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ABSTRACT

CHARACTERIZATION OF STEEL CORROSION
IN AN AGGRESSIVE ENVIRONMENT

by
Sung Min Maeng

As part of the Sustainable Green Manufacturing Program, the corrosion resistance of

sputtered tantalum is being studied in order to evaluate it as a replacement coating for

electroplated chrome. To accomplish this, studies were conducted to evaluate corrosion

properties of the gun barrel steel by employing corrosion rate and bulk measurements

including x-ray diffraction (XRD), scanning electron microscopy (SEM)/energy

dispersive x-ray spectroscopy (EDX), and x-ray fluorescence (XRF), as well as

synchrotron-based x-ray absorption spectroscopy (XAS).

Corrosion behavior of steel immersed in an aggressive environment of 37.8 %

hydrochloric acid at room temperature was investigated as a function of time from 10

minutes to 41 hours. The corrosion rate peaked between 1 and 8 hours of exposure, and

revealed a gradual decrease as exposure time increased. SE1VI/EDX analysis showed that

the surface of corroded steel was attacked differently as a function of time, but time had

no significant effect on the composition of corrosion product. During the tests, defects on

the surface of the polished steel resulted in pitting corrosion. With XRF the bulk

composition of the corroded products was found to be consistent with the surface analysis

using EDX. XRD analyses of this corrosion product on the surfaces indicated the

formation ofb-FeOOH (akaganeite) and possibly minor amounts of other oxides. In XAS

analysis, the spectra revealed that iron has different coordination environments in steel

and the oxide. However, iron in all the corroded specimens appears to have oxygen as the

first neighbor. This study provides a baseline for future corrosion research and an

exploration of characterization methods for the corroded surface.
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CHAPTER 1

INTRODUCTION

1.1 Corrosion and Protection

Metals or alloys used in the environment can deteriorate and can be released to some

extent through corrosion processes. Corrosion is considered to be the largest single cause

of plant or equipment breakdown. In the U.S., costs currently exceed $300 billion per

year to replace corroded materials W. Moreover, components released from corrosion

may be toxic to our environment. These economical and environmental problems caused

by corrosion force us to develop corrosion protection methods.

Often, corrosion resistant thin coatings are used for the protection of metal substrates.

These relatively thin coatings can play a role as a stable barrier between the metal

substrate and its environment. Chromium has been used extensively as a constituent of

many alloys as well as a coating on other metals because of its high corrosion resistance

and hardness [2]. Chromium is typically electroplated from its hexavalent form.

Environmentally, however, hexavalent chromium, is not only a known carcinogen and

thus toxic to handle, but also the treatment of wastes generated from electroplating

process is costly [3].

Tantalum metal is being investigated as a protective material for severe corrosive

environments such as those exhibited in gun-barrels, because of its refractory and ductile

properties as well as its highly corrosion resistant nature. Tantalum pentoxide, which

forms a very thin outer film, is a protective coating with outstanding corrosion resistance

and inertness properties as well [4]. In terms of toxicology, the effect of tantalum in the

environment is currently under investigation, but it is expected to be much less of a
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potential threat [5] than chromium. Therefore, the purpose of this research is to

investigate the effect of replacing electroplated chrome with sputtered tantalum in

protecting steel substrates from corrosion thereby reducing a potential threat to the

environment.

Corrosion is defined as destruction or deterioration of a material, usually mass loss of

metal or alloy due to interaction between a material and its surrounding environment.

Corrosion behavior is explained as a combined property of a material and its environment

to which it is exposed as well as the property of the resulting corrosion product. The

corrosion rate or resistance of a metal are affected by a number of processes including

reduction-oxidation (redox), reaction kinetics (e.g., oxide precipitation and dissolution),

and mass transfer. Because of the combination of these processes, it is often difficult to

distinguish between them and elicit the rate-limiting mechanism.

The most stable configuration of a metal is an arrangement in which the atoms of a

metal are coordinated in a regular, ordered way. Since the grain boundaries, the

disordered region in a metal, are of higher energy and more active chemically than the

lattice structure, grain boundaries are usually attacked more rapidly than the ordered

structure (lattice) when exposed to a corrosive environment [6].

All metals and alloys have a tendency to revert to their most thermodynamically

stable form. As a result, some of the elements of the metal or alloy change from a

metallic state into a nonmetallic state (metal oxides). The energy of the corrosion system

is lowered as the metal is converted to a lower-energy form. The change in the Gibbs free

energy (Mu) between a metal state and its oxide form is the driving force for the

corrosion process. Through thermodynamics, the tendency for corrosion and its process

to occur can be examined and quantified, and the composition of the corrosion product
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can be predicted. Corroding systems are not in equilibrium [6], and therefore the

understanding, modeling, and predicting kinetics or rates of corrosion is most important.

Corrosion is a reaction involving oxidation and reduction. In electrochemical terms, a

metal is oxidized to produce metal ions and electrons (anodic reaction). For example, the

reaction of Fe -4 Fe2+ + 2e- has a standard potential (E°) of 0.44 Volt. Subsequently, the

metal ions precipitate into such forms as oxides (corrosion products) which are often very

stable in the corrosive environment. Cathodic (reduction) reactions consume electrons

and yield various products, according to the nature of the environment. For example,

some cathodic reactions that may occur at the steel surface include

Hydrogen evolution: 21-1+ + 2e-4 H2, E° 0 (V) or

Acidic Oxygen reduction: 02 + 41-1+ + 4e- --a 2H2O, E° = 1.229 (V) or

Alkaline Oxygen reduction: O2 + 2H20 + 4e -> 40H- , E° = 0.401 (V)

When iron corrosion (metal oxidation) occurs in an acid solution, hydrogen evolution

or acidic oxygen reduction occurs to maintain electronic neutrality. The standard redox

potentials associated with hydrogen evolution or acidic oxygen reduction are 0.44 (V)

and 1.67 (V), respectively. A positive standard redox potential indicates the corrosion

process is spontaneous.

Anodic reactions occur simultaneously with cathodic reactions. The overall process

may be controlled by one of several reactions, including the anodic or cathodic reactions

listed above. Moreover, the corrosion rate may be controlled by mass transport of the

oxidizing agent in electrolyte or through the corrosion product between the metal and

bulk solution. The corrosion product may inhibit the mass transfer flux of the oxidizing

agent to the surface due to porosity and tortuosity of the corrosion product. This film then

acts as barrier between the corrosion site and its corrosive environment. Corrosion
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control is possible by eliminating either the anodic or the cathodic process, or by

eliminating the corrosion-promoting aspects of the environment [71

With respect to corrosion protection, the objectives of this research are to develop

methods to characterize the corrosion process in an effort to better understand the

associated mechanisms. Subsequently, corrosion models for steel as well as tantalum will

be employed for aggressive environments such as high temperature and pressure.

Before performing the corrosion studies on tantalum, corrosion tests on the steel

substrate were conducted as a function of time in concentrated hydrochloric acid, the

most chemically corrosive medium for steel. In addition to the corrosion tests, the

following analytical methods were employed to evaluate the properties of the corrosion

process in detail:

• Corrosion rate was measured using weight loss measurement.

• Crystallographic examination of the steel substrate and its corroded specimens

was performed with x-ray diffraction, and the structural information was used to

identify the corrosion products.

• Scanning electron microscopy was used to obtain the morphological images of the

steel substrate and its corrosion products. Quantitative elemental composition of

corrosion products on the corroded specimens was assessed with energy

dispersive x-ray spectroscopy.

• Local structural information at the atomic scale was acquired using x-ray

absorption spectroscopy.



CHAPTER 2

LITERATURE FOR CHARACTERIZATION METHODS OF CORROSION

In this section, a literature review is presented of methods used to study corrosion and the

resulting products. These methods include the mass loss measurement, visual evaluation,

metal ion measurement, electrochemical impedance spectroscopy, x-ray diffraction, x-ray

fluorescence, scanning electron microscopy/energy dispersive x-ray spectroscopy, and x-

ray absorption fine structure spectroscopy.

2.1 Mass Loss Measurement

Corrosion damage is generally assessed quantitatively by mass loss measurement [8].

Corrosion rate is represented as loss of metal thickness as a function of time. However,

corrosion rates can be expressed as mass gain rather than mass loss in cases where the

corrosion products are so tightly bound on the surface of the metal specimen that they

cannot be removed by ordinary chemical and mechanical means.

Mass loss measurement of corrosion is valid only in the case of uniform corrosion

because corrosion rates from mass loss measurement may be misleading when pitting or

crevice corrosion occurs. Mass loss represents the difference between the mass of sample

before and after the corrosion test. Subsequent to the corrosion test, the corrosion product

should be carefully removed from the surface of the sample because any corrosion

product, which is weighed, may result in an incorrect measurement.

Using this method, the corrosion rate is determined by the measured loss in weight

per unit area per time. The equation for calculating the corrosion rate is as follows

5
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Corrosion rate = 	
KxW

DxAxt

where K is a conversion factor (Table 2.1), W is the mass loss in grams, D is the density

of metal specimen in g/cm 3 , A is the exposed area of metal specimen in cm2 , and t is the

exposure time in hours.

Table 2.1 Conversion factor (K) for corrosion rate units [8].

Because the assessment of corrosion damage by mass loss measurement is based on

the mode of uniform corrosion, it is necessary to evaluate the corrosion mode such as

pitting, crevice, or cracking through visual evaluation.

2.2 Visual Evaluation

Visual observation with or without a magnifying lens is a simple way to examine

corrosion damage and the corrosion experiment [9]. Initial observation in any corrosion

test includes visual evaluation, which can provide information on corrosion type and the

color of the corrosion product; documentation is accomplished easily with a photograph.
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Corrosion modes as well as the correlation between corrosion mode and microstructure

can be evaluated with optical microscopy.

2.3 Metal Ion Measurement in Solution

The concentration of the metal in solution provides the additional information for mass

loss measurement [10]. In the case of the immersion corrosion test, instrumentation such

as atomic absorption (AA) spectroscopy or inductively coupled plasma spectroscopy

(ICP) provides rapid analysis of the metal as corrosion occurs. The amount of metal

associated with the corrosion product can be calculated by subtracting the amount of

dissolved metal from the mass loss measurement.

2.4 Electrochemical Impedance Spectroscopy (EIS)

As mentioned in Chapter 1, corrosion is a process involving oxidation and reduction

reactions between the metal surface and its environment. Through this redox reaction, an

electrochemical potential called the corrosion potential is produced. A more accurate

measurement of the corrosion rate can be acquired through an electrochemical analysis as

opposed to the mass loss measurement.

Electrochemical impedance spectroscopy (EIS) is one of the most advanced methods

in studying the electrochemical system. The corrosion rate of a metal can be measured

without the complications of the polarization and associated resistance methods [11].

There are two techniques widely used in EIS [12]. One is the called the single-sine

technique that applies a single frequency signal to an electrochemical cell and measures

the response. The other is called the multi-sine technique, and is more suitable for a

corroding system. Once raw data consisting of voltage and current components with real
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and imaginary parts are acquired, several output formats can be plotted with this data.

These output formats include, but are not limited to, the Nyquist, Bode, and Randles

plots, which provide corrosion characteristics in the electrochemical reaction.

The concept of polarization is of importance in understanding corrosion behavior and

corrosion reactions from the electrochemical vantage [6]. Polarization can be divided into

activation polarization and concentration polarization. Activation polarization refers to an

electrochemical process that is controlled by the reaction sequence at the metal-

electrolyte interface. Concentration polarization refers to electrochemical reactions that

are controlled by diffusion of the species from the electrolyte to the electrode surface.

The Tafel plot plays an important role in measurement of the corrosion current (LT),

which is used in calculating corrosion rate. The corrosion current can be obtained directly

from a Tafel plot or can be calculated from the Tafel constants (PA and Pc). The

following relationship observed between applied current and potential is called the Tafel

equation

exp
[

Tapp = icon- exp
(  2.3(E — Ecorr) — 2.3(E — Econ.)

fic 	 i]

where E is applied potential, Eco, is open-circuit potential (or equilibrium potential),

Tapp is applied current density based on the electrode surface area, icorr is corrosion current

density, and /3a and fic are anodic and cathodic Tafel coefficients related to the slopes of

the polarization curves in the anodic and cathodic regimes, respectively.

From the obtained corrosion current, the corrosion rate is determined from the

following equation
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icorr X E.W .x10
Corrosion rate(mm yr) =

where icon is corrosion current density (A/cm2), E.W. is equivalent weight (g/equivalent)

of the metal specimen, p is density (g/cm3) of specimen, and F is Faraday's constant

(96500 C/g-equivalent).

2.5 X-ray Diffraction

X-ray diffraction (XRD) provides a unique and practical means for obtaining

mineralogical information on the corrosion product. Such information includes crystal

size and disorder, structural parameters (unit cell edge length), composition, number of

phases, and the percentage of phases that are present in a material [13]. Some other

applications involve precise measurements of lattice constants and residual strains, and

refinement of atomic coordinates [14].

When a monochromatic x-ray beam passes through a crystalline material, x-rays are

diffracted at various angles with respect to the incident beam. The electromagnetic waves

of incident x-rays are scattered by atomic planes in material, which results in the

destructive and constructive interference of scattered waves. The relationship between the

wavelength (A) of x-ray beam, the angle (20) of diffraction, and the distance (d) between

each set of atomic planes (h k 1) of the crystal lattice is described by Bragg's equation:

= 2dhia sin 0

where n is an integer. This method is useful for identification of corrosion products

formed on the surface of metal and its purity.

p x F
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2.6 X-ray Fluorescence (XRF)

X-ray fluorescence is a simple and generally nondestructive method for qualitative and

quantitative analysis of elemental composition in a wide range of materials. This method

is very useful because of the ease in sample preparation and because of its ability to

detect and analyze elements with an atomic number greater than elements as light as

boron under certain circumstances [14].

XRF is based on the photoelectric effect. When an atom is irradiated with highly

energetic photons, an electron from one of the inner shells may be ejected. As an electron

from the outer shell fills the vacancy, a photon with energy characteristic of the atom is

released. This radiation is called fluorescent radiation, and each element has its own set

of characteristic emission or x-ray fluorescence lines. The intensity and the energy of

these lines are measured using a spectrometer. Most recent spectrometers use

microprocessors and/or personal computers to automate data collection and to present the

results of elemental analysis in an easily understandable format. Also, computer

programs enable semiquantitative analysis without the use of internal standards. In

analysis with XRF, the limitations are the decrease in the sensitivity for elements lighter

than oxygen. The standards of similar composition and morphology are required for

accurate quantitative analysis.

2.7 Scanning Electron Microscopy/Energy Dispersive X -ray Spectroscopy

Scanning electron microscopy (SEM) is used to obtain an electron image of the

morphologic and topographic information of a material surface. For an electron

microscopic image, the surface of a material is scanned in a raster pattern with a finely

focused beam of electrons. When the energetic beam of electrons scans the surface,
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signals including secondary, back-scattered electrons are produced from the surface. The

secondary electron signal is usually used to modulate the brightness of the cathode ray

display screen, thereby forming the image. The secondary electron emission is

determined to a large extent by the surface topography. When the image is formed from

the back-scattered electron signal, the contrast is determined largely by compositional

differences in the sample surface rather than topographic characteristics. The intensity of

the signal is proportional to the number of electrons emitted from each scanned location

on the surface. The difference in signal intensity from different locations allows an image

of the surface to be formed.

Environmental scanning electron microscopy (ESEM) is a useful method in obtaining

the electron image of conductive material as well as nonconductive material without

coating the sample. This method allows examination of a sample under small pressures as

opposed to vacuum. When electrons emitted from the sample travel through the gaseous

environment, collisions occur between an electron and the gas and result in emission of

more electrons and ionization of the gas molecules. This increase in the amount of

electrons effectively amplifies the original secondary electron signal. The positively

charged gas ions are attracted to the negatively charged sample resulting in sample

charging [14]. ESEM is more suitable for the study of metal oxides produced through the

corrosion process.

Energy dispersive x-ray (EDX) analysis is used to obtain the quantitative information

about the elemental composition on the local surface of the material. In addition, the

elemental distribution of the surface can be mapped. This analysis is used in conjunction

with ESEM imaging, thereby allowing analysis to be performed directly on areas under

electron beam observation [15].
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2.8 X-ray Absorption Fine Structure Spectroscopy

X-ray absorption fine structure spectroscopy (XAFS) provides the most reliable means

for obtaining the local structural environment of a material. XAFS does not require long

range order and is equally applicable to amorphous materials in its ability to probe the

environment of an element in the sample by selecting and tuning to the edge energy [16].

The simplest XAFS experiments may be conducted in transmission mode as shown in

Figure 2.1. The sample is mounted on the stage and the incident and transmitted x-rays

are detected with ion chamber as the energy is varied over the absorption edge. The

spectra include the near edge and fine structure over the edge; both providing information

on the coordination environment with respect to the types of atoms surrounding the probe

species, bond distances, and the oxidation state. XAFS refers to the sinusoidal variation

of the x-ray absorption coefficient as a function of x-ray photon energy occurring beyond

each absorption edge of an element.

In the classical limit, the fine structure above the absorption edge can be viewed as

interference between the photoelectron wave ejected from the target atom and waves

scattered from its neighboring atoms. The Fourier transform of these spectral features

Figure 2.1 Schematic XAFS experiment in transmission mode
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yields a qualitative representation of the radial distribution function. Structural

parameters are determined by least-squares analysis providing the distance, number, type

of neighboring atoms, and an estimate of the disorder affecting the interatomic distance

[16].



CHAPTER 3

MATERIAL AND EXPERIMENTAL METHODS

Immersion corrosion tests in concentrated HCI solution were conducted for the study of

steel corrosion. The characterization methods used in these experiments including mass

loss measurement, x-ray diffraction, x-ray fluorescence, scanning electron

microscopy/energy dispersive x-ray spectroscopy, and x-ray absorption spectroscopy are

presented in this chapter.

3.1 Material

For this corrosion study, the steel substrates used, gun-barrel steel, were obtained from

the U.S. Army. The mechanically polished specimens were rectangular coupons with an

average dimension of 0.06 cm x 2.06 cm x 2.06 cm. The specific thickness, planar

surface area, and weight of each specimen are listed in Table 3.1. The density of the steel

substrate was measured as 7.62 g/cm3 .

3.2 Test Procedure

The preparation of specimen and immersion corrosion test was based on American

Society for Testing and Materials (ASTM) procedures (G 1-90 and G 31-72) [16]. The

steel substrate specimens were initially cleaned in acetone solution to remove grease from

the surface and then weighed. The concentrated (37.8% (w/w) or 12.3 M) hydrochloric

acid was used as corrosive medium for the gun-barrel specimens as it is the most

corrosive acid on steel (Table 3.2) [18]. Acid aggressiveness follows the general trend of

I-IC1> H2SO4 >H3PO4>EING3.

14
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Table 3.1 Thickness, size, and weight of each steel substrate used in the corrosion test



Table 3.2 Corrosion rates of stainless steel in acid media [17].

16

In the immersion corrosion test, each steel substrate specimen was immersed in 300

ml of HC1 solution. As shown in Figure 3.1, the scheme of the apparatus, the specimen

was located approximately 4 cm from the bottom of the beaker. Agitation was maintained

with the Reynolds number between 10,000 and 16,000 indicative of a turbulent regime

D

Figure 3.1 Scheme of apparatus for immersion corrosion test.

A=sample holder, B=HC1 solution, C=steel substrate, D=magnetic stiring bar, and
E=stirrer
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[19]. For the calculation of the Reynolds number in an unbaffled tank, the length of the

stirrer was used as the reference length and the stirrer length times the rate of stirrer

rotation per unit time was employed as the reference velocity.

The corrosion test in an open system was conducted at room temperature (24 ± 1 °C)

with exposure times ranging from 10 minutes to 41 hours. After each test, the corroded

steel substrate was dried and analyzed with x-ray diffraction (XRD), x-ray fluorescence

(XRF), scanning electron microscopy (SEM)/energy dispersive x-ray

(EDX), and x-ray absorption fine structure (XAFS). In order to measure the corrosion

rate by the mass loss measurement, the corrosion product was removed mechanically

from the surface of each specimen using a brush, and the weight was recorded.

3.3 Methods of Analysis

3.3.1 Mass Loss Measurement

Corrosion rates were calculated by measuring weight before and after the corrosion test

over various exposure times: 1, 8, 16, 24, and 41 hours in the first experiment; 10, 20, 40,

and 60 minutes in the second experiment; and 1, 6, 16, and 24 hours in the third

experiment. The corrosion product was mechanically removed from the surface of

corroded steel specimen using a brush with fiber bristles. Corrosion rate was expressed as

thickness loss (mm) per time (year). The following equation was used for the corrosion

rate calculation:

mm I yr = 87.6
p xA xt

where M is mass loss of metal (mg), p is density of metal sample (g/cm3), A is exposed

area of metal sample (cm2), and t is exposure time (hr).
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Each solution after the corrosion test (for the first experiment) was filtered through a

membrane filter with the pore size of 0.45 pm, and the concentration of iron in the filtrate

was measured with a Perkin-Elmer AA spectrometer.

3.3.2 X-ray Diffraction and X-ray Fluorescence

X-ray diffraction patterns of the steel substrate and its corrosion products were measured

using a Philips X'Pert-MPD XRD system with PC-APD software. X-rays were generated

with a Cu Ka x-ray source (? =1.54056A) operating at 40 mA and 45 kV. The data were

collected over 28 range from 5 0 to 110°. Because no commercial standard material for

the iron oxide including p-FeOO11 (Akaganeite) was available for this XRD study, the

akaganeite was synthesized according to Schwertmann and Cornell's method [13]. XRD

patterns were compared with iron oxide reference patterns from the powder diffraction

file (PDF) established by the Joint Committee on Powder Diffraction Standards (JCPDS)

to identify the specific iron oxide compound from the corrosion products and to obtain

the structural information for XAFS analysis.

The composition of the steel substrate and its corroded specimens was evaluated

using a Philips PW2400 KU' system with SemiQ software. Because no standard

materials for steel and iron oxide were available, semi-quantitative analysis was

conducted instead of quantitative analysis.

3.3.3 Scanning Electron Microscopy /Energy Dispersive X-Ray Spectroscopy

The morphological information of the corroded steel surface was obtained using LEO

982 FE-SEM operated at the working distance of 15 mm and an accelerating voltage of
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1 5 kV. The elemental composition on the corroded surface was examined using EDX

with Oxford ISIS EDS System at the same operating condition as the SEM. The

magnification used in SEM was 1000x, and in the case of EDX a minimum

magnification of 50x was selected to scan the larger area of the corroded surface.

3.3.4 Extended X-ray Absorption Fine Structure Spectroscopy

XAS data acquisition for the steel substrate and corroded steel specimens was performed

on beamline X-11A at the National Synchrotron Light Source (NSLS), Brookhaven

National Laboratory. The storage ring operates at 2.58 GeV with a typical current of 100

milk. The monochromatic radiation used in this study was acquired with two parallel Si

( 1 11) crystals detuned 20% from the fully tuned incident (I o) radiation. The slit size was 1

mm (vertical) by 10 mm (horizontal). Fluorescence mode for the Fe K-edge (7.112 KeV)

as shown in Figure 3.2 was applied for the steel and its corroded specimens. X-ray

intensities were measured at room temperature using a Stern-Heald type detector filled

with Ar gas. A manganese filter (Z-1) for the Fe Kedge was used to minimize the

Figure 3.2 Schematic XAFS experiment in fluorescence mode
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scattered background. Samples were positioned 45° to the incident radiation beam (TO.

Soller-slits were positioned between the sample and detector to reject elastic scatter. The

XAFS data were collected over the range of 6900 to 8200 eV.

The XAFS data analyses were performed using standard procedures [20] and the

program WinXAS 1.0 and Feff 7 for computation of the model scattering amplitude and

phases.



CHAPTER 4

RESULTS AND DISCUSSION

In this section, results from corrosion studies are presented and include data from the

weight loss measurements, ESEWLEDX, XRD, XRF, and XAFS.

4.1. Corrosion Rate

Based on weight loss data from steel exposed to 37.8% hydrochloric acid, Figures 4.1

and 4.2 illustrate corrosion rates (mm/yr) over a period of 10 minutes to 1 hour and 1

hour to 41 hours, respectively. The plot of weight loss per unit area of the corroded steel

specimen versus exposure time is shown in Figures 4.3 and 4.4. In these figures, the error

bar (less than 0.1%) is within the size of the symbols.

As indicated in Figure 4.1, weight loss of steel specimen during 10 minute-exposure

period was too small to detect. However, corrosion rates over the exposure time up to 1

hour appeared to increase linearly. Between exposure times of 1 and 8 hours (the first

experiment), the samples revealed the greatest weight loss per unit area. For greater than

8 hours, the weight loss per unit area gradually decreased. Corrosion measured as weight

loss per unit area of steel tends to proceed exponentially as a function of exposure time

(Figure 4.2). Rates were the greatest in the initial stages of corrosion (up to 8hr),

subsequently, they decreased greatly. In the third experiment, the steel specimens

exposed for 16 and 24 hours were completely dissolved in the solution.

Corrosion rates reported in literature [18] are often based on steady state conditions.

Initially, the uncorroded steel surface oxidizes rapidly in hydrochloric acid at room

temperature, and the chemical reactivity diminishes as reaction time increases. The

21
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0 	 10 	 20 	 30 	 40 	 50 	 60 	 70
Exposure Time (min)

Figure 4.1 Corrosion rate of corroded steel specimen at room temperature
from the second experiment

Figure 4.2 Corrosion rate of corroded steel specimens at room temperature
from the three experiments
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Figure 4.3 Weight loss per unit area of corroded steel specimens
from the second experiment

0 	 10 	 20 	 30 	 40 	 50
Exposure Time (hr)

Figure 4.4 Weight loss per unit area of corroded steel specimens
from the three experiments



24

decrease in corrosion rates can be attributed to formation of the oxide corrosion product

that inhibits transport of the oxidizing agent (02) to the steel surface.

The corrosion rate during 1 hour-exposure time as seen in Figure 4.2 varies from 101

to 250 mm/yr. The differences between these three experimental studies included the

following :

• The NRe varied between experiments: in the first experiment, it was 11,000 to 13,700;

in the second experiment, it was 11,000 to 13,700; and in the third experiment, it was

13,700 to 16,000. All the regimes are turbulent (NR e>10,000) [19], therefore, the

corrosion results can not be explained from the hydraulic regime.

• Sample configuration for each experiment was slightly different with respect to

location in the batch reactor. No baffles were used and therefore a vortex is formed.

Depending on the sample depth, the specimen will receive a different scouring force

due to the vortex.

• Sample area had a small variance due to different thicknesses, which averaged 0.64

mm in the first experiment, 0.49 mm in the second experiment, and 0.52 mm in the

third experiment. However, these effects would result in much smaller differences in

corrosion rates than what was observed.

• One other potential explanation may be that samples from the first and third

experiments had more scratches or defects expediting corrosion as compared to the

second experiment.

As the steel substrate corrodes, the decrease in corrosion rate is also due to the

passivity of the iron oxide film. Most metal oxides are less reactive to corrosive media

than the steel. Moreover, the crystallization of iron oxide film decreases the corrosion
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rate, as the crystalline oxide film can decrease mass transfer of the oxidizing agent to a

corrosion site. In this study, a batch reactor was used and therefore the concentration

gradient was not a driving force in the experiment. However, in a constant flow

environment such as a gun-barrel or water distribution system, a concentration gradient

may result in an increase in corrosion due to the oxide having a greater solubility than the

steel.

Table 4.1 shows that the amount of dissolved iron in solution as a function of time for

the first experiment using the AA spectrometer. The percent dissolution is the ratio of the

dissolved iron to the total iron measured from weight loss, which indicates that a

relatively small portion of iron from the weight loss measurement consisted of iron oxide.

As shown in Figure 4.5, the difference in the amount of iron between measured and

calculated values indicates the portion of iron, which exists as the corrosion product.

Table 4.1 The amount of iron dissolved in solution from the first experiment
(AA anaylsis)
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Figure 43 The concentration of iron dissolved in solution from the first experiment
(A is total amount of iron from weight loss measurement, B is dissolved amount of iron
from AA analysis, and C is the amount of iron existing in corrosion product as iron
oxide)

4.2 Scanning Electron Microscopy/Energy Dispersive X-ray
Spectroscopy Analysis

SEM examination

The morphological information for the steel surface and its corroded specimens was

obtained using SEM as shown in Figure 4.6. The SEM ofImage A revealed that the steel

substrate prior to corrosion was scratched parallel to the polished direction and showed

some defects.

Images B to F show the morphological change of the corroded steel substrate as a

function of exposure time from 1 to 41 hours. At the initial stages of corrosion (1 hour),



Figure 4.6 SEM images of the steel substrate surface and its corroded specimens from
37.8% HC1 solution as a function of time. A: Steel Substrate (500x); B: 1 hr corroded
steel (1000x); C: 8hr corroded steel (1000x); 16hr corroded steel (1000x); E: 24hr
corroded steel (200x); and F: 41hr corroded steel(500x).
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Image B reveals that the surface starts pitting resulting in small oxide particles

constituting the corrosion product. The dominant oxide formed is /3-FeOOH (Akganeite),

and will be discussed in Section 4.4. The surface of corroded steel substrate at an 8 hour-

exposure time appears to be severely attacked as shown in Image C compared to the

morphology of the 1 hour specimen. Image D shows that the crystallized corrosion

products appear as agglomerates of the oxide particles. Impressive features (Images E

and F) are seen on the surfaces at 24 and 41 hour-exposure times. The two corroded

specimens are most severely attacked and hence the steel has been penetrated to some

degree. In the case of the 41 hour specimen, corrosion products appear to be

agglomerated throughout the point of penetration.

EDX quantitative analysis

The elemental composition of the steel surface and corroded specimens was examined by

EDX. Data from quantitative analysis for the specimens are listed in Table 4.2, and based

on weight percent. The steel substrate surface is composed of Fe and C with minor

amounts of Ni, Cr, and Mn (Figure 4.7). The steel substrate was expected to be similar to

AISI 4340 steel based on communication with Dr. Marek Sosnowski [21]. EDX results

indicate that this gun-barrel steel appears to have more carbon than either carbon steel or

stainless steel, which generally contains carbon less than 1% [22]. If the chamber was

contaminated, then all the specimens would have shown carbon. This was not observed.

Figure 4.8 shows EDX spectra for the surface of steel specimens corroded in 37.8%

HCl solution at room temperature as a function of exposure time. As seen in Table 4.2,

oxygen is present in the range of 42% to 45%. The presence of oxygen indicates that an

iron oxide film has precipitated. Chloride is the third major constituent in each of the



Table 4.2 EDX quantitative analysis data (w/w %)
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Figure 4.7 EDX spectrum of steel substrate



Figure 4.8 EDX spectrum of the corrosion product for corroded steel specimens
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corroded steel specimens ranging between 1.12% and 3.68%. Mass transfer of chloride

ions through the oxide film results in an increase in the chloride concentration.

Furthermore, Post and Buchwald [20] found that the tunnel sites in the crystal structure of

akaganeite are partially occupied by chloride.

The EDX patterns for the corroded specimens are similar to each other in the peak

position and intensity for each spectrum. This similarity indicates that the corrosion

products appear to have comparable composition, if not identical, even though the

composition ratio of each element varies slightly as a function of exposure time. Overall,

exposure time had little effect on the corrosion product composition.

4.3 X-ray Fluorescence Analysis

The bulk compositional information for steel substrate and its corroded specimens was

obtained semi-quantitatively using XRF with SemiQ software. The Semi-quantitative

data are listed in Table 4.3. Although XRF does not detect carbon and oxygen, the

sensitivity of XRF provides greater accuracy than EDX. In addition, x-rays are used to

probe the specimen with XRF, while electrons are employed with EDX; therefore, the

depth of study is extended from 0.5 fim with EDX to 50 pm with XRF.

In the case of the steel substrate, the elements given in Table 4.3 were detected and the

weight percent of each element is consistent with data from the EDX analysis. In

addition, data from the corroded steel specimens show that the composition is similar to

results from the EDX analysis.



Table 4.3 Semi-quantitative analysis of XRF for the steel substrate and corroded steel
specimens (w/w %)
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4.4 X-ray Diffraction Analysis

X-ray diffraction patterns for the steel substrate and the corroded steel specimens over the

exposure time of 10 and 20 minutes are shown in Figure 4.9. The steel substrate showed

reflections corresponding to a 20 of 44.76° (110), 65.05° (200), 82.29°

(211), and 98.66° (220) with the (110) orientation exhibiting the greatest diffraction

intensity. The XRD pattern of steel substrate appears to match alpha iron well, which has
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20
Figure 4.9 XRD patterns for the steel substrate and the corroded steel specimens

from the second experiment with 10 and 20 minute-exposure time
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a body centered cubic (bcc) structure. No preferred orientation was observed. As listed in

Table 4.4 the distance between the central atom and neighboring atoms was calculated

based on the bcc structure and the hid reflections. As indicated in Figure 4.9, XRD

patterns of the corroded specimens over the exposure time of 10 and 20 minutes appear to

be similar to that of the steel substrate. However, the peak intensity indicating Fe (110)

decreased as the exposure time increased up to 20 minutes. Therefore, formation of a

very thin oxide film may have suppressed the X-ray beam diffracted from the steel

substrate. Also, the presence of peaks in 20 less than 40 ° suggests oxide precipitation.

Figures 4.10 and 4.11 show the XRD patterns for the synthesized akaganeite standard

and the corroded steel surface as a function of exposure time. Some peaks indicate

reflections corresponding to that of the steel substrate underlying the corrosion product.

XRD peaks for 1 hour and 8 hours in the first experiment show similar patterns indicative

of P-Fe0OH (akaganeite) based on crystal structure study of akaganeite crystal [23]. The

mineral akaganeite is known as the dominant mineral existing when Cr or F is present

[24]. As exposure time increased, a surface structure constituting akaganeite was evident

over a period of 1 hour to 24 hours.

Table 4.4 20 widths of bcc reflections for the steel substrate
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Figure 4.10 XRD patterns of synthesized akaganeite standard and corroded steel
specimens from the three experiment



Figure 4.11 XRD patterns of synthesized akaganeite standrad and corroded steel
specimens from the first and third experiment
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However, at 16 hours and 24 hours, additional peaks not seen in other samples appear to

indicate the presence of other oxide compounds. Also, the background suggests an

amorphous oxide is also present. The XRD of the 41 hours corroded specimen revealed

some akaganeite, but the intensity of these peaks was relatively low compared to the

intensity of the iron.

The difference in oxide and steel intensities between experiments may be explained

by the varying sample location where some specimens received a greater scouring force

than others during a corrosion test. As a result, more of the loosely held oxide may have

been removed from the surface of the steel substrate. Another explanation for the

differences, particularly for the 1 hour duplicates, may be that samples from the first and

second experiments were stored in the dessicator for at least one month prior to XRD

analysis. During this time, oxide formation from further corrosion may have occurred.

Therefore, employment of an advanced storage system such as a vacuum dessicator

instead of a conventional dessicator would prevent further corrosion of the sample and

hence reduce the variations in the results.

4.5 X-ray Absorption Fine Structure Analysis

Figure 4.12 shows data in x(k) k 3 versus photoelectron wave vector (k) for models of a-

Fe and 3-Fe0OH. The data of these models were obtained by using Feff7 program. Data

reduced to x(k) k3 versus k for steel and corroded steel specimens are presented in Figure

4.13. The 8 and 24 hours corroded specimens show strong oscillations at low k,

suggesting backscattering of the first neighbor — an oxygen shell. Weak oscillations

indicating an oxygen shell as the first neighbor are observed at low k in 41 hours



38

corroded sample. However, because less oxide was present and more signal was detected

from the Fe in the steel substrate, the spectra of x(k) k 3 versus k for 1 and 41 hrs corroded

specimens show no significant difference from that of the steel substrate. These data are

considered to result from the thin corrosion product film on the surface of 1 and 41 hrs

specimens. The monochromatic x-ray beam therefore penetrates into the steel substrate

below the corrosion product film, resulting in backscattering of iron atoms in the steel

substrate. The envelope for the backscattering of iron atoms is observed at higher k.

Figure 4.12. Data reduced to x(k)•k3 versus k for model of Fe(fcc) and13-Fe0OH
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Figure 4.13. Data reduced to x (k) k3 versus k for the steel substrate and corroded steel
specimens from the first experiment
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Because iron exists in at least two oxidation states and has different coordination

environments in steel and the oxide, the spectra are difficult to fit. One method that may

be attempted in the future is to consider weighted fractions of the spectra.



CHAPTER 5

CONCLUSIONS

The purpose of this study was to evaluate the application of various characterization

methods in assessing corrosion as a function of time. For this purpose, the immersion

corrosion tests for the steel substrate in an aggressive environment were conducted as a

control study over varying exposure times from 10 minutes to 41 hours. Subsequently, in

the next phase of this research, tantalum corrosion will be evaluated under aggressive

environments including elevated temperature and pressure. From this control study of the

steel corrosion, the following can be concluded:

• The corrosion rate of steel substrate in 37.8% HC1 solution at room temperature (24

± 1 °C) initially increased up to 1 hour and then decreased as the exposure time

increased up to 41 hours.

• XRD analysis indicated that the corrosion product of each sample consisted mainly

of p-Fe00H (akaganeite) despite different exposure times. EDX results also revealed

that the corrosion products for each specimen appeared to have identical surface

composition. With XRF, the corroded samples were probed to a greater depth below

the corrosion product. Nevertheless, similar bulk compositions were observed as

compared to EDX. However, with XRF, carbon and oxygen are not detectable.

• SEM images on the corroded surfaces showed that the deeply scratched parts on

steel substrate were severely attacked and were penetrated in corrosion tests as

exposure time increased. However, polished steel surfaces showed uniform corrosion.

Therefore, defects on the steel surface give rise to pitting corrosion.

41
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In EXAFS analysis, although the surface and bulk composition were equivalent,

spectra for 1 and 41 hour-corroded specimens were different from those of 8 and 24

hours specimens. In the former specimens, an oxide film thinner than that of the

others on the surface resulted in more signal from Fe atoms in the steel substrate than

from the corrosion product. However, all the corroded specimens appear to have

oxygen as the first neighbor. In order to obtain exact local structural information for

each specimen, modeling of the data will continue in future studies.

This study provides a baseline for future corrosion research and an exploration of

characterization methods for the corroded surface.
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