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ABSTRACT

SYSTEM SIMULATION AND MODELING
OF

ELECTRONICS DEMANUFACTURING FACILITIES

by
Ketan Giridhar Limaye

Over the last decade, pressure on the electronic industry has been increasing as concerns

for product take-back, product stewardship and global warming have continued to grow.

Various end-of-life management options are being expanded including recycling to

recapture values from basic materials through reengineering and recovery of

subassemblies and individual components for remanufacturing. While progress has been

reported on life cycle assessment (LCA), disassembly planning, design for disassembly,

and design for environment (DFE), very little research has been focused on

demanufacturing from a systems perspective.

The objective of this thesis is to build an interface between the user who knows the

demanufacturing operation and a software engine, which performs the simulation,

collects detailed operational data, and displays results. This thesis bridges the gap

between the requirement of hard core simulation knowledge and demanufacturing

terminology to present a computerized software tool.

Arena, a commercially available discrete event simulation software, acts as an engine for

performing these simulations. The developed software tool for demanufacturing contains

objects necessary for facility layout, systematic workflow and simulation of the facility.

Each object refers to a specific demanufacturing activity and uses detailed simulation

logic behind its design to perform that activity. The user selects and locates these objects



to layout the facility for a graphical representation of the demanufacturing operation.

Objects provide a user screen to input necessary data for the complete description of the

activity and its operational characteristics.

By simulating the facility for various scenarios, the demanufacturer can compare

different options for improving operations, resource utilization, equipment and layout

changes. To examine improvement options from an economic perspective a first-order

model of demanufacturing costs has been developed and integrated with the simulation

software. An activity based unit cost model is used to identify fixed and variable costs

associated with each product demanufactured. A small electronics demanufacturers

facility was observed and evaluated to validate the simulation modeling and operational

logic.

The application illustrates the usefulness of demanufacturing system simulation tool to

manage and improve the overall efficiency of facilities for economical operation. In

summary, a computer-base tool for simulating demanufacturing facility from a systems

perspective has been developed and validated. An activity based cost model has been

integrated with the simulation to give demanufacturers the ability to examine the full

operational and economic trade-offs associated with the business.
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2.2.2 Necessity of Newer Version of Simulation Softwares

The primary reasons for enhancing simulation software are to achieve the following basic

functions:

• Flexible and easy programming language for generating complex algorithms..

• The timing control mechanism, which maintains the list of events about to occur

and initiates/terminates activities.

• A database or file structure. The structure provides ease of accessibility to the

stored items.

• Easy implementation of initial conditions, random number generators, sample

distributions and the standard formats for analysis and printing of simulation

results.

• Sophisticated graphical interaction for presentation of results in form of graphs

and charts and better error-handling algorithms.

• An animated scene of the modeled system for better understanding of real time

status of the parameters of the system and information on their states.

2.3 Simulations in Manufacturing System

2.3.1 Introduction

The increasing competition in many industrial sectors has emphasized automation to

improve productivity, quality and also to reduce costs. Since the automated systems are

more complex, they can typically be analyzed only by simulation [M. Reduction in

computing costs by microcomputers and engineering workstations have spurred more use

of sophisticated simulation softwares. The availability of animation features has provided



enhanced visions for better understanding and ease of use by engineers. The overall

benefit of using simulation in a manufacturing is a system-wide view of the "local"

changes to the manufacturing operations [14, 20].

Every manufacturing system exhibits much the same characteristics, although

differing in details. Because of this similarity, simulation models of these systems have

more common features. The differences between them will reflect the different ways in

which facilities use them to form a particular system [10].

2.3.2 Potential Benefits

In addition to costs savings by simulating and evaluating various process alternatives and

operational strategies, a number of specific potential benefits from simulation are listed

below [14,20, 21]:

• Increased throughput (parts produced/demanufactured per unit of time)

• Reduced in-process inventories of parts/products

• Increased utilization of machines or workers

• Increased delivery commitments

• Reduced capital requirements or operating expenses

• A higher level of confidence in proposed designs or operational strategies

• Better understanding of the system behavior under different "what if" scenarios

A number of manufacturing issues has been addressed by simulation. The need for and

quantity of equipments and operators, layout configuration, performance of the operating

variables in terms of percent time utilization and evaluation of operational procedures in
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terms of scheduling, control strategies and quality control policies are few categories of

manufacturing issues [10, 20 and 21].

The simulation results often presents properties and variables as time persistent.

According to Averill Law [14], some of the performance measures are listed below

• Throughput

• Time in system for parts/products

• Queue statistics

• Times parts/products spend in transport

• Percent utilization of resources

• Sizes of in-process inventories

2.3.3 Summary to Manufacturing Problems Analyzed by Simulation Techniques

With knowledge of potential benefits, researchers and analysts have approached real

world problems ranging from evaluating process flows, operational strategies, equipment

changes and facility layouts in various types of systems from manufacturing automobiles

to operating fast food restaurants. The objective of manufacturing system simulations is

to minimize cost, while improving operational efficiencies.

Flexible Manufacturing Systems (FMS) require a detailed study to optimize design

and performance. A shop floor control system (SFCS) is responsible for implementing

processing routes and material handling operations and scheduling of processing parts

through the system. Simulation tools, have not only analyze and evaluate SFCS in

flexible manufacturing system, but also developed a task generator for the specification

of control tasks. Smith, Sturrock, Ramaswamy et al. (1994) present a RAPIDCIM
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approach of combining two traditional steps (simulation of system design for finalization

and development of control system for implementation in FMS) of process improvement

reducing the development cost [23]. Falkner and Garlid (1986) used a GPSS simulation

model to evaluate performance of a FMS at three different lifecycle stages and economic

analysis for justification of simulation technique [21]. Mills supports the simulation

approach that provides dynamic insight into FMS [10]. The comparison and evaluation of

different alternatives builds confidence at all levels. Mills pointed out future possibilities

of incorporating dynamic graphical capabilities, user friendly Graphical User Interface

(GUI) and a change in methodology of structuring the model for incorporating the

scheduling and control logic as a separate algorithm. Warnecke, Steinhilper and Zeh, also

utilize a simulation approach for planning and designing control strategies [20]. A

controller regulates the interaction between different transportation and manufacturing

stations and inspection machines. Chan and Pak point out the need for separate controller

simulation software for simulating a FMS and analyzing the interactions in a simulated

system [20].

Simulations have also used to develop models for describing manual loads that can be

effectively used in manual disassembly systems. Ehrhardt, Herper and Gebhardt

undertook a project, which evaluates the strain on a worker as a result of assigned

workload and environmental conditions around the work place [24]. 95 % of the

simulation studies have addressed the problems on capacity analysis, operator

requirement analysis, material handling design and analysis, process improvement and

automation feasibility, machine and equipment selection, secondary resource requirement

analysis and inventory analysis [25].
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Kiran et al. has observed the benefits of simulation during simulation of a medical

manufacturing factory for operational changes. They observed that the simulation

provides a global view of the entire situation, dynamic graphics provide better

visualization and scoreboard of measurement of performance criteria. Simulations have

also been used to compare different factory designs for different manufacturing units by

quantitatively measuring each criterion affecting the designs [26] and used to help in

designing and modifying control procedures in manufacturing systems. Simulations have

analyzed the scheduling methods for minimizing the work in progress and operational

cost, distribute the workload and provide on time delivery in manufacturing systems [21].

Siegal has simulated two different product types to evaluate the scheduling rules for

effective scheduling [21].

2.4 Current Research in Demanufacturing and Disassembly

The literature presented in this section is divided into three categories: Design for

disassembly, disassembly process planning and implementation of demanufacturing and

disassembly systems.

I. Design for Disassembly: After conceptual product design is ready, it is tested using

available disassembly tools to evaluate the performance of design from disassembly

perspective. It assumes the level of disassembly for a product to maximize value

recovered, which depends up on cost and effort of disassembly activity. The process

is continued until qualitative improvement is achieved. While dealing with designing

for disassembly, aim is to provide disassembly information through the product
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design. The designers target their attention towards the following aspects for

achieving effective disassembly performance:

• Logical grouping of components into subassemblies: The task is to separate

valued and non-valued components. While Simon et al. has addressed economics

of disassembly, algorithms developed by Subramani and Dewhurst (1991)

facilitate generation for disassembly sequence [27].

• Planning of disassembly for easy accessibility to high valued components and

subassemblies. Considerations have also been given for reducing waste awkward

movements during disassembly and logical structure to speed up the disassembly.

Kroll et al. have suggested a rating scheme that allows creation of quantitative

scores to design properties to identify weakness in design and comparing

alternatives [48]. Lambert has presented a method for evaluating disassembly

sequence by improving economic performance of the disassembly process given

technical and environmental constraints [28].

• Using compatible materials such that they can be recovered together and limiting

material variability with provision of some code to easily identify different

materials in a product. Various guidelines have been suggested to simplify the

disassembly process and reduce disassembly time. Tracy Dowie and Mathew

Simon have suggested guidelines that can influence the materials and components

recovery [29].

• More standardization of fasteners and using only those fasteners, which are easy

to disassembly or destroy.
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In addition to design for assembly, consideration for disassembly provides the

following advantages to demanufacturing systems

• Standardization in disassembly operations improving operational efficiency.

• Reduction in disassembly times reducing the disassembly cost.

• More uniformity of product configuration providing increased throughput of the

demanufacturing facility.

• Minimization of manual/automated material handling systems reducing effective

transfer times. Longer transfer times incur higher costs and lower operational

efficiency.

2. Disassembly Processes Planning: The research deals with the revenue generated by

recovery of specific materials or groups of materials, components, subassemblies or

the entire product. Ishii and Lee have suggested a reverse fishbone diagram for

presenting the disassembly sequence for a discarded product [49]. Figure 2.3 shows

information for disassembly. The disassembly sequence depends on two specific

information areas: product and use. Jovan et al. missed out market value, which is

also important aspect required for disassembly [4]. The demanufacturing receives

information about the structure of the product, potential recovery value and available

techniques. Structural criteria deals with aging, wear, damage, toxicity and value that

can be recovered from the product structure.
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Structure
Connections
Function
Materials

Operating Condition
Repairs
Technological
changes

Figure 2.2 Information for Disassembly
[Source 4]

In Sweden at Assembly Technology, Linkopings University a project was undertaken

by Dr. Mats Bjökman to identify and study parameters controlling the disassembly

system designs [30]. Material composition provides information on recyclablity

content and component function information checks for possible reuse or

remanufacturing options. In the entire life cycle of a product, the inspection at

demanufacturing facility provides information on operational condition when

disposed and amount of repairs done. Technological changes provide information on

the obsolescence period from manufacturing date. This data would also help for

possible upgrade options by remanufacturing components or subassemblies. This

demanufacturing process development knowledge serves as a database for next-

generation products and their applications. The database will hold information about

the product and its use stage. With the database at the back, demanufacturing

strategies for increasing value recoveries and benefits in balance with the costs of

operations can be developed for more complex product structures [27].

3. Implementation of Disassembly and Demanufacturing Systems: Disassembly system,

a part of demanufacturing system, should be feasible with respect to criteria on cost,

energy use and environmental burden [4]. Economic feasibility requires that within
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given rules and regulations, agreements and licenses, the total value of recovery

should be as high as possible. The energy use implies that the energy conservation

potential of the recovery process obtained by reducing use of virgin materials with the

second generation and reduction in waste should be larger than energy requirements

of recovery process [28]. The total amount of harmful waste should decrease with

increase in selective disassembly strategies and thereby reducing environmental

burden.

After an extensive research on disassembly environment, Jovane et. al suggest future

research should concentrate on demanufacturing system design and developing detail

methodologies for [4]

• Configuration of manual and automated disassembly facilities

• Economic justification of designed disassembly systems and operational strategies

• Organization of a logistic network for various recovery options

The thesis in deed focuses on these research areas and advances the work through

development of a simulation tool for evaluating facility layout changes, operational

strategies and configuration of resources.

The reported specific development in demanufacturing systems area for overall An

automated cell for disassembly is comprised of industrial robots with a cell control unit

for robot subroutines and identification of product features. The robot magazine

incorporates flexible disassembly tools and disassembly fixtures; sensors for process

control and reaction to uncertainty to product configuration. An efficient material

handling system for moving disassembled parts towards collection or dispatching sites.

IWF, Berlin is planning to set up such a disassembly cell. In London, Intelligent Systems
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and Robotics Center (ISRC) and Explosive subsystems & Materials Development at

Sandia National Laboratories have developed a robotic work cell for automated

disassembly of a gas generator [5]. In Japan, Tokyu Corporation has developed a flexible

robot cell for disassembling valves of air brake equipment [4]. In Japan, there are

automated facilities for disassembling and recovering basic materials from discarded

TV's refrigerators, washing machines and air conditioners. Sony corporation in Japan

have established automated disassembly line for CRTs [50], while Siemens is working on

design of flexible fixtures for manual and automated disassembly [4].

Cost models have been developed for analyzing the disassembly cost for evaluating

disassembly strategy [31], which includes reclamation value, disassembly cost and

disposal cost [27].



CHAPTER 3

DEMANUFACTURING SYSTEM SIMULATION TOOL DEVELOPMENT

3.1 Introduction to Demanufacturing System

Corporate strategy describes the long-term goals of the company. A growing concern

about the environment and potentials of product take back has spurred corporations to

extended stewardship to include asset recovery from discarded products.

The traditional LCA framework considers all life cycle stages of a product from raw

material extraction and synthesis to its final disposal. The Multi-lifecycle approach

enhances recovery and use of disposed products and waste streams through multiple

cycles [3]. Figure 3.1 shows the integration of the various stages a product follows

through its life cycle. These stages are as follows:

1. Raw material Extraction

2. Material Synthesis: includes both virgin and reengineered materials

3. Production

4. Distribution

5. Use

6. Demanufacturing: Initial stage of value recovery

7. Remanufacturing, reengineering and reuse: Initial stages of next generation life cycle.

31
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Figure 3.1 Total Lifecycle Considerations for Analysis and Modeling
[Source 3]

The demanufacturing stage includes all the methods for recovery options as a common

activity. This structure includes all the major processes, through which discarded product

go to recover the valuable components, subassemblies and basic materials. The flow of

typical discarded products includes three major areas: collection system bringing batches

of discarded products to the demanufacturing facility, demanufacturing activity recovers

values as outputs of the demanufacturing activity. The external transportation system

used for collection of discarded product and subsequent distribution of recovered
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materials/components is considered as a sub-system of demanufacturing model. Above

figure 3.2 is a flow diagram illustrating the basic operation of the overall

demanufacturing process.

Collection System:

Discarded products and materials are transported to the demanufacturer from a variety of

sources, including distributors, manufacturers and municipal collection systems.

Sometimes, the manufacturers remove the proprietary components and liabilities

information associated with the product before sending the remaining product to a

demanufacturer for further disintegration and value recovery. This activity is identified as

internal demanufacturing or salvaging.

Because of the toxic releases from the exhaust and consumption of non-renewable

resources like gasoline, oil and diesel, the impacts associated with transportation

associated with either collection or distribution system, are attributable to product from a

LCA perspective. Therefore, the transportation, central to reverse logistic and collecting

is considered as a separate activity in the demanufacturing system. The impacts from

transportation are dependent on the amount of distance traveled, the mode of transport

used and specific consumption of fuel used. Since collection is performed primarily by

truck, a truck transportation model is developed and presented in section 3.2 and

Appendix A, B, C and D
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Demanufacturing Activity:

Upon receipt, the products are sent to storage area, where demanufacturer performs a

preliminary screening to determine if the product is to be tested for reuse, disassembled

or directly sent to the shredder. Depending on the product, its condition, and current

market demand of parts and basic materials, the demanufacturer establishes a

disassembly plan to maximize value to be recovered. This value may be to resale or

remanufacture the product; recover parts, components and subassemblies; recover basic

materials for recycling and reengineering; or, send commingled materials to a smelter to

recover high-valued constituents. The knowledge serves as an input to reduce

disassembly effort and maximize the value recovered. The individual activities and

components of the demanufacturing process are discussed in the next few paragraphs.

Knowledge Input:

Knowledge provides a logical input required for the demanufacturing activity. The input

serves as a database for products coming into facility containing the following

information about the products

• Product type, make and disassembly procedure

• Current market demands and prices of basic materials, individual components and

subassemblies

• Recyclablity of materials that compose a product

• A listing of recyclable, reengineerable or remanufacturable components and materials

• Record of disassembly timings and list of disassembly criteria for various products

• Library on disassembly techniques from past disassembly experiences
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• Knowledge information for cost of demanufacturing operation: Total cost includes

procurement cost (if any), carry costs and cost associated with the value added at each

step in the reclamation process. These cost may vary with type of demanufacturing

process used and the amount of knowledge input on specific product and processes.

Lead-time deals with total time needed to process or acquire an item. It includes

inspection time, wait and queue time, move times or procurement times.

Staging and Sorting:

The staging and sorting operation is considered as a front-end shop control activity.

Uncontrolled variability is introduced into the front-end of process because the actual

quantity of products and product types entering the demanufacturing system (disassembly

activity) can not be determined until after the products have been accepted and

thoroughly inspected. Also, there are three critical attributes adhere to parts/products.

Those are total cost of the recovery process, lead-time and variability [32]. Variability is

associated to short term fluctuation that occurs in the scrap rate associated with an item.

Scrappage of item can occur at any time prior to its inclusion into demanufacturer's

inventory. Variability is introduced, however, when items come from different sources.

Sorting is an operation that determines fate of inspected parts performs following

basic function:

• Sorting of products depending upon product type and condition

• Formulation of batches depending upon the disassembly process plan

• Staging of batches according to their fate category
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Each facility has predetermined guidelines on the quality and quality selection for reuse

remanufacture or recycling of products. At first the products in poor condition are

separated and batches are formed for potential shredding and separation processing for

recovery of basic materials. The separation and staging of products is a key decision for

disassembly operation affecting the overall disassembly time, throughput and eventually

the profit gained by the firm. For example batches of products of same disassembly

families provide faster disassembly and lower set up and material-handling time by

keeping tooling and workstation setup and sizes of bins fixed.

Inspection and Testing:

Selected products before going to disassembly are tested for their potential reusability,

since the maximum recovery value is reuse. The products/parts found to be in working

order are sent for resale or to remanufacturers to be repaired (upgrade) and then resold.

Some products may be sent directly to the shredder because of poor condition observed

during first hand inspection and testing. Because the probability of a particular item being

defective is not deterministic, one can only approximate the likelihood of serviceable

products, which can be resold. This estimate can be more accurate when all of the

products in question come from the same source. Products coming into the facility from

different sources introduce variability in terms of product condition, product type's, and

quantity of different product types.

The inspection helps to detect wear or assess the condition of parts subject to wear

[33]. Inspection identifies fitness of components for further use or calculates degree of
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wear. The process should detect as easily and clearly as possible. This may involves

visual check as well as instrumental or functional tests.

Disassembly Operation..

Disassembly is the recovery of materials and subassemblies by separating components in

a somewhat reverse assembly order [33]. Time and easiness or efforts for disassembling

are key variables to earn or loose money. For efficient disassembly key issues include use

of minimum number of tools, a product design for easy accessibility to high valued

components, avoid complex fasteners and glued parts, limit direction of disassembly, a

clear disassembly plan to recover maximum value and proper scheduling. The level of

disassembly is decided by the recoverable value embedded in the product and varies with

the product and its condition. The operation can be performed to recover an individual

component, a subassembly or specific material. For example if the component is a circuit

board then it is sent to shredder for recovery of metals like copper and gold. The

shredded impure metals containing non-metal impurities are sent to smelter for recovery

of pure metal. The plastic components may be sorted by polymer type or left commingled

are sent for recycling/reengineering or for energy recovery.

Figure 3.3 shows the relationship between disassembly depth and recovery options in

terms of value if the product follows the disassembly sequence up to basic material

recovery. Disposal is not included in the figure because it is an independent activity that

can occur at any time during disassembly process. As the recovery process can be

considered as an entry point for the recovered materials in life cycle stages.
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Depth at Disassembly

Figure 3.3 Recoverable Value for levels of Disassembly

The remanufacturing option introduces the recovered parts and subassemblies at the

production stage, where as the reengineering and smelting option tracks the reverse loop

up to material synthesis phase. Smelting operation can be considered as disassembly of

product up to molecular level. As observed from the figure 3.3,the disassembly planning

and knowledge input in the demanufacturing activity can be can help reducing

unnecessary costs by eliminating unnecessary disassembly operations. The minimum

disassembly is attributable to maximum value depending upon the product configuration,

condition and good disassembly planning.
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Shredding and Separation:

A shredder is a machine primarily used for volume reduction, scrap preprocessing, pre-

incineration processing and management of hazardous waste. The volume reduction

facilitates handling, increases the density and lowers hauling cost. The incineration pre-

processing helps material handling, fuel blending and incinerator feed issues. For

shredding of electronics scrap and plastics a medium speed shredder is used [34]. A

typical shredder is composed of an infeed conveyor, a feeding device and shredding

mechanism operated by electrical motor system. Different separation technologies

depending upon the material composites of shredded input stream are electromagnetic

separation of ferrous from non-ferrous materials, eddy current separation for aluminum,

brass and copper. Electrostatic separation for materials based on differences in surface

conductivity, preferential charging and attraction of materials to an electric field of

opposite charge and gravity separation specific gravity property to separate non-ferrous

metals [35].

In the demanufacturing model the input material for shredding comes from the

disassembly station and the testing and inspection area. The shredding operation can be

considered as a two-stage process. During the first stage, materials like aluminum, steel

and waste are separated and in the second stage copper and plastics are separated out

[36]. The remaining residue (fluff) is sent for disposal.
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Products from demanufacturing model:

The output of the demanufacturing process is identified according to next generation use

recovered materials. The options are reuse, remanufacturing, reengineering and smelting

with the residue of the disassembly and recovery options going to disposal. The following

describes each of these categories.

Reuse:

Reuse is the highest form of waste reduction and value recovery option. The option is

justified for the serviceable products with high manufacturing cost, long innovation

cycles and long life times [33]. For electronics goods with short life cycles and lacking

upgradability, reuse may be difficult. The lack of information on residual lifetime of the

recovered components/products, variable market demands and technological

advancement reduces possibility of the reuse option. However, when possible reuse is the

best option.

Remanufacturing/refurbishing:

Remanufacturing is a process, in which reasonably large quantities of similar products

are brought into a central facility, disassembled repaired/upgrade sent for resale. Sorted

are then kept together by part types and also identified for their fate. Parts to be

remanufactured are kept together by their types, which are further cleaned, inspected for

possible type of repair and reuse. Remanufactured parts are then reassembled usually on

an assembly line basis where they are integrated with new products to build a finished

product meeting quality good of required specification [37]. Sometimes, the process also
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involves use of technical knowledge input, adding or removal of metal or physical

modification of material being processed or refurbished. Up on inspection the defected

parts are replaced with either new parts or remanufactured parts. A product receives a

new warranty after remanufacturing and a limited warranty after refurbishing or

rebuilding [38].

Reengineering:

Reengineering is the reformation or recycling of a recovered material [3]. Reengineering

is an activity, which not only recovers the material value but also maintains a database of

characteristics, process information for knowledge input during design analysis and

synthesis. Following are six different reengineering processes for material recovery:

• Reprocessing

• Smelting

• Compatiblization

• Pyrolysis to fuels

• Pyrolysis to monomers

• Shredding

It addresses the issues of material flows, environmental burdens, energy requirements,

additional process materials and cost of processes.
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Smelting:

Smelting is any process of melting or fusion, especially to extract a metal. The impure

metal (recovered from shredding and separation operation) is mixed along with the

impure metal at the smelting facility. The mixture is processed by respective smelting

process to produce pure metal. Processes vary depending on the ore and metal involved,

but they are typified by the use of the blast furnace and the reverberatory furnace [39].

Metals and plastics are the most common materials used in consumer electronics

product. Metals are recovered by electromechanical reduction, in which a direct current is

applied between electrodes immersed in wastewater [35]. As with plastics a major

problem in metal recycling is the purity of metal. Non metal impurities alter characteristic

properties of the metal composition.

Disposal:

In most demanufacturing activities, small amounts of residue (or fluff) must be sent to

disposal in a landfill or incineration unit.

Incineration:

Incineration is the process of thermally reducing the volume of solid waste, while

producing inoffensive gases and sterilized residue, by application of combustion process

[40]. To reduce the bulk of solid waste, burning of paper, plastic and other organic

components is often resorted to either in open dumps or incinerators. It can effectively

handle combustible solids, semi-solids, sludge and concentrated liquid waste. Heat is

recovered from incinerators by generating steam. Plastics, wax papers and rubber have

high heat heating units between 10000 and 19500 BTU per pound [41] and food waste,
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grass clipping have low heat content. In incineration process fly ash, noxious gases, and

chemical contaminants may be released into the air. However, new techniques for

"scrubbing" pollutants from incinerator stacks are being developed. Incineration of

typical garbage reduces its weight and volume by as much as 80% [42]. In the Europe

incineration is perceived as form of last resort but not in the US.

The heat from the incinerator generates steam in a boiler, producing as much as 100

megawatts of electricity [40]. A high stack, fan, or steam jet supplied from the boiler

supplies a draft. Ash drops through the grate, but many particles are carried along with

the hot gases. These particles and volatile gases are burned in a combustion chamber fed

by several furnaces. In order to control air pollution, the remaining gases are further

treated, with acid gas scrubbers to control sulfuric and nitric acid emissions, and bag

houses to remove all remaining dust particles, before they are released into the

environment. Objectives of total incineration [43]:

• Maximum volume reduction

• Complete combustion or oxidation of all combustible materials producing sterile, slid,

compact and dense slag

• Reduction in residue disposal activity adjacent to incinerator

• Complete oxidation of gaseous products of incineration with air pollution control

before release into atmosphere
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Landfill:

Traditionally solid and semisolid industrial residues are landfilled. These landfills are

covered with thick layer of soil to minimize odor and dispersion of debris. The leaching

of various undesirable contaminants degrade surface and sub-surface water supplies [44].

Another potential problem is trapping of gases such as methane, hydrogen sulfide during

the decomposition of the landfill refuse. Plastics, which are not biodegradable, pose

another problem for landfilling resulting accumulation in landfill areas. This may lead to

uneven landfill settling and final compacted properties, and reduce the bearing load for

subsequent structures to be constructed on the completed site [43].

Following are three different types of landfilling techniques [3]:

• Area fill: A large surface area is filled with alternate layers of 40 to 70 cm in height of

compacted garbage and 15 cm of cover materials.

• Trench fill: In this type waste is compacted in a trench below ground level until the

desired height is achieved. This type is suitable for small volumes of garbage.

• Modified area fill: In this type a compacted cell of waste and cover material is may be

excavated below ground level

3.1.1 Truck Transportation Model

Transport is a vital element and represents a significant fraction of the total processing

cost, energy and environmental burden of demanufacturing. There are three main

contributions associated with transportation energy for discarded product collection and

recovered products distribution [37, 45]:
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1. Energy embedded in the fuels consumed directly by the vehicle together with the

associated production energy. This is usually directly proportional to distance

traveled, although it may be affected by factors such as loading, type of journey, age

of vehicle and level of maintenance.

2. The energy needed to construct and maintain the vehicles, including contributions

from tires.

3. Third is the energy needed to provide facilities for the vehicle to carry out its

journey, which includes construction and maintenance of roads and garage facilities.

Only transportation by truck is considered in this thesis. Trucks are available in various

sizes ranging from small gasoline driven pick-ups to large articulated trucks with gross

weights in excess of 32 ton. A transportation model is developed and presented in

Appendix A

The Direct Energy of Fuel (DEF) in terms of kWh/mile can be expressed keeping the

structure of equation (1) same as follows:
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Emissions from transportation

Emissions from the transportation are divided into two groups:

1. Fixed Emissions: Due to the tare weight truck.

2. Variable Emissions: Depend on the actual load carried by the truck.

The total emission from each category is the summation of fixed and variable emissions.

Keeping the same assumption for the tare weight of trucks, fixed emissions are

calculated. Variable emissions are calculated on the basis of the actual load being

transported by the truck and so they are the function of weight of product, which can be

calculated as a product of individual weight to total number of products being carried.

Table 3.6 presents emissions summary for three different truck types

Table 3.1 Emissions summary
[Source: 46, Page 40]
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Note:

1. LOAD: It is the Actual Load being carried by the truck.

2. The summation of constant and variable emissions for each type will give the total

emissions of that type

The total emissions arising from transportation by truck are then the function of number

miles the truck travels and the amount of load it carries.

3.1.2 Need for a Computer Based System

Analysis of various operational scenarios can be performed to improve the overall

efficiency of demanufacturing operation. These scenarios can be conducted and observed

for improvement capability either by experimenting with the actual system or

experimenting on the model of system. Experiments on the actual system involve

physical changes and modifications in the current system. However, it is rarely feasible to

experiment on the actual system because of practical difficulties including cost and time

of experimentation and impacts on current workload.

The mathematical modeling strives for either an analytical solution or numerical solution

(simulation). Mathematical models represent the system in terms of logical and
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quantitative relationships that are then manipulated and changed to see how system will

react if the mathematical model truly represents the system. Mathematical models may be

analytically solved for different changes in the controlling variables (different operational

strategies) for performance analysis. As the system and therefore its model get more

complex, precluding any possibility of analytical solution, the model is numerically

solved to examine the performance of output measures.

It can be inferred upon examination of demanufacturing systems, that the

mathematical models will be fairly complex and impossible to solve analytically. An

activity based computer model is needed to understand the behavior of demanufacturing

activity under operational changes. The system changes its state when an activity such as

disassembly, transportation or batching occurs. These activities can also be called as

events. As described in Chapter two, simulation techniques of such systems are called

discrete event simulations, where system advances in time and changes its state only at

countable number of points in a given interval of time [14, 21].

In 1983, the first general-purpose simulation language called SIMAN designed for

modeling manufacturing systems was developed for microcomputers. In 1985, Cinema

was introduced as a graphical animation system. In 1993, Systems Modeling Corporation

released Arena, which uses SIMAN as simulation engine and CINEMA for animation

[47]. Because of its object oriented approach, user defined customized templates and

integration with Microsoft Visual Basic for formatted data input and customization of

(output) performance reports, Arena is used as the basis for this research.
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The software is widely used in various business sectors such as manufacturing

transportation, logistics, supply chain, call center, packaging, and service (e.g.,

restaurants, front office banking) systems [47].

3.2 System Simulation Methodology

3.2.1 Typical Simulation Methodology

A typical problem under study is normally divided into steps as shown in the flowchart in

figure 3.4. The general steps followed are as follow [9, 11 and 12]:

1. Identify the problem: The problem definition involves identification of the problem in

the system, its boundaries and other aspects required for problem clarification; for

example, problems related to inventory control for determining the optimal

replenishment policy, arising due to the stochastic nature of demand and lead-time.

Or in queuing theory, the problem may be balancing the cost of waiting against the

cost of idle time arising from the probabilistic nature of inter-arrival times of

customers and service time. These problems are similar to scheduling and operational

problems in demanufacturing systems arising from variability of products coming in

and value that can be recovered from them constrained by operational costs.

2. (a) Identify the decision variable

(b) Decide the objective and decision rules

In context of the demanufacturing problem, the supply, number of operators, size of bins,

level of disassembly for maximized recoverable value, optimum disassembly plan for

lower disassembly time for a predetermined level of disassembly are identified as

decision variables. These decision variables measure the performance of the system in
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terms of throughput and total profit gained. The amount of information necessary

depends on the level of exactness desired and the quality of information available.

Following are two types of questioning categorized [13, 14]:

Questions on model development: Answers to these types of questions help

demanufacturing system model development in terms of modeling details, animation

details, statistical analysis of decision variables. Following is a list of few questions

that can be asked by a modeler:

• What is the objective of demanufacturing study?

• What types of output results relate to demanufacturing simulation objective?

• What is to be included in the demanufacturing simulation model?

• At what level of details should the demanufacturing model be included?

• How is validation going to be performed?

• How detailed the animation should be for representing demanufacturing

operations?

• What are primary resources of the system and what task they perform? The

resources are the parameters running to deliver the system output. In case of

demanufacturing, disassembly workstations and operators are primary resources.

Questions regarding system to be modeled: The information needed for execution of a

simulation model is primarily obtained from answers to these questions. The modeler

is also concerned about the quality of information gathered. Following is a list of a

few such questions:

• Are disassembly process plans (level of disassembly) or process flow diagrams

available?



• Is the information about the product to be disassembled available?

• How much value you are recovering from the product?

• Have you decided the number of sort bins required and their contents?
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Figure 3.4 Simulation Process Flowchart
[Source 9]
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• Are you aware of the variations involved in the arriving products? The variation is

not only in the product type but also in the make of the individual product itself.

• Are there any physical, technological, or legal constraints on how the system

operates?

• How decisions are made and are there any exceptions?

• What type of data is already available?

• What is the quality of data?

• If data is not available, who will provide data estimate?

• Will they require that a sensitivity analysis be conducted?

3. Construct a numerical model: This is the representation of the real system into a

particular simulation language, which will be used for analysis on computer. In many

cases, a flow chart is used to describe the process.

4. Validate the model: Validation is a process of confirmation of the designed numerical

model. To ensure whether the model is truly representing the real system being

analyzed and results will be reliable.

5. Design the experiments: List all the values of variables to be tested (i.e. list courses of

action for testing) at each run and vary those in due courses of run for getting desired

result. This step deals with two important and contradictory objectives: accuracy and

cost.

6. Run the simulation model: This is only a procedure to get the results in the form of

operating characteristics. The procedure involves issues such as random number

generators, stopping rules and derivation of results.
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7 . Examine the results in terms of problem solution: The results are examined for their

reliability and correctness. If the simulation process is complete, i.e. if the results are

in given confidence interval, then select the best course of action, otherwise make the

desired changes in the model decision variables, design and return to step 3

The process can be viewed as an iterative one until you reach the desired objective.

The simulation tool is developed keeping the same methodology described above

using combinations of modules existing in the standard Arena software. The tool

develops an interface providing demanufacturing terminologies for simulation of

demanufacturing facility.

3.2.2 Definitions of Primitive Objects

Arena has a modular structure with lower level programming languages like C/C++,

FORTRAN and graphical user interfaces like Visual Basic, and higher level User-created

templates. Figure 3.5 shows Arena's hierarchical structure and level of abstraction [13].

The demanufacturing system model utilizes the modules from every abstraction level

to develop the customized templates. It incorporates arrive, depart, advanced server,

simulate modules from the Common Panel for modeling activities, which are constructed

by combining modules from support and SIMAN template. As the complexity of

demanufacturing system under study increases the model goes down the hierarchy to

develop the customized templates. The demanufacturing system uses branch module

from blocks template and assign, delay modules from support template. The description

of the significance of these modules in demanufacturing simulation tool is described in

next few sections.



The model development code can he written in procedural languages like C, C++,

FORTRAN and graphical user interface of Visual Basic for future specialized purposes.

For example, complex decision algorithms in staging and planning of disassembly

processes or accessing disassembly, scheduling data from an external application source

and storing the current operational data.
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The customization provides facilities like design for application oriented logic, use of

technical terminologies of that specific application and higher abstraction for benign

users.

3.2.1.1 Arrive: Arrive module creates the modeling entities representing the various

products in demanufacturing system. The module is divided into three categories shown

in figure 3.6. Enter Data section is used for description of the current station.
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The station name, which may be the unloading dock location for products arriving from

collection sources, can be written in the combo box or can be selected from the list in the

combo box. The station set is a group of similar stations, where different stations are

stored in an array with its index. The second section is Arrive Data section, which holds

information on entities generation. Batch Size and First Creation control the number of

products to be created and time of their creation. Time Between and Max Batches entries

decide the intervals between successive arrivals and maximum batches of discarded

electronics products to generate by this arrival module.

Time of arrival can be assigned to user defined attribute. User can also assign states to

resources and generate products with different identities using the Assign Module

explained later in this chapter. The leave data section allows counting the number of

generated using count option. And user can decide the way of travel for leaving products

using Trans Out option. This option provides access to either a transporter or a conveyor.

The user can also specify the name of next station and the time of travel for the leaving

product.

3.2.1.2 Advanced Server: A server is an active processor, which represents a

disassembly workstation, a store for discarded products. The server represents the

resource, its queue, its type and the processing time required. Like arrival module, the

server is also divided into three categories viz. enter data, process data and leave data.

Figure 3.7 shows the three sections and default animation picture of server.
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F

Figure 3.7 Advanced Server Module
[SM Corporation]

Advanced server module provides facility of designing a sub-routine logic to incorporate

with in the server logic. This logic can he a delay for tool set up time or a wait till some

signal is received for further processing of discarded electronics products.

The enter data section keeps  information on resource name i.e. name of disassembly

workstation and a Trans In option to free a transporter, exit a conveyor or free a resource

acquired previously by the active product entity.

The Server Data section holds the disassembly workstation's processing information.

The incoming product entity can  seize, request a resource or a member of resource set.

also processes according to a pre-assigned schedule as per disassembly process plan  or
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user can input a capacity for that particular disassembly station. If the capacity type is

capacity, then a numeric value for the capacity of workstation is required along with the

process timings. The capacity is the ability to process given number of products

simultaneously. The Resource button holds the information about different states of

disassembly workstation, type of workstation i.e. stationary or moving, its down times

and failure probability distribution. The queue module "queues" the incoming entities and

releases them as per the user-selected rule. The general rules are First In First Out, Last

In First Out, Higher Value First or Lower Value First. The leave data section is similar to

the leave data section of arrival module.

3.2.1.3 Depart: A depart station is a physical area from which the active product entities

are disposed. The station name is a name of the location of collection and shipment area,

which can be written in the combo box or can be pulled from the list. The station name

can be a member of a set of similar stations. Figure 3.8 shows the depart module with its

sections.

To compute and record the flow times of departing products, individual tally option

can be used. The interval statistic option provides the time difference between a selected

attribute and the time at the departing station. Similarly the expression option allows to

calculate the tine based upon user defined expression. The options command button

provides options for releasing overlapping resources such as operators or a specific

member of a set.
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The count section counts the number of product entities completing the pre-assigned

schedule of path. The counter can be a set with index for counting different types of

products disposing by the same depart station. As stated earlier the tally section tallies the

number of disposing products according to type of statistics selected.

3.1.2.4 Batch: The batch module is used to group the individual products to form  a

single batch for disassembly processing and transfer activities. The operations that are

scheduled for batch processing use this module.

Figure 3.9 shows the batch module with its logic symbol.



Figure 3.9 Batch Module
[SM Corporation]

A new attribute can he assigned to the newly formed batch. There are two types of hatch

forming methods: permanent batch and temporary batch. When a  batch is permanently

formed then the attributes of individual entities are lost and  the batch entity receives the

attributes of either first or last entity. However, temporary batch can be  split at any time

in the model using split module and the attributes of either first or last entities are

assigned to this batch entity. After splitting the temporary batch the individual entities

regain all their attribute values. For demanufacturing, modeling permanent hatches of

various product types are formed before processing and then the products are moved as a

batch entity through out the logic
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tithe created products are of different types for example different products arriving at

demanufacturing facility. then these can he grouped according to their type by selecting

option Match Entities.

3.2.1.5 Delay: Delay is a module, which holds the active entity advances the simulation

clock by a specified unit of time. Figure 3.10 shoes the user screen for delay module.

D elay 1•
0

Figure 3.10 Delay module
[SM Corporation]

The delay type is specified by three ways. User can write a mathematical expression,

which evaluates the delay period. The delay can be a value of static variable or a value of

an attribute. The delayed entities are held  in a common storage or a user defied storage

until the delay period is over. The delay period in demanufacturing system is a tool set up

time or time required for delivering the bin manually to collection/shipment area
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3.2.1.6 Inspection: Inspection station provides facility of providing the information On

failure probability of product, which is currently under process. Figure  3.1I shows

inspection data input screen which is used to model inspection "operator".

Figure 3.11 Inspection Module
[SM Corporation]

The enter data and server data sections are same as an advanced server module, except

that in server data section you require an additional data input information. The process

time in this section means time required for the inspection process and the failure

probability is the percent failure rate of discarded electronics products. It has minimum
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zero value and one maximum. For example if the failure probability is 0.2 then out of 100

products/batches 2 batches fail the inspection test.

The failed products/batches go to the fail inspection leave data for disassembly

operation to recover value embedded in subassemblies and individual components and

the passed products/batches go to pass inspection leave data to resale or remanufacturing

location for repair. Both the leave data sections are same as explained in arrival or

advanced server module.

3.2.1.7 Branch: The Branch is an object from block module for duplicating the entities

as per the user requirement. The demanufacturing model utilizes capability of branch

module to generate streams to sorted bins for disassembled products and figure 3.12

shows the branch module.

The Label block uses the default name or the user specified name as the name of that

instance of the branch block. The Max Number of Branches gets the user input for

maximum number of sorted bins. The branch can be operated on a specific condition or

probability provided by the user. The Branch types section provides the screen for stating

the condition. The screen provides four different conditions and those are If, With, else

and Always. When the second condition is used, the branch takes given probability or

expression in with condition and creates the entity. Whenever always condition is used

that branch will always be counted for the total number of entity replications.
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Figure 3.12 Branch Module
[SM Corporation]

The condition is a logical expression, which will give boolean output. The disassembly of

a product would generate a branch, if condition the condition written in that branch is true

or the probability value requires branching for that active product entity. The branch

option is used for creating number of bins after disassembly of the product.
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3.2.1.8 Assign: The assign module is in support panel and used for assigning  values to

properties of products, disassembly workstations and inspection stations. Figure 3.13

shows the assign module with list of all assignable properties

Figure 3.13 Assign Module
[SM Corporation]

The assignable properties are attributes, variables, states of resource i.e. disassembly

workstation or operator, Rate, Level, picture (an individual or from a set of picture) and

other assignments to stations, sequences. .[The variable differs from attribute because it

user defined. The attributes and variables are assigned by their  values. The states are

assigned to a disassembly workstation as per their definition in the description of

workstation. Predetermined states are allocated to a resource depending upon the function

performed by the resource and these states are assigned in the logic of model.
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The picture is related to product picture assignments \ ∎ here user can change the product

picture when product undergoes different processes of &manufacturing to graphically

represent various product states throughout the system.

3.2.1.9 Sets: A set, a module from common panel consists of a group of similar objects

required to define demanufacturing system. The objects are stored with an index assigned

to them. Figure 3.14 shows the user screen for sets module.

Figure 3.14 Sets Module
[SM Corporation]

The set module groups resources, counters, pictures, queues, storages, tallies, stations and

other user identified objects. When the check box is selected, the "command button"

appears on the screen, that allows definition of group and listing of all the group

members. The group members are accessed by the group name and index variable. The

index variable can be a user-defined variable or an attribute. The &manufacturing system

defines products, their pictures, various counters and locations as stations using this



imulate
Project

Title:

Analyst:

Date: I 	I 	1
Replicate

Number of Replications:

Beginning Time:

Length of Replication:

T terminating Condition:

Between Replications..
Initialize System

Initialize Statistics

Warm-Up Period:

OK 	I Cancel 	 I Help

68

module for representing a different groups of identities such disassembly workstations,

operators, counters for products and collection shipment locations.

3.2.1.10 Simulate: Simulate is a data screen for submitting information about simulation

time, start time, warm up period and stopping condition for the demanufacturing model.

Figure 3.15 shows the user screen for simulate.

Simulate

Figure 3.15 Simulate Module
[SM Corporation]

Simulate module is divided into two sections. The first section gets user information

as well as date of simulations. The Replicate Section get the information on number of

replications, start time of replication, duration replication and if  the duration is unknown

then the condition for stopping simulation run. The system as well as statistics can be
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initialized at the start of replication. The warm period is used as a starter of simulation

and when warm up period is over; the simulation program starts collecting the statistics.

3.3 Customization of Arena for Demanufacturing Simulation

3.3.1 Design of template

A Template is a panel consisting of a group of objects called modules. A module is a

single construct that may be selected from a template panel and placed in a model or can

be built from the combination of existing modules in other template panels [14]. The

panel designed for a demanufacturer contains the objects necessary for facility layout

systematic workflow and simulation of the facility.

The information about a module is stored in the template panel library (.tpl) file and is

referred to as module definition. In the template panel object (.tpo) file the information

contained in the definition file is compressed for use in simulation. A module or object is

composed of four different sections such as logic section, operand section, user view

section and panel icon section. The logic section acts as a source code for execution of

the intended function of a module. The operand section acts as data input source for user

defined constraints. The panel icon section stores a graphic image of the module, which

will serve as a symbol representing that module on the panel. The user view section

contains the default picture of the module and default animation graphic images. These

images will be activated during simulation run.

Each object refers to a specific demanufacturing activity and uses detailed simulation

logic behind its design to perform that activity. The user selects and locates these objects

to layout the facility for a graphical representation of the demanufacturing operation.
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Operands provide a user interface for complete description of the activity and its

operational characteristics. Operand names are chosen from a demanufacturer's point of

view. The construction of user screen provides fewer interactions with technical terms of

the Arena software and concentrates more on demanufacturing terminologies for ease of

operation.

Demanufacturing operation is identified as a group of activities. The panel developed

groups these activities and each module represents one of them. Following activities are

identified for module development:

• Storage and Staging

• Inspection and testing

• Disassembly Workstation

• Number of Bins

• Bins

The modules are developed in next sections to follow. Each module has its own symbol,

animation graphics and uses typical demanufacturing terminologies.

3.3.2 Storage and Staging

This module is designed for modeling the storage area of a facility, which takes name of

storage and its capacity as input. The storage releases according to the ranking rules

specified using the radio buttons. For parallel as well as sequential operations method, a

signal has to be received by storage to release the next, which is modeled using a wait

module. The logic incorporates process and wait modules to model the storage and

release of products.
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Figure 3.16 shows the logic and user screen of the module including the graphics

shown on panel icon and model window.

The graphics shown in user view window will be displayed during simulation. The

graphics in panel icon window will servers the purpose of a symbol of this  module in the

template.

3.3.3 Inspection and Testing

This module is designed representing the inspection stage in demanufacturing system.

Figure 3.17 shows all the five components such as logic, user view, icon, user screen and

operand definition.

The user provides following, inputs:

• Unload time for the hatch
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Figure 3.17 Inspection and Testing

• Name of Inspection station and Operator Name

• Maximum batches that can be handled at a time

• Inspection Time

• Percentage of failures from the batch
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The logic incorporates only one module. \A inch basically performs the operation. Th e

purpose of developing this module is to provide interface for using demanufacturing

terminologies.

3.3.3 Disassembly Workstation

The disassembly workstation is a production resource for demanufacturing systems.

Figure 3.18 shows the components used to build the disassembly workstation module.

User View Window

Figure 3.18 Disassembly Workstation

When a hatch arrives at the workstation, the operator sets up the tools at the workstation

modeled as a time delay for set up time, the hatch is again delayed after assigning

processing states to the workstation and operator to simulate disassembly time. The logic

also follows the same path described earlier.
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The workstation is assigned the following states:

• Op_wait: When operator is not available at the workstation for processing,

this state is assigned to measure the idle period of the workstation.

• Processing: This is the actual disassembly operation state

• Set up: This is the proportion of time consumed in setting up the workstation.

All the states are predefined into the logic including their animation pictures so that they

can be used else where in the model for generating data on percent time utilized by each

state.

The user input is required for information on machine name, unload time for the

batch, set up and disassembly times. The panel icon and operand definitions provide

representation of the module on template and referencing of the user input into the logic

respectively.

3.3.4 Number of Bins

The disassembly plan determines the number of bins required for various recovered

components or materials after disassembling the product. From programming point of

view, the programmer has to generate the given number of entities just after the

disassembly is over. This generation can be done using the branch module from the block

template. Figure 3.19 shows the designed module.
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Figure 3.19 Number of Bins

The user view will show the arrows equal to number of branches specified. By default

there will he always a single branch because the product has to go to next station if it is

not disassemble at that station. The repeat group provided in the User Screen will give

access to specify the number of branches using the condition defined for that branch. For

example if a branch is modeled to operate only if the product is monitor then for other

products that branch will not send disassembled product to its associate  bin.

3.3.5 Bins

As described in earlier sections a bin or a container used for collecting the disassembled

parts and components. The purpose of sorted bins is to provide bulk handling (convey or

transportation) of the disassembled parts to reduce the transfer times. Figure 3.20 shows

the design of the bin template.
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Figure 3.20 Bins

The logic provides a delay for loading the bin into the truck or conveyer. The user inputs

are loading time, name of bin and a capacity of bin. The capacity of the bin is also

important in terms of utilization of the disassembly workstation or operator because

larger bins provide more time for disassembly and reduce transfer times. All the user

inputs are referenced into the logic via operand definition window. The user view

provides the animation picture for bin, which shows the bin being loaded with the

materials are products are disassembled.

A typical demanufacturing facility was observed and modeled in order to validate

these developed modules. This validation procedure for the modules and the results of

validation are described and presented Chapter Five.



CHAPTER 4

COST MODEL

4.1 Introduction

A cost is the exchange price; a foregoing sacrifice made to secure benefit. The financial

standing of an organization is of great concern to management. Competitive businesses

need information that will make it possible for managers to identify and eliminate

generators of non-value activities, and to be profitable they need additional information

to manage activity costs [51]. Operations and facility layout improvements for higher

throughput have to be examined for cost and benefit analysis. Activity Based Costing

(ABC) assumes that resource consuming activities cause cost; products incur costs by the

activities they require for design, engineering, production, packaging and servicing. 

According to Brinker [51], " an ABC system identifies and then classifies the major

activities of a facility's product process into one of the following four categories: unit

level, batch level, product level and facility level activities. Cost in the first three

categories of activities are assigned to product using bases (cost drivers) that capture

underlying behavior of the costs that are being assigned The cost of facility level

activities, however, are treated as period costs or allocated to products in some arbitrary

manner" [51]. The activity based perspective in Figure 4.1 is as follows: [52, 53]
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Figure 4.1 Activity Based Perspective for Cost Modeling
[Source 52]

• Unit level Activities: Activities at this level are performed for each unit of product

produced. Disassembly activity times of each unit of a product and delivery activity

for filled bins are examples of activities performed at unit level.

• Batch level Activities: Activities that consume resources every time a batch of a

certain product type is produced. Activities such as staging/testing a batch, receiving

batch at disassembly workstation are batch level activities performed at

demanufacturing facility.

• Product Level Activities: Certain activities are consumed to develop and support

demanufacturing processes. Tool setup activity time, maintaining the product

information and developing special testing routines are attributable to specific

product.
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• Facility Level Activities: These activities are not directly attributable to products but

are necessary for functioning of overall demanufacturing activities.

Stages in ABC can be identified as [51, 53]:

• Identify major activities in demanufacturing, for example disassembly, delivering the

full bins to collection/shipment area.

• Identify cost driver: A cost driver is a factor, which causes costs to be incurred, in

turn these causes are the allocation bases used by activities. For example: Set up

hours, Material handling hours.

• Create a cost center (pool) for each activity. A cost center can be defined as a part of

business incurring cost, which must be accumulated. It includes major segments such

as administration, engineering, finance, demanufacturing services and others.

• Trace costs of activities to products: The step involves identification of activities

performed by a product, which includes major activities performed in a facility as

well as product specific activities that incur costs.

The result of ABC can be cited by increased revenue or decreased cost. Many systems

and products are designed to go through their life cycle with little concern to life cycle

cost. The cost associated with different activities such as design, planning, operation and

demanufacturing have been isolated from other activities. They are not viewed in an

integrated approach for system life cycle cost [54].

From past experience, a large portion of the total cost is the direct cost as a result of

execution of different activities. The existence of these costs is the consequence of the

decisions made in early stages of the product lifecycle. Further, since these cost are

interrelated, the total cost is more addressable as life cycle cost. The life cycle cost, when
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included serves as a parameter for developing stable economics. Figure 4.2 shows the

distribution of life cycle cost over the life of a product

I \	 Life Cycle Cost

100%	 Committed

Figure 4.2 Cumulative Life Cycle Cost Committed and Ease of Change for improvement
[Source 54]

Though the actual expenditures are at later stage, the total cost for a product is committed

in early stages during design and planning. Therefore from a demanufacturing

perspective, consideration and implementation of design for disassembly guidelines,

incorporation of recoverable materials and standardizing fastening techniques would help

to reduce the non-valued activities and increase product level activities performed on

product in a demanufacturing facility. To assess multi-lifecycle cost of a product a cost

model is developed as part of this thesis research. Figure 4.3 shows the cost savings

model for products going through different recovery options.



Figure 4.3 Cost Savings in I)emanufacturing Systems

Approximately two thirds of the total lifecycle cumulative cost is decided at the

conceptualization and design stage, though the actual cost is invested during production

and distribution stage [54]. Figure 4.3 suggests the importance of consideration for end-

of-life options at earlier stages of product life cycle to reduce second generation

investment and resource consumption. The conventional disposal of preceding generation
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products can be processed in a demanufacturing system to save net production cost of

next generation products. Figure 4.3 shows product lifecycle stages on the horizontal axis

and cost invested on the vertical axis. The cost associated with collection and

redistribution of discarded products and inspection are common to all recovery options in

addition to their specific process costs. The recovery hierarchy is reuse, remanufacture

and reengineering for recovery basic materials. The cost invested in reuse option with the

cost just before the use stage will be the net production cost for next generation

application. Similar costs (B and C) are associated with remanufacturing and

reengineering options. Table 4.1 lists all the cost invested after end of useful life from the

graph shown in figure 4.2.

Table 4.1 Cost Invested for Next Generation Application

The effectiveness of recovery process will reflect a lower profile cost curve for the next

generation products. The net savings from the recovery can be observed just before the

use stage by comparing the manufacturing cost at a typical life cycle cost curve of a
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product with production cost including the recovery cost for the next generation product.

Table 4.2 summarizes the net savings observed from the graph.

Table 4.2 Summary of Cost Savings in Demanufacturing System

4.2 Cost Classification

A variety of classifications have been developed to support lifecycle cost and economic

analysis. The classifications are based on the source and effect of costs that will have a

bearing on the output of a demanufacturing activity [51, 53 and 54]. Some of the

classifications are listed below

• Investment Cost: The initial cost of getting an activity started is an investment cost.

Ordinarily, this type of cost allocation is limited to costs that occur only once for any

given undertaking. In demanufacturing facility, facility installation, material handling

and disassembly equipments and tools is an investment for succeeding activities.

• Operation and Maintenance Cost: Operation and maintenance cost will be

experienced over an expected life of the product. These costs are dependent on the

number of different activities performed in a facility. The timings of these costs vary

substantially and are related to activities in their scope. Various categories comprising
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this cost, for demanufacturers include labor, energy, material, inventory holding,

internal as well as external transportation, communication and residual disposal costs.

• Fixed and Variable Cost: Fixed cost are costs involved in an on-going activity and

whose total value will remain relatively constant throughout the life of that activity.

Fixed costs result from the decisions of past and are not subject to rapid changes.

Variable costs are related to variation in operational activity. For example, energy

consumed by the conveyor is proportional to the weight conveyed over a

precalculated distance. In general, all costs that can be easily allocated to each unit of

product are variable cost. The type of activities such as disassembly, transportation,

staging and inspection performed in facility are variable costs. A graphical

representation of fixed, as well as variable cost, per product is shown in figure 4.4.

Demanufacturing 1°. 	Total Demanufacturing Cost
Cost/ Product

Variable Cost:
Activity Dependent

Fixed Cost: Activity Initiation

Demanufacturing Activity

Figure 4.4 Fixed, Variable and Total Cost
[Source 52]

It is apparent form figure 4.4 that the cost incurred in disassembling a product is

divided into fixed and variable cost. Variable costs incorporate the activities

performed, while fixed costs include the investment required for initiation of

activities such equipment cost, facility capital cost and administration cost. The total

demanufacturing cost increases with the increase in disassembly activities.
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85

• Direct and Indirect Cost: The direct cost consists of costs associated with the

demanufacturing of a product. Direct costs are direct labor cost and direct expenses

associated with demanufacturing such as cost of tools, material handling and testing

equipments. Where as, indirect cost consists of indirect labor cost pertaining to

disassembly, supervision and engineering consultation cost and indirect expenses

such as heating, lighting, insurance and office personnel cost.

The process of classifying cost and expenses may begin by relaters cost to the

operations/activities of the demanufacturer. To better understand the demanufacturing

business requires a cost model that generates a relation between these variables and

activities that incur cost for a demanufacturer. A model that relates the cost in dollars per

product disassembled will provide an insight to a demanufacturer for scheduling and

improving his operations.

4.3 Cost Identification

Upon review of the classifications, an activity based cost model can be developed by

identifying fixed and variable cost. The cost per product is the summation of variable

costs per product representing the activities and fixed costs per product representing the

investment cost for initiation of activities.

Where, m = different types of products.

n = number of activities associated with product i
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The identification of the cost sectors for the fixed as well as variable cost categories

require information on different types of the of activities performed the facility.

4.3.1 Relationship of Activities with Cost Categories

The overall activities in a demanufacturing facility are disassembly, material transport,

shipping, repairing, staging and inspection. The activities involved in each type of

variable cost are summarized in Table 4.1.

Table 4.3 Identification of Activities for Cost Categories



Table 4.3 (Cont.) Identification of Activities for Cost Categories
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Specific management and business activities cost include:

• Transportation Equipment Cost: Purchase of materials handling equipment

• Work Center Equipments Cost: Purchase of machines and tools

• Capital Cost: Installation of facility and layout cost

• Administration Cost and Business Expenditure: The supervisor, disassembly

consultation and office administration
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4.3.2 Variable Cost

Variable costs result from the demanufacturing activities performed on products. These

activities cut across different cost incurring groups such as labor, material handling,

residue disposal and disassembly cost. Total cost incurred by an activity performed on a

product is summation of cost groups (variable costs) participating, for completion of that

activity.

4.3.2.1 Labor Cost: Labor cost is the cost allocated as an expense for the services

provided by the operators. This cost is normally specified in terms of dollars per hour and

attributable to disassemble a product as a function of time required for the disassembly

and total direct and indirect handling. The labor rate for that particular type of activity is:

Labor Cost = (Labor Rate for Activity * (Activity Time for Activity (4.2)
in Dollars/br) in hrs/Product)

4.3.2.2 Material Handling Cost: There are several different activities for

handling/lifting materials/products in a demanufacturing system depending up on the

size, weight and volume of the material or product. The material handling in

demanufacturing can be divided into four major categories and the cost associated with

them can be calculated from respective controlling variables.

• Internal Transport by Transporter: The transporter here means a power driven

vehicle such as a fork lift truck. The cost associated with the operation of this truck

can be calculated as summation of operational and maintenance cost for a specific
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period of time. Since the ratio of volume to weight of electronics products is high,

this cost is then divided in a ratio by volume of products being transported, which will

give a cost associated with different types of products and can be called as

transporter cost. Therefore, the transporter cost per product will be as follows

(Distance	 Volume per
Traveled )i * Product Total 
Velocity of Volume
Transport	 Transported

per hr.

(4.3)

Where, C. S = Conversion Scale = 1/8760 per hr.

• Internal Transport by Conveyer: The conveyer cost is also calculated from the

amount of power consumed over a specific time period. The weight/size of material

or product influence the conveyer cost. A cost associated with conveying activity

performed on a product can be calculated by allocating the overall cost for that period

in the ratio obtained from weight/size of product.

(Total Annual
Conveyer Cost = Conveyer

Cost)

(Distance	 Weight per
Conveyed)i * Product

* C. S * Velocity of	 Total Weight
Conveyer	 Conveyed

per hr.

(4.4)

Where, C. S Conversion Scale = 1/8760 per hr.

• Handling by Cranes: The same approach is maintained for calculating craning

activity cost for moving a product by using crane. The individual cost can be
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determined by dividing the accumulated cost in a ratio of weight of products being

lifted or moved. Hence, the craning cost of the activity can be calculated as below

(Number	
Weight per
ProductCraning Cost = (Total Annual Craning Cost) * C. S * of Craning * 	 (4.5)
Total

hrs) Weight
Lifted per hr.

Where,	 C. S = Conversion Scale = 1/8760 per hr.

• Material movement by the operator: This cost incurs when the worker itself carries

material. In earlier cases may be a separate operator is employed but in this case the

person involved in disassembly himself or a separate operator moves the material

keeping the workstation idle. The cost can be calculated by the equation (4.2) used for

labor cost by using handling time as the activity instead of disassembly time.

4.3.2.3 Residue Disposal Cost: The cost associated with the disposal of the residue

(fluff) is an expense to the company. The disposal cost per product is the summation of

cost associated with the disposed items. This disposal cost is normally calculated by

pounds of material or items to be disposed. Therefore, the total disposal cost per product

can be calculated as

Residue Disposal
Cost

(Dollar Rate per Pound
of Specific Disposable *
Item)

(Weight of That of
Specific Disposable
Item in Pounds)

(4.6)

Note: Accounts for different disposal cuts for toxic vs. non-toxic materials.
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4.3.2.4 Work Center Operational Cost: This cost is combination of operational cost of

machines and tooling. An additional factor of safety is included for maintenance and

repair costs. The machine cost is the power consumed over a time period and related to

disassembly times of different types of products. Considering disassembly as an activity

the work center, operational cost can be divided in a ratio of disassembly times for

individual product.

Keeping the same approach, the total tooling cost is also divided into a ratio by

disassembly times of individual products and called as tooling cost. The total cost for this

activity is calculated as below

Work center operational cost = 	
(Total Annual	 S * 	

(Disassembly/	
(4.7)

Machine Cost + 
* Tooling time

Tooling Cost)	 in hours)i

Where, C. S = Conversion Scale = 1/8760 per hr.

4.3.3 Fixed Cost

The fixed cost is normally calculated as a depreciation cost depending on the expected

life, salvage value and purchase cost. This depreciation is then the cost per year for that

category which can be broken down to per product basis.

General cost formula for calculating the annual cost of facility investment and

equipment cost is given below:

Capital Cost - Salvage Value
Depreciation Cost =	 Years of Expected Life

(4.8)
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4.3.3.1 Facility Capital Cost: The initial investment required for establishment of a

facility covers the capital cost. It includes land cost, construction cost and all other cost

except equipment cost. This lumpsome amount is distributed over a given period, which

is called as the expected life. The depreciation cost calculated from equation (4.8) is then

allocated in a ratio by volume to assign and distribute the facility capital on per product

basis. Therefore,

4.3.3.1 Equipment Cost: The equipment cost is allocated to purchase cost of the

equipments, machines, and tools. These cost are also distributed over a period of time.

The expected life of these constituents is dependent of their usage and wear rate. The

investment in machine tools from demanufacturing point of view may be less as

compared with any manufacturing facility. These cost are calculated on annual basis

using equation (4.8). This annual cost is then distributed in a ratio of total number of

products of specific category to total number of products disassembled.

Total Number of Products of a

Equipment Cost = (Annual Equipment Cost) * C.S* Specific Category	  (4.10)Total Number of Products
Where, C. S = Conversion Scale = 1/8760 per Disassembled per hr.

Therefore,
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4.3.3.3 Administration Cost: The administration cost is found over a time period and

that cost then may be broken down per product basis by allocating it into a ratio by

number of products disassembled over that period.

Where, C. S = Conversion Scale = 1/8760 per hr.

4.4 Summary of Cost Categories

Notice that all costs are dependent upon one or more number of product properties. The

properties are physical characteristics, as well as, run time properties or the activities

through which products flow. The run time properties are the times related to disassembly

activity and material handling activity. Variation of run time properties affects the

operational cost, while variation of physical properties affects the fixed as well as

variable costs.

Thus cost incurred by the disassembly activities is the summation of labor cost and

work center operational cost. Table 4.2 outlines the activities, including parameters

required to calculate the cost associated with that activity.
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Table 4.4 Activities and Cost Generating Parameters

Activity Conducted Cost Generating Parameters

Disassembly of Products Disassembly Times

Tool Setup for Disassembly Disassembly Times

Loading of the Material or Products Material Handling Times, Type of

Material Handling System, Times

for Labor used

Unloading of the Material or Products

Movement from Loading Dock to Warehouse

Material Handling Times, Type of

Material Handling System, Times

for Labor used

Movement from Warehouse to Inspection/ Staging Area

Movement from Inspection/ Staging area to Workstation

Movement in between Workstations

Movement from Workstation to Collection/Shipping

Area

Disposal of Fluff Bins Material Handling Times, Type of

Material Handling System, Times

for Labor used, Weight of

Disposed Item, Type of Disposed

Item

Repair and Maintenance of Disassembly Workstations Down Times
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4.5 Revenue from the Facility

From a business perspective, profit is affected not only by the number of products

disassembled, cost per product and also the market value for the basic materials,

subassemblies and individual components. The following are major revenue categories

for a demanufacturer.

• Resale of Products (reuse)

• Sale of Remanufactured Products: The Category basically involves sale of

subassemblies and components

• Sale of reengineerable materials: The category involves sale of basic materials such

as plastics like ABS, PVC, HDPS, PC, glass and others.

• Sale of recyclable metals to smelters: The category involves metals like aluminum,

steel, copper, gold and silver

The salable items are kept in bins after they are recovered from a disassembled

product. The number of bins of basic materials, components and subassemblies

multiplied by the market value in dollars for each bin is the trade of that firm. The term

"Resale" is included here for those products that pass testing and have secondary market

for sale. The repairable products are reworked and send back to the secondary market as

remanufactured (or refurbished) products. Such products are normally sold at 65 to 85

percent of their invoice price [55]. These products again go back into the use stage of

their lifecycle as reusable or remanufactured products.

The failed products are disassembled and placed in sort bins for different types of

materials and components. The number of sort bins is decided by the disassembly plan
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and market demand for the basic material and products. These are valued on the weight

basis and the rate is described as dollars per unit weight of respective fate category.

Recovered Value E (Dollar Rate per Pound * (Weight of Specific	 (4.12)

per Product	 = ° of Specific Item);	 Material/Subassembly
in Pounds)

Where, n = number of valued items.

The specific items include steel, aluminum, copper, plastics, other metals, wires,

circuit boards, motors, transformers, CRT's, computer drives and hard disks. The bins

also include commingled materials such copper mix and aluminum mix that incorporate

impure material extracted from the disassembly operation. Table 4.5 shows the recent

market prices for the recovered materials. The prices of metals are average prices for the

month of October 1998 reported on internet web site scrap.org, where as the prices of

polymers are quoted by the suppliers and cited on internet web site recycle.net [56].

Table 4.5 Current Market Prices of Recovered Materials (October 1998)
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The total cost obtained from the equation (4.1) and the trade figures obtained for different

products are compared for determining management issues and increased profitability of

the facility.



CHAPTER 5

SYSTEM SIMULATION TOOL VALIDATION

The objective of panel development is to build an interface between the user who knows

the demanufacturing operation and a software engine, which performs the simulation,

collects detailed operational data, and displays results. To verify the accuracy and validity

of the simulation logic running behind the modules in the panel, model validation was

performed using data collected from a typical small demanufacturing facility.

5.1 Case Study Definition

The facility under study is a small electronics demanufacturing firm. The objective of the

facility is the disassembly of electronics equipment with intent to ship the disassembled

parts to outside vendors for further processing. Electronics products coming into the

facility range from televisions, computers and monitors, microwaves and vacuum

cleaners to large machines like medical equipment, photocopy machines and mainframes.

The following describe the general details about the facility under study:

• 10000 sq. feet floor area out of which approximately 500 sq. feet area is

actually used for disassembly.

• Staff includes a manager and two workers

• Material handling equipment includes a fork truck and manual movements.

• Disassembly work stations are arranged in parallel operations

• Out of total products 35 % are televisions, 45 % are monitors and 20 % are

vacuum cleaners.
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The facility performs primary disassembly of a range of electronic products at single-

person workstations working in a parallel batch operation method. Parallel hatch

operations includes the following activities performed h\ the operator:

• Fetching of the batch from the storage

• Visual inspection for potential reuse or remanufacturing operation

• Disassembly of the products and separating parts and subassemblies into bins

• Delivery of the bins containing disassembled parts to collection and shipment

area

Figure 5.1 shows the facility layout identifying locations of different activities.

assembly Workstation
Area 	 Storage Area

All Dimentions are in meters
Figure 5.1 Facility Layout

The facility is divided into three major sections: Storage/collection area, disassembly area

and office and resale area. The disassembly area contains three disassembly workstations.

Each operator has a workstation and a set of tools. The majority of the tools are

pneumatic screwdrivers, hammer, pliers and cutters. The evaluation process before
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disassembly is visual inspection of the product. The reusable products are sent to resale

area. Following is a list of predetermined sort bin types:

• Aluminum

• Copper

• Motors

• Capacitors

• Plastics

• Steel

• Circuit Boards

• Wires

• CRT's

The facility operates in a batch process, where each operator gets the batch from

storage using the fork truck. The batches are received from two types of sources:

discarded by electronics manufacturing companies and local/household collection

network. With the electronics manufactures group, products are already disassembled to

some level at their internal demanufacturing unit to recover proprietary components or

labels attached to the product. These products are fairly uniform. The products arriving

through the local/household collection system or distributors normally form batches with

great variability in product type and condition. For example one shipment contained

twenty-two to forty-four boxes depending up on the method of stacking and size. These

boxes from the specific companies may contain 20 to 24 items of only one type of

products such as vacuum cleaners or microwaves. The boxes received from local
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distribution centers contain a range of household electronics products such as televisions,

stereos, microwaves, vacuum cleaners and personnel computers.

The received batches are moved to the storage areas and, with exception of monitors,

are brought directly to the disassembly workstations without prior inspection. Before

starting the disassembly process at the disassembly station, a quick visual inspection of

the products is carried out. Each disassembly workstation is composed of a table

surrounded by four small bins and a large bin for scrap materials and subassemblies.

Tools are arranged before disassembly of the first product in the batch. For large

products, the disassembly operation is performed on location where it is stacked or on the

floor near the workstation if possible. The disassembly process involves recovery of

easily accessible components and materials. The operation can be defined as a "first

stage" recovery and separation of materials into bins such as plastics, steel, aluminum,

copper, main circuit boards, motors and capacitors. The remanufactured (repair

operation) products and bins of recovered materials and components are sent to the

collection and shipment area where they are sold to outside vendors for specific recovery

processes and/or resold as refurbished products. Figure 5.2 shows the disassembly

process flow chart followed by electronics products.

An operator working at the disassembly station performs the entire process described

in the flowchart in Figure 5.2 on a batch.

From simulation perspective, the process flowchart can be considered as the model

boundaries. The disassembly operator is a moveable resource and the workstation is a

server, which actually processes the batch. The resources as well as servers are assigned

predetermined states. A state is a condition characterized by the resource or server as



Figure 5.2 Operations Flowchart Followed by products

consequence of an activity. Based on the activities performed, four states such as Fetch,

Process (disassembly), Deliver and Idle are assigned to resources. Similarly, three

activity-based states are allocated to servers: waiting for operator (Op_wait), Process

(disassembly) and Idle. If operator is getting the batch from staging/storage then the

resource is in Fetch State. If the operator is delivering the batch then it is in Deliver State.

Whenever resource is in Fetch or Deliver State, the server is in Op_wait State, which can

be explained because of the method of operation described in preceding paragraphs.

Figure 5.3 and Figure 5.4 shows the logic that operates behind the simulation. The
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complete logic for the validation model is a combination of the logical sequences shown

in the Figures 5.3 and 5.4.

Figure 5.3 Logic for Product Arrival and transfer to Storage

Figure 5.4 Logic for Product Disassembly and Transfer to Collection Bins

Setting up the distributions for inter-arrival times for the batches, number of batches to be

created for each arrival and a distribution for generating different types of product

batches create the batch using the arrival module. After creating the batch and assigning

indices to the generated batch entities to identify types of product hatch, the active
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entities request for a transporter to move into the storage and staging area. The storage

and staging area module receives the entities and stores them and sends to the

disassembly workstations depending upon the state of workstation. A "choose" module is

used to check the states and directs the batch (entity) to the respective workstation.

At the disassembly workstation template, the user inputs unload, tool set up and

disassembly times for the batch and name of workstation. The active batch entity

undergoes a delay for all the times and proceeds to the number of bins module where

batch is decomposed into specified number of branches equal to number of bins selected.

For each bin the user specifies the capacity of bin and time required for loading the filled

bin on a transporter. An operator then moves the bins to the collection location manually

or using a truck. The logic that incorporates manual movement requires a positional

resource such as operator, move and delay module as shown in Figure 5.4. The product

entity before depart in case of transporter, or dispose in case of manual handling,

increases the individual counters from a counter set for number of different types bins

disposed of for final value of total number of bins of components and parts generated

after disassembly. These counters are necessary to calculate the throughput and revenue

generated from the operations.

5.2 Data Collection Process

The data collection process was performed for two different days and eight hours per day.

The data is collected for vacuum cleaners and televisions. Table 5.1 gives the data sheet

of disassembly times for the same products. The disassembly time also includes the time
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required to transfer the disassembled part to appropriate bin within 4 feet of the

workstation table.

The data on products arriving into facility was also collected for a period of three

months starting from May to July 1998 from the report sheets in the facility. The data

sheet is attached as Appendix E. In a real system the time required to disassemble a

product is undeterministic and dependent upon a number of variables such as condition of

the product, structure of the product and depth of disassembly. So these variations appear

by chance and cannot be predicted by the modeler. To model such a stochastic system,

the modeler then selects a known distribution form, makes an estimate of parameters and

then tests the distribution for its accuracy in prediction. These distributions with random

number generator programs are used within the model for estimating times.

Table 5.1 Disassembly Times in minutes for Vacuum Cleaners and Televisions

With the above data the distributions were created using Arena's Input Analyzer. The

input analyzer provides continuous theoretical distributions such as exponential, normal,

triangular, uniform, beta, gamma, lognormal, and Weibull. The Poisson distribution is a
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discrete distribution used to generate the integer valued quantities. The following steps

are followed to tit distribution via analyzer

• Create a data tile in an editor.

• Open the input analyzer and import the data tile.

• Fit one or more distributions, select which one is most appropriate. Analyzer

performs chi-square and Kolmogorov-Smirnov tests and returns the test results for

each distribution fitted.

• Copy the expression and import it into Arena's model design window.

Figure 5.5 and 5.6 show the input distributions selected for vacuum cleaners and

televisions. Appendix E includes the distribution for products arriving into the facility

with associated data sheet.

Distribution Summary Data Summery

7 + GAMH(9.07, 3.15)
0.054950

Points 	 = 51
▪ 7.38
▪ 108
• 35.5
• 16.5Chi Square Test

Number of intervals 	 4
Degrees of freedom 	 1
Test Statistic 	 11.4
Corresponding p-value < 0.005

Number of Data
in Data Value

Max Data Value
Sample Mean
Sample Std Dev

Distribution:
Expression:
Square Error:

Histogram Summary

Kolmogorov-Sairnov Test
Test Statistic 	 0.152
Corresponding p-value > 0.15

Histogram Range 	 7 to 109
Number of Intervals 	 = 7

Figure 5.5 Distribution Fit for Vacuum Cleaners



Figure 5.6 Distribution Fit for Televisions

5.3 Analysis and Results

The distributions in Figure 5.5 and 5.6 are input for disassembly times into server

modules, which are the disassembly stations. The data is collected on a typical operations

day. The purpose of validating a model is to evaluate the correctness of simulation logic

with the environment. The simulation results should reflect the data collected for a typical

operations day. Figure 5.7 shows a snap shot of animation screen of the validation model

and Table 5.2 shows summary of observed and simulated data.
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Figure 5.7 Animation Snapshot of Validation Model

Table 5.2 Summary of observed and simulated data

Pallets Coming into Facility per Month Pallets Processed in Four Days

Observed Simulated Observed Simulated

129 127 15 17

113 249 17 19

226 114 14 12

Validation demonstrates that the simulation accurately models the existing operation

consequently is capable of handling "what if" scenarios such as:
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• Equipment and operational changes

• Staging in work volume

• Increase in work flow

• Layout modifications

Figure 5.8 shows the workstation time allocation statistics for the validation model. From

the figure, it can be observed that most of the time the workstation is waiting for operator

and approximately twenty-six percent of time is utilized for disassembly operation.

40

20

10

0

Figure 5.8 Results on Workstation Time Allocation

Figure 5.9 shows Operator (resource) time allocation statistic. The preliminary simulation

results show that workers are involved in actual disassembly operation approximately

nineteen percent of the time, while they are delivering the bins filled with recovered

material to the collection/shipment area approximately forty-four percent of the time.



Figure 5.9 Results on Operator Time utilization

From Figure 5.9, it can be observed that approximately fifty percent of the time operator

was involved in material handling activity and that is why the workstation utilization

figure indicates more time allocated to operator-wait period. The observations and results

suggest that the material handling activity could be improved to reduce net transportation

time. Indicated few bottlenecks in the operations can be cites as:

• Operator idle time is greater than the processing time. The potential cause may be

unavailability of transporter for the operator because of dispatching and unloading of

the products at the storage area.

• Too few numbers of operators or allocation of this available time causing increase in

transfer times.

• Material handling time is greater than actual processing time suggesting reevaluation

material handling activity.
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The current operations statistics and above observations reveal the inefficiency and

bottleneck in existing method of operation and also suggests improvements in the current

operation. These options are discussed in Chapter six.



CHAPTER 6

FACILITY AND OPERATIONAL IMPROVEMENT ANALYSIS

6.1 Alternative Operational Strategies

Examining the results from simulations performed for validation of the software tool,

some suggestions for improvement can be drawn:

• Revising the layout of the facility to reduce time for moving filled bins to the

collection/shipping area.

• Increase size of the sort bins to hold more material leading to fewer trips by workers.

• Assign a separate worker to move bins while others continue to disassembly products.

• Addition of material handling equipment to reduce waiting for availability of the

transporter.

The key point driving most of these suggestions is to reduce net percentage of transfer

times. The increase in bin capacity has limitations of available bin sizes, transporter

capacity and handling and location space. The present capacity of bins is matches size

and place available. Increase in bin size will reduce the number of delivery trips but time

required to move the larger bins is much more than time required to move smaller

capacity bins. The total time required for loading, unloading and transport together for

moving a bin from disassembly workstation to collection/shipment area can be calculated

as:

Total Transport Time per Trip = Loading Time + Transport Time + Unloading Time

Assuming constant velocity operation, transport time can be calculated as:

Transport time = Distance Traveled (m) / Transporter Velocity (m/min) = 8 / 25 = 0.35
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From twenty observations made during the data collection process, the average time

required to load the bin on a truck is 0.33 minutes, to unload a bin from truck is 0.35

minutes and to manually move the bin is 0.33 minutes.

Total Truck Transport Time per Trip = 0.33 + 0.35 + 0.35 = 1.03 minutes.

This time difference of 0.70 minutes is because, collection bins are located eight meters

apart from disassembly workstation. Instead of increasing bin size, increase in operator

and increase in number of transporters alternatives are simulated and the results are

presented in next section

6.2 Results of Simulated Alternatives

The improvement options selected for simulation and evaluation of throughput, worker

and workstation time allocation are:

1. An additional operator to receive the batches after their arrival. This operator is not

used for delivering the filled bins because the operator at disassembly workstation has

to wait until the bins are located back in their place. If the additional operator is used

to deliver the bins and disassembly operator is sent for getting new bins the time can

be reduced by few seconds but not by significant amount. This operator can be used

for staging and inspection operation other than transporting the batches for his

effective time utilization.

2. An additional operator and an additional fork truck are incorporated for efficient

movement of materials and less transfer times.



I 1 4

6.2.1 First Improvement Option

The first improvement option keeps the set up of existing two operators, however

employs an additional operator to receive batches from the facility.

Figure 6.1 Animation Snapshot of first Improvement Option

The logic running behind the disassembly operators is the same as explained in Chapter

5. The additional operator is assigned to move batches from unloading location to storage

area Figure 6.1 shows the animation snapshot of simulation. The additional operator

description uses the same definition of other two operators as a part of its logic in model

development.

The arrival module creates the hatches, which are transferred to the storage and

staging area. The highest priority of allocating truck is given to movement of products

from unloading dock; i.e. arrival dock to storage area. The next priority is given to

movement of batches from storage area to disassembly workstation and then the delivery

routes are prioritized. A lower the priority number relates to a higher is the priority of the

activity. Figure 6.2 and figure 6.3 show graphs along with the data sheet of the time

utilization of disassembly workstation and operator respectively. The simulations are

performed in three runs of five replications per run and a simulated period of four days

per replication.



Figure 6.2 Time Utilization of Disassembly Workstation ( 1)

The data sheet attached to the graph in Figure 6.2 shows the average percentage of time

consumed by the disassembly workstation and operator.

On comparison with the results from existing operation (validation model ), the

improvement option reduces the net operator-waiting period to sixty-eight percent and

net processing time is increased to thirty percent.

Similarly, percent time spent in delivery of tilled bins is reduced to forty percent

increasing the processing time to forty nine percent. The results show that higher

percentage of time are utilized by operator and consequently by the workstation in

"Deliver" and "Wait" process states respectively. The potential cause of these higher

percentages may be unavailability of truck immediately after the request. The sharing of

truck by the two operators at disassembly workstation and one additional operator can

support the above caused relationship.
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Figure 6.3 Time Utilization of Operator (I)

The operation can be evaluated again by introducing an additional forklift truck (5000 lb

capacity), in addition to, three operators and forklift truck. The second improvement

scenario describes and discusses the results of these changes.

6.2.1 Second Improvement Option

I'his improvement option simulates both the operator and equipment changes for

improving the throughput and time utilized by the resources. Both the trucks are allocated

on a "preferred order" basis, in which the routes are prioritized by the analyst. Keeping

the priorities of material movement the same as explained in scenario one the simulations

are performed. Figure 6.4 shows the animation snapshot of the simulation showing two

transporters.
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Figure 6.4 Animation Snapshot of Second Improvement Scenario

Histogram along with the data sheet, for the time utilization of disassembly workstation

and operator are shown in Figure 6.4 and Figure 6.5 respectively.
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Figure 6.5 Time Utilization of Disassembly Workstation (2)
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Figure 6.6 Time Utilization of Operator (2)

In comparison with first scenario there is a ten percent increase in processing time and

approximately ten percent decrease in operator-waiting time at the disassembly works

station. Also there is a marginal increase in processing time of disassembly workstation.

The next section describes in details, the comparative study of the two improvement

scenarios with base line "as is" scenario.

6.3 Comparative Study

This section describes deals with comparison of results obtained from simulating two

different improvement scenarios with the base line scenario in terms of time allocation

for the activities, cost of improvement and revenue from the improvement. Figure 6.7 and

Figure 6.8 show comparative time utilization of operator and disassembly workstation.
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It can be observed from the Figure 6.7 that there has been successive reduction in the idle

time as Well as increase in the processing time. The time consumed in delivering the

batches has also been reduced by four percent compared with base line scenario.
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It can be observed from Figure 6.8 that the utilization of the disassembly workstation has

increased by successive reduction in operator-wait time. This wait time incorporates the

total waiting period for the workstation in receiving as well as delivering the hatches.

The improved allocation to disassembly activities directly leads to an increase in the

throughput of the facility. Figure 6.9 shows that the variation, at 95 percent confidence

level, in total number of product batches disassembled during the simulation period of

four days.

Observation Intervals 44
RM - mags---11431

95% C L

17_2
Throughput Base Line 	 1 136

	

-2 54 	 36.9

Throughput_1 4021
-0.267 46 7

Thu throughput _2 	 13H
14

50
48. 4

lir Classical C.I. Intervals Summary

IDENTIFIER AVERAGE STANDARD 0.950 	 C.I. MINIMUM MAXIMUM NUMBER
ill DEVIATION HALF-WIDTH VALUE VALUE OF OBS.

Throughput_Base Line 17.2 15.9 19.7 1 36 5
Throughput_l 23.2 18.9 23.5 2 40 5
Throughput 2 31.2 13.9 17.2 13 50 5

Figure 6.8 Confidence Interval on Total Number of Products Disassembled

The total number of batches disassembled in the base line scenario is 17 with a standard

deviation of nineteen batches. The average number of batches disassembled in first

scenario is twenty-three with a standard deviation of eighteen products and the second

scenario disassembles an average thirty-one hatches in four days with a standard

deviation of thirteen batches, which is significantly less than the other two scenarios.

From this observation, that total number of products disassembled in baseline and first

scenarios have a higher variation than observed for second scenario.
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To compare the economic viability of the improvement scenarios, Table 6.2 shows

comparative cost changes due to improvement options assuming base line cost as zero.

Using labor rate of 8 dollars per hour and 8000 dollars as capital cost of forklift truck the

cost incurred from improvement options is calculated. The information is obtained from

private discussion with small demanufacturing facilities.

The net labor cost incurred can be calculated using equation (4.2) for both the scenarios.

Labor Cost = 8 * (4*8) = $ 256	 ...(6.1)

The labor cost per product for simulation period of four days and twenty-one products per

batch is calculated as follows:

Table 6.1 Labor Cost per Product for Three Scenarios

Similarly, Using equation (4.8) depreciation cost of fork truck assuming salvage value of

$1000 and life of 8 years can be calculated as:

(8000-1000)/8 = $ 875 per year = 0.09 $ per hour	 ...(6.2)

The truck fixed is independent of the activities performed by the truck Therefore, for

calculating the truck cost in three scenarios total time consumed by one or more

transporter is the same and corresponds to simulation time of 4200 minutes. Table 6.2

shows the truck cost on per product basis for three scenarios.
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Therefore, from eq. (6.2)

Truck Cost for simulation period of four days = 0.09 * 5760= $ 8.64 	 ...(6.3)

Table 6.2 Truck Cost per Product for Three Scenarios

The facility capital cost and administration cost, being cost throughout the study are

not considered. Also, the truck operational cost is also not included because of

insufficient data on truck operational efficiency and fuel consumption. Table 6.3

summarizes the total cost of operation including the labor cost and truck cost. In addition

to, total cost on per product basis, the table also provides total cost incurred from three

scenarios.

Table 6.3 Summary of Total Cost Incurred
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The net value recovered from disassembling the products from the scenarios can be

calculated using the value of recovered materials minus the residual disposal cost. The

cost effectiveness of the improvement scenario is ratio of net value recovered to net

disassembly time required for value recovery. Using the thesis work of Devendra Badwe

[57] Table 6.4 shows the dollar value of recovered materials. Since both monitors and

televisions are disassembled to the same level of recovering CRT, they are clubbed

together.

Table 6.4 Value of Recovered Materials for Monitors and Televisions
[Source 57: page 185]

The landfill cost can be calculated as shown below [57]:

Total Weight of Fluff = 0.084 tons per batch

Therefore,

Landfill Cost = Tipping Fee ($ per ton) * Total Weight of Fluff (tons)

= 75 * 0.084 = $ 6.30 per batch

...(6.4)

...(6.5)
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Net Revenue = Value Recovered - Landfill Cost)

= 33.35 - 6.30

= $27.05 per batch	 ...(6.6)

Assuming forty-seven percent of dirty copper and remaining dirty steel in a motor of a

vacuum cleaner, the total value of materials recovered using Table 6.4 is $ 1.23 from one

motor of five pounds. Therefore, the value recovered from vacuum is calculated by

assuming resale value of 25 cents per pound for motors and 0.005 dollars per pound for

the remaining mixed plastic from Table 6.4.

Table 6.5 Value of Recovered Materials for Vacuum cleaners

Fourteen out of seventeen batches in base line scenario, eighteen out of twenty three

batches for first Scenario and twenty-six out of thirty-one for the second scenario were of

televisions and monitors. Using Table 6.4 and Equation (6.6) total revenue is calculated

as shown in Table 6.6 and Table 6.7 summarizes cost and revenue from the facility



Table 6.6 Total Revenue from the Facility
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Table 6.6 Summary of Cost and Revenue Analysis

6.4 Recommendation Suggested

From observations on time utilization and total number of batches disassembled, cost and

revenue analysis reflects that the scenario one has higher throughput from the facility, but

cost and revenue study does not provide promising results. Actually it increases the loss

by approximately $120.

The throughput and cost-benefit analysis shows that scenario two not only produces

higher throughput of thirty-one batches, but also provides gains to the facility. The cost-

benefit results in Table shows that the facility improves its economical status by

approximately $86 on implementation of second scenario. The scenario two can be
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implemented in the facility to improve overall efficiency of the facility by increased

throughput, lower cost per product disassembled and higher gains for the facility.



CHAPTER 7

SUMMARY AND CONCLUSION

The chapter summarizes the results and draws conclusions from the research presented in

this thesis. The first section summarizes results obtained by using the demanufacturing

simulation tool and presents the general conclusions from this entire research. The second

section presents recommendation further development of the system simulation tool.

7.1 Summary of Demanufacturing Model and System Simulation Tool

The demanufacturing systems model reflects all the activities and prcesses performed on

discarded products. The generic model includes:

• The reverse collection/distribution system: To assess the impacts from transportation

of discarded products and recovered materials, a truck transportation model is

developed. The transportation model evaluates the energy requirements and emissions

from transportation.

• The demanufacturing activity: This module reflects the logical flow of products

through the demanufacturing facility from unloading, storage and staging to inspect,

disassembly, sorting and collection for shipment.

• The products of the demanufacturing activity are represented as outputs from the

demanufacturing facility incorporating all end fate categories such as reuse,

remanufacturing, reengineering, smelting and residue disposal. The disposal option

sends the residue to landfill or incineration for energy recovery.
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The generic demanufacturing systems model developed in this thesis is implemented as a

computer based system simulation tool specifically designed for evaluating

demanufacturing facility layouts and operational strategies. The simulation tool is

developed using commercially available simulation software Arena by Systems

modeling Corporation. The demanufacturing simulation tool is developed to model

various scenarios configurations and evaluate the following functions:

• Analysis of operational strategies

• Evaluation of facility layout options

• Evaluation of machine/worker utilization and material handling equipment changes.

The simulation tool is integrated with an activity based cost model to assess the economic

performance of current operations and evaluate cost-benefit tradeoffs from improvement

options. The cost model presents the cost incurred on per product basis. It incorporates

and allocates the fixed cost as well as variable costs. The total cost per product is

calculated using the equations developed in chapter four, which give the cost of each

activity associated with processing products through the demanufacturing facility.

7.1.1 Summary Demanufacturing System Simulation Tool and Conclusion

The simulation is developed to assess and evaluate overall efficiency and operations in a

demanufacturing facility. The tool incorporates the following customized modules and

simulation logic for a demanufacturing facility:

• Storage and staging area

• Disassembly workstation

• Number of Bins
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• Bins

• Inspection and Testing area

The current modules in the software are sufficient to model for material-handling systems

used by demanufacturers. Validation of simulation system was performed based upon

data collected by observing the operation of a small electronics demanufacturing facility.

The model structure and operational logic of the customized modules have verified by

comparing simulation output with observed data. The summary of base line scenario and

two improvements scenario is given below:

• The base line scenario simulates the facility incorporating two operators and a truck,

in addition to, manual movements for material handling. The simulation results

showed that the facility was not efficiently utilizing the workers, as only eighteen

percent of the time the operator was actually disassembling products. Since an

additional eight percent of time was consumed in materials handling activities, the

disassembly workstation was disassembling for twenty-six percent of the time. The

cost analysis (Chapter 6) showed that the operations incur higher cost than revenue

creating a loss of approximately $48 for the simulated four days of operation.

• To improve operations, two improvement scenarios have developed and simulated. In

scenario one, an additional operator was introduced to receive batches from the

unloading dock to storage area. The results reflected increase in throughput from

seventeen batches to twenty-three batches. Also, the percent time utilization of both

operators and workstation improved by twenty-seven and four percent, respectively.

But, the cost-benefit results showed that there has been increase in loss by $120. This
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additional in loss was due to the less than expected throughput and higher percent

transfer times compared to the increased cost of adding a new operator.

• In order to reduce the material handling transfer time an additional truck was

introduced for the second improvement scenario, keeping same number of operators

as with scenario one. The results showed that both workstation and operator

utilization improved by approximately fourteen and thirty percent, respectively. The

simulations have increased the throughput from seventeen batches seen in the base

line scenario to thirty-one batches for this scenario. Similarly, The cost-benefit results

showed that this improvement scenario has generated a profit of $46 by improving

the net gains of $90 as compared with the base line scenario.

The results demonstrated the usefulness demanufacturing simulation tool in evaluating

overall improvement in the operations of actual demanufacturing facilities. The following

section draws the general conclusion of this research.

7.1.2 General Conclusions

• Commercially available Simulation softwares are complex and require extensive

training, however the customized tool developed provides a bridge (interface)

between rigorous simulation nomenclature and terminologies used by

demanufacturer.

• The simulation tool was accurately validate based on actual data collected as part of

this thesis research and used to evaluate alternative improvement options.

• From the observation of the simulation results material-handling time was a key

activity that significantly influences the worker and machine utilization time.
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• Throughput from the facility is depends upon disassembly times, transfer times and

facility layout and planning. Therefore, extensive data on above decision variables is

necessary and important for fitting distributions. The more data helps analyst to fit the

most appropriate distribution.

• Lastly, while dealing with simulation, there are several issues, which restrict and slow

the pace of development. Some of these are lack of sufficient information on product

disassembly times, variability of products incoming stream, inconsistent performance

of operators resulting in lower throughput.

7.2 Future Recommendations

• There are still areas in the software tool that should be extended to provide for more

robust application development. Some of the suggestions for the demanufacturing

tool are the following:

• Improvement in Visual Basic interface for the cost model to link costing data

with Life cycle Assessment (LCA) Software developed at the research center

• Incorporation of "Transfer In" options in disassembly workstation module to

incorporate the releasing options for material handling system.

• Development of special functions and algorithms for generating and evaluating

more complex decisions in scheduling and planning to provide more flexibility in

batch forming and sequencing operations.

• More specific data on product disassembly and number of bins for different products

is necessary for generating more extensive database for a variety of products. In

addition, data on dollar values of recovered components and subassemblies and



132

market trend for different recovered materials is needed on a frequently updated

basis.

• The tool should be extended further for incorporation additional modules for other

recovery options and other specific demanufacturing activities such as shredding.



APPENDIX A

TRANSPORTATION MODEL

The energy requirement for road transport system can be divided into three parts: fuel

energy, tuck production energy and truck maintenance energy. The energy consumed as

fuel accounts for more than 55 % of the total.

Energy Associated with Fuel Consumed by Vehicle

Fuel consumption is sensitive to a number of factors such as vehicle size and payload.

The table given in Appendix b summarizes oil fuel requirements in Mega-Joules per mile

(MJ/mile) on the basis of load carried by the truck.

Production of Truck

This category contains energy associated with the construction of vehicle, lubrication,

tires and batteries. The energy required for a truck to keep on road covers energy required

for lubrication at about 0.6 % of fuel energy, tires at about 1.5% of the total fuel energy,

Garaging energy at about 32 % of the fuel energy and spares at about 0.2 % of the total

fuel energy [45]. The essential component of the garaging is the provision of the facilities

for servicing and repairing vehicles. The data obtained is from a number of fleet

operators who themselves maintain the whole of their fleet and typically consumption of

kerosene for space heating and electricity of space lighting and powered machines. Apart

from tires, which have been considered separately, the only significant components are

engine and transmission. The differential mat last about 300,000 miles and gearbox for

about 150,000 miles. Assuming mass of gear box 123 kg and gross energy of steel of 50
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MJ/kg, the energy requirement of gear box is about 0.1 % of the direct fuel energy

requirement or 0.04 MJ/mile. The same consideration is given for batteries which

normally last for 100,000 miles. Assuming they consume 0.01 MJ/mile or 0.03 % of the

direct fuel energy requirement of the vehicle.

The energies required for production of truck is given in Appendix c and table 3.1 gives

the energies for other options in terms of Direct Energy of Fuel.

Table A.1 Calculating energy for rest of the options
[Source: 45]
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Actual Load: The load carried by the truck in pounds.

Maximum Load: The maximum payload capacity of the truck in pounds.

Weight: Truck tare weight (unloaded) in pounds.

Empty Return: The phrase implies the truck tare weight in pounds, while returning from a

facility with out carrying a load. Boolean value is returned. (1: for empty return and 0: for

not empty return)

The Direct Energy of Fuel (DEF) in terms of kWh/mile can be expressed keeping the

structure of eauation (1) same as follows:

Definitions of terms with their units are given below:

DEF: Direct Energy of Fuel in kWh per mile.

Load Ratio: It is the ratio of Actual Load carried to the Maximum Payload.

Truck Tare Weight: The weight of truck itself in pounds.

Empty Return: The phrase implies the weight of truck in pounds, while returning from a

facility with out carrying any load.

Actual Load: The actual weight of products transported.

Energy Content of Fuel: This is the energy required in kWh per gallon of fuel used. (see

Table A.2)
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Table A.2 Energy Content Factor
[Source: 45, Table 6.13, page 126]

Methodology Used:

As described earlier the total transportation energy can be expressed as follows:

Total Transportation energy = Direct Energy of Fuel (DEF) + Other Energies

"Other Energies" include energies necessary for truck production and operations such as

garaging, lubrication, tire and spares.

Three truck sizes are defined according to different load capacities as Light Truck,

Medium Truck and Large Truck. The capacities or maximum payloads for the defined

categories are 8000 pounds, 24,000 pounds and 36,000 pounds respectively. To calculate

total energy, the weight of the truck itself along with actual load is required because that

is the constant energy required regardless of load. From Appendix c, the average tare

weight of truck capacities ranging from 1 to 8 tons to get the tare weight of light truck.

Similarly, for medium and large trucks, the averages of 10 to 12 and 12 to 20 respectively

are calculated to get their tare weights. Table A.3 gives key characteristics for various

truck types.



Table A.3 Preliminary Information of the trucks
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Information on fuel efficiency and load ratio is required to calculate the DEF. Fuel

efficiency is assumed to be constant for medium and large trucks and the load ratio can

be calculated from the actual load carried and maximum payload.

As stated earlier, "Other Energies" can be represented as a percent of the DEF then we

can combine these two terms in a single formula. Table A.4 summarizes energy

requirement for other energies.

Table A.4 "Other Energies"
[Source: 45, Table 9.4, page 204, and Table 9.7 page 209]

Therefore,
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Total Transportation Energy = 1.43 * DEF

= 1.43  	 1
	* 2

	 12 (for Empty
"''

+	 * Load	 + —
Fuel Efficiency	 3	 3	 Ratio	 3 Return)Actual

Load

Truck Tare Weight 	 Energy Content

Actual Load	 of Fuel

From the work of I. Boustead and G. F. Hancock (Appendix b) [45], The DEF for light

truck, medium truck and large truck are 4.771, 5.762, 5.762 kWh per mile respectively.
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Total energy required is more for light truck because of the assumptions made for type of

fuel and fuel efficiency. If a graph [see Appendix C] of total energy is plotted against the

type of truck it will show the curve sloping down as we move towards higher capacity

trucks. But if the graph [see Appendix D] of DEF is plotted against the type of curve it

will not show a smooth curve. One reason for such trend might be the assumption made

for fuel efficiency.

Emissions from Transportation

Emissions coming from burning of fuel are of three types such as solid waste, air

emissions and waterborne effluents. Air emissions primarily comprise of carbon

monoxide, particulate, sulfur oxides, lead, nitrogen oxides and hydrocarbons. Similarly,

Waterborne effluents consist of metal ions, acids, and suspended solids.

Emissions from the transportation are divided into two groups:

1. Fixed Emissions: Due to the tare weight truck.

2. Variable Emissions: Depend on the actual load carried by the truck.

The total emission from each category is the summation of fixed and variable emissions.

Keeping the same assumption for the tare weight of trucks, fixed emissions are

calculated. Variable emissions are calculated on the basis of the actual load being

transported by the truck and so they are the function of weight of product, which can be

calculated as a product of individual weight to total number of products being carried.



Table A.6 Emissions summary
[Source: 46, Page 40]
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Note:

1. LOAD: It is the Actual Load being carried by the truck.

2. The summation of constant and variable emissions for each type will give the total

emissions of that type

The total emissions arising from transportation by truck are then the function of number

miles the truck travels and the amount of load it carries.
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Sample Calculations:

Continuing with the same example and keeping the same assumptions

The emissions are written in tabulated format.

Here the value of "Load" for three different types for 95 % of the maximum payload is:

Light truck: 7600 pounds

Medium Truck: 22800 pounds

Large Truck: 34200 pounds

Table A.7 Emissions resulted for sample example



APPENDIX B

DIRECT ENERGY CONSUMPTION OF FUEL BY TRUCK TYPE
[Source: 45, page 201J

Table B.1 Direct Energy Consumption of Fuel by Truck Type

14L



APPENDIX C

CONSTRUCTION ENERGIES FOR DIFFERENT TRUCK SIZES
[Source: 45, page 2041

Table C.1 Construction Energies for Different Truck Sizes

Notes (Commercial motor (1977)): 1. Based on gross energy requirement or steel o

MJ/kg. 2. From table of Appendix A
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APPENDIX D

CONIPARISON GRAPHS
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APPENDIX E

DATA AND DISTRIBUTIONS ON PRODUCT ARRIVALS

Table E.1 Data on Product Arrivals
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Figure E.1 Distribution for Number of Batches

Test Statistic 	 = 0.161
Corresponding p-value > 0.15

Figure E.2 Distribution for Inter-arrival Times
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CHAPTER 1

INTRODUCTION

1.1 Background

With growing concerns and increasing responsibility towards product stewardship, many

companies are instituting new concepts and methodologies to improve environmental

performance of their products. A key driving force is that European countries have begun

to enact new laws and regulations requiring product take back and resource recovery.

In these regards, the manufacturing industry has been evaluating various options for

end-of-life management. Manufacturers have come to realize end-of-life management is

not a separate activity, but it is an integrative process beginning with the early stages of

product innovation. The inherent complexity in life cycle management challenges

researchers and engineers for a comprehensive solution, which not only strengthens

competitive position but also promotes socio-ecological responsibility. The "issues" have

profoundly affected electronics manufacturers because of the high production rate and

rapid obsolescence of electronics goods.

In the UK, approximately 10,000 tons of domestic appliances and 80000 tons of

consumer electronics waste are generated per year [1]. In the United States, 209.7

millions of tons of municipal solid waste was generated in 1996; out of which 55.5 %

was landfilled, 27.3 % recovered through recycling and 17.2 % was combusted with

energy recovery [2]. But the problem has intensified due to a shortage of landfill sites and

waste-incineration facilities in certain regions. The search for new solutions to the

increasing problem, led researchers to look for different recovery options such as reuse,

1
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remanufacture, recycle and reengineer, other than landfill and incineration.

Technologically obsolete but functionally operating discarded products can be reused,

where changes in technology are trivial, to retain maximum value embedded into the

product. These products can also be disassembled to remanufacture by repairing and

refurbishing subassemblies and components or non-remanufacturalbe subassemblies and

components can be reengineered and recycled to recover the valuable materials in the

product. As the depth of disassembly of increases, value recovery methods utilizes reuse,

remanufacture and reengineer options progressively. In addition to support for healthy

environment, recovery options promotes cost saving at different stages of life cycle. As

against conventional landfill options not only reduce the agricultural sector and leaching

of toxic materials into ground, but also losing of the value and energy added during

material synthesis and production phase. Waste incineration with or with out energy

recovery generating noxious gases, particulates and fly ash has inherent environmental

impacts. Therefore, the optimal solution would be to keep materials and components

flowing from a product application; maximizing the recycled content in the product,

minimizing requirements for virgin materials, reengineering or remanufacturing materials

time after time and minimizing the possible impact by remainder that is either landfilled

or incinerated. The general idea is to retain the highest value invested for next generation

application.

The amount of value and energy recovered from disposed product depends up on

selection of end-of-life options. From the perspective of maximum recovery hierarchy,

different end-of -life options are reuse, remanufacturing, reengineering and smelting to

recover products, subassemblies or components and basic materials. The
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demanufacturing has been introduced as an integral part of product life cycle, which

performs a set of functions to recover value from products and waste streams and ships

these recovered materials and components for recycling/reengineering or

remanufacturing technology [3]. The demanufacturing discards the concept of linear flow

of raw materials converted into products/packages and disposed off after end of useful

life. The demanufacturing activity apart from disassembly includes testing, inspection,

sorting and staging and also packaging, shredding and separation and distribution of

recovered materials and components. The recovered materials and components are feed

stocks for next generation products and such repeated cycles will give materials an

indefinite extended life.

Current demanufacturing practices include manual disassembly of discarded products

(majority electronics products) using hand tools and powered tools for remanufacturing

or reuse processes and shredding of non-recoverable components or subassemblies.

Shredding combines with various separation methodologies for different materials

prepare products for reengineering and smelting operation. The shredding operation can

be a single stage or two-stage operation depending upon the product composition.

Sequencing of products for faster disassembly and maximum value recovery are activities

prior to disassembly. Few automated disassembly cells have been designed for specific

disassembly tasks such as disassembly of camcorders, explosive gas generators [4, 5 and

6]. The technological development in demanufacturing is slow because of economical

constraints in terms of revenue, variable product structures and difficulties posed by

underdeveloped disassembly processes.
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A number of studies addressing recovery issues have been published in research

journals and conference papers. Researchers have concentrated on areas such as Design

for Disassembly (DFD), Design for Environment (DFE), Design for Recyclablity (DFR)

and Design for Extended Life (DEL). These research areas support demanufacturing

through information on faster disassembly processes, potential reengineering

materials/techniques, remanufacturing components/subassemblies and the environmental

burdens associated with process residue. These areas concentrate on different

methodologies of recovery process and various issues at different stages of product life

cycle, however little research has concentrated on the systems aspects of

demanufacturing. Facility layout is also a significant research issue for efficient

operations and movement of products and equipments, which has not been fully

examined. The focus of this thesis is to provide a system aspect to demanufacturing

activity.

Some companies have established internal demanufacturing operations and several

new firms have emerged specializing in demanufacturing; however, these operations are

facing problems of efficient and economical operations. Since disassembly issues and the

post disassembly options are related to effective management and operations of

demanufacturing activity, overall systems perspective is necessary to provide a

comprehensive understanding of demanufacturing facility management and layouts.
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1.2 Aims and Objectives

A demanufacturing system that takes discarded products collected from consumers or

businesses and performs following functions:

• Inspection of collected products

• Staging the workflow

• Disassembly of products

• Separation into bins

• Shipping the recovered materials and components for further recovery.

The system is aimed at maximizing value recovery in any form by using reuse,

remanufacture and reengineering options while minimizing residual disposal. The system

provides a higher level of abstraction to specific processes such as disassembly and

shredding for overall improvement of demanufacturing operations and facility layouts.

Thus, the principal aim of this research is to develop for modeling demanufacturing

systems simulation tool integrated with an activity based cost model to compare

operational and economic trade-offs of different facility layout, equipment and

operational changes.

The demanufacturing system can be modeled as a flowchart in which connecting links

represent transportation activities and nodes represent stationary activities. The tool

follows the flows of discarded products that undergo different activities for system

simulation tool development. Discrete event system simulation is used as a tool to

improve the overall efficiency of the demanufacturing operation. This thesis aims to build

an integrated tool for demanufacturers to simulate the entire facility for various possible

operational strategies, machine/ worker utilization, material handling equipment changes
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and layout planning. The simulation part of tool will help to model and run the current

operations and improvement options, while the cost model will analyze economical

viability of improvement options.

1.3 Research Need and Purpose

Technology driven products, such as consumer electronics have short life times

because of technology obsolescence and advanced version introduced by the competitor

[7]. Rapid changes in the market create a significant amount of unsold products.

Increased environmental responsibility will generate potentials of product take back to

manufacturers after disposal from user. Traditionally, the general approach was to landfill

or incinerate these products; however in addition to sufficient flow of discarded products

and potential market for recovered materials, there are several reasons for increasing

demanufacturing business:

• Avoid landfilling

• Reuse value and prospective savings at material extraction and synthesis stages

• Protect proprietary information associated with the product

• Strengthening product take back policies

Recovered materials can be feed stock for next generation products reducing use of non-

renewable resources and virgin materials [3]. Many individual businesses in association

with manufacturing industry are being established for demanufacturing of electronics

products, for example EPA Incorporation, Envirocycle Incorporation and Hestech. The

demanufacturing in its primitive stages is facing problems for its efficient operations and

strategic planning.
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Some of the issues that are faced by demanufacturers are listed below:

• Variation in the in-corning stream: The quantity of products and the type of products

coming into facility are varied due to uncertainty in collection process, flexible market

conditions and introduction of new technologies.

• Condition of products: The products range from being technologically to functionally

obsolete. The number of years in service, accidental breakdown and failure of

components and/or sub-assemblies affect the actual condition of the product. The

staging and testing operation prioritize the disassembly operation upon actual

evaluation of the recoverable value from the products. The condition plays an

important role in reuse.

• Structure of products: The product structure from the disassembly point of view is

more related towards easy accessibility to high-valued components and materials. The

structure influences the disassembly effort and eventually cost of operation. The cost

incurred to recover value is a business issue for the demanufacturer. The structure also

influences depth of disassembly operation, which may affect selection of number of

bins. Complicated product structures require higher disassembly times and may reduce

throughput from the facility. Separate specialized disassembly stations may have to

establish for complicated structures to separate them from rest simple structured

products, which might not be economical.

• Operational Strategies: The strategies are related to quantity and variation in products

to demanufacture. These strategies are aimed towards prioritizing high valued

components and materials recovered from products. The more variation, the more

manual operation is involved. The operational strategies not only include the method
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of operation but also batch formulation, staging and sequencing of the products

accordingly.

Strength of Business: This is an important issue, which is dependent on the in-flow of

products and also the market condition. The variable demand for basic materials,

components or subassemblies may require a thorough planning of demanufacturing

incorporating facility layout and operations planning to meet current market demands

and prospective future requirement of different materials components or subassemblies

and expansion of the current facility/layout.

In light of above problems, there is a need to analyze the entire demanufacturing

operation. Understanding the operation from various perspectives under different

conditions is needed for higher profits. The stochastic nature of the problem, because of

variable in-flow, non-deterministic product conditions and disassembly timings, demands

a flexible, easily understandable and interpretable method/tool. Discrete event simulation

is one technique of understanding the business operations in a virtually created realistic

program. Simulation is assisted by animation capabilities for graphical visualization of

simulation outputs and presentation of results in form of graphs and charts.

Along with the simulation, a profit-oriented cost analysis is also required for

validation of simulated scenarios from net cost of running the facility and market prices

of basic materials, components and sub-assemblies perspective. The purpose of this

research is to develop, validate and demonstrate the power of an integrated system

simulation tool for efficient operation of demanufacturing facilities.
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1.4 Research Scope

The generic demanufacturing system is divided into three sections: the collection system,

demanufacturing activity and output of recovered values to next process activity. The

thesis focuses on the demanufacturing activity including staging/testing, disassembly

operation, material collection/handling systems and flow of products and materials into

and out of the facility issues are studied. A customized system simulation tool is

developed for evaluating demanufacturing system including current operation and

various improvement scenarios. The tool analyzes changes in operational details and

facility layout options. The simulation tool provides a new interface to an existing

general-purpose simulation software package. Simulating a typical small

demanufacturing facility validates the modeling and logic for the tool. Postulating and

evaluating various improvement scenarios provide the demanufacturer with strategies or

increasing throughput and reducing cost.

1.5 Thesis Format

The thesis formatted in seven sections and each section is a separate chapter.

Chapter 2 presents a brief overview of simulation techniques, the potential benefits

occurring from simulating manufacturing systems with supporting examples and in

general provides the background information in demanufacturing and disassembly area.

Chapter 3 describes development of generic demanufacturing systems model, the Arena

simulation software used for developing simulation tool and develops customized

simulation tool for demanufacturing businesses.

Chapter 4 develops an activity based cost model to compare economical trade-offs.
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Chapter 5 validates the simulation tool and presents the results.

Chapter 6 analyzes the results presented in chapter five for improvements in current

operations, simulates and presents the improvement options.

Chapter 7 concludes the thesis by summarizing the results obtained during the

improvement analysis and suggests recommendations for future development of

simulation tool.



CHAPTER 2

LITERATURE REVIEW

System simulation techniques have contributed towards improving operational

efficiencies of manufacturing facilities by assessing process bottlenecks, evaluating

machine/worker utilization rates, and supporting decisions regarding efficiency

improvements, changes in physical layout and economics driving the business. However

there has been little research focused on implementing similar techniques in

demanufacturing systems. Past research has focused on parts of demanufacturing systems

and has concentrated on design for disassembly and disassembly process planning [8].

But, today's complex demanufacturing systems require detail understanding and analysis

with the same engineering rigor as been performed on manufacturing systems. No prior

research work on demanufacturing systems simulation has been reported in the open

literature; consequently fundamental studies with closely defined field of simulation,

manufacturing simulation and demanufacturing systems development provide the

scholarly basis for this literature review.

Potential benefits from manufacturing systems simulation supported with real world

examples emphasize significance and importance of simulation for its future

implementation in demanufacturing system simulation. A summary of current research

activities in demanufacturing systems is also presented as a background information for

system simulation of demanufacturing system.

1 1
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2.1 Introduction to Simulation

Simulation is a numerical solution method that seeks to evaluate alternatives (strategies)

by choosing and assessing various scenarios. The approach has been used to study a wide

range of problems that entail uncertainty and randomness. Variability in the problem may

be associated with disassembly timings or process scheduling and can be represented by a

probability distribution. The simulation process requires model to represent logical and

mathematical relationships among decision variables of the problem under study [9,

10,11].

The following general definitions of simulation have been proposed:

1. According to Shannon [9]," Simulation is the process of designing a model of a real

system and conducting experiments with this model, for purpose of understanding the

behavior (within the limits imposed by a criterion or a set of criterion) for the

operation of system."

2. Naylor et al. [9] says, "Simulation is a numerical technique for conducting

experiments on a digital computer, which involves certain types of mathematical and

logical relationships necessary to describe the behavior and structure of a complex

real world system over extended period of time."
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2.1.1 Types of Simulations

Two system simulation methodologies have been used to model and evaluate

manufacturing systems: discrete event simulation, where system is analyzed only after

occurrence of an event and Petri Nets, which is a relative new concept of system

simulation.

1. Discrete Event Simulation:

In this type of simulation one or more of the independent variables are stochastic.

Discrete event simulations involve a limited number of events that can only taken on an

infinite number of values. It concerns the modeling of a system as it evolves over time by

a representation in which the state variables change instantaneously at separate points in

time. In other words, the system can change at only countable number of points in time.

These points in time are the ones at which an event occurs, where an event is defined as

an occurrence that may change the state of system [14]. Following are the common

elements of discrete simulation [10, 11,13):

• Entity: This is a single component explicitly representing a single active terminal or

operator. Entity is divided in to two type viz. permanent entities and temporary

entities. Where as permanent entities remain in the model for entire duration of run,

temporary entities generated in the model are disposed of after some simulation

period.

• Activities: These are procedure followed by the entities or the procedures done on the

entities. These are not isolated for any one entity. More than one entity may follow the

same activity. Times of occurrence and duration of existence of activities is important

from simulation from view.
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• Events: Events are the instants in time when system changes its state. Event is the

cause for start or end of an activity. A single event can start or end any number of

activities. Events are classified into internal and external events. While, external

events are caused from outside of the simulated system in the model, internal events

are caused by conditions defined in the definition and description of the system in the

model.

• Queues: Queues are the passive states of an entity, while it waits for the condition to

change so that it can proceed through the model. The ranking rule and type of queues

characterize queues. Queues are generally classified as normal queue and shared

queue. The ranking rules are the various ways for releasing a job waiting a queue.

Some of them are First In First Out (FIFO), Higher Value First (HVF), Lower Value

First (LVF) and Last In First Out (LIFO). Queues are individual queues or shared

queues. In shared queue the queue is shared by more than one number of resources.

• Attributes: Attributes are the characteristics of the entities. They are used to

distinguish one entity from another. The selection of entity from queue depends on the

attribute values of entities in the queue.

• Sets: It is the general term and used to combine similar modules under one single

name.

• States: States are referred to condition of model or its entities. These are normally the

criterions for evaluating performance of a system.
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2. Petri Nets:

Petri nets is a graphical and mathematical tool for modeling, analyzing and designing

discrete event systems. The model is used for analysis of behavioral properties and

performs evaluation as well as for systematic construction of discrete event simulators

and controllers. They can be used to model properties of such as process

synchronization, asynchronous events, sequential and concurrent operations [16]. It is

a network based analytical approach to solve system-related problems. Petri nets are

used to model dynamic systems using combinations of places and transition. Petri nets

are formed by two types of nodes viz. places and transitions [15].

In discrete event simulations, Places represent resources. The existence of one of

more tokens in a place represents availability of the resource and vice versa. The

transition firing represents an activity, which begins and ends with two consecutive

events. The time of activity may be zero implying immediate action. Places and

Transitions together represent conditions and precedence relations in the systems

operations [17]. If transition times are allowed to be random variables then Petri Nets

are called as stochastic timed Petri Nets. Following is the general methodology

adopted using Petri Nets for modeling discrete event systems [16, 17]:

• Identification of operations and relations.

• Identification of resources.

• Petri net Design

• Petri net Modification
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Petri nets require a power full and user friendly graphic editor, a behavior analyzer, a

performance evaluator, dynamic graphical display for simulator and automatic Petri Net

synthesizer for its effective implementation. Petri Nets have been used to present a

methodology for design and implementation of disassembly strategies for

remanufacturing of discarded products [58] and the research is expanded to implement

disassembly Petri Net considering level of disassembly and cost of disassembly process

[59]. But for simulating demanufacturing system traditional discrete event simulation

techniques have used.

2.1.2 Advantages and Disadvantages of Simulation

Several advantages and disadvantages of system simulation are listed below [9, 12, 13

and 14]:

1. Simulation approach is suitable to analyze large and complex real life problems,

which can not be solved by usual quantitative methods.

2. Simulation is descriptive rather than normative. This allows "what if' type questions

to be evaluate. In a demanufacturing system different operational strategies can be

evaluated for maximizing the throughput and utilization of resources and inventories.

3. Simulation allows decision-makers to study the interactive system variables and

assess changes in these variables on the system performance in order to determine the

desired one. These decision variables in a demanufacturing system will be

disassembly times, transfers times, staging and sorting of products. These are

dependent on the level of disassembly and revenue anticipated from the process.
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4. Simulation experiments are done with the model, not on the system itself. It also

allows including additional information during analysis that most quantitative models

do not permit.

5. Due to the nature of simulation, a great amount of time compression can be attained,

giving the analyst a feel of the long-term effects of various policies, in a matter of few

minutes. The long-term simulation would help to evaluate the efficiency of current

operational strategies, bottlenecks for long-term sustainability of the business and

impact of variation in scrappage rate of various discarded products on time.

Disadvantages:

1. It is a trial and error process that produces different "solutions" in repeated runs. This

means, in a demanufacturing system simulation an optional solution can not be

guaranteed.

2. Constructing a simulation model is frequently a slow and costly process. In

demanufacturing analysis, time spent on collecting information required to build

model may range from few days to few months depending upon the level of modeling

and objective of simulation.

3. Each application of simulation is ad hoc to a great extent.
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2.2 Overview of Discrete Event Simulation Tools

2.2.1 Simulation Software Development

The desire for success has led companies to strive for new sophisticated tools and

techniques to better understand their business. The following two basic requirements

motivated development of simulation techniques [10]:

1. To make the software more user friendly to develop a model

2. To make the results of simulation more understandable to novice personal

These needs put forward the development in not only the language but also in the "Front-

end" of the software. The front-end is a tool for users or model developers to use the

jargons and nomenclature of application domain as opposed to simulation specialist.

Graphic output replacing the data numbers on a computer sheet enhances clearer

understanding of the result.

The development of simulation softwares was initiated by pioneering work done in the

steel industry by Tocher and others [10]. With the accumulated experience, these

researchers developed a generic model the first General Simulation Package (GSP),

which includes common features in the industry [10]. In UK and US a series of software

and code generators was initiated. Figure 2.2 shows a generic development diagram of

the simulation softwares and/or code generators in the USA.

After first development of GASP (Gathering Analyzing Sorting and Presenting), a

series of modifications were made for newer versions of GASP such as GASP-II, GASP-

IV and GASP-V. Q-GERT introduced a network convention as a way of defining

elemental behavior in the model and SLAM was a conceptual combination of Q-GERT
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and GASP-IV and provides event scheduling or process interaction orientation or a

combination of both approaches [1 1].

Figure 2.1 Generic Development Flow Chart of Simulation Softwares in USA
[Source 15]

SLAM II emerges from SLAM and TESS provided an integrated framework for model

development, data management and graphical animation of simulation models [16].

General-purpose languages such as FORTRAN, ALGOL, BASIC or Pascal use event-

scheduling approach [11].

SIMAN was developed after sufficient experience with SLAM with some animated

graphics through CINEMA. SIMAN provides the following features [17, 18]:
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• Input capabilities for data analysis and data input flexibility (batch input or

interactive input)

• Modelling facilities include on-line error handling object oriented database

with FORTRAN/C interface, special purpose constructs such as conveyors,

transporters, process plans, resources queues and scheduling.

• The results presented shows the statistics and frequencies on the output data.

The software provides facilities of customized report generation and the

statistical analysis such as point estimates, confidence intervals, variance

analysis and data filtering.

• CINEMA provides dynamic animation capabilities and CAD support.

After initial development of GPSS at IBM, advanced versions such as GPSS V and

GPSS/H were introduced. GPSS/H provides process interaction approach but, does not

provide event-scheduling approach, so the modeler needs to program separate routines

for different unique event [19]. The early version of SIMSCRIPT simulation software

evolved through SIMSCRIP II, SIMSCRIP 11.5, PC SIMSCRIP 11.5, PC

SIMANIMATION, which added a graphics capability. SIMFACTORY is a

manufacturing generic model. PC SIMSCRIP 11.5 and SLAM-PC provide installation and

use of softwares on personal computers. PC-Model, PC-Model/GAF are some of the

simulation softwares developed for personal computers only, which provide more

sophisticated animation [1 0].
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