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ABSTRACT

COMPARATIVE MOLECULAR FIELD ANALYSIS (CoMFA)
OF PHENYL RING SUBSTITUTED METHYLPHENIDATES

Comparative Molecular Field Analysis (CoMFA) was performed on 30 methyiphenidate

analogues having phenyl ring substituents at the 2-, 3-, and 4-positions in an attempt to

explain the structure-activity relationships of the analogues. Several CoMFA studies

were carried out using different conformations of methyiphenidate as the template

structures for the corresponding alignment rules. The identification of the bioactive

conformation was variously based on the interfeature distances in WIN 35,428, on cluster

analysis, and on a comparison of active methyiphenidate analogues. The sensitivity of

the models to various CoMFA parameters was compared. These parameters included

altering the size and spacing of the CoMFA grid, and changing different run-time

CoMFA standards such as the steric and electrostatic energy cutoffs, and the column

filtering value. Predictions of "novel", yet-to-be-synthesized methyiphenidate analogues

and of test sets of analogues were carried out using different models. The results showed

that the q2 of a model is affected most by the template structure, followed (in order of

decreasing effect on q2) by the energy cutoffs, the column filtering value, and grid

spacing and region box parameters. It was found that the 2-position analogues have poor

IC50 values because they protrude into a sterically unfavorable region. Based on the

CoMFA studies performed, a novel compound, 3,4-Br methyiphenidate, has been

suggested for synthesis and testing.
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CHAPTER 1

INTRODUCTION

1.1 Perspective

Cocaine abuse continues to be a major health problem in the United States and has, over

the years, also become a serious threat to a stable society internationally. This study

fauns part of the ongoing attempt to develop a phaiinacotherapeutic agent for the

treatment of cocaine dependence. Such a compound would be a selective dopamine

reuptake inhibitor in that it would exhibit a high binding affinity for the dopamine

transporter and simultaneously permit some magnitude of dopamine reuptake. One class

of compounds which exhibits these characteristics is the methyiphenidate analogues. The

mechanism of action of methyiphenidate (Ritalin ®) is similar to that of cocaine. 1-4

Studies of methyiphenidate analogues have shown that some threo-methylphenidate

derivatives with halogen substituents on the aromatic ring have increased binding

affinity. 1,5-10 Furthermore, for most aromatic ring substituted compounds there was a

clear correlation between their binding affinity and their ability to substitute for cocaine

in drug discrimination studies. However, as the three-dimensional structure of the

cocaine receptor site is unknown, the design of new ligands must be based on structure-

activity relationships derived from a set of known ligands. Comparative Molecular Field

Analysis (CoMFA) is at present the most widely used approach for three-dimensional

quantitative structure-activity relationship (3D-QSAR) studies.

The objective of this research is twofold. First, to use CoMFA to elucidate

structure-activity relationships of methyiphenidate analogues with phenyl ring
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substituents. Second, to use CoMFA to predict the activity of novel methyiphenidate

analogues. This research is one component of the iterative cycle of concerted drug

development using molecular modeling, synthesis, binding and behavioral studies. Thus,

molecular modelers use available experimental data to propose a novel compound that is

synthesized and then tested for biological activity. The feedback obtained from testing is

used to fine-tune the predictive model and the cycle is repeated until a satisfactory

compound is realized. The methyiphenidate analogues examined in this study were

synthesized in the laboratory of Dr. Howard Deutsch at Georgia Institute of Technology,

while testing was carried out in the laboratory of Dr. Margaret Schweri at Mercer

University School of Medicine. This work was supported in part by NIH grant

DA11541. By determining exploratory CoMFA models using phenyl ring substituted

methyiphenidate analogues, this research marks a beginning in molecular modeling

studies on methyiphenidate analogues in particular and on dopamine reuptake inhibitors

in general.

1.2 Outline

The remainder of Chapter 1 presents the rationale of this research including a discussion

of the hypothesized mechanism of cocaine action, the importance of the dopamine

transporter and the "Dopamine Hypothesis", and the significance of methyiphenidate

analogues. Chapter 2 introduces the development of CoMFA as a powerful predictive

tool, and describes its important components such as the statistical Partial Least Squares

technique and the Leave-One-Out cross-validation. Conformational analysis, the

selection of a template structure (for alignment) that could reflect the bioactivity of the
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methyiphenidate analogues, and the generation of a suitable molecular alignment of the

30 analogues considered in this study form important steps in the preparation for actual

CoMFA experiments and are considered in Chapter 3. Several CoMFA experiments

were carried out, using different alignments, to compare the sensitivity of the results to

variations in the CoMFA parameters used. Some of these studies included altering the

size and spacing of the CoMFA grid, changing different run-time CoMFA parameters,

and prediction of "novel" compounds and of "test set" compounds. Chapter 4 illustrates

results obtained from these experiments. Finally, Chapter 5 discusses the conclusions.

1.3 Background

1.3.1 About Cocaine

An alkaloid extracted from the leaves of the coca plant, cocaine is a powerful local

anesthetic with vasoconstrictor properties. It is also used and abused as a mental

stimulant that is capable of generating a series of epinephrine-like reactions due to the

stimulation of the sympathetic nervous system and release of epinephrine. The desired

effects of cocaine are feelings of euphoria, alertness, excitement, and rapid flow of

thought but these could be expressed as hyperactivity, increased confidence,

talkativeness, and mood-shifts. As a stimulant, it helps to combat fatigue and instill

feelings of increased capacity to do work, great physical strength, and mental superiority.

In the brain, cocaine inhibits reuptake of dopamine (DA), norepinephrine, and

serotonin in central and peripheral nerve synapses' 1-15 and thus effectively prolongs and

augments their effects. The inhibition of dopamine reuptake is thought to cause euphoria

and is the main reason why users continue to take the drug. Mice that have been
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genetically altered to lack a central dopamine reuptake mechanism at synapses do not

respond to cocaine at al1. 16

1.3.2 The Dopamine Transporter

The dopamine transporter (DAT) is thought to contain a specific binding site for

cocaine. 17 Dopamine nerve endings have unique, high-affinity dopamine uptake sites

that play a key role in terminating transmitter action and in maintaining transmitter

homeostasis. A membrane carrier that is capable of bi-directional transmission of

dopamine is responsible for uptake. 18 The dopamine transporter recycles dopamine in the

synaptic cleft by recycling extracellular dopamine (ECDA) back into the nerve terminal.

The structural and pharmacological features of the dopamine transporter have been

reviewed, 19 and rat,20-22 bovine,23 and human24 dopamine transporters have been cloned

and characterized. The human DAT is 92% identical to the rat DAT and 84% identical to

the bovine DAT. The human DAT is a protein made of 620 amino acids and has three

glycosylation sites. It is hypothesized to contain 12 hydrophobic putative

transmembranal domains and is a member of the family of Na±/C1" -dependent plasma

membrane transporters. Chimeric dopamine-norepinephrine transporters have been

employed to describe distinct domains for ionic dependence and uptake mechanisms

(domains 1-5), cocaine and tricyclic antidepressant interactions (domains 6-8), and

substrate affinity and stereoselectivity (domains 9-12) on the DAT. 25 In the seventh

transmembrane segment, there are several closely spaced serine residues that could act to

bind the hydroxyl groups of DA. Kitayama, et al. 26 have shown that replacement of some
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of these serine residues by glycine or alanine in the rat DAT completely impairs DA

uptake ability.

1.3.3 The "Dopamine Hypothesis"

According to the "Dopamine Hypothesis", 27 the reinforcing properties of cocaine arise

when cocaine binds to the dopamine site on the DAT inhibiting the reuptake of DA by

the DAT. This raises the ECDA levels and eventually leads to euphoric and addictive

effects.28 The finding that binding of cocaine in some of the chimeric dopamine-

norepinephrine transporters can be virtually eliminated without affecting the uptake

properties suggests that a specific determinant for cocaine binding must exist

independently of the binding of substrate. This implies that an antagonist of cocaine

action without uptake blockade activity could be developed for clinical use for

controlling drug dependence. Such a compound would bind to some part of the cocaine

site on the DAT but would not inhibit DA reuptake. The drawback of this approach is

that the patient could annul the effect of treatment simply by self-administering more

cocaine, leading perhaps to dangerous side effects such as cardiac arrhythmias.

Rothman, et al.29,3° suggest a different strategy by seeking to develop a DAT-selective

drug that binds with high affinity to, but dissociates slowly from, the DAT, such that it

behaves like a noncompetitive inhibitor to cocaine. By partially inhibiting DA reuptake,

the ideal agent would provide sufficient ECDA to minimize cocaine craving, yet

insufficient to produce euphoria. The ideal agent would also be insoluble in aqueous

solution to preempt patients from covertly self-administering it intravenously.
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Pharmacologically, a number of drugs have been used to reduce cocaine use,

decrease craving, and alleviate dependence or symptoms of withdrawal. Research has

concentrated mainly on two approaches. In the first, antidepressants 31,32 have been used

because cocaine abstinence produces symptoms similar to depression but these invariably

produce troublesome side effects. 33,34 The second popular approach has been to employ

drugs that interact with DA because of this neurotransmitter's important role in the

positive reinforcement produced by cocaine. Drug development targeting the DAT has

resulted in the generation of some very potent and selective molecules of diverse

structural backgrounds. 35-37 The identification of radioligands, such as nomifensine, 38

methylphenidate,39 1[2-(diphenylmethoxy)-ethyl]-4-(3-phenylpropy1)-piperazine (GBR

12935)540,41 mazindo1, 12 N-[1-(2-benzo(b)thiophenyl)cyclohexyli pipericline (BTCP), 42

benztropinel 1,37,43 and its analogues, 37,44-50 and cocaine and its analogues 17,38-42,51-58 which

bind to the DAT and influence the reuptake of DA has led to a wealth of structure-

activity data, much of which has been summarized recently. 35,59-63 To date, a selective

dopamine uptake inhibitor with the characteristics of the ideal agent outlined above has

not been identified.

1.3.4 The Pharmacophore Model

According to Kier 64 who popularized the term in the late 1960s, a pharmacophore

consists of those structural features that impart to a molecule a particular pharmacological

activity. A pharmacophore model for the ideal agent defines the three-dimensional

geometric arrangement between chemical moieties (such as a carbonyl group or aromatic

ring) or chemical features (such as a hydrogen bond donor or acceptor) that have been
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identified from the experimental structure-activity data as being required for biological

activity. As additional structure-activity data becomes available, the pharmacophore

model for a particular set of molecules can be refined further. The available structure-

activity data for methyiphenidate analogues are discussed below.

1.3.5 Structure-Activity Relationships (SAR) of Methyiphenidate Analogues

Methyiphenidate (MP) is a central nervous system stimulant that is the drug of choice for

the treatment of Attention Deficit Hyperactivity Disorder in children. It was first

synthesized over 50 years ago 65 and was recognized as a stimulant ten years later. 66

Recently, because of the similarity of its mechanism of action to that of cocaine, 1-4 there

have been several studies of MP analogues. 1,5-10 All of the structure-activity studies to

date originate from the laboratories of Drs. Howard Deutsch and Margaret Schweri 67-72

and have been recently reviewed. 61 The data presented here come from these studies

(both published and unpublished) and reflect the analogues' ability to inhibit the binding

of [ 3H]WIN 35,428 to rat striatal tissue membrane preparations, as well as the uptake of

[ 3H]dopamine into rat striatal synaptasomes. 67 The studies indicate that some threo-MP

derivatives with halogen substituents on the aromatic ring have increased binding affinity

compared to the unsubstituted threo-MP. Electron-donating substituents caused little

change or a small loss of affinity. N-substituents generally caused a marked loss of

affinity, except for the benzyl moiety that has slightly increased affinity. For the

unsubstituted amine, reduction of the methyl ester to a hydroxyl sharply reduces affinity,

whereas conversion of the hydroxyl to a methyl ether restores affinity. For N-benzyl

(tertiary amine) derivatives, the same changes increase affinity. Although the activity of
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the MP derivatives was highly correlated in the binding and uptake assays, 67 a number of

compounds were 4- to 8-fold more effective at inhibiting [ 3H]WIN 35,428 binding than

[3 H]dopamine uptake. For most aromatic ring substituted compounds, there was a clear

correlation between their binding affinity and their ability to substitute for cocaine in

drug discrimination studies. This correlation did not hold for N-substituted analogues

which were generally much less potent in the drug discrimination test than predicted by

their binding affinity. A pharmacophore model has been proposed to explain the similar

pharmacological properties of cocaine, MP, and the WIN analogue CFT. 73 This model

identifies the protonated amine, the ester group, and the aromatic ring as important

structural elements. Superposition of the sequence of atoms from the amine group

through the ester group of the (+)-(R, R)-threo-MP (calculated from the X-ray structure),

CFT, and cocaine showed the similarity of these positions in space, with the phenyl rings

of the three compounds oriented in very different regions of space. Froimowitz and

coworkers73 concluded that the DAT can accommodate a wide variety of positions of the

phenyl ring. However, it is possible that the DAT site, which accommodates the C-2

position substituent, is a large lipophilic pocket, or that the DAT site may accommodate

all three phenyl rings in the same orientation, thereby forcing the 2-position substituents

into different parts of the lipophilic pocket. The authors did not propose a detailed

pharmacophore model for MP nor did they investigate superposition of other low energy

conformers of the ligands or alternative superpositions, or attempt to explain the

structure-activity relationships of the MP analogues. It is here that molecular modeling

studies incorporating CoMFA of the MP analogues may be useful. The research
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presented here is an attempt to generate CoMFA models based on an analysis of the

structure-activity relationships of MP analogues with phenyl ring substituents.

The published61,67 and unpublished binding and uptake data for the 30 MP

analogues indicate that the more active compounds, defined as those with the higher

affinity for the binding site (lower IC5 0), are 3- or 4- substituted, such as for example, 3-

Br (binding IC 50 = 4.2 nM), 3-Cl (5.1 nM), 3,4-C1 (5.3 nM), and 4-Br (6.9 nM). The

unsubstituted MP analogue has a binding IC5 0 value of 83.0 nM and an uptake IC 5 0 value

of 224.0 nM. In general, 3- and 4- substituted compounds have comparable IC 50 values

while the 2-substituted compounds are relatively much less active, having much higher

IC50 values. This is probably because of increased steric effects introduced in the

compound by the 2-position substituent. The use of CoMFA may help establish such a

correlation between differences in bioactivity and the SAR data for the MP analogues.



CHAPTER 2

CoMFA THEORY

2.1. CoMFA 30-QSAR

Comparative Molecular Field Analysis (CoMFA) is one of the most powerful tools in the

area of three-dimensional quantitative structure activity relationships (3D-QSAR) studies.

It was developed by Cramer, et al. 74 for predicting the biological activity of a drug and is

based on the assumption that the interactions between the ligand and its receptor site are

primarily non-covalent in nature. Since most drugs exhibit biological activity first by

binding to a target receptor molecule, CoMFA assumes that changes in the biological

activities of drug molecules correspond to changes in their steric and electrostatic

energies, which, in turn, are considered to be the chief components of drug-receptor

interactions. The method itself contains six fundamental steps: (1) selection of a

bioactive conformation of each compound under study; (2) superposition of selected

structures in an alignment that best approximates the putative alignment of the active

drugs at the receptor site; (3) generation of grid points with regular spacing around the

molecules under investigation; (4) sampling of the steric and electrostatic interaction

between the investigated molecule and the probe atoms at each grid point; (5)

construction of the model equation between the interaction energies and biological

activities of the molecules in the series using Partial Least Squares (PLS) analysis; and

(6) display of the coefficient contour maps of the PLS model equation by computer

graphics. Of these six steps, the first two (i.e. the selection of a suitable template

structure and the subsequent alignment rule) are described for MP analogues in Chapter

10
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3. The remaining four steps are incorporated into the CoMFA Studies described in

Chapter 4.

The CoMFA technique has been successfully used for the prediction of the

biological activity of many different types of drugs, such as cocaine analogues, 75-77

benzodiezapine inverse agonists, 78 drugs that act at the cannabinoid receptor,79

anticoccidial triazines, 80 drugs that bind to the human rhinovirus, thermolysin, and

renin, 8 i 5-HT5A receptor agents, 82 imidazoline receptor ligands, 83 N-methyl-D-protease

inhibitors, 84 phenothiazines and other multidrug resistance modifiers, 85 dopamine

receptor agonists, 86 and HIV-1 protease inhibitors. 87 About 400 CoMFA papers were

published during 1993-1997 alone. 88 Recent reviews of the methodology have pointed

out its scope and limitations. 89-92

Since the molecular structure and properties of the cocaine receptor site are

unknown, CoMFA is perfouned by calculating and comparing the molecular steric

(Lennard Jones) and electrostatic (Coulombic) "fields" of both active and inactive

analogues. These fields are calculated at each lattice point around each analogue using a

probe atom, such as a sp a carbon atom with +1 charge, at regularly-spaced points on the

three-dimensional CoMFA grid. The energy values thus calculated are entered into

columns in a CoMFA QSAR table. Application of special multivariate statistical

analyses routines, such as Partial Least Squares analysis, cross-validation, and

bootstrapping, produces a statistically significant final CoMFA equation. The result of

this analysis is a "cross-validated r2" (called q2), which is a quantitative indication of the

quality of the final CoMFA model. A q2 value close to 1.0 suggests that the model

equation is most predictive, and when it is small or negative, the model equation is not
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good enough for prediction. A q2 value of greater than 0.5 is considered significant. The

optimum number of components generated by the cross-validated analysis (see Sections

2.2 and 2.3) is used to perform a non-validated analysis. The results of this non-validated

run are displayed as three-dimensional color-coded contour plots that show differences in

the steric and electrostatic fields and, therefore, illustrate the differences in binding

affinity due to particular substituents. These maps help the user to easily identify the

properties in particular regions of space that correspond to increased biological activity

and vice-versa. It should be kept in mind, however, that the accuracy of the

pharmacophore model in predicting activity of new compounds depends on the quality

and availability of experimental structure-activity data.

The two biggest hurdles in generating a CoMFA model with a diverse set of

molecules are the selection of the bioactive conformation and the need for a suitable

superposition rule. Often these two procedures are subjective and time-consuming, and

could compound the problem by being interdependent. For most studies, superposition

so that the most important pharmacophore features (such as hydrogen bond donors and

acceptors, aromatic rings, and hydrophobic regions) are aligned is sufficient for good

results. 90 This is a straightforward procedure in the case of structurally-related analogues,

such as the methyiphenidate analogues considered here. It may be more difficult to

define the important pharmacophore features (and thereby the superposition rule) for

comparison of molecules from several different structural classes. Most studies seem to

choose the global energy minimum gas phase conformation as the bioactive

conformation76,77,93 , even though there is evidence from ligand-protein binding studies
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that the bound conformation of the substrate is different (sometimes dramatically so)

from the gas phase global energy minimum conformation.94 '95

2.2 Partial Least Squares Technique

Partial Least Squares (PLS) is a popular regression method developed by H. Wold and S.

Wold and is used to solve the multivariate structure-activity relationships in QSAR

studies. 96 The three-dimensional information that is obtained from calculating the steric

and electrostatic field energy values (i.e. descriptors) at each point on the CoMFA grid is

placed in a two-dimensional CoMFA QSAR table. This table contains hundreds or

thousands of such descriptors for each molecule. PLS assumes that these descriptors

capture the dominant effects due to changes in molecular substructure. Depending on the

probe used in the molecular calculations, these descriptors may be electrostatic and steric

energy values (as mentioned above) or lipophilic or other contributions to the ligand-

receptor interaction. PLS also assumes the presence of a small number of "intrinsic"

variables (called latent variables) that contain all the information relevant to the

biological activity. The result of a PLS analysis is an equation that describes or predicts

the differences in the values of one or more table columns (the dependent variables, or

target properties, such as the biological activity given by the IC50 value) from differences

in the values in other table columns (the descriptors).

In PLS, the relationship between the parameters of the given samples (X) and the

corresponding responses (y) is described using a linear model equation with latent

variable t. The latent variable t is expressed by the linear combination of parameters

(equation I).
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t = Xw 	 (1)

where w is the weight factor for calculation of the latent variable. Bilinear model

equations are shown in equations 2 and 3.

X= 	 tipi + E 	 (2)
fr-1

A
Y	 uiqi + F	 (3)

where: u = latent variable for the response variable

p loadings corresponding to t

q loadings corresponding to u

E = model residuals for X

= model residuals for Y

A = number of components in the PLS model equation

2.3 Leave-One-Out Cross-Validation

The number of PLS components (A) is usually determined by means of the Leave-One-

Out cross-validation method. In this procedure, the data for one of the ligands is deleted

and a CoMFA model is constructed and used to predict the biological activity of the

deleted ligand. The predicted error sum of squares (PRESS), the cross-validated

correlation coefficient (q2), and the cross-validated standard error of estimate (scy) are

computed as shown in equations 4-7. The data for that ligand is then restored to the set

and the data for the next ligand is deleted. The CoMFA model is derived again and used

to predict the activity of the second ligand and so on for each ligand in the set.
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where: Y	 = set of all samples

Ypred = a predicted value

Yactual	 an actual or experimental value

Ymean = the best estimate of the mean of all values that might be predicted

n	 = number of rows

A	 = number of components

SS	 = sum of squared residuals (actual)

sc,	 = cross-validated standard error of estimate

The number of components to be used in the non-validated run (i.e. the optimum number

of components) is selected as the number of components that significantly reduces s cv (or

increases q2), or that corresponds to the minimum scv (or to the maximum q2). After the

non-validated run, the resulting CoMFA model is then used to predict the activity of a

new molecule. It should be noted, however, that the new molecule cannot differ too

much from those used to derive the CoMFA equations; usually, the difference is

restricted to a small region of the molecule such as a substituent. This new molecule is

added to the set, superimposed on the template, and its steric and electrostatic fields are

calculated. The results are displayed as three-dimensional contour plots that correlate
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steric and electrostatic features in particular regions of space with increased or decreased

bioactivity. Finally, the predicted r 2 and s„ values are calculated to get a quantitative

idea of the bioactivity of the new molecule.



CHAPTER 3

CoMFA METHODS

3.1 Software and Hardware

The conformational analysis and the CoMFA studies described here were carried out

using SYBYL (version 6.5), a pharmacophore modeling package available from Tripos,

Inc. Calculations were carried out on a Silicon Graphics 02 workstation (4.2 GB hard

drive, 128 MB RAM) at New Jersey Institute of Technology.

3.2 Conformational Analysis

This study investigated 30 neutral MP analogues with aromatic ring substitution at the 2-,

3-, or 4-position as shown in Figure 3.1. Methylphenidate has two asymmetric carbon

atoms (Cl and C2 in Figure 3.1) and can therefore exist as two pairs of diastereomeric

enantiomers. Most pharmacological activities of MP seem to be associated with the threo

isomer whose (+)-enantiomer is believed to be responsible for the stimulant

properties. 6,68,97-102 The absolute configuration of this active enantiomer has been

determined to be (R,R). 103 It was thus decided to use for this study the threo analogues

having the (R,R) absolute configuration.

Figure 3.1 The Methyiphenidate Analogues Investigated in This Study
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Investigation of the conformational space of a molecule is inherently a difficult

process 104-106 but is necessary for many computer-aided analyses such as CoMFA.

Methyiphenidate is a flexible molecule as it contains readily rotatable single bonds, and is

structurally somewhat similar to cocaine, which is shown in Figure 3.2. Conformational

analysis to search the conformational potential energy surface of the MP analogues and to

generate a set of low-energy conformers for use in the pharmacophore model was

performed using the RANDOMSEARCH utility and the SYBYL Maximin2 force field. A

cutoff value of 5 kcal/mol above the global energy minimum (GEM) was used to choose

the conformers to be considered for analysis. Four torsional angles affecting the relative

orientation of putative pharmacophoric elements (i.e. the nitrogen, the ester group, and

the phenyl ring) were selected to be randomly altered. The four bonds involved were the

three between the central carbon atom and the phenyl ring, the piperidine ring, and the

carbomethoxy side chain, and that between the carbonyl carbon and methoxy oxygen.

These are indicated for unsubstituted MP in Figure 3.3.

procedure. RANDOMSEARCH randomly alters the selected torsional angles to find the



19

various energy minima available to a given molecule and minimizes the energy of the

resulting geometry. After minimization, the conformation is compared with those

already located and is saved if it is unique. The RMS superposition threshold value (0.2

A here) defined during RANDOMSEARCH setup distinguishes between two minima: a RMS

value greater than the threshold represents two different conformations. Minimization

was carried out using the Powell method with a maximum number of 1,000 iterations

allowed. The Gasteiger-Hiickel method of charge computation was used during

minimization. This method combines the Gasteiger-Marsili method (to calculate the a

component of the atomic charge) and the Hiickel method (to calculate the rc component of

the atomic charge). 107-111 The total charge is the sum of the charges computed by the two

methods. A distance-dependent dielectric function was used with dielectric constant of

1.0. A cutoff of 8 A was set on the non-bonded interactions. To ensure a comprehensive

search of 3D space, the RANDOMSEARCH routine visited 10,000 conformations of each

analogue and took 2-3 days per analogue to run on the workstation. During random

searching, the (R,R) configuration of the threo analogues was preserved (see Appendix

B) as was the low-energy chair conformation of the piperidine ring. In trial

RANDOMSEARCH runs, it was found that the piperidine ring tended to undergo "ring

inversion", changing the bulky substituent (i.e. the carbon atom attached to the phenyl

ring and to the ester group) from the equatorial position to axial. Since the equatorial

position is known to be more stable (assuming the absence of other interactions such as

hydrogen bonding that could stabilize an axial conformation), the piperidine ring was

held rigid in the chair conformation during the random search. For the same reason, the
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hydrogen atom on the nitrogen was also retained in its equatorial position during random

searching.

Table 3.1 Conformational Analysis of Methyiphenidate Analogues

a) Within 5 kcal above GEM. b) For CoMFA study 1. c) "State" refers to the relationship of the conformer selected for superposition
to the GEM of analogue. d) Energy of selected conformer relative to GEM of analogue.
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Table 3.1 lists the number of unique conformers (as defined from the RMS

superposition threshold of 0.2 A) found by RANDOMSEARCH for each analogue. The table

shows that random search of the MP analogues produced a low of 19 conformations (for

the 4-Br analogue) and a high of 113 conformations (for the 3-OCH3 analogue) within

just 5 kcal/mol of their respective global energy minima. The large number of

conformations found for the methoxy-substituted analogues are due to rotation of the

methyl group. To get a good predictive CoMFA model, it is necessary to choose for

alignment conformers that are representative of the bioactivity of the MP analogues, as

discussed in the next section.

3.3 Selection of Bioactive Conformer

Most compounds of biological importance are usually large enough to possess several

rotatable bonds that allow the compound to exist in several different low-energy

conformations. For example, the most active conformer of a certain analogue may not be

the gas-phase global energy minimum, which could be an intuitive first choice and was

used by several researchers. 76,77,93 Others have used a higher-energy conformation, up to

12 kcal/mol above the GEM conformation, as the bioactive conformation. 112 However, it

should be noted that there may be several reasons for selecting conformers not based on

Boltzmann distribution and conformational energies. In this context, according to

Yliniemela et al., 113 first, the molecular mechanical or semi-empirical conformational

energies may not be very accurate. Second, the selected low-energy conformer may not

properly reflect solvent and physiological effects. Third, if its energy is not too high

above the GEM, even a non-optimal conformer may have a significant presence. Recent
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CoMFA investigators, such as Debnath, 87 have used their knowledge of molecular

structure and properties of receptor sites in identifying suitable conformers of their ligand

analogues. Using this knowledge, they were able to restrict their choice of conformers to

only those that could possibly bind with the receptor. However, in the absence of

knowledge of the receptor site structure, as is the case here, the problem is more difficult.

3.3.1 Identification of Bioactive Conformer Common Only to Active Analogues

In general for the MP analogues, when all the conformers generated for a particular

analogue were superimposed using the piperidine ring and the central chiral carbon atom,

roughly three different "classes" of phenyl ring orientation in space were identified. This

is shown for MP in Figures 3.4 and 3.5.

Figure 3.4 Superposition of RANDOMSEARCH Conformers of Methyiphenidate



23

Figure 3.5 The Same Superposition Rotated to Show the Near-Perfect Alignment of
Piperidine Rings of the Conformers

Theoretically, if the bioactive conformer for MP were within 5 kcal/mol of MP's

GEM conformation, it would fall into one of the three classes shown in Figure 3.4. If this

conformer could be identified, it could be used as a template for the alignment necessary

for CoMFA of the 30 analogues. The assumption was made that the 2-position analogues

are relatively inactive (with high IC50 values) because they cannot easily attain the

bioactive conformation, whereas the 3- and 4-position analogues are active because they

can easily attain the bioactive conformer (i.e. that the bioactive conformer would be

found among the local minima located by RANDOMSEARCH). Therefore, an analysis of

the four randomly-altered torsional angles was carried out for all conformations of MP

and the 2-, 3-, and 4-substituted Br, Cl, F, OCH3, and OH analogues in Table 3.1. For

each analogue, scatter graphs (see Appendix C) of 1:1)1 vs. 02, 1)1 vs. 03, and 02 vs. 03

were created (see Figure 3.3 for torsion angle definitions). The aim was to establish

whether there was a region or point in torsion space (i.e. within 5 kcal/mol of each
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analogue's GEM conformation) that was accessible to those analogues with low IC50

values (i.e. MP and the 3- and 4-analogues) but not to those analogues with high IC 50

values (i.e. the 2-analogues). The search for the presence in the scatter graphs of MP and

the 3- and 4-analogues and absence in those of the 2-analogues of a conformer/point was

initially based on the reasoning that the 2-substituent may have poorer steric interactions

with the rest of the molecule costing it more than 5 kcal/mol to attain the bioactive

conformation. As such, it was useful to look first at the (1)2 vs. 03 scatter plots for the

analogues since this would pit the 2-substituent against the carbonyl oxygen (for greater

steric hindrance). As expected from the size and location of the substituent, the 2-

analogues appear to have a much more conforrnationally restricted torsional angle space.

From all three sets of graphs, however, no conformation was identifiable that was

common to MP and all 3- and 4-substituents but not to the 2-analogues.

Since this result could stem from the possibility that the bioactive conformer

might not fall within the 5 kcal/mol energy cutoff, the 30 analogues were subjected to

RANDOMSEARCH again using a higher 20 kcal/mol energy cutoff value. This time the new

sets of conformations for MP and all the 2-position analogues (Br, Cl, F, OCH 3 , and OH)

were plotted in 3D with 4)4, 4)2, and 03 as the three axes. First, all the local minima for

MP within 20 kcal/mol of its GEM conformation were plotted in green. Then all the

local minima for all the 2-position analogues (within 20 kcal/mol of their respective

GEM conformations) were plotted in red. The two plots were superimposed to produce

the figure shown in Plate 1 in Appendix D. The actual value of the energy of each

conformer is not important here; rather just the fact that each point identifies a local

minimum with the 20 kcal/mol cutoff. An attempt was made to locate a green point that
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had no red neighbors in 3D torsional angle space. Such a point could signify a bioactive

conformation that is allowed for MP but not for the 2-analogues and could be used as a

template for alignment of the 30 analogues for CoMFA. Seven such points were

identified: MP conformation numbers 27 (energy = 12.72 kcal/mol), 39 (18.85 kcal/mol),

40 (19.82 kcal/mol), 42 (12.19 kcal/mol), 45 (19.95 kcal/mol), 59 (7.5 kcal/mol), and 65

(12.67 kcaUmol). If the 3- and 4-position analogues are active, one would expect them to

have the same bioactive conformation as MP. The scatter plots for selected 3- and 4-

analogues were investigated to see whether a conformation could be found that was

common to MP and 3- and 4-position analogues but not found for the 2-position

analogues. The results, as shown in Table 3.2, convey that no consistent pattern

emerged.

Table 3.2 Trial Bioactive Conformations of MP Analogues

1 — yQb, auctivE,u, has 	1A)11illiilbaLISJ11, 1•1 — LIU

3.3.2 Identification of Bioactive Conformer Based on Interfeature Distances in WIN
35,428

As a next step, it was felt that the bioactive conformer of the MP analogues might be

defined from that of the highly active cocaine analogue WIN 35,428 used by Schweri and

coworkers to radio-label the cocaine binding site. Subsequently, RANDOMSEARCH was

performed on WIN (Figure 3.6) and conformers within 20 kcal/mol of the GEM of WIN
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were investigated. The distances between the nitrogen and the aromatic centroid

(represented by the 2- or 5-position hydrogen, Hi and H2 respectively), the nitrogen and

the two oxygens (01: carbonyl oxygen and 02: methoxy oxygen), and the oxygens and

the centroid were calculated for each of the WIN conformers. These distances along with

the energy values of the 16 RANDOMSEARCH WIN conformers are given in Table 3.3,

with the WIN GEM conformation (number 4) listed in bold. The distance calculation

was repeated for MP and some of the 3- and 4-analogues and the distances and energies

found for the 67 RANDOMSEARCH MP confofiners are given in Table 3.4, with the MP

GEM confotination (number 14) values listed in bold. The idea was to see if any

conformer of MP, 3-, and 4-analogues had the same distances between relevant features

as one or more conformers of WIN since this conformer might be bioactive (and

therefore suitable to use for CoMFA alignment). This method of identifying the

bioactive conformer for MP analogues was also not successful, primarily because of the

different size of the MP analogues and WIN, with the MP analogues being much

"shorter" than WIN in all the inter-feature distances.

Figure 3.6 WIN



Table 3.3 Energy and Interfeature Distances for WIN Conformers
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Table 3.4 Energy and Interfeature Distances for MP Conformers
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3.3.3 Identification of Bioactive Conformer by Cluster Analysis

An alternative definition of the different classes of the MP conformers was attempted by

using hierarchical cluster analysis on the MP conformers obtained by RANDOMSEARCH.

Hierarchical cluster analysis is a means to locate various groupings that might be present

in a given data set. It can be used to see which structures are most similar in terms of the

selected distance metric, as well as to choose a compound or a subset of compounds that

could be considered representatives of the larger data set. The cluster analysis results are

displayed as an inverted tree, or a dendrogram. Based on the selected criterion for

clustering (such as torsional angles, distances between atoms or features, etc.), the

analysis moves from the bottom of the dendrogram to the top, progressively merging

pairs of clusters. Each node at the bottom represents a row (or conformer), while the top-

most cluster represents the entire table (such as the molecular spreadsheet containing the

different RANDOMSEARCH conformers of an analogue). The lengths of the vertical lines

in the dendrogram provide qualitative information about the separation between various

clusters with a shorter branch signifying greater similarity between the clusters. Clusters

represented by long unbranched strands are strongly separated from other clusters. A

dendrogram that has well-formed clusters has most of the original nodes merging at its

bottom.

The cluster analysis was done on the 67 MP conformers generated by using the

energy cutoff value of 20 kcal/mol during RANDOM SEARCH. The four torsional angles 01,

02, 03, and 04 shown in Figure 3.3 were chosen as the criterion for clustering. The

resulting dendrogram is illustrated in Figure 3.7 and the torsional angles in Table 3.5.

One way to select subsets is to select all points at a particular vertical level and then
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choose one member from each resulting group. Accordingly, five points were chosen

near the top of the dendrogram in order to divide the 67 MP conformations into five

families, as shown in Figure 3.7. The lowest energy structure from each of the five

families was then selected as a potential bioactive conformer with which five different

CoMFA experiments could be carried out. The conformer chosen from the first family

was conformer number 1 (with energy = 7.00 kcal/mol), from the second was conformer

number 3 (5.33 kcal/mol), from the third was conformer number 14 (0.54 kcal/mol), from

the fourth was conformer number 17 (1.31 kcal/mol), and from the fifth was conformer

number 20 (5.43 kcal/mol). Of these, conformer number 14 was the GEM structure for

the 67 MP conformations. This structure (energy = 0.54 kcal/mol, = 175.6, 02 = 74.1,

= 3.6, 04 = 179.3) was very similar to the GEM structure (energy = 0.53 kcal/mol, 1

= 177.1, 02 = 74.6, 03 = 3.2, 04 = 178.9) of the 20 MP conformers obtained earlier using

the 5 kcal/mol RANDOMSEARCH energy cutoff value. By the time cluster analysis was

performed on the 20 kcal/mol RANDOMSEARCH MP conformers, CoMFA Study I had

already been carried out using the 5 kcal/mol MP GEM structure as the template for

alignment (which is described in the next section). Given the similarity between the two

MP GEM structures, it was decided to leave out conformer number 14 from the CoMFA

studies. In all, five CoMFA studies (using the 5 kcal/mol cutoff GEM conformer, and

conformer numbers 1, 3, 17, and 20 from the 20 kcal/mol cutoff data set) were done and

are described in the next chapter.



Figure 3.7 Dendrogram for MP Conformers (20 kcal/mol Cutoff)
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Table 3.5 Torsional Angles for MP Conformers
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3.4 Alignment

Molecular alignment plays an essential role in areas such as 3D-QSAR, pharmacophore

identification, molecular diversity, and structural database searching. 114,115 The results of

CoMFA also are strongly dependent on the alignment of the analogues. 74 The structures

for the first CoMFA study were aligned by first choosing the GEM structure of

unsubstituted MP (from the 5 kcal/mol data set) as the template and then superimposing

the GEM structure of each analogue on the template by superimposing the six aromatic

carbons and the piperidine nitrogen. The alignment was carried out in SYBYL using its

"Align Database" option, which superimposes the structures by minimizing the RMS

distance between each aligned analogue and the template structure (see Appendix B). As

shown in Figure 3.8, this superposition produced an alignment in which the piperidine

ring, the ester side chain, and the phenyl ring overlap almost exactly for all analogues

except 2-OH, 3-NH2 , and 4-NH2. In addition, in this alignment, the 2-position

substituents on the phenyl ring lie on the opposite side of the 3-position substituents,

essentially turning the 3-position substituents into 5-position substituents relative to the

2-position substituents. For a coherent analysis, it was decided to have, as a requirement

for the alignment for CoMFA, all analogues with substituents on the same side as the 2-

position analogues. Table 3.1 lists for each analogue the conformer number selected for

the new alignment and also its relationship to the GEM structure of the analogue. For

example, for the unsubstituted MP analogue, 20 conformers were found that were within

5 kcal/mol of the GEM of this analogue. The GEM conformer of this analogue turned

out to be the sixth conformer located by RANDOMSEARCH and its energy was 0.53

kcal/mol. The "state" of a conformer selected for superposition alludes to its relationship
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to the GEM of the particular analogue, in terms of increasing relative energy: GEM <

GEM+l < GEM+2, and so on. This alignment is displayed in Figure 3.9 and was used

for all subsequent experiments in the first CoMFA study.

Figure 3.8 Alignment of All GEM	 Figure 3.9 Alignment #1
Structures

For each of the other four CoMFA studies, the template MP conformer was used

to construct (using SYBYL's Build/Edit option) all other analogues by adding

substituents at the right position on the phenyl ring. Since the template structure was kept

unchanged during construction of the other analogues, and since no energy minimizations

were performed on the constructed structures (see notes in Appendix B), the process

produced automatic alignments for each of these four CoMFA studies. These alignments

(Alignments #2, #3, #4, and #5 for the corresponding CoMFA Studies II — V) are shown
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in Figures 3.10 — 3.13. After these preparatory steps, the CoMFA procedure described in

Chapter 2 was carried out on the 30 MP analogues.

Figure 3.10 Alignment #2	 Figure 3.11 Alignment #3

Figure 3.12 Alignment #4	 Figure 3.13 Alignment #5
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The results of a CoMFA run include residual values, defined as the (Actual —

Predicted) value of (-log IC50), for each analogue. As discussed in Chapter 4, if

warranted by the quality of the experimental data, the predictability of the CoMFA model

can be improved (i.e. the q 2 can be raised) by deleting from the analysis compounds with

large residuals. Chapter 4 also describes the sensitivity of the CoMFA models to various

run-time parameters such as the region box, grid spacing, steric and electrostatic energy

cutoff values, and the column filtering (a) value. The CoMFA region box is the 3D

space surrounding the alignment of molecules and contains lattice points at which the

steric and electrostatic fields are calculated using a probe atom, such as a sp a carbon atom

with +1 charge. Grid spacing is the distance between two lattice points and is 2.00 A by

default. During the calculation of field energies at the lattice points, some values may

exceed the selected cutoffs for the steric and electrostatic energy. These are replaced by

the chosen energy cutoff values, thus making a plateau of the steric fields close to the

center of any atom. The column filtering value, a, is the minimum level of energy

variation allowed for a lattice point to be included in the PLS analysis; it is 2.0 kcallmol

by default.



CHAPTER 4

RESULTS AND DISCUSSION

The CoMFA experiments in the studies presented here use the (published 61,67 and

unpublished) nanomolar binding and uptake IC5 0 values for MP analogues of Schweri

and coworkers. The PLS analyses were performed using the [-log (molar IC50)] values.

Five CoMFA studies (1-V) were carried out. CoMFA Study I used the 5 kcal/mol cutoff

GEM conformer as the template for the alignment rule. CoMFA Studies II-V used

conformer numbers 1, 3, 17, and 20, obtained after cluster analysis of the 20 kcal/mol

cutoff data set, as the templates for the respective alignment rules.

4.1 CoMFA Study I

Three sets of experiments were carried out: a) separate CoMFA runs using binding and

uptake data with default grid size and spacing; b) changing the grid spacing and CoMFA

region box size; and c) changing the steric and electrostatic (ES) cutoffs and the column

filtering (o) parameter.

4.1.1 CoMFA Using Default Grid Size and Spacing

Table 4.1 shows the automatically generated default specifications for the CoMFA region

box for the particular alignment used in this study. The x, y, and z coordinates are given

in Angstroms. Automatically-generated region boxes extend by an extra 2 A in all

directions around the aligned structures, thus effectively covering the entire alignment

with sufficient spatial margin. The steric and ES field points were calculated at each of

37
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the grid points of each of the analogues using the default 2 A grid spacing. The Leave-

One-Out cross-validation method was used to calculate q2, advancing through all 30

analogues and leaving one analogue at a time out of the calculation to predict its (-log

IC 50) value. The optimum number of components was then used to carry out a non-

validated CoMFA run. The results are summarized in Table 4.2 for both cross-validated

and non-validated runs. In the table, "both" refers to inclusion of both steric and ES

fields in the calculations. These CoMFA runs produced barely significant q 2 values of

about 0.5 using binding or uptake data for all 30 analogues (Runs I and 3 in Table 4.2),

indicating an acceptable model. The optimum number of components for both runs was

four and the non-validated r2 was about 0.8-0.9. A comparison of the steric and

electrostatic contributions (about 80% and 20% respectively) for the two runs points to a

preponderance of steric influences. The similarity of the results obtained for binding and

uptake models is probably a consequence of the fact that the binding and uptake data are

highly correlated. 61

Table 4.1 Default Region Box



Table 4.2 Selected CoMFA Results for Binding and Uptake Data
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Runs 2 and 4 were made with only 28 and 29 analogues, respectively. In Run 2,

4-CF3 and 2-OCH3 were dropped; in Run 4, 4-CF3 was dropped due to high predictive

errors (see discussion below and Table 4.3). Run 2 gave the best q 2 (0.590) and

associated r2 (0.934). Runs 5-8 test the use of steric fields only in modeling the binding

and uptake data (Runs 5 and 7) versus only ES fields (Runs 6 and 8) for all 30 analogues.

Since Runs 1 and 3 showed that steric effects contribute about 80% to the binding and

uptake data, it is not surprising that Runs 6 and 8, based on ES fields only, show very

poor values of q2 (around 0.3). Similarly, Runs 5 and 7, based on steric fields alone, give

q2 values close to Runs 1 and 3, which are based on both steric and ES fields. Non-

validated runs were not performed for Runs 5-8 due to low value of q2.



Table 4.3 Actual Binding and Uptake Data and CoMFA Residuals

Actual Data * Binding Residuals -1 	 Uptake Residuals Binding Residuals Uptake Residuals

Binding Uptake With all 30 analogues Without 4-CF3, 2-OCH3 Without 4-CF3

# Substituent ICso - log IC50 IC50 - log ICs o-
Cross

Validated
Non

Validated
Cross

Validated
Non

Validated
Cross

Validated
Non

Validated
Cross

Validated
Non

Validated
1 MP 83.0 7.081 224.0 6.650 -0.103 0.045 0.099 0.087 -0.035 0.105 0.174 0.199
2 2-Br 1865.0 5.729 3410.0 5.467 0.860 0.436 0.597 0.339 0.638 0.490 0.609 0.461
3 2-Cl 1946.7 5.711 2660.0 5.575 0.519 0.221 0.709 0.323 0.380 0.167 0.703 0.261
4 2-F 1415.0 5.849 2900.0 5.538 -0.457 -0.399 -0.624 -0.379 -0.283 -0.097 -0.408 -0.113
5 2-naphthyl 11.0 7.959 53.0 7.276 0.578 -0.034 -0.562 -0.087 0.383 0.254 -0.107 0.161
6 2-OCH3 100666.7 3.997 81000.0 4.092 -1.789 0.208 -1.609 0.204 -1.738 -0.157
7 2-OH 23050.0 4.637 35750.0 4.447 -1.065 -0.779 -1.151 -0.757 -1.094 -0.420 -1.239 -0.420
8 3-Br 4.2 8.377 12.8 7.893 0.466 0.455 0.622 0.489 0.532 0.431 0.516 0.411

9 3-C1- 3 21.4 7.670 100.0 7.000 0.014 0.062 -0.888 -0.006 -0.580 -0.024 -0.675 -0.063

10 3-C1 5.1 8.292 23.0 7.638 0.837 0.489 0.655 0.322 0.516 0.318 0.258 0.151

11 3-F 40.5 7.392 160.0 6.796 -0.177 0.110 -0.397 0.041 -0.384 -0.173 -0.376 -0.187

12 3-NH2 265.0 6.577 577.5 6.238 -0.805 -0.177 -0.089 -0.142 0.320 0.026 0.918 0.026

13 3-OCH3 287.5 6.541 635.0 6.197 -0.378 -0.244 0.764 -0.124 0.764 0.172 0.678 0.228
14 3-OH 321.0 6.493 790.0 6.102 -1.548 -0.979 -1.632 -0.904 -1.374 -0.805 -1.296 -0.653
15 3,4-C1 5.3 8.276 7.0 8.155 -0.136 -0.219 0.498 0.105 0.062 -0.148 0.414 0.052
16 3,4-OCH3 810.0 6.092 1760.0 5.754 -L082 -0.265 0.080 -0.221 -1.115 0.110 -0.553 -0.027
17 3,5-CH3 4685 5.329 3041.5 5.517 -1.051 0.005 -0.589 0.208 -1.297 -0.074 -0.918 0.001

18 3,5-C1 65.6 7.183 113.0 6.947 0.378 0.163 0.021 0.108 0.288 0.158 0.149 0.045
19 4-Br 6.9 8.161 26.3 7.580 0.314 0.324 0.090 0.301 0.355 0.118 0.341 0.075

20 4-C2H5 736.7 6.133 1580.0 5.801 -0.098 0.073 -0.527 0.044 -0.224 0.017 -0.210 -0.027
21 4-CF3 615.0 6.211 2365.0 5.626 -2.053 -0.973 -2.201 -0.974
22 4-C143 33.0 7.481 125.5 6.901 0.950 0A81 0.698 0.395 1.024 0.240 0.987 0.179
23 4-Cl 20.6 7.686 73.8 7.132 -0.334 -0.150 -0.652 -0.187 -0.174 -0.271 -0.418 -0.313
24 4-F 35.0 7.456 142.0 6.848 0.514 0.391 0.509 0.277 0.138 0.279 0.092 0.209

25 4-1 14.0 7.854 64.5 7.190 0.428 0.240 0.378 0.164 -0.500 -0.244 -0.457 -0.268

26 4-NH2 34.5 7.462 114.5 6.941 -0.121 0.290 -1.744 0.266 -1.708 -0.136 -1.661 -0.168

27 4-NO2 493.8 6.306 1610.5 5.793 -0.012 -0.115 1.127 -0.076 0.352 -0.122 0.454 0.054

28 4-OCH3 83.0 7.081 292.5 6.534 0.959 0.225 0.930 0.113 0.503 -0.180 0.365 -0.085

29 4-OH 98.0 7.009 340.0 6.468 -0.261 -0.001 -0.227 -0.074 0.003 -0.015 0.026 0.018

30 4-t-butyl 13450.0 4.871 9350.0 5.029 -0.906 0.118 0.137 0.145 -1.386 -0.174 -1.045 -0.048

* The ICcn values are shown in nM units and the -Ina ICsn values are based on molar ICso values. 61,67



41

Table 4.3 provides the observed binding and uptake data 61,67 for the 30 MP

analogues, along with the values of (-log IC50) that were used as the biological activity

measurement in the CoMFA analyses. It also lists the residuals, calculated as (Actual —

Predicted) value of (-log IC50), generated in these runs. For the binding run (Run 1 in

Table 4.2), the analogues with the largest (cross-validated) residuals are: 4-CF 3 (-2.053),

2-OCH3 (-1.789), and 3-OH (-1.548). For the uptake run (Run 2 in Table 4.2), the

analogues with the largest (cross-validated) residuals are 4-CF 3 (-2.201), 2-OCH3

(-1.609), 3-OH (-1.632), and 4-NH 2 (-1.744). Since the (cross-validated) q 2 is a better

indicator of the usefulness of the model than the (non-validated) r 2 , one way to improve

q` is to delete those analogues that are poorly predicted. For this reason, a binding

CoMFA run without 4-CF 3 and 2-OCH3 , and an uptake CoMFA run without 4-CF3 were

performed. These results also are shown in Tables 4.2 (Runs 2 and 4) and 4.3 with the

blank spaces in Table 4.3 indicating the analogue that was left out. The q 2 value for the

binding run (Run 2) increased somewhat to about 0.6 without 4-CF3 and 2-OCH 3 , but that

for the uptake run (Run 4) decreased slightly to about 0.4 without 4-CF 3 . However, the

standard error of estimate decreased for these two runs, while the non-validated r2

improved to over 0.9. The steric contribution was again favored over the electrostatic

contribution. However, some large residuals still remain in the 28- and 29-analogue runs.

For the binding run, Run 2, deleting 4-CF 3 and 2-OCH 3 diminished the (cross-validated)

residual for 3-OH (from -1.548 to -1.374), but actually increased it for 4-NH2 (from

-0.121 to -1.744), 3,5-CH3 (from -1.051 to -1.297), and 4-t-butyl (from -0.906 to -1.386).

Similarly, deleting 4-CF3 from the uptake run, Run 4, decreased the (cross-validated)

residuals for 3-OH (from -1.632 to -1.296) and 4-NH2 (from -1.744 to -1.661), but
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increased those for 2-OCH 3 (from -1.609 to -1.738) and 2-OH (from -1.151 to -1.239).

Since deleting analogues with large residuals from subsequent CoMFA runs did not

necessarily improve the predictive power of those runs, and since there is no reason that

the experimental data for those analogues with large residuals would be in error, this

procedure was not continued in CoMFA Studies II — V.

The CoMFA steric and electrostatic coefficient contour maps based on the above

PLS analyses are provided as 3D plots in Plate 2 in Appendix D. The contours were

generated with the following settings: green 80, yellow 35, blue 95, and red 20. For

clarity, only one structure, that of the 2-OCH3 analogue, is depicted in the plots. These

coefficient contour plots may help to identify important regions where any change in the

steric and/or electrostatic fields may affect the bioactivity. It can be seen that there is no

substantive difference between the plots based on binding versus uptake data, nor

between the plots for studies based on different number of analogues.

The plots are interpreted as follows. The steric contours are indicated by the

green and yellow polyhedra while the electrostatic contours are represented by the blue

and red polyhedra. The green steric contours indicate that increasing the bulk in those

areas may help to increase the binding or uptake activity of the MP analogues. The

yellow regions correspond to steric contours which indicate that increasing bulk in those

areas may decrease bioactivity. As shown in the plots, there is a large yellow region just

off the 2-position of the aromatic ring indicating that increasing bulk in this region may

lead to lowering of activity. This is most clearly shown for the displayed 2-OCH 3

analogue which penetrates directly into this disallowed yellow region and has the highest

IC50 value (about 105 nM) among all 30 analogues studied. Other 2-position analogues
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also have very high IC 50 values: 2-Br (1,865 nM), 2-C1 (1,947 nM), 2-F (1,415 nM), and

2-OH (23,050 nM). For the electrostatic coefficient contours, more negative charge in

the red regions may increase bioactivity, while more negative charge in the blue regions

may decrease it. In this way, the color-coded plots are a useful tool for relating the steric

and electrostatic features of the analogues to their biological activity.

4.1.1.1 Predicting Bioactivity of "Novel" Compounds: The whole exercise of

CoMFA is undertaken to generate a useful model that can accurately predict the

bioactivity of a yet-to-be-synthesized compound. For this purpose, the non-validated

CoMFA run with 30 analogues using binding data, both steric and ES fields, default

region box, and the GEM superposition (Run 1 in Table 4.2), was tested by predicting the

bioactivity of some "novel" compounds that were generated by editing a suitable

analogue already aligned on the template. For example, the 2-I structure was made by

replacing the chlorine atom of the 2-C1 analogue in the alignment with an iodine atom on

screen. The predictions were made using the "Predict Property" option in SYBYL.

Table 4.4 gives the predicted (-log IC50) values and the corresponding nanomolar 1050

values for these compounds.

Table 4.4 Predicted Bioactivity of "Novel" Compounds



44

To test the robustness of the model the predicted IC50 values of these "novel"

compounds can be evaluated based on the known activity trends of the 30 analogues from

Table 4.3. For example, the relatively inactive 2-position analogues have high IC50

values and, as noted above, stick out into the sterically unfavorable yellow region in the

contour map. The chimeric 2-I analogue is the bulkiest of all the halogen substituted

analogues and it is reasonable that it would have the highest IC 50 value amongst them.

The model predicts an 10 50 of 31,390 nM for 2-1, which is much higher than the IC50

values of all 2-position halogens and comparable to that of the 2-OH analogue (23,050

nM). Similarly, the chimeric 3-1 analogue (25.4 nM) is predicted to have an 1050 value

comparable to 3-CH 3 (21.4 nM) and higher than both 3-Br (4.2 nM) and 3-C1 (5.1 nM).

The brominated MP analogues consistently have a better activity than do the chlorinated

ones: 2-Br (1,865 nM) vs. 2-Cl (1,947 nM), 3-Br (4.2 nM) vs. 3-C1 (5.1 nM), and 4-Br

(6.9 nM) vs. 4-C1 (20.6 nM). In keeping with this trend, the 3,4-Br compound (3.1 nM)

is predicted to have a lower IC50 value than the 3,4-C1 analogue (5.3 nM). Indeed, the

3,4-Br compound may be a good choice to synthesize and provide experimental

verification of the model. It has been suggested to Howard Deutsch, Georgia Institute of

Technology, as a potential synthetic target. The preceding line of reasoning, however,

fails when comparing 3,5-Br (predicted 187 nM) with 3,5-C1 (actual 65.6 nM). No clear

correlations can be made for the remaining "novel" compounds except that the order of

activity for 3,4,5-Br, 3,4,5-C1, and 4,5-C1 appears to be correct.

4.1.1.2 Predicting Bioactivity of "Test Set": A standard procedure to test the

robustness of the model is to divide the analogues into a training set and a test set, derive
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a model based on the training set, and use it to predict the biological activity of the test

set. The test set usually contains about 10% of the compounds and is chosen to reflect a

wide range of bioactivity. An initial test set was created that consisted of six analogues

(20 percent of the total number of analogues studied): 2-Br (1,865 nM), 2-0CH3 (10 5

nM), 3-CH3 (21.4 nM), 3,5-C1 (65.6 nM), 4-Br (6.9 nM), and 4-NO 2 (493.8 nM). This

CoMFA run was carried out using the binding data, both steric and ES field calculations,

the Leave-One-Out cross-validation method, and the default region box (Table 4.1). The

cross-validated and non-validated CoMFA results are summarized in Table 4.5 as Test

1A. The actual and predicted (-log IC 50) values for the compounds of the test set, along

with the corresponding residuals, are provided in Table 4.6 under the column heading

"Test Set 1". A second CoMFA run was performed as above but using a user-defined

CoMFA region box (see Table 4.16 below). The results of this run are listed in Table 4.5

as Test 1B and in Table 4.7 under the column heading "Test Set 1". Since the q2 values

of both these runs were much less than 0.5 {0.289 for the default region box and 0.293 for

the user-defined region box) and therefore not significant, a second test set was created

consisting of three analogues (10 percent of the total number of analogues studied). Two

more CoMFA runs predicting the (-log IC5 0) values of the compounds in the second test

set were carried out using the default or user-defined region box. These runs are listed in

Table 4.5 as Tests 2A and 2B and in Tables 4.6 and 4.7 under the column heading "Test

Set 2". Though Test Set 2 produced improved q 2 values over those produced by Test Set

1, they were still below the 0.5 significance level (0.365 using the default region box and

0.408 using the user-defined region box). These results indicate that the present CoMFA

model based on both steric and ES fields, default region box, and Alignment #1 (Figure
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3.9) may not be the best predictive model. Therefore alterations in the box region and the

grid spacing were made, as described below.

Table 4.5 CoMFA Using Two Training Sets with Two Different Region Boxes

- 'able 4.1; - Fable 4.16

Table 4.6 Bioactivity Predictions of Test Sets Using Default CoMFA Region Box

Table 4.7 Bioactivity Predictions of Test Sets Using User-Defined CoMFA Region Box
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4.1.2 Resizing CoMFA Region Box and Grid Spacing

Cross-validated CoMFA runs were carried out after altering the size of the CoMFA

region box surrounding the 30 aligned structures and changing the distance between

lattice points in the x, y, and z directions. The binding data and both steric and

electrostatic field calculations were used for these analyses. Three sets of three (for a

total of nine) CoMFA runs were performed as shown in Table 4.8. Three grid spacings

were used at 1.00 A, 1.50 A, and 2.00 A. For each grid spacing, three sizes of the CoMFA

region box were used: "base", "base + 2 A", and "base — 2 A". The "base" size signifies

the minimum whole number end-coordinates beyond the coordinates of the automatically

generated default CoMFA region box (Table 4.1) that would ensure an exact "fit" for the

number of steps with a particular grid spacing. For example, in Table 4.10, the selection

of the low and high x-coordinates as -9.0 and 11.0 respectively ensures that the 1.00 A

grid spacing will cover the x-axis in exactly 21 steps. Addition or subtraction of 2 A

to/from the low and high coordinates of the CoMFA region box yields the "base + 2 A" or

the "base — 2 A" region boxes. The results are summarized in Table 4.8 while the

residuals are listed in Table 4.9. The nine region boxes generated are shown in Tables

4.10 through 4.18.

Resizing of the region box for a given set of CoMFA runs (i.e., at a given grid

spacing) produced virtually no change in the cross-validated q2 of each run of the set.

For example, for the 1.00 A grid spacing, the "base", "base + 2 A", and "base — 2 A"

region boxes, all gave a q2 value of 0.57. Upon varying the grid spacing, however, a

minor change in q2 was effected, with the 1.00 A grid spacing producing the highest q 2 .

Nevertheless, the overall change for the 1.00 A, 1.50 A, and 2.00 A grid spacings is barely
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significant. Consequently, it can be surmised that changing the grid spacing for this

particular alignment had negligible effect on the predictability of the models.

It can be seen from Table 4.8 that the q 2 values for the 1.50 A grid spacing were

the lowest at 0.43, while those for the 1.00 A and 2.00 A were similar at 0.57 and 0.55

respectively. Perhaps this is because the center of the CoMFA region box for the 1.50 A

grid spacing (at 1.5, 2.5, 0.0, see Table 4.13) is different from that for the 1.00 A and 2.00

A grid spacings (at 1.0, 2.0, 0.0, see Table 4.10). Not enough data is available to

corroborate this finding.

Since changing the box region and grid spacing had essentially no effect on the

predictive quality of the CoMFA model, the default values for these were used in the

remaining CoMFA studies in this section, as well as for CoMFA studies II — V.

Table 4.8 Cross-Validated CoMFA Results of Region Box and Grid Spacing Resizing



Table 4.9 Binding Residuals upon Changing Grid Spacing and Region-Box Size



A. CoMFA region boxes for 1.00 A grid spacing

Table 4.10 Base for 1,00 A Grid Spacing
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Table 4.11 Base + 2 A for 1.00 A Grid Spacing

Table 4.12 Base — 2 A for 1.00 A Grid Spacing



B. CoMFA region boxes for 1.50 A grid spacing

Table 4.13 Base for 1.50 A Grid Spacing
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Table 4.14 Base + 1.5 A for 1.50 A Grid Spacing

Table 4.15 Base — 1.5 A for 1.50 A Grid Spacing



C. CoMFA region boxes for 2.00 A grid spacing

Table 4.16 Base for 2.00 A Grid Spacing
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Table 4.17 Base + 2 A for 2.00 A Grid Spacing

Table 4.18 Base —2 A for 2.00 A Grid Spacing
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4.1.3 Changing Steric and ES Field Cutoffs and a

All previous CoMFA runs were made with both the steric and electrostatic cutoffs set to

30 kcal/mol and a column filtering value of 2. The sensitivity of q2 to variation of these

parameters was tested for the MP analogues, producing the results shown in Table 4.19.

All CoMFA runs in the table were carried out using all 30 analogues, binding data only,

both steric and ES fields, the Leave-One-Out cross-validation method, and the default

CoMFA region box (Table 4.1) and grid spacing (2.0 A). The combinations which result

in the best q2 are highlighted in bold.

Table 4.19 CoMFA Parameter Optimization to Maximize q2 for CoMFA Study I

In kcal/mol "Defaults; Run 1 in Table 4.2
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Changing the steric energy cutoff while keeping the ES energy cutoff at its default

value of 30 kcal/mol increased q2 from 0.477 (for 30/30 Steric/ES energy cutoffs) to

0.555 (for 125/30). Maintaining the steric energy cutoff at 125 kcal/mol while changing

the ES cutoff, further increased the q 2 to 0.573 (for 125/200). Altering the a value next

maximized the q2 to 0.584 (for 125/200 and a = 7). A non-validated CoMFA run was

done on this model producing r 2 = 0.930, standard error of estimate = 0.341, 68.4% steric

contribution, and 31.6% ES contribution. This indicates an increase in r 2 from that

(0.885) produced by using the default energy cutoff and a values. The ES contribution

was significantly increased (from 21.1 %) in agreement with the increased ES energy

cutoff value (from 30 kcal/mol to 200 kcal/mol). The CoMFA steric and electrostatic

coefficient contour map for this model (not shown) was generated with the following

settings: green 80, yellow 35, blue 95, and red 35, and was similar to that generated from

the run using default energy cutoff and a values (Run 1, Table 4.2).

In order to attempt to improve the value of q2 even further, alternative

superposition rules were attempted as described below, in CoMFA studies II — V.

4.2 CoMFA Study II

In this experiment, the MP conformer number 1 from the 20 kcal/mol cutoff data set of

67 random search MP conformers was selected as the template for the alignment for

CoMFA (Alignment #2, see Figure 3.10). CoMFA was done on all 30 analogues using

the binding data only, both steric and ES fields, the Leave-One-Out cross-validation

method, and the default CoMFA region box (Table 4.1) and grid spacing (2.0 A). The

results are given in Table 4.20. CoMFA of all 30 analogues produced a q 2 of 0.466. An
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examination of the residuals for this run indicated that the following analogues had high

(greater than 1.5) values: 2-Naphthyl (7.03), 2-0H (-1.839), 4-OCH 3 (1.782), and 4-C2H5

(1.586). It should be noted here that the 2-Naphthyl analogue does not actually have a

substituent at the 2-position. Rather the second ring of the naphthyl group protrudes into

the region between the 3- and 4- positions. The large residual for 2-Naphthyl seems to

indicate that the data do not predict substituents in this region well. Since the residual

value for 2-Naphthyl was so high, another CoMFA run was done on 29 analogues, with

the 2-Naphthyl omitted. This run raised the q2 value to 0.546. Coupled with the fact that

both runs produced an inadequate r 2 value of less than 0.8, it would seem, therefore, that

these models are unsuitable for predictions of bioactivity and further experiments based

on altering the CoMFA parameters were not pursued.

Table 4.20 Selected Results for CoMFA Study II

Of note, however, is the near-total domination of the steric contributions over the

ES contributions in both the 30-analogue and the 29-analogue CoMFA runs. This

represents a significant increase from the results obtained in CoMFA Study I where the

steric contributions amounted to about 80% and the ES to about 20%. Yet, with a q 2 of

about 0.5, the models in this study as well as those in CoMFA Study I are about the same

in terms of predictability (based on q2).
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4.3 CoMFA Study III

In this study, conformer number 3 from the 67 MP conformers of the 20 kcal/mol data set

was chosen as the template for alignment (Alignment #3, see Figure 3.11). CoMFA was

performed on all 30 analogues using the same parameters as those used in CoMFA Study

II. This run produced a model with a q 2 of 0.459 with optimum number of components at

three. The greatest residual value was -2.099, that of the 4-t-butyl analogue. Other high

residuals were those of 4-CF 3 (-1.405), 3,4-OCH3 (1.409), 4-NO 2 (-1.379), 4-NH2

(1.362), and 2-Naphthyl (1.342). A non-validated run was carried out which gave

standard error of estimate = 0.529, r 2 = 0.809, and steric contribution of 99.3 %. The

results are thus very similar to those obtained in CoMFA Study II and further parameter

variation was not performed.

4.4 CoMFA Study IV

This experiment utilized MP conformer number 17 from the 20 kcal/mol data set for the

template for alignment (Alignment #4, see Figure 3.12). CoMFA was again performed

on all 30 analogues using the parameters as before. A q 2 of 0.531 with optimum number

of components four were obtained. Some analogues with relatively high residuals in this

run were 2-OCH 3 (1.968), 3,5-CH3 (-1.833), 2-Naphthyl (1.618), 4-C2H5 (-1.575), 3-NH2

(-1.574), and 3,5-CI (1.519). The non-validated run produced standard error of estimate

of 0.530, r2 of 0.816, and steric contribution of 98.1%. Thus, a relatively high (cross-

validated) q2 value did not generate a high r2 value. Consequently, this model can also be

deemed inadequate for prediction purposes.
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Since the q2 value in this study was relatively high (0.531), several different

combinations of the steric and ES energy cutoffs were tried with the 30 analogues to

optimize the q2 . The column filtering value, a, was kept at the default 2.0 kcal/mol. The

results are shown in Table 4.21. Upon changing the steric energy cutoff from 30 to 60

kcal/mol, the q2 dropped sharply to 0.360 and further to 0.310 for cutoff values 100

kcal/mol and above. This meant that the steric cutoff of 30 kcal/mol was already at an

optimal level for this model. Raising the ES cutoff values, with the steric cutoff at 30

kcal/mol, did not affect the original q2 of 0.531. This result is in accord with the non-

validated CoMFA run indication of only 1.9% ES contribution for this model.

Table 4.21 Parameter Optimization for CoMFA Study IV

a In kcal/mol °Defaults

4.5 CoMFA Study V

The final CoMFA experiment had MP conformation number 20 from the 20 kcal/mol

RANDOMSEARCH data set as the template for alignment (Alignment #5, see Figure 3.13).

CoMFA was carried out on all 30 analogues using the binding data only, both steric and

ES fields, the Leave-One-Out cross-validation method, and other defaults: default
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CoMFA region box (Table 4.1), grid spacing (2.0 A), steric and ES energy cutoffs (both

30 kcal/mol), and a (2 kcal/mol). This run produced the best (cross-validated) q2 (0.662)

obtained so far using the initial parameters listed above. The optimum number of

components for this run was four. Only three analogues had residuals larger than 1.5:

2-Naphthyl (-1.587), 4-t-butyl (1.897), and 2-OCH 3 (-2.569). The non-validated CoMFA

run gave r2 = 0.901, standard error of estimate = 0.388, and steric contributions = 98.2%.

A CoMFA coefficient contour map (not shown) was generated for this model (with green

80, yellow 35, blue 90, and red 80). As before, a sterically unfavorable yellow region

was present off the 2-position (which correlates with the inactivity of the 2-position

analogues) and between the 4- and 5-positions (which correlates with the inactivity of the

4-t-butyl analogue).

4.5.1 Changing Steric and ES Field Cutoffs and a

Since a good initial q2 was obtained above, and since optimization of some CoMFA

parameters in CoMFA Study I did lead to an increase in q 2 , several runs were conducted

using various steric and electrostatic energy cutoffs and a values. The results are given

in Table 4.22. Increasing the steric energy cutoff to 40 kcaUmol (keeping the ES energy

cutoff at the default 30 kcal/mol) decreased the q 2 to 0.632. Further increase in the steric

cutoff resulted in progressive decrease in q 2 . Increasing the ES cutoff (keeping the steric

cutoff at 30 kcal/mol) decreased the q 2 to 0.557, which increased marginally upon further

increasing ES cutoff but which remained well below the original 0.662 value.

As Table 4.22 shows, altering the a value (at the default steric and ES energy

cutoffs since these gave the highest q 2) mostly led to small differences in q 2, as in
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CoMFA study I. However, for 6 = 9, the q2 shot up to 0.765, clearly giving the best (12

value obtained in any of the studies described here. The optimum number of components

for this model, however, was 11, indicating a very complex model. A non-validated

CoMFA run was carried out on this model giving a high r 2 of 0.972, a relatively low

standard error of estimate of 0.242, and a steric contribution of 96.3%. The CoMFA

coefficients contour map generated for this model (Plate 3, Appendix D) was essentially

the same as the one produced by the 0.662 q2 model (not shown) indicating that alteration

of o does not affect the map for this model. In addition, the qualitative information

obtained from this map is the same as that obtained from the maps in CoMFA Study I;

both indicate sterically unfavorable yellow regions corresponding to the inactive 2-OCH3

and 4-t-butyl analogues.

Table 4.22 Parameter Optimization for CoMFA Study V
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4.5.2 Predicting Bioactivity of "Test Set"

The predictability of a CoMFA model based on Alignment #5 was compared to that of

the CoMFA model based on Alignment #1 of CoMFA Study I using the same test and

training sets as in Study I (see Section 4.1.1.2). The steric and ES energy cutoffs and the

a value used were those that maximized q 2 to 0.765, i.e. 30/30 kcal/mol and 9

respectively. CoMFA was carried out using the binding only data, both steric and ES

fields, the Leave-One-Out cross-validation method, and the default region box (Table

4.1). The cross-validated and non-validated CoMFA results are given as Test 1 (for the

20% Test Set 1) and as Test 2 (for the 10% Test Set 2) in Table 4.23. Table 4.24 lists the

residuals for the compounds in Test Set 1 under the column heading "Test Set 1" and

those for the compounds in Test Set 2 under the column heading "Test Set 2".

Table 4.23 CoMFA Using Two Training Sets for CoMFA Study V

Table 4. 1

Table 4.24 Bioactivity Predictions of Test Sets for CoMFA Study V
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Test 1 produced a low q 2 of 0.279 with optimum number of components being

four. The non-validated CoMFA run for this model, however, gave a high r 2 value of

0.922. This may explain the marginally better predictability of this model over its

counterpart in CoMFA Study I (i.e. Test 1A in Table 4.5) which had a slightly higher q2

of 0.289 but a lower r2 of 0.859. In Table 4.24, two compounds in Test Set 1 (3-CH3 and

3,5-C1) came within a hundredth of their actual (-log IC50) values as against only one

(3-CH 3) in Test Set 1A (Table 4.5). Test 2 had a high q2 value of 0.746 as well as a high

r2 value of 0.947 (both higher than their counterparts for Test Set 2A in CoMFA Study I,

Table 4.5 with q2 of 0.365 and r2 of 0.860). CoMFA Study I gave about the same results

whether the test set consisted of 10 or 20% of the analogues. CoMFA Study V gave

much better results for the smaller training set and seems to be a reasonably predictive

model.

4.5.3 Predicting Bioactivity of "Novel" Compounds

The CoMFA model with q2 = 0.765 was used to predict the activity of the same "novel"

compounds as CoMFA Study I. The predicted (-log IC50) values and the corresponding

nanomolar IC50 values for these compounds are listed in Table 4.25. Most of the

compounds were predicted to have a lower IC50 value than those predicted in CoMFA

Study I. By and large, the pattern remained the same with 2-I being predicted to have a

high IC50 of 2630 nM and 3,4-Br being predicted to have an even lower (than in CoMFA

Study I where it was 3.1 nM) IC50 of 0.9 nM. The ultimate test of the predictability of the

models will be the synthesis and testing of some of these analogues by the Deutsch and

Schweri groups.



Table 4.25 Predicted Bioactivity of "Novel" Compounds for CoMFA Study V
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CHAPTER 5

CONCLUSION

Several conclusions can be drawn from the CoMFA studies carried out on the MP

analogues in this research. CoMFA results that were based on the binding data were

similar to those based on the uptake data reflecting the highly correlated nature of the two

sets of data. Changing the grid spacing and region box parameters did not significantly

affect q2 . Changing the steric and ES energy cutoff and column filtering (a) values had a

much larger effect on q 2 , though varying the a value alone usually produced a smaller

change in q2 . Changing the template structure (i.e. the hypothesized bioactive

conformation) for superposition produced the biggest effect in q2 , underlining the

importance of using a thoroughly investigated alignment rule for useful CoMFA results.

Thus, in order of decreasing effect on q 2 are: the template structure > energy cutoff value

> a value > grid spacing and region box parameters. In addition, the steric and ES

energy cutoffs can affect the steric and ES contributions in the non-validated runs. The

non-validated runs indicated the dominance of steric effects in all the analyses.

The best (cross-validated) q2 for the GEM conformation of MP (conformer

number 6 from the 5 kcal/mol data set or conformer number 14 from the 20 kcal/mol data

set) was 0.584 and was obtained using the default region box, steric/ES cutoffs of

125/200 kcal/mol, and a a value of 7. The (non-validated) r2 for this model was 0.930,

while the steric and ES contributions were 68.4% and 31.6% respectively.

The best overall (cross-validated) q2 was 0.765 and was achieved using the MP

conformer number 20 from the 20 kcal/mol data set, the default region box, and the
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default steric and ES cutoffs (30/30 kcal/mol), but with a a value of 9. The (non-

validated) r2 for this model was 0.972, while the steric and ES contributions were 96.3%

and 3.7% respectively. Thus, by q 2 and r2 , MP conformer number 20 produced a better

model than did the MP GEM conformer.

By predictability of test sets, CoMFA based on MP conformer number 20 was

slightly better than that based on the MP GEM conformer for the 20 percent test set but

about the same for the 10 percent test set.

The CoMFA coefficients contour maps generated for the two models, i.e., those

based either on the MP conformer 20 or on the MP GEM conformer, produced

qualitatively similar results even though the q2 were different (0.765 vs. 0.584). In both

maps, the sterically unfavorable yellow regions around the 2- and the 4-position on the

phenyl ring correlated with the poor IC 50 values of the 2-OCH3 (105 nM) and the 4-t-

butyl analogues (13,450 nM). In addition, the 2-position analogues have poor IC 50 values

because they protrude into a sterically unfavorable region.

The model using MP conformer number 20 as the template predicted the "novel"

compounds to be more active than the model that used the MP GEM conformer as the

template. However, the ultimate test of these models will be the synthesis and testing of

these compounds by Drs. Howard Deutsch and Margaret Schweri. A novel compound

for synthesis and testing is 3,4-Br MP.



APPENDIX A

SYBYL PARAMETERS USED FOR RANDOMSEARCH

(Eliminated piperidine ring inversion)



APPENDIX B

NOTES ON METHODOLOGY

A. The ninety-eight 2D neutral methylphenidates (of which 30 were studied in this

research) of Howard Deutsch were provided by him as a ".sdf' file and were

optimized using SYBYL to give rise to their 3D structures.

B. This collection of compounds consisted of mostly threo (R,R or S,S configuration of

the two chiral carbons in the analogs) and some erythro (R,S configuration)

structures. Since SYBYL assigned random configurations during minimization of the

2D structures, all the threo structures were modified, wherever necessary, to have the

(R,R) configuration.

C. The ninety-eight analogues were divided into seven general "classes" and the DISCO

features assigned to each threo analogue were also identified and recorded.

Conformational analysis was performed using RANDOMSEARCH on the 30 threo

structures belonging to class "A." This class was selected because it had the largest

number of analogues to work with.

D. Each analogue was submitted for random search with its piperidine ring as an

"aggregate".

E. During the course of this study, it was noted that the analogues used in the early, trial

computations had been assigned by SYBYL the wrong carbon atom-type in the

aromatic ring. This was due to a probable bug in the software that didn't recognize

the correct carbon atom-type while reading the molecules from the original ".sdf' file
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F. that contained them. Subsequently, the analogues were modified to have the correct

carbon atom-type and then subjected to RANDOMSEARCH again.

G. The superpositions of the MP analogues that produced the five alignments considered

in this study were carried out in SYBYL using the "Align Database" option. This

option aligns all molecules present in a database and that contain the indicated

substructure, with the selected template molecule by minimizing the RMS distance to

the substructure atoms in that template molecule.

H. For CoMFA Studies II — V, systematic search was performed on the analogues

containing substituents with one or more rotatable bonds and on the 2-Naphthyl

analogue. This was done to account for the rotations around such bonds in these

analogues and the least energetic conformer was selected for the superposition.

Details

A. Conversion of the ninety-eight 2D neutral methylphenidates to their 3D structures: 

The "sdf' file sent by Howard Deutsch, hdtestl .sdf, contained 2D structures of

ninety-eight methyiphenidate analogues. This file was opened in SYBYL as a

molecular spreadsheet (MSS) and each row was treated as follows:

a) Highlight the row.

b) MSS >> File >> Put rows into molecular areas.

c) Compute >> Minimize. The defaults were used during minimization.

d) Build/Edit >> Name molecule.

e) Save as... [molecule name]
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The molecules were saved in a database (compounds.mdb) and this was used as the

data source for a spreadsheet (compounds.tbl). The IC 50 values for WIN binding and

uptake and other values included by Howard Deutsch were entered in this

spreadsheet.

B. Conversion of all threo structures to their (R, R) configuration: 

a) Find chirality:

I. Build/Edit >> Other tools >> Find Chirality

2. Choose RS

3. Choose All (The chirality for all chiral centers will be listed in the console

window)

b) Change chirality:

I. Build/Edit >> Other tools >> Invert

2. Click on the desired individual atom(s)

3. Compute >> Minimize

The (R, R) threo compounds were saved in a new database (threos.mdb) and this was

used as the data source for a new spreadsheet (threos.tbl).

D. Consistency was maintained in the following conditions:

a) All structures submitted for random search had the (R, R) configuration.

b) The piperidine ring was in the chair form.

c) The bulky group attached to the piperidine ring and also the hydrogen on the

nitrogen in the piperidine ring were both in the equatorial position. (The

Build/Edit >> Sketch molecule >> Move atom command was used, where

necessary, to get the equatorial position.)

d) To maintain the above consistency, the piperidine ring of each analogue was

submitted as an active aggregate (see below for procedure). This was done so that
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during random search this ring may remain rigid to avoid ring inversion. This

would enable RANDOMSEARCH to search through 10,000 cycles using only the

conformations that have the bulky group in the equatorial position and not in the

more energetic axial position.

To define an aggregate:

1. Read the molecule on screen

2. Build/Edit >> Aggregates

3. Choose New

4. Pick desired atoms and press OK

5. Enter a name for the aggregate and an optional comment string

E. Modification of aromatic carbon atom type:

a) Read analogue on screen

b) Build/Edit >> Modify >> Atom >> Type

c) Pick atom(s) to modify

d) Choose the correct atom type

e) Compute >> Minimize

F. Using the "Align Database" option in SYBYL: Once the database containing the 30

analogues in the hypothesized conformation was created, it was subjected to database

alignment as a final preparatory step before CoMFA. The following steps describe

the SYBYL commands used for this purpose:

a) File >> Align Database...

b) Select the database that contains the structures to be aligned

c) Select the template molecule structure from the structures in the database

d) Select the core substructure of the template that will be used for alignment



70

e) Select "Inertial" orientation (inertially aligns the template molecule to get a more

robust CoMFA with a good q2)

f) Select "Existing" database (for storage of aligned molecules)

g) Select "Align all molecules"

G. Systematic search: Systematic search was performed as follows on 2-OCH3, 2-OH,

3-CH3, 3-OCH3, 3-0H, 3,4-OCH3, 3,5-CH3, 4-C 2H5, 4-CF3, 4-CH3 , 4-OCH3 , 4-OH,

4-t-butyl, and 2-Naphthyl.

a) Read a molecule on screen

b) Compute >> Search >> Systematic Search

c) Select bond(s)

d) Select increment size (10° if one bond was selected and 30° if more than one

bonds were selected)

e) Set all van der Waals radius scale factors to zero

f) Select "Compute energy" = On

g) Select "Use electrostatics" = On

h) Select "Write angle file" = On

Upon completion of the search, a database containing the new conformers is created.

Then use Analyze >> Search >> Systematic Search to select the appropriate

conformer.



APPENDIX C

SCATTER GRAPHS FOR TORSIONAL ANGLE ANALYSIS

Sets of scatter plots for conformers of MP and of the 2-, 3, and 4-position Br, Cl, F,

OCH3 , and OH analogues are provided (courtesy: Joseph Hinksmon) in this appendix.

Each set shows, for a particular pair of torsional angles (4)1 vs. 1)2, 1)l vs. 1)3, or 1)2

vs.1)3), four plots: that of MP, and those of the 2-, 3-, and 4-substitutions of an analogue.

The points indicate the local minima corresponding to the conformers.
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APPENDIX D

COLOR FIGURES

This appendix contains three color figures for which the legend is given below.

Legend:

Plate I Local Energy Minima (2-Position Analogues Vs. MP). The green points signify

the local energy minima of the MP conformers located at the torsional angle values

indicated for the plot. The red points are the local energy minima for all conformers of

all 2-position analogues.

Plate 2 CoMFA Coefficient Contour Plots (Study I, using MP conformer 14 as template).

1A: Map for CoMFA of all 30 analogues using binding data (q 2 = 0.477, r2 = 0.885; see

Table 4.2, Run 1). 1B: Map with 2-OCH 3 and 4-CF3 removed from analysis; also using

binding data (q2 = 0.590, r2 = 0.934; see Table 4.2, Run 2). 2A: Map for CoMFA of all

30 analogues using uptake data (q 2 = 0.494, r2 = 0.865; see Table 4.2, Run 3). 2B: Map

with 4-CF3 removed; using uptake data (q2 = 0.444, r2 = 0.942; see Table 4.2, Run 4).

The contours were generated using green (80), yellow (35), blue (95), and red (20). The

yellow and green regions indicate areas where more steric bulk is unfavorable and

favored respectively, while the blue and red regions indicate areas where more negative

charge may worsen or improve bioactivity respectively.

Plate 3 CoMFA Coefficient Contour Plot (Study V, using MP conformer 20 as template).

Map for CoMFA of all 30 analogues using binding data, steric/ES cutoffs of 30/30

kcal/mol, and a = 9 (q2 = 0.765, r2 = 0.972; see Table 4.22). The contours were

generated using green (80), yellow (35), blue (90), and red (80).

87



88

0



89



90



REFERENCES

1. Volkow, N.D., Ding, Y.-S., Fowler, J.S., Wang, G.-J., Logan, J., Gatley, S.J.,
Dewey, S., Ashby, C., Liebermann, J., Hitzemann, R., and Wolf, A.P. (1995) Is

Methyiphenidate Like Cocaine? Studies on Their Pharmacokinetics and
Distribution in the Human Brain, Arch. Gen. Psych. 52, 456-463.

2. Volkow, N.D., Wang, G.-J., Gatley, S.J., Fowler, J.S., Ding, Y.-S., Logan, J.,
Hitzemann, R., Angrist, B., and Liebermann, J. (1996) Temporal Relationships
Between the Pharmacokinetics of Methyiphenidate in the Human Brain and its
Behavioral and Cardiovascular Effects, Psychopharm. 123, 26-33.

3. Volkow, N.D., Wang, G.-J., Fowler, J.S., Gatley, S.J., Ding, Y.-S., Logan, J.,
Dewey, S.L., Hitzemann, R., and Liebermann, J. (1996) Relationship Between
Psychostimulant-Induced "High" and Dopamine Transporter Occupancy., Proc.
Natl. Acad. Sci. USA 93, 10388-10392.

4. Volkow, N.D., Wang, G.-J., Fowler, J.S., Logan, J., Angrist, B., Hitzemann, R.,
Liebermann, J., and Pappas, N. (1997) Effects of Methyiphenidate on Regional
Brain Glucose Metabolism in Humans: Relationship to Dopamine D2 Receptors,
Am. J. Psychiatry 154, 50-55.

5. Volkow, N.D., Ding, Y.-S., Fowler, J.S., Wang, G.-J., Logan, J., Gatley, S.J.,
Schlyer, D.J., and Pappas, N. (1995) A New PET Ligand for the Dopamine
Transporter: Studies in the Human Brain, J. Nucl. Med. 36, 2162-2168.

6. Patrick, K.S., Caldwell, R.W., Ferris, R.M., and Breese, G.R. (1987)
Pharmacology of the Enantiomers of threo-Methylphenidate, J. Pharm. Expt. Ther.
241, 152-158.

7. Ding, Y.-S., Fowler, J.S., Volkow, N.D., Logan, J., Gatley, S.J., and Sugano, Y.
(1995) Carbon-11-d-threo-Methylphenidate Binding to Dopamine Transporter in
Baboon Brain, J. Nucl. Med. 36, 2298-2305.

8. Gatley, S.J., Ding, Y.-S., Volkow, N.D., Chen, R., Sugano, Y., and Fowler, J.S.
(1995) Binding of d-threo-["C]methylphenidate to the Dopamine Transporter In
Vivo: Insensitivity to Synaptic Transmission, Eur. J. Pharmacol. 281, 141-149.

91



92

9. Thai, D.L., Sapko, M.T., Reiter, C.T., Bierer, D.E., and Perel, J.M. (1998)
Asymmetric Synthesis and Pharmacology of Methyiphenidate and Its Para-
Substituted Derivatives, J. Med. Chem. 41, 591-601.

10. Volkow, N.D., Wang, G.-J., Fowler, J.S., Gatley, S.J., Logan, J., Ding, Y.-S.,
Dewey, S.L., Hitzemarm, R., Gifford, A.N., and Pappas, N.R. (1999) Blockade of
Striatal Dopamine Transporters by Intravenous Methyiphenidate is Not Sufficient
to Induce Self-Reports of "High", J. Pharm. Expt. Ther. 288, 14-20.

11. Coyle, J.Y. and Snyder, S.H. (1969) Antiparkinsonian Drugs: Inhibition of
Dopamine Uptake in the Corpus Striatum as a Possible Mechanism of Action,
Science 166, 899-901.

12. Javitch, J.A., Blaustein, R.O., and Snyder, S.H. (1984) [ 3H]Mazindol Binding
Associated With Neuronal Dopamine and Norepinephrine Uptake Sites, Molecular
Pharmacol. 26, 33-44.

13. Ross, S.B. and Renyi, A.L. (1969) Inhibition of the Uptake of Tritiated 5-
Hydroxy-Tryptamine in Brain Tissues, Eur. J. Pharmacol. 7, 270-277.

14. Blackburn, K.J., French, P.C., and Merrils, R.J. (1967) 5-Hydroxytryptamine
Uptake by Rat Brain In Vitro, Life Sci. 6, 1653.

15. Horn, A.S., Cuello, C., and Miller, R.J. (1974) Dopamine in the Mesolimbic
System of the Rat Brain: Endogenous Levels and the Effects of Drugs on the
Uptake Mechanism and Stimulation of Adenylate Cyclase Activity, J. Neurochem.
22, 265-270.

16. Leshner, A.I. (1996) Molecular Mechanisms of Cocaine Addiction, New Engl. .1
Med. 335, 128-129.

17. Madras, K., Fahey, M.A., Bergman, J., Canfield, D.R., and Spealman, R.D. (1989)
Effects of Cocaine and Related Drugs in Nonhuman Primates. I. [ 3H]Cocaine
Binding Sites in Caudate Putamen, J. Pharm. Expt. Ther. 251, 131-141.

18. Cooper, J.R., Bloom, F.E., and Roth, R.H. (1996) The Biochemical Basis of
Neuropharmacology, 7th Ed. ed. Oxford University Press, New York.



93

19. Giros, B. and Caron, M.G. (1993) Molecular Characterization of the Dopamine
Transporter, TIPS 14, 43-49.

20. Giros, B., El Mestikawy, S., Bertrand, L., and Caron, M.G. (1991) Cloning and
Functional Characterization of a Cocaine-Sensitive Dopamine Transporter, FEBS
Letters 295, 149-154.

21. Kilty, J.E., Lorang, D., and Amara, S.G. (1991) Cloning and Expression of a
Cocaine-Sensitive Rat Dopamine Transporter, Science 254, 578-579.

22. Shimada, S., Kitayama, S., Lin, C.-L., Patel, A., Nanthakumar, E., Gregor, P.,
Kuhar, M., and Uhl, G. (1991) Cloning and Expression of a Cocaine-Sensitive
Dopamine Transporter Complementary DNA, Science 254, 576-578.

23. Usdin, T.B., Mezey, E., Chen, C., Brownstein, M.J., and Hoffman, B.J. (1991)
Cloning of the Cocaine-Sensitive Bovine Dopamine Transporter, Proc. Natl. Acad.
Sci. USA 88, 11168-11171.

24. Giros, B., El Mestikawy, S., Godinot, N., Zheng, K., Han, H., Yang-Feng, T., and
Caron, M.G. (1992) Cloning, Pharmacological Characterization and Chromosome
Assignment of the Human Dopamine Transporter, Molecular Pharmacol. 42,
383-390.

25. Giros, B., Wang, Y.-M., Suter, S., McLeskey, S.B., Pifl, C., and Caron, M.C.
(1994) Delineation of Discrete Domains for Substrate, Cocaine, and Tricyclic
Antidepressant Interactions Using Chimeric Dopamine-Norepinephrine
Transporters, J. Biol. Chem. 269, 15985-15988.

26. Kitayama, S., Shimada, S., Xu, H., Markham, L., Donnovan, D.M., and Uhl, G.R.
(1992) Dopamine Transporter Site-Directed Mutations Differentially Alter
Substrate Transport and Cocaine Binding, Proc. Natl. Acad. Sci. USA 89, 7782-
7785.

27. Kuhar, M.J., Ritz, M.C., and Boja, J.W. (1991) The Dopamine Hypothesis of the
Reinforcing Properties of Cocaine, TINS 14, 299-302.



94

28. Ritz, M.C., Lamb, R.J., Goldberg, S.R., and Kuhar, M.J. (1987) Cocaine Receptors
on Dopamine Transporters Are Related to Self-Administration of Cocaine, Science
237, 1219-1223.

29. Rothman, R.B. (1990) High Affinity Dopamine Reuptake Inhibitors as Potential
Cocaine Antagonists: A Strategy for Drug Development, Life Sci. 46, PL17-
PL21.

30. Rothman, R.B., Mele, A., Reid, A.A., Akunne, H.C., Greig, N., Thurkauf, A., De
Costa, B.R., Rice, K.C., and Pert, A. (1991) GBR 12909 Antagonizes the Ability
of Cocaine to Elevate Extracellular Levels of Dopamine, Pharmacol. Biochem.
Behay. 40, 387-397.

31. Gawin, F.H., Kleber, H.D., Byck, R., and al., e. (1989) Desipramine Facilitation of
Initial Cocaine Abstinence, Arch. Gen. Psychiatr. 46, 117-121.

32. Schottenfeld, R., Caroll, K., and Rounsaville, B. (1993) Comorbid Psychiatric
Disorders and Cocaine Abuse, NIDA Res. Monogr. 135, 31-47.

33. Mendelson, 3.H. and Mello, N.K. (1996) Management of Cocaine Abuse and
Dependence, New Engl. J. Med. 334, 965-972.

34. Kleber, H.D. (1995) Pharmacotherapy, Current and Potential, for the Treatment of
Cocaine Dependence, Clinical Neuropharmacology 18, Suppl. 1, S96-S 109.

35. Carroll, F.I., Lewin, A.H., Boja, J.W., and Kuhar, M.J. (1992) Cocaine Receptor:
Biochemical Characterization and Structure-Activity Relationships of Cocaine
Analogs at the Dopamine Transporter, J. Med. Chem. 35, 969-981.

36. Chaudieu, L, Vignon, J., Chicheportiche, M., Kamenka, J.M., Trouiller, G., and
Chicheportiche, R. (1989) Role of the Aromatic Group in the Inhibition of
Phencyclidine Binding and Dopamine Uptake by PCP Analogues., Pharmacol.
Biochem. Behay. 32, 699-705.

37. Van der Zee, P., Koger, H.S., Gootjes, J., and Hespe, W. (1980) Aryl 1,4-
dialk(en)ylpiperizines as Selective and Very Potent Inhibitors of Dopamine
Uptake, Eur. J. Med. Chem. 15, 363-370.



95

38. Dubocovich, M.L. and Zahniser, N.R. (1985) Binding Characteristics of the
Dopamine Uptake Inhibitor [ 3H]Nomifensine to Striatal Membranes, Biochem.
Pharmacol. 34, 1137-1144.

39. Janowsky, A., Schweri, M.M., Berger, P., Long, R., Skolnick, P., and Paul, S.M.
(1985) The Effects of Surgical and Chemical Lesions on Striatal Pliithreo-(±)-

Methyiphenidate Binding: Correlation with [ 3H]Dopamine Uptake, Eur. J.
Pharmacol. 108, 187-191.

40. Janowsky, A., Berger, P., Vocci, F., Labarca, R., Skolnick, P., and Paul, S.M.
(1986) Characterization of Sodium-Dependent [ 31-1]GBR-12935 Binding in Brain:
a Radioligand for Selective Labelling of the Dopamine Transport System, J.
Neurochem. 46, 1272-1276.

41. Andersen, P.H. (1987) Biochemical and Pharmacological Characterization of
[ 31-1]GBR 12935 Binding In Vitro to Rat Striatal Membranes: Labeling of the
Dopamine Uptake Complex, J. Neurochem. 48, 1887-1896.

42. Vignon, J., Pinet, V., Cerruti, C., Kamenka, J.-M., and Chicheportiche, R. (1988)
PHPV-[1-(2-Benzo(b)thiophenyl)cyclohexyli Piperidine ([ 31-1]BTCP: a New
Phencyclidine Analog Selective for the Dopamine Uptake Complex, Eur. J.
Pharmacol. 148, 427-436.

43. Van der Zee, P. and Hespe, W.A. (1978) Comparison of the Inhibitory Effects of
Aromatic Substituted Benzhydryl Ethers on the Uptake of Catecholamines and
Serotonin into Synaptosomal Preparations in the Rat Brain, Neuropharmacol. 17,
483-490.

44. Meltzer, P.C., Liang, A.Y., and Madras, B.K. (1996) 2-Carbomethoxy-3-
(diarylmethoxy)-laH, 5aH-tropane Analogs: Synthesis and Inhibition of Binding
at the Dopamine Transporter and Comparison with Piperazines of the GBR Series,
J. Med. Chem. 39, 371-379.

45. Meltzer, P.C., Liang, A.Y., and Madras, B.K. (1994) The Discovery of an
Unusually Selective and Novel Cocaine Analog: Difluoropine. Synthesis and
Inhibition of Binding at Cocaine Recognition Sites, J. Med. Chem. 37, 2001-

2010.



96

46. Newman, A.H., Allen, A.C., Izenwasser, S., and Katz, J.L. (1994) Novel 3a-
(Diphenylmethoxy)tropane Analogs: Potent Dopamine Uptake Inhibitors Without
Cocaine-Like Behavioral Profiles, J. Med. Chem. 37, 2258-2261.

47. Newman, A.H., Kline, R.H., Allen, A.C., Izenwasser, S., George, C., and Katz,
J.L.	 (1995)	 Novel	 4'-Substituted	 and	 4',4"-Disubstituted
(Diphenylmethoxy)tropane Analogs as Potent and Selective Dopamine Uptake
Inhibitors, J. Med. Chem. 38, 3933-3940.

48. Katz, J.L., Newman, A.H., and Izenwasser, S. (1997) Relations Between
Heterogeneity of Dopamine Transporter Binding and Function and the Behavioral
Pharmacology of Cocaine, Pharmacol. Biochem. Behay. 57, 505-512.

49. Kline, R.H., Izenwasser, S., Katz, J.L., Joseph, D.B., Bowen, W.D., and Newman,
A.H. (1997) 3'-Chloro-3a-(diphenylmethoxy)tropane but Not 4"-Chloro-3a-
(diphenylmethoxy)tropane Produces a Cocaine-Like Behavioral Profile, J. Med.
Chem. 40, 851-857.

50. Agoston, G.E., Wu, J.H., Izenwasser, S., George, C., Katz, J., Kline, R.H., and
Newman, A.H. (1997) Novel N-Substituted 3a—[Bis(4'-
fluorophenyl)methoxyltropane Analogues: Selective Ligands for the Dopamine
Transporter, J. Med. Chem. 40, 4329-4339.

51. Reith, M.E.A., Sershen, H., and Lajtha, A. (1980) [ 3H]Cocaine Binding in the
Central Nervous System of Mouse, Life Sci. 27, 1055-1062.

52. Kennedy, L.T. and Hanbauer, I. (1983) Sodium-Sensitive Cocaine Binding to Rat
Striatal Membrane: Possible Relationship to Dopamine Uptake Sites, J.
Neurochem. 41, 172-178.

53. Schoemaker, H., Pimoule, C., Arbilla, S., Scatton, B., Javoy-Agid, F., and Langer,
S.Z. (1985) Sodium Dependent [ 3 H]Cocaine Binding Associated with Dopamine
Uptake Sites in the Rat Striatum and Human Putamen Decrease after
Dopaminergic Denervation and in Parkinson's Disease, Naunyn-Schmiedeberg's
Ach. Pharmacol. 329, 227-235.

54. Calligaro, D.O. and Eldefrawi, M.E. (1987) Central and Peripheral Cocaine
Receptors, .1 Pharm. Expt. Ther. 243, 61-67.



97

55. Calligaro, D.O. and Eldefrawi, M.E. (1988) High Affinity Stereospecific Binding
of [3H] Cocaine in Striatum and Its Relationship to the Dopamine Transporter,
Memb. Biochem. 7, 87-106.

56. Madras, B.K., Spealman, R.D., Fahey, M.A., Neumeyer, J.L., Saha, J.K., and
Milius, R.A. (1989) Cocaine Receptors Labeled by [ 31-1]213—Carbomethoxy-3p—(4—
fluorophenyl)tropane, Molecular Pharmacol. 36, 518-524.

57. Ritz, M.C., Boja, J.W., Grigoriadis, D.E., Zacek, R., Carroll, F.I., Lewin, A.H., and
Kuhar, M.J. (1990) [ 3H]WIN 35,065-2: A Ligand for Cocaine Receptors in
Striatum, I Neurochem. 55, 1556-1562.

58. Boja, J.W., Patel, A., Carroll, F.1., Rahman, M.A., Phillip, A., Lewin, A.H.,
Kopajtic, T.A., and Kuhar, M.J. (1991) [ 1251]RT1-55: A Potent Ligand for
Dopamine Transporters, Eur. J. Pharmacol. 194, 133-134.

59. Vaughan, R.A., Brown, V.L., McCoy, M.T., and Kuhar, M.J. (1996) Species- and
Brain Region-Specific Dopamine Transporters: Immunological and Glycosylation
Characteristics, J. Neurochem. 66, 2146-2152.

60. Carroll, F.I., Lewin, A.H., and Kuhar, M.J. (1998) 313-Pheny1-20-Substituted
Tropanes - An SAR Analysis, Med. Chem. Res. 8, 59-65.

61. Deutsch, H.M. (1998) Structure-Activity Relationships for Methyiphenidate
Analogs and Comparisons to Cocaine and Tropanes, Med. Chem. Res. 8, 91-99.

62. Meltzer, P.C., Blundell, P., and Madras, B.K. (1998) Structure Activity
Relationships of Inhibition of the Dopamine Transporter by 3-
Arylbicyclo[3.2.1]octanes, Med. Chem. Res. 8, 12-34.

63. Newman, A.H. and Agoston, G.E. (1998) Novel Benztropine [3 a-
(diphenylmethoxy)tropane] Analogs as Probes for the Dopamine Transporter,
Curr. Med. Chem. 5, 305-319.

64. Kier, L.B. (1971) Molecular Orbital Theory in Drug Research, Academic, New
York.



98

65. Pannizzon, L. (1944) Hel. Chim. Acta. 27, 1748.

66. Meier, R., Gross, F., and Tripod, J. (1954) Ritalin, A New Synthetic Compound
with Specific Central Nervous System Activity, Klin. Wochenschr. 32, 445-450.

67. Deutsch, H.M., Shi, Q., Gruszecka-Kowalik, E., and Schweri, M. (1996) Synthesis
and Pharmacology of Potential Cocaine Antagonists. 2. Structure-Activity
Relationship Studies of Aromatic Ring-Substituted Methyiphenidate Analogs, J.
Med. Chem. 39, 1201-1209.

68. Schweri, M.M., Skolnick, P., Rafferty, M.F., Rice, K.C., Janowsky, A.J., and Paul,
S .M. (1985) [31-1] Threo-N-Methylphenidate Binding to 3,4-
Dihydroxyphenylethylamine Uptake Sites in Corpus Striatum: Correlation with the
Stimulant Properties of Ritalinic Acid Esters, J. Neurochem. 45, 1062-1070.

69. Schweri, M.M. (1990) N-ethylmaleimide Irreversibly Inhibits the Binding of
[ 3H]threo-(+)-Methylphenidate 	 to	 the	 Stimulant	 Recognition	 Site,
Neuropharmacol. 29, 901-908.

70. Schweri, M.M. (1994) Mercuric Chloride and p-Chloromercuriphenylsulfonate
Exert a Biphasic Effect on the Binding of the Stimulant [ 3H]Methylphenidate to
the Dopamine Transporter, Synapse 16, 188-194.

71. Froimowitz, M., Deutsch, H.M., Shi, Q., Wu, K.-M., Glaser, R., Adin, I., George,
C., and Schweri, M.M. (1997) Further Evidence for a Dopamine Reuptake
Pharmacophore. The Effect of N-methylation on Threo-Methylphenidate and Its
Analogs, Bioorganic & Medicinal Chemistry Letters 7, 1213-1218.

72. Glaser, R., Adin, I., Shiftan, D., Shi, Q., Deutsch, H.M., George, G., Wu, K.-M.,
and Froimowitz, M. (1998) Solution and Solid-State Conformational and
Structural Analysis of the N-Methyl Derivatives of (±)-Threo-Methylphenidate,
(+)-Erythro-Methylphenidate and (±)-Threo-p-methyl-methylphenidate HC1 Salts,
J. Org. Chem. 63, 1785-1794.

73. Froimowitz, M., Patrick, K.S., and Cody, V. (1995) Conformational Analysis of
Methyiphenidate and Its Structural Relationship to Other Dopamine Blockers Such
as CFT, Pharm. Res. 12, 1430-1434.



99

74. Cramer, I., R.D., Patterson, D.E., and Bunce, J.D. (1988) Comparative Molecular
Field Analysis (CoMFA).1. Effect of Shape on Binding of Steroids to Carrier
Proteins, J. Am. Chem. Soc. 110, 5959-5967.

75. Carroll, F.I., Gao, Y., Rahman, M.A., Abrams, P., Parham, K., Lewin, A.H., Boja,
J.W., and Kuhar, M.J. (1991) Synthesis, Ligand Binding, QSAR, and CoMFA
Study of 313-(p-Substituted phenyl)tropane-213--carboxylic Acid Methyl Esters, J.
Med. Chem. 34, 2719-2725.

76. Lieske, S.F., Yang, B., Eldefrawi, M.E., MacKerell, J., AD., and Wright, J. (1998)
(-)-313-Substituted Ecgonine Methyl Esters as Inhibitors for Cocaine Binding and
Dopamine Uptake, J. Med. Chem. 41, 864-876.

77. Carroll, F.I., Mascarella, S.W., Kuzemko, M.A., Gao, Y., Abraham, P., Lewin,
A.H., Boja, J.W., and Kuhar, M.J. (1994) Synthesis, Ligand Binding, and QSAR (
CoMFA and Classical) Study of 3f3-(3'-Substituted phenyl)-, 313-(4'-Substituted
phenyl)-, and 3[3-(3',4'-Disubstituted phenyptropane-4—carboxylic Acid Methyl
Esters, J. Med. Chem. 37, 2865-2873.

78. Allen, M.S., Tan, Y.C., Trudell, M.L., Narayanan, K., Schindler, L.R., Martin,
M.J., Shultz, C., Hagen, T.J., Koehler, K.F., Codding, P.W., Skolnick, P., and
Cook, J.M. (1990) Synthetic and Computer-Assisted Analyses of the
Pharmacophore for the Benzodiazepine Receptor Inverse Agonist Site, J. Med.
Chem. 33, 343-2357.

79. Thomas, B.F., Compton, D.R., Martin, B.R., and Semus, S.F. (1991) Modeling the
Cannabinoid Receptor - A 3-dimensional Quantitative Structure-Activity Analysis,
Molecular Pharmacol. 40, 656-665.

80. McFarland, J.W. (1992) Comparative Molecular Field Analysis of Anticoccidial
Triazines, J. Med. Chem. 35, 2543-2550.

81. Klebe, G. and Abraham, U. (1993) On the Prediction of Binding Properties of
Drug Molecules by Comparative Molecular Field Analysis, J. Med. Chem. 36,
70-80.



100

82. Teitler, M., Scheick, C., Howard, P., Sullivan III, J.E., Iwamura, T., and Glennon,
R.A. (1997) 5-HT5A Serotonin Receptor Binding: A Preliminary Structure-Affinity
Investigation, Med. Chem. Res. 7, 207-218.

83. Carrieri, A., Brasili, L., Leonetti, F., Pigini, M., Gianella, M., Bousquet, P., and
Carotti, A. (1997) 2-D and 3-D Modeling of Imidazoline Receptor Ligands:
Insights Into Pharrnacophore, Bioorg. Med. Chem. 5, 843-856.

84. Kroemer, R.T., Koutsilieri, E., Hecht, P., Leidel, K.R., Riederer, P., and
Kornhuber, J. (1998) Quantitative Analysis of the Structural Requirements for
Blockade of the N-Methyl-D-aspartate Receptor at the Phencyclidine Binding Site,
J. Med. Chem. 41, 393-499.

85. Pajeva, I. and Weise, M. (1998) Molecular Modeling of Phenothiazines and
Related Drugs as Multidrug Resistance Modifiers: A Comparative Molecular
Field Analysis Study, J. Med. Chem. 41, 1815-1826.

86. Wilcox, R.E., Tseng, T., Brusniak, M.-Y.K., Ginsburg, B., Pearlman, R.S., Teeter,
M., DuRand, C., Starr, S., and Neve, K.A. (1998) CoMFA-Based Prediction of
Agonist Affinities at Recombinant D1 vs D2 Dopamine Receptors, J. Med. Chem.
41, 4385-4399.

87. Debnath, A.K. (1999) Comparative Molecular Field Analysis (CoMFA) of a Series
of Symmetrical Bis-Benzamide Cyclic Urea Derivatives as HIV-1 Protease
Inhibitors, J. Chem. Inf. Comp. Sci. 38, 761-767.

88. Kim, K.H. (1998) List of CoMFA References, 1993-1997, in Kubinyi, H.,
Folkers, G., and Martin, Y.C., (eds.), 3D QSAR in Drug Design: Recent Advances,
Kluwer Academic, Dordrecht, pp. 317-333.

89. Kim, K.H. (1995) Comparative Molecular Field Analysis (CoMFA), in Dean,
P.M., (eds.), Molecular Similarity in Drug Design, Blackie, London, pp. 291-331.

90. Martin, Y.C., Kim, K.H., and Lin, C.T. (1996) Comparative Molecular Field
Analysis: CoMFA, in Charton, M., (eds.), Advances in Quantitative Structure-
Property Relationships, JAI Press, Greenwich, CT, pp. 1-52.



101

91. Kim, K.H., Greco, G., and Novellino, E. (1998) A Critical Review of Recent
CoMFA Applications, in Kubinyi, H., Folkers, G., and Martin, Y.C., (eds.), 3D
QSAR in Drug Design: Recent Advances, Kluwer Academic, Dordrecht, pp. 257-
315.

92. Martin, Y.C. (1998) 3D QSAR: Current State, Scope, and Limitations, in Kubinyi,
H., Folkers, G., and Martin, Y.C., (eds.), 3D QSAR in Drug Design: Recent
Advances, Kluwer Academic, Dordrecht, pp. 3-23.

93. Corelli, F., Manetti, F., Tafi, A., Campiani, G., Nacci, V., and Botta, M. (1997)
Diltiazem-Like Calcium Entry Blockers: A Hypothesis of the Receptor-Binding
Site Based on a Comparative Molecular Field Analysis, J. Med. Chem. 40, 125-
131.

94. Debnath, A.K. (1999) Three-Dimensional Quantitative Structure-Activity
Relationship Study on Cyclic Urea Derivatives as HIV-1 Protease Inhibitors:
Application of Comparative Molecular Field Analysis, J. Med. Chem. 42, 249-
259.

95. Vieth, M., Hirst, J.D., and Brooks, I., C.L. (1998) Do Active Site Conformations of
Small Ligands Correspond to Low Free-Energy Solution Structures?, J. Comp. -
Aided Mol. Des. 12, 563-572.

96. Miyashita, Y., Li, Z., and Sasaki, S. (1993) Chemical Pattern Recognition and
Multivariate Analysis for QSAR Studies, Trends Anal. Chem. 12, 50-60.

97. Szpomy, L. and Görög, P. (1961) Investigations into the Correlations between
Monoamine Oxidase Inhibition and Other Effects due to Methyiphenidate and its
Stereoisomers., Biochem. Pharmacol. 8, 253-268.

98. Rometsch, R. (1958)Process for the Conversion of Stereoisomers. U.S.

99.	 Buckner, C.K., Patil, P.N., Tye, A., and Malspeis, L. (1969) Steric Aspects of
Adrenergic Drugs. XII. Some Peripheral Effects of (+I-)-erythro- and (+/-)-threo-
Methylphenidate, J. Pharm. Exp. Ther. 166, 308-319.



102

100. Maxwell, R.A., Chaplin, E., Eckhardt, S.B., Soares, J.R., and Hite, G. (1970)
Conformational Similarities Between Molecular Models of Phenethylamine and of
Potent Inhibitors of the Uptake of Tritiated Norepinephrine by Adrenergic Nerves
in Rabbit Aorta, J. Pharm. Expt. Ther. 173, 158-165.

101. Patrick, K.S., Kilts, C.D., and Breese, G.R. (1981) Synthesis and Pharmacology of
Hydroxylated Metabolites of Methyiphenidate, J. Med. Chem. 29, 1237-1240.

102. Eckerman, D.A., Moy, S.S., Perkins, A.N., Patrick, K.S., and Breese, G.R. (1991)
Enantioselective Behavioral Effects of Methyiphenidate in Rats, Parmacol.
Biochem. Behay. 40, 875-880.

103. Shaffee, A. and Hite, G. (1969) The Absolute Configuration of the Pheniramines,
Methylphenidates, and Pipradrols, J. Med. Chem. 12, 266-270.

104. Saunders, M., Houk, K.N., Wu, Y.D., Still, W.C., Lipton, M., Chang, G., and
Guida, W.C. (1990) Conformations of Cycloheptadecane - A Comparison of
Methods for Conformational Searching, J. Am. Chem. Soc. 112, 1419-1427.

105. Ngo, J.T. and Karplus, M. (1997) Pseudosystematic Conformational Search.
Application to Cycloheptadecane, J. Am. Chem. Soc. 119, 5657-5667.

106. Goodman, J.M. and Still, W.C. (1991) An Unbounded Systematic Search of
Conformational Space, J. Comput. Chem. 12, 1110-1117.

107. Gasteiger, J. and Marsili, M. (1980) Tetrahedron 36, 3219-3228.

108. Gasteiger, J. and Marsili, M. (1981) Organ. Magn. Reson. 15, 353-360.

109. Marsili, M. and Gasteiger, J. (1980) Croat. Chem. Acta. 53, 601-614.

110. Streitwieser, A. (1961) Molecular Orbital Theory for Organic Chemists, Wiley,
NY.

111. Purcel, W.P. and Singer, J.A. (1967) J. Chem. Eng. Data 12, 235-246.



103

112. Myers, A.M., Charifs on, P. S ., Owens, C.E., Kula, N. S ., McPhail, A.T. ,
Baldessarini, RI, Booth, R.G., and Wyrick, S.D. (1994) Conformational Analysis
Pharmacophore Identification and Comparative Molecular Field Analysis of
Ligands for the Neuromodulatory Sigma3 Receptor, J. Med. Chem. 37, 4109-
4117.

113. Yliniemela, A., Konschin, H., Neagu, C., Pajunn, A., Hase, T., Brunow, G., and
Teleman, 0. (1995) Design and Sythesis of a Transition State Analog for the Ent
Reaction Between Maleimide and 1-Alkenes, J. Am. Chem. Soc. 117, 5120-5126.

114. Klebe, G. (1993) Structural Alignment of Molecules, in Kubinyi, H., (eds.), 3D-
QSAR in Drug Design. Theory, Methods and Applications, ESCOM Science
Publishers, Leiden, The Netherlands, pp. 173-199.

115. Bures, M.G. (1997) Recent Techniques and Applications in Pharmacophore
Mapping, in Chariforn, P.S., (eds.), Practical Applications of Computer Aided
Drug Design, Marcel Dekker, New York, pp. 39-72.


	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract 
	Title Page
	Biographical Sketch
	Approval Page
	Dedication Page
	Acknowledgment
	Table of Contents (1 of 3)
	Table of Contents (2 of 3)
	Table of Contents (3 of 3)
	Chapter1: Introduction
	Chapter2: CoMFA Theory
	Chapter3: CoMFA Methods
	Chapter4: Results and Discussion
	Chapter5: Conclusion
	References

	List of Tables (1 of 2)
	List of Table ( 2 of 2)

	List of Figures



