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ABSTRACT

VITAMIN EFFECT ON BIOREMEDIATION OF
PHENANTHRENE, ANTRACENE, FLUORANTHENE, AND PYRENE

IN A CONTAMINATED SOIL FROM AN INDUSTRIAL SITE

by
Ilkay Cam

Bioremediation of organic wastes is often a cost-effective technology for the in situ

treatment of contaminated soils. In this study, the possibility of increasing the rate and

extent of biodegradation for phenathrene, anthracene, fluoranthene, and pyrene in an

industrial PAH contaminated soil via vitamin mixture supplementation was explored.

Soil contained with PAHs was obtained from the Bayway refinery site formerly

owned by Exxon (Linden, NJ). Experiments were conducted in which the contaminated

soil was amended with a mixtures of four vitamins (niacin, biotin, folic acid, and

panthothenic acid). Peat moss, a common soil amendment, was also added in some

experiments.

The results showed that different vitamin mixture concentrations had a significant

effect on the biodegradation rate and extents of phenanthrene, anthracene, fluoranthene,

and pyrene, provided that peat moss was absent. The presence of peat moss resulted in

an increase in the rate and extent of PAH biodegradation, independently of the presence

of vitamins.
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CHAPTER 1

INTRODUCTION

1.1 Objective

The purpose of this study was to determine the effect of different vitamin mixture

concentrations on the aerobic biodegradation of phenanthrene, anthracene, fluoranthene,

and pyrene in soil.

Vitamin effect on the degradation of aliphatic hydrocarbons in soil was studied by

Susmita GuptaPal in 1996 (Guptapal, 1996). She determined the optimum vitamin

mixture to maximize the rate of degradation. In the present study, the same vitamin

mixture concentration level was used for polycyclic aromatic hydrocarbons (PAHs)

degradation in soil.

The effect of different vitamins was studied by other researchers also. For

example, in 1993, a group of researchers from the University of Groningen, The

Netherlands, studied the effect of biotin on Xanthobacter autotrophic GJ10 for optimal

growth on 1,2-dichloroethane (Wijngaard 1993). Effect of B12 on reductive

dechlorination of a polychlorinated biphenyl congener and hexachlorobenzene in 1992 by

Assaf-Anid in University of Michigan (Assaf-Anid, 1992). Vitamin and nutrient mixture

effect on pentachlorophenol was another study that was done in 1996 (Cole 1996).

1
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1.2 Background Information

1.2.1 Bioremediation

Bioremediation is a widely used remediation technique, which utilizes the degradative

abilities of microorganisms to eliminate organic contaminants. Microorganisms

metabolize organic substances by frequently using them as the carbon and energy

sources. Such microorganisms can metabolize organic substances into carbon dioxide

and water. Bioremediation may rely on either indigenous microorganisms (those that are

native to the site) or exogenous microorganisms (those that are imported from other

locations). In either case, bioremediation technologies optimize the environmental

conditions, so the appropriate microorganisms will flourish and mineralize the maximum

amount of contaminants (USEPA, 1999).

Bioremediation can take place under aerobic and anaerobic conditions. In aerobic

condition, the carbon and energy source is broken down by a series of enzyme-mediated

reactions in which oxygen serves as an external terminal electron acceptor (Cookson,

1995). Under anaerobic conditions the chemical compounds are broken down by series

of enzyme mediated reactions in which nitrates, sulfates, carbon dioxide, and other

oxidized compounds (excluding oxygen), serve as terminal electron acceptors (Cookson,

1995).

1.2.2 Bioremediation Methods

Bioremediation can be used as a cleanup method for contaminated soil and water.

Bioremediation applications can be in situ or ex situ. In situ bioremediation process
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treats the contaminated soil and ground water at the location in which it was found. Ex

situ bioremediation process require excavation of contaminated soil or pumping of

ground water before they can be treated (USEPA, 1995).

In situ bioremediation involves the enhancement of the environment inhabited by

indigenous microorganisms through the addition of oxygen, electron acceptors, nutrients,

and/or additional microorganisms to stimulate microbial degradative activity (USEPA,

1995).

Two specific examples of in situ bioremediation that can be applied in

contaminated aquifers and when the contaminant is found in the vadose zone are

bioventing and air sparging. Bioventing involves supplying oxygen at low flow rates to

microorganisms in order to stimulate aerobic biodegradation. Air sparging involves

displacing water from the soil matrix by injecting air directly into the saturated formation

below the water table (USEPA, 1993)

Ex situ bioremediation techniques require excavation of the contaminated soil.

Slurry phase bioremediation and solid phase bioremediation are the examples for ex situ

techniques. Slurry phase bioremediation involves placing the contaminated soil

combined with water and other additives in a large tank called a "bioreactor" and mixing

to keep the microorganisms in contact with the contaminated soil (USEPA, 1995).

Solid phase bioremediation treats soil in above ground treatment areas equipped

with collection systems to prevent any contaminant from escaping the treatment.

Moisture, heat, nutrients, and oxygen are controlled to enhance biodegradation (USEPA,

1995).
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1.2.3 Land Farming

Land farming is a bioremediation technology. Contaminated soils are mixed with soil

amendments such as soil bulking agents and nutrients, and then tilled into the earth. The

material is periodically tilled for aeration. Contaminants in soil are degraded,

transformed, and immobilized by microbiological processes and by chemical oxidation.

Soil conditions are controlled to optimize the rate of degradation of the contaminants.

Moisture content, frequency of aeration, and pH are all conditions that may be controlled

(Land farming, 1998).



CHAPTER 2

LITERATURE REVIEW

2.1 Polycyclic Aromatic Hydrocarbons

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous pollutants, some which are on

the United States Environmental Protection Agency priority pollutant list (EPA 1995).

The lower molecular weight PAHs are amenable to bioremediation; however, high

molecular weight PAHs seem to be recalcitrant to microbial degradation. The rates of

biodegradation of PAHs are highly variable and are dependent on PAH structure,

physicochemical parameters of the site, and number and types of microorganisms present

(Crawford, 1996).

PAHs generally exist as colorless, pale yellow or white solids. Because they do

not dissolve easily in water, and they can persist in the environment for months to years

(EPA 1999). Microbial degradation represents one of the major routes by which PAH

can be removed from the environment. Many different microorganisms such as,

Pseudomonas, Flavobacterium, Alcaligenes, Arthrobacter, Micrococcus, Bacillus,

Beijerinckia, Nocardia, Cynobacteria, and Mycobacteria have the ability to degrade

PAHs (Crafword, 1996).

The degradation of PAHs depend on the complexity of the PAH chemical

structure and the extent of enzymatic adaptation. In general, PAHs containing 2 or 3

aromatic rings are readily degradable. PAHs containing four or more aromatic rings are

significantly more difficult. PAHs can be readily degraded or extremely resistant or can

yield intermediate products that are highly carcinogenic (Cookson, 1995).

5
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Under optimized metabolic conditions, the degradation rates of some PAHs are

dependent on the soil to water ratio and the partition coefficient. PAHs are strongly

hydrophobic. Therefore, a significant portion of the PAHs is adsorbed on soil particles

possibly being entrapped in intraparticle micropores (Lotfabad et.al., 1996).

2.2	 General Pathways of Microbial Polycyclic Aromatic Hydrocarbon
Metabolism

Bacteria, fungi, and algae play an important role in the aerobic metabolism of PAHs in

terrestrial and aquatic environments.

First, bacteria initially oxidize aromatic hydrocarbons that range in size from

benzene to benzo[a]pyrene to cis-dihydrodiols. The cis-dihydrodiols are formed by the

incorporation of both atoms of molecular oxygen into the aromatic nucleus. The

dioxygenase that catalyzes these initial reactions is generally a multicomponent enzyme

system; the terminal oxygenase is an iron-sulfur protein (Cerniglia, 1984).

Second, cis-dihydrodiols are rearomatized through a cis-dihydrodiol

dehydrogenase to yield a dihydroxylated aromatic derivatives (Cerniglia, 1984).

Third, further oxidation of cis-dihydrodiols leads to the formation of catechols

that are typically substrates for other dioxygenases which can metabolize the enzymatic

cleavage of the aromatic rings. Catechol can be oxidized via the ortho pathway, which

involves cleavage of the bond between carbon atoms of the two hydroxyl groups, to yield

cis, cis-muconic acid, or via the meta pathway, which involves cleavage of the bond

between a carbon atom with a hydroxyl group and the adjacent carbon atom with a

hydroxyl group (Cerniglia, 1984).
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The same biodegradative mechanism is then extended to the other aromatic rings

of the PAH molecule. The products of the aromatic ring cleavage are further degraded

into Krebs cycle where they are used as a source of carbon and then converted into

carbon dioxide and water.

2.3 Soil Reactions with Hazardous Materials

Soil governs the concentrations of hazardous materials in water found in both unsaturated

and saturated zone soils. There are several important facts regarding soil reactions with

hazardous materials (Dragun, 198).

First, soil is a heterogeneous, reactive mass of solids and water. These solids

possess distinct physical and chemical properties which exert a profound effect on the

concentration of hazardous materials in water.

Second, soil possesses solids with significant surface area that mediate various

physical and chemical surface reactions. The primary physical and chemical surface

reactions occurring at soil surfaces, which govern the concentration of hazardous

materials in water, are hydrolysis, oxidation, reduction, bound residue formation, and

various fixation reactions. Hazardous materials dissolved in water are not isolated from

these surfaces but are in intimate contact with them (Dragun, 1988).

Third, soil contains a significant amount of water in which chemical reactions

may occur. Water may comprise from 33 to 50 percent of the total volume of a saturated

soil or from 107,000 to 163,000 gal/acre-foot of soil. Water is usually the solvent in a

soil system that is responsible for moving dilute concentrations of hazardous materials.



8

Fourth, although solids occupy 50 to 67 percent of the soil bulk volume, 33 to 50

percent is comprised of an interconnected network of pores. In the unsaturated zone, soil

water and the soil atmosphere occupy these pores (Dragun, 1988).

2.4 How Microorganisms Degrade Organic Chemicals

The biodegradation of an organic chemical is the modification or decomposition of the

chemical by soil microorganisms to produce ultimately microbial cells, carbon dioxide,

and water. It is most important to recognize that microorganisms possess numerous

enzymes within these cells, which are responsible for the biodegradation of organic

chemicals (Dragun, 1988).

After an organic chemical has set up into the microbial cell, it will interact with

enzymes. Whether or not the chemical transforms as a result of this interaction depend

upon the chemical binding to the enzyme and the conformational changes at the

enzyme's active site. Recalcitrant or non-reacting chemicals are not bound at all or fail to

produce an alignment that leads to reaction (Dragun, 1988).

2.5 Peat Moss

Peat moss is a natural, organic soil conditioner that regulates moisture and air around

plant roots for ideal growing conditions. It will help to:

Save water:

Peat retains up to 20 times its weights in moisture, and releases water slowly as plants

need it.
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Aerate heavy, clay soil:

Peat moss allows for proper root growth by loosening and aerating soils.

Bind sandy soil:

Canadian peat helps it retain moisture and nutrients.

Reduce leaching:

Peat moss reduces leaching of nutrients in or added to the soil, releasing them over time.

This will save on fertilizer.

Protect soil:

Peat moss protects soil from hardening and adds organic material (Online, 1998).

2.6 Studies on Biodegradation

The following information was obtained by using ProQuest Direct and Applied Science

Technology Index database, and also keyword search on online and electronic journals.

Hydrocarbons are water-insoluble compounds. Their uptake is a difficult process

for microbes, but there are organisms that can utilize hydrocarbons. The general

pathways of microbial PAH metabolism was described in previous pages.

The effect of bioremediation on PAH residues in soil was studied by Wang et. al

(Wang et. al, 1990). They studied spills of diesel oil having a high content of PAH and

total aromatics.

A study was conducted by Boldrin et. al on degradation of phenanthrene,

fluorene, fluoranthene, and pyrene by a Mycobacterium sp. (Boldrin et. al, 1990). They

identified several metabolites of phenanthrene and fluorene metabolism. They also found
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that Mycobacterium sp. was able to utilize phenanthrene, pyrene, and fluoranthene as a

sole carbon and energy source.

Thibault et. al studied the effect of four different surfactants on pyrene

degradation in soil. In the presence of Witconol SN70, pyrene mineralization was 86%

under unsaturated conditions (Thibault et. al, 1996).

The effects of phosphorus, nitrogen, and temperature were studied for the

bioremediation of a petroleum contaminated cryic soil by Walworth and Reynolds

(Walworth and Reynolds, 1995). They studied four different concentration levels of

nitrogen and phosphorus at two temperatures.

Nitrogen and phosphorus play a very important role in biodegradation rates of

soil. Soil microorganisms also need vitamin for their growth. Most of the dominant

species either get required vitamins from soil or they are able to synthesize them

(GuptaPal, 1996).

The effect of vitamins during aerobic and anaerobic biodegradation has been

studied by some researchers. Kafkewitz et. al studied the effect of vitamins used in the

present work on aerobic degradation of 2-chlorophenol, 4-chlorophenol, and 4-

chlorobiphenyl (Kafkewitz, et. al, 1996).

The effect of vitamin B 12 was studied in many aerobic and anaerobic degradation

of hydrocarbons. Reductive chlorination of polychlorinated compounds was studied in

the presence of B12 by Assaf-Anid et. al (Assaf-Anid et. al, 1992).

B12 was also studied as a factor in biological dehalogenation of polychlorinated

hydrocarbons by Dehalospirillum multivorans (Lee et. al, 1998).



11

The effect of niacin, biotin, folic acid, thiamin, and panthothenic acid on the

biodegradation of aliphatic hydrocarbons and diesel fuel was studied by GuptaPal

(GuptaPal, 1996). She studied the effect of individual vitamins as well as a mixture, and

she found that the vitamin mixture was more effective than individual vitamins. Also, the

addition of vitamin mixtures stimulated the initial growth of the microorganisms. The

optimum vitamin mixture concentration, Vb, that she was reported in her study was used

as the starting point for the present study.

Another important study was done by the Composting Technology Center at Olds

College. Many oil companies joined to conduct for a remedial project. Chevron Corp.

began to use peat moss to reclaim an industrial site contaminated with hydrocarbons

(Biocycle, 1997).

The above studies show that vitamins and minerals are important for microbial

growth. In the present study, the effects of vitamin mixture on the biodegradation of soil

PAHs were studied in the presence and absence of peat moss.



CHAPTER 3

MATERIALS AND EXPERIMENTAL METHODS

3.1	 Reagents and Chemicals

The following chemicals were obtained from Fisher Scientific (Fair Lawn, NJ): HPLC

grade acetone, hexane, methylene chloride, cyclohexane, methanol, acetonitrile, and

pentane. Also, anhydrous sodium sulfate (12-60 mesh), silica gel (200 mesh), ammonium

chloride, potassium phosphate (monobasic), and ferrous sulfate. Sodium chloride,

magnesium sulfate (heptahydrate) and calcium chloride (dihydrate) were obtained from

Sigma (Bellefonte, PA). PAHs standards, 99% pure phenanthrene, 99.9% anthracene,

98% fluoranthene, 99% pyrene, and 99.3%pure 2-fluorobiphenyl (2-fbp) were obtained

from Chem Service Inc. (West Chester, PA). Nitrogen gas was obtained from Matheson

Co. (Rutherford, NJ).

Folic acid and biotin were obtained from Roche Scientific (Nutley, NJ).

Panthothenic acid was purchased from Sigma (St. Louis, MD), and niacin was purchased

from National Biochemical Corporation (Cleveland, OH)

The Canadian sphagnum peat moss that was used for the study was bought from

Home Depot (Woodbridge, NJ).

3.2	 Glassware

The following materials were used for Soxhlet extraction, (EPA standard method 3540C),

drying, concentration, and silica gel cleanup (EPA method 3630C) procedures: 40mm ID

Soxhlet extractors, 500m1 round bottom flask, 20mm and 10mm ID chromatographic

12
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columns, 10m1 and 25m1 concentrator tubes, 500m1 evaporation flasks, three-ball Synder

columns, and various sizes of beakers and graduated cylinders.

3.3 Analytical Instruments

The HPLC system was manufactured by Waters Corp. (Milford, MA), and consisted of

an auto sampler (Model 717), pump (Model 660E), and photodiode array detector (PDA,

Model 996). Mobile phase reservoirs for acetonitrile, tetrohydrofuran, and water, were

put under a degassing module, which was manufactured by Alltech (Deerfield, IL).

The column was made by Supelco (Bellefonte, PA), and the specifications were:

250mmx3.0mm ID Supelcosil LC-PAH 5µm column. The column was placed in a water

jacket, to keep the temperature constant. The software that was used for the HPLC

analysis, Millenium32, was also developed by Waters Corporations.

3.4 Experimental Soil

The soil that was used in experiments was collected from Exxon at Bayway location in

Linden, NJ. Soil was collected from near the sludge Lagoon #2, and 6 feet across from

the roadway and at an approximate depth of 100+ cm.

The soil was put in 3 and 5 gallons pails. The soil had dark brown color, a heavy

gasoline smell, and sandy clay loam texture. The pH of the soil was 6.5 in distilled

water. After bringing it to the lab, the soil was stored at 4 °C in a cold room.
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3.5 	 Standard Solutions

3.5.1 Internal Standard

2-fluorobiphenyl (2-fbp) was used as an internal standard to monitor the recovery rate of

extraction. 2-fbp is also a PAH, but it was not expected to be present in the sample.

100µg/ml (100ppm) stock solution was prepared by dissolving 2.5 mg of 2-fbp in

25 ml of acetonitrile. Then, 1ml of this solution was added to 10 g of soil samples, which

were used for extraction. Most of the extractions showed 60-75% recovery rate for 2-fbp.

For each sample, the concentration of each PAH was calculated as follows:

Residual PAH	 PAH Concentration	 1/ Recovery Rate of Internal
=

Concentration in Soil	 in S oil Sample	 x	 Standard (2-fbp)

3.5.2. Calibration Standards

EPA method 8310 provides high performance liquid chromatographic condition for the

detection of PAHs. Six concentration levels were prepared through the dilution of stock

standards in acetonitrile. The preparations of calibration levels are given in Table B 1.

The retention times of the standards from the HPLC analysis and the correlation

coefficients, R2 , of the regression between concentration and area under the

chromatogram are given in Table B2.

3.6 	 Soxhlet Extraction

EPA method 3540C is a procedure for extracting nonvolatile and semi-volatile organic

compounds in solids. The Soxhlet extraction ensures intimate contact of the solid
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samples with the extraction solvent. This method is applicable to recover water insoluble

and slightly water-soluble organics from solids and semi-solids mixtures.

The procedure consists of six steps: extraction, drying, concentration, solvent

extraction, solvent exchange, cleanup, and solvent exchange.

Extraction: For each extraction, approximately 40 g of sampled soil, which was taken

randomly from of each tray, and placed in a desiccator to allow dry. When the soil was

completely dried, aggregations of particles were broken down in a mortar, with a rubber

pestle. Then, the soil was passed through a 1 mm sieve to prepare for the test. lOg of soil

sample was blended with lOg of anhydrous sodium sulfate in a cellulose extraction

thimble, and spiked with 1 ml of the 100ppm internal standard solution. A piece of glass

wool was placed above the sample, and then the thimbles were placed in the extractors.

300ml of extraction solvent which was prepared by mixing 150ml of acetone and 150m1

of hexane for each sample in a 500ml round bottom flask. Two boiling teflon chips were

added to the flasks, and the flasks were attached to the extractors. Then, samples were

extracted for twenty hours at 4-6 cycles per hour by adjusting the temperature control

unit. After the extraction was complete, extracts were allowed to cool to room

temperature.

Drying: Kuderna-Danish (K-D) concentrators (i.e., 10ml concentrator tubes) were

attached to 500ml evaporation flasks and two or three of boiling teflon chips were put

into the tubes. 50g of anhydrous sodium sulfate was put into the 20mm ID drying

columns. The bottoms of the columns were plugged with glass wool. The columns were
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pre eluted with 50m1 extraction solvent, which was collected in a beaker and discarded.

Then, extracts were passed through the column and collected in to the prepared K-D

apparatus. The empty round bottom flasks were rinsed with 50m1 of extraction solvent,

which was passed through the column and collected in the K-D apparatus also.

Concentration: Three-ball Synder columns were attached to the evaporation flasks after

prewetting the columns with lml of methylene chloride. The apparatus assembled

(concentrator tube, evaporation flask, and Synder column) was placed a boiling water

bath by partially immersing the concentrator tube in hot water, and allowing the lower

surface of the flask to be bathed with stream. Extracts were concentrated to around 5-6ml

by raising the temperature of the water bath. Then, the K-D apparatus was removed from

the water bath and allowed to drain and cool to room temperature. After removing the

Synder columns, the flasks and the joints were rinsed into the concentrator tube with 1--

2m1 of cyclohexane.

Solvent Exchange: The tubes with concentrated extracts were placed in a warm water

bath at approximately 35°C, and then the solvent solution in the extract was partially

evaporated with a gentle stream of dry nitrogen. When the solvent in the tube was down

to 2m1, 2m1 of cyclohexane was added to the tube and then evaporated again to 2m1.

That procedure was repeated a total of five times. After the fifth addition, the sample

volume was brought down to 1ml.
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Sample Cleanup with Silica Gel:  EPA method 3630C, silica gel cleanup, was followed

after the solvent extraction step. Silica gel is a regenerative adsorbent of silica with

weakly acidic properties. It is produced from sodium silica and sulfuric acid. Silica gel

can be used in column chromatography for the separation of analytes (such as PAHs)

from interfering compounds of a different chemical polarity (USEPA, 1996).

Silica gel was preliminary activated by heating it in oven at 130°C for 16 hours

before use. It was placed in a glass tray and loosely covered with foil.

10mm ID columns with stopcocks at the were plugged with glass wool. A slurry

of lOg of silica gel in 10 ml methylene chloride was poured into the 10mm ID columns.

Methylene chloride was removed by opening the stopcock after the silica gel was settled.

Then, 3g of sodium sulfate was added to the top of the silica gel. Each column was

eluted with 40m1 of pentane first, and the eluate was discarded (the Na 2SO4 was always

covered by pentane so as to prevent exposure to the air). Sample extracts were from the

concentrator tubes transferred to the columns and the PAHs were adsorbed on the silica

gel. Then, each concentration tube was rinsed with 2ml of cyclohexane, which was then

transferred to the column. Columns were eluted with 25ml of pentane that was discarded

also. Next, the column was eluted with 25m1 of methylene chloride and pentane (2:3,

v/v) to eluate the PAH from the silica gel. Final eluate was collected into 25ml

concentrator tubes. Then, the concentrator tubes were placed in a water bath for solvent

exchange. Solvent was partially evaporated to 2m1 with nitrogen.

Solvent Exchange: Then 2m1 of acetonitrile added and evaporated to 2ml again for a total

of five times. The final volume was brought down to lml, and allowed to cool for 10
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minutes. Then, the extracts were passed through 0.22 Jim sterile filters and stored in vials

for HPLC analysis.

3.7 HPLC Analysis

3.7.1 Setting up the Method

Millenium32 software was used to do the analyses. The method set contained three

methods: instrument method, processing method, and report method.

3.7.2 Instrument Method

Instrument method controlled all HPLC units. The software allowed us to control

everything from the computer. Several working conditions have been tested in order to

get the best separations and to save time and solvents. The following conditions were

achieved. The column was placed in water jacket to keep it at constant temperature.

Solvents' reservoirs were attached to the degassing system. Before each set of runs, the

lamp was turned on for an hour and allowed to warm up. The mobile phase condition,

which was 80% acetonitrile and 20% water, was set to get the pressure stabilized. Also,

the needle was washed with a methanol and water (50:50) solution before each set of run.

After preparing them, the sample vials were placed in the autosampler tray, and

then run was started. Each run time was 10 minutes, and the injection volume was 104

The pressure was 2100psi at 1.0m1/min flow rate.
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3.7.3 Processing Method

A Photodiode Array Detector (PDA) was used for detection (996PDA, Waters Corp).

PDA measures light intensity in a specific wavelength range. Some of the specifications

are given below:

Wavelength range	 : 190-800nm

Light source	 : Prealigned, Deuterium lamp (2000 hr life)

Spectral resolution	 : 1.2 nm per photodiode

Wavelength accuracy : 1 nm

Three different processing methods were developed for the method set. For

antracene, phenanthrene, and 2-fluorobiphenyl, peaks were measured at 250nm after they

were scanned between 215nm and 350nm. For fluoranthene, the peak was measured at

285nm, and the pyrene peak was at 334nm.

3.7.4 Report Method

In the report page generated by the PDA analyzer, PDA component results appear in the

library match table. When performing a peak match, Millenium 32 software chooses the

components from the processed component table that closely match the targeted

unknown peaks. To accomplish this, the software uses the time period defined in the

processing method.
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The most appropriate peak for a component is determined by calculating how

close the retention time of the peak to the retention time of the component. Retention

times of the components are given in Table B.2. Figure 3.2, 3.3, 3.4, 3.5, and 3.6 show

the adsorption spectra of library peak, sample peak, and the difference between the peaks

for 2-fbp, phenanthrene, anthracene, fluoranthene, and pyrene respectively. Match angle

indicates the difference in spectral shapes between and acquired spectrum and library

spectrum. Small values indicate that that spectra are similar.



Figure 3.1 Library Spectra of 2-fluorobiphenyl
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Figure 3.2 Library Spectra of Phenanthrene
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Figure 3.3 Library Spectra of Antracene
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Figure 3.4 Library Spectra of Fluoranthene
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Figure 3.5 Library Spectra of Pyrene
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3.8 Preparation of Mineral Salt Medium

First a mineral salt stock solution was prepared. It contained 0.8 g of K2HPO4, 0.2 g of

KH2PO4, 1.0 g of NH4C1, 0.2 g of MgSO4.7H2O, 0.1g of CaC12.2H2O, 0.1 g of NaC1, and

0.01 g of FeSO4.7H2O in 1 liter of Milli-Q water. Then, the mineral salt medium was

prepared by diluting 1:10 the mineral salt stock solution.

3.9 Preparation of Vitamin Solutions

Based on a study already done on the use of vitamins (GuptaPal, 1996), a specific

vitamin solution was prepared. To prepare a vitamin stock solution, 20.0mg of niacin,

20.0mg of biotin, 40.0mg of folic acid, and 40.0mg of pantothenic acid were dissolved in

a one liter flask with Milli-Q water. Then three different vitamin solutions having

different vitamin concentrations were selected to add to soil microcosms. These vitamin

solutions (Va, Vb, and Vc) were prepared as follows:

Va was prepared by diluting 3.0m1 of the vitamin stock solution into 1 liter of mineral salt

medium. Va contained 20ppb of niacin, 20ppb of biotin, 40ppb of folic acid, and 40ppb

of panthothenic acid in dry soil.

Vb was prepared by diluting 7.5m1 of the vitamin stock solution into 1 liter of mineral salt

medium. Vb contained 50ppb of niacin, 50ppb of biotin, 100ppb of folic acid, and 100ppb

of panthothenic in dry soil acid.

Vc was prepared by diluting 15.0m1 of the vitamin stock solution into 1 liter of diluted

mineral salt medium. V c contained 100ppb of niacin, 100ppb of biotin, 200ppb of folic

acid, and 200ppb of panthothenic acid in dry soil.
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3.10 Preparation of Experimental Soil

The experimental soil from Exxon (Linden, NJ) was stored at 4°C in the cold room of

Biological Science Department of Rutgers University Newark Campus. The soil was in

dark brown color, and had heavy gasoline smell. Before setting up sample microcosms,

coarse gravels and other large size materials; such as, rocks, glass particles, and woods

were removed by hand, and also by using 3.5mm sieve.

3.11 Determination of Natural Moisture Content of Experimental Soil

The moisture content of the soil is an important parameter, which not only affects the

transportation of contaminants, but may also affect the biodegradative activity of the

microorganisms

The water content of the soil may influence aeration, nutrient transport, and the

motility and survival of microorganisms. The pH, redox potential, type of existing

microorganisms and available nutrients within the soil likewise help in deciding which

type of remediation efforts must be made (Cerniglia, 1989).

Natural Moisture Content Determination Test: 

To determine the original moisture content of the experimental soil, three standard drying

containers were taken. The weight of the containers and their lids were recorded.

Approximately 50g of sieved soils were placed in the containers and weights were

recorded again. Then, the containers were placed in oven at 105°C for 24 hours. After

24 hours, containers were removed from the oven and placed in desiccator for 10-15
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minutes to allow the samples to cool down to the room temperature. When the samples

were cool enough, the weights were recorded again to calculate the percent moisture

content. The calculation was as follows:

The value of w for each individual moisture content specimen was calculated, and

then the average value was calculated (Head, 1986).

The values for the determination of natural moisture content are given in Table

3.1, and the average natural moisture content was taken 20%.

3.12 Determination of Plastic and Liquid Limit of Experimental Soil

The plastic limit is the moisture content at which a soil passes from the plastic state to the

solid state. And, the liquid limit is the moisture content at which soil passes from the

plastic to the liquid state (Head, 1986).

For the liquid and plastic limit tests, 250g of soil was first dried. The

aggregations of particles were broken down in a mortar with a rubber pestle. Then, the

soil was sieved through a 425 µm sieve on a receiving pan.
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Plastic Limit Test: 

About 20g of sieved soil was put in a mixing glass, and distilled water was added. Soil

and water were mixed with a spatula. Then, the soil was rolled into threads between the

palms of hand by applying a steady pressure until the threads' diameter was down to

3mm. Soil was broken up again to dry it more, and then it was rolled again to 3mm

diameter until the tread crumbled. The first crumbling point was taken as the plastic

limit. The crumbled threads were gathered and placed in a container immediately and

closed up with the lid. By following the same procedure, two other pieces of soil were

prepared and placed in two other containers. Then, the containers were placed in the

even at 105°C for overnight, and the moisture content was calculated.

The results of the experiment are given in Table 3.2., and the average

value for the plastic limit was taken 22%.

Liquid Limit Test: 

The liquid limit was determined with a Casagrande apparatus (Head, 1986). 50g of soil

was well mixed with some distilled water. A portion of well mixed soil was placed in

Casagrande liquid limit apparatus, and the surface of the soil was pressed with spatula in

order to make the level of soil level parallel to the base. Then, the soil was cut by

grooving tool by dividing it half. After that, the handle of the apparatus was turned in a

rate of two revolutions per second, until the groove was closed down to around 13mm,

and the number of blows was recorded. The test must restart if the number of blow

exceeds 50 blows by mixing in a little more water. The experiment was repeated two
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more times. A small quantity of soil from the middle of the bowl was placed in a

container and put in the oven at 105 °C for over night. To calculate the moisture content

for each blow count, as in the moisture content test, moisture content as ordinate was

plotted against the corresponding number of blows as abscissa (logarithmic scale).

Drawn straight line is called "flow curve" (Head, 1996). By using the semi logarithmic

curve the moisture content is the value that corresponds to 25 blows (Head, 1996). Flow

curve in Figure 3.6, showed that the moisture content was 35% for the present study.

By using a semi-logarithmic chart, the moisture content is the value that

corresponds to 25 blows. In our experiment, the moisture content value for liquid limit of

the experimental soil was 35%.

The results of the experiment are given in Table 3.3.

3.13 Determination of pH

To determine the pH value of the soil, 50 g of dry soil was placed in a beaker, and 50 ml

of distilled water was added to it. The beaker was shaken vigorously until the soil was in

suspension. Then, the aliquot of the suspension was transferred into another beaker, and

the pH was measured by ATI Orion pH meter. The pH value of the experimental soil

was 6.52 in distilled water. When the microcosms were sampled for the moisture content

determination, the pH was measured also. The pH value of the soil microcosms were in a

range of 6.0 to 6.9 with peat moss, and 6.7 to 7.4 without peat moss.
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3.14 Preparation of Experiment Trays

The purpose of the work was to determine the effect of different vitamin mixture

concentrations on the aerobic biodegradation of PAHs. For this purpose, nine sample

microcosms were set up by treating them differently. Table 3.4 shows the microcosm

preparation. 4000g of soil was put in 33cmx38cmx9cm size nesting trays, and 2000g of

soil was placed in 20cmx30cmx6cm size nesting trays which were purchased from

Ward's Natural Science Establishment Inc. (Rochester, NY). Therefore, at time zero the

vitamin concentration in the trays were as follows (in mg of vitamin / kg of dry soil):

Tray #2 and #6: 20 µg of biotin, 20 µg of niacin, 40 µg of panthothenic acid, and 40 µg

of folic acid per kg of dry soil.

Tray #3, #7, and #9: 50 µg of biotin, 50 µg of niacin, 100 µg of panthothenic acid, and

100 µg of folic acid per kg of dry soil.

Tray #4 and #8: 100 µg of biotin, 100 µg of niacin, 200 µg of panthothenic acid, and 200

1.1g of folic acid per kg of dry soil.

According to the calculated values of natural moisture content and liquid limit of the soil,

30% initial moisture content level ((30g of water / 100g of dry soil), in no peat moss case,

and (30g of water / 100g of dry soil with peat moss), in peat moss case) was chosen

appropriate to keep the soil samples to have efficient biodegradation.

Soil microcosms were maintained in an incubator at 24 °C. The soil in each tray

was manually mixed with a spatula 2-3 times a week to homogenize the moisture content.

At the same time to determine the moisture content, soil was sampled. When the
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measurement was below 22%, MSM (contain no vitamin) bring the moisture content up

to 30%. In some cases it was visually observed that the soil appeared dry even after the

calculated MSM addition was made. Therefore, extra MSM was added to them. A

summary of moisture content analysis data and MSM additions is reported in Table 3.5.

After the preparation of sample trays, approximately 50g of soil was sampled

from each tray for Soxhlet extraction and pH measurement at time zero. The trays were

than loosely covered with aluminum foil and placed in incubator at 24°C. Tray # 9 was

placed in anaerobic chamber in order to determine the effect of vitamin mixture and peat

moss on depletion as a result of microbial activity.



Table 3.1 Natural Moisture Content Detemination Test
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Table 3.2 Plastic Unit Determination Test

Table 3.3 Liquid Limit Determination Test



Table 3.4 Preparation of Microcosms
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Table 3.5 MSM Addition (in ml) and Percent Moisture Content



Figure 3.6 Flow curve of Experimental Soil
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CHAPTER 4

RESULTS AND DISCUSSIONS

All the results of the HPLC analysis after Soxhlet extraction are given in Table 4.1. The

values in parenthesis show the actual values for the duplicate samples.

After the microcosms were set up, the concentration of the target compounds at

time zero was determined (in duplicates) for untreated soil, tray #1, #3, #6, and #9.

The PAH concentration in the original soil in tray #1, and #3 were very similar.

Therefore, an average value of these initial three concentrations was taken as the initial

concentration for the other trays that did not have peat moss. Tray #5, #6, #7, #8 and #9

had 10% peat moss by weight. The results for trays #6 and #9 were calculated by

considering the peat moss amount. These results were also used for tray #7 and #8.

The biodegradation percentages of phenanthrene, anthracene, fluoranthene, and

pyrene as a function of vitamin concentration at the end of experiments are given in

Table 4.2. The initial and overall biodegradation rates are given in Table 4.3 and 4.4.

For the calculation of initial degradation rates 14-day data, and for the calculation of

overall degradation 56-day data was used.

On the basis of data presented in Table 4.2, it can be concluded that peat moss (no

vitamin) played a significant role in the aerobic degradation of PAHs in soil. The overall

average degradation was 90% for PAHs in the presence of peat moss (no vitamin) while

it was 75% in the absence of peat moss (no vitamin).

On the basis of data presented in Table 4.3 and 4.4, initial and overall

biodegradation rates of PAHs were higher in the presence of peat moss and V a and Vb

37
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vitamin mixture concentrations. In the absence of peat moss, Vc vitamin concentration

was more effective in the initial biodegradation rates of higher molecular weight PAHs.

Figures 4.1, 4.2, 4.3, and 4.4 show the effects of vitamins on the aerobic

biodegradation of phenanthrene, anthracene, fluoranthene, and pyrene, respectively, in

the contaminated soil supplemented with peat moss (10% by weight).

As shown in Figure 4.1, the soil phenanthrene was strongly biodegraded by the

indigenous microorganisms under all treatment conditions. The average value of the

depletion observed in the different aerobic microcosms at the end of the treatment was

75%, except in the anaerobic microcosm, used as control, in which only a slight depletion

of the original phenanthrene concentration was observed (10%). Vitamins were found to

significantly enhance the phenanthrene biodegradation rate, especially when they were

used at the Va and Vb concentrations. However, they did not influence the final

phenanthrene removal from the soil. V c concentration of vitamins apparently did not

show any effect on the phenanthrene biodegradation rate and extent in the soil.

As shown in Figure 4.2, the soil antracene was strongly biodegraded by the

indigenous microorganisms under all treatment conditions. The average value of the

depletion observed in the different aerobic microcosms at the end of the treatment was

98% except in the anaerobic microcosm, used as control, in which a slight depletion of

the original anthracene concentration was observed (4%). Vitamins were found to

significantly enhance the antracene biodegradation rate, especially when they were used

at the Va and Vb concentrations. However, V c vitamin concentration did not influence the

final antracene removal from the soil as much as other concentration levels.
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As shown in Figure 4.3, the soil fluoranthene was almost completely biodegraded

by the indigenous microorganisms under all treatment conditions. The average value of

the depletion observed in the different aerobic microcosms at the end of the treatment

was almost 100% except in the anaerobic microcosm, in which a slight depletion of the

original anthracene concentration was observed (12%). Vitamins significantly enhanced

the fluoranthene biodegradation rate, at all concentrations. In addition, Vb vitamin

concentration apparently also enhanced the final removal of fluoranthene.

As shown in Figure 4.4, the soil pyrene was biodegraded by the indigenous

microorganisms under all treatment conditions. The average value of the depletion

observed in the different aerobic microcosms at the end of the treatment was 70% except

in the anaerobic microcosm, in which a slight depletion of the original anthracene

concentration was observed (12%). Vitamins enhanced the pyrene biodegradation rate,

especially when they were used at the V c concentration, which, however, did not

influence the final pyrene removal from the soil. V a concentration of vitamins apparently

did not have effects on the pyrene biodegradation in the soil. The lower degradation rate

and extent observed for pyrene was probably due to its chemical structure make this

compound more recalcitrant with respect on the other PAHs.

On the basis of the data presented above, it can be concluded that typically

vitamins play a minor role in the aerobic biodegradation of PAHs in the microcosms with

the contaminated soil supplemented with peat moss. Vitamin additions were found to

enhance the initial biodegradation rate of phenanthrene, anthracene, fluoranthene, and

pyrene, especially when they were used at the Vb concentration, without significantly

modifying the final removal of the xenobiotics from the soil. Considering the
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insignificant PAH disappearance in the anaerobic microcosms, the PAH depletion

described can be reasonably ascribed to the biological biodegradative activity of the soil

aerobic indigenous bacteria.

Figures 4.5, 4.6, 4.7, and 4.8 show the effects of vitamins on the aerobic

biodegradation of phenanthrene, anthracene, fluoranthene, and pyrene, respectively, in

the contaminated soil without peat moss.

As shown in Figure 4.5, the soil phenanthrene was strongly biodegraded by the

indigenous microorganisms under all treatment conditions. The average value of the

depletion observed in the different aerobic microcosms at the end of the treatment was

76%. Vitamins were found to significantly enhance the phenanthrene biodegradation rate

and extent especially when they were used at the Vb and V, concentrations. They also

influenced the final phenanthrene removal from the soil (76%).

As shown in Figure 4.6, the soil antracene was biodegraded by the indigenous

microorganisms under all treatment conditions. The average value of the depletion

observed in the different aerobic microcosms at the end of the treatment was 90%.

Vitamins were found significantly enhance the antracene biodegradation rate and extent,

especially when they were used at the Vb and V, concentrations. V a vitamin

concentration did not influence the biodegradation rate and extent of anthracene in the

soil.

As shown in Figure 4.7, the soil fluoranthene was significantly biodegraded by

the indigenous microorganisms under all treatment conditions. The average value of the

depletion observed in the different aerobic microcosms at the end of the treatment was
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almost 85%. Vitamins were found significantly enhance the fluoranthene biodegradation

rate and extent in the soil at all concentrations.

As shown in Figure 4.8, the soil pyrene was biodegraded by the indigenous

microorganisms by an average 65%. Even though the higher vitamin concentration has

had higher biodegradation rate of pyrene, vitamins did not enhance the pyrene

biodegradation in soil.

On the basis of the data presented above, it can be concluded that vitamins played

a significant role in the aerobic biodegradation of PAHs in the microcosms with

contaminated soil when peat moss was not present. They were found to enhance the

biodegradation rate and extent of phenanthrene, anthracene, and fluoranthene especially

when used at the Vb and V, concentrations. However, they did not display the same

positive effect on the biodegradation of pyrene; this result could be ascribed to the higher

recalcitrance of this PAH.

Higher and more interesting vitamin effects were observed in the absence of peat

moss, which probably masked the effect of vitamins. In fact, peat moss probably

released additional carbon sources and nutrients for the indigenous specialized

microorganisms which, under these conditions, did not get any benefits from vitamins.

Because of the release of these additional nutrients by the peat moss, a faster and larger

PAH removal was observed; however, it is likely that peat moss favored the bacterial

activity by increasing the water and oxygen availability in the soil.

On the basis of the data presented, it can be concluded that vitamins applied at the

Vb concentration gave the larger effect on the PAHs removal from the soil.
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The effect of vitamins was also studied by other researches for the degradation of

different compounds both in aerobic and anaerobic conditions were mentioned in Chapter

2. Biotin was found to be a necessary supplement for optimal growth in the

biodegradation of 1,2-dichloroethane (Wijngaard et al. 1993). They had studied the

effects of organic nutrients and cocultures on the competitive behavior of 1,2-

dichloroethane-degrading bacteria. They found the strain AD25 not dominant in the lack

of vitamins, which are necessary for optimal growth of this strain.

The effect of vitamin B 12 was studied for the degradation of 1,2-dichloroethane

in groundwater (Lasage, 1997). B12 was also studied on reductive dechlorination of

biphenyls and benzenes by Assaf-Anid et al. in 1992. Finally, Kafkewitz et al. (1996)

found that the same vitamin mixture used in this work was capable of enhancing the

biodegradation rate and extent of monochlorophenols, mono chlorobenzoic acids and 4-

chlorobiphenyl.

It is possible to speculate that vitamins enhanced the indigenous specialized

bacterial activity by favoring the activity of the deoxygenates responsible for the PAH

aromatic ring attack and cleavage. In fact, these enzymes require niacin as cofactor to

express their activity.

Boldrin et. al (Boldrin et.al , 1993) found Mycobacterium sp. strain able to utilize

phenanthrene, pyrene, and fluoranthene as sole sources of carbon and energy and to

degrade fluorene cometabolically. The growth rates for phenanthrene, pyrene, and

fluoranthene were 0.069, 0.056, and 0.040 mg/kg. hi respectively.

In one of the recent studies, Thiabult et. al found 63% mineralization for pyrene

upon inoculation with K-12 and B-24 bacterial isolates (Thiabult et. al, 1996). In present
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study, pyrene was degraded to 81% in the presence of peat moss (no vitamin), and 75%

in the absence of peat moss (V c ) without any inoculation with bacterial isolates.

In present study, phenanthrene was degraded 57% by indigenous soil

microorganisms in two weeks. Fluoranthene was degraded 75% in two weeks, but it was

degraded almost 100% in six weeks by indigenous microorganisms. However, Heitkamp

and Cemiglia found phenanthrene degradation 51% in two weeks by gram positive rod

bacterium, and in the same study, fluoranthene was degraded 89% (Heitkamp and

Cemiglia, 1988).

Field et. al found one of the new isolates, Bjerkandera sp. strain Bos 55, was the

best degrader of both anthracene and benzo(a)pyrene, removing 99.2 and 83.1% of these

compounds after four weeks, respectively (Field et. al, 1992). At the end of present

study, anthracene degradation was 97% in the presence of Vb

The present study showed that the indigenous microorganisms were able to

degrade the specific PAHs in the presence of peat moss or vitamin. Vitamin mixture had

significant effect on indigenous microorganisms to enhance the biodegradation rates.

They are comparable to the results in other studies that were done with specific

microorganisms.



Table 4.1 The results of HPLC analyses
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Table4.1 (continued)
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Table 4.1 (continued)
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Table 4.2 Percentage Degradation of PAHs at the end of the Experiments (t=56 d)
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Figure 4.1 Phenanthrene Degradation in the Presence of Peat Moss
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Figure 4.2 Anthracene Degradation in the Presence of Peat Moss
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Figure 4.3 Fluoranthene Degradation in the Presence of Peat Moss
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Figure 4.4 Pyrene Degradation in the Presence of Peat Moss
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Figure 4.5 Phenanthrene Degradation in the Absence of Peat Moss
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Figure 4.6 Antracene Degradation in the Absence of Peat Moss
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Figure 4.7 Fluoranthene Degradation in the Absence of Peat Moss
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Figure 4.8 Pyrene Degradation in the Absence of Peat Moss
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CHAPTER 5

CONCLUSION

The study showed that vitamin mixture had an effect on biodegradation of aromatic

hydrocarbons.

The addition of vitamin mixtures containing different initial vitamin

concentrations was found to enhance significantly the biodegradation rate of the

phenanthrene, anthracene, and fluoranthene in the contaminated soil in the absence of

peat moss. The study also showed that the same vitamin mixtures enhanced the final

removal of four-ring PAH, fluoranthene, in the absence of peat moss. Peat moss, which

can release easily metabolized carbon sources, masked the vitamin effect on the PAHs

biodegradation. Peat moss significantly enhanced PAH biodegradation probably by

increasing the availability of organic compounds, oxygen, water, and nutrients to the soil

indigenous microorganism.

Thus, this study was the first in which the effect of vitamin on aerobic

biodegradation of aromatic hydrocarbons has been demonstrated.

On the basis of experimental data presented in this thesis and considering the

findings already described in the literature (Kafkewitz, et al. 1996, GuptaPal 1996) we

can conclude that the vitamin mixture which has been used in this work could be

successfully applied to the larger scale bioremediation of organic xenobiotics

contaminated soil. However, further studies on this topic are necessary in order to assess

if this approach could be cost effective at the industrial scale.
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APPENDIX A

PAH DEGRADING MICROORGANISMS

The following table shows the PAHs that were used on our study and organisms capable

of degrading them (1).

Table Al. Hydrocarbons and Microorganisms Capable of Biodegrading Them.
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APPENDIX B

CALIBRATION LEVELS

Table B.1 shows the preparation of calibration standards. Table B.2 shows the retention

times of the compounds and correlation coefficients,R2 . All of the standards were

obtained from Chem. Service, West Chester, PA. 2-fluorobiphenyl was 99.3%,

phenantherene was 99%, antracene was 99.9%, fluoranthene was 98%, and the pyrene

was 99%© pure.
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Table BI. Preparation of Calibration Solutions



Table B.2 Retention Tines and Correlation Coefficients

60



APPENDIC C

POLYCYCLIC AROMATIC HYDROCARBONS

In recent years, the concern about the presence of polycyclic aromatic hydrocarbons

(PAH) in air, soil, and water systems has increased, since this important class of

chemicals is carcinogenic in experimental animals and a potential health risk to man. A

summary of the structure, toxicity, and genotoxicty of PAH commonly found in soils and

aquatic ecosystems is given in Table Cl. (5)
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Table Cl. Chemical Structures, Physical and Toxicological Characteristics of Specific
PAHs l .

1 The Symbols are: (Ames) Salmonella Typhimurium Reversion Assey, (UDS) Unscheduled DNA

Synthesis, (SCE) Sister Cromatid Exchange. (4)
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