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ABSTRACT 

MODELLING OF IN-SITU BIOREMEDIATION 
WITH EMPHASIS ON INHIBITORY KINETICS AND BIOMASS GROWTH 

by 
Dilip Kumar Mandal 

This thesis was motivated by the need for better engineering tools to predict the extent of 

contaminant plume migration in the saturated zone. The principal result was a 

mathematical model analogous to a catalytic packed-bed reactor, in which the subsurface 

was considered to be composed (conceptually) of soil aggregates (the "catalyst" particles, 

in which biodegradation, diffusion, and sorption take place), and a mobile phase 

(groundwater) passing around the aggregates, in which convection, axial diffusion, and 

mass transfer from the aggregates take place. 

The modelling emphasis was on a more detailed exposition of the biokinetics of 

the system (including an inhibitory expression for biomass growth, and oxygen 

limitation) than is the case in most prior models (which place greater emphasis on 

physical effects such as sorption, diffusion, and hydrodynamics). 

Several coupled partial differential equations were used to describe the processes 

taking place, and these were solved numerically in dimensionless form by the Method of 

Lines. Model parameters were determined by a combination of laboratory experiments, 

existing empirical correlations, and estimates based on the literature. Sensitivity analyses 

of these parameters showed that the biokinetic constants indeed dominated the system 



response, which justified the emphasis placed on those factors in the model development. 

A laboratory soil column was used to test the model, and the results showed good 

agreement with model simulations. However, the simulations were particularly sensitive 

to three interrelated parameters (one of the inhibitory biokinetic constants, another related 

to tie rate of loss of active microorganisms from the system, and the initial biomass 

concentration), two of which (bacterial loss rate, and initial biomass concentration) were 

not known. The loss rate was presumably a function of both the rate of cell death as well 

as transport out of the system. Thus, some estimation and adjustment of these parameters 

was necessary in order to obtain a fit of the data. 

The effect of oxygen limitation was simulated only. Confirmatory experiments 

proved difficult to conduct. The simulations indicated the dominant effect that oxygen 

has on the performance of the system. Even with a saturated feed, oxygen can be rapidly 

depleted in the direction of groundwater flow, leading to a substantial decrease in the rate 

of biodegradation. 

Field tests of the model are currently being planned. 
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CHAPTER 1 

INTRODUCTION 

As a result of more than two hundred years of industrial activity, there are a large number 

of sites worldwide (Table 1.1) that are contaminated with industrial chemicals, both 

organic and inorganic. Rainfall causes these chemicals to migrate down through the soil, 

often reaching groundwater (i.e. below the water table). 

Table 1.1 Estimate of the number of contaminated sites on a global basis 
[EPA (1997) and Smith (1991)]. 

Country Number of contaminated 
sites 

Estimated high risk 
sites 

Canada 10,000 1000 

Finland 20,000 100-1000 

United States 217,083 547 

Germany 100,000 not known 

United Kingdom est. 100,000 not known 

Netherlands 110,000 6000 

The focus in this dissertation will be on organic contaminants capable of being 

biodegraded. A schematic of generic contaminant distribution is shown in Figure 1.1. 

Organic contaminants may be: 

• present as a separate foil-aqueous phase liquid (NAPL), which may be lighter or denser 

1 



than water 

• sorbed on the soil matrix 

• present as vapor within soil pore space 

• dissolved in water 

• undergoing biodegradation 

2 

Figure 1.1 Schematic of generic contaminant distribution at a site. 
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In-situ bioremediation technology has the potential of offering cost-effective 

remediation of contaminated sites, by using the metabolic activity of indigenous or 

introduced microorganisms to transform hazardous organic compounds to harmless 

products [Bouwer (1992)]. 	Although bioremediation can occur without human 

intervention (called "natural" attenuation, or "intrinsic" bioremediation), most often 

engineers must intervene to protect water supplies, and achieve desired clean up levels in 

a timely manner. An example of engineered in-situ bioremediation is shown in Figure 

1.2 which seeks to alter nutrient concentrations (e.g. nitrogen, phosphorous, etc.) and the 

concentration of electron acceptors (e.g. oxygen, nitrate, sulfate, etc.) to increase the rate 

of in-situ bioremediation [Bouwer (1992)]. In addition, other environmental conditions 

like redox potential, pH, and moisture must be favorable for microorganisms to 

biotransform organic contaminants [Hrudey and Pollard (1993)]. 

This is a very complex process, which is exacerbated by the heterogeneity of the 

"reactor" being employed, and the difficulty of influencing "reactor" parameters such as 

soil type, percent natural organic matter (i.e. humic substances), moisture content, 

temperature, nature of the microbial population, etc. As a result, traditional trial-and-

error methods of implementing in-situ bioremediation technology at a contaminated site 

can be inefficient and costly. 

It is therefore essential to develop reliable structured engineering models that can 

analyze in-situ treatment options, predict the extent of contaminant migration, estimate 

treatment time and cost, and diagnose problems arising in the field prior to the 
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irreversible commitment of resources. Such a structured model must at a minimum 

include the effect of transport processes, sorption, and biokinetic phenomena. 

Figure 1.2 Pictoria l representation of an in-situ bioremediation system. 



CHAPTER 2 

LITERATURE REVIEW 

2.1 Overview of Model Development 

Cerniglia (1993), Sims et al (1990), and Bouwer (1992a) among others, have pointed out 

that there are several critical factors (e.g. soil type, moisture content, temperature, p1-I, 

electron acceptor and pollutant concentrations, hydraulic conductivity, permeability, and 

environmental conditions as a whole) which profoundly influence field applications of in-

situ bioreniediation technology. It is easier to qualitatively address these factors, than 

elucidate a quantitative model incorporating them. 

Over the years, several models have been proposed to simulate the transport. of 

organic contaminants in abiotic systems (i.e. in the absence of biodegradation) [Abriola 

(1989), Abriola and Pinder (1985a,b), Brusseau (1992), Crittenden et al. (1986), Freeman 

and Schroy (1986), Goliz and Roberts (1988), Parker and van Genuchten (1984), Pinder 

and Abriola (1986), Rao et al. (1980a, 1980b, 1982), Roberts et al. (1987), and van 

Genuchen et al. (1977)]. 

Crittenden et al. (1986) utilized a "two-compartment" model incorporating mass 

balance equations based on the movement of a non-degradable organic compound in a 

saturated soil column. Their model included advection/convection, axial dispersion, 

liquid-phase mass transfer, diffusion, and local adsorption equilibrium, in mobile and 

immobile water (the two compartments). They obtained analytical solutions for the one-

dimensional concentration profile. 

5 
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Goltz and Roberts (1986, 1988) described another physical (abiotic) model for 

mobile phase advection/dispersion, combined with diffusion of solute into immobile 

water regions, in two and three dimensions. Although this model agreed, in part, with 

some aspects of the observed behavior, other factors such as a decrease in organic solute 

concentration in the mobile phase, retardation of the sorbing solute, and the long-tailing 

of the breakthrough responses at the near field well, were not consistent with the model 

results. 

In addition to these abiotic models there are a number of engineering models that 

also incorporate biokinetic factors, albeit in first-order or Monod expression [Borden and 

Bedient (1986), Bouwer and Cobb (1987), MacQuarrie et al. (1990), Molz et al. (1986), 

Rifai and Bedient (1990), Semprini and McCarty (1991), Srinivasan and Mercer (1988), 

Sykes et al. (1982), Widdowson et al. (1988)]. 

Sykes et al. (1982) developed a very basic engineering model to predict the 

concentration of leachate organics, measured as chemical oxygen demand (COD), in the 

ground water below sanitary landfill sites. To model the subsurface biodegradation, they 

included convective transport, dispersion, and biokinetic substrate utilization with 

biomass production. However, their solutions reduced the Michaelis-Menten-type model 

to a first-order expression (which may be the case when the substrate concentration is 

very low), and eliminated any adsorption term. Simulation results from the model 

appeared to over-estimate the COD (or leachate) concentrations. 

Borden and Bedient (1986), and Borden et al. (1986), attempted to incorporate an 

aerobic biotransformation term in their mathematical model to simulate the transport and 
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fate of contaminants in the natural environment. They considered growth, decay, and 

transport of microorganisms, as well as transport of contaminants (hydrocarbons) and 

oxygen. This approach differed from Sykes in that they accounted for the mechanisms of 

adsorption and rate-limiting oxygen transport from the neighboring unsaturated zone. 

However, as is often the case with these attempts, when solutions for the model were 

finally developed, they assumed that for oxygen-limited biodegradation, consumption of 

oxygen and hydrocarbon can be approximated as an instantaneous reaction, and this 

enormously simplified their model simulations in one and two dimensions (although they 

appeared to obtain reasonable agreement with experimental data at a creosote-

contaminated site). 

Srinivasan and Mercer (1988) also aimed at simulating one dimensional 

contaminant transport in the presence of sorption and biodegradation. Advection and 

dispersion effects were considered for substrate (hydrocarbon) and oxygen transport. 

Biological transformation for both substances included three different kinetic 

expressions: (1) aerobic kinetics using a Monod model, (2) anaerobic kinetics using a 

Michaelis-Menten equation, and (3) a first-order model. Adsorption was assumed to be 

in local equilibrium. As with many other published models, the initial mathematical 

description was simplified prior to solution, in this case by assuming constant biomass. 

However, they conceded that this assumption was a major limitation of their model, even 

though their simulations fit reasonably well with the data obtained by Borden ei al. 

(1984). 
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Several other researchers formulated their models based on "biofilm concepts". In 

subsurface environments, microorganisms tend to attach to solid surfaces, forming 

clusters enveloped by excreted extracellular polymeric materials [Costerton et al. (1981)1. 

That assembly of microbial clusters is termed a "biofilm". Models have then been 

developed that consider transport and biodegradation in these biofilms [Bakke (1986), 

Bouwer (1989), Bouwer and McCarty (1984 and 1985), Bouwer et al. (1992), Kissel et al. 

(1984), Rittmann and McCarty (1980a, b), Semprini and McCarty (1991), Wanner and 

Reichert (1996), Zhang and Bishop (1994)1. 

Semprini and McCarty (1991) presented an unsteady state transport model for in-

situ bioremediation in saturated porous media, which was very similar to that of Borden 

and Bedient (1986). This model included physical transport, microbial growth, substrate 

utilization, and rate-limited sorption. Monod kinetics were assumed for microbial growth 

and substrate utilization based on the concept of a biofilm. It was further assumed that 

biofilms were completely penetrable, and there were no mass transfer limitations as such. 

Similar concepts had already been developed by Rittmann and McCarty (1980a). 

Solution of the governing equations showed a reasonably good lit with observed data. 

However, the compounds used for their experimental studies did not sorb to I he soil. 

Thus, the model may need further modifications for situations in which there are 

significant sorption effects. 

Typically soil may have wide pore size distributions, which are altered by 

microbial growth, resulting in time-dependent changes to porosity, tortuosity, and 
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dispersivity [Cunningham (1991), Taylor et al. (1990), Rittmann (1993), Taylor and Jaffe 

(1990a,b), Vandevivere and Baveye (1992)]. 

Sorption, whether linear or non-linear, can have a pronounced effect on the 

persistence of organic chemicals in an in-situ bioremediation process [McCarty et al. 

(1981, 1984)]. Excellent review articles have been published that have discussed many 

fundamental aspects of sorption and desorption processes commonly occurring in soil 

Brusseau and Rao (1989), Calvet (1989), Harmon et al. (1989), Sabatini et al. (1989), 

Weber and Smith (1987)]. Calvet (1989) has mentioned that it is difficult to generalize 

the relationship between the shape of the isotherm and the nature of the adsorbate-

adsorbent systems, which can include ion exchange, hydrogen bonding, charge transfer, 

and London-van der Waals dispersion forces. Additional factors affecting sorption 

processes include the molecular structure of the sorbing material, organic carbon content 

of the soil matrix, and temperature. 

Miller and Weber (1986) presented a one dimensional model to predict the 

transport behavior of a solute (lindane or nitrobenzene) in a soil column. This model 

included advection, desorption, and rate-limited sorption. Their model predictions were 

in close agreement with observed column results. This agreement between simulation 

and data were even closer when dual-resistance, rate-controlled mechanisms were 

included. They concluded that for a wide variety Of soils and organic solute systems, 

sorption equilibria are generally non-linear. They also mentioned that the equilibration 

rate is not instantaneous, but rather a combination of two steps: an initial fast step, 
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followed by a slower rate step. This is similar to observations made in this dissertation, 

as well as those of Bayard (1997). 

A similar observation was made by Bouchard et al. (1988). They performed 

several batch sorption experiments to quantitatively describe the effects of pore-water 

velocity, solute hydrophobicity, and soil organic-carbon content, and proposed a slow 

intra-organic-carbon diffusional mechanism to describe non-equilibrium sorption during 

solute transport. 

Batch soil-microcosm experiments were performed by Robinson et al. (1990) to 

determine the sorption and bioavailability of toluene in soil with high organic content. It 

was determined that there are two different steps through which sorption of toluene 

occurred. The first step involved a rapid sorption followed by slow rate-based sorption 

until equilibrium was reached. This study suggested that sorption is a non-linear process. 

It. was also concluded that toluene desorbs very slowly from the soil particles, and 

therefore biodegradation may be limited by the desorption rate. 

Pickens et al. (1981) performed radial injection dual tracer studies in a sandy 

aquifer to determine dispersive and adsorptive properties. They observed the extreme 

tailing of tracer breakthrough curves This showed the non-equilibrium nature of the 

adsorption/desorption phenomenon. Another field study for soil flushing at Gloucester 

Landfill by Bahr (1989) also supported the concept of non-equilibrium desorption-rate-

limited biodegradation. 

Laboratory experiments were performed by Ogram et al. (1985) to determine the 

effects of sorption on the biodegradation rate of 2,4-dichlorophenoxy acetic acid (2,4-D) 
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in soils. They showed that biodegradation occurred for that portion of 2,4-D which was 

free in solution. Even bacteria that were attached to the soil particles were not able to 

degrade the sorbed 2,4-D. Investigators postulated that this may be the result of: (1) the 

inability of the microcolonies to metabolize sorbed 2,4-D; and (2) sorption of 2,4-D deep 

into the soil matrix that limited its bioavailability. 

Brusseau et al. (1991) performed several experiments in preparative 

chromatographic columns in order to identify/elucidate the mechanisms/processes 

responsible for the nonlinear sorption of hydrophobic organic chemicals, e.g. 

pentafluorobenzoic acid, anthracene, quinoline, etc. A first order model was used to 

analyze the data. They concluded that the sorption observed in their experiments was 

nonequilibrium in nature and may have been caused by diffusion into intra-organic 

matter. They also mentioned that for this approach to adequately describe nonequilibrium 

sorption, the polymeric nature of organic matter, and diffusant-polymer interactions, must 

be taken into account. 

Ball and Roberts (1990), Dhawan et al. (1991), Chung et al. (1993), and Alm et al. 

(1996) have outlined the importance of intra-aggregate diffusion and sorption/desorption 

in the remediation process. Particularly, Dhawan et al. (1991) have stressed the fact that 

diffusion, sorption, and biotransformation inside the aggregate must he considered in 

order to obtain a quantitative understanding of soil remediation. 

Ahn et at. (1996) proposed a very comprehensive mathematical model to describe 

sorption, transport, and biodegradation in the saturated zone. They used naphthalene as 

the test compound for simulation. This was entirely a theoretical work, in which 
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macroscale-predictions were based on the knowledge of microscale kinetics and 

macroscopic fluid dynamics. Although this model was very fundamental in its 

formulation, it required a very large number of parameters (about 50). All of these model 

parameters were either taken from the literature or assumed. In fact, obtaining these 

parameters experimentally (especially those at the microscale) would be a difficult task. 

In general, these models do not consider oxygen limitation, and [except for 

Dhawan (1993), and Ahn et at. (1996)] depend on first order or Monod (non-inhibitory) 

kinetics. Furthermore, they treat biodegradation and sorption as independent (decoupled) 

processes. 

The Monod kinetic model assumes that the pollutant does not inhibit growth of 

the microorganisms at any concentration. Furthermore, it is only strictly applicable to a 

pure culture, or a stable functional population under growth conditions, with only one 

substrate limiting the rate of reaction [Monod (1942)]. For chemicals with higher 

toxicity, kinetic patterns may be highly inhibitory in nature, leading to a model proposed 

by Andrews (1968). in this model, increasing concentration of pollutant eventually 

inhibits the specific growth rate of the microorganisms, which is often the case with 

chemicals found in subsurface contaminated sites. 

The research described in this dissertation places greater emphasis than previously 

on the dynamic interplay between sorption and biodegradation, and takes into account 

simultaneous growth and decay of biomass, inhibitory biokinetics, and oxygen limitation. 
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2.2 Biodegradation Kinetics of Chlorinated Phenolics 

In this study, emphasis is on the development of a more reliable in-situ bioremediation 

model, and testing it using laboratory soil column experiments. To meet this objective, 

one needs to obtain parameter values that are an integral part of the model equations. Of 

these, the biokinetic parameters are of paramount importance. 2-chlorophenol (ortho-

chlorophenol) was selected as the model compound. 

In general, chlorophenols (e.g. mono-, di-, and tri- etc.) are of environmental 

concern clue to their toxicity and presence at many sites. They have been used as biocides 

I Kobayashi (1978)], pesticides [Haggblom (1992)], are formed as by-products during 

chlorine-bleaching of pulp [Kringsted and Lindstorm (1984)] and degradation of 

pesticides (Pritchard et al. (1987)], and result from chlorination of surface and 

wastewaters [Jolly et al. (1976).1. Chlorophenolics, particularly di- and Irk being 

relatively soluble in water [Boyd (1982)1, become easily mobile and leachable, and 

thereby contaminate ground water [Valo et. al. (1984)1. 

Considerable progress has been made in aerobic [Baker et al. (1080), Dorn et al. 

(1974), Fava et al. (1995), Janke et al. (1089), Kafkewitz et al. (1996), Knackmuss and 

I lellwig (1978), Smith and Novak (1987), Spain and Gibson (1988), Wang (1905)1 and 

anaerobic IArmenante  et al. (1903), Boyd et al. (1983), Boyd and Shelton (1084), 

Dietrich and Winter (1990), Hrudey  ei al. (1987)1 biodegradation of chlorinated phenols 

in the past several years using bacteria, fungi, and activated sludge. In addition, there are 

a few excellent review articles [Reineke and Knackmuss (1988), Chaudhry and 
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Chapalamadagu (1991), Haggblom (1992)] that have outlined various aspects of aerobic 

and anaerobic biodegradation of chlorophenolics. 

Anaerobic biodegradation proceeds via removal of the chlorine substituent, 

followed by reactions leading eventually to methane and carbon dioxide [Boyd et al. 

(1983), Boyd and Shelton (1984), Mikesell and Boyd (1986), Suflita et al. (1982)1. 

Aerobic biodegradation generally proceeds by initial oxidation, followed by 

reactions leading to inorganic chloride and carbon dioxide [Chaudhry and 

Chapalamadagu (1991), Haggblom (1992), Haggblom et al. (1988)]. For example, 2-

chlorophenol (2-CP) first undergoes ortho-cleavage to form 2-chloro-cis,cis-muconates 

(or chloromuconates), followed by release of the chlorine substituent to Ibrm 4-carboxy- 

methylene-but-2-en-4-olide [Schmidt and Knackmuss (1980)1. 	Similar degradation 

pathways have been postulated by Spain and Gibson (1988) and Kaschabek and Reineke 

(1993). Studies by Bartels et al. (1984) showed that meta-cleavage of chlorocatechols 

gave rise o some metabolites (e.g. acylchlorides) which deactivated the precursor 

enzyme. Thus, meta-cleavage did not lead to complete mineralization. 

A typical aerobic biodegradation pathway (via ortho-cleavage) of 2-CP by a 

Pseudomonas strain is shown in Figure 2.1 [Knackmuss and Hellwig (1978), Reineke and 

Knackmuss ( 1988), and Schmidt and Knack muss (1980)1. 

Nevertheless, there is a lack of detailed biokinetic rate constants for 2-CP, 

particularly using an inhibitory ( Andrews) rate model (which is necessary since 2-CP is 

an inhibitory substrate). Obtaining such constants was therefore an essential part of the 

present work. 
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Figure 2.1 Aerobic biodegradation pathway of 2-chlorophenol by Pseudomonas sp). 



CHAPTER 3 

OBJECTIVES 

The primary objective in this dissertation was to develop a more reliable, structured 

mathematical model of in-situ bioremediation and pollutant migration, that would 

emphasize biokinetic effects (inhibitory biomass growth, oxygen dependence), coupled 

sorption, and mass transfer. To reach this objective the following steps were followed: 

(1) a porous biocatalyst model was developed and solved numerically (by method of 

lines), with and without consideration of oxygen limitation. 

(2) model parameters were determined from the literature, estimates, or experiments. 

(3) biodegradation kinetic parameters for 2-chlorophenol (2-CP) were determined in 

shake flasks and batch reactors using a pure culture (Pseudomonus pickettii) 

derived from activated sludge [Fava et al. (1995)]. 

(4) a model soil (from Pequest, NJ) was chosen, and sorption parameters determined 

for 2-CP. 

(5) a laboratory soil column was constructed and axial dispersion determined. 

(6) the column was seeded with P. pickettii, and the concentration profiles determined 

for different feed rates of 2-CP. 

(7) the experimental results were compared to the model predictions. 
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CHAPTER 4 

MATERIALS AND EXPERIMENTAL METHODS 

4.1 Materials 

4.1.1 Chemicals 

2-Chlorophenol (2-CP) was purchased from Sigma Chemical Company, St. Louis, MO. 

A 2000 mg/L stock solution of 2-CP was prepared in DI water, and sored at 4 °C. 

Methanol and acetic acids used for HPLC analysis were ACS certified and obtained from 

Fisher Scientific, Fair Lawn, NJ. Nutrient broth (13BL-11479) was purchased from 

Becton Dickinson and Co., Cockeysville, MD, and nutrient agar (Model# 001-014) from 

Difco Laboraory, Detroit, MI. 

A list of the chemicals used for the preparation of the synthetic inorganic medium 

is given in Table 4.1. Mercuric chloride (#M159-100) and sodium chloride (4 S671-500) 

were purchased from Fisher Scientific Company, Fair Lawn, NJ. 

Table 4.1 Chemicals used for preparing growth medium in DI water. 

Components Concentration (g/L) Source and Grade 

Potassium Phosphate, Dibasic K2HPO4 
5.802 

Fisher Scientific, ACS Certified, Fair 
Lawn, NJ 

Potassium Phosphate, Monobasic KH2PO
4 2.268 

Fisher Scientific, ACS Certified, Fair 
Lawn, NJ 

Ammonium Sulfate 

(NH4)2(SO4) 0.50 
Fisher Scientific, ACS Certified, Fair 
Lawn, NJ 

Magnesium Sulfate, Heptahydrate 
MgSO4  0.L0 

Aldrich, ACS Reagent 

Manganous Sulfate, Monohydrate 
MnSO4  0.001 

Baker, Baker analyzed Reagent 

Ferrous Sulfate, 
FeSO4* 0.50 mg/L 

Fisher Scientific, ACS Certified Fair 
Lawn, NJ 

*FeSO4 was not added if tap water was used instead of DI water for medium preparation 

17 



18 

The test soil was obtained from a site in Pequest, NJ. The composition is given in 

Table 4.2. This soil was used for all the soil-related experiments. 

Table 4.2 Soil characteristics. 

Constituents This Study 
Pequest, NJ (PNJ) 

USEPA 
("Standard" Soil) 

Eurosoil, #3 

Sand 44% 60% 47% 

Silt 44% 28% 36% 

Clay 12% 12% 17% 

Total Organic Carbon 2.L% 3.2% 3.7% 

PH 5.2 8.5 5.3 

4.L.2 Preparation of Synthetic Growth Medium and Nutrient Broth 

The synthetic inorganic growth medium was prepared by adding the appropriate amounts 

of different chemicals as listed in Table 4.1 in deionized (DI) water. The medium was 

sterilized by autoclaving at 121°C for about 2 hours. The pH of the medium was 7.15-

7.2. In order to maintain pH, a buffer of 5% potassium dihydrogen phosphate was added 

when necessary. 

Nutrient broth was prepared (as instructed on the container label) by adding -Ig 

"BBL nutrient powder" o 0.51. of DI wilier, which was then autoclaved at 121 °C for 

about 2 hours. This solution was then stored in a refrigerator and used whenever 

necessary for the purpose of reviving frozen cultures. Also, nutrient agar was prepared 

occasionally for the purpose of checking the purity of the cultures. 
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4.2 Preparation of Pure Microbial Culture and Acclimation to 2-CP 

While consortia of mixed microbial species are the norm in nature, it is difficult to obtain 

consistent results in the laboratory using mixed cultures, since the relative microbial 

composition can change with time. As a result, a pure culture capable of degrading 2-CP 

was isolated from the mixed liquor of the Passaic Valley Sewerage Commissioners 

(PVSC) Treatment Plant in Newark, NJ. This isolation had been accomplished 

previously by Dr. Fava (visiting NJIT from the University of Bologna). The culture was 

identified as Pseudomonas pickettii. Stocks of this culture (as a suspension in a sealed 

tube) were frozen and used subsequently as needed. 

The pure culture of Pseudomonas pickettii was reconstituted by growing in a 

nutrient broth according to the following procedure. About 10 mL of the nutrient broth 

was inoculated and placed in an incubator at 29 °C. After about 2 days, the culture 

indicated signs of growth by becoming turbid. About 2-3 	of that suspension was 

transferred into 100 mL of the synthetic growth medium in a 250 mL flask. A specific 

amount of 2000 ppm 2-CP stock solution (roughly enough to attain a final concentration 

of 5 ppm) was added to the flask in order to acclimate the cultures to 2-CP as sole carbon 

source. The flask was stoppered with a cotton plug and placed in an incubator shaker 

(New Brunswick Scientific Co.), which was set at 200 rpm and 26-29 °C. Air entered 

through the cotton plug by shaking, and the headspace in the flask thus served as an 

Oxygen supply zone. When the 2-CP was depleted, again a small portion (-2-3 ml.) was 

transferred to 100 ml. fresh inorganic medium, and the entire process repeated to obtain 

secondary, and then tertiary, cultures. The tertiary culture was used for all subsequent 
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biodegradation experiments. This culture was also stored in a refrigerator and kept active 

by periodic additions of 2-CP stock solution and fresh growth medium. Stocks of the 

primary, secondary, and tertiary cultures were also streaked on agar plates, and stored 

frozen for potential future use. 

4.3 Experimental Set Up 

4.3.1 Shake Flasks 

Most of the initial kinetic experiments were performed in shake flasks. This simple setup 

(given in Figure 4.1) typically consisted of one to three 250 ml., glass Erlenmeyer flasks, 

stoppered with cotton plugs, and placed in an incubator/shaker apparatus (Series 25, New 

Brunswick Scientific Co.) at 200 rpm and 26-29 °C. Seed cultures needed for initiating 

other experiments were also grown in this type of apparatus. 	During 	kinetic 

experiments, samples were taken (e.g. at an interval of 10 to 15 min) by opening the 

cotton plug momentarily and inserting a pipette (P-5000, Rainin Instrument Co.) titled 

with a disposable microliter pipette tip (C-5000, Rainin instrument Co.). 

Figure 4.1 Schematic of the shake flask reactor. 
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4.3.2 Batch Reactor 

Having performed some preliminary kinetic experiments it was observed that there were 

difficulties in obtaining consistent results in the shake flasks. These are discussed in the 

Results and Discussion section. In order to avoid those observed discrepancies, it then 

was decided to use a larger reactor with improved control. This 4.5-liter jacketed reactor 

was custom-designed at. NJIT using 13.7 cm ID (6" OD) Lucite tubing obtained from 

Grewe Plastic Inc., Newark, N.J. 

The temperature of the reactor contents was controlled by a water jacket 

surrounding the exterior of the reactor. The water-bath and temperature controller was a 

Neslabs Endocal RTE-8 system. The water-bath temperature was typically set at 28 °C to 

29 °C. 

A schematic diagram is shown in Figure 4.2. Two air dispersion tubes (Pyrex 

brand-coarse) were Fitted through two of the lid ports. Aeration was provided by a small 

Dynatomic air bladder pump, and also by laboratory-based compressed air lines through 

glass tubes with fitted ends. Flowmeters (Cole-Parmer Instrument Co.) were placed in-

line to maintain control of the air Flow rates. Also included was an in-line air filter 

(Nalgene Co.). 

Other lid ports were used to insert a probe (New Brunswick Scientific Co., 900 

Series) for measuring dissolved oxygen, a thermometer, and a vent fine.. Sampling was 

accomplished at a regular interval of 10 to 15 min, by opening the seal n1 one port (which 

was kept covered at all other times) and inserting a 5000 microliter pipette lined with a 

disposable microliter pipette tip. For the kinetic experiments, the reaction volume was 
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maintained at 1.5-2L in most cases. Contents inside the reactor were continuously stirred 

using a teflon coated magnetic bar (Fisher Scientific Co.). Finally, special attention was 

given to cleaning and sterilizing the reactor and all probes. 

Figure 4.2 Schematic of the batch reactor used for kinetic experiments. 

-1.3.3 soil Column Reactor 

A schematic of the apparatus used in the soil column studies is presented in Figure 4.3. 

The two identical columns used in this study were custom-made and purchased from Ace 
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Glass, Vineland, NJ. They were 24 cm long, heavy-walled, glass process pipe, with a 5 

cm inside diameter. There were 5 sampling ports along the height of each column, 

located at 2, 7, 12, 17, and 22 cm from the base of the column. Two thick polymeric end 

plates, machined to the same inside diameter of the column, were tightly connected to 

each end of the column using a rubber o-ring and teflon tape. Both of these end-plates 

were equipped with a flow channel of about 5 mm in diameter. 

A stainless steel screen (fine mesh) was placed at the bottom of the column. A 

thin layer of glass beads of 3 mm diameter (Fisher Scientific Co.) was placed on top of 

that screen to prevent fine particles from clogging the inlet port. This bottom layer of 

glass beads also served to provide a mixing zone to distribute the inlet flow uniformly 

across the column cross-section. Successive layers of soil (previously sieved through 2 

mm mesh and air dried) were added to the column and tapped evenly with the edge of a 

rectangular bar. This tapping process was accomplished with water in the column to 

prevent air from being trapped in the soil interstices. This packing continued until the 

height. of the first sampling port (which is located at 2 cm), where a thin layer of glass 

heads was placed to facilitate sampling via syringes inserted through the sampling port 

septa. This layer of glass beads also acted as an internal redistributor to help maintain 

uniform flow and eliminate channeling. 

This whole process of soil addition and tapping was repeated several times until 

the top of the column was reached. The final layer on top was glass beads covered by a 

Fine 1 mm plastic mesh. Another end-plate was tightly connected to the top end of the 

column. It is to be noted that soil used for packing was always autoclaved twice (for 
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about 2 hours each time at 121 °C) to make sure it was thoroughly sterilized prior to 

packing. In a similar way, all other autoclavable portions of the setup were sterilized, and 

throughout the experiments careful attention was paid to system sterility. 

Figure 4.3 Schematic of the apparatus used in soil column studies: (a) column details 
and (b) experimental set-up. 
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4.4 Analytical Procedures 

4.4.1 2-Chlorophenol (2-CP) 

Concentrations of 2-CP were measured using a Waters HPLC (Millipore, Milford, MA), 

equipped with: (1) Tunable Absorbance Detector (Model# 484); (2) System Controller 

(Model# 600E); (3) Multisolvent Delivery System (Model# 600); and (4) Ultra WISP 

Sample Processor (Model# 715). In some cases, a rough estimate of 2-CP concentration 

was obtained by UV-scanning in a spectrophotometer (Varian DMS-200). 

Sample preparation proceeded as follows. About 4 ml.. liquid sample was 

collected using either an adjustable micropipette (Pipetmae # P-5000, Rainin Instrument 

Co.®) or disposable syringes (B-D®). To that collected sample one drop of 6M HCI was 

added, not only to kill the active microorganisms, but also to maintain 2-CP in its non-

ionized form. The solution was then filtered through 0.2 pm Nylaflo membrane filter 

(Gelman Sciences Inc.). Most samples were analyzed immediately, but a few samples 

(collected from soil column runs) were analyzed after about 12 hours. During this period, 

samples were stored frozen. 

In order to have a quantitative estimate of the variability in concentration 

measurement at different times, three sample vials were prepared from one original 

solution. Vial #1 was stored in the freezer, vial #2 was stored in the refrigerator, and vial 

#3 was analyzed immediately using the protocol described later (at room temperature of 

20 °C). Vials #1 and 112 were analyzed after 48 hours and 24 hours, respectively. The 

measured concentrations were almost the same in all three cases, with very little variation 

(e.g., vial #1: 10.23 ppm; vial #2: 10.17 ppm; and vial #3: 10.28 ppm). 
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Isocratic elution of 2-CP was obtained by a mobile phase consisting of 55% 

methanol and 45% water (Milli-Q Ultrapure). Both methanol and water were vacuum 

filtered through a 0.45 µm membrane filter and preserved by adding 1% acetic acid. The 

solutions were then degassed by a continuous helium purge (Ultra High Purity, Matheson 

gas Products). The flow rate of the mobile phase was maintained at 1 mL/min. The UV-

detector was set at a wavelength of 280 nm. The chromatographic column was a 25x4 cm 

Licrosphere 60°  RP-Select B (EM Separations, Gibstown, NJ). The retention time of 2-

CP was approximately 3.5 min, but it was observed to fluctuate with varying room 

temperature. The data were processed and integrated by Nelson Chromatography 

Software (PE Nelson Model 2600, rev. 5.10) using a Nelson 900 Series interface. A 

calibration curve (given in Figure C-L in Appendix C) was generated by 5 known 

standard 2-CP solutions, and checked periodically. 

4.4.2 Biomass 

The concentration of microorganisms (or biomass) in suspended growth was determined 

by optical density (OD). The optical density of the suspension was measured by a 

UV-Visible spectrophotometer (Varian DMS 200) at a wavelength of 540 nm using DI-water 

as reference. About 2.5-3 nil.. sample was placed in a | x | cm quartz cuvette. A detailed 

study of OD calibration was conducted by Dikshitulu (1993) using Pseudomas sp. 1.1e 

showed that there is a linear relationship between optical density and biomass 

concentration up to an OD value of 0.6. In our study, the OF.) was always below (1.6. At 

high biomass concentrations (above 300 mg/L), individual organisms combine to form 
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visible flocs, which have a much lower optical density than the mass concentration would 

indicate. With an assumption of similar size, shape, and light absorbing behavior of the 

Pseudomas sp. of this study and that of Dikshitulu (1993), the same linear relationship of 

273 g/m3  biomass per unit optical density was used for our calculations (see Figure C-3 in 

Appendix C). 

4.4.3 Chloride 

The concentration of chloride ions was measured using an lonPlus Chloride Electrode 

(Model 96-17B, Orion Research Inc., Boston, MA) with an Ion Specific Chloride Meter 

(Model SA 720, Orion Research Inc., Boston, MA). The meter readings were given in 

millivolts (mV) and these were then converted to the desired concentrations in ppm with 

the help of calibration curves. The calibration curves were generated according to the 

procedure specified by the manufacturer for low-level measurements (below 30 ppm 

chloride ion concentration). A standard chloride ion solution was prepared by adding 1 

gm of sodium chloride to 1 liter of Milli-Q deionized water to obtain a final chloride 

concentration of 607 ppm (or 1000 ppm NaCI). A low-level ionic strength adjuster 

(ISA), 1.0 % NaNO3, was prepared by adding 80 mL of Dl water to 20 mL of ISA (Orion 

Cat. No. 940011, 5.0 % NaNO3). Calibration was accomplished as follows. To 00 ml. 

of distilled water in a 150 ml_ beaker, 1 nil. of low-level ISA solution was added. The 

solution was stirred thoroughly and the electrode was then placed into the beaker. To the 

resulting solution, increments of the standard solution were added in the sequence of 0.1, 

0.1. 0.2, 0.2, 0.4, 2.0, and 2.0 mL. After each addition, the solution was stirred and a 



28 

stable millivolt reading was recorded (about 3-4 mins was needed for stable reading). 

The chloride ion concentration after each addition was 0.6, 1.2, 2.4, 3.6, 6.0, 17.5, and 

28.6 ppm, respectively. A typical calibration curve of concentration (log scale) versus 

mV (linear axis) was plotted, as shown in Figure C-2 in Appendix C. 

4.4.4 pH 

pH was measured using a combination pH electrode (Model 91-56, Orion Research Inc., 

Boston, MA) with an Expandable Ion Analyzer (Model EA 920, Orion Research Inc., 

Boston, MA). Typically, the electrode was dipped into a vial of about 4-5 ml., solution, 

and killer stabilization the pH was read. It is to be noted that the presence of foreign 

particles in the solution appeared to cause fluctuations in the pH measurement. The 

meter was calibrated periodically using standard buffer solutions at two different pHs (4.0 

and 7.0). 

4.5 Experimental Procedures 

Biodegradation Kinetics of 2-Chlorophenol 

The kinetics of 2-CP biodegradation by Pseudomonas  pickettii were studied in detail in 

both shake flask and jacketed batch reactors. Experimental procedures 	each type of 

reactor are given separately as follows. 

4.5.1.1 In Shake Flask: Shake flask experiments served many purposes, from growing 

cultures (i.e. acclimation) to kinetic parameter evaluation. For a kinetic experiment, the 
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culture-growing steps were the same as described in Section 4.2. Similar preparative 

steps for the kinetic experiments (as described in detail in Section 4.5.1.2) were employed 

in shake flasks as well. To obtain an estimate of specific growth rate parameters, many 

shake flask experiments were conducted using different initial 2-CP concentrations. 

Samples were periodically obtained and quantified analytically for biomass (via OD) and 

2-CP. 

It was observed that the shake flask experiments suffered from some important 

flaws: (1) even though the temperature of the incubator shaker was set at 26 °C, it was 

still found to vary by ±4 °C; (2) oxygen might have been a limiting factor in biomass 

growth; (3) the smaller working volume created sampling problems toward the end of the 

reaction. These factors were minimized by using a larger batch reactor with better control 

of the system. 

4.5.1.2 In Batch Reactor: A jacketed batch reactor helped eliminate the problems in 

shake flask experiments mentioned earlier. In spite of a wide room temperature variation 

(15-28 °C), the jacketed batch reactor was maintained at 28±1 °C. In addition, it was 

possible to provide positive oxygen control, as described in section 4.3.2. 

To begin any kinetic experiment, the reactor and other accessories were cleaned 

using either a dilute solution of hydrogen peroxide, or a 60% methanol solution, which 

was followed by a thorough washing using sterilized DI water. Any autoclavahle 

materials or solutions were always sterilized prior to use. Experiments were started from 

a pure culture grown earlier on nutrient broth, followed by acclimation of the pure culture 
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to 2-CP (as described in section 4.2). This acclimation procedure generally started with a 

low concentration (-5 ppm) of 2-CP, and ultimately reached about 120 ppm. 

For the kinetic experiments, about 1.5L growth medium was placed in the reactor, 

with constant stirring and a flow of constant temperature water through the outer jacket. 

2-CP stock solution was added to attain a desired initial working concentration (5 to 100 

ppm). Aeration was started, and once a constant temperature of 28 °C was attained, the 

acclimated inoculum was added. It was decided to start with a low biomass concentration 

(about 12-14 ppm), which in turn, produced an extended exponential growth phase, and 

thereby facilitated kinetics determination. 

During these experiments, the 	of the reaction mixture decreased slightly from 

7.2 to 7.1, and in few cases to 7.0. Samples of about 5 	were collected periodically 

and analyzed for 2-CP and biomass concentrations. During some experiments, the 

consumption pattern of dissolved oxygen uptake was measured using a DO probe. 

Typically for a kinetic run, the reactor solution was initially about 96-100% saturated 

with oxygen, and it stayed at that value for about 30-60 mins (lag phase). After that, the 

% saturation started to fall (exponential phase) to about 75-80, and then went back up to 

the initial level (stationary phase). In a few cases, the reactor culture was sampled and 

streaked on an agar plate to check for purity. Biomass growth along the wall of the 

reactor was never observed. However, during experiments with 100 ppm 2-CT (which 

took almost 6-8 hours), some growth on the edges of the oxygen diffuser was noticed 

toward the end. 
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4.5.2 Soil Column Bioreactor with Continuous Feed 

The preparative technique of a soil-column bioreactor has been discussed in detail earlier 

in Section 4.3.3. A simple schematic is shown in Figure 4.3. To consistently pack and 

seed such a reactor turned out to be a very complicated task. Many trials were made 

before obtaining consistent results 

Trial#1: A fresh growth medium was simultaneously prepared, sterilized, and 2-

CP stock solution was added to obtain a concentration of about 6 mg/L Then, initial 

acclimation and growth of the pure culture were accomplished in a batch reactor as 

described before. The contents of the batch reactor were continuously fed upflow to the 

soil column at 1.1 mL/min using a Digital Cartridge Pump (Masterfelx®  7519-10, Pump 

with Digital Console Drive, Cole Parmer) through Masterflex®  tubing (Model 6426-13, 

Cole Parmer). Optical density measurement of samples from the outlet of the column did 

not indicate any significant loss of biomass. After about 4 hours, the column was 

inverted and the feeding process was repeated for about 4 more hours. 

Once the seeding process was completed, a feed solution containing 34 mg/I. 2-

CP was fed continuously through the bottom of the column in an upflow manner. The 

feed solution also contained CaCl2  (about 2-3 mM ) to keep the soil intact (otherwise the 

soil starts to disintegrate and fines exit the top of the column). Samples were collected 

from the middle and exit of the column. However, it was found that biodegradation was 

primarily occurring at the inlet zone of the column. This was perhaps due o the way the 

column was seeded, so a different approach was undertaken next. 



32 

Trial#2: Preparative methods for feed solution, growth medium, and 2-CP 

degrading culture were the same as that of Trial#1. However, instead of preparing the 

soil column first and then feeding organisms and growth medium, the soil was first 

contacted with seed organisms in growth medium, and then the column was packed. This 

ensured a uniform distribution of organisms throughout the column. Furthermore, after 

packing, growth medium containing 2-CP was injected through each port (0.5 m1.. over 

the first 2.5-3 hours) in order to further encourage more uniform growth. 

Then the feed was introduced as before in an upflow fashion (first passing through 

a Nylaflo membrane filter). Samples were collected from the middle-port and exit of the 

column initially, and then only from the exit. Samples were also collected periodically 

from the feed container. These experiments lasted for about five to six days. 

A number of problems were encountered in column packing and obtaining 

consistent results. Ultimately two successful biodegradation runs were made on one 

packed column. A separate set of experiments was also performed without any biomass 

present on another column, as a control. In this control experiment, the sterilized feed 

contained about 200 ppm mercuric chloride and 4 mM CaCl2  to maintain sterility and soil 

integrity, respectively. NaCI tracer runs, and the calculated dispersivities, were nearly the 

same for both columns. Results are discussed in Chapter 6. 

4.5.3 Axial Dispersion Measurements in Soil Column 

Axial dispersion within the soil column was experimentally obtained using chloride ion 

(NaCl) tracer. The column was initially flushed for about 12 hrs with Milli-Q deionized 
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water at a flow rate of 1.1 mL/min, in order to minimize background chloride ion 

concentration and establish a uniform flow distribution throughout the entire cross section 

of the column. A pulse of 0.2 mL of 2000 ppm NaC1 was injected into the column 

through port L A sample volume of 3 mL was collected at 10 minute intervals in a clean 

10 cc vial from the column exit. To that sample, 1 drop of low-level ISA (ionic strength 

adjuster, i.e. 1% NaNO3  solution) was added, stirred, and then the chloride electrode was 

placed inside to obtain a mV reading. Each experiment required up to 7.5 hrs. Results are 

given and discussed in Chapter 6. 

4.5.4 Porosity in the Soil Column 

The column and soil used for measuring the total porosity of the bed was the same as 

described in section 4.3.3, except that the amount of water added during packing was 

accurately measured. The system was then allowed to equilibrate, and water was added 

or subtracted so that the liquid and soil levels were identical. Porosity was obtained by 

dividing the volume of water added to the soil column by the volume of the empty 

column. This procedure was repeated. The average porosity was 0.42 (±0.009), and this 

assumed to be the value of eh. It is very difficult to distinguish between  εa  and Ch. As a 

result, εa  was estimated I Hausenbuiller (1978), and Hutzler et al. (1986)], while εh  was 

considered to be the measured value. 
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4.5.5 Soil Density 

A 50 mL graduated cylinder was cleaned, dried, and weighed. Soil (as received and 

sieved through 2 mm mesh screen) was placed inside and packed incrementally almost 

the same way as column packing without any water. Packing was done up to a volume of 

40 mL and weighed. Soil density was obtained by dividing the weight of the soil by 40 

mL. This procedure was repeated two more times. The average soil density was found to 

be 1.70 mg/L (±0.019). 

4.6 Adsorption Experiments 

4.6.1 Adsorption Kinetics 

The soil preparation, equipment preparation, solution preparation, and sterilization 

procedure were the same as mentioned in Section 4.6.2. Out of 13 serum bottles 

prepared, 10 were for the adsorption measurements and 3 were for controls. To about 

25±0.04 g of soil, 75 mL (14.7 ppm 2-CP) of aqueous solution were quickly added. The 

bottles were then sealed and placed in a shaker at 200 rpm. After 10 mins, the first bottle 

was removed from the shaker and a 5 ml_ sample was taken with a syringe. It was 

immediately filtered and analyzed in duplicate by HPLC. The remaining bottles were 

each sampled periodically (e.g. second one was removed after 30 min, third one oilier 45 

min, fourth one alter 60 min, etc.). With each adsorption sample, one control sample was 

always analyzed. This whole set of adsorption rate experiments was repeated at a 2-CP 

concentration of 21.8 ppm. Results are discussed in Chapter 6. 
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4.6.2 Batch Equilibrium Isotherm 

Adsorption of 2-CP was measured at room temperature, which varied from 16.3 to 20 °C. 

Pequest soil (PNJ) was air dried and then sieved through a 2 mm mesh screen. The soil 

was further dried in an oven at 105 °C for about 24 hours. Of ten 125 mL serum bottles, 

one was a control and the remaining nine contained 2-CP concentrations of 9.8. 12.5, 

15.3, 20.0, 30.6, 40.3, 47.4, 59.0, 60.2 mg/L. About 75 mL of 2-CP solution and 25±0.04 

gin of soil were used in each case. The bulk phase also contained 3 mM CaCl2, which 

helped prevent desegregation of clays and maintained the integrity of the soil, as before. 

All the serum bottles, septa, aqueous solutions, and soils were sterilized prior to their use. 

After preparation, the serum bottles were sealed with septa and crimptops and placed in a 

shaker for about 48 hours to reach equilibrium, then removed, and allowed to settle. Two 

samples of supernatant were taken from each bottle and filtered. 	Filtrates were 

immediately analyzed in duplicate by HPLC. Results are given in Chapter 6. 



CHAPTER 5 

MATHEMATICAL MODEL FORMULATION 

5.1 Model Development without Oxygen Limitation 

This model was developed for biodegradation in the saturated zone (i.e. below the water 

table). Conceptually, it's analogous to that used in chemical engineering practice to 

model the dynamic behavior of a packed bed of porous catalyst particles. In the present 

case, the column is horizontal rather than vertical, and the "catalyst" particles are 

considered to be soil agglomerates, in which the diameter of individual soil particles is 

much less than that of the aggregates. Thus while most of the biomass is probably 

attached to individual soil particles, it is assumed to be relatively evenly distributed 

throughout the aggregate. The fluid within the aggregates is assumed to be stagnant, and 

the concentration profiles are a function of radial diffusion, biodegradation, and sorption 

processes. Groundwater

 is moving around and between the aggregates. The groundwater, or 

"mobile phase", concentration profiles in the direction of flow are a function of axial 

diffusion, convective transport, and mass transfer from the aggregates. A schematic 

diagram of the aggregate and mobile phases is given in Figure 5.1. 
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5.1.1 Model Description 

The present model differs from existing ones in two important ways: 

- coupling of non-equilibrium sorption with mass transfer, and 

- biomass growth, with inhibitory kinetics 

both of which are very important to real in-situ situations. 

In developing the resuting equations, the following assumptions were made: 

1. Biomass is assumed to be uniformLy distributed inside each aggregate. 

Figure 5.1 Schematic of the soil column bioreactor. 
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2. Biodegradation occurs in the aggregates only (i.e. there is a negligible amount of 

suspended biomass in the mobile phase). 

3. Oxygen limitation is not accounted for. 

4. The organic pollutant is the only significant carbon source. 

5. The specific growth rate could be described by an inhibitory biokinetic model 

(e.g. Andrews model). 

6. Plug-flow with axial dispersion in the mobile phase is assumed. 

7. Chemotaxis is assumed to be negligible. 

8. Temperature variation is not considered. 

9. End effects are neglected. 

10. Mass transfer within the particles is assumed to be governed only by Fick's law-

type diffusion, with effective diffusion coefficients that are constant over the entire 

particle radius. 

1 1. The groundwater flow rate is assumed constant. 

i2. Mass transfer between the bulk phase and surface of the particle is described by an 

external film coefficient. 

5.1.1.1 Aggregate Phase: The material balance of the biodegradable component in a 

differential segment of the spherical aggregates is represented by the following equation: 

The first term on the right describes the intra-aggregate diffusion, the second term 

represents the rate of biodegradation, and the third term is the sorption rate. The 
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biodegradation rate (Bd), and the associated biomass growth rate, are given by equations 

(5.2) and (5.3) respectively: 

The rate of sorption (Ad) is given by equation (5.4). 

The solid phase concentration (q) in equilibrium with C*a  is given by: 

and the rate of change in solid phase concentration is: 

Initial conditions: 
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Boundary conditions: 
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5.1.1.2 Mobile Phase 

The first term on the right corresponds to axial diffusion, the second term describes 

convection, and the third term describes mass transfer from the mobile phase. Rm (i.e. the 

rate of mass transfer of the pollutant from the groundwater to the surface of the soil 

aggregates) is given by: 

Substituting Rm in equation (5.10c) and rearranging: 

Initial condition: 
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Boundary conditions: 
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In the case of an "old" spill, in which clean water flows toward the contaminant zone, 

Cz  =0. In the case of a "new" spill, in which a reservoir of contamination is brought 

into a previously clean zone, C?  = constant (non-zero). 

A detailed discussion of these boundary conditions is given in Appendix A. 

5.1.2 Dimensionless Forms 

To facilitate the solution methodology these equations were converted to dimensionless 

form as follows: 

5.1.2.1. Aggregate Phase 

Dimensionless groups: 
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(5.19a) 

(5.20) 

(5.21) 

(5.22) 

(5.22a) 
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(5.24) 

(5.25) 

(5.26) 

(5.26a) 
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(5.26b) 

(5.27) 

(5.27a) 

(5.28) 

(5.29) 

(5.20a) 

(5.3U) 

(5.31) 

(5.32) 
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5.1.3 Numerical Solution 

The dimensionless equations shown in the previous section are highly non-linear and 

numerically very stiff. In order to obtain a stable numerical solution, a powerful method 

is needed. Of the different types of numerical methods available in the literature |Lapidus 

and SeinfeId (1971), Mitchell and Griffiths (1980), Raghavan and Ruthven (1983), Davis 

(1984), Press et al. (1990), and Walas (1991)|, a technique called Method of Lines 

(MM..) was adopted to solve the non-linear partial differential equations (PDFs) with 

appropriate initial and boundary conditions. The method of lines technique applies to 

initial value (time-dependent) problems (IVPs). Essentially, the concept is o make a 

partial discretization, i.e. to discretize only the spatial gradients. This leads to the 

formation of a system of ordinary differential equations (ODES) in time. Boundary 
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conditions are incorporated into the process of spatial discretization, while initial 

conditions are used to start the IVP. 

The axial (z) and radial (r) distances are discretized into NB and NR points 

respectively (Figure 5.2). Even though there are several finite difference formulas that 

could be used, this dissertation employs methodologies previously described by Craver 

(1976), Brian Ill et al. (1987), and Bhaumik et al. (1996). 

Figure 5.2 Indexed grids for axial and radial directions. 
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The distance between any two consecutive axial points is Az and the same 

between any two consecutive radial points is Ar. Thus the set of PDEs was converted to a 

total of NT (equal to 1*NB+3*NB*NR) ODEs. Each concentration has a specific 

location in the concentration vector of NT dimensions. The integration of ODEs starts 

with the initialization of different concentration vectors, along with the input of initial 

stepsize, Aθ. Integration then proceeded until normalized time, 0. was equal to AU. 

Similarly, subsequent integration continued until the new time step (θ+Aθ) was reached. 

t is to be noted that for each time step, the entire set of equations (i.e. total of NT) are 

solved. Assume for example that N13=30 and NR=20, then NT would be 1830, which 

means for each time step, 1830 simultaneous equations have to be solved before it can go 

to the next updated time. The entire integration proceeded until a stopping criteria was 

met. 

The resulting ODEs in the time domain were numerically integrated with the help 

of an IMSL subroutine named "DIVPAG" (Double Precision Version of Initial Value 

Problem, using an Adams-Moulton/Gear method), which has the ability to handle very 

stiff differential equations. The computer code was written in FORTRAN 77 for a 

VAX/VMS environment. This code was robust and stable, and convergence criteria were 

satisfied even with a tolerance value of 10-12. 



(5.36) 

(5.37) 

(5.38) 
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5.2 Model Development with Oxygen Limitation 

In the previous section (5.1), a detailed discussion of the model is given, which takes into 

account most of the effects considered except the concentration of electron acceptor. 

This section will focus on inclusion in the model of oxygen-limiting conditions. The 

need for such consideration stems from the fact that the availability of oxygen in most in-

situ situations is a limiting factor in the rate of biodegradation. 

5.2.1 Model Description 

In addition to the assumptions given in the previous section: 

- adsorption of oxygen into soil is neglected 

- oxygen enters the saturated zone as a dissolved gas 

- the oxygen biokinetic response follows a Monod model (non-inhibitory) 

5.2.1.1 Mass Balance Equations for the Aggregates 

For pollutant: 
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(5.39) 

(5.40) 

(5.41) 

(5.42) 

(5.43) 

(5.44) 

(5.45) 

(5.46) 

(5.46a) 

(5.46b) 

(5.46c) 



5.2.1.2 Mass Balance Equations for the Mobile Phase 

For pollutant: 

For oxygen: 

Initial conditions: 

Boundary 

Boundary conditions: 
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(5.47) 

(5.48) 

(5.49) 

(5.50) 

(5.51) 

(5.52) 

(5.53) 

(5.53a) 
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(5.54) 

(5.55) 

(5.56) 

(5.56a) 

(5.57b) 

(5.58) 

(5.59) 

(5.60) 

(5.61) 
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(5.62) 

(5.63) 

(5.64) 

(5.65) 

(5.66) 

(5.67) 

(5.68) 

(5.69) 

(5.70) 



For oxygen: 
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where, 

Initial conditions: 

Boundary conditions: 

(5.71) 

(5.72) 

(5.73) 

(5.73a) 

(5.73b) 

(5.73c) 

(5.74) 

(5.75) 

(5.76) 

(5.76a) 



5.2.2.2 Mobile Phase 

Dimensionless groups: 
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(5.77) 

(5.77a) 

(5.77h) 

(5.77c) 

(5.77d) 

(5.77e) 

(5.78) 

(5.79) 



(5.80) 

(5.80a) 

(5.81) 

(5.81a) 

(5.82) 

(5.82a) 

(5.83a) 
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5.2.3 Numerical Solution 

The same general methodology described earlier (section 5.1.3) has been used o obtain 

numerical solutions for the system of equations with oxygen limitation. 



CHAPTER 6 

RESULTS AND DISCUSSION 

6.1 Determination of Biokinetic Parameters 

This section deals with obtaining detailed kinetics of 2-chlorophenol biodegradation by a 

pure culture (Pseudomonas pickettii) from both the shake flask and jacketed batch 

reactors. 

6.1.1 In Shake Flasks 

in these experiments, the initial substrate concentration varied from 11 to 110 ppm, and 

the initial biomass concentration varied from 8 to 35 ppm. The results of these kinetic 

runs are given in Tables D-1 through D-8 in Appendix D. A detailed data analysis is 

given in section 6.1.2 showing how the kinetic parameters were obtained. Plots of 

logarithmic biomass concentrations versus time (Figures D-1 through D-8) yielded the 

specific growth rates for each substrate concentration. Table 6.1 shows  the values of the 

specific growth rate for each run. Figure 6.1 plots the data of specific growth rate versus 

phenol concentration, and shows the curve obtained from a fit of the dam to the Andrews 

model. Unfortunately the dam are scattered, and the resulting lit to the model was 

unsatisfactory. This may have occurred due to one or more of the following reasons: 

( 11 The oxygen requirement. during exponential growth is high, and since all of the 

oxygen must diffuse from the surrounding air, through the cotton plug, ino the shake 

flask, and across the liquid/gas interface, these experiments may have suffered from 

inconsistent oxygen limitation. 
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(2) Temperature was not controlled, but rather fluctuated with the variation in room 

temperature. 

Table 6.1 Experimental data on specific growth rates in shake flasks. 

Expt. 
Run 

2-CP cone. 
at growth, 

mg/L 

Average 2-CP 
cone. during 
growth, mg/L 

Expt. Specific 
growth rate, 

-I it, 	h 	_ 

Pred. Specific 
growth rate, It, 

If' 
% error 

9 10.1 6.76 0.103 0.109 -I 5.46 

1 _ 12.7 8.07 0.127 0.111 -12.4 

I 16.1 10.9 0.099 0.112 +13.0 

4 43.3 38.3 0.111 0.0935 -15.7 

5 50.1 44.9 0.081 0.0886 +9.46 

6 62.1 54.9 0.068 0.0809 +19.0 

7 77.2 63.9 0.073 0.0727 -0.44 

8 101.9 88.9 0.068 0.0621 -8.63 

56 

Figure 6.1 Plot of specific growth rate versus substrate concentration. 



57 

6.1.2 In Lucite Reactor 

To eliminate some of the problems encountered in shake flask experiments, it was 

decided to carry out all the kinetic experiments in a more controllable jacketed 4.5 liter 

Lucite reactor. The initial biomass concentrations were maintained at a low value 

5.5-10.5 ppm, which resulted in an extended exponential growth phase, allowing for 

sufficient data collection. A constant temperature was maintained during the entire 

experiment. Finally, filtered air was bubbled into the reactor via a diffuser, maintaining 

higher oxygen concentrations. A typical run is shown in Table 6.2. Other results are 

given in Tables E-1 through E-16 in Appendix E. 

Table 6.2 Data obtained from batch experiment K-15. 

Sample 
No 

Time 

( h) 

Optical 
density 

Biomass 
concentration 

(mg/L) 

Ln (biomass 
concentration) 

2-Chlorophenol 
concentration 

(mg/L) 
I 0.00 0.0200 5.47 1.70 4.950 

2 0.17 0.0205 5.60 1.72 4.705 

3 0.33 0.0210 5.74 1.75 4.526 

4 0.50 0.0215 5.88 1.77 4.239 

5 0.67 0.0220 6.01 1.79 4.002 

6 0.83 0.0225 6.15 1.82 3.616 

7 1.00 0.0230 6.29 1.84 3.240 

8 1.20 0.0240 6.56 1.88 2.700 

9 1.33 0.0245 6.70 1.90 2.501 

10 1.5(1 0.0250 6.85 1.92 2.189 

11 1.66 0.0260 7.11 1.96 1.844 

12 1.86 0.0265 7.24 1.98 1.385 

13 2.00 0.0270 7.38 1.99 1.071 

14 2.25 0.0280 7.65 2.04 0.470 

15 2.36 0.0280 7.65 2.04 0.000 



And the decrease in substrate concentration is given as: 

Assuming µ is constant with time: 

(6.1) 

(6.2) 

(6.3) 

(6.4) 

(6.5) 
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The rate of biomass growth is given by the following equation (assuming µc = 0 =0): 

where, b=bo at t=0 or tag. After the integration we get the following equation: 

The specific growth rate was obtained by preparing a plot of Ln b versus time and taking 

the slope of the linear portion (i.e. exponential growth portion), as shown in pail (a) of 

Figure 6.2. 

The yield coefficient (Y) was obtained from the slope of biomass concentration 

versus 2-chlorophenol concentration [see plot (b) of Figure (6.2)|. From equations (6.L ) 

and (6.2) we obtain the following: 

Additional plots are shown in Figures E-1 through E-16. A list of the all the specific 

growth rates and respective yield coefficients are shown in Table 6.3. The average yield 

coefficient for P. pickettii on 2-CP was 0.402 with a standard deviation of 0.073. The 

average correlation coefficients for specific growth rate and yield coefficient plots were 
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0.993 (with max. 0.999, min. 0.976) and 0.980 (with max. 0.9803, min. 0.945) 

respectively. 

Figure 6.2 Determination of the specific growth rate (a) and yield coefficient (b) 
of P. picketiii on 2-chlorophenol. 
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It should be noted that the 2-CP concentrations given in Table 6.3 are the average 

of those on which the slopes of the specific growth rate curves were obtained (rather than 

the starting 2-CP concentrations). A detailed analysis of this method can be found 

elsewhere (Dikshitulu, 1993). 

Table 6.3 Specific growth rates and yield coefficients for Pseudomonas pickettii. 

Expt. 
run Table 

Specific 
growth 
rate, µ 

Correlation 
coefficient 

for, µ 

Specific 
growth rate 
obtained by 
regression 

2-CP 
conc. 

Yield 
coefficient 

Y 

Correlation 
coefficient 

for, Y 

k-15 E-15 0.139 0.999 0.137 4.21 0.498 0.984 

k-16 E-16 0.138 0.990 0.138 4.26 0.372 0.998 

k-17 E-17 0.143 0.999 01.145 5.12 0.410 0.984 

k-18 E-18 0.150 0.984 0.151 6.13 0.418 0.960 

k-19 E-19 0.158 0.989 0.155 7.12 0.537 0.972 

k-20 E-20 0.155 0.976 0.159 8.01 0.434 0.944 

k-21 E-21 0.162 0.995 0.162 13.06 0.439 0.991 
 

k-22 
E-22 0.163 0.991 0.162 15.56 0.376 0.98(1 

k-23 E-23 0.157 0.992 0.158 20.33 0.375 0.983 

k-8 E-8 0.156 0.999  0.156 22.93 0.408  0.985 

k-9 E-9 0.148 0.997 0.149 28.95 0.390 0.985 
 

k-10 N-10 0.142 0.996  0.142 35.46 0 .458 0.988 

k-11 E-11 0.136 

0.998 

 
0.133 43.37 0.300 0.084 

- k-12 17-12 0.118 0.998 0.116 63.56 0.377 0.978 

k-13 E-13 0.102 0.997 0.108 74.21 0.233 0.987 
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In order to obtain the kinetic parameters, a plot of the specific growth rates versus 

2-CP concentrations were generated as shown in Figure 6.3. Data on the plot look 

consistent as opposed to shake flask experiments. These data were fitted to the Andrews 

expression by using a nonlinear regression routine based on the Gauss-Marquardt 

method. The values of the Andrews parameters are given in Table 6.4. The percent error 

using the Lucite reactor is an order of magnitude lower than in shake flasks. 

Figure 6.3 Specific growth rate of Pseudomonas pickettii on 2-chlorophenol. 



(6.6) 
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Table 6.4 Andrews parameter for Pseudomonas pickettii on 2-chlorophenol. 

Once the biokinetic parameters were determined, biomass and 2-CP concentration 

profiles could be predicted ler any individual experiment. From equation (6.1): 

and 

Equations (6.6) and (6.7) can be integrated numerically using a simple Runge-

Kutta stepwise integration method. An average value of overall yield coefficient was 

used in this solution. Parameters µs, 	and K1  are already known. The value of µc was 

assumed to be zero in these batch, suspended growth, simulations. Predicted curves and 

experimental data are shown in Figure 6.4. The agreement is very good except toward 

the end of the run, which is a typical characteristic of these simulations IDikshitulu 

(1993) and Wang (1995)1 
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Figure 6.4 Comparison between experimentally obtained and model predicted 
concentration profiles for 2-chlorophenol and biomass (run # mo-k-9). 

6.2 Determination of Adsorption Parameters 

6.2.1 Rate of Adsorption of 2-Chlorophenol onto Pequest Soil 

Two different initial concentrations (14.7 and 21.8 ppm) were used to perform these 

experiments. Results are given in Appendix F. Figure 6.5 shows an instantaneous initial 

adsorption (which is a "true" adsorption based on surface kinetics), followed by a slow 

adsorption which is mass transfer limited. These results are very similar to those of 

Bayard (1997). As a result, "true" adsorption was considered to be instantaneous in the 
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time scale of the processes taking place, and the soil surfaces (q) were considered to be in 

local equilibrium with pore aqueous phase concentration (Ca). 

Due to the type of adsorption behavior observed, the rate term (Ad) in equation 

(5.1) was neglected. 

Table 6.5 Comparison of equilibria between two sets of experiments for Pequest soil. 

2-CP Concentration in the 
Aqueous Solution just before 

Addition of Soil, mg/L  

Time to Attain 
Equilibrium, hr 

Liquid/Solid 
Mass Ratio 

14.7 40.7 3.0 

21.8 44.5 3.0 

Figure 6.5 2-CP concentration in soil after adsorption from aqueous solution. 
(Liquid/Solid Mass Ratio=3.0; Temp.= 22 °C). 



(6.8) 

65 

6.2.2 Adsorption Isotherm 

Figure 6.6 shows adsorption equilibrium data. Results are given in Appendix F (Tables 

F-3 and F-4). The solid phase concentrations were calculated by mass balance from the 

measured aqueous phase concentrations. These data are plotted along with a Freundlich 

isotherm model: 

Figure 6.6 Adsorption isotherm of 2-chlorophenol onto Pequest soil. 
(Freundlich model) 



(6.9) 

(61.10) 

(6,11) 
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6.3 Axial Dispersion Measurements in the Soil Column 

In order to obtain the axial dispersion coefficient within the soil column, chloride tracer 

studies were performed at a flow rate of 1.1 mL/min. Detailed experimental procedures 

are discussed earlier. Data from two separate experiments are given in Tables F-5 and F-

6, and plots of chloride concentrations versus time are shown in Figures 6.7 and 6.8. 

Following the procedure described by Levenspiel (1972), the axial dispersion coefficient 

(Die) was estimated. Dispersion of the fluid flowing in the z-direction in the experimental 

soil column can be given by, 

where, Dle  (axial dispersion coefficient, cm2/sec) typically characterizes the degree o 

backmixing during flow. In dimensionless form, equation (6.9) becomes, 

where x = (u • t + z) , T = (t • u / L) 	, and the dimensionless group (Dtc/u •L) , called 

vessel dispersion number, measures the extent of axial dispersion1. Parameter (

Dle / u • L) is estimated by calculating the mean and variance from the concentration versus lime 

istribution-curve. Mean of the distribution curve (i.e. mean residence time of the 

chloride ion between the injection and sampling points) is given in discrete Form as, 

and the variance (σ2) in discrete form is given by, 



(6.12) 

(6.13) 

(6.14) 
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For the closed vessel, the relation between dimensionless variance (σ2θ) and DI, is given 

as, 

Substituting by u =L/t , and rearranging, equation (6.13) can be rewritten as, 

Values of mean and variance were obtained from the data plotted in Figures 61.7 and 61.8 

and are given in Table 6.6. The axial dispersion coefficient (Dle) was calculated using 

equation (6.14) and was found to be 61.618x le and 7.177x10-1  cm2/sec for two separate 

runs. An average value of 6.89x10-4  cm2/sec was used in subsequent simulations1. Values 

of 0.037 and 0.040 for σ2θ (dimensionless variance) indicate that the dispersion was of 

intermediate extent, i.e. plug flow with some back mixing [Levenspiei (1972)]. 

Table 6.6 Parameter values from chloride distribution curve. 

Mean, I Variance (a2 ) dimensionless L Dle 
(min) (min

2
) variance ( σ2θ) (cm) (cm2/sec)  

Figure 6.7 

228.57 	 1959.7 0.0370 
22.0 

6.618x10

-4 

 

Figure 6.8 229.86 21611.4 01.0409 22.0 7.177x10-1  
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Figure 6.7 Elution data of chloride ion from the soil column (col#1). 
Mean residence time=228.57 min and variance=1959.7 min2(run#A-4) 

Figure 6.8 Elution data of chloride ion in the soil column (col#2). 
Mean residence time=229.9 min, variance=2161.4 mine  (run# A-6) 
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6.4 Laboratory Soil Column Experiments and Model Simulations 
with Excess Oxygen 

6.4.1 Experimental Results and Model Simulations 

This section describes the experimental results obtained from the laboratory soil columns, 

as compared to the model simulations. Table G-1 and G-2 show the data for two repeat 

runs. The room temperature varied from 15 °C to 21 °C, and the columns were not 

jacketed. A steady average flow of about 1.1 mL/min was maintained during the 5-day 

period of each experiment. The feed solution was a sterilized synthetic medium 

containing 23.7 and 23.0 ppm of 2-chlorophenol, respectively, in the two experiments. 

During these runs, samples were taken at the same time from the inlet and the outlet of 

the column. Table 6.7 summarizes the results, and Figure 6.9 plots the data and the 

model simulations in terms of dimensionless variables. 

Table G-3 and Figure 6.10 show the results of the experiment in a sterile column, 

during which 200 ppm HgCl2 and 4 mM CaCl2  solution were included in the feed 

solution (23.4 ppm 2-CP) to maintain sterility and soil integrity respectively. The model 

simulation agrees quite well with the data, although breakthrough occurs somewhat faster 

(14 hours rather than 30 hours in experiment). None of the parameters in this experiment 

were fitted to the data. Ail were obtained from laboratory experiments, empirical 

correlations, or estimations based on prior literature values. 

The parameter values required for solving the equations are listed in Table 6.8. 

The dispersivity (Die) was obtained from the tracer experiments with NaCI (section 4.5.3). 
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Table 6.7 Comparison of data to check the reproducibility between run#1 and run#2. 

The diffusion coefficient of 2-CP in aqueous medium was estimated based on the 

Wilke and Chang correlation [Wilke and Chang (1955)]: 

where all the parameters are in the MKS systems. The value of DAB  (or Dse) given in 

Table 6.9 was calculated at 18 °C. 

Based on the asdorption rate data shown in Figure 6.5, the "true" (kinetic-

dependent) rate of adsorption is very rapid. This was also found by other investigators 

[Bayard (1997), Bouchard et al. (1988), and Miller and Weber (1986)|. Therefore the 

term Ad  in equations (5.1) and (5.36) was eliminated in the simulations. 

The correlation for mass transfer coefficient was adapted from Wilson and 

Geankoplis (1966) and is given as, 

where, km  is expressed in cm/sec. This correlation is valid for 0.0016<NRe<55 and 

The Freundlich parameters (kp  and n) were obtained from the adsorption 

isotherms of 2-CP on Pequest soil. 
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K, Ks, and Y were obtained from the batch biokinetic experiments. 

The value of the radius of soil aggregates (R) was taken from literature estimates 

[Crittenden et al. (1986) and Hutzler et al. (1986)]. 

The Porosity of the aggregates (E.) is taken from literature estimates [Crittenden et 

al. (1986), Hausenbuiller (1978), and Hutzler et al. (1986)]. 

The total bed porosity (εb) was obtained experimentally (section 4.5.4). 

The soil density (ps) was obtained experimentally (section 4.5.5). 

The pore velocity (Vi) in the soil column (0.00222 cm/sec, or 192 cm/day) was 

calculated from the feed flow rate, column dimensions and bed porosity (this velocity is 

somewhat higher than those encountered in "typical" groundwater flows, which range 

from 10 to 30 cm/day, depending on soil type and permeability). 

The specific growth rate parameter (û) was obtained from batch kinetic 

experiments. 

Initially ûc was estimated as 1/10th  of û based on a review of the literature 

[Bailey and 011is (1986), Bosma (1994), and Chen el al. (1992)]. Results are shown in 

Figure 6.9 (SIMU-OA). Since this was a very poor fit of the data, it was next attempted to 

increase 	to 72% of û (SIMU-05). In this case ûc would represent a net loss of 

biomass, due to transport from the system as well as cell death. 

For bo (the initial biomass concentration), an estimate of 24 ppm was used 

initially (SIMU-OA and SIMU-05), based on 34 ppm in the solution with which the 

column was seeded (section 4.5.2). However, 10 ppm resulted in a better data fit (S1MU- 
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04). The "true" value of bo would be difficult (if not impossible) to determine 

independently. 

Table 6.8 Parameter values used in the model simulations. 

As another model simulation, û was arbitrarily decreased by a factor of 5 (with 

ûc still 1/10th of û ), as shown in Figure 61.9 (SIMU-06)1. In this simulation, b0 was once 
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again 10 ppm. The rationale was that û might be smaller than indicated by the 

suspended culture specific growth rate [Caldwell and Lawrence (1986), Doran (1985), 

Gordon (1983), Jeffrey and Paul (1986), Kieft and Caldwell (1984), van Loosdrecht et al. 

(1990), and Shreve and Vogel (1993)]. However, this did not lead to a satisfactory fit of 

the soil column data. 

Figure 6.9 Mobile phase concentrations at the inlet and exit of the soil column. 
(in the time axis, 1 day is equivalent to 62). 



Figure 6.10 Mobile phase concentrations at the inlet and exit of the soil column in 
the absence of bacteria (in the time axis, 1 day is equivalent to 62). 

6.4.2 Mobile Phase and Aggregate Profiles 

Figure 6.11 shows "typical" pollutant concentration profiles within an aggregate located 

about the middle of the soil column. This is a simulation only, no measurements were 

possible. These profiles are flat because of diffusion into the aggregate, combined with 

biodegradation at the outer periphery of the aggregate where pollutant concentration (and 

therefore the rate of biodegradation) is highest1. 
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Figure 6.11 Simulated pollutant concentration profiles inside an aggregate 
located about the middle of the soil column (with excess oxygen). 

Figure 6.12 shows the simulated pollutant concentration profiles within the soil 

column in the axial direction for a "new" spill (same conditions as in SIMU-04). 

Figure 6.13 shows simulated biomass concentration profiles within an aggregate 

located about the middle of the soil column. Once again, the radial variation is small, 

since changes in biomass concentration follow the pollutant profile. At first, biomass at 

any radial point decreases, passes through minimum, and then increases. This is clue to 

the choice of initial biomass concentration, which at first can not be sustained by the 

initially low pollutant concentration. 



Figure 6.12 Simulated pollutant concentration profiles in the axial 
direction (with excess oxygen). 

Figure 6.13 Simulated biomass concentration profiles inside an aggregate 
located about the middle of the soil coLumn (with excess oxygen). 
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6.4.3 Sensitivity Analysis 

In the previous section, the experimental results and model predictions are discussed. 

The plots (Figures 6.9 and 6.10) imply the model formulated in this study has the ability 

to account for the considered physicochemical processes encountered in an in-situ 

situation for a "new" spill case. This section presents the parametric sensitivity of the 

model based on the base values given in Table 6.8. 

The parameters and variables studied for sensitivity analysis are: feed inlet 

concentration ( Czo_ ), axial dispersion coefficient (Dle), bed porosity (εb), mass transfer 

coefficient (km), Freundlich parameter (n), Peclet number (Pe), and pore velocity V /  ). 

Table 6.9 shows the range of values chosen. 

Table 6.9 Relative values of the parameters and variables. 
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6.4.3.1 	Feed Inlet Concentration (Cz0): Figure 6.14 shows that the 2-CP zo_ 

concentration at the feed inlet has a strong influence on the biodegradation pattern in the 

column. The concentrations are 40 ppm (SIMU-11), 23.5 ppm (S1MU-04), and 10 ppm 

(SIMU-12). From the plot, it appears that the biomass growth pattern varies with 

different initial concentrations. As the 2-CP concentration increases, the percent 

biodegradation goes down. For example, after one day, 67.6%, 45.0%, and 19.4%, 

respectively, of the 2-CP is biodegraded. This is due to inhibition at higher 

concentrations. 

6.4.3.2 Axial Dispersion Coefficient (Dle): Figure 6.15 shows the effect of axial 

dispersion on the column performance, emphasizing that hydrodynamic effects tend to 

have less importance than biokinetic effects. 

6.4.3.3 Effect of Bed Porosity (eb): Bed porosity has a pronounced effect on the 

performance of the soil column (Figure 6.16). From the plot, it shows that higher 

porosity gives rise to an earlier breakthrough, with lower biodegradation. This is due to 

the fact that as porosity increases, the amount of soil biocatalyst decreases. 

6.4.3.4 Effect of Mass Transfer Coefficient (km): Figure 6.17 shows the effect of mass 

transfer coefficient (km) on the pollutant concentration at the exit of the soil column, 

which is not very significant for the range of values tested. 
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6.4.3.5 Effect of Freundlich Parameter (n): Figure 6.18 shows the effect of 'n' on the 

contaminant distribution of the liquid inside the soil column. By changing its value from 

0.5 to 2.0, no change is seen in the aqueous concentration profile (Cb). This is a result of 

the rapid (relatively) approach to sorption equilibrium vs. the general time scale of the 

process. 

6.4.3.6 Peclet Number (Pe= Vz  ·L/Dle): Figure 6.19 shows the effect of Peclet number 

(Pe) on the 2-CP concentration profile in the column. A high value of Pe denotes plug 

flow, while a low value indicates greater axial mixing in the soil column. Again, it 

indicates that purely hydrodynamic effects are less important than biokinetic effects, 

which justifies the modelling effort. 

6.4.3.7 Pore Velocity (Vi ): Figure 6.20 shows the effect of pore velocity. SIM-19 

(19.2 cm/day) is more "typical" of actual groundwater velocities. The plot shows 

(logically) that increased residence time results in increased biodegradation. 



Figure 6.14 Effect of 2-CP concentration at the feed inlet (Cz0). Concentrations 

are: 10.0 (SIMU-12), 23.5 (SIMU-04), and 40.0 mg/L (SIMU-11). 
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Figure 6A5 Effect of axial dispersion (Die). Values are: 6.89x10-' (SIMU-16), 
6.89x10-4 (SIMU-04), and 6.89x10-3  cm2/sec (SIMU-15). 

Figure 6.16 Effect of bed porosity (εb). Values are: 0.52 (SIMU-07), 
0.42 (SIMU-04), and 0.32 (SIMU-08). 
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Figure 6.17 Effect of mass transfer coefficient (km). Values are: 2.77K10.5  
(SIMU-22), 2.77x10-4  (SIMU-04), and 2.77x10-3  cm/sec (SIMU-23). 

Figure 6.18 Effect of Freundlich parameter (n). Values are: 0.5 (SIMU-10), 
1.49 (SIMU-04), and 2.0 (S1MU-09). 
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Figure 6.19 Effect of peclet number (Pe). Values are: 7.7 (SIMU-14), 
77.0 (SIMU-04, base simulation), and 770 (SIMU-13). 

Figure 6.20 Effect of pore velocity (Vz  ). Values are: 2.22x10-4  (SIMU-19) 

and 2.22x10-3  (SIMU-04) cm/sec. 
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6.5 Model Simulations with Oxygen Limitation 

In the previous section, experimental results from soil column experiments and the model 

simulations including parametric sensitivity (section 6.4.2), were discussed with the 

assumption of an excess oxygen environment. In order to obtain simulations of the effect 

of oxygen in the soil column, the parameters listed in Table 6.8 and those in Table 6.10 

were both utilized. 

These simulations were not checked experimentally, because of difficulties 

encountered with oxygen measurements in the soil column (larger samples, or 

microelectrodes, were needed). 

Table 6.10 Additional parameters required for simulation with oxygen limitation. 

Symbol Parameters Units 
Values used in 
simulation 

Di. Dispersion 	coefficient 	of 
oxygen in the mobile phase 

cm2/sec 6.89x104 	(expt) 

DSO Diffusion coefficient of oxygen 
in aggregates 

cm2/sec 1.86x10-5 	(correla) 

lc. Mass 	transfer 	coefficient 	of 
oxygen 

cm/sec 5.20x10-4 	(correla) 

KSO  Kinetic constant of oxygen mg/L 0.26 	(estimate) 

Yo Yield 	coefficient 	due 	to 
oxygen 

mg biomass per 
mg oxygen 
consumed 

0.37 	(estimate) 

- Pore velocity, V1 =0.00222 cm/sec (expi.) 
- Initial biomass concentration in the column (h„)=l0.0 
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The dispersivity (Die) was obtained from the tracer experiments with NaCl 

(section 4.5.3), and assumed to be the same for both dissolved oxygen and pollutant. 

The diffusion coefficient of oxygen in aqueous medium was estimated based on 

the Wilke and Chang correlation [Wilke and Chang (1955)]: 

where all the parameters are in the MKS systems. The value of DAB (or DSc) given in 

Table 6.9 was calculated at 18 °C. 

The correlation for mass transfer coefficient was adapted from Wilson and 

Geankoplis (1966) and is given as, 

where, k is expressed in cm/sec. This correlation is valid for 0.0016<NRe<55 and 

The Monod kinetic constant (KO was estimated based on a literature review 

[Shareefdeen (1994)]. 

The value of the yield coefficient (Yo) was estimated as follows [Shuler and 

Khargi (1992)1. A typical cellular composition can be represented as CH1.8O0.5N0.2.  

Assuming that (NH4)2(SO4) was solely used as nitrogen source, and using the value of Y 

(0.4 for 2-CP), the following balanced equation can be written, 
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Using equation (6.15), the yield coefficient of biomass on oxygen (with 2-chlorophenol as 

carbon source) was calculated to be 0.37 mg biomass per mg oxygen. 

With an intent to see the effect of electron acceptor (i.e. oxygen) on the laboratory 

column performance, simulations were performed for three scenarios: (1) under severely 

oxygen limited conditions (i.e. 1.2 mg/L oxygen in the feed); (2) when feed is saturated 

with oxygen under atmospheric air (i.e. 8.0 mg/L); and (3) when the dissolved oxygen in 

the feed is elevated under a pure oxygen atmosphere (to 23 mg/L). For each simulation, 

the designated amount of oxygen was initially assumed to be present everywhere in the 

column, and the subsequent oxygen entree to the column was with the feed only. 

Simulation results are shown in Figure 6.21 and 6.22, which represent the 

dimensionless exit concentrations of pollutant and oxygen, respectively. Figure 6.21 

indeed shows that oxygen has a strong influence on the column behavior. Simulation 

corresponding to 1.2 mg/L oxygen in the feed shows almost no biodegradation (POLLU- -

26). Simulation corresponding to saturation (8.0 mg/L) in the feed shows some 

biodegradation. However, an examination of the oxygen profile (OXY-25) shows that 

the concentration drops rapidly and remains below 3 mg/I.. in the effluent. Finally, 

simulation corresponding to an elevated oxygen concentration in the feed (23 mg/L) 

under a pure oxygen atmosphere (saturation is about 40 mg/L in water) results in nearly 

the same effluent as that assuming excess oxygen. This is because the oxygen 

concentration remains above 9 mg/L in the column effluent (OXY-27). 

Figure 6.23 shows the oxygen concentration profiles inside an aggregate located at 

the exit of the column. The conditions for this simulation corresponds to POLLU-25 
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(Figure 6.21) and OXY-25 (Figure 6.22). Once again, the profiles are flat. The oxygen 

concentration at any particular radial point initially decreases (because of consumption of 

the initial 02  in the column) and then rises as 02 enters with the feed. 

Figure 6.24 shows oxygen concentration profiles within the soil column in the 

axial direction for a "new" spill (once again corresponding to the conditions of 

POLLU-25). 

Figure 6.21 Effect of electron acceptor (oxygen) on the column performance. Inlet oxygen 
concentrations are: 1.2 (POLLU-26), 8.0 (POLLU-25), and 23 ppm ( POLLU-27). Inlet 2-CP 
concentration=23.5 ppm. 



Figure 6.22 Simulated oxygen concentration profiles. Inlet oxygen concentrations are: 
1.2 (OXY-26), 8.0 (OXY-25), and 23 ppm (OXY-27). Inlet 2-CP conc.=23.5 ppm. 
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Figure 6.23 Simulated oxygen concentration profiLes inside an 
aggregate located at the exit of the column. 

Figure 6.24 Simulated oxygen concentration profiles in the axial direction1. 
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Figure 6.25 shows the sensitivity of the simulations to changes in KSO and Y0. For 

all these simulations, an inlet oxygen concentration of 8.0 mg/L was used. Again, the 

simulations are sensitive to changes in the biokinetic parameters, with KSO being more 

sensitive than YO. 

Figure 6.25 Effect of Kso  and Yo  on column performance. Values arc: Ks0-0.50 and 

Yo=0.37 (OXY-35); KS0=0.26 and Yo= I .2 (OXY-36). Inlet conc. of 2-CP=23.5 ppm. 



CHAPTER 7 

CONCLUSIONS AND FUTURE WORK 

7.1 Conclusions 

In-situ bioremediation in its entirety is a very complex process, which depends on the 

physical system (soil geology, soil chemistry, hydrology, distribution of nutrients and 

electron acceptors, etc.) and on the microbial ecology. 

In order to predict and quantify the fate of pollutants in an in-situ bioremediation 

system, currently there are many existing models which typically place greater emphasis 

on hydraulic and physical parameters, such as the "true" diffusivity, or permeability, of 

the soil structure, and much less emphasis on kinetic effects. When biodegradation is 

included at all, it is generally assumed to be in equilibrium with the bulk liquid 

concentration, and biodegradation is assumed to follow a first-order or Monod (non-

inhibitory) model. Quite often, these models also assume constant biomass; thereby 

neglecting biomass growth, which can have a profound impact on the performance of a 

bioremediation system. They also neglect the effect of oxygen limiting situations, which 

again has an important effect on performance. 

In this dissertation, a mathematical model was developed of in-situ 

bioremediation in the saturated zone which is analogous to a packed-bed of catalyst 

particles. The model considers diffusion, sorption, and biodegradation in the "catalyst" 

(namely, soil aggregates); and convection, diffusion, and mass transfer from the 

aggregates into the surrounding groundwater. The soil aggregates are considered to be 
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agglomerated soil particles with relatively stagnant fluid in the interstices. Biomass is 

attached to the individual soil particles which are considered to be small compared to the 

overall aggregate diameter. Thus, mathematically, the interior of the aggregates is treated 

as a case of homogeneous catalysis. 

In order to solve the set of resulting non-linear, coupled PDEs, the following 

parameters had to be determined by a combination of laboratory experiments, empirical 

correlations, or estimates based on prior work: 

Parameters Symbol Method of 
determination 

Dispersion coefficient of 2-CP in mobile phase Dle  Experiment 

Dispersion coefficient of oxygen in the mobile phase Dlo  Experiment 

Diffusion coefficient of 2-CP in aggregates Dse  Correlation 

Diffusion coefficient of oxygen in aggregates DSO  Correlation 

Adsorption rate constant kd  Experiment 

Mass transfer coefficient km  Correlation 

Freundlich parameter kp  Experiment 

Andrews parameter Ki Experiment 

Andrews parameter Ks Experiment 

Mass transfer coefficient of oxygen kSO  Correlation 

Kinetic constant of oxygen KSO  Estimate 

Freundlich parameter n Experiment 

Aggregate radius R Estimate 

Yield coefficient Y Experiment 

Yield coefficient due to oxygen Yo Estimate 

Void fraction of aggregate Ea  Estimate 

Void fraction of mobile phase Eb  Experiment 

Soil density Ps Experiment 

Andrews parameter I-1 
Experiment 

Andrews parameter 1.1c Estimate 
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The resulting equations were solved using the "Method of Lines", and a stable 

numerical solution was obtained. Sensitivity analyses showed the biokinetic parameters 

û and ûc), initial biomass concentration, feed inlet concentration, average pore 

velocity, and bed porosity have strong effects on the system results. Other parameters 

(e.g. axial dispersion coefficient, Peclet number, mass transfer coefficient, and Freundlich 

parameters) had little effect on column performance (for the ranges of parameter values 

tested). 

The model was compared against experiments, using a 24 cm long, 5 cm inside 

diameter laboratory soil column packed with soil from a site in Pequest, NJ. The method 

of column packing was an important step in column preparation to maintain consistency, 

avoid channeling and non-uniform flow distribution. Column packing was tested by axial 

dispersivity measurements. The column was seeded with a pure culture of Pseudomonas 

pickettii, and 2-chlorophenol was the test pollutant. Two successful biodegradation runs 

were made on one packed column. A separate set of experiments on another column was 

performed without any biomass present. Sterility was maintained by including 200 ppm 

mercuric chloride in the feed. Calculated dispersivities (using NaCI tracer) were nearly 

the same for both columns. 

Three interrelated microbial parameters: û
, ûc , and the initial biomass 

concentration (b0), have a strong influence on the exit concentration profiles. The firs

t simulation, with µc estimated as 1/10th of µ , resulted in a poor lit of the data. For 

bo (the initial biomass concentration), an estimate of 24 ppm was used initially, based on 34 

ppm in the solution with which the column was seeded. When ûc was increased to 72% 
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of û , and bo  was decreased from 24 to 10 ppm, a good fit of the soil column data was 

obtained. The "true" value of bo  would be difficult (if not impossible) to determine 

independently (presumably, as a steady-state is approached, the initial choice of bo  should 

become less importanct). Such a high value of ûc would represent the net loss of 

microorganisms from the system, including not only cell death, but losses due to transport 

as well. 

The effects of oxygen limitation are also quite pronounced. Even when the 

column is saturated with atmospheric oxygen (8 mg/L), bioremediation is severely limited 

by oxygen availability. Only when oxygen in the feed reached 23 mg/I.. (possible with a 

pure oxygen atmosphere) did the results approach those assuming no oxygen limitation. 

These results clearly emphasize the paramount importance of the biokinetic 

parameters in the modelling results, in the laboratory soil column, and presumably in the 

field as well. 	Biomass growth and loss, and the effects of oxygen limitation, 

overwhelmed any effects due to transport or flow. 

7.2 Future Work 

Future work would benefit greatly by having an independent measure of biomass in the 

soil columns. This is a difficult problem to solve, but biochemical (e.g. lipid profiles) and 

fluorescent techniques hold some promise. 

Microbial consortia and mixed substrates can also be examined (rather than a pure 

culture and single substrate, such as used in this dissertation). 
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Finally, field tests of the model are already planned at former sites of 

manufactured gas plants, in which the electron acceptors are most likely Fe+3  and SO4=. 



APPENDIX A 

DETAILED TREATMENT OF BOUNDARY CONDITIONS [EQUATIONS (5.13) 
AND (5.15)) FOR THE MOBILE PHASE AT THE EXIT AND ENTRANCE 

POINTS OF THE LABORATORY SOIL COLUMN 
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(A1.1) 

(A1.2) 

(A1.3) 

(A1.4) 
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In the following, a detailed treatment has been given by performing mass balance 

considering fundamental principles for obtaining the exit and entrance boundary 

conditions [e.g. equations (5.13) and (5.15) in Chapter 5] in the mobile phase. 

At the entrance of the bed (i.e. at z=0 in the Figure A-1), molar flow rate of the 

pollutant must be the same between upstream section of the column (z=0-) and bed 

entrance point (z=0). Therefore, it can be expressed as, 

where Fb|z=0  is the sum of convection due to superficial liquid velocity and molecular 

dispersion at z=0-; and Fb l z=0  is the sum of convection due to liquid pore velocity and 

molecular dispersion at z=0. Now, F1,,0  can be written as, 

where, Q is the volumetric flow rate. A is the empty bed cross-sectional area 

is the inlet concentration at z=0-.  Di, is the dispersion coefficient. Also defining v, as the 

superficial liquid velocity (= Q/A), equation (A1.2) can be written as, 

Now, just at the entrance point to the bed i.e. 2=0, right hand side of equation (A 1 .1) can 

be expressed as, 



is the 

Combining equations (A1.4) and (A1.5) it can be written as, 

(A1.5) 

(A1.6) 

(A1.6) 

After rearrangement equation (A1.6) gives rise to, 

(A11.7) 

(A1.8) 
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where, Vz is the liquid pore velocity and is defined by 

cross sectional area just after the entrance into the column. 

It is now assumed that, in the upstream section (z=0-) the liquid is well mixed and 

hence concentration gradient is assumed to be zero. Then equation (A1.3) yields, 

Redefining some of the variables as and also Db= 	it is obtained as, 

This is the boundary equation (termed as Danckwerts boundary condition) at the entrance 

of the column (z=0), which is essentially equation (5.13) in Chapter 5. 

In a similar manner, another boundary condition at the exit of the bed (z-1.) can 

be written. At the exit of the bed (z=L), molar flow rate of the pollutant is the same 

between bed exit point (z=L) and downstream point ((z=L+)). Therefore, 

The F-terms in equation (A1.8) are expressed as, 



(A1.9) 

(A1.10) 

(A1.10) 

(A1.11) 

(A1.12) 

the 

(A1.13) 

(A1.14) This finally gives rise to: 
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where the parameters are described earlier. 

It is assumed that the concentrations just outside the bed (z=L+) were equal to the 

exit concentrations, therefore, 

Substituting expressions (A1.9) and (A1.10) in (A1.8) and applying (A1.11), and 

rearranging, the equation (A1.8) can be written as, 

Now, applying condition from equation (A1.10) and substituting 

equation (A1.12) can be given as, 

This is the boundary condition at the exit oldie bed (z=L), which is equation (5.15). 



APPENDIX B 

COMPUTER CODES 

B-1 	Computer Code for Solving Equations without Oxygen Limitation. 

B-2 	Computer Code for Solving Equations with Oxygen Limitation. 



APPENDIX B-1 

Computer Code for Solving Equations without Oxygen Limitation 

C 	****************************************************************  

C 
C 	SoLution of the Model Equations "without" Oxygen Limitation 
C 
C 	This code is written in FORTRAN for VAXNMS environment 
C 	by Dilip Kumar Mandal 
C 
C 	Method used: Method of lines (MOL) 
C 
C 	The ODEs are written in the subroutine "FCN" and then integrated using 
C 	standard IMSL subroutine named "DIVPAG' (Double Precision Version 
C 	of Initial Value Problem Utilizing Adams-Moulton or Gear Method) 
C 
C 	

**************************************************************** 

 

C 
C 	 MAIN PROGRAM 
C 
C 	EXTERNAL and COMMON LINKS to IMSL ROUTINE "DIVPAG" &"FCN" 
C 	MB=NB=discretized points in z-direction (X) 
C 	MR=NR=discretized points in r-direction (ETA) 
C 	MEQ=NEQ= total no1. of equations 
C 	NEQ=MB+3*MB*MR 
C 	A(1,1)= parameter for the subroutine used 
C 	RWKSP and IWKIN are for workspace specification 
C 	NSTEP=Total number of steps 

parameter (NB=30, NR=20, NEQ=NB+3*NB*NR, NSTEP= 1000000) 
implicit real*8(A-H, O-Z) 
dimension ETA(NR), C(NEQ), 	PARAM(50) 
dimension A(1,1) 
external FCN, FCNJ 
real *8 NDASH 
common /USTI/ DSE,DLE,VOIDA,VOIDB,XMU,XMUC,XKP,XKD,XKM, 

$ DELT,TMAX,CIZERO,GAMMAZO 
$ 	/LIST2/ PHIA, PHIB, PHIC, SHERA, SHERB,PSI,PEC, 
$ 	DELETA,DELX,NDASH,RHOS,X KS,X K I,X Y,CONST I 
$ 	/LIST3/ETA 

common /WORKSP/RWKSP 
real RWKSP(600000) 
OPEN(UNIT=24,F1LE='KUMAR.IN', STATUS='OLD') 

OPEN(UNIT=6,FILE='KUMAR.OUT',STATUS=NEW) 
call IWKIN (600000) 

C 
C 	Reading of Input Data 
C 
C 	V=Velocity 
C 	R=Radius of the particle 
C 	DSE=Effective diffusivity in the aggregate 
C 	DLE=Dispersion coefficient in mobile phase 
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C 	VOIDA=Void fraction in the aggregates 
C 	VOIDB=Void fraction in the mobiLe phase 
C 	XMU=Specific growth rate 
C 	XMUC=Specific growth constant 
C 	XKS=Kinetic constant 
C 	XKI=Kinetic inhibitory constant 
C 	XKP=kp of FreundLich Isotherm 
C 	XY=Yield coefficient 
C 	XKD=Adsorption rate constant 
C 	XKM=Mass transfer coefficient 
C 	XL=Length of the column 
C 	RHOS=Density of soLid 
C 	NDASH=Power n-dash in equilm relation 
C 	CONSTAN1=Constant already defined 
C 	DELT= IMSL directive parameter 
C 	TMAX= Maximum run time of the program. 
C 

Read(24,*) ,XL,R,DSE,DLE,VOIDA,VOIDB,XMU,XMUC,XKS,XKI,XY,XKM, 
XKD,XKP,NDASH,RHOS,DELT,TMAX 

C 
C 	Locations of discretized points 
C 	DELX= Length step in z-direction 
C 	DELETA=Length step in r-direction 
C 

DELX = 1.0/(DFLOAT(NB)) 
DELETA = I .0/(DFLOAT(NR- I)) 
DO 10 I=1,NB 

X(I) = DFLOAT(I)*DELX 
WRITE(85,123) X(I) 

123 	 FORMAT(IX,'X=', I X, 12( I X,F5.3)/) 
10 	 CONTINUE 

DO 12 L=1,NR 
ETA(I) = (DFLOAT(I)*DELETA) - DELETA 
WRITE(85,119) ETA(I) 

119 	 FORM AT(1X,'R=',F5.3, I X,12(1X,F5.3)/) 
12 	 CONTINUE 
C 
C 	CaLculation of parameters 
C 	PH1A=Dimensionless thiele modulus 
C 	PHIB=Dimensionless thiele modulus 

PHIC=Dimensionless thiele modulus 
C 	SHERA=Sherwood number 
C 	SHERB=Modified sherwood number 
C 	PEC=Dimensionless peclet number 
C 	PSI-DimensionLess peclet number 
C 	CONST I=Constant term in Freundlich relation after dimensionless 
C 	GAMMAZO [=(C_Z_0-)/Ks] is just before entrance into bed 
C 

PHIA = ((R**2.0)*XKD)/DSE 
PHIB = ((R**2.0)*XMU)/DSE 
PHIC = ((R**2.0)*XMUC)/DSE 
SHERA = (XKM*R)/DSE 

SHERB = ((3.0*( I -VOIDB)/VOIDB)*(X KM*R))/DSE 
PEC = (V*XL)/DLE 
PSI = (V*(R**2.0))/(XL*DSE) 
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CONST I = (XKS**(NDASH-1))t((XKP**NDASH)*(RHOS**NDASH)) 
GAMMAZO=9.8 

C 
C 	Output of INPUT DATA and CALCULATED parameters 
C 

write(85,5) NB,NR,V,XL,R,DSE,DLE,VOIDA,VOIDB,X MU,X MUC,X KS, 
XKI,XY,XKM,XKD,XKP,XKP,RHOS,DELT,TMAX,DELX,DELETA,CONST1, 

$ PHIA,PHIB,PHIC,SHERA,SHERB,PEC,PSI 
C 

5 	FORMAT(///,T5,'NB=',15,T30,'NR=',15,T55,'V=',D I2.5,/, 
$ 	T5,'X L=',D12.5,T30,R=',D12.5,T55,'DSE=',DI 2.5,1, 
$ 	T5,DLE=',D12.5,T30NOIDA=',D12.5,T55,'VOIDB=',D12.5,1, 
$ 	T5,'XMU=',D12.5,T30,'XMUC=',D I 2.5,T55,'XKS=',D12.5,/, 
$ 	T5,'XKI=',D12.5,T30,'XY=',D12.5,T55,'XKM=',D12.5,/, 
$ 	T5,'XKD=',D12.5,T30,'XKP=',D12.5,T55,'XKP=',D12.5,/, 
$ 	T5,'RHOS=',D12.5,T30,`DELT=',D12.5,T55,'TMAX=',D12.5,/, 
$ 	T5,'DELX=',D12.5,T30,DELETA=',D12.5,T55,'CONST1=',D12.5,/, 
$ 	T5,'PHIA=',D12.5,T30,'PHIB=',D12.5,T55,'PHIC=',DL2.5,/, 
$ 	T5,'SHERA=',D12.5,T30,'SHERB=',D12.5,-155,'PEC=',DL2.5,/, 
$ 	T5,'PS1=',D12.5,////) 

C 
C 	Initializations 
C 

DO 29 1=1,NR 
C(I)=0.0 

29 	CONTINUE 
NEQ I =NB 

NEQ2=NEQ1+NB*NR 

DO 30 I=NEQ1+ I ,NEQ2 
C(L)=0.0 

30 	CONTINUE 
NEQ3=NEQ2+NB*NR 

DO 31 I=NEQ2+1,NEQ3 
C(I)=0.0 

31 	CONTINUE 
NEQ4=NEQ3+N13*NR 

DO 32 I=NEQ3+1,NEQ4 
C(I)= 4.05 

32 	CONTINUE 
C 
C 	SET UP PARAMETERS FOR CALL. TO "DIVPAG" 
C 

T = 0.0 
TOL = 1.0D-6 
MX STEP= 60000000 
METH = 2 
MITER = 3 
IATYPE = 0.0 
PARAM(4) = MXSTEP 
PARAM(12) = METH 
PARAM(13) = MITER 
PARAM(19) = IATYPE 
IDO = 1 

C 
TOLD= I.0 



DO 1 1 1 ISTEP = 1,NSTEP 
TEND = TMAX*DFLOAT(ISTEP)/DFLOAT(NSTEP) 

C 
call DIVPAG (IDO,NEQ,FCN,FCNJ,A,T,TEND,TOL,PARAM,C) 

C 	PRINT *,'C=',C 
C 
C 	Integration at updated times and controlled output 
C 

if (TOLD .eq. ISTEP) then 
TOLD=TOLD+1000.0 

C 
WRITE(6,59) T 
WRITE(25,59) T 

59 	FORMAT(//,T5,'T=',F9.31) 
WRITE(6,113) (X(I), I=1,NB) 
WRITE(25,113) (X(1), I=1,NB) 

I 13 	FORMAT( I X,'X=',1X,'0.000', 12(1X,F5.3),/) 
C 
C 	OUTPUT for Cb 

WRITE(6,114) CI ZERO,(C(I),I=1,NB) 
WRITE(25,114) CI ZERO,(C(I),I=1,NB) 

114 	FORMAT ('Cl =', 13 (1X,F5.3)) 
C 
C 	OUTPUT for Ca 
C 

DO 115 I=1,NR 
NSTART = NB+I 
NLAST = NB+NB*NR-NR+1 

WRITE(6,116) ETA(I),(C(K),K=NSTART,NLAST,NR) 
WRITE(25,116) ETA(I),(C(K),K=NSTART,NLAST,NR) 

116 	FORMAT (1X,'R=',F61.2,IX,12(IX,F61.2)) 
115 	continue 
C 
C 	WRITE(6,217) 
C 	WRITE(25,217) 
C 
C 	OUTPUT for q 

DO 215 I=1,NR 
NSTART = NB+NB*NR+I 
NLAST = NB+2*NB*NR-NR+I 

WRITE(6,106) ETA(I),(C(K),K=NSTART,NLAST,NR) 

WRITE(25,106) ETA(I),(C(K),K=NSTART,NLAST,NR) 
106 	FORMAT ( I X,'R=',F6.2,IX,12(IX,F6.2)) 
215 	continue 
C 
C 	OUTPUT for b 

DO 315 I=1,NR 
NSTART NB+2*NB*NR+I 

NLAST = NB+3*NB*NR-NR+I 
WRITE(6,108) ETA(I),(C(K),K=NSTART,NLAST,NR) 
WRITE(25,108) ETA(I),(C(K),K=NSTART,NLAST,NR) 

108 	FORMAT (1X,'R=',F6.2,IX,12(1X,F6.2)) 

315 	continue 
217 	FORMAT(//) 

WRITE(41,137)T,C(NB) 
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137 	FORMAT (IX, T=',IX,F10.3,1X,'Cl=',IX,F7.4) 
C 

else 
end if 

Ill 	continue 
C 
C 	FinaL calL to release workspace 

IDO=3 
call DIVPAG (IDO,NEQ,FCN,FCNJ,A,T,TEND,TOL,PARAM,C) 
STOP 
END 
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APPENDIX B-2 

Computer Code for Solving Equations with Oxygen Limitation 

C 	 ****************************************************************  

C 	Solution of the Model Equations "with" Oxygen Limitation 
C 	This code is written in FORTRAN for VAX/VMS environment 
C 	by Dilip K. Mandal 
C 
C 	Method used: Method of Lines (MOL) 
C 
C 	The ODEs are written in the subroutine "FCN" and then integrated using 
C 	standard IMSL subrioutine named "DIVPAG' (Double Precision Version 
C 	of Initial Value Problem Utilizing Adamson Gear Technique). 
C 	

**************************************************************** 

 

C 
C 	 MAIN PROGRAM 
C 
C 	EXTERNAL and COMMON LINKS to IMSL ROUTINE DIVPAG and FCN 
C 
C 	MB=NB=discretized points in z-direction (X) 
C 	MR=NR=discretized points in r-direction (ETA) 
C 	MEQ=NEQ= total no. of equations 
C 	NEQ=2*MB+4*MB*MR 
C 	A(1,1)= parameter for the subroutine used 
C 	RWKSP, IWKIN are for workspace specification 
C 	NSTEP=total number of steps 
C 

parameter (NB=30, NR=20, NEQ=2*N13+4*NB*NR, NSTEP=1200000) 
implicit real*8(A-H, O-Z) 
dimension ETA(NR), C(NEQ), X(NB), PARAM(50) 
dimension A(1,1) 
external FCN, FCNJ 
real *8 NDASH 
common /USTI/ DSE,DSO,DLE,DLO,VOIDA,VOIDB,XMU,XMUC,XKP 

$ 	XIW,XKM,XKMO,DELT,TMAX,C1ZERO,C2ZERO,GAMMAZO,GAMMAOO 
$ 	/LIST2/ PH1A,11-1LB,PHIC,PHIK,SHFRA,SHERB,PSI,PEC,PECO, 
$ 	SHAO,SH BO, 
$ 	DELETA,DELX,NDASH,RHOS,XKS,X KSO,XKI,XY,X YO,CONST I 

$ 	/LIST3/ETA 

common /WORKSP/RWKSP 
real It WKSP(600000) 

OPEN(UNIT=24,FILE=OXYFIN', STATUS='OLD') 

c 	OPEN(UNIT=6,F)LE=OXYF.OUT',STATUS-NEW) 
call IWKIN (600000) 

C 
C 	Reading of Input Data 
C 	V=Velocity 
C 	R=Radius of the particle 
C 	DSE=Effective diffusivity in the aggregate phase 
C 	DLE=Dispersion co-efficient in mobile phase 
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C 	VOIDA=Void fraction in the aggregate phase 
C 	VOIDB=Void fraction in the in the mobile phase 
C 	XMU=Specific growth rate 
C 	XMUC=Specific growth constant 
C 	XKS=Kinetic constant 
C 	XKI=Kinetic inhibitory constant 
C 	XKP=kp of Freundlich Isotherm 
C 	XY=Yield coefficient 
C 	XKD=KD=Adsorption rate constant 
C 	XKM=KM=Mass transfer coefficient 
C 	XL=Length of the column 
C 	RHOS=Density of solid 
C 	NDASH=Power n-dash in equilibrium relation 
C 	DSO=Diffisivity of oxygen in the aggre. phase 
C 	DLO=Dispersion co-effi. of oxy in the mobile phase 
C 	XKSO=Kinetic constant of Oxygen 
C 	XYO=Yield coeffi w.r1.t. oxy 
C 	XKMO=mass transfer coeff of oxy 
C 

Read(24,*) V,XL,R,DSE,DLE,VOIDA,VOIDB,XMU,XMUC,XKS,XKI,XY,XKM, 
$ XKD,XKP,NDASH,RHOS,DSO,DLO,XKMO,XKSO,XYO,DELT,TMAX 

C 
C 	Locations of discretization points 
C 

DELX = 1.0/(DFLOAT(NB)) 
DELETA = 1.0/(DFLOAT(NR- I )) 
DO 10 1=1,NB 

X(I) = DFLOAT(I)*DELX 
WRITE(46,123) X(I) 

123 	 FORMAT(IX,'X=',IX,12(1X,F5.3)/) 
10 	 CONTINUE 
C 

DO 12 I=1,NR 
ETA(I) = (DFLOAT(I)*DELETA) - DELETA 

WRITE(46,119) ETA(I) 
119 	 FORMAT(IX,'R=',F5.3,IX,12(1X,F5.3)/) 
12 	 CONTINUE 
C 
C 	CaLcuLation of parameters 
C 	PHIA=Dimensionless thiele moduIus 
C 	PHIB=Dimensionless thiele modulus 
C 	PHIC=Dimensionless thiele modulus 
C 	SHERA=Sherwood number 
C 	SHERB=Modified sherwood number 
C 	PEC=Dimensionless peclet number 
C 	PSI=Dimensionless peclet number 
C 	PHIK=Dimensionless thiele modulus for oxygen 
C 	SHAO=Sherwood number for oxygen 
C 	SHBO=Modified sherwood number for oxygen 
C 	PECO=Dimensionless peclet number for oxygen 
C 	CONST I =Constant term in Freundlich relation after dimensionless 
C 	GAMMAZO [=(C_Z_0-)/Ks] is just before entrance into bed, pollutant 
C 	GAMMAOO is (Cm_O_0-)/KS just before entrance into bed, oxygen 
C 

PHIA = ((R**2.0)*XKD)/DSE 
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PHIB = ((R**2.0)*XMU)/DSE 
PHIC = ((R**2.0)*XMUC)/DSE 
SHERA = (XKM*R)/DSE 
SHERB = ((3.0*(1-VOIDB)/VOIDB)*(XKM*R))/DSE 
PEC = (V*XL)/DLE 
PSI = (V*(R**2.0))/(XL*DSE) 
PHIK = (XKSO/XKS) 
SHAO = (XKMO*R)/DSO 
SHBO = ((3.0*( I -VOIDB)VOIDB)*(XKMO*R))/DSE 
PECO = (V*XL)/DLO 

CONST1 = (XKS**(NDASH-1))/((XKP**NDASH)*(RHOS**NDASH)) 
C 

GAMMAZO= 9.8 
GAMMA00= 3.3 

C 
C 	Output of INPUT DATA and CALCULATED parameters 
C 

write(6,5) NB,NR,V,XL,R,DSE,DLE,VOIDA,VOIDB, X MU,XMUC,XKS, 
$ 	XKI,XY,XKM,XKD,XKP,XKP,RHOS,DELT,TMAX,DELX,DELETA,CONST I 
$ PHIA,PHIB,PHIC,SHERA,SHERB,PEC,DSO,DLO,XKSO,XYO,XKMO, 
$ PHIK,PECO,SHAO,SHBO,PS1 

C 
write(46,5) NB,NR,V,XL,R,DSE,DLE,VOIDA,VOIDB,XMIJ,XMUC,XKS, 

$ 	XKI,XY,XKM,XKD,XKP,XKP,RHOS,DELT,TMAX,DELX,DELETA,CONST1, 
$ 	PH IA,PH I B,PHIC,SHERA,SH ERB,PEC,DSO,DLO,X KSO,XYO,XKMO, 
$ PHIK,PECO,SHAO,SHBO,PSI 

C 
$ 	FORMAT(///,T5,'NB'=',I5,T30,'NR=',I5,T55,'V=',D12.5,/, 
$ 	T5,'XL=',D12.5,T30,'R=',D 12.5,T55,'DSE=',DI2.5,/, 
$ 	TS,DLE=',D12.5,T30,'VOIDA=',D12.5,T55,'VOIDB=',D12.5,/, 
$ 	T5,'XMU=',D I 2.5,T30,'XMUC=',D I 2.5,T55,'XKS=',D12.5,/, 

$ 	T5,'XKI=',D12.5,T30,'XY=',DI2.5,T55,'XKM=',D12.5,/, 

$ 	T5,'XKD=',D I 2.5,T30,'XK=',D I 2.5,T55,'XKP=',D12.5,/, 

$ 	T5,'RHOS=',DI2.5,T30,DELT=',D12.5,T55,'TMAX=',D12.5,/, 
$ 	T5,'DELX=',D12.5,T30,DELETA=',D I 2.5,T55,'CONST1 -',D I 2.5,/, 

$ 
$ 	T5,'SHERA=',D12.5,T30,'SHERB=',D12.5,T55,'PEC=',D12.5,1, 
$ 	T5,'DSO=',D12.5,T30,DLO=',D12.5,T55,'XK SO=',D12.5,/, 
$ 	T5,'XYO=',D12.5,T30,'XKMO=',D12.5,T55,'PHIK=',D12.5,/, 
$ 	T5,'PECO=',D12.5,T30,'SHAO=',D12.5J55,SHBO=',D I2.5,/, 

$ 	T5,'PSI=',D12.5,////) 
C 
C 	Initializations 
C 
C 	For CI) 

DO 27 I=1,NB 
C(I)=0.0 

27 	CONTINUE 
C 
C 	For Cmo 

NEQ1 =NB 
NEQ2=2*NB 
DO 28 I=NEQ1+1,NEQ2 

C(I)= 3.4 
28 	CONTINUE 
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C 
C 	For Ca 

NEQ3=NEQ2+NB*NR 
DO 29 I=NEQ2+1,NEQ3 
C(I)=0.0 

29 	CONTINUE 
C 
C 	For q 

NEQ4=NEQ3+NB*NR 
DO 30 I=NEQ3+1,NEQ4 
C(I)= 0.0 

30 	CONTINUE 
C 
C 	For b 

NEQS=NEQ4+NB*NR 
DO 31 I=NEQ4+1,NEQ5 
C(I)= 4.05 

31 	CONTINUE 
C 	For Co 

NEQ6=NEQS+NB*NR 
DO 32 I=NEQ5+I,NEQ6 
C(I)= 3.4 

32 	CONTINUE 
C 
C 	SET UP PARAMETERS FOR CALL TO "DIVPAG" 
C 

= 0.0 
Tu..= 1.0D-6 
MXSTEP= 60000000 
METH = 2 
MITER = 3 
IATYPE = 0.0 
PA RAM(4) = MXSTEP 
PARAM(12) = METH 
PARAM(13) = MITER 
PARAM(19) = IATYPE 

IDO= 1 

TOLD=1.0 
DO 111 ISTEP = 1,NSTEP 
TEND = TMAX*DFLOATOSTEPYDROAT(NSTEP) 

C 
call DIVPAG (IDO,NEQ,FCN,FCNJ,A,T,TEND,TOLPARAM,C) 

C 	PRINT *,'C=',C 
C 
C 	Integration at updated times 
C 	And output at selected steps 
C 

if (TOLD .eq. ISTEP) then 
TOLD=TOLD + 1000.0 

C 
WRITE(6,59) T 
WRITE(31,59) T 

59 	FORMAT(//,T5,T=',F9.3,/) 
C 	WRITE(6,113)) (X(I), I=1,NB) 
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WRITE(31,113) (X(I), I=1,NB) 
113 	FORMAT( I X,'X=',1X,'0.000',12(IX,F5.3),/) 
C 
C 	Ooutput for Cb 
C 

WRITE(6,114) CIZERO,(C(I),I=1,NB) 

WRITE(31,114) C1ZERO,(C(I),I=1,NB) 
114 	FORMAT ('C 1 =', 13 (1X,F5.3)) 
C 
C 	Output for oxygen (axial) 
C 

NST=NB+1 

NLAST=2*NB 
WRITE(6,117) C2ZERO,(C(I),I=NST,N LAST) 
WRITE(31,117) C2ZERO,(C(I),I=NST,NLAST) 

117 	FORMAT (/,'C2=', 13 (IX,F5.3)) 
C 
C 	Output for Ca 
C 

DO 115 I=1,NR 
NSTART = 2*NB+I 
NLAST = 2*NB+NB*NR-NR+I 

C 
WRITE(6,116) ETA(I),(C(K),K=NSTART,NLAST,NR) 
WRITE(31,116) ETA(I),(C(K),K=NSTART,NLAST,NR) 

115 	continue 
C 
C 	Output for q 
C 

DO 215 I=1,NR 
NSTART = 2*NB+NB*NR+I 
NLAST = 2*NI3+2*NB*NR-NR+I 

C 
WRITE(6,116) ETA(I),(C(K),K=NSTART,NLAST,NR) 

WRITE(31,116) ETA(I),(C(K),K=NSTART,NLAST,NR) 
215 	continue 
C 
C 	Output for b 
C 

DO 315 I=1,NR 
NSTART = 2*NB+2*N13*NR+1 

NLAST = 2*NB+3*NB*NR-NR+1 
WRITE(6,1 26) ETA(I),(C(K),K=NSTART,NLAST,NR) 
WRITE(25,116) ETA(I),(C(K),K=NSTART,NLAST,NR) 

315 	continue 
C 
C 	Output for oxygen (in aggregate) 
C 

DO 415 I=1,NR 
NSTART = 2*NB+3*NB*NR+I 
NLAST = 2*NB+4*NB*NR-NR+I 

C 
WRITE(6,116) ETA(I),(C(K),K=NSTART,NLAST,NR) 
WRITE(31,116) ETA(I),(C(K),K=NSTART,NLAST,NR) 

415 	continue 
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C 
116 	FORMAT (IX,'R=',F6.3,1 	X,F6.3)) 
2 1 4 	FORMAT(//) 
C 

WRITE(6, I 37)T,C(NB),C(2*NB) 
WRITE(64,134)T,C(NB),C(2*BB) 

134 	FORMAT( I VT=',1X,F8.3, 1X,'C1 =',1X,F6.3, 1X 'C2=', I X,F6.3) 
C 

else 
end if 

III 	continue 
C 
C 	Final call to release workspace 
C 

10O=3 
call DIVPAG (IDO,BEQ,FCN,FCBJ,A,T,TEND,TOL,PARAM,C) 
STOP 
END 

1 1 1 



APPENDIX C 

CALIBRATION CURVES 

112 



113 

Figure C-I Calibration curve for 2-chlorophenol concentration measurements. 

Figure C-2 Calibration curve for chloride concentration measurement using 
lonplus chloride electrode. 
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Figure C-3 Calibration curve for determination of biomass concentration 
from optical density readings [taken from Dishitulu (1993)]. 



APPENDIX D 

TABLES AND FIGURES OF EXPERIMENTAL RESULTS OBTAINED IN SHAKE 
FLASKS FOR KINETICS PARAMETER EVALUATION 
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Table D-1 Experimental data obtained from batch experiment run-1. 

Sample 
No 

Time 

(h) 

Optical 
density 

Biomass 
concentration 

(mg/L) 

Ln (biomass 
concentration) 

2-Chlorophenol 
concentration 

(mg/L) 

1 0.00 0.069 18.9 2.94 19.22  

2 1.33 0.077 21.0 3.05 16.05 

3 2.83 0.090 24.6 3.20 9.80 

4 3.37 0.094 25.7 3.25 6.83 

5 4.20 0.105 28.7 3.36 1.60 

Table D-2 Experimental data obtained from batch experiment run-2. 

Sample 
No 

Time 

(h) 

Optical 
density 

Biomass 
concentration 

(mg/L) 

Ln (biomass 
concentration) 

2-Chlorophenol 
concentration 

(mg/I.) 

1 0.00 0.031 8.48 2.14 14.27 

2 0.83 0.033 9.02 2.20 12.69 

3 1.33 0.035 9.57 2.26 11.45 

4 1.83 0.037 10.12 2.31 10.08 

5 2.33 0.040 10.94 2.40 8.36 

6 2.83 0.043 11.76 2.46 6.33 

7 3.33 0.045 12.30 2.51 4.74 

8 3.83 0.048 13.12 2.57 2.86 

9 4.08 0.050 13.67 2.62 2.00 

10 4.33 0.053 14.49 2.68 0.90 
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Table D-3 Experimental data obtained from batch experiment run-9. 

Sample 
No 

Time 

(h) 

Optical 
density 

Biomass 
concentration 

(mg/L) 

Ln (biomass 
concentration) 

2-Chlorophenol 
concentration 

(mg/L) 

1 0.00 0.033 9.02 2.20 11.25 

2 0.50 0.034 9.30 2.23 10.10 

3 1.00 0.036 9.84 2.29 9.00 

4 1.50 0.038 10.39 2.34 7.60 

5 2.00 0.040 10.94 2.39 6.10 

6 2.50 0.042 11.48 2.44 4.40 

7 3.00 0.044 12.03 2.49 3.40 

8 3.50 0.048 13.12 2.57 2.00 

9 4.00 0.051 13.94 2.63 1.00 

10 4.50 0.053 14.49 2.67 0.20 



Table D-4 Experimental data obtained from batch experiment run-4. 

Sample 
No 

Time 

(h) 

Optical 
density 

Biomass 
concentration 

(mg/L) 

Ln (biomass 
concentration) 

2-Chlorophenol 
concentration 

(mg/L) 

1 0.00 0.039 10.7 2.37 46.8 

2 0.50 0.039 10.7 2.37 46.6 

3 0.75 0.039 10.7 2.37 47.4 

4 1.00 0.040 10.9 2.39 47.4 

5 1.50 0.041 11.2 2.41 43.2 

6 2.00 0.043 11.8 2.46 41.2 

7 2.50 0.045 12.3 2.51 43.1 

8 3.00 0.048 13.1 2.57 41.0 

9 3.50 0.050 13.7 2.61 37.0 

10 4.00 0.053 14.5 2.67 35.7 

11 4.50 0.058 15.9 2.76 33.9 

12 5.00 0.060 16.4 2.80 31.1 

13 5.50 0.064 17.5 2.86 27.7 

14 6.50 0.072 19.7 3.00 21.2 

15 7.50 0.083 22.7 3.12 13.3 

16 8.50 0.099 27.1 3.30 3.27 
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Table D-5 Experimental data obtained from batch experiment run-5. 

Sample 
No 

Time 

(h) 

Optical 
density 

Biomass 
concentration 

(mg/L) 

Ln (biomass 
concentration) 

2-Chlorophenol 
concentration 

(mg/L) 

1 0.00 0.042 11.5 2.44 63.0 

2 0.33 0.042 11.5 2.44 62.1 

3 0.50 0.042 11.5 2.44 63.0 

4 0.83 0.042 11.5 2.44 61.1 

5 1.50 0.042 11.5 2.44 60.0 

6 2.00 0.042 11.5 2.44 59.0 

7 2.58 0.042 11.5 2.44 59.6 

8 3.00 0.042 11.5 2.44 55.0 

9 3.50 0.042 11.5 2.44 56.3 

10 4.00 0.043 11.8 2.46 54.5 

11 4.50 0.045 12.3 2.51 52.2 

12 5.00 0.050 13.7 2.61 50.1 

13 5.50 0.052 14.2 2.65 48.7 

14 6.00 0.055 15.0 2.71 45.5 

15 7.00 0.059 16.1 2.78 42.0 

16 8.00 0.064 17.5 2.86 38.1 

17 9.00 0.066 18.0 2.89 32.8 
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Table D-6 Experimental data obtained from batch experiment run-6. 

Sample 
No 

Time 

(h) 

Optical 
density 

Biomass 
concentration 

(mg/14 

Ln (biomass 
concentration) 

2-Chlorophenol 
concentration 

(mg/L) 

1 0.00 0.118 32.3 3.47 65.1 

2 0.50 0.119 32.5 3.48 66.6 

3 1.00 0.122 33.3 3.51 62.1 

4 1.50 0.125 34.2 3.53 60.0 

5 2.00 0.131 35.8 3.58 57.5 

6 2.50 0.133 36.3 3.59 54.7 

7 3.00 0.140 38.3 3.64 49.4 

8 3.50 0.144 39.4 3.67 45.8 

9 4.50 0.161 44.0 3.78 33.7 

10 5.00 0.166 45.4 3.81 28.1 

11 5.50 0.177 48.4 3.88 21.1 

12 6.00 0.187 51.1 3.93 12.2 

13 7.00 0.210 57.4 4.05 0.0 
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Table D-7 Experimental data obtained from batch experiment run-7. 

Sample 
No 

Time 

(h) 

Optical 
density 

Biomass 
concentration 

(mg/L) 

Ln (biomass 
concentration) 

2-Chlorophenol 
concentration 

(mg/L) 

1 0.00 0.127 34.7 3.55 81.4 

2 0.50 0.128 35.0 3.55 80.1 

3 1.00 0.131 35.8 3.58 77.2 

4 1.50 0.134 36.6 3.60 74.9 

5 2.00 0.140 38.3 3.64 73.7 

6 2.50 0.144 39.4 3.67 70.3 

7 3.00 0.150 41.0 3.71 65.7 

8 3.50 0.155 42.4 3.75 57.4 

9 4.50 0.168 45.9 3.83 49.9 

10 5.00 0.175 47.8 3.87 42.3 

11 5.50 0.183 50.0 3.91 35.0 

12 6.00 0.196 53.6 3.98 24.5 

13 7.00 0.225 61.5 4.12 7.16 

14 7.50 0.242 66.1 4.19 0.0 
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Table D-8 Experimental data obtained from batch experiment run-8. 

Sample 
No 

Time 

(h) 

Optical 
density 

Biomass 
concentration 

(mg/L) 

Ln (biomass 
concentration) 

2-Chlorophenol 
concentration 

(mg/L) 

1 0.00 0.102 27.9 3.33 109.3 

2 0.50 0.103 28.1 3.34 107.1 

3 1.00 0.106 29.0 3.37 106.4 

4 1.50 0.108 29.5 3.38 107.4 

5 2.00 0.110 30.1 3.40 101.9 

6 2.50 0.114 31.2 3.44 101.0 

7 3.00 0.117 32.0 3.47 99.47 

8 3.50 0.120 32.8 3.49 91.03 

9 4.50 0.129 35.3 3.56 87.41 

10 5.00 0.134 36.6 3.60 85.45 

11 5.50 0.140 38.3 3.64 74.54 

12 6.00 0.145 39.6 3.68 70.11 

13 7.00 0.155 42.4 3.75 61.74 

14 7.50 0.160 43.7 3.78 57.35 

15 8.00 0.170 46.5 3.84 49.00 

16 8.50 0.176 48.1 3.87 42.16 

17 9.00 0.184 50.3 3.92 37.41 

18 9.50 0.193 52.7 3.97 30.42 
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Figure D-1. Determination of the specific growth rate oil. pickettii on 
2-chlorophenol (run#1 in shake flask). 

Figure D-2 Determination of the specific growth rate of P. pickettii on 
2-chlorophenol (run#2 in shake flask). 
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Figure D-3 Determination of the specific growth rate of P. pickettii on 
2-chlorophenol (run#9 in shake flask). 

Figure D-4 Determination of the specific growth rate of P. pickettii on 
2-chlorophenol (run#4 in shake flask). 



Figure D-5 Determination of the specific growth rate of P. pickettii on 
2-chlorophenol (run#5 in shake flask). 

Figure D-6 Determination of the specific growth rate of P. pickettii on 
2-chlorophenol (run#6 in shake flask). 
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Figure D-7 Determination of the specific growth rate of P. pickettii on 
2-chlorophenol (run#7 in shake flask). 

Figure D-8 Determination of the specific growth rate of P. pickettii on 

2-chlorophenol (run#8 in shake flask). 
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APPENDIX E 

TABLES AND FIGURES OF EXPERIMENTAL RESULTS OBTAINED IN 
JACKETTED BATCH REACTOR FOR KINETICS PARAMETER 

EVALUATION 
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Table E-1 Experimental data obtained from batch experiment K-8. 

Sample 
No 

Time 

(h) 

Optical 
density 

Biomass 
concentration 

(mg/L) 

Ln (biomass 
concentration) 

2-Chlorophenol 
concentration 

(mg/L) 

1 0.00 0.0430 11.8 2.46 28.8 

2 0.25 0.0435 11.9 2.48 27.5 

3 0.50 0.0445 12.2 2.50 26.8 

4 0.75 0.0460 12.6 2.53 25.4 

5 1.00 0.0480 13.1 2.57 24.2 

6 1.25 0.0500 13.7 2.62 23.4 

7 1.50 0.0520 14.2 2.65 21.1 

8 1.75 0.0540 14.8 2.69 20.6 

9 2.00 0.0560 15.3 2.73 19.1 

10 2.25 0.0580 15.9 2.76 17.4 

11 2.50 0.0600 16.4 2.80 15.2 

12 2.75 0.0620 16.9 2.83 14.3 

13 3.00 0.0640 17.5 2.86 13.1 

14 3.25 0.0660 18.0 2.89 11.2 

15 3.42 0.0680 18.6 2.92 10.3 

16 3.50 0.0695 19.0 2.94 9.23 

17 3.75 0.0720 19.7 2.98 7.74 

18 4.00 0.0740 20.2 3.01 5.80 

19 4.25 0.0760 20.8 3.03 3.90 

20 4.50 0.0790 21.6 3.07 2.60 

21 4.75 0.0820 22.4 3.11 0.98 

22 5.00 0.0850 23.2 3.15 0.00 

23 5.25 0.0850 23.2 3.15 0.00 
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Table E-2 Experimental data obtained from batch experiment K-9. 

Sample 
No 

Time 

(h) 

Optical 
density 

Biomass 
concentration 

(mgt) 

Ln (biomass 
concentration) 

2-Chlorophenol 
concentration 

(mg/L) 

1 0.00 0.0475 13.0 2.56 35.0 

2 0.25 0.0480 13.1 2.57 34.2 

3 0.50 0.0495 13.5 2.61 33.4 

4 0.75 0.0510 13.9 2.63 32.2 

5 1.00 0.0530 14.5 2.67 31.5 

6 1.25 0.0555 15.2 2.72 30.1 

7 1.50 0.0575 15.7 2.75 28.7 

8 1.67 0.0590 16.1 2.78 27.1 

9 2.00 0.0615 16.8 2.82 25.5 

10 2.25 0.0640 17.5 2.86 23.1 

11 2.50 0.0680 18.6 2.92 21.2 

12 2.75 0.0720 19.7 2.98 19.6 

13 3.00 0.0750 20.5 3.02 17.3 

14 3.25 0.0780 21.3 3.06 14.7 

15 3.50 0.0810 22.1 3.10 12.2 

16 3.75 0.0850 23.2 3.15 9.02 

17 4.00 0.0900 24.6 3.20 7.38 

18 4.25 0.0940 25.7 3.25 4.80 

19 4.50 0.0970 26.5 3.28 2.50 

20 4.75 0.1010 27.6 3.32 0.30 

21 5.00 0.1040 28.4 3.35 0.00 

22 5.25 0.1040 28.4 3.35 0.00 
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Table E-3 Experimental data obtained from batch experiment K-10. 

Sample 
No 

Time 

(h) 

Optical 
density 

Biomass 
concentration 

(mg/L) 

Ln (biomass 
concentration) 

2-Chlorophenol 
concentration 

(mg/1.) 

1 0.00 0.0430 11.8 2.46 42.9 

2 0.25 0.0430 11.8 2.46 41.8 

3 0.50 0.0440 12.0 2.49 41.3 

4 0.75 0.0445 12.2 2.50 40.6 

5 1.00 0.0455 12.4 2.52 39.1 

6 1.25 0.0470 12.8 2.55 38.2  

7 1.50 0.0490 13.4 2.59 37.0 

8 1.75 0.0510 13.9  2.63 36.5 

9 2.00 0.0530 14.5 2.67 34.6 

10 2.25 0.0545 14.9 2.70 33.8 

11 2.50 0.0565 15.4 2.74 33.0 

12 2.75 0.0580 15.9 2.76 31.5 

13 3.00 0.0600 16.4 2.80 30.5 

14 3.25 0.0620 16.9 2.83 29.4 

15 3.50 0.0630 17.2 2.85 28.3 

16 3.75 0.0645 17.8 2.87 27.3 

17 4.00 0.0670 18.5 2.91 25.7 

18 4.25 0.0690 19.1 2.94 24.6 

19 4.50 0.0710 19.7 2.97 23.4 

20 4.75 0.0735 20.2 3.00 21.5 

21 5.00 0.0750 20.8 3.02 20.1 

22 5.25 0.0770 21.3 3.05 17.9 

23 5.50 0.0790 22.0 3.07 16.0 

24 5.75 0.0810 22.7 3.10 14.0 

25 6.00 0.0850 23.5 3.15 12.1 
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Table E-3 (continued 

Sample 
No 

Time 

(h) 

Optical 
density 

Biomass 
concentration 

mg/L) 

Ln (biomass 
concentration) 

2-Chlorophenol 
concentration 

(mg/L) 

26 6.25 0.0880 24.3 3.18 10.6 

27 6.50 0.0900 25.2 3.20 8.50 

28 6.75 0.0940 25.7 3.25 6.58 

29 7.00 0.0960 26.5 3.27 4.70 

30 7.25 0.0980 27.3 3.29 2.67 

31 7.50 0.1010 28.2 3.32 0.85 

32 7.75 0.1050 29.0 3.36 0.00 

33 8.00 0.1060 29.3 3.37 0.00 
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Table E-4 Experimental data obtained from batch experiment K-1 

Sample 
No 

Time 

(h) 

Optical 
density 

Biomass 
concentration 

(mg/L) 

Ln (biomass 
concentration) 

2-Chlorophenol 
concentration 

(mg/L) 

1 0.00 0.0370 10.1 2.31 51.8 

2 0.25 0.0370 10.1 2.31 51.0 

3 0.50 0.0380 10.4 2.34 50.4 

4 0.75 0.0385 10.5 2.35 49.3 

5 0.83 0.0390 10.7 2.37 48.8 

6 1.00 0.0400 10.9 2.39 47.8 

7 1.25 0.0415 11.3 2.43 45.5 

8 1.50 0.0430 11.8 1.46 44.5 

9 1.75 0.0445 12.2 2.50 43.4 

10 2.00 0.0460 12.6 2.53 42.5 

11 2.25 0.0470 12.8 2.55 40.5 

12 2.50 0.0490 13.4 2.59 39.0 

13 2.75 0.0510 13.9 2.63 38.5 

14 3.00 0.0525 14.4 2.66 37.0 

15 3.25 0.0540 14.8 2.69 35.3 

16 3.50 0.0560 15.3 2.73 33.4 

17 3.75 0.0570 15.6 2.75 32.1 

18 4.00 0.0590 16.1 2.78 30.1 

19 4.25 0.0610 16.7 2.81 27.3 

20 4.50 0.0620 16.9 2.83 24.5 

21 4.75 0.0640 17.5 2.86 21.9 

22 5.00 0.0660 18.0 2.89 21A 

23 5.25 0.0680 18.6 2.92 20.7 

24 5.50 0.0700 19.1 2.95 18.1 

25 5.75 0.0720 19.7 2.98 17.4 
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Table E-4 (continued) 

Sample 
No 

Time 

(h) 

Optical 
density 

Biomass 
concentration 

(mg/L) 

Ln (biomass 
concentration) 

2-Chlorophenol 
concentration 

(mg/L) 

26 6.00 0.0740 20.2 3.0L L5.0 

27 6.25 0.0770 2L.L 3.05 L3.0 

28 6.50 0.0790 2L.6 3.07 L0.7 

29 6.75 0.0820 22.4 3.LL 8.L0 

30 7.00 0.0840 23.0 3.L3 6.05 

3L 7.25 0.0870 23.8 3.L7 4.60 

32 7.50 0.0895 24.5 3.20 2.25 

34 7.75 0.0920 25.2 3.22 L.00 

35 8.00 0.0950 26.0 3.26 0.L5 

36 8.25 0.0980 26.8 3.29 0.00 

37 8.50 0.0980 26.8 3.29 0.00 
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Table E-5 Experimental data obtained from batch experiment K-L2. 

Sample 
No 

Time 

(h) 

Optical 
density 	concentration 

Biomass 

(mei-) 

Ln (biomass 
concentration) 

2-Chlorophenol 
concentration 

(mg/L) 

L 0.00 0.0470 12.8 2.55 73.L 

2 0.25 0.0470 12.8 2.55 72.3 

3 0.50 0.0480 L3.L 2.57 7L.5 

4 0.75 0.0485 L3.3 2.58 69.8 

5 L.00 0.0495 L3.5 2.6L 69.0 

6 L.25 0.05L0 L3.9 2.63 68.2 

7 L.50 0.0520 L4.2 2.65 67.L 

8 L.75 0.0540 L4.8 2.69 66.4 

9 2.00 0.0560 L5.3 2.73 65.0 

L0 2.25 0.0570 L5.6 2.75 63.8 

LL 2.50 0.0590 16.1 2.78 62.4 

L2 2.75 0.06L0 L6.7 2.8L 6L.5 

L3 3.00 0.0630 L7.2 2.85 60.8 

14 3.25 0.0645 L7.6 2.87 58.9 

L5 3.50 0.0660 L8.0 2.89 56.2 

L6 3.75 0.0680 L8.6 2.92 53.5 

L7 4.00 0.0700 L9.L 2.95 5L.') 

L8 4.25 0.0720 L9.7 2.98 49.3 

L9 4.50 0.0740 20.2 3.0L 48.0 

20 4.75 0.0760 20.8 3.03 46.6 

2L 5.00 0.0780 2L.3 3.06 44.L 

22 5.25 0.0800 2L.9 3.09 41.3 

23 5.50 0.0820 22.4 3.LL 38.3 

24 5.75 0.0840 23.0 3.L3 36.6 

25 6.00 0.0870 23.8 3.L7 33.7 
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Table E-5 (continued) 

Sample 
No 

Time 

(h) 

Optical 
density 

Biomass 
concentration 

(mg/L) 

Ln (biomass 
concentration) 

2-Chlorophenol 
concentration 

(mg/L) 

26 6.25 0.0900 24.6 3.20 3L8 

27 6.50 0.0930 25.4 3.24 27.6 

28 6.75 0.0970 26.5 3.28 25.8 

29 7.00 0.1000 27.3 3.3L 23.4 

30 7.25 0.1030 28.2 3.34 2L.0 

3L 7.50 0.1070 29.3 3.38 L6.9 

32 7.75 0.L120 30.6 3.42 L3.2 

34 8.00 0.1170 32.0 3.47 9.43 

35 8.25 0.L220 33.4 3.51 6.40 

36 8.50 0.L260 34.4 3.54 2.86 

37 8.75 0.L290 35.3 3.56 0.34 

38 9.00 0.L320 36.L 3.59 0.00 

39 9.25 0.L330 36.4 3.59 0.00 
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Table E-6 Experimental data obtained from batch experiment K-L3. 

Sample 
No 

Time 

(h) 

Optical 
density 	concentration 

Biomass 

(mg/L) 

Ln (biomass 
concentration) 

2-Chlorophenol 
concentration 

(mg/L) 

L 0.00 0.0380 L0.4 2.34 88.6 

2 0.25 0.0380 L0.4 2.34 88.2 

3 0.50 0.0390 L0.7 2.37 87.8 

4 0.75 0.0390 L0.7 2.37 86.5 

5 L.00 0.0395 L0.8 2.38 85.6 

6 L.25 0.0400 L0.9 2.39 83.7 

7 L.50 0.0410 LL.2 2.42 82.3 

8 L.75 0.0420 LL.5 2.44 8L.0 

9 2.00 0.0430 LL.8 2.46 80.4 

L0 2.33 0.0445 L2.2 2.50 79.2 

LL 2.58 0.0460 L2.6 2.53 78.7 

L2 2.75 0.0470 L2.8 2.55 77.7 

L3 3.00 0.0475 L3.0 2.56 76.0 

L4 3.25 0.0490 L3.4 2.59 74.9 

L5 3.50 0.0500 L3.7 2.62 73.0 

L6 3.75 0.05L0 L3.9 2.63 7L.5 

L7 4.00 0.0525 L4.4 2.66 69.5 

L8 4.25 0.0545 14.9 2.70 67.9 

19 4.50 0.0555 L5.2 2.72 65.8 

20 4.75 0.0570 15.6 2.75 63.8 

21 5.00 0.0590 L6.L 2.78 62.0 

22 5.25 0.0600 16.4 2.80 60.2 

23 5.50 0.0610 16.7 2.8L 58.0 

24 5.75 0.0630 L7.2 2.85 55.9 
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Table E-6 (continued) 

Sample 
No 

Time 

(h) 

Optical 
density 

Biomass 
concentration 

(mg/L) 

Ln (biomass 
concentration) 

2-Chlorophenol 
concentration 

(mg/L) 

25 6.00 0.0650 17.8 2.88 53.9 

26 6.25 0.0660 18.0 2.89 52.0 

27 6.50 0.0670 18.3 2.91 49.9 

28 6.75 0.0690 18.9 2.94 47.7 

29 7.00 0.0710 19.4 2.97 45.6 

30 7.25 0.0730 20.0 2.99 43.7 

31 7.50 0.0750 20.5 3.02 41.7 

32 7.75 0.0760 20.8 3.03 39.2 

34 8.00 0.0780 21.3 3.06 37.8 

35 8.25 0.0800 21.9 3.09 35.0 

36 8.50 0.0810 22.1 3.10 32.1 

37 8.75 0.0825 22.6 3.12 31.1 

38 9.00 0.0850 23.2 3.15 29.7 

39 9.25 0.0875 23.9 3.17 27.2 

40 9.50 0.0900 24.6 3.20 25.4 

41 9.75 0.0930 25.4 3.24 23.5 

42 10.00 0.0960 26.2 3.27 19.1 

43 10.25 0.0990 27.1 3.30 18.4 

44 10.50 0.1020 27.9 3.33 15.6 

45 10.75 0.1060 29.0 3.37 12.6 

46 11.00 0.1100 30.1 3.40 10.6 

47 11.25 0.1150 31.4 3.45 7.25 

48 11.50 0.1190 32.5 3.48 4.82 

49 11.75 0.1240 33.9 3.52 2.66 
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Table E-6 (continued) 

Sample 
No 

Time 

(h) 

Optical 
density 

Biomass 
concentration 

(mg/L) 

Ln (biomass 
concentration) 

2-Chlorophenol 
concentration 

(mg/L) 

50 L2.00 0.L270 34.7 3.55 0.8L 

5L L2.25 0.L300 35.5 3.57 0.00 

52 L2.50 0.L310 35.8 3.58 0.00 

Table E-7 Experimental data obtained from batch experiment K-L5. 

Sample 
No 

Time 

(h) 

Optical 
density 

Biomass 
concentration 

(mg/L) 

Ln (biomass 
concentration) 

2-Chlorophenol 
concentration 

(mg/L) 

L 0.00 0.0200 5.47 L.70 4.95 

2 0.L7 0.0205 5.60 L.72 4.7L 

3 0.33 0.02L0 5.74 L.75 4.53 

4 0.50 0.02L5 5.88 L.77 4.24 

5 0.67 0.0220 6.0L L.79 4.00 

6 0.83 0.0225 6.L5 L.82 3.62 

7 L.00 0.0230 6.29 L.84 3.24 

8 L.20 0.0240 6.56 L.88 2.70 

9 L.33 0.0245 6.70 1.90 2.50 

L0 L.50 0.0250 6.83 L.92 2.L') 

LL L.67 0.0260 7.LL L.96 L.84 

L2 L.87 0.0265 7.24 L.98 L.30 

13 2.00 0.0270 7.38 2.00 L.07 

L4 2.25 0.0280 7.65 2.04 0.47 

L5 2.37 0.0280 7.65 2.04 0.00 
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Table E-8 Experimental data obtained from batch experiment K-16. 

Sample 
No 

Time 

(h) 

Optical 
density 

Biomass 
concentration 

(mg/L) 

Ln (biomass 
concentration) 

2-Chlorophenol 
concentration 

(mg/L) 

1 0.00 0.0200 5.47 1.70 5.89 

2 0.17 0.0200 5.47 1.70 5.28 

3 0.33 0.0205 5.60 1.72 5.16 

4 0.50 0.0210 5.74 1.75 4.85 

5 0.67 0.0215 5,88 1.77 4.47 

6 0.83 0.0220 6.01 1.79 4.04 

7 1.00 0.0225 6.15 1.82 3.72 

8 1.17 0.0230 6.29 1.84 3.35 

9 1.33 0.0240 6.56 1.88 2.90 

10 1.50 0.0245 6.70 1.90 2.54 

11 1.67 0.0250 6.83 1.92 2.09 

12 1.83 0.0260 '7.11 1.96 1.67 

13 2.00 0.0265 7.24 1.98 1.27 

14 2.17 0.0270 7.38 2.00 0.89 

15 2.42 0.0280 7.65 2.04 0.12 

16 2.67 0.0290 7.93 2.07 0.0() 

17 2.92 0.0290 7.93 2.07 0.00 
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Table E-9 Experimental data obtained from batch experiment K-17. 

Sample 
No 

Time 

(h) 

Optical 
density 

Biomass 
concentration 

(mg/L) 

Ln (biomass 
concentration) 

2-Chlorophenol 
concentration 

(mg/L) 

1 0.00 0.0200 5.47 1.70 6.36 

2 0.17 0.0200 5.47 1.70 6.03 

3 0.33 0.0205 5.60 1.72 5.51 

4 0.50 0.0210 5.74 1.75 5.28 

5 0.67 0.0215 5.88 1.77 5.01 

6 0.83 0.0220 6.01 1.79 4.55 

7 1.00 0.0225 6.15 1.82 4.36 

8 1.17 0.0230 6.29 1.84 3.91 

9 1.33 0.0235 6.42 1.86 3.55 

10 1.50 0.0240 6.56 1.88 3.07 

11 1.67 0.0245 6.70 1.90 2.72 

12 1.83 0.0250 6.83 1.92 2.33 

13 2.00 0.0260 7.11 1.96 1.95 

14 2.25 0.0270 7.38 2.00 1.37 

15 2.50 0.0280 7.65 2.04 0.69 

16 2.75 0.0285 7.79 2.05 0.00 

17 3.00 0.0280 7.65 2.04 0.00 
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Table E-10 Experimental data obtained from batch experiment K-18. 

Sample 
No 

Time 

(h) 

Optical 
density 

Biomass 
concentration 

(mg/L) 

Ln (biomass 
concentration) 

2-Chlorophenol 
concentration 

(mg/L) 

1 0.00 0.0390 10.7 2.37 8.14 

2 0.17 0.0400 10.9 2.39 7.57 

3 0.33 0.0405 11.1 2.40 6.67 

4 0.50 0.0420 11.5 2.44 6.19 

5 0.67 0.0430 11.8 2.46 5.46 

6 0.83 0.0440 12.0 2.49 4.80 

7 1.00 0.0445 12.2 2.50 4.17 

8 1.17 0.0465 12.7 2.54 3.50 

9 1.33 0.0470 12.8 2.55 2.97 

10 1.50 0.0480 13.1 2.57 2.33 

11 1.67 0.0490 13.4 2.59 1.59 

12 1.83 0.0505 13.8 2.63 1.01 

13 2.00 0.0510 13.9 2.63 0.03 

14 2.17 0.0510 13.9 2.63 0.00 
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Table E-11 Experimental data obtained from batch experiment K-19. 

Sample 
No 

Time 

(Ii) 

Optical 
density 

Biomass 
concentration 

(me-) 

Ln (biomass 
concentration) 

2-Chlorophenol 
concentration 

(mg/L) 

1 0.00 0.0290 7.93 2.07 9.55 

2 0.17 0.0295 8.06 2.09 8.74 

3 0.33 0.0305 8.34 2.12 8.03 

4 0.50 0.0310 8.47 2.14 7.92 

5 0.67 0.0320 8.75 2.17 7.30 

6 0.83 0.0330 9.02 2.20 6.96 

7 1.00 0.0340 9.30 2.23 6.55 

8 1.17 0.0345 9.43 2.24 5.93 

9 1.33 0.0360 9.84 2.29 5.54 

10 1.50 0.0375 10.3 2.33 4.84 

11 1.67 0.0380 10.4 2.34 4.20 

12 1.83 0.0400 10.9 2.39 3.70 

13 2.00 0.0410 11.2 2.42 3.07 

14 2.17 0.0420 11.5 2.44 2.55 

15 2.33 0.0435 11.9 248 1.99 

16 2.50 0.0440 12.0 2.49 1.34 

17 2.67 0.0450 12.3 2.51 0.78 

18 2.83 0.0460 12.6 2.53 0.12 

19 3.00 0.0460 12.6 2.53 0.00 
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Table E-12 Experimental data obtained from batch experiment K-20. 

Sample 
No 

Time 

(h) 

Optical 
density 

Biomass 
concentration 

(mg/L) 

Ln (biomass 
concentration) 

2-Chlorophenol 
concentration 

(mg/L) 

1 0.00 0.0210 5.74 1.75 10.0 

2 0.20 0.0215 5.88 1.77 9.53 

3 0.33 0.0220 6.01 1.79 8.83 

4 0.50 0.0230 6.29 1.84 8.24 

5 0.67 0.0230 6.29 1.84 7.90 

6 0.83 0.0240 6.56 1.88 7.58 

7 1.00 0.0245 6.70 1.90 7.03 

8 1.17 0.0250 6.83 1.92 6.71 

9 1.33 0.0260 7.11 1.96 6.43 

10 1.50 0.0265 7.24 1.98 6.08 

11 1.70 0.0270 7.38 2.00 5.43 

12 1.83 0.0285 7.79 2.05 5.14 

13 2.00 0.0290 7.93 2.07 4.55 

14 2.17 0.0300 8.20 2.10 3.80 

15 2.33 0.0310 8.47 2.14 3.56 

16 2.58 0.0320 8.75 2.17 2.69 

17 2.83 0.0330 9.02 2.20 1.99 

18 3.08 0.0350 9.57 2.26 1.19 

19 3.33 0.0360 9.84 2.29 0.57 

20 3.58 0.0360 9.84 2.29 0.00 
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Table E-13 Experimental data obtained from batch experiment K-21. 

Sample 
No 

Time 

(h) 

Optical 
density 

Biomass 
concentration 

(mom) 

Ln (biomass 
concentration) 

2-Chlorophenol 
concentration 

(mg/L) 

1 0.00 0.0300 8.20 2.10 15.8 

2 0.25 0.0310 8.47 2.14 15.2 

3 0.50 0.0320 8.75 2.17 14.3 

4 0.75 0.0335 9.16 2.21 13.4 

5 1.00 0.0350 9.57 2.26 12.8 

6 1.25 0.0360 9.84 2.29 11.8 

7 1.50 0.0380 10.4 2.34 10.9 

8 1.77 0.0390 10.7 2.37 10.1 

9 2.00 0.0410 11.2 2.42 8.90 

10 2.25 0.0420 11.5 2.44 8.00 

11 2.50 0.0435 11.9 2.48 6.82 

12 2.75 0.0450 12.3 2.51 5.41 

13 3.00 0.0470 12.8 2.55 4.16 

14 3.25 0.0490 13.4 2.59 2.90 

15 3.50 0.0510 13.9 2.63 1.73 

16 3.75 0.0530 14.5 2.67 0.75 

17 4.00 0.0550 15.0 2.71 0.02 

18 4.25 0.0550 15.0 2.71 0.00 
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Table E-14 Experimental data obtained from batch experiment K-22. 

Sample 
No 

Time 

(h) 

Optical 
density 	concentration 

Biomass 

(mg/L) 

Ln (biomass 
concentration) 

2-Chlorophenol 
concentration 

(mg/L) 

1 0.00 0.0390 10.7 2.37 20.3 

2 0.17 0.0390 10.7 2.37 19.4 

3 0.33 0.0400 10.9 2.39 18.2 

4 0.50 0.0410 11.2 2.42 17.2 

5 0.67 0.0420 11.5 2.44 16.8 

6 0.83 0.0435 11.9 2.48 15.2 

7 1.00 0.0440 12.0 2.49 14.7 

8 1.17 0.0460 12.6 2.53 13.8 

9 1.33 0.0470 12.8 2.55 13.1 

10 1.50 0.0485 13.3 2.58 11.8 

11 1.67 0.0500 13.7 2.62 10.9 

12 1.83 0.0520 14.2 2.65 10.0 

13 2.03 0.0540 14.8 2.69 8.96 

14 2.17 0.0550 15.0 2.71 8.18 

15 2.33 0.0565 15.4 2.74 6.89 

16 2.50 0.0580 15.9 2.76 5.85 

17 2.75 0.0610 16.7 2.81 4.21 

18 3.00 0.0630 17.2 2.85 2.71 

19 3.25 0.0660 18.0 2.89 1.11 

20 3.50 0.0690 18.9 2.94 0.22 

21 3.75 0.0700 19.1 2.95 0.00 
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Table E-15 Experimental data obtained from batch experiment K-23. 

Sample 
No 

Time 

(h) 

Optical 
density 

Biomass 
concentration 

(mg/L) 

1-n (biomass 
concentration) 

2-Chlorophenol 
concentration 

(mg/L) 
1 0.00 0.0390 10.7 2.37 25.2 

2 0.17 0.0390 10.7 2.37 24.8 

3 0.33 0.0400 10.9 2.39 23.6 

4 0.50 0.0410 11.2 2.42 22.8 

5 0.67 0.0420 11.5 2.44 21.9 

6 0.83 0.0435 11.9 2.48 21.1 

7 1.00 0.0450 12.3 2.51 20.7 

8 1.17 0.0460 12.6 2.53 19,6 

9 1.33 0.0470 12.8 2.55 18.7 

10 1.50 0.0480 13.1 2.57 17.9 

11 1.67 0.0490 13.4 2.59 16.8 

12 1.83 0.0505 13.8 2.63 16.0 

13 2.00 0.0520 14.2 2.65 15.4 

14 2.17 0.0535 14.6 2.68 14.1 

15 2.33 0.0550 15.0 2.71 12.9 

16 2.50 0.0560 15.3 2.73 11.9 

17 2.67 0.0580 15.9 2.76 11.0 

18 2.83 0.0590 16.1 2.78 9.87 

10 3.00 0.0605 16.5 2.81 8.76 

20 3.25 0.0630 17.2 2.85 7.02 

21 3.50 0.0660 18.0 2.89 5.24 

22 3.75 0.0680 18.6 2.92 3.42 

23 4.00 0.0710 19.4 2.97 1.73 

24 4.25 0.0730 20.0 2.99 0.56 

25 4.50 0.0750 20.5 3.02 0.00 

26 4.75 0.0760 20.8 3.03 0.00 
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Figure E-1 Determination of the specific growth rate (a) and yield coefficient 
(b) of P. pickettii on 2-chlorophenol (Expt. K-8). 



figure E-2 Determination of the specific growth rate (a) and yield coefficient 
(b) of P. pickettii on 2-chlorophenol (Expt. K-9). 
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Figure E-3 Determination of the specific growth rate (a) and yield coefficient 
(b) of P. pickettii on 2-chlorophenol (Expt. K-10). 
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Figure E-4 Determination of the specific growth rate (a) and yield coefficient 
(b) of P. pickettii on 2-chlorophenol (Expt. K-11). 
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Figure E-5 Determination of the specific growth rate (a) and yield coefficient 
(b) of P. pickettii on 2-chlorophenol (Expt. K-12). 
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Figure E-6 Determination of the specific growth rate (a) and yield coefficient 

(b) of P. pickettii on 2-chlorophenol (Expt. K-13). 



Figure E-7 Determination of the specific growth rate (a) and yield coefficient 

(b) of P. pickettii on 2-chlorophenol (Expt. K-15). 
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Figure E-8 Determination of the specific growth rate (a) and yield coefficient 
(b) of P. pickettii on 2-chlorophenol (apt. K-16). 
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Figure E-9 Determination of the specific growth rate (a) and yield coefficient 

(b) of P. pickettii on 2-chlorophenol (Expt. K-17). 
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Figure E-10 Determination of the specific growth rate (a) and yield coefficient (b) of 
P. pickettii on 2-chlorophenol (Expt. K-18). 
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Figure E-11 Determination of the specific growth rate (a) and yield coefficient (b) of 
P. pickettii on 2-chlorophenol (Expt. K-19). 
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Figure E-12 Determination of the specific growth rate (a) and yield coefficient (b) of 
P. pickettii on 2-chlorophenol (Expt. K-20). 
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Figure E-13 Determination of the specific growth rate (a) and yield coefficient (h) of 
P. pickettii on 2-chlorophenol (Expt. K-21). 
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Figure E-14 Determination of the specific growth rate (a) and yield coefficient (h) of 

P. pickettii on 2-chlorophenol (Expt. K-22). 
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Figure E-15 Determination of the specific growth rate (a) and yield coefficient (h) of 
P. pickettii on 2-chlorophenol (Expt. K-23). 



Figure E-16 Comparison between experimentally obtained and model predicted 
concentration profiles for 2-chlorophenol and biomass (# mo-k-8). 

Figure E-17 Comparison between experimentally obtained and model predicted 
concentration profiles for 2-chlorophenol and biomass (# mo-k-9). 
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Figure E-18 Comparison between experimentally obtained and model predicted 
concentration profiles for 2-chlorophenol and biomass 	mo-k-10). 

Figure E-19 Comparison between experimentally obtained and model 
predicted concentration profiles for 2-chlorophenol and biomass 	mo-k-11). 
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Figure E-20 Comparison between experimentally obtained and model 
predicted concentration profiles for 2-chlorophenol and biomass (# mo-k-12). 

Figure E-21 Comparison between experimentally obtained and model 
predicted concentration profiles for 2-chlorophenol and biomass (# mo-k-13). 
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Figure E-22 Comparison between experimentally obtained and model 
predicted concentration profiles for 2-chlorophenol and biomass (#  mo-k-15). 

Figure E-23 Comparison between experimentally obtained and model 
predicted concentration profiles for 2-chlorophenol and biomass (# mo-k-16). 
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Figure E-24 Comparison between experimentally obtained and model 
predicted concentration profiles for 2-chlorophenol and biomass 	(# mo-k-17). 

Figure E-25 Comparison between experimentally obtained and model 
predicted concentration profiles for 2-chlorophenol and biomass (I/ mo-k-18 8). 



Figure E-26 Comparison between experimentally obtained and model 
predicted concentration profiles for 2-chlorophenol and biomass (# mo-k-19). 

Figure E-27 Comparison between experimentally obtained and model 
predicted concentration profiles for 2-chlorophenol and biomass (# mo-k-20). 
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Figure E-28 Comparison between experimentally obtained and model 
predicted concentration profiles for 2-chlorophenol and biomass (# mo-k-21). 

Figure E-29 Comparison between experimentally obtained and model 
predicted concentration profiles for 2-chlorophenol and biomass (ii mo-k-22). 
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Figure E-30 Comparison between experimentally obtained and model 
predicted concentration profiles for 2-chLorophenol and biomass (# mo-k-23). 
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APPENDIX F 

TABLES AND FIGURES RELATED TO ADSORPTION AND AXIAL 
DISPERSION EXPERIMENTS 
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Table F-1 Experimental data of batch adsorption based on 14.7 ppm 2-CP conc. 

Time 
(h) 

2-CP conc. in 
solution, (ppm) 

solid phase conc. (q), 
mg 2-CP/kg of soil 

(control) 
2-CP conc. (ppm) 

0 14.7 0 --- 

0.25 12.5 7.24 14.8 

0.50 12.5 8.71 --- 

0.75 12.3 7.73 --- 

1.0 12.0 8.00 --- 

1.5 11.8 7.82 14.9 

2.0 11.6 9.01 -- 

3.0 11.1 9.90 --- 

5.0 10.6 12.6 --- 

8.0 10.3 13.8 --- 

18.7 9.61 15.0 14.6 

29.7 9.15 15.8 --- 

40.7 9.06 16.3 14.5 

Average initial aqueous phase 2-CP concentration = 14.7 ppm 
qc  = equilibrium solid phase concentration = 16.29 mg 2-CP per kg of soil 
q ms, = 7.24 mg 2-CP per kg of soil 
Equilibrium time = 40.7 hr. Temperature = 22 °C. 
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Figure F-1 2-CP concentration in the aqueous phase with time in presence of Pequest 
soil (Temp.: 22 °C; Liquid/Solid Mass Ratio=3.0, Ci=14.7 ppm). 



Table F-2 Experimental data of batch adsorption based on 2L8 ppm 2-CP conc. 

Time 
(h) 

2-CP conc. in 
solution, (ppm) 

solid phase conc. (q), 
mg 2-CP/kg of soil 

(control) 
2-CP conc. 

(ppm) 

0.0 21.8 0.00 

0.25 18.2 10.8 21.8 

0.5 18.1 11.1 21.8 

1.0 17.9 11.8 21.8 

2.0 17.5 12.9 21.8 

3.5 16.8 15.0 21.7 

5.75 15.7 18.3 --- 

8.58 14.6 21.5 21.8 

22.5 14.3 22.6 21.9 

31 14.3 22.6 21.8 

44.5 14.3 22.4 21.9 

Average initial aqueous phase 2-CP concentration = 21.8 ppm 
qe  = equilibrium solid phase concentration = 22.43 mg 2-CP per kg of soil 
gins, = 10.79 mg 2-CP per kg of soil 
Equilibrium lime = 44.5 hr.; Temperature = 22 °C. 
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Figure F-2 2-C1) concentration in the aqueous phase with time in presence of Pequest 
soil (Temperature = 22 °C; Liquid/Solid Mass Ratio=3.0, (1=21.8 ppm). 



Table F-3 Experimental data of 2-CP adsorption isotherm onto Pequest soil 
(equilibrium measurements after 55 hrs). 

Sample 
Concentrations of 2-CP 

in the liquid phase 
before mixing with soil 

Concentrations of 2-CP in both (liquid 
and soil) phases after equilibrium 

ppm In the liquid phase,ppm In the soil phase, 
 mg 2-CP/ kg of soil 

1 9.78 6.07 11.1 
2 12.5 7.52 15.0 
3 15.3 9.15 I 8.4 
4 20.0 12.7 21.9 
5 30.7 20.1 31.9 
6 40.3 27.6 38.1 
7 47.4 33.8 40.8 
8 59.1 44.2 44.8 
9 60.2 45.0 45.7 

Table F-4 Experimental data of 2-CP adsorption isotherm onto Pequest soil* 
(equilibrium measurements after 55 hrs). 

 

Sample 
No. 

 

Concentrations of 2-CP 
in the liquid phase 

before addition of soil 

Concentrations of 2-CP in both (liquid 
and soil) phases after equilibrium 

 

 

ppm 
phase, 

In the liquid 
ppm 

In the soil phase, 
mg 2-CP/kg of soil 

1R 9.78 6.20 10.7 

2R 12.5 7.30 15.7 

3R 15.3 9.57 17.5 

4R 20.0 12.6 22.2 

5R 30.7 20.1 31.9 

6R 40.3 27.7 38.1 

7R 47.4 33.9 40.6 

9R 60.2 44.5 47.1 

*This set of experiment is the repetition of those given in Table F-2 
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Table F-5 Axial dispersion experiment using chloride ion tracer (run# A-4). 

Time 
(min) 

Chloride ion concentration at the 
exit of the soil column (ppm) 

0.0 0.000 

15 0.000 

30 0.000 

40 0.000 

50 0.000 

60 0.000 

70 0.000 

80 0.000 

90 0.015 

100 0.010 

110 0.043 

120 0.090 

130 0.121 

140 0.167 

150 0.230 

160 0.312 

170 0.584 

180 0.811 

190 1.061 

200 1.185 

210 1.361 

220 1.438 

230 1.412 

240 1.303 
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Table F-5 (continued) 

Time 
(min) 

Chloride ion concentration at the 
exit of the soil column (ppm) 

250 L.L93 

260 L.027 

270 0.853 

280 0.648 

290 0.50L 

300 0.345 

310 0.258 

320 0.L87 

330 0.1L0 

340 0.076 

350 0.048 

360 0.032 

370 0.0L5 

380 0.0L3 

390 0.000 

400 0.000 

4L0 0.000 

420 0.0000 

430 0.000 

440 0.000 
 

- Flow rate = 1.1 mL/min 
- 0.2 mL 2000 ppm NaCI solution was injected in port I of the column. 
- Samples were taken from the column exit. 
- Temperature = 23-24.5 °C 
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Table F-6 Axial dispersion experiment using chloride ion tracer (run# A-6). 

Time 
(min) 

Chloride ion concentration at the 
exit of the soil column (ppm) 

0.00 0.000 

30 0.000 

40 0.000 

50 0.000 

60 0.000 

70 0.000 

80 0.000 

90 0.000 

100 0.006 

110 0.013 

120 0.023 

130 0.113 

140 0.190 

150 0.287 

160 0.400 

170 0.600 

180 0.816 

190 1.024 

200 1.185 

210 1.260 

220 1.315 

230 1.340 

240 1.230 
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Table F-6 (continued) 

Time 
(min) 

Chloride ion concentration at the 
exit of the soil column (ppm) 

250 1.120 

260 0.960 

270 0.782 

280 0.596 

290 0.482 

300 0.354 

3L0 0.268 

320 0.L90 

330 0.L40 

340 0.099 

350 0.072 

360 0.064 

370 0.043 

380 0.025 

390 0.0L9 

400 0.0L5 

4L0 0.000 

420 0.000 

430 0.000 

440 0.000 

450 0.000 

- Flow rate = L.L mL/min 
- 0.2 mL 2000 ppm NaCI solution was injected in port I of the column. 
- Samples were taken from the column exit. 
- Temperature = 24-26 °C 
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APPENDIX G 

TABLES AND FIGURES OF RESULTS FROM COLUMN EXPERIMENTS 
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Table G.1 Experimental results based on soil column biodegradation (run#1). 

Time, 
hr 

D-less 
time, 

0 

2-CP conc 
in 

Feed inlet 

(ppm) 

D-less 
Feed in 

2-CP conc 
in 

Feed outlet 

(ppm) 

D-less 
Feed out 

1.5 388.8 23.10 9.63 0.00 0.00 

2.0 518.4 22.70 9.46 0.00 0.00 

3.0 777.6 --- --- 0.00 0.00 

4.0 1036.8 23.20 9.67 0.93 0.39 

5.0 1296.0 --- --- 3.60 1.50 

11.0 2851.2 24.22 10.09 8.35 3.48 

12.0 3110.4 --- --- 8.48 3.53 

13.0 3369.6 --- --- 9.09 3.79 

14.0 3628.8 24.20 10.08 9.34 3.89 

17.5 4536.0 24.30 10.13 10.54 4.39 

19.2 4966.3 --- --- 11.08 4.62 

20.0 5184.0 --- --- 11.59 4.83 

21.2 5484.6 --- --- 12.06 5.03 

22.0 5702.4 --- --- 12.17 5.07 

23.5 6091.2 --- --- 12.05 5.02 

24.8 6415.2 --- --- 12.01 5.00 

26.5 6868.8 24.30 10.13 10.94 4.56 

28.0 7257.6 24.08 10.03 10.35 4.31 

29.3 7581.6 --- --- 10.20 4.25 

31.8 8250.3 23.85 9.94 11.10 4.63 

32.5 8424.0 --- --- 10.66 4.44 

33.0 8553.6 --- 11.41 4.75 

181 



Table G-1 (continued) 

Time 
(hr) 

D-less 
time, 

0 

2-CP conc 
in 

Feed inlet 
(pp m ) 

D-less 
Feed in 
conc. 

2-CP conc 
in 

Feed outlet 
(ppm) 

D-less 
Feed out 

conc. 

33.5 8683.2 --- 11.20 4.67 

42.5 11016.0 24.30 10.13 11.62 4.84 

43.0 11145.6 --- --- 11.93 4.97 

44.0 11404.8 --- --- 12.07 5.03 

45.0 11664.0 --- --- 12.21 5.09 

46.2 11964.7 --- --- 12.72 5.30 

47.0 12182.4 --- --- 12.83 5.35 

48.0 12441.6 --- --- 12.27 5.11 

50.5 13089.6 --- --- 12.66 5.28 

50.8 13162.2 --- --- 13.00 5.42 

51.0 13219.2 --- --- 12.25 5.10 

65.5 16977.6 23.20 9.67 12.19 5.08 

90.0 23328.0 23.63 9.85 11.73 4.89 

99.0 25660.8 23.24 9.68 12.70 5.29 

100.5 26049.6 --- --- 11.90 4.96 

113.0 29289.6 23.73 9.89 12.10 5.04 

120.0 31104.0 23.58 9.83 12.27 5.11 

123.0 31881.6 23.60 9.83 13.02 5.43 

D-less time = Dimensionless lime, 0 = (Dse 1)/R2  ); where Dse= 7.2x 10^-6 cm^2/s; 1t=0.01 cm. 
D-less conc. = (2-CP concentration in ppm/Ks) and Ks=2.4 ppm in this case. 
Average initial concentration of 2-CP = 23.7 ppm. 
Approximate final steady concentration of 2-CP = 12.7 ppm. 
% depletion with respect to 12.7 ppm = 46.4. 
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Table G.2 Experimental results based on soil column biodegradation (run#2). 

Time 
(hr) 

D-less 
time, 

0 

2-CP conc 
in 

Feed inlet 
(ppm) 

D-less 
Feed in 
conc. 

2-CP cone 
in 

Feed outlet 

(ppm) 

D-less 
Feed out 

conc. 

1.0 259.2 23.35 9.73 0.00 0.00 

2.2 562.5 0.00 0.00 

3.0 777.6 0.07 0.03 

5.0 1296.0 23.20 9.67 3.40 1.42 

7.0 1814.4 4.30 1.79 

9.0 2332.8 5.60 2.33 

11.0 2851.2 6.80 2.83 

12.0 3110.4 8.20 3.42 

14.0 3628.8 23.30 9.71 9.21 3.84 

15.0 3888.0 9.51 3.96 

16.0 4147.2 10.11 4.21 

17.0 4406.4 11.05 4.60 

18.5 4795.2 11.41 4.75 

23.2 6005.6 23.24 9.68 12.82 5.34 

24.0 6220.8 12.86 5.36 

26.0 6739.2 23.08 9.62 12.68 5.28 

28.0 7257.6 12.01 5.00 

30.0 7776.0 11.76 4.90 

32.0 8294.4 12.10 5.04 

35.0 9072.0 23.50 9.79 12.66 5.28 

36.3 9396.0 13.00 5.42 

47.0 12182.4 12.90 5.38 
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Table G-2 (continued) 

Time 
(hr) 

D-less 
time, 

0 

2-CP conc 
in 

Feed inlet 
(ppm) 

D-less 
Feed in 
conc. 

2-CP conc 
in 

Feed outlet 
(ppm) 

D-Iess 
Feed out 

conc. 

48.0 12441.6 23.25 9.69 13.12 5.47 

50.8 13154.4 12.62 5.26 

54.0 13996.8 13.01 5.42 

56.0 14515.2 2).80 9.50 13.50 5.63 

71.0 18403.2 22.50 9.38 13.20 5.50 

72.0 18662.4 12.89 5.37 

80.0 20736.0 22.21 9.25 13.24 5.52 

95.0 24624.0 23.11 9.63 12.98 5.41 

106.0 27475.2 22.70 9.46 13.50 5.63 

120.0 31104.0 22.45 9.35 12.66 5.28 

D-less time = Dimensionless time, 0 = (Dse  0/R2  ); where Dse=7.2x10' cm^2/s; R=0.01 cm 
D-Iess conc = (2-CP concentration in ppm/Ks) and Ks=2.4 ppm in this case. 
Average initial concentration of 2-CP = 22.97 ppm 
Approximate final steady concentration of 2-CP = 12.8 ppm 
% depletion with respect to 12.8 ppm = 44.3 



Table G.3 Experimental results based 2-CP transport in soil column. 

Time 
(hr) 

D-less 
time, 

0 

2-CP conc 
in 

Feed inlet 
(ppm) 

D-less 
Feed in 
conc. 

2-CP conc 
in 

Feed outlet 

(ppm) 

D-less 
Feed out 

conc. 

4.0 1036.8 23.21 9.67 2.30 0.96 

5.0 1296.0 6.10 2.54 

6.0 1555.2 8.40 3.50 

7.0 1814.4 11.50 4.79 

8.0 2073.6 12.52 5.22 

9.0 2332.8 14.80 6.17 

10.0 2592.0 15.62 6.51 

12.2 3151.8 17.96 7.48 

14.0 3628.8 19.20 8.00 

19.0 4924.8 20.60 8.58 

18.2 4707.1 21.20 8.83 

20.0 5184.0 20.92 8.72 

22.3 5767.2 22.28 9.28 

23.8 6176.7 23.58 9.83 22.00 9.17 

27.1 7019.1 22.05 9.19 

28.0 7257.6 21.51 8.96 

31.5 8164.8 21.60 9.00 

33.0 8553.6 22.00 9.17 

35.0 9072.0 21.67 9.03 

37.5 9720.0 21.92 9.14 

41.5 10756.8 22.10 9.21 

42.8 11080.8 21.79 9.08 

43.7 11316.6 23.32 9.72 21.85 9.10 
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Table G-3 (continued) 

Time 

(hr) 
D-less 
time, 

0 

2-CP cone 
in 

Feed inlet 
(ppm) 

D-less 
Feed in 
cone. 

2-CP cone 
in 

Feed outlet 
(ppm) 

D-less 
Feed out 

conc. 

44.8 11599.2 21.61 9.00 

45.3 11728.8 21.42 8.93 

49.5 12830.4 21.50 8.96 

50.5 13089.6 22.70 9.46 

62.0 16091.1 23.52 9.80 22.85 9.52 

63.0 16329.6 22.08 9.20 

64.4 16692.5 21.61 0.00 

67.0 17366.4 22.10 9.21 

69.0 17884.8 21.54 8.98 

72.0 18662.4 23.41 9.75 22.00 9.17 

73.0 18921.6 22.06 9.19 

85.8 22226.4 2 -).18 9.24 

87.3 22615.2 22.22 9.26 

90.0 23328.0 22.19 9.25 

93.3 24170.4 22.00 9.17 

96.5 25012.8 22 .97 9.57 

97.3 25207.2 23.20 9.67 

108.3 28058.4 22.36 9.32 

109.5 28382.4 23.63 9.85 22.19 9.25 

114.5 29678.4 23.45 9.77 

D-less time = Dimensionless lime, 0 = (Dse t)/R2 ); where D„ 7.2x10-6 	cm2/s; R=0.10 cm 
D-less conc. = (2-CP concentration in ppm/Ks) and Ks=2.4 ppm in this case. 
Average initial concentration of 2-CP = 23.44 ppm 
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