. Also, we have no reason to

prefer one over the others. Each choice of context will disassociate the class from the

other contexts. This conflict is resolved by requiring that such a class starts a new

context which represents the class as an intersection of its superclasses. Thus, this

class is role- of all its superclasses. We call this type of role- of "role- of/intersection"

represented as r/i in the figures. By this term, we emphasize that this is not an

actual case of a switch of context but an artificial case due to the requirement of the

theorem to forbid a class with two category- of superclasses. Without the theorem, we

could probably leave the intersection concept in the context of its superclasses if all

belong to one context. In Section 4.7, we will show such an example in partitioning

of the MED schema. This concludes the three cases of Step 5.

Step 6: Identify diamond structures. (Computer)

For each class I in the resulting list of Step 4 and each pair of superclasses Si

and S2 of I, find a lowest common ancestor A of both S1 and S2. For each pair of

such classes I and A, output the structure (represented by < I, A>) containing I,

A and all the classes which are descendants of A and ancestors of I. This is called a

diamond or extended diamond structure. The class I is called the source of < I, A >,

and the class A is called the sink of < I , A >.

Step 7: Resolve contradictions in the diamond structures. (Computer)

In order to fulfill Rule 2 of disciplined modeling, each diamond or extended

diamond structure must contain classes from more than one context. After executing

the above steps, all the diamond structures already satisfy Rule 2. However, there

is one case where we must artificially change additional category- of relationships to

role- of relationships, to resolve a contradiction.

In this case, which we call contradictory diamond case, the source I of the

diamond structure < I, A > is a role- of/intersection of its superclasses. All other

classes in the diamond structure belong to one context (see Figure 4.4). Since the
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source I is the intersection of two superclasses B and C, they cannot both belong to

the same context of their superclass A. Otherwise, since the intersection of a context

with itself will result in the original context, the intersection class must belong to this

common context. Thus, the classes B and C are also defined as separate contexts.

The category-of relationships from B and C to A are changed to role-of. However,

we want to maintain the distinction between this role-of and the two other kinds.

Therefore, we denote this kind of role-of as "role-of/category-of." It is represented

by r/c in the figures.

Step 8: Get a forest hierarchy. (Computer)

After all subclass relationships are refined as either category-of or role-of

relationship, a forest hierarchy of the category-of relationship is obtained, by deleting

all three kinds of role-of relationships.

Note that the methodology used both top-down processing and bottom-up

processing. The determination of the context of classes is performed top-down, since

the context of the root class defines the context of its descendants. When scanning

the schema top-down, an expert can identify which class defines a new context rather

than continuing a context of one of its superclasses which has been processed already.

On the other hand, when determining bottom-up to which context a class

belongs, choosing from among its superclasses, it is important to know the

descendants of the class which belong to the same context. This knowledge will help

to determine which of the superclasses fits best to the already constructed partial

context.
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4.6 Applying the Methodology to the Subschema of University
Database

In this section, we will apply our methodology step-by-step to the subschema of a

university database (Figure 4.1). Since the whole schema in Figure 4.1 deals with the

academic context, if we insist on having this one context only, then every subclass

relationships should be category- of and the schema would not have a forest structure.

However, when the university environment is our application domain, having only

one academic context does not help in comprehending the application. Naturally,

we want to divide the schema into several contexts.

Step 1 of our methodology is informational thinning. Figure 4.2 is the result

of Step 1.

Step 2, topological sort, is applied to the hierarchy of Figure 4.2. Since some

hierarchies in Figure 4.2 are singleton or contain small numbers of classes, we only

show the processing of the big hierarchy, rooted at the class person. Since there

are degrees of freedom in applying topological sort to a DAG, the order we used is

left-to-right breadth first search [5]. The class numbering from 1 to 20 in Figure 4.2

reflects this order.

In Step 3, the hierarchy is scanned top-down by a human expert to identify

all classes which define new contexts. All subclass relationships from such identified

classes to their superclasses will be refined as role- of relationships. The class person,

since it is the unique root of this hierarchy, starts a new context. Let us call it the

personal context, but it does not have any superclasses.

Working top-down, we can see that the classes alumnus, student, and

employee are subclasses of the class person. The class alumnus describes the

context of former students. The class student defines the learning context. The

class employee starts the employment context. These three contexts are different
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from the personal context defined by person. Thus, the three classes are considered

to start three new contexts. Thus, we make them role-of their superclass person.

The other class which is considered to start a new context is the class

instructor. It defines the teaching context. This context is different from the

employment context, as it concentrates on a specific activity. Thus, it is identified as

the root of the context teaching. Thus, we make instructor a role-of its superclass

employee.

According to human expert judgement, there are no other classes in this

hierarchy, which start new contexts. Altogether, five classes have been identified as

root classes (see Figure 4.5).

Step 4 of our methodology inspects all the classes which have more than

one superclass in bottom-up order (reversing the order of the topological sort in

Figure 4.2). These classes are dept. chairman, teaching assistant, academic

admin, and assistant. Since each class with multiple superclasses can have at

most one category-of relationship, a human expert needs to identify at most one

major superclass for each of those four classes in Step 5 of our methodology. As

we mentioned before, there is a possibility of ambiguity in choosing roots for new

contexts. Such ambiguities exist in many modeling situations. One may argue that

academic admin is also the root of a context. However, we will not chose this

option.

The class dept. chairman has two superclasses, one is professor and the other

is academic admin. The main function of a chairman is to lead the department. He

also functions as a professor, for example in teaching a course, but this is a secondary

function for him. Hence, by Case 1, the class dept. chairman belongs to the same

context as academic admin. We make it category-of academic admin and role-of

professor.



Figure 4.5 The subschema in Figure 4.2 after step 3 of the methodology
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The class teaching assistant has two superclasses assistant and instructor.

Since assistant is a definitional superclass, while teaching is the functionality of a

teaching assistant, by Case 1, assistant is chosen as the major superclass. As a

matter of fact, we could come to the same conclusion using Case 2, as demonstrated

above.

The class academic admin has two superclasses professor and employee.

The purpose of having a professor's appointment for an academic administrator is to

provide him with a tenured position for the case of his resignation as an administrator.

Hence, by Case 1 the superclass employee is the major superclass.

The class assistant has two superclasses, grad student and employee. Since

assistant describes the student employment rather than his studies, it is in the same

context as employee and is category- of employee and role- of grad student.

After applying steps 1-5 of the methodology, each class with multiple super-

classes is category- of at most one superclass. Figure 4.6 shows the result of applying

our methodology to the schema in Figure 4.1. Role- of links are marked by dashed

lines.

The next two steps (Step 6 and 7) of our methodology deal with finding

diamond structures and resolve contradictory cases. There are three diamond

structures in Figure 4.6. They are <dept chair person, employee>, <teaching

assistant, employee>, and <assistant, person>. None of these three diamond

structures are contradictory cases. Thus, all subclass relationships in Figure 4.2 are

refined as either category- of or role- of in Figure 4.6.

In Step 8, the forest hierarchy of the category - of relationships of Figure 4.6 is

obtained by removing all role- of relationships. Figure 4.7 shows the different contexts

of trees of the forest. To summarize, the hierarchy rooted at person, containing 19

classes, is partitioned into five trees, two of which, person and alumnus, contain

only one class. The learning context contains three classes; the employment context



Figure 4.6 The result of applying the methodology to Figure 4.1
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contains nine classes; and the teaching context contains six classes. Thus, Figure 4.7

gives a concise abstract representation of Figure 4.1. After achieving a comprehension

of Figure 4.7, the user is ready to study the intricacies of the schema, by first compre-

hending the internal relationships inside each context and then considering the role-of

relationships connecting different contexts as shown in Figure 4.6. To this aim, the

user may pick one context at a time and study the relationships between classes of

this context and classes of the other contexts.

4.7 Applying the Methodology to the MED Schema

In the last section, we applied our methodology to a subschema of the university

database. In this section, we demonstrate our methodology by applying it to the

larger and more complex MED schema. The MED was built at Columbia Presby-

terian Medical Center [36, 37] and contains about 56,000 concepts. The MED

schema consists of 124 classes and 190 subclass relationships. Figure 4.8 shows the

schema after applying Step 1 of our methodology. Since the schema in Figure 4.8

is too large and complex for displaying on one screen 2 , we selected a subschema (see

Figure 4.9) which contains 34 classes and 52 subclass relationships to demonstrate

our methodology.

Step 2 of our methodology is topological sort. In Figure 4.9, all classes are

numbered from 1 to 34. The order we used is left-to-right breadth first search.

In Step 3, following the topological sort ordering, the MED subschema is

scanned top-down to identify all classes which define new contexts. All subclass

relationships from identified classes to their superclasses are refined as role- of.

The class MEDICAL ENTITY (1) is the unique root of the MED subschema.

It starts a new context. It does not have any superclass.

211 the reader felt that Figure 4.8 is unreadable, this is exactly proving our point.



102

Figure 4.7 Removing all role- of from Figure 4.6



Figure 4.8 The MED schema



Figure 4.9 The MED subschema
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The class DIAGNOSTIC PROCEDURE (14) which has one superclass

HEALTH CARE ACTIVITY (PROCEDURE) (5) starts a new context.

HEALTH CARE ACTIVITY (PROCEDURE) describes all the activities

of a health care plan and DIAGNOSTIC PROCEDURE specifically focuses

on the procedures which are for diagnostic purposes. Thus, DIAGNOSTIC

PROCEDURE is a role-of its superclass HEALTH CARE ACTIVITY

(PROCEDURE).

The class BLOOD GAS PANEL (22) has two superclasses ICD9 DIAG-

NOSTIC PROCEDURE (19) and LABORATORY DIAGNOSTIC BA-

TTERIES (23). BLOOD GAS PANEL refers the tests of concentrations of

various gases, for example, oxygen and carbon dioxide in blood samples. Blood

oxygen and carbon dioxide are controlled by adjusting the rate and depth of

ventilation and respiration. Both are factors affecting the acid-base balance of

blood. However, ICD9 DIAGNOSTIC PROCEDURE and LABORATORY

DIAGNOSTIC BATTERIES both describe general diagnostic procedures.

Thus, the class BLOOD GAS PANEL defines a new context and is a role- of

its superclasses ICD9 DIAGNOSTIC PROCEDURE and LABORATORY

DIAGNOSTIC BATTERIES.

In Step 3 of our methodology, 12 classes, including the root class Medical

Entity, are chosen to define new contexts. Figure 4.10 shows all these classes except

the root class as role- of of their superclasses.

In Step 4 of our methodology, all classes which have more than one non role-of

superclass are identified in a bottom-up order (reversing the order of the topological

sort in Figure 4.9). There are 13 classes with multiple non-role-of relationships to

their superclasses in Figure 4.10. They are (34), (33), (32), (31), (25), (21), (19),

(18), (16), (15), (13), (12), and (11).
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Figure 4.10 The subschema corresponding to Figure 4.9 after Step 3
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Step 5 of our methodology identifies at most one major superclass for each of

those 13 classes found in Step 4. Let us present some examples to demonstrate this

step.

The class CPMC BATTERY: PSEUDOMONAS SENSITIVITY

(PANEL 19) (31) has two superclasses ANTIBIOTIC SENSITIVITY PANEL

(26) and CPMC LABORATORY DIAGNOSTIC BATTERIES (27). CPMC

BATTERY: PSEUDOMONAS SENSITIVITY (PANEL 19) (31) is one of

the antibiotic sensitivity panel tests and is used to evaluate the anti-drugs activity

of cultured Pseudomonas cosampled from a patient. Its superclass ANTIBIOTIC

SENSITIVITY PANEL (26) which defines all antibiotic sensitivity panel

tests is a definitional superclass of CPMC BATTERY: PSEUDOMONAS

SENSITIVITY (PANEL 19). The other superclass CPMC LABORATORY

DIAGNOSTIC BATTERIES (27) defines CPMC laboratory procedures for

diagnostic purposes. According to case 1 of Step 5, ANTIBIOTIC SENSI-

TIVITY PANEL (26) is the major superclass of CPMC BATTERY:

PSEU-DOMONAS SENSITIVITY (PANEL 19) (31). Thus, CPMC BATTERY:

PSEUDOMONAS SENSITIVITY (PANEL 19) (31) is a category-of ANTI-

BIOTIC SENSITIVITY PANEL (26) and a role- of CPMC LABORATORY

DIAGNOSTIC BATTERIES (27).

Another example is the class CPMC BATTERY: ARTERIAL BLOOD

GAS PANEL (25) which has two superclasses BLOOD GAS PANEL (22) and

CPMC LABORATORY DIAGNOSTIC BATTERIES (27). Since BLOOD

GAS PANEL (22) defines various kinds of blood gas tests including the gas tests of

arterial blood, it is the definitional superclass of CPMC BATTERY: ARTERIAL

BLOOD GAS PANEL (25). Thus, CPMC BATTERY: ARTERIAL

BLOOD GAS PANEL (25) is a category -of BLOOD GAS PANEL (22)

and a role- of CPMC LABORATORY DIAGNOSTIC BATTERIES (27).
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The class ICD9 DIAGNOSTIC PROCEDURE (19) has two defini-

tional superclasses DIAGNOSTIC PROCEDURE (14) and ICD9 (OR CPT)

PROCEDURE (12). Since both superclasses contribute with equal importance to

the class ICD9 DIAGNOSTIC PROCEDURE (19), we cannot prefer one over

the other. (For different viewpoints, each one is playing a major role.) Hence, the

class ICD9 DIAGNOSTIC PROCEDURE (19) is a role- of both its superclasses.

This is a case of a role -of/intersection, denoted r/i in Figure 4.11. Figure 4.11 shows

the subschema after identifying the major superclass for each class listed in Step 4.

In Steps 6 and 7, all diamond structures are identified and checked whether

they are contradictory diamond structures. As we described in Step 7 of our

methodology, only diamond structures containing role- of/intersection need to

be checked. The diamond structure <ICD9 DIAGNOSTIC PROCEDURE

(19), HEALTH CARE ACTIVITY (5)> is the only one which contains

role-of/intersection (Figure 4.11). However, it is not a contradictory diamond structure.

In Step 8 the forest hierarchy is obtained by removing all role- of relationships

from Figure 4.11. Figure 4.12 shows the resulting partition of the subschema in

Figure 4.9 into 14 trees. The whole MED schema in Figure 4.8 is partitioned into 51

trees.

4.8 Utilizing the Forest Structure for Schema Comprehension

The partition into contexts results in a high level (macro) view of the application.

Each tree in the forest represents a micro view of one context. The relationships of

a schema can be divided into two kinds, intra-relationships and inter-relationships,

as follows. For every context there is a set of relationships completely contained in

the context, called intra- relationships. Role- of relationships which connect different

contexts and user-defined relationships connecting classes of two different contexts

are called inter-relationships.
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Figure 4.11 The MED subschema in Figure 4.9 after applying Step 4 of the
methodology.
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Figure 4.12 A forest structure of the MED subschema in Figure 4.9 after applying
the methodology.



111

To comprehend a complex schema, a user can first pick one context and study

the intra-relationships in this context. Then, he can study the inter-relationships

between two contexts at a time In this way, we divide the task of studying

all relationships into a number of smaller, well organized and more manageable

tasks. This process simplifies the comprehension process, due to the reduction in

the complexities of the subschemas versus the complexity of the original schema.

Consider, for example, a schema containing k contexts, with n classes in each

context. Suppose further that the number of intra-relationships within each context

is an and the number of inter-relationships of each pair of contexts is /3n. Then the

complexity of the schema is

On the other hand, when considering only a subschema of two contexts, the

complexity is

Hence, the complexity of considering only the inter-relationships between two

contexts is smaller by a factor of k — 1, compared to the whole schema. Thus, each

comprehension task is less complex than the task of comprehending the schema as

a whole.

4.9 Summary

In this chapter, we presented both a theoretical paradigm and a methodology to

identify a meaningful forest subschema of a given OODB schema. The extraction

of the forest subschema employs two approaches, informational thinning and parti-

tioning. We developed three rules which express limitations and refinements to the

modeling of the schema. Based on these three rules, a new technique for modeling

called disciplined modeling was introduced and a theorem of the existence of a
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forest subschema whose trees represent logical units was proved. A human-computer

interactive methodology was developed for finding a forest subschema, based on

the theoretical paradigm. Such a forest subschema functions as a skeleton of the

original schema and supports comprehension efforts. The methodology was applied

to a subschema of a university database and the MED schema. 19 classes of the

subschema of a university database were partitioned into five trees. The MED schema

with 124 classes was divided into 51 trees.



CHAPTER 5

A METHODOLOGY FOR PARTITIONING A VOCABULARY
HIERARCHY INTO TREES

5.1 Introduction

Controlled medical vocabularies ("vocabularies" for short) play an important role

in many medical enterprises that employ a large number of disparate information

systems (e.g., clinical databases). Often, each such system has its own inherent

"language" or terminology. A number of such vocabularies have appeared in the

medical field. Of note is the Medical Entities Dictionary (MED) developed and in use

at Columbia-Presbyterian Medical Center (CPMC) [36, 37]. Controlled vocabularies

have been shown to greatly facilitate the process of integrating medical information

systems [38] using different terminologies. They also help to standardize common

information handling tasks and reduce the overall cost of data processing.

In previous chapters, we presented using OODB modeling and schema parti-

tioning to enhance comprehension of controlled medical terminologies. An OODB

schema captures the complete structure of the vocabulary in a compact form which

aids in its comprehension. However, for the much larger vocabularies, the number of

instances of a class in the corresponding OODB schema can be large. For example,

each class in MED schema summarizes on average 500 concepts. A vocabulary of 500

concepts is still hard to understand. Thus, further partitioning efforts are needed to

enhance comprehension.

In this chapter, we are concerned with providing a tool to help users

comprehend vocabularies. In particular, we present a methodology to make large

and complex vocabularies easier to understand. Our approach is based on the parti-

tioning of a vocabulary into manageably -sized, meaningful units. The partitioning

assumes the existence of a vocabulary with an IS-A hierarchy and centers around

this IS-A (or concept subsumption) hierarchy.
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The backbone of many controlled vocabularies is the IS-A hierarchy which

relates more specialized concepts (subconcepts) to more generalized concepts (super-

concepts) that subsume them. The IS-A hierarchy also serves as the basis for property

inheritance. In general, the IS-A hierarchy of a controlled vocabulary will be a

directed acyclic graph, permitting multiple superconcepts and multiple inheritance.

Our methodology is based on the following two premises: (1) A vocabulary's IS-A

hierarchy taken alone is much more comprehensible than the entire vocabulary itself;

(2) A "forest" IS-A hierarchy (i.e., a collection of trees in which every link is an IS-A

link and where, by definition, no concept has more than one superconcept) is easier to

comprehend than a directed acyclic graph containing the same number of concepts.

With these premises in mind, we develop a theoretical framework that reduces

an entire vocabulary (typically represented as a large semantic network) into a forest

hierarchy composed of small trees, each representing a logical unit whose graphical

representation can fit on a computer screen. This reduction in size makes it easier

for users and system designers alike to comprehend the contents of the vocabulary

in a modular fashion.

Our methodology relies on an interaction between a user (presumably the

vocabulary designer or administrator) and the computer. The process requires

that a user refines the vocabulary's IS-A hierarchy according to some prescribed

principles so that it conforms to what we call the rules of disciplined modeling. After

the refinement, the computer can automatically reduce the vocabulary to a forest

structure. We formally prove that our approach always finds a forest partition as

long as the rules of disciplined modeling are adhered to. Let us note that partitioning

networks (graphs) according to various criteria has been shown to be NP-complete,

i.e., computationally intractable [50].

In Chapter 4, we have employed a similar paradigm to reduce the complexity

of large object-oriented database (OODB) subclass hierarchies. In this chapter,
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we rework and adapt the approach to the IS-A hierarchy of an extensive, complex

vocabulary. To ground our discussion in a real-world application, we will focus on

the MED as our test-bed vocabulary. The methodology developed herein will be

applied to a complex subnetwork of the MED.

Our approach is closely related to the principle of 'orthogonal taxonomies' as

implemented in the GALEN project [120, 121]. There, a taxonomy is organized from

the start by requiring that all primitive entities have only one primitive parent. In

our methodology, an existing vocabulary is partitioned to achieve a similar effect.

The rest of this chapter is organized as follows. In Section 5.2, we describe

the notions of informational thinning and partitioning with respect to vocabularies.

Section 5.3 introduces the rules of disciplined modeling and proves that they make

it possible to obtain a meaningful forest hierarchy from a directed acyclic graph.

In Section 5.4, we describe our methodology for partitioning the vocabulary. In

Section 5.5, we apply the methodology to a very complex portion of the MED.

Section 5.6 contains the summary.

5.2 Informational Thinning and Partitioning

In this section, we describe two approaches which are used to enhance the compre-

hension of large and complex vocabularies. If a vocabulary network, containing a vast

amount of objects (representing concepts), relationships and attributes, is displayed

on a screen, then the user typically has difficulties comprehending and dealing with

it. For such an overwhelming display of the InterMED, see [116].

According to our experience, the difficulties of understanding a vocabulary

stem more from the number of relationships than from the number of concepts. We

define the complexity c of a network or vocabulary as the ratio of the number of

relationships between objects to the number of objects. As we mentioned, the MED

is an example of a large, complex vocabulary. The complexity of the MED is c
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(61000 71000)/48000 ti 2.75. For two networks with the same number of objects,

the more complex network is more difficult to comprehend. Thus, there exists a need

to reduce the number of relationships in order to display a simplified comprehensible

subnetwork of the vocabulary with a lower complexity. Informational thinning is

used to achieve this goal.

Definition 1: Informational thinning is a technique for eliminating partial infor-

mation from the display of a whole network. This is done by prioritizing various kinds

of properties of the objects in the network and displaying only kinds of properties

with high priority.

In our graphical OODB schema editor OODINI [66], we support two levels

of informational thinning. One level removes all attributes and the other removes

attributes and non-hierarchical relationships leaving only the IS-A hierarchy displayed.

The latter level of informational thinning will be used in the figures of this chapter.

The hierarchy of IS-A relationships is the backbone of a vocabulary, which helps

users to comprehend it. The use of informational thinning (level 2) permits us to

concentrate on the IS-A hierarchy.

To test our theoretical paradigm and methodology we looked for a subnetwork

of the MED with a very complex hierarchy. Our reasoning is that for our techniques

to be applicable for the whole MED vocabulary, it is necessary, although not

sufficient, to be successfully applicable to such a subnetwork. We identified

a subnetwork with a very complex hierarchy in the MED as follows. From

the 48,000 concepts in the MED, the concept CPMC Drug: Cortisporin

Opthalmic Ointment has the most ancestors, 39. The subnetwork with a complex

hierarchy, which we call cortisporin subnetwork, includes the concept CPMC

Drug: Cortisporin Opthalmic Ointment and all its ancestors. It contains 821

attributes, 62 IS-A relationships and 157 other relationships. Thus, the complexity
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of cortisporin subnetwork is c = (62 + 157)/(39 1) ti 5.5. Such a complex network

with so many properties cannot be displayed on one screen.

In Figure 5.1, we show the hierarchy of IS-A relationships of cortisporin

subnetwork. This hierarchy has the same number of concepts as the original

network but fewer relationships. The complexity of the IS-A hierarchy of cortisporin

subnetwork is c = 62/40 1.55, a much lower complexity than that of cortisporin

subnetwork itself. For comparison, the complexity of the IS-A hierarchy of the whole

MED is c = 54547/42744 1.27 which is lower than that of cortisporin subnetwork.

To help in the forthcoming analysis, we added in Figure 5.1 some concepts which

are not the ancestors of the concept CPMC: Cortisporin Opthalmic Ointment.

The added concepts are (33), (34), (39), (41), (43), and (45).

Obviously, the use of informational thinning makes it easier to understand a

vocabulary. But comprehending a large and complex IS-A hierarchy may still be very

difficult, although informational thinning was applied, due to multiple inheritance

and the large number of objects. Considering the limitations of human compre-

hension capacity and the size of computer monitors (e.g., a network of less than

20 objects can easily fit on one computer screen), we will provide a set of less

complicated and smaller subhierarchies of the original IS-A hierarchy to simplify

the comprehension process. To realize this target, another approach, partitioning, is

introduced.

Definition 2: Partitioning means to divide a complex, large semantic network into

disjoint smaller subnetworks which comprise logical units of the original network and

jointly constitute the original network.

To partition a graph into logical units, it is necessary to comprehend it first.

Thus, the logical partitioning of a network seemingly results in a vicious cycle. Our

experience has been that partitioning into logical units tends to minimize the number

of relationships between different units. Unfortunately, the problem of partitioning a
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Figure 5.1 A complex subhierarchy in the MED with topological sort order after
informational thinning
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network according to the above or similar criteria is NP-complete, that is, no efficient

algorithm is known for it, and it is conjectured that no such algorithm exists [50]. A

possible line of action is to combine informational thinning and partitioning. After

an IS-A hierarchy is obtained by applying informational thinning to the original

network, the partitioning technique is put to use by partitioning the IS-A hierarchy

and then imposing this partition on the original network.

Due to multiple inheritance, the IS-A hierarchy forms a directed acyclic graph,

just like our cortisporin subhierarchy shown in Figure 5.1. If the IS-A hierarchy is

a directed acyclic graph, its partitioning problem in general is still NP-complete.

On the other hand, if it is a tree, then there exist efficient algorithms for various

partitioning criteria, e.g., max-min or min-max [3, 9, 10, 11, 81, 92, 118]. In the

next section, to make the partitioning possible, we will present a new technique for

modeling called disciplined modeling. Based on the rules of disciplined modeling

we develop a theoretical paradigm and methodology to identify a meaningful forest

subhierarchy within the IS-A hierarchy. If the trees in the forest hierarchy are still

too large, the above mentioned efficient partitioning algorithm may be applied to

them, to yield smaller trees.

5.3 Theoretical Paradigm Using Disciplined Modeling

In order to identify a meaningful forest subhierarchy of an IS-A hierarchy, we shall

look into the nature of the specialization IS-A relationship. In previous OODB

research [51], we and others [111] have identified two different kinds of SUBCLASS

relationships between object classes, called category-of and role-of. Both are special-

ization relationships. Category- of relates the specialized class to the more general

class where both are seen in the same application context. Role-of relates the

specialized class to the more general class where the two classes are in different

contexts of the application.
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In [117] we presented a theoretical paradigm for partitioning of an OODB

hierarchy schema. However, modifying the theoretical paradigm from the class

level [117] to the instance level requires careful examination. One issue is how to

interpret category-of and role-of at the instance level. Naturally, these relationships

between classes imply category-of and role-of relationships between objects which

are instances of the corresponding subclass and superclass. Similarly, they can be

defined between objects of a semantic network as follows.

Definition 1: Category-of is a specialization relationship which relates the

specialized object to the more general object where both are seen in the same

application context.

Definition 2: Role-of is a specialization relationship which relates the specialized

object to the more general object where the two objects are in different contexts of

the application.

For example, Aminoglycoside Preparations is category-of Antibiotic

Preparations and Neomycin preparations is category-of Aminoglycoside

Preparations, because all of them are in the same application context "Anti-

Infective Agents." On the other hand, Neomycin preparations is role-of Drug

Enforcement Agency (DEA) Class 0-Drug Without Abuse Potential in

the context of Drug Enforcement Agency (DEA) Controlled Substance

Category (see Figure 5.6 and 5.7).

A second issue is that in [117] we discussed a relation "represents the same

real-world object" between instances of classes. However, in a semantic network-

based vocabulary, objects describe general concepts rather than concrete, real-world

objects. Therefore, we need to find an alternative for the relation "represents the

same real-world object" to be employed in the necessary proof for the vocabulary

environment. The impact of this difference on the development of our theoretical
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paradigm has to be inspected. An adapted proof technique is presented later in this

section.

The decision whether a given IS-A relationship in the hierarchy is either a

category- of or a role-of depends on whether the superobject and object are in the

same context or not. An intuitive understanding of the application is required to

help make this decision. However, this decision is not always so easy. In spite

of extensive research, [22, 23, 60, 74, 94, 7, 128], there is still no widely accepted

definition of context. Building a gigantic knowledge base in the CYC project [86] was

found doomed to failure if contexts were not introduced as a structuring mechanism.

Following the research of [22, 23], others have assumed that a context is a first-class

object used to parameterize axiom schemata [60, 94]. However, no clarity about the

nature of contexts themselves is gained by this approach. As a workshop on context

in Natural Language Processing showed [74], researchers tend to agree that they

disagree on what contexts are. Our approach is that we are not trying to define the

notion of context. Rather we are making the pretheoretical (axiomatic) assumption

that contexts exist in human thinking, and we are requiring the designers and users

of an application to identify them explicitly.

In [117], we provided a theoretical paradigm for the existence of such

assignments of classes to contexts. This assignment results in a forest subhierarchy

of a directed acyclic graph hierarchy, which supports increased comprehension of the

OODB schema. The theoretical paradigm is supported by three rules of disciplined

modeling which ensure that a forest subhierarchy can be identified. However, while

in [117], disciplined modeling was described for a schema of classes, we modify it

now for a hierarchy of objects. This modification will provide us with a theoretical

paradigm for partitioning a large complex hierarchy of objects into small parts,

each of which has a tree structure. For further explanations and motivations on

disciplined modeling beyond the material in this section, see [117].
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Before we give the rules of disciplined modeling, we define the mathematical

relation equicontext, or "in the same context," between objects. A pair (a, b) of two

objects belongs to the equicontext relation if both objects a and b belong to the same

context.

Rule 1: The equicontext relation between objects is an equivalence relation

satisfying three conditions of reflexivity, symmetry and transitivity. Thus it

partitions all objects of a network into disjoint contexts.

Rule 1 forces the designer into explicit specification of the contexts in his

hierarchy and leads him to resolve some ambiguous situations. We do not claim

to have a unique way of assigning objects to contexts. As we are dealing with a

problem of data modeling, there are usually different ways to model the same real-

world environment. We further do not claim that contexts are naturally disjoint.

To the contrary, in many applications, initial contexts may overlap. However, disci-

plined modeling forces the modeler to design disjoint contexts, leading to the desired

partitioning.

Rule 2: Two objects which are category-of specializations of a superobject cannot

have a common category-of descendant object, and one cannot be a category-of

descendant of the other.

According to our definition, the category-of relationship is used for refinement

in the case where the superobject and the object are in the same context. Rule

2 guarantees that when we refine a concept represented by an object into several

subconcepts in the same context, we achieve a partition into mutually exclusive

concepts.

In the next section, we discuss techniques how to specify IS-A relationships as

category-of or role-of in different cases in a way which satisfies Rule 2. Examples

are provided in Section 5.5.
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Rule 3: For each context there exists one object which is the major (or defining)

object for this context such that every object in this context is a descendant of this

object.

This means that each context has only one object which is a "root" for it, i.e.,

there is a directed path of category-of relationships from each object in the context

to this root object. Note that we use here the notion of a directed tree where all the

directions are towards the root. In graph theory terms, the root is a sink.

We note that sometimes in a semantic network the designer would like to group

a subnetwork which has several roots, rather than one, together into one context.

In such a case, the designer can add an extra object and make these original roots

children of the extra object. The new root will be named to reflect the "meaning"

of its context. For example, there are many terms in the MED for procedures which

doctors order. Thus, these terms are grouped into one context "procedure." There

are also many terms in the MED for tests grouped into a context "tests." Tests are

typically ordered as components of procedures. However, in some cases, a component

can be ordered by itself and such a test therefore has the properties of a procedure

(e.g., an order code, a cost, etc.). Thus, all tests which can not be ordered separately

will reside in the "test" context. All other tests which can be ordered separately

will be grouped into another context "orderable test," because all of them have

properties of tests and procedures at the same time. The context "orderable test"

has many roots. It has been helpful to introduce a new object, Orderable Test, as

the root of this context to keep track of those tests. All those tests become children

of Orderable Test (see Figure 5.2).

In a previous chapter, we already proved the following theorem: "Using disci-

plined modeling, a class has at most one category-of superclass." Now, we need to

prove the corresponding theorem for the object level.



Figure 5.2 Adding new object as the root of a context
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Figure 5.3 The hierarchies demonstrating our proof

Theorem: Using disciplined modeling, an object has at most one category- of super-

object.

Proof: Assume to the contrary that there exists an object a which has two category-

of superobjects b and c (see Figure 5.3). According to the definition of category- of ,

a and b are in the same context. Similarly, a and c are in the same context. By the

transitivity of the equicontext relation (Rule 1), b and c are in the same context.

By Rule 3, there is a major (root) object d for this context such that the objects

b and c are category- of descendants of d. This implies that there is a sequence of

category- of relationships from b (c) up to d. (Note that actually d may be one of the

objects b or c. This case does not cause a problem due to the second possibility in

Rule 2. However, we avoid referring to this option in the rest of the proof to avoid

complication of the presentation.) If the paths of category-of relationships from b

to d and from c to d are not disjoint (i.e. the object d is not the first object which

appears in both paths), then denote now by d the first such joint object on these two

paths. Let e (f) be a subobject of the object d on a path of category- of relationships

from b (c) to d. Hence, object a is a category - of descendant of object e (f). Thus,

both the category- of subobjects e and f of the object d have a common category- of

descendant object a. But by Rule 2, such a situation is forbidden, a contradiction.
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Due to this theorem, we can guarantee that the category-of hierarchy has

a forest structure which contains one or more trees. This forest structure serves

as backbone of the hierarchy and will be critical in the efforts to comprehend the

hierarchy and partition it into manageable subhierarchies.

5.4 A Methodology for Context Partitioning of a Hierarchy

We have described a conceptual framework which guarantees that for the price of

following the rules of disciplined modeling, there can be found a forest-structure

subhierarchy of the given directed acyclic graph hierarchy. This forest structure

serves as a skeleton supporting the comprehension of the hierarchy. Furthermore,

the trees of the forest represent contexts which are logical subhierarchies concen-

trating on a specific subject area, further supporting the comprehension of the

original hierarchy.

In this section, we will describe a methodology to transform an existing

hierarchy which was not designed according to the rules of disciplined modeling. By

a methodology we mean a process that involves human-machine cooperation. The

human domain expert is called upon to make some judgement decisions based on

his understanding of the application while the computer supports the human by

providing results of algorithmic procedures for tasks which do not involve complex

intuitive decisions but might require many computational steps. By domain expert

judgement we refer to:

1. Identifying disjoint contexts in the hierarchy, which correspond to subtrees of

category- of relationships in the forest structure obtained.

2. Defining some IS-A relationships as role- of and others as category- of , so that

the rules of disciplined modeling are followed.
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In the following description of the methodology, we will specify which parts

are performed by a computer and which are performed by a human expert. We

will differentiate between three kinds of role-of relationships. They are regular role-

of , role-of/intersection and role-of/category-of . However, for partitioning purposes,

they are all just role-of . The result of our methodology is a refinement of the IS-A

hierarchy. Every IS-A link becomes either a category-of or a role-of . For the purpose

of partitioning, the category-of links will form a forest.

Step 1: Topological sort. (Computer)

Arrange the hierarchy in topological sort order.

Step 2: Identify roots of contexts. (Human)

Scan the hierarchy top-down according to the order from Step 1. In this

scanning, identify objects which should serve as defining objects (roots) for contexts.

The choice should be made by the meaning and importance of the object in the

application compared to its superobjects' meaning. These chosen objects start new

contexts rather than refining the contexts of their superobjects.

After these objects are identified, they are role-of their superobjects. This kind

of role-of relationship is a regular role-of , where the relationship models a switch of

context, that is, the relationship goes from an object in one context to an object in

another context.

Step 3: Multiple superobjects. (Computer)

List all objects with multiple superobjects in bottom-up order. In the discussion

following Step 4 and at the end of this section, we will explain why we are using

bottom-up processing at this point.

Step 4: Identify primary parent. (Human)

For each of the objects identified in Step 3, the expert needs to identify at

most one superobject which is in the same context as the object. The relationship to
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this superobject will be defined as a category- of relationship while all other super-

objects should belong to different contexts than the "chosen" superobject and the

relationships to them are defined as role- of.

From our experience, for most of the objects with multiple superobjects an

expert can easily determine which of the superobjects is the defining one, i.e., which

should be in the same context and have a category - of relationship directed to it.

There is a minority of cases where the decision about a major or definitional super-

object of a given object is not easy. In such cases, we try to distinguish which of

the several superobjects, if any, should have a category-of relationship pointing to

it, based on the partial context information we have already accumulated in our

bottom-up processing.

We distinguish several cases.

Case 1: One of the superobjects is definitional while the others are functional. For

example, drugs can be classified by the chemicals that they contain (definitional)

and by their therapeutic uses (functional). Then we look at the context to which the

object and its descendants belong. (This is the reason for the bottom-up processing).

We try to determine whether the nature of the category- of relationships is functional

or definitional. If it is definitional, we will prefer the definitional superobject. If it

is functional, then we will prefer the functional superobject (or if there are several

functional superobjects, we will prefer the one which fits the function appearing

in the context of the object). If the object is the only object in its context, we

will choose the definitional superobject. In this case, one superobject is chosen as

primary superobject. The object is category- of this primary superobject and role-of

the other superobjects. This kind of role-of relationship is a regular role-of since a

switch of context from superobject to object has occurred.

Case 2: All superobjects are definitional with the same importance or indistin-

guishable importance as each of them contributes to the definition of the object in
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an equal or indistinguishable way. In such a situation, the object with multiple

superobjects could belong to the context of any of its superobjects. However, by

the Rule 1 it cannot belong to more than one context. Also, we have no reason to

prefer one over the other. Each choice of context will disassociate the object from

the other contexts. This conflict is resolved by requiring that such an object starts

a new context which represents the concept obtained as intersection of the concepts

of all its superobjects. Thus, this object is role-of all its superobjects. We call this

type of role-of "role-of/intersection" represented as r/i in the figures. By this term,

we emphasize that this is not an actual case of a switch of context but an artificial

case due to the requirement of the theorem to forbid two category-of superobjects.

Without the theorem, we could probably leave the intersection concept in the context

of its superobjects if all belong to one context.

Case 3: The concept of the object is a combination of the concepts of the multiple

superobjects in different contexts, but one of them contributes more to the meaning

than the others. Then the category-of relationship should point to the preferred

superobject, as those two should belong to the same context, while the other

relationships should be role-of relationships.

Step 5: Identify diamond structures. (Computer)

Scan the hierarchy according to the topological order bottom-up to find all the

objects with more than one superobject. For each such object a and for each pair of

superobjects s1 and s 2 of a, find a lowest common ancestor b of both s1 and s2 . For

each pair of such objects a and b, output the diamond or extended diamond structure

(represented by < a, b>) containing a, b and all the objects which are descendants

of b and ancestors of a. The object a is called the source of < a, b>, and the object

b is called the sink of < a, b>.

Step 6: Diamond cutting. (Human)



Figure 5.4 The diamond structure

Each diamond or extended diamond structure must contain objects from more

than one context in order to fulfill Rule 2 of disciplined modeling. After executing

the first five steps we discussed above, all diamond structures already satisfy Rule 2.

But there is one case where we must artificially change the category-of relationships

to role-of relationships, to resolve a contradiction.

In this case, which we call contradictory diamond case, the source d of the

diamond structure < d,a> is a role-of/intersection of its superobjects. All other

objects in the diamond structure belong to one context (see Figure 5.4). Since the

source d is the intersection of two superobjects b and c, they cannot both belong to

the same context of their superobject a. Otherwise, because the intersection of a

context with itself will result in the original context, the intersection must belong to

this common context. Thus, the objects b and c are also defined as separate contexts.

The category-of relationships are changed, due to Rule 2, to role-of . However,

we want to maintain the distinction between this role-of and the two other kinds.

Therefore, we denote this kind of role-of as "role-of/category-of." It is represented

by r/c in the figures. This concludes the six steps of our methodology.

Note that the methodology used both top-down processing and bottom-up

processing. The determination of the context of objects is performed top-down, as

every context root itself has a top-down nature, since the context of the root concept

defines the context of its descendants. When scanning the hierarchy top-down, an
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expert can identify where an object defines a new context rather than continuing a

context of one of its superobjects which has been processed already.

On the other hand, when determining bottom-up to which context an object

belongs, choosing from among its superobjects, it is important to know the

descendants of the object which belong to the same context. This knowledge

will help to determine which of the contexts of the superobjects fits best to the

already constructed context.

5.5 Applying the Methodology to a Complex Hierarchy

In order to test the effectiveness of our methodology, we applied it to the previously

mentioned cortisporin subnetwork of the MED. First, informational thinning was

used to obtain a directed acyclic graph hierarchy out of this subnetwork (Figure 5.1).

Then we used the methodology introduced in the previous section to partition the

hierarchy into trees. Each tree produced by the partitioning is a logical unit in the

forest hierarchy. The root object of a tree defines the unifying context for the objects

in that tree.

Step 1, topological sort, is applied to the hierarchy of Figure 5.1. Since there

are degrees of freedom in applying topological sort to a directed acyclic graph, the

order we used is from left to right and breadth first search [5]. The object numbering

from 1 to 46 in Figure 5.1 reflects this order.

In Step 2, following the topological sort ordering, the domain expert scans

the hierarchy top-down to find all objects which define new contexts. All IS-A

relationships from these objects to their superobjects are defined as role-of.

Note that by specifying IS-A relationships as category-of or role-of, the

designer is making modeling decisions, which may differ from one designer to another,

influencing the emerging contexts. Modeling decisions made by a pharmacist will

differ from those made by a surgeon. Thus, each of them can create his own local



132

partitioning of the vocabulary which represents his view of the vocabulary. In our

consideration in this section, we try to take the inclusive approach of a vocabulary

administrator (VA).

Because the concept Medical Entity (1) is the unique root for all other

concepts in the MED, it starts a new context and it does not have any category-

of or role-of superobjects.

Following topological sort order, we can see the concept Conceptual Entity

(2), which is a straightforward specialization of its superobject Medical Entity (1),

in the same context as (1). Thus, concept (2) is category-of its superobject (1). The

concepts Intellectual Product (3), Orderable Entity (4), Classification (5),

Pharmacy Concepts (6), and American Hospital Formulary Service Class

(7) are all straightforward specializations of their superobjects. In our intuitive

judgement, they are also similar in nature to their superobjects, and thus they are

in the same context as their superobjects. Thus, all of them are category-of their

superobjects.

The concepts Drug Enforcement Agency (DEA) Controlled Substance

Category (8), Drug Allergy Class (9) and CPMC Formulary Drug Forms

(10) have only one superobject Pharmacy Concepts (6) which is a broad term

that refers to various ways of grouping drug concepts. But concept (8) defines drug

concepts that are controlled by the DEA while concept (9) is a group of drug concepts

that have allergic or antiallergic effects and concept (10) refers to the dispensation

form (tablet, injectable, etc.) of the drug. Thus, all of these objects represent

drug classifications according to various new dimensions and are considered to be

defining objects for new contexts. All of them are regular role-of children of their

superobjects.

The concept Pharmacy Items (11) has two superobjects. One is Pharmacy

Concepts (6) which was analyzed above; the other is Orderable Entity (4)
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which describes a heterogeneous group of concepts that can be ordered and may be

pharmacy or non-pharmacy concepts. Thus, the concept (11) is defined as a root

object for a new context, as it is a classification according to a new dimension. It is

a regular role- of its two superobjects.

The concept Anti-Infective Agents (17) has two superobjects which are

CPMC Formulary Drug Item (16) and American Hospital Formulary

Service Class (7). Both superobjects define formulas of various pharmacological

preparations and contribute their own formulations (one from CPMC and the other

from American Hospital Formulary) to the concept. The concept (17) is neither

in the same context as (16) nor (7). It is role- of both superobjects and starts a

new context. The concepts Eye, Ear, Nose and Throat Preparation (18),

Hormones and Synthetic Substitutes (19), Anti-Inflammatory Agents (20)

and Skin and Mucous Membrane Agents (21) all require the same analysis as

(17). All are role- of their superobjects and are root objects for their contexts.

Consider the concept Glucocorticoid Agents (29); it has two superobjects,

Adrenal Agents (24) and Anti-Inflammatory Agents (20). Glucocorticoid

Agents are secreted by Adrenal glands and therefore the superobject (24) indicates

the physiological source for the Glucocorticoid group of agents. Another child of the

concept (24) describes Mineralocorticoids (Aldosterone) (not shown in the figure)

which are functionally distinct from Glucocorticoids. (20) describes a heterogeneous

set of concepts that includes steroidal anti-inflammatory drugs like Glucocorticoids

and non-steroidal anti-inflammatory agents like Aspirin, Ibuprofen, Indomethacin

and Phenylbutazone Preparations. Therefore, (29) starts a new context and is role-

of its two superobjects.

Let us check the concept Polymyxin B Preparations (35) which has one

superobject Miscellaneous Antibiotics (27). The superobject (27) describes a

heterogeneous group of antibiotics that belong to chemical families that do not fall
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into the major antibiotic families like Penicillins, Cephalosporins,

Aminogly-cosides, etc. Some of the subobjects of (27) are Vancomycin (a glycopeptide),

Bacitracin Preparations (a polypeptide), and Clindamycin (a lincosamide). The

concept (35), which is a cyclic polypeptide, is a child of the concept (27). It is in the

same context as its superobject (27). It does not start a new context and is therefore

category- of the superobject (27).

No other objects are determined to start a new context. As a result of this

process we have 11 defining objects and contexts. These objects, except for the root

concept Medical Entity of the whole vocabulary, are role- of their superobjects.

See Figure 5.5 for the state of the hierarchy at this step of the analysis. We use our

graphical notation [66] to display a category- of link by a solid arrow and a role- of

link by a dashed arrow.

In order to improve the clarity of the presentation and to eliminate complicated

medical terms, we will sometimes use only the topological sort numbers to represent

these medical terms in the balance of this section.

Step 3 of our methodology is to find all the objects which have more than

one superobject in bottom-up order (reversing the order of the topological sort in

Figure 5.1). These objects are (46), (44), (42), (40), (38), (37), (36), (32), (31), (30),

(29), (28), (26), (25), (23), (21), (20), (19), (18), (17), and (11).

Because the number of primary superobjects for each object with multiple

parents is at most one, the domain expert needs to identify at most one primary

parent for each object listed above, in Step 4 of the methodology. For example, the

concept CPMC Drug: Cortisporin Opthalmic Ointment (46) has three super-

objects, Bacitracin/Hydrocortisone/Neomycin/Polymyxin B Combination

Preparations (44), Drug Dispensed by Gram (15) and Eye, Ear, Nose and

Throat Antibiotics (28). The superobject (44) defines the chemicals that form the

Cortisporin Opthalmic Ointment. They uniquely define the structural components
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Figure 5.5 The subhierarchy in Figure 5.1 after executing methodology Step 2
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of the ointment, and therefore by Case 1 of Step 4 (44) is the primary superobject

of (46). The superobject (15) specifies the mode of dispensation and the superobject

(28) specifies the site and action, and therefore both do not define the context of the

concept. Thus, according to Case 1 of our methodology, (46) is category-of (44),

role-of (15) and role- of (28).

Let us check another object which has more than one superobject. The

concept Bacitracin/Hydrocortisone/Neomycin/Polymyxin B Combination

Preparations (44) has two superobjects, Bacitracin/Neomycin/Polymyxin B

Combination Preparations (40) and Hydrocortisone/Neomycin/Polymyxin

B Combination Preparations (42). Both superobjects contribute two chemicals

common to both concepts (Neomycin and Polymyxin B) to the concept. In addition,

(40) contributes Bacitracin and (42) contributes Hydrocortisone. All these chemicals

together define the concept (44). According to Case 2 of Step 4, it is not possible

to identify the primary superobject. Hence it is role- of its superobjects. As we

defined before, this kind of role- of is role - of/intersection. In Figure 5.6, we marked

this role- of as "r/i" to distinguish it from a regular role- of. A similar analysis can

be applied to all concepts that are roots of drug combinations like (40), (42), (38),

and (37).

Another example is the concept Bacitracin Preparations (31) which has two

superobjects, Miscellaneous Antibiotics (27) and Drug Enforcement Agency

(DEA) Class 0-Drug Without Abuse potential (12). We already analyzed the

superobject (27) in Step 2. (31), which is a polypeptide, is a child of (27). It is

in the same context with its superobject (27). The other superobject (12) simply

indicates a classification for the DEA according to a drug's abuse potential and is

not a definitional superobject for the concept. Thus, (31) is category-of (27) and

role-of (12).



Figure 5.6 The subhierarchy in Figure 5.1 with category - of and role-of
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After Step 4 is completed, none of the objects with multiple superobjects

in Figure 5.6 has more than one primary parent. That means that each object is

category-of at most one superobject.

Now we need to identify the diamonds or extended diamonds structures in

bottom-up order. As discussed above, we use a pair <A, B> to denote a diamond

structure with A as source and B as sink. The (extended) diamond structures in

After we identify all the (extended) diamond structures in Figure 5.6, we need

to check whether any <A, B> is a contradictory diamond case as described in Step

6. If such cases exist, we need to change the appropriate category-of relationships

to role-of relationships.

One of the extended diamond structures is <(30), (6)>. It is already divided

into three contexts. It is not a contradictory diamond case, thus, we do not need to

do anything about it.

Now, let us examine <(37), (27)>. As a result of Step 2 and Step 4, both

concepts (31) and (35) would be category-of concept (27). The source concept (37) is

role-of/intersection of two superobjects (31) and (35) according to the result of Step

4. This diamond structure is a contradictory diamond case as described in Step 6.

Thus, at least one of the superobjects (31) and (35) must be made role-of/category-of

the superobject (27). Since both concepts (31) and (35) are in the same configuration

that we encountered before, we cannot choose only one to be role-of/category-of their

superobject. Thus, both of them now are role-of/category-of their sup erobject. In

Figure 5.6, the role-of/category-of relationship is represented as r/c. This is the only
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diamond structure in Figure 5.1, for which the contradictory diamond case of Step

6 holds. In this way, we represent the knowledge that both concepts (31) and (35)

were separated from their parent's context just to fulfill the requirements of Rule 2.

But for other purposes, they and their category-of descendants may be considered

part of the context to which the concept (27) belongs.

After all IS-A relationships in Figure 5.1 have been changed to category-of or

role-of , the forest subhierarchy of the original subnetwork is obtained by removing

all the role-of relationships. Figure 5.7 shows all contexts as trees in the forest. The

relationship between objects of different contexts (trees) is role-of .

The hierarchy in Figure 5.1 is partitioned into 18 contexts, many of which

are very small and seem to be too detailed. But note that this is not a typical

subnetwork of the MED. By choosing a subnetwork with a very complex hierarchy

we ended up with a network with many interrelated subjects. Furthermore, even the

contexts shown in Figure 5.7 are not complete since some terms which belong to these

contexts are not shown as they are not ancestors of (46). To demonstrate this, we

added in Figure 5.7 some of those extra concepts A, B, and C representing CPMC

Drug: Polysporin Opthalmic Ointment 3.5 Gm, CPMC Drug: Polysporin

Topical Ointment 30 Gm, and CPMC Drug: UD Polysporin Ointment.

We applied our methodology to the InterMED (an offshoot of the MED)

containing about 3,000 concepts. It was partitioned into 545 contexts, 394 of them

consisting of single concepts due to the InterMED's incompleteness. (I.e., if more

concepts of the MED would be added to the InterMED, then some of these singleton

concepts would get descendants and turn into actual contexts.) Thus, the InterMED

is practically partitioned into 151 actual contexts with an average size of 16. This

partition of the InterMED achieves our original goal of partitioning the vocabulary

into screen-sized, logical units reasonably comprehensible to a user.



Figure 5.7 The forest subhierarchy of Figure 5.1
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5.6 Summary

Vocabularies promise to be important tools for many medical information processing

tasks. They can help overcome differences in terminology between different databases

and information systems and different categories of users. Unfortunately, the job of

understanding and maintaining the vocabulary itself is difficult and time-consuming.

A graphical representation can help in the process of understanding most vocabu-

laries. However, if the vocabulary is very large, the graphical representation rapidly

loses its intuitive appeal. In this chapter, we have presented a methodology for

partitioning a (graphical) vocabulary representation into meaningful units.

Disciplined modeling assumes a vocabulary that is structured around a directed

acyclic graph of IS-A relationships. It defines three simple rules that, if followed,

guarantee that a forest, i.e. a collection of trees, can be identified, which partition

the vocabulary into meaningful units called contexts. Based on this formal result, we

presented a methodology for partitioning an existing vocabulary into contexts. As

computers cannot (yet) judge "meaning" well, our methodology relies on the close

interaction between human and computer. The result of the partitioning process

can be used to study a single context at a time and the interaction between pairs

of contexts. This presents a major improvement over studying "the part of the

vocabulary that is just now displayed in the window."

Two experiments with the methodology were presented. The first one used a

very complex subnetwork of the MED vocabulary, which poses a challenge due to its

complexity. The second one used the InterMED, a medium sized vocabulary. Both

experiments demonstrated the effectiveness of the methodology.

To date, we have only anecdotal evidence that the partitioned vocabulary is

easier to use than the original source vocabulary. We are planning a human-factors

evaluation of the results of our methodology using students in the Biomedical Infor-

matics program at the University of Medicine and Dentistry of New Jersey. We
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expect that such a study will show that students with access to our partitioned

vocabulary will solve a given problem faster and more accurately than students in a

control group.



CHAPTER 6

USING A SIMILARITY MEASUREMENT TO PARTITION A
VOCABULARY OF MEDICAL CONCEPTS

6.1 Introduction

In order to improve the quality of medical communications, the medical community

has created a number of standardized vocabularies. These vocabularies help

healthcare providers, insurance companies, pharmacies, and other members of the

medical community avoid misunderstandings and define unique encodings for drugs,

diagnoses, diseases, procedures, etc. Some of these vocabularies have been comput-

erized, such as the MED [36, 37] and the InterMED [112, 129] which are modeled as

semantic networks [53, 133]. However, the extensive size of most vocabularies often

makes it difficult for users to gain an understanding of their contents.

The MED is a very large semantic network with over 48,000 concepts, 61,000 IS-

A links and 71,000 other links in its year 1996 version. While the MED is extremely

useful, it is very difficult for its users to grasp the wealth of knowledge contained in

it. Intuitively, a graphical representation of the MED should be helpful. However,

one can estimate that a complete picture of the MED would comprise an area of at

least 300 square feet, which is by far too large for any comprehension purposes. For

the InterMED (a partial revised version of the MED), we were able to perform a

measurement of the size of a display. This display required over sixty square feet for

a layout of about 3,000 concepts and all the IS-A links connecting those concepts.

In order to deal with this problem, we have investigated the problem of parti-

tioning a semantic network into smaller "contexts." The basic goal has been to

break the large semantic network of a vocabulary into smaller disjoint units, called

contexts, that fulfill three conditions: (1) Every group of concepts by itself should

be meaningful in the eyes of an expert user; (2) Every group of concepts by itself
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should fit onto one screen of a modern workstation; and (3) The union of all disjoint

contexts should be identical to the original semantic network.

Semantic networks are in their essence graphs that are constructed around

backbones of IS-A links. These IS-A links form directed acyclic graphs (DAGS).

One would think that the extensive literature on graphs and graph partitioning [3,

10, 11, 81] would supply the theoretical means for achieving the kind of partitioning

that we described above. Unfortunately, this expectation fails for two reasons: (1)

Partitioning problems tend to be NP-complete [50], i.e., probably not solvable by

polynomial algorithms; (2) The requirement of "meaningful groups" is beyond the

scope of graph algorithms.

To overcome these problems, we have previously combined human expert

judgment with algorithmic tools. In Chapter 5, we have introduced a technique

called "disciplined modeling" that results in a partitioning of a semantic network

into a set of trees, if three simple modeling rules are obeyed. However, in this

approach, human expert judgment is an important ingredient. In this chapter, we

present an approach which attempts to completely avoid the involvement of a human

expert in the partitioning process. Rather, it relies on structural features of the

semantic network.

To understand the basic idea of our partitioning approach, we need to give

some background regarding the MED and InterMED. From this point on, we will

only refer to the InterMED, but all ideas apply equally to the MED. In the InterMED

semantic network, each attribute and relationship is introduced at a unique concept

and is inherited by all concepts below the point of introduction, via the IS-A links.

Sometimes several attributes and/or relationships are introduced at the same place.

Attributes describe information local to a concept, while relationships are links

between concepts. In Figure 1.1, we show a small subnetwork of the InterMED. The

fact that an attribute or relationship is introduced at a certain point, however, does
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not guarantee that a value is also introduced for it at that point. Attribute values

are not inherited in the InterMED, but relationship targets usually are. In some

cases, relationships are overridden at lower levels in the hierarchy.

It turns out that sometimes concepts in the InterMED are very similar to their

parent concepts, while at other times they are very different. To be specific, let

us consider the features introduced above: A child concept might not introduce any

new attributes and relationships. In addition, it might inherit all relationship targets

without any overriding. Clearly, such a child concept is very similar to its parent

concept. On the other hand, a child concept might introduce several new attributes

and relationships and override the targets of all its inherited relationships. In this

case, we would say that the child concept is very different from its parent.

The underlying idea of the partitioning is to examine every concept in the

InterMED and find out how similar it is to its parent(s). Obviously, if a concept N is

very different from (all) its parent(s), we may suspect that a new meaningful group

of concepts starts just below it. Furthermore, if we find that all the children of N

are very similar to it, our assumption is justified.

The similarity measure we propose can be expressed concisely by a single

number. By using either the introduction points of attributes and relationships

alone, or by combining introduction points with target inheritance behavior, we can

gain some fine control over the computation of these similarity numbers. In this

approach, no human expert is required at all.

The rest of this chapter is organized as follows. In Section 6.2, we will describe

the partitioning approach that we have used to partition the InterMED. The results

of partitioning the InterMED are discussed. Section 6.3 compares these results with

the results obtained by our previous approach, which made use of a human expert.

In Section 6.4, we will briefly review some related literature. Finally, in Section 6.5,

we will conclude with a discussion of the value of these results and future work.
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6.2 Partitioning Approach

Our partitioning approach is based on the similarities of the property sets of

child/parent concept pairs in the semantic network. The property similarity of a

child/parent pair gives a quantitative measure of the similarity of the children and

parents. It is obtained from comparisons of the respective properties of each. We

define the property similarity of the child/parent pair o- as a number between 0

and 1, where 0 means the lowest similarity and 1 represents the highest similarity

(identical).

6.2.1 Similarity Based on Property Introduction

In the InterMED, each property is first introduced at a unique concept which we

will call property-introducing concept for the property [90]. A concept may serve as

the property-introducing concept for many properties. A property is inherited by

all the children and descendants of the specific property-introducing concept. Thus,

there are only two cases for all child/parent pairs. One is that the child concept

has the same properties as its parent concept. This means that the child concept

only inherits the properties from its parent concept instead of introducing any new

properties of its own. This child concept is obviously similar to its parent concept.

For this case, we assign this pair the similarity 1. The other case is that the child

concept has more properties than its parent. Either the child concept introduces at

least one new property, or it inherits properties from multiple parents with different

properties. In this case, the two concepts are not similar. This pair will be given the

similarity 0.

According to the property similarities of all child/parent pairs, we can partition

the original network into several subnetworks by removing all child/parent pair links

which have similarities 0. Thus, each subnetwork will contain the concepts with the
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same properties. One could argue for a more sophisticated numeric evaluation. For

instance, we could use the following formula to get finer distinctions.

However, the InterMED contains only 58 distinct properties and some concepts

introduce more than one property. A typical concept in the InterMED just inherits its

properties from its parent concept. There are only 38 child/parent pairs in which the

child concepts have more properties than their parent concepts. Thus, we obviously

want to cut all child/parent links where the child and parent are at all different.

Therefore, assigning 0 to such pairs of concepts is a good choice. In a network that

has a higher degree of property introduction, we would use the above formula. After

we remove all links with similarities 0, the InterMED with 2,820 concepts is divided

into 38 subnetworks. Unfortunately, one of the subnetworks contains more than

1,000 concepts. This result is not what we expect. We need a better formula to

compute the property similarity.

6.2.2 Similarity Based on Relationship Overriding

As we saw, considering only the numbers of properties for computing the similarity of

each child/parent pair does not give a satisfactory partitioning result. The property

similarities need to be calculated more accurately.

Before giving the formulas which we used to compute the property similarity,

we need to recall the two kinds of properties in the InterMED. One is attributes which

have literal values. The other is relationships which point to other concepts. Both

attributes and relationships may be set-valued. That means that one relationship

may have several target concepts. The inheritance in the InterMED may take place

in different ways:
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Figure 6.1 Full inheritance	 Figure 6.2 Additive inheritance

• Attributes: A child concept only inherits the definitions of attributes from

its parent, but not the values of the attributes.

• Relationships: A child concept inherits the definitions of relationships from

its parents. For each relationship's value, one of the following four possibilities

holds.

—Full inheritance: A child concept inherits all values (target concepts) of

the relationship. In Figure 6.1, A has the relationship targets C and D.

B inherits the relationship r and, therefore, has the same targets C and

D.

—Additive inheritance: A child concept inherits all values of the relationship

and adds more values for the relationship. In Figure 6.2, A has the

relationship targets C and D. B inherits the relationship r and has the

same targets C and D. In addition, B has the additional target E, which

is a child of the target C.

—Partial overriding: A child concept inherits some values and overrides

(refines) other values of the relationship. In Figure 6.3, B inherits the

target D from A. However, the target C is overridden by the new target

E, which is a child of C.

—Full overriding: A child concept overrides (refines) all values of the

relationship. In Figure 6.4, all targets of the relationship r of A are
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Figure 6.3 Partial overriding
	 Figure 6.4 Full overriding

overridden. B refers to E and F instead of their respective parents, C

and D.

We will now introduce a similarity formula that takes the distinct inher-

itance possibilities listed above into account. Consider a child concept having m

relationships and its parent concept having n relationships. Suppose further that

the number of fully overridden relationships is f, the number of partially overridden

relationships is p, and the number of additive inheritance relationships is d. Then

the similarity of the child/parent pair is defined to be:

When the child has the same number of relationships as its parent (m = n)

and no relationships are overridden, the similarity of the child/parent pair will be 1.

On the other hand, if there is no full inheritance for any relationship, the similarity

for the child/parent pair will be 0.

Using formula 6.2, we can compute the property similarities for all child/parent

pairs. Based on these property similarities, we can remove IS-A links between child

concepts and their parent concepts for pairs with low similarities. Ideally, the original

network will be partitioned into several smaller sub-networks, within each of which

all concepts are quite similar. This is the result that we want.

Unfortunately, due to multiple inheritance, this is not always true. As we

mentioned above, the InterMED is a DAG. Cutting "random edges" in a DAG gives

us little control over partitioning into components. For example, if all removed
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links happen to be links of child concepts with multiple parents, and, after cutting,

each child is still connected to at least one parent, the original network will not be

partitioned at all. If we can first reduce the graph to a tree, the network will be

partitioned significantly. Removing links from the tree will result in a forest. There

are additional advantages to working with a tree. It is generally considered easier to

comprehend a tree than a DAG consisting of the same concepts, because in a forest

upward paths are not branching. For these reasons, we reduce the DAG of IS-A links

to a tree as follows. We call this step tree identification.

Assume that a child concept C has q parent concepts (q > 1). The property

similarities of child/parent pairs are a2, , σ q respectively. If there is only one

maximum number, call it σmax , among a1 , a2 , . , 0 7 , then all links with similarities

a2 (i max) will be removed. If there are two or more maximum numbers among

a2, . . , σ q , one IS-A link with maximum similarity σ max will be retained randomly,

and all others will be removed.

Because the tree identification step just described will result in a tree, removing

any links which have low similarities in the tree will result in a forest comprising more

than one tree. All links inside a given tree will have high similarities.

Now the question is: Which links of the tree should be removed to create

a useful partitioning result? Because the purpose of partitioning is to help users

comprehend the concept network, each subtree produced by the partitioning scheme

should be meaningful and have a manageable size. After we compute the similarities

for all child/parent pairs, the distribution of property similarities can be calculated

(see Table 6.1). According to Table 6.1, there are n 1 child/parent pairs that have

property similarities between 0 and k1, etc. Table 6.1 gives us the similarity distri-

butions for the whole network and helps us decide which child concepts and parent

concepts should reside in the same context. We can choose a numeric parameter K

and remove all the IS-A connections between child concepts and their parent concepts
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for which the similarity a < K. The result will be several trees. All child/parent

pairs in each tree have similarities greater than K. By varying K, we have some

control over the number of links that are cut. With that, we get an indirect and

non-homogeneous control over the size of the contexts that are generated.

An interesting question is whether we gain anything if we combine similarity

by property introduction with similarity by relationship overriding. The answer is

that the contribution of relationship introduction is already contained in the formula

6.2: Not only is the number of a child's relationships in there, but so is the parent's

relationships. For example, if the child has more relationships than its parent due

to relationship introduction, the link will not be assigned a similarity of 1, even

if the child has full inheritance for all relationships. The contribution of attribute

introduction is negligible because there are only 12 attributes in a vocabulary of

2,820 concepts. Most of them are introduced at the root of the vocabulary.

6.2.3 Partitioning the InterMED

Now let us use the approach described above to partition the InterMED. At present,

the InterMED contains 2,820 medical concepts. The number of child/parent pairs

is 4,687. For concepts with multiple parents, tree identification will be applied to



152

Table 6.2 Distribution of similarities of the InterMED

Property Similarities Number of child - parent pairs
0 855

(0,0.1) 0
[0.1, 0.2) 0
[0.2, 0.3) 1
[0.3, 0.4) 17
[0.4, 0.5) 0
[0.5, 0.6) 72
[0.6, 0.7) 775
[0.7, 0.8) 22
[0.8, 0.9) 212
[0.9, 1.0) 1

1 864

create a tree. After that, the distribution of property similarities can be computed

(see Table 6.2). Based on this distribution table, we can choose a K to partition the

InterMED by removing all links with similarities less than K. We can vary K to

obtain alternative partitioning results.

First, let us choose K = 1.0. This means that each subtree resulting from the

partitioning will contain concepts which are maximally similar, i.e. have similarities

1. The number of subtrees created by this partitioning is 1,955; the biggest subtree

contains 519 concepts; there are 1,868 subtrees with only one concept. Figure 6.5

shows a plot of the number of trees compared to the size of the trees. It can be seen

that the partitioning results in a large numbers of trees with less than 10 concepts.

Table 6.2 shows the results when K = 0.7. The partitioning gives us 1,720

subtrees, containing the child/parent pairs with similarities greater than 0.7. The

biggest tree consists of 519 concepts. The number of trees consisting of a single

concept is 1,646 (see Figure 6.6). Compared with K = 1.0, this result is better

because even though the biggest trees are still of the same size, the number of small
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Figure 6.5 Distribution of the number of trees according to their sizes for k = 1.0

trees is reduced. However, there are still too many trees with small numbers of

concepts. Thus, K needs to be adjusted further.

This time, let K 0. The partitioning will produce a forest, with trees

containing child/parent pairs with similarities greater than 0. The number of trees

is 855. The largest contains 758 concepts. There are 795 trees which consist of only

one concept (see Figure 6.7).

As we have seen, different values of K can be chosen to partition the InterMED

differently. Unfortunately, we do not get ideal partitioning results. Some of trees

contain large numbers of concepts, which cannot be displayed neatly on one screen.

There are also many trees consisting of only a single concept or very few concepts;

such trees do not capture much meaning.

Let us note that there is a reason for the appearance of a large number of single-

concept trees or trees with very few concepts. It is due to the incompleteness of the

current version of the InterMED; among the 2,820 concepts of the InterMED, there

are 2,186 concepts which are leaves. Most of the single-concept trees are derived from

the leaves of the original network. If more concepts were added to the InterMED,
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Figure 6.7 Distribution of the number of trees for k = 0
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some of these leaves would become parents and the trees would turn into actual

contexts with significant numbers of concepts.

Concerning the remaining large trees, they would need to be partitioned

by using human input. Our automated partitioning algorithm still improves the

situation, because there are few large trees left. In addition, even the largest of those

remaining trees is considerably smaller than the original vocabulary.

6.3 Structural Partitioning vs. Semantic Partitioning

In this section, we will compare our partitioning results with the results obtained

by semantic partitioning [59]. We apply these two methods to the most complex

subnetwork of the MED. The results turn out to be quite similar, as will be discussed

now.

In the MED, the concept Cortisporin Opthalmic Ointment has the

most ancestors: 39. We will focus on the subnetwork containing this concept

and all its ancestors. The subnetwork contains 62 IS-A relationships and 157

other relationships. In Figure 6.8, we show this subnetwork with only its IS-A

relationships.

For 62 child/parent pairs in Figure 6.8, we use the formula 6.2 given in the

previous section to compute their similarities. After applying the tree identifi-

cation procedure, we compute the similarity distribution of the tree (see Table 6.3).

According to the table, if we want only child/parent pairs with maximum similarity

to reside in the same tree, we can choose K = 1. After removing all IS-A links with

similarities less than 1, we obtain a forest with 13 trees (see Figure 6.9).

In [59], we described a methodology to partition a network into several trees.

There, a domain expert is required to make a judgment about whether a child

concept and its parent concept are similar, based on his previously acquired domain
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Figure 6.8 Complex subnetwork of the MED



Figure 6.9 Partitioning result based on structural partitioning
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Table 6.3 Distribution of similarities of complex subnetwork of MED
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knowledge. Using that approach, the complex subnetwork was partitioned into 18

trees (see Figure 6.10).

Comparing the results obtained from the two approaches (Figure 6.9 and

Figure 6.10), we find that our "structural" approach gives us results that are similar

to the results of the semantic approach in [59]. The results of the structural approach

also appear semantically plausible. There are 10 tree roots out of 13 that are the

same as for the semantic partitioning obtained from a domain expert's knowledge.

Both partitioning results contain many trees which are very small and too

detailed. But this is not a typical subnetwork of the MED. It contains many inter-

related subjects. On the other hand, certain contexts are not complete since some

of their members which are not ancestors of Cortisporin Opthalmic Ointment

are not shown in the figure. If we add more concepts, some contexts would become

larger.
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Figure 6.10 Partitioning result based on semantic partitioning
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6.4 Related Literature

The issue of grouping concepts together in a "reasonable" manner has long been

known as "conceptual clustering" in AI. "Clustering is usually viewed as a process

of grouping physical or abstract objects into classes of similar objects. One needs to

define a measure of similarity between the objects and then apply it to determine

classes" [102]. A "goodness measure" is usually defined for the overall partitioning

of objects [32]. Note that these are not classes in the sense of object-oriented

programming, but classes in the sense of conceptual categories. On the other hand, in

statistical clustering [44] and numerical taxonomy [130], most similarities are defined

between pairs of objects. Our formula considers child/parent pair similarity and is

applied to all concepts in order to partition an entire network into a collection of

trees.

In [68, 69], we find one of the oldest AI approaches to this problem, which

partitions networks into "net spaces." These net spaces delimit the scopes of

quantified variables. The partitioning into net spaces is done by experts and it

cannot be carried out by checking the similarity among concepts. Different from

our vocabulary networks, the concepts in SNePS [127] are pre-classified into four

types: base concepts, variable concepts, molecular concepts, and pattern concepts.

SNePS [127] treats the entire knowledge base as a single network. The problem of

partitioning a network into trees is not relevant in SNePS because IS-A relationships

are treated in the same way as all other relations. In [88], Levinson presents

the principle of pattern-associativity by indexing objects into multi-levels. This

approach allows one to organize conceptual graphs into a multi-level partial order

by subgraph-isomorphism. (See [88] for more details.)

In [146], Woods describes the taxonomies of structured conceptual descriptions

following work of the KL-ONE family [21]. Such taxonomies were generated by

the subsumption relationship that relates each pair of concepts [53]. Our formula



161

provides an approach to break the IS-A hierarchy in a reasonable way to generate a

collection of trees.

In order to answer queries using different knowledge representations at different

abstraction levels, Chu [31, 32, 101] proposed the "Type Abstraction Hierarchy"

which characterizes the instance values differently at different knowledge levels. The

hierarchy is defined by "induce rules" [101]. However, the instances have neither

subsumption relationships nor attributes among them. For the purpose of generating

a concept hierarchy, the method cannot be applied to a complicated network with

numerous attributes and subsumption relationships among the concepts.

In OODB approaches, objects with common properties are grouped into classes

and a class name is assigned as an abstract designation. The class hierarchy is

also used to capture generalization and specialization information [15]. However,

the similarity among instance values is not considered in the creation of the class

hierarchy.

6.5 Summary and Future Work

In this chapter, we have presented a technique for "structurally" partitioning a large

network of medical concepts. The technique has as its basis a similarity measure

which is assigned to child/parent pairs in the vocabulary. We have shown the

results of applying the approach to a large vocabulary, breaking it into meaningful

subnets for the purpose of graphical display and comprehension. We have obtained

an important result, namely, that the outcome of a human expert-based partitioning

(e.g., a semantic partition) of a large vocabulary is quite similar in effect to the parti-

tioning which is the result of applying our purely structural and statistical method.

In future work, we will further refine our similarity measures by in turn

computing the similarity of every single partially overridden relationship. We expect
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that this will improve both our control of subtree sizes and the agreement of our

results with the human expert.

Another interesting idea is to combine the structural and semantic approaches.

Vocabularies are slowly changing and important enough to justify an investment

in their partitioning. On the other hand, the task of partitioning a vocabulary of

thousands or ten-thousands of concepts into manageable groups can be overwhelming

and by far too time consuming. As an expert is needed for the semantic partitioning,

this can be very expensive! In short, the semantic approach by itself is not realistic

for large vocabularies, and large vocabularies are the only interesting ones.

We can use our structural approach to help a domain expert focus more clearly

on the problem. The results of the structural partitioning method described in this

chapter can be given to the domain expert who can then work on partitioning the

remaining large trees into smaller subtrees. The expert may also check on the validity

of the structural partitioning and make improvements when deemed necessary.
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CONCLUSIONS

Controlled medical terminologies serve as excellent tools for the management of

diverse terminologies within healthcare. They can help overcome differences in

terminologies between different databases and information systems and different

categories of users. Unfortunately, the job of understanding a large controlled

medical vocabulary (e.g., the MED of CPMC) is itself difficult and time-consuming.

The difficulty arises from the need to comprehend the extensive network of medical

concepts and semantic links that forms the vocabulary.

Five papers, describing different approaches to enhance comprehensibility of

CMTs, were presented in this dissertation. In the published journal paper [56]

(Chapter 2), our experience with OODB modeling for the purpose of compre-

hending a controlled medical terminology has been reported. In particular, we have

described a technique for mapping an existing semantic network-based controlled

medical vocabulary into an equivalent OODB-based vocabulary by partitioning the

vocabulary into sets of concepts with the same sets of properties (Section 2.3). We

called the resulting OODB terminology the "OOHTR." The schema of the OOHTR,

which captures the structure of the vocabulary, turns out to be a very compact

representation relative to the size and scope of the original vocabulary. Because of

this, it offers insights into the overall structure of the vocabulary and greatly aids in

its comprehension. In fact, in Section 2.4, we have described how the schema was

utilized for updating and redesigning operations as well as uncovering and correcting

some errors and inconsistencies that had existed in the original vocabulary. An

example of an error discovered through the use of the schema was the Pancreatin_

Area intersection area class which was classified as a chemical and a medication.

The OOHTR has been implemented as an ONTOS database and is currently up and

running.

163
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In order to enhance comprehension and improve navigation of the UMLS

Metathesaurus, we also represented the UMLS as an OODB in Chapter 3 (a journal

paper [58] is being submitted presently). The UMLS OODB modeling is based on the

UMLS Semantic Network. Every semantic type has been represented as a semantic

type class in the schema that we developed. A new kind of class, intersection class,

has been introduced in this research in Section 3.2. As a result, the average number

of concepts per semantic type class has been reduced from 5,000 to about 2,700. The

average number of concepts in each intersection class is 100. These smaller extents

make comprehension of the UMLS easier. To properly define superclasses of inter-

section classes, we defined maximal subset and minimal superclass in Section 3.3.

Based on those two concepts, a rule to determine superclasses for all intersection

classes has been developed. The resulting UMLS OODB schema is deeper and

more refined than the original Semantic Network. The UMLS Metathesaurus has

thus been classified into a large number of disjoint, uniform sets of concepts, which

again helps with comprehension. Examples of how the intersection classes helped

expose omissions of concepts, highlighted errors of semantic type classification, and

uncovered ambiguities of concepts in the UMLS were presented in Section 3.4. For

example, 100 intersection classes with only one instance have been checked. For

only 11 intersection classes of these 100, we found the classification of concepts to

be correct. For 55 of these intersection classes, the multiple classifications were

wrong. For 32 intersection classes, the classified concepts indicated non-uniform

classifications. Furthermore, we found two intersection classes which are redundant

classification cases. Information on these problems has been forward to the National

Library of Medicine for inclusion in future release of the UMLS.

In order to understand a large OODB schema, a new technique for modeling

called disciplined modeling was described in Chapter 4, a journal paper [57] to be

submitted shortly. (A preliminary version was published in [117].) The technique is
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based on three rules which express limitations and refinements to the modeling of

the schema. The three rules presented in Section 4.3 are (1) The equicontext relation

between classes is an equivalence relation, that is, it satisfies the three conditions of

an equivalence relation: reflexivity, symmetry and transitivity; (2) Two classes which

are category-of specializations of the same sup erclass cannot both contain an instance

representing the same real world object; (3) For each context there exists one class R

which is the major (or definitive) class for this context such that every class in this

context is a descendent of R. In Section 4.4, we proved the existence of a meaningful

forest subhierarchy of a given specialization hierarchy if those rules are followed.

Thus, based on our theoretical paradigm, a large OODB schema can be partitioned

into meaningful units called contexts, which are subschemas of smaller sizes and

lower complexities. This kind of partition of a schema aids the understanding of the

original schema. In order to partition a large OODB schema into several meaningful

subschemas, we needed to identify a forest subhierarchy of the original schema first.

To find a meaningful forest hierarchy from a DAG is not a straightforward job.

Extensive analysis was needed for decisions whether two classes are in the same

context or not. In Section 4.5, we have presented an interactive methodology based

on our theoretical framework to recognize a meaningful forest sub-hierarchy of an

OODB schema (DAG). Our methodology relied on the interaction between a user

(presumably the CMT designer or administrator) and a computer. The process

required that a user refines the subclass relationships of an OODB schema so that

it conforms to the above rules of disciplined modeling. After the refinement, the

computer can automatically reduce the CMT to a forest structure. The methodology

has been applied to the subschema of a university database in Section 4.6. 19 classes

of the subschema of the university database were partitioned into five contexts. We

also applied the methodology developed in this dissertation research to the MED
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OODB schema in Section 4.7. The MED schema with 124 classes was divided into

51 subschemas.

As we mentioned above, an OODB schema representation of a controlled

medical vocabulary helps to comprehend the original vocabulary. However, classes

in an OODB schema may contain many instances. For example, each class in the

MED schema contains on average about 500 concepts. Therefore, further compre-

hension efforts are needed. In Chapter 5 (a published journal paper [59]), the

theoretical partitioning framework and the methodology developed for the schema

level has been adapted to the object level. Based on the adapted theoretical parti-

tioning framework, we reduced an entire vocabulary into a forest hierarchy composed

of small trees, each representing a logical unit whose graphical representation can fit

on a computer screen. Partitioning a vocabulary into small size units makes it easier

for users and system designers alike to comprehend the contents of a vocabulary

in a modular fashion. In Section 5.5, we have demonstrated our methodology by

applying it to a complex subnetwork of the MED and InterMED (a partial revised

version of the MED) [112, 129]. The complex subnetwork of the MED consisting of

39 concepts was partitioned into 18 contexts and the InterMED containing about

2,800 concepts was partitioned into 545 contexts.

As human expert judgement is an important ingredient of the above methodology

and expert time is very expensive, the above methodology is quite costly for large

vocabularies, which are the most interesting ones. Therefore, in this dissertation,

we developed another approach that avoids the involvement of a human expert in

the partitioning process. This material was presented in Chapter 6 (a paper [55]

submitted to a major conference). Our approach is based on defining the similarity

of a pair consisting of a child node and its parent node in the semantic network

(Section 6.2). A distribution over these similarities for all pairs in the semantic

network was computed. Based on this distribution, the semantic network has been
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partitioned into small pieces, which are easier to understand and display. We have

demonstrated this approach by partitioning the InterMED and a complex subnet of

the MED in Section 6.3. The complex subnet of the MED containing 39 concepts

was partitioned into 13 trees. The result of applying this approach is quite similar

to result of a human expert-based partitioning approach described in Chapter 5.
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