Copyright Warning \& Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use" that user may be liable for copyright infringement,

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select "Pages from: first page \# to: last page \#" on the print dialog screen

The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.

ABSTRACT

THERMODYNAMIC PROPERTIES OF CHLOROCARBONS AND KINETIC ANALYSIS FOR α - AND β-ADDITION OF OH $+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}$

by
 Li Zhu

Thermodynamic properties, $\Delta \mathrm{Hf}^{\circ}{ }_{298}, \mathrm{~S}^{\circ}{ }_{298}$ and $\mathrm{Cp}(\mathrm{T}) 300 \leq \mathrm{T} / \mathrm{K} \leq 1500$, for $\mathrm{C}_{1}, \mathrm{C}_{2}$ chlorocarbons are calculated by AM1 and PM3 in MOPAC6, then compared with the literature data. AM1- and PM3-derived $\mathrm{S}^{\circ}{ }_{298}$ and $\mathrm{Cp}(\mathrm{T})(300 \leq \mathrm{T} / \mathrm{K} \leq 1500)$ are found to be consistent with the literature ($\mathrm{Rd} \leq \pm 5 \%$). $\Delta \mathrm{Hf}^{\circ}{ }_{298}$ of $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{Cl}, \mathrm{CH}_{2} \mathrm{ClCHCl}_{2}$, $\mathrm{CHCl}_{2} \mathrm{CHCl}_{2}$, and $\mathrm{C}_{2} \mathrm{Cl}_{4}$ and $\mathrm{C}_{2} \mathrm{Cl}_{2}$ calculated by PM 3 as well as $\Delta \mathrm{Hf}^{\circ}{ }_{298}$ of $\mathrm{CCl}_{4}, \mathrm{C}_{2} \mathrm{HCl}_{3}$, $\mathrm{C}_{2} \mathrm{Cl}_{4}$ and $\mathrm{C}_{2} \mathrm{Cl}_{2}$ by AM1 have more than $\pm 5 \mathrm{kcal} / \mathrm{mol}$ deviations. A Modified Group Additivity method is shown to be precise when compared with the literature.

A complete reaction system consisting of 12 elementary reaction and 19 species has been developed to model the reaction system of $\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}$. There are two different carbon sites where addition can occur, α-addition and β-addition, as well as two different abstractions, α-abstraction and β-abstraction. Thermochemical kinetic parameters are developed for each elementary reaction and a chemical activation kinetic analysis using Multi-frequency QRRK theory for $\mathrm{k}(\mathrm{E})$ and modified strong collision approach for fall-off is used to calculate k 's as function of pressure and temperature. Thermodynamic parameters are determined by MOPAC6/PM3 and the Group Additivity estimation. We are trying to use $a b$ initio and density function methods at different levels to calculate the addition reactants, products and the transition states. All reactions in the mechanism incorporate reverse reaction rates calculated from thermodynamic parameters and Microscopic Reversibility. Results show good agreement with several experimental data. Recommended rate constants for the primary addition channels at 760 torr are: $\mathrm{k}(\mathrm{OH}+$ $\left.\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl} \rightarrow \mathrm{CH}_{2} \mathrm{OHC} . \mathrm{HCl}\right)=4.22 \times 10^{30} \times \mathrm{T}^{-5.88} \mathrm{e}^{4837 / \mathrm{RT}^{2}} \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \mathrm{sec}^{-1}, \mathrm{k}\left(\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl} \rightarrow \mathrm{Cl}\right.$ $\left.+\mathrm{CH}_{2} \mathrm{CHOH}\right)=8.61 \times 10^{12} \times \mathrm{T}^{0.01} \mathrm{e}^{4114 / \mathrm{RT}^{2}} \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \mathrm{sec}^{-1}$.
by
Li Zhu

A Thesis
Submitted to the Faculty of New Jersey Institute of Technology in Partial Fulfillment of the Requirements for the Degree of Master of Science in Applied Chemistry
Department of Chemical Engineering, Chemistry, and Environmental Science

APPROVAL PAGE

THERMODYNAMIC PROPERTIES OF CHLOROCARBONS AND KINETIC ANALYSIS FOR α - AND β-ADDITION OF OH $+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}$

Li Zhu

Dr. Joseph W. Bozzelli, Thesis Advisor	Date
Distinguished Professor of Chemistry, NJIT	

Dr. Carol A. Venanzi, Committee Member
Date
Distinguished Professor of Chemistry, NJIT

BIOGRAPHICAL SKETCH

Author:	Li Zhu
Degree:	Master of Science
Date:	January 1998

Undergraduate and Graduate Education:

- Master of Science in Applied Chemistry, New Jersey Institute of Technology, Newark, NJ, 1998
- Bachelor of Science in Chemistry, Beijing Polytechnic University, Beijing, China, 1992

Major: Applied Chemistry

Presentations and Publication:

Li Zhu, Joseph W. Bozzelli and Tsan H. Lay, "Comparison of AMI and PM3 in MOPAC6 with Literature for the Thermodynamic Properties of $\mathrm{C}_{1}, \mathrm{C}_{2}$ Chlorocarbons." (In process of submission)

ACKNOWLEDGMENT

I wish to express my appreciation to my advisor, Prof. Joseph W. Bozzelli, for his guidance, patience and encouragement throughout this research.

Special thanks to Professors Babara B. Kebbekus and Carol A. Venanzi for their help and suggestions

I gratefully acknowledge funding from the New Jersey Institute of Technology NSF Industry/University Hazardous Substance Management Research Center grant number NJ 92-240050 and the USEPA-CalTech-MIT-NJT Research Center on Airborne Organics grant number R819679.

TABLE OF CONTENTS

Chapter Page
PART I COMPARISON OF AMI AND PM3 IN MOPAC6 WITH LITERATURE FOR THERMODYNAMIC PARAMETERS OF $\mathrm{C}_{1}, \mathrm{C} 2$ CHLOROCARBONS 1
1 PREFACE 2
2 INTRODUCTION 3
3 METHODOLOGY 5
3.1 AM1 and PM3 in MOPAC6. 5
3.2 Modified Group Additivity: THERM 10
4 RESULTS. 13
4.1 Enthalpy 13
4.2 Entropy 14
4.3 Heat Capacity 15
5 SUMMARY 30
REFERENCES (FOR PART I) 32
PART II REACTION OF OH RADICAL WITH $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}$, RATE CONSTANT AND REACTION PATHWAY ANALYSIS 35
1 INTRODUCTION. 36
2 THERMODYNAMIC PROPERTIES 40
2.1 Thermodynamic Properties of Stable Molecules and Their Daughter Radicals in $\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}$ System 40
2.2 Thermodynamic Properties of Molecules in Transition State. 40
3 QRRK CALCULATIONS FOR ADDITION REACTIONS OF OH $+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}$. 46

TABLE OF CONTENTS (Continued)

Chapter Page
4 ADDITION AND ABSTRACT REACTIONS OF OH $+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}$. 48
4.1 α-Addition of $\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}$ and Continuing Reactions 48
4.2β-Addition of $\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}$ and Continuing Reactions 51
4.3 TST Calculations for Abstract Reactions of $\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}$ 53
5 RESULTS AND DISCUSSIONS 54
5.1 Results. 54
5.2 Conclusions. 57
APPENDIX THERM FILES OF CHLOROCARBONS (FOR PART I) 66
REFERENCES (FOR PART II). 73

LIST OF TABLES

Table Page
IA. 1 Thermodynamic Properties of $\mathrm{C}_{1}, \mathrm{C}_{2}$ Chlorocarbons 6
IA. 2 Reduced Moments of Inertia and Rotational Barriers. 8
IA. 3 Moments of Inertia of $\mathrm{C}_{1}, \mathrm{C}_{2}$ Chlorocarbons Calculated by PM3 8
IA. 4 PM3-Calculated Bond Length, Angles and Dihedral Angles. 9
IA. 5 PM3-Calculated Vibrational Frequencies of $\mathrm{C}_{1}, \mathrm{C}_{2}$ Chlorocarbons. 10
IA. 6 Chlorocarbon Groups and Interaction Groups for Multichloro Alkanes, Alkenes and Alkynes. 12
IIA. 1 Previous Studies on $\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}$ 38
IIA. 2 Thermodynamic Properties of all Species in $\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}$ systems. 45
IIA. 3 Thermodynamic Properties of Transition States in $\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}$ System 45
IIA. 4 Input Parameters of α-addition of $\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}$ for QRRK Calculation 50
IIA. 5 Input Parameters of β-addition of $\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}$ for QRRK Calculation. 52
IIA. 6 Apparent Rate Constants for $\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}$ at Different Pressures 58

LIST OF FIGURES

Figure Page
IB. 1 Comparison of $\Delta \mathrm{Hf}_{298}$ of $\mathrm{C}_{1}, \mathrm{C}_{2}$ Chlorocarbons: TRC vs. AMI 16
IB. 2 Comparison of $\Delta \mathrm{Hf}_{298}$ of $\mathrm{C}_{1}, \mathrm{C}_{2}$ Chlorocarbons: THERM vs. AM1 17
IB. 3 Comparison of $\Delta \mathrm{Hf}_{298}$ of $\mathrm{C}_{1}, \mathrm{C}_{2}$ Chlorocarbons: TRC vs. PM 3 18
IB. 4 Comparison of $\Delta \mathrm{Hf}_{298}$ of $\mathrm{C}_{1}, \mathrm{C}_{2}$ Chlorocarbons: THERM vs. PM3 19
IB. 5 Comparison of $\Delta \mathrm{Hf}_{298}$ of $\mathrm{C}_{1}, \mathrm{C}_{2}$ Chlorocarbons: TRC vs. PM3 20
IB. 6 Comparison of $\Delta \mathrm{Hf}_{298}$ of $\mathrm{C}_{1}, \mathrm{C}_{2}$ Chlorocarbons: THERM vs. PM3. 21
IB. 7 Comparison of S_{298} of $\mathrm{C}_{1}, \mathrm{C}_{2}$ Chlorocarbons: TRC vs. AM1 22
IB. 8 Comparison of S_{298} of $\mathrm{C}_{1}, \mathrm{C}_{2}$ Chlorocarbons: THERM vs. AM1 23
IB. 9 Comparison of S_{298} of $\mathrm{C}_{\mathrm{i}}, \mathrm{C}_{2}$ Chlorocarbons: TRC vs. PM3. 24
IB. 10 Comparison of S_{298} of $\mathrm{C}_{1}, \mathrm{C}_{2}$ Chlorocarbons: THERM vs. PM3 25
IB. 11 Comparison of Cp_{300} of $\mathrm{C}_{1}, \mathrm{C}_{2}$ Chlorocarbons: TRC vs. AM1 26
IB. 12 Comparison of Cp_{300} of $\mathrm{C}_{1}, \mathrm{C}_{2}$ Chlorocarbons: THERM vs. AM1 27
IB. 13 Comparison of Cp_{300} of $\mathrm{C}_{1}, \mathrm{C}_{2}$ Chlorocarbons: TRC vs. PM3. 28
IB. 14 Comparison of Cp_{300} of $\mathrm{C}_{1}, \mathrm{C}_{2}$ Chlorocarbons: THERM vs. PM3 29
IIB. 1 Potential Energy Diagram for $\mathrm{OH} \alpha$-Addition to Vinyl Chloride. 41
IIB. 2 Potential Energy Diagram for $\mathrm{OH} \beta$-Addition to Vinyl Chloride. 42
IIB. 3 Transition States of $\mathrm{OH} \alpha$-Addition to Vinyl Chloride. 49
IIB. 4 Transition States of OH β-Addition to Vinyl Chloride. 50
IIB. 5 k vs. $1000 / \mathrm{T}$ of α-addition of $\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}$ at 760 torr. 61
IIB. 6 k vs. $1000 / \mathrm{T}$ of β-addition of $\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}$ at 760 torr. 62

LIST OF FIGURES
 (Continued)

Figure Page
IIB. 7 Calculated and Experimental Rate Constants of $\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}$ at 1 atm 63
IIB. 8 Calculated Rate Constants of $\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}$ Versus Pressure at 300 K 64
IIB. 9 Calculated and Experimental Rate Constants of $\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}$ at 300 K 65

PART I

COMPARISON OF AMI AND PM3 IN MOPAC6 WITH LITERATURE FOR THE THERMODYNAMIC PARAMETERS OF C_{1}, C_{2} CHLOROCARBONS

CHAPTER 1

PREFACE

Ideal gas thermodynamic properties, $\Delta \mathrm{Hf}^{\circ}{ }_{298}, \mathrm{~S}^{\circ}{ }_{298}$ and $\mathrm{Cp}(\mathrm{T})(300 \leq \mathrm{T} / \mathrm{K} \leq 1500)$ for $21 \mathrm{C}_{1}$ and C_{2} chlorocarbons are calculated using AM1 and PM3 in MOPAC6, then compared with the literature data. AM1- and PM3-derived $\mathrm{S}^{\circ}{ }_{298}$ and $\mathrm{Cp}(\mathrm{T})(300 \leq \mathrm{T} / \mathrm{K} \leq 1500)$ are found to be consistent with the literature data ($\mathrm{Rd} \leq \pm 5 \%$) except $\mathrm{Cp}(300-500 \mathrm{~K})$ of $\mathrm{C}_{2} \mathrm{HCl}, \mathrm{C}_{2} \mathrm{Cl}_{2}$ and $\mathrm{S}^{\circ}{ }_{298}$ of $\mathrm{C}_{2} \mathrm{HCl}_{5} . \Delta \mathrm{Hf}^{\circ}{ }_{298}$ obtained by PM 3 for some multichlorocarbons, such as $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{Cl}, \mathrm{CH}_{2} \mathrm{ClCHCl}_{2}, \mathrm{CHCl}_{2} \mathrm{CHCl}_{2}, \mathrm{C}_{2} \mathrm{Cl}_{4}$ and $\mathrm{C}_{2} \mathrm{Cl}_{2}$, are not in good agreement with the literature $(\mathrm{D} \geq \pm 5 \mathrm{kcal} / \mathrm{mol}) . \Delta \mathrm{Hf}^{\circ}{ }_{298}(\mathrm{kcal} / \mathrm{mol})$ calculated by PM3 are corrected as following: $\Delta \mathrm{Hf}^{\mathrm{o}}{ }_{298, \mathrm{PM} 3}=-2.35+1.09 \times \Delta \mathrm{Hf}^{\circ} 298$, literature for the partially chlorinated C_{1} and C_{2} hydrocarbons; $\Delta \mathrm{Hf}^{\mathfrak{0}}{ }_{298, \mathrm{PM} 3}=5.36+1.07 \times \Delta \mathrm{Hf}^{\mathrm{o}}{ }_{298, \text { literature }}$ for the fully Cl substituted C_{1} and C_{2} hydrocarbons. $\Delta \mathrm{Hf}^{\circ}{ }_{298}$ of $\mathrm{CCl}_{4}, \mathrm{C}_{2} \mathrm{HCl}_{3}, \mathrm{C}_{2} \mathrm{Cl}_{4}, \mathrm{C}_{2} \mathrm{Cl}_{2}$ obtained by AM1 have more than $\pm 5 \mathrm{kcal} / \mathrm{mol}$ deviations. A modified Group Additivity method is also used to calculated $\Delta \mathrm{Hf}^{\circ}{ }_{298}, \mathrm{~S}^{\circ}{ }_{298}$ and $\mathrm{Cp}(\mathrm{T})(300 \leq \mathrm{T} / \mathrm{K} \leq 1500)$ for the $21 \mathrm{C}_{1}$ and C_{2} chlorocarbons, and shown to be precise when compared with the literature. The use or application of AM 1 and PM 3 calculated $\Delta \mathrm{Hf}^{\circ}{ }_{298}$ for chlorocarbons needs to include estimation of results due to the limited accuracy of the methods. We cautiously recommend use of modified Group Additivity as a method of thermodynamic property data estimation.

CHAPTER 2

INTRODUCTION

Chlorocarbons are widely used chemicals as solvents in syntheses, as cleaning agents and starting materials and in polymer, pesticide and other product manufacture. Chlorocarbons are present in the atmosphere, in both municipal and hazardous material combustion, as well as in destruction/cleanup process related to the above industrial applications. Thermodynamic properties of chlorocarbons are important to the industry and governmental agencies in analysis of environmental effects and in evaluation of kinetics for destruction and synthesis processes. There are a limited number of experimental studies on the thermodynamic properties data of chlorocarbons ${ }^{1-4}$. There are also several publications on estimation methods, or modification, evaluation of these methods. ${ }^{5-12}$ Estimation techniques primarily include empirical or semiempirical methods, such as Group Additivity ${ }^{5-10}$ or modified Group Additivity THERM (a computer code based on modified Group Additivity for chlorocarbons. See also 3.2 in Part I and Appendix) ${ }^{11.12}$, and MOPAC ${ }^{13-16}$ semiempirical calculations. Group Additivity method ${ }^{5}$ is to treat a molecular property as being composed of contributions due to groups. A group is defined as a polyvalent atom (ligancy ≥ 2) in a molecule together with all of its ligands. Semiempirical MOPAC and theoretical ab initio ${ }^{17-27}$ are all molecular quantum-mechanical methods. Semiempirical methods such as $\mathrm{MNDO}^{13}, \mathrm{AM}^{14}$ and $\mathrm{PM} 3^{15}$ in MOPAC use a simpler Hamiltonian than the correct molecular Hamiltonian and use parameters whose values are adjusted to fit experimental data or the results of $a b$ initio calculations. In contrast, high level ab initio calculation ${ }^{17-32}$ use the correct Hamiltonian and does not use experimental data other than the values of the fundamental physical constants. Ab initio methods are
currently limited by computational cost as well as memory and scratch disk storage availability.

Group Additivity method of Benson ${ }^{5}$ does not accurately treat multi chloro hydrocarbon molecules, and a set of added interaction parameters are needed ${ }^{10,33}$. Ab initio methods may be precise at higher levels but they are time-consuming and it is difficult to treat large systems. ${ }^{34}$ High level theoretical calculations at MP2 ${ }^{25,26}$ or density function ${ }^{26}$ levels are limited to about 6 or so Cl atoms. A method is clearly needed for providing accurate and convenient estimation of chlorocarbon and oxychlorocarbon species for multi carbon systems (3 carbons and higher). Semiempirical methods are faster than $a b$ initio because some approximations and parameterizations are incorporated. Recently, Lay et al. ${ }^{35}$ compared the enthalpies of formation ($\mathrm{kcal} / \mathrm{mol}$) of 10 cyclic oxygenated hydrocarbons and found a linear correction served to improve the PM3 values to within $3.2 \mathrm{kcal} / \mathrm{mol}:$ Experimental-determined Enthalpy $=-1.642+0.882 \times$ MOPAC6/PM3determined enthalpy, $\mathrm{R}^{2}=0.993$. The objective of this paper is to determine if MOPAC6 or a calibrated MOPAC6 calculation method is suitable for prediction of higher carbon number chlorocarbon species. We use AM1 and PM3 in MOPAC6 to obtain the thermodynamic quantities of C_{1} and C_{2} chlorocarbons, then compare with the respective values from literature ${ }^{1,2}$ and THERM ${ }^{11,12}$ (see 3.2 in Part I and Appendix).

CHAPTER 3

METHODOLOGY

3.1 AM1 and PM3 in MOPAC6

AM1 and PM3 calculations in MOPAC6 are performed to obtain the thermodynamic parameters, $\Delta \mathrm{Hf}^{\circ}{ }_{298}, \mathrm{~S}^{\circ}{ }_{298}, \mathrm{Cp}(\mathrm{T})(300 \leq \mathrm{T} / \mathrm{K} \leq 1500)$ on $21 \mathrm{C}_{1}, \mathrm{C}_{2}$ chlorocarbons, the results are given in Table IA. 1. For molecules having hindered rotors about $\mathrm{C}-\mathrm{C}$ single bonds, i.e. saturated C_{2} chlorocarbons, the approximation method of Pitzer and Gwinn ${ }^{36}$ is used to account for the internal rotor's contribution to the entropies and heat capacities. The two input parameters (Table IA. 2) for this calculation are determined as following: The reduced moments of inertia are calculated by Moment $=\sum m_{i} \times r_{i}^{2}$; The barriers to free internal rotation are calculated by ab initio MP2/6-31G* method (unpublished) and from literature when available ${ }^{3,5}$. PM3-determined moments of inertia, molecular geometries (bond lengths, angles, dihedral angles) and vibrational frequencies are given in Tables IA. 3, 4 and 5. Structures obtained by AM1 are similar to those obtained by PM3.

Available literature data on $\Delta \mathrm{Hf}^{\circ}{ }_{298}, \mathrm{~S}^{\circ}{ }_{298}, \mathrm{Cp}(\mathrm{T})(300 \leq \mathrm{T} / \mathrm{K} \leq 1500)$ for $\mathrm{C}_{1}, \mathrm{C}_{2}$ chlorocarbons are listed in Table IA. 1, as well as the results of THERM (see 3.2 of Part I and Appendix). The differences of $\Delta \mathrm{Hf}^{\circ}{ }_{298}$ among three literature, $\mathrm{TRC}^{1}, \mathrm{JANAF}^{2}$ and SWS^{3}, for some chlorocarbons are greater than $\pm 1.0 \mathrm{kcal} / \mathrm{mol}$, such as $\mathrm{CH}_{3} \mathrm{Cl}, \mathrm{CCl}_{4}$, $\mathrm{CH}_{2} \mathrm{ClCHCl}_{2}, \mathrm{C}_{2} \mathrm{Cl}_{6}, \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}, \mathrm{E}$ - and $\mathrm{Z}-\mathrm{CHClCHCl}$. We choose TRC^{1} and THERM results as references to represent the experimental values and evaluate literature data in our comparison with MOPAC6 AM1 and PM3. JANAF ${ }^{2}$ data of chloroacelyenes are used for TRC data to compare with AM 1 and PM3 since no TRC^{1} data are available for chloroacelyenes.

Table IA. 1 Thermodynamic properties of $\mathrm{C}_{1}, \mathrm{C}_{2}$ chlorocarbons

Molecule	ref.	$\triangle \mathrm{Hf}^{\circ}{ }_{298} \mathrm{~S}^{\circ}{ }_{298}$		Cp (T)						
				300K	400 K	500 K	600 K	800 K	1000 K	1500K
$\mathrm{CH}_{3} \mathrm{Cl}$	Whis work (AMI)	-18.95	55.88	9.69	11.52	13.25	14.37	17.07	18.85	21.69
	this work (PM3)	-14.68	56.02	9.91	11.70	13.37	14.80	17.08	18.82	21.65
	TRC ${ }^{1}$	-19.61	56.02	9.75	11.52	13.20	14.67	17.07	18.89	21.82
	JANAF ${ }^{2}$	-20.66	55.99	9.73	11.50	13.17	14.64	17.03	18.86	21.75
	SWS ${ }^{3}$	-20.63	56.04	9.77	11.52	13.19	14.66	17.04	18.86	
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	this work (AM1)	-25.85	64.22	12.03	14.21	16.00	17.39	19.42	20.82	22.94
	this work (PM3)	-17.14	64.78	12.59	14.67	16.34	17.66	19.58	20.93	22.99
	TRC ${ }^{1}$	-22.82	64.67	12.17	14.25	15.94	17.32	19.34	20.78	22.92
	JANAF ${ }^{2}$	-22.83	64.57	12.16	14.24	15.93	17.30	19.32	20.76	22.
	SWS ${ }^{3}$	-22.80	64.59	12.26	14.46	15.87	17.36	19.38	20.80	
CHCl_{3}	this work (AMI)	-29.00	70.00	15.27	17.51	19.14	20.32	21.87	22.85	24.18
	this work (PM3)	-20.87	71.21	16.34	18.37	19.81	20.83	22.20	23.07	24.29
	TRC ${ }^{1}$	-24.62	70.70	15.65	17.77	19.29	20.40	21.89	22.85	24.23
	JANAF ${ }^{2}$	-24.66	70.63	15.63	17.75	19.27	20.38	21.87	22.83	24.1
	SWS ${ }^{3}$	-24.20	70.66	15.76	17.83	19.34	20.44	21.91	22.86	
CCl_{4}	this work (AM1)	-28.12	72.98	19.15	21.26	22.58	23.43	24.39	24.88	25.40
	this work (PM3)	-25.96	75.21	20.75	22.55	23.58	24.21	24.88	25.21	25.55
	TRC ${ }^{1}$	-22.92	74.14	19.96	21.94	23.11	23.84	24.66	25.07	25.53
	JANAF ${ }^{2}$	-22.94	74.02	19.93	21.92	23.09	23.82	24.64	25.05	25.4
	SWS ${ }^{3}$	-24.00	74.12	20.08	22.04	23.28	24.07	25.00	25.52	
$\mathrm{C}_{2} \mathrm{H} 5 \mathrm{Cl}$	* this work (AM1)	-26.16	65.66	14.57	18.07	21.24	23.90	28.02	31.07	35.86
	* this work (PM3)	-22.06	65.96	15.03	18.58	21.71	24.31	28.31	31.27	35.96
	TRC ${ }^{1}$	-26.86	65.97	14.98	18.56	21.68	24.30	28.41	31.46	36.24
	JANAF ${ }^{2}$	-26.80	66.01	15.03	18.57	21.61	24.22	28.37	31.44	36.10
	SWS ${ }^{3}$	-26.70	65.93	15.05	18.56	21.68	24.31	28.42	31.48	
	this work (THERM)	-27.00	66.26	14.93	18.38	21.48	24.10	28.17	31.24	
$\mathrm{CH}_{3} \mathrm{CHCl}_{2}$	*his work (AM1)	-31.10	72.32	17.74	21.38	24.44	26.89	30.54	33.14	37.14
	* this work (PM3)	-26.53	73.16	18.63	22.21	25.15	27.48	30.94	33.43	37.28
	TRC ${ }^{1}$	-31.13	72.98	18.26	21.86	24.81	27.21	30.82	33.43	37.
	SWS ${ }^{3}$	-31.05	72.89	18.29	21.85	24.82	27.24	30.85	33.45	
	this work (THERM)	-31.10	73.05	18.40	21.82	24.67	27.15	30.69	33.35	
$\mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{Cl}$	* his work (AM1)	-33.81	74.68	17.04	20.84	24.18	26.88	30.78	33.45	37.40
	* this work (PM3)	-24.68	75.23	17.68	21.50	24.77	27.38	31.16	33.74	37.57
	TRC ${ }^{1}$	- 30.33	73.17	18.50	21.97	24.98	27.48	31.19	33.81	37.6
	SWS ${ }^{3}$	-31.00	73.66	19.00	22.00	24.70	26.90	30.40	33.00	
	this work (THERM)	-31.05	73.84	18.23	21.54	24.39	26.70	30.25	32.94	
$\mathrm{CH}_{3} \mathrm{CCl}_{3}$	*his work (AM1)	-31.92	76.44	21.64	25.04	27.69	29.78	32.84	34.99	38.25
	* this work (PM3)	-31.91	78.12	23.02	26.23	28.68	30.57	33.35	35.33	38.4
	TRC ${ }^{1}$	-34.04	76.56	22.09	25.74	28.55	30.71	33.78	35.84	38.84
	this work (THERM)	-33.90	76.55	22.02	25.70	28.65	30.89	34.08	35.98	
$\mathrm{CH}_{2} \mathrm{ClCHCl}_{2}$	*this work (AM1)	-37.22	82.18	20.16	24.06	27.29	29.83	33.40	35.72	38.89
	* this work (PM3)	-27.71	83.29	21.22	25.03	28.10	30.51	33.88	36.08	39.09
	TRC ${ }^{1}$	-34.83	79.77	20.31	24.49	27.77	30.32	33.88	36.18	39.33
	SWS ${ }^{3}$	-33.10	80.57	21.34	25.03	27.92	30.13	33.28	35.42	
	this work (THERM)	-34.00	81.43	21.53	24.85	27.39	29.55	32.58	35.05	
$\mathrm{CH}_{2} \mathrm{ClCCl}_{3}$	*this work (AM1)	-36.64	85.29	23.95	27.76	30.69	32.93	35.99	37.94	40.40
	*this work (PM3)	-31.90	87.38	25.47	29.06	31.75	33.78	36.56	38.34	40.61
	TRC ${ }^{\text {d }}$	-35.74	85.13	24.61	28.39	31.19	33.31	36.28	38.21	40.7
	this work (THERM)	-35.16	84.46	24.62	28.29	31.07	33.17	36.11	37.68	
$\mathrm{CHCl}_{2} \mathrm{CHCl}_{2}$	${ }^{*}$ this work (AM1)	-39.46	86.02	23.47	27.39	30.44	32.76	35.93	37.93	40.45
	* his work (PM3)	-30.11	88.34	24.85	28.56	31.39	33.53	36.46	38.33	40.67
	TRC ${ }^{1}$	-35.65	84.92	23.68	27.70	30.68	32.92	36.02	38.05	40.
	SWS ${ }^{3}$	-36.50	86.69	24.16	27.90	30.77	32.91	35.85	37.76	
	this work (THERM)	-36.46	86.36	24.47	27.85	30.28	32.48	35.24	37.16	

Table IA. 1 Thermodynamic properties of $\mathrm{C}_{1}, \mathrm{C}_{2}$ chlorocarbons (Continued)

Molecule	ref.	$\triangle \mathrm{Hf}^{\circ}{ }_{298} \mathrm{~S}^{\circ}{ }_{298}$		$\mathrm{Cp}(\mathrm{T})$						
				300K	400 K	500 K	600 K	800 K	1000 K	1500K
$\mathrm{C}_{2} \mathrm{HCl}_{5}$	*his work (AM1)	-38.02	93.65	27.28	31.09	33.85	35.84	38.40	39.97	41.90
	*his work (PM3)	-33.41	96.93	29.11	32.60	35.04	36.77	39.01	40.39	42.11
	TRC	-34.83	91.25	28.25	31.99	34.55	36.38	38.75	40.21	42.03
	SWS ${ }^{3}$	-34.00	90.95	28.23	31.77	34.42	36.22	38.52	39.88	
	this work (THERM)	-34.00	90.95	28.49	31.86	34.21	36.02	38.20	39.79	
$\mathrm{C}_{2} \mathrm{Cl}_{6}$	* this work (AM1)	-35.78	95.39	31.23	34.94	37.39	39.03	40.97	42.02	43.17
	*his work (PM3)	-36.48	100.08	33.42	36.66	38.70	40.04	41.60	42.44	43.37
	TRC ${ }^{1}$	-33.23	95.39	32.71	36.24	38.44	39.86	41.52	42.42	43.35
	JANAF ${ }^{2}$	-32.08	95.07	33.21	36.68	38.78	40.14	41.71	42.55	43.37
	SWS ${ }^{3}$	-33.80	94.77	32.67	36.11	38.29	39.69	41.29	42.11	
	this work (THERM)	-34.06	94.77	32.72	36.16	38.35	39.76	41.39	42.42	
$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}$	this work (AM1)	5.88	62.89	12.54	15.14	17.35	19.17	21.94	23.97	27.17
	this work (PM3)	9.72	63.13	13.01	15.65	17.83	19.60	22.29	24.26	27.37
	TRC ${ }^{1}$	6.81	63.15	12.82	15.55	17.78	19.60	22.35	24.36	27.46
	SWS ${ }^{3}$	8.40	63.08	12.89	15.56	17.80	19.61	22.35	24.35	
	this work (THERM)	5.06	63.01	13.00	15.56	17.81	19.70	22.37	24.37	
$\mathrm{CH}_{2} \mathrm{CCl}_{2}$	this work (AMI)	-0.05	68.43	15.53	18.22	20.29	21.91	24.27	25.92	28.39
	this work (PM3)	3.11	69.15	16.42	19.05	21.01	22.52	24.71	26.24	28.57
	TRC ${ }^{1}$	0.57	68.87	16.01	18.79	20.85	22.43	24.72	26.30	28.65
	SWS ${ }^{3}$	0.30	68.85	16.08	18.80	20.86	22.44	24.71	26.29	
	this work (IHERM)	0.50	67.00	16.07	18.78	20.84	22.42	24.70	26.28	
$2-\mathrm{CHClCHCl}$	this work (AM1)	-3.31	69.06	15.06	17.82	20.01	21.72	24.18	25.87	28.39
	this work (PM3)	3.99	69.49	15.77	18.48	20.58	22.20	24.55	26.17	28.58
	TRC ${ }^{1}$	-0.67	69.28	15.55	18.40	20.56	22.23	24.61	26.24	28.64
	SWS ${ }^{3}$	0.45	69.20	15.61	18.41	20.57	22.23	24.60	26.23	
	this work (THERM)	0.00	69.25	16.26	18.97	21.08	22.72	24.79	26.17	
$\mathrm{E}-\mathrm{CHClCHCl}$	this work (AM1)	-3.43	69.11	15.42	17.96	20.06	21.73	24.17	25.86	28.38
	this work (PM3)	3.56	69.55	16.02	18.58	20.62	22.21	24.54	26.17	28.57
	TRC ${ }^{\prime}$	-0.10	69.34	15.92	18.57	20.65	22.28	24.63	26.25	28.64
	SWS ${ }^{3}$	1.00	69.29	15.99	18.58	20.65	22.28	24.62	26.24	
	this work (THERM)	0.30	69.25	16.45	19.01	21.05	22.68	24.79	26.20	
$\mathrm{C}_{2} \mathrm{HCl}_{3}$	this work (AM1)	-8.41	77.17	18.45	21.05	23.00	24.47	26.50	27.80	29.59
	this work (PM3)	-2.33	78.19	19.43	21.95	23.76	25.10	26.94	28.13	29.77
	TRC ${ }^{1}$	-2.30	77.77	19.20	21.83	23.71	25.10	26.98	28.18	29.82
	SWS ${ }^{3}$	-1.40	77.63	19.25	21.80	23.67	25.06	26.94	28.15	
	this work (THERM)	-2.22	77.67	19.26	21.80	23.67	25.06	26.94	28.11	
$\mathrm{C}_{2} \mathrm{Cl}_{4}$	this work (AM1)	-12.43	80.83	21.79	24.26	26.00	27.24	28.83	29.74	30.80
	this work (PM3)	-8.08	82.70	23.05	25.37	26.91	27.97	29.31	30.07	30.90
	TRC	-2.90	81.54	22.70	25.13	26.75	27.89	29.31	30.10	31.00
	JANAF ${ }^{2}$	-2.97	82.05	22.84	25.19	26.78	27.91	29.30	30.09	30.98
	SWS ${ }^{3}$	-3.40	81.46	22.73	25.10	26.73	27.86	29.29	30.07	
	this work (THERM)	-3.15	81.47	22.73	25.10	26.72	27.86	29.28	30.02	
$\mathrm{C}_{2} \mathrm{HCl}$	this work (AM1)	47.77	56.50	11.71	13.31	14.42	15.24	16.44	17.33	18.74
	this work (PM3)	46.57	56.54	11.80	13.39	14.50	15.32	16.53	17.41	18.81
	JANAF ${ }^{2}$	51.10	57.81	12.98	14.39	15.30	15.97	16.98	17.75	18.99
	this work (THERM)	51.42	58.10	13.18	14.39	15.19	15.87	16.87	17.56	
$\mathrm{C}_{2} \mathrm{Cl}_{2}$	this work (AM1)	41.59	62.99	14.80	16.05	16.90	17.53	18.43	19.04	19.88
	this work (PM3)	42.02	63.16	14.80	16.12	17.00	17.64	18.54	19.14	19.95
	JANAF ${ }^{2}$	50.10	65.01	15.80	16.86	17.69	18.31	19.13	19.60	20.20
	this work (THERM)	50.89	64.58	16.55	17.26	17.63	18.08	18.75	19.20	

*: $\mathrm{S}^{\circ}{ }_{298}, \mathrm{Cp}(\mathrm{T})$ from hindered internal rotations are included.
Units of $\Delta \mathrm{Hf}^{\circ}{ }_{298}, \mathrm{~S}^{\circ}{ }_{298}$ and $\mathrm{Cp}(\mathrm{T})$ are $\mathrm{kcal} / \mathrm{mol}, \mathrm{cal} / \mathrm{mol} . \mathrm{K}$ and $\mathrm{cal} / \mathrm{mol} . \mathrm{K}$, respectively.

Table IA. 2 Reduced moments of inertia and rotational barriers

Internal Rotor in molecules	Ia $\left(\mathrm{amu} \times \AA^{2}\right) \mathrm{Ib}\left(\mathrm{amu} \times \AA^{2}\right)$	$\mathrm{V}(\mathrm{kcal} / \mathrm{mol})$	ref.	
$\mathrm{CH}_{2} \mathrm{Cl}-\mathrm{CH}_{3}$	103	3.2	3.70	Benson^{3}
$\mathrm{CHCl}_{2}-\mathrm{CH}_{3}$	198	3.2	3.75	SWS^{3}
$\mathrm{CH}_{2} \mathrm{Cl}-\mathrm{CH}_{2} \mathrm{Cl}$	102	102	5.42	$\mathrm{MP} 2 / 6-31 \mathrm{G}^{* *^{2}}$
$\mathrm{CCl}_{3}-\mathrm{CH}_{3}$	287	3.2	2.75	SWS
$\mathrm{CHCl}_{2}-\mathrm{CH}_{2} \mathrm{Cl}$	196	101	6.87	$\mathrm{MP} 2 / 6-31 \mathrm{G}^{* *^{2}}$
$\mathrm{CCl}_{3}-\mathrm{CH}_{2} \mathrm{Cl}$	287	101	8.89	$\mathrm{MP} 2 / 6-31 \mathrm{G}^{* *^{2}}$
$\mathrm{CHCl}_{2}-\mathrm{CHCl}_{2}$	196	196	9.20	$\mathrm{MP} 2 / 6-31 \mathrm{G}^{* *^{2}}$
$\mathrm{CCl}_{3}-\mathrm{CHCl}_{2}$	288	196	12.66	$\mathrm{MP} 2 / 6-31 \mathrm{G}^{* *^{2}}$
$\mathrm{CCl}_{3}-\mathrm{CCl}_{3}$	288	288	15.00	Benson

a: Unpublished work.

Table IA. 3 Moments of inertia ($10^{-47} \mathrm{~kg} \mathrm{~m}^{2}$)

Molecule	$\mathrm{I}_{\text {A }}$	I_{B}	I_{C}	Molecule	$\mathrm{I}_{\text {A }}$	I_{B}	I_{C}
$\mathrm{CH}_{3} \mathrm{Cl}$	5.32	62.55	62.55	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$	27.45	148.43	165.35
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	28.57	240.44	263.66	$\mathrm{CH}_{3} \mathrm{CHCl}_{2}$	131.35	252.76	359.54
CHCl_{3}	249.53	249.70	467.75	$\mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{Cl}$	29.07	553.26	571.74
CCl_{4}	478.84	478.86	478.98	$\mathrm{CH}_{3} \mathrm{CCl}_{3}$	350.75	350.79	482.34
$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}$	15.12	133.87	148.99	$\mathrm{CH}_{2} \mathrm{ClCHCl}_{2}$	226.10	570.40	766.95
$\mathrm{CH}_{2} \mathrm{CCl}_{2}$	110.59	238.82	349.42	$\mathrm{CH}_{2} \mathrm{ClCCl}_{3}$	429.39	743.45	796.81
$\mathrm{Z}-\mathrm{CHClCHCl}$	74.15	302.58	376.73	$\mathrm{CHCl}_{2} \mathrm{CHCl}_{2}$	490.06	629.30	1091.50
$\mathrm{E}-\mathrm{CHClCHCl}$	16.11	529.03	545.14	$\mathrm{C}_{2} \mathrm{HCl}_{5}$	699.90	846.10	1100.79
$\mathrm{C}_{2} \mathrm{HCl}_{3}$	201.15	534.15	735.20	$\mathrm{C}_{2} \mathrm{Cl}_{6}$	956.80	1155.90	1155.92
$\mathrm{C}_{2} \mathrm{Cl}_{4}$	473.25	587.31	1060.56	$\mathrm{C}_{2} \mathrm{HCl}$	0.00	140.38	140.38
				$\mathrm{C}_{2} \mathrm{Cl}_{2}$	0.00	566.34	566.34

Table IA. 4 PM3-calculated bond lengths, angles and dihedral angles

Molecule	Bond length (A)	$\begin{aligned} & \hline \text { Bond } \\ & \text { angle } \\ & \text { (deg) } \\ & \hline \end{aligned}$	Dihedral angle (deg)	Molecule	Bond length (A)	$\begin{aligned} & \text { Bond } \\ & \text { angle } \\ & \text { (deg) } \\ & \hline \end{aligned}$	Dihedra angle (deg)	Molecule	Bond length (A)	$\begin{aligned} & \text { Bond } \\ & \text { angle } \\ & \text { (deg) } \end{aligned}$	Dihedral angle (deg)
$\mathrm{CH}_{3} \mathrm{Cl}$				$\mathrm{CH}_{3} \mathrm{CCl}_{3}$				$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}$			
$\mathrm{Cl}-\mathrm{Hl}$	1.094			$\mathrm{Cl}-\mathrm{C} 2$	1.501			$\mathrm{Cl}-\mathrm{C}_{2}$	1.326		
$\mathrm{Cl}-\mathrm{H} 2$	1.094	109.1		C1-Cl1	1.759	111.0		$\mathrm{Cl}-\mathrm{Cl}$	1.689	121.0	
$\mathrm{Cl}-\mathrm{H} 3$	1.094	109.1	119.1	Cl-Cl2	1.760	110.8	119.9	$\mathrm{Cl}-\mathrm{Hl}$	1.095	123.5	180.0
C1-Cl1	1.765	109.8	120.4	C1-Cl3	1.759	111.0	119.9	$\mathrm{C} 2-\mathrm{H} 2$	1.086	123.2	180.0
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$				$\mathrm{C} 2-\mathrm{H1}$	1.098	111.1	179.9	$\mathrm{C}_{2}-\mathrm{H} 3$	1.086	122.4	-180.0
$\mathrm{Cl}-\mathrm{Hl}$	1.103			$\mathrm{C} 2-\mathrm{H}_{2}$	1.098	111.1	-120.0	$\mathrm{CH}_{2} \mathrm{CCl}_{2}$			
$\mathrm{Cl}-\mathrm{H} 2$	1.102	108.4		$\mathrm{C} 2-\mathrm{H} 3$	1.098	111.1	-120.0	$\mathrm{Cl}-\mathrm{C} 2$	1.329		
$\mathrm{Cl}-\mathrm{Cl}$	1.758	110.1	120.5	$\mathrm{CH}_{2} \mathrm{ClC}$	Cl_{2}			$\mathrm{Cl}-\mathrm{Cl}$	1.682	122.7	
C1-Cl2	1.758	110.1	118.8	C1-C2	1.506			$\mathrm{Cl}-\mathrm{Cl} 2$	1.682	122.7	180.0
CHCl_{3}				Cl-Cl1	1.769	109.3		$\mathrm{C} 2-\mathrm{Hl}$	1.086	122.5	-180.0
$\mathrm{Cl}-\mathrm{H} 1$	1.111			$\mathrm{Cl}-\mathrm{Cl} 2$	1.764	110.1	117.4	C2-H2	1.086	122.5	-180.0
$\mathrm{Cl}-\mathrm{Cl}$	1.752	110.4		C1-H1	1.113	111.8	121.6	2-CHCICH	Cl		
$\mathrm{Cl}-\mathrm{Cl} 2$	1.753	110.2	119.9	$\mathrm{C} 2-\mathrm{Cl} 3$	1.772	108.9	52.76	$\mathrm{Cl}-\mathrm{C} 2$	1.334		
$\mathrm{Cl}-\mathrm{Cl} 3$	1.752	110.4	119.9	C2-H2	1.105	110.9	-120.0	$\mathrm{Cl}-\mathrm{Cl}$	1.678	121.4	
CCl_{4}				$\mathrm{C}_{2}-\mathrm{H}_{3}$	1.105	111.5	-120.0	Cl -H1	1.096	122.2	180.0
$\mathrm{Cl}-\mathrm{Cl}$	1.747			$\mathrm{CH}_{2} \mathrm{ClCC}$				$\mathrm{C} 2-\mathrm{Cl} 2$	1.678	121.4	-180.0
$\mathrm{Cl}-\mathrm{Cl} 2$	1.746	109.5		$\mathrm{Cl}-\mathrm{C} 2$	1.506			$\mathrm{C} 2-\mathrm{H} 2$	1.096	122.2	-180.0
$\mathrm{Cl}-\mathrm{Cl} 3$	1.747	109.4	120.0	C1-Cl1	1.755	110.8		E- CHCIC	HCl		
Cl-CL4	1.746	109.5	120.0	C1-Cl2	1.755	110.8	120.5	$\mathrm{Cl}-\mathrm{C} 2$	1.333		
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$				C1-Cl3	1.760	110.1	119.8	$\mathrm{Cl}-\mathrm{Cl}$	1.681	120.6	
$\mathrm{Cl}-\mathrm{C} 2$	1.502			C2-Cl4	1.768	109.1	180.0	$\mathrm{Cl}-\mathrm{H} 1$	1.096	123.0	180.0
$\mathrm{Cl}-\mathrm{Cl} 1$	1.782	109.0		$\mathrm{C} 2-\mathrm{H1}$	1.105	110.9	-120.4	$\mathrm{C} 2-\mathrm{H} 2$	1.096	123.0	180.0
$\mathrm{Cl}-\mathrm{Hl}$	1.104	112.1	119.6	$\mathrm{C} 2-\mathrm{H} 2$	1.105	110.9	-119.3	$\mathrm{C}_{2}-\mathrm{Cl} 2$	1.681	120.6	-180.0
$\mathrm{Cl}-\mathrm{H} 2$	1.104	112.0	120.7	$\mathrm{CHCl}_{2} \mathrm{CH}$	Cl_{2}			$\mathrm{C}_{2} \mathrm{HCl}_{3}$			
C2-H3	1.098	111.6	-179.7	C1-C2	1.509			$\mathrm{Cl}-\mathrm{C} 2$	1.337		
C2-H4	1.098	111.0	-120.0	C1-Cl1	1.764	109.4		$\mathrm{Cl}-\mathrm{Cl}$	1.674	122.5	
C2-H5	1.098	111.6	-120.0	Cl-Cl2	1.764	109.4	117.5	$\mathrm{Cl}-\mathrm{Cl} 2$	1.677	121.9	-179.9
$\mathrm{CH}_{3} \mathrm{CHCl}$				C1-H1	1.114	111.5	121.2	$\mathrm{C} 2-\mathrm{Cl} 3$	1.672	121.0	-179.9
$\mathrm{Cl}-\mathrm{C} 2$	1.502			$\mathrm{C} 2-\mathrm{Cl} 3$	1.763	109.5	58.6	$\mathrm{C} 2-\mathrm{Hl}$	1.096	122.0	-180.0
$\mathrm{Cl}-\mathrm{Cl}$	1.770	109.9		C2-Cl4	1.764	109.4	-117.5	$\mathrm{C}_{2} \mathrm{Cl}_{4}$			
$\mathrm{Cl}-\mathrm{Cl} 2$	1.770	109.9	117.3	C2-H2	1.114	111.4	-121.2	$\mathrm{Cl}-\mathrm{C} 2$	1.345		
C1-H1	1.112	112.3	121.4	$\mathrm{C}_{2} \mathrm{HCl}_{5}$				$\mathrm{Cl}-\mathrm{Cl}$	1.670	121.9	
C2-H2	1.098	111.6	180.8	$\mathrm{Cl}-\mathrm{C} 2$	1.511			$\mathrm{Cl}-\mathrm{Cl} 2$	1.670	121.9	179.8
$\mathrm{C} 2-\mathrm{H} 3$	1.098	111.1	-120.0	Cl-Cl1	1.757	110.2		$\mathrm{C} 2-\mathrm{Cl} 3$	1.670	121.9	179.8
C 2 -H4	1.098	111.1	-119.9	C1-Cl2	1.753	110.7	120.2	$\mathrm{C} 2-\mathrm{Cl} 4$	1.670	121.9	-179.8
$\mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{Cl}$				$\mathrm{C} 1-\mathrm{Cl} 3$	1.756	110.2	120.2	$\mathrm{C}_{2} \mathrm{HCl}$			
C1-C2	1.505			C2-Cl4	1.760	109.5	179.1	$\mathrm{Cl}-\mathrm{C} 2$	1.190		
$\mathrm{Cl}-\mathrm{Cl} 1$	1.776	108.6		C2-Cl5	1.761	109.5	-118.0	$\mathrm{Cl}-\mathrm{Cl} 1$	1.664	180.0	
$\mathrm{Cl} 1-\mathrm{Hl}$	1.104	111.7	120.1	$\mathrm{C}_{2}-\mathrm{H} 1$	1.113	110.7	-121.0	$\mathrm{C} 2-\mathrm{HI}$	1.064	180.0	0.0
$\mathrm{C} 1-\mathrm{H} 2$	1.105	111.6	119.9	$\mathrm{C}_{2} \mathrm{Cl}_{6}$				$\mathrm{C}_{2} \mathrm{Cl}_{2}$			
C2-C12	1.776	108.6	179.9	C1-C2	1.512			$\mathrm{Cl}-\mathrm{C} 2$	1.190		
C2-H3	1.105	111.6	-119.9	$\mathrm{Cl}-\mathrm{Cl} 1$	1.754	110.2		$\mathrm{Cl}-\mathrm{Cl} 1$	1.664	180.0	
C2-H4	1.104	111.8	-120.1	$\mathrm{Cl}-\mathrm{Cl}_{2}$	1.754	110.1	120.0	$\mathrm{C} 2-\mathrm{Cl} 2$	1.664	180.0	0.0
				$\mathrm{Cl}-\mathrm{Cl} 3$	1.754	110.2	120.0				
				C2-C14	1.754	110.2	179.9				
				C2-C15	1.754	110.1	-120.0				
				C2-C16	1.754	110.2	-120.0				

Table IA. 5 PM3-calculated vibrational frequencies of $\mathrm{C}_{1}, \mathrm{C}_{2}$ chlorocarbons

3.2 Modified Group Additivity: THERM

We have developed a new, unique set of chlorocarbon groups plus interaction terms (Table IA. 6) for use by Group Additivity to estimate the thermodynamic properties of chlorocarbon molecules and daughter radicals (here daughter signifies the parent molecule with a hydrogen atom removed from central atom). This is because most groups needed for chlorocarbon or oxygenated chlorocarbons do not exist in the literature, and current Benson group additivity does not work to a reasonable accurate degree (it is not accurate
to within $\pm 3 \mathrm{kcal} / \mathrm{mol}$ for chlorocarbons). We have developed chlorocarbon groups by taking a core set of literature experimental data for chlorocarbons plus a specific, consistent definition for each chlorocarbon group in the derivation for use in Group Additivity. This when combined with a set of interaction terms leads to accurate calculation of chlorocarbon thermodynamic parameters. Fluorocarbon groups are derived in a similar manner.

Correct definition of initial groups is important to development of a Group Additivity scheme for accurate property estimation. Group Additivity is known to work well for hydrocarbons with Gauche interaction terms. ${ }^{5}$ Chlorocarbon groups are therefore derived from the experimental thermodynamic property data on respective chlorinated hydrocarbons. These groups are defined by use of groups where there are only carbon or hydrogen atoms on adjacent carbons. For examples the $\mathrm{C} / \mathrm{C} / \mathrm{Cl} / \mathrm{H}_{2}, \mathrm{C} / \mathrm{C}_{2} / \mathrm{Cl}_{2} / \mathrm{H}$ or $\mathrm{C} / \mathrm{C} / \mathrm{Cl}_{3}$ groups are derived from chloroethane $\left(\mathrm{CH}_{3}-\mathrm{CH}_{2} \mathrm{Cl}\right) ; 1,1$-dichloroethane $\left(\mathrm{CH}_{3} \mathrm{CHCl}_{2}\right)$; and 1,1,1-trichloroethane $\left(\mathrm{CH}_{3} \mathrm{CCl}_{3}\right)$. respectively. There are no chlorines on the carbon atoms adjacent to the carbon atoms containing the chlorines. The $\mathrm{C} / \mathrm{C} / \mathrm{Cl}_{3}$ group, for example, is defined from the parent 1,1,1-trichloroethane, and the $\mathrm{C} / \mathrm{C} / \mathrm{H}_{3}$ group. Thermodynamic properties of chlorocarbons with no Cl or F on the carbon atoms adjacent a carbon with Cl are now accurately predicted, but an adjustment needs to be made for chlorocarbon or fluoro-chloro carbon species where there is a Cl or F on an adjacent carbon, such as 1,2dichloroethane or 1,1,2-trichloroethylene. This adjustment comes in the form of an interaction group to count the total number of Cl atoms (that interact) on the two adjacent carbons. There is no interaction group when the Cl atoms are only on one of two adjacent carbons.

Table IA. 6 Selected chlorocarbon groups and interaction groups for multi chloroalkanes, alkenes and alkynes ${ }^{\text {a }}$

Group	$\Delta H^{\circ}{ }_{298}$	$\mathrm{S}^{\circ} 298$	$\mathrm{Cp}(\mathrm{T})$					
			300 K	400K	500K	600 K	800K	1000 K
$\overline{\mathrm{C} / \mathrm{C} / \mathrm{Cl} / \mathrm{H}_{2}}$	-16.80	38.03	8.74	10.54	12.08	13.31	15.15	16.47
$\mathrm{C} / \mathrm{C} / \mathrm{Cl}_{2} / \mathrm{H}$	-21.04	44.91	11.99	13.98	15.53	16.62	18.09	18.80
$\mathrm{C} / \mathrm{C} / \mathrm{Cl}_{3}$	-23.84	50.69	15.83	17.86	19.25	20.10	21.06	21.21
$\mathrm{C}_{\mathrm{D}} / \mathrm{Cl} / \mathrm{H}$	-1.20	35.40	7.90	9.20	10.30	11.20	12.30	13.10
$\mathrm{C}_{\mathrm{D}} / \mathrm{Cl}_{2}$	-5.76	40.77	10.97	12.42	13.33	13.92	14.63	15.01
$\mathrm{C}_{\mathrm{T}} / \mathrm{H}$	27.25	24.70	5.28	5.99	6.49	6.87	7.47	7.96
$\mathrm{C}_{\mathrm{T}} / \mathrm{Cl}$	24.17	33.40	7.90	8.40	8.70	9.00	9.40	9.60
$\mathrm{INT} / \mathrm{Cl}_{2}$	2.55	-0.84	0.75	0.46	0.23	0.08	-0.05	-0.05
$\mathrm{INT} / \mathrm{Cl}_{3}$	3.70	-1.42	0.58	0.33	0.04	-0.12	-0.24	-0.24
$\mathrm{nNT} / \mathrm{Cl}_{4}$	5.34	-1.90	0.05	-0.11	-0.26	-0.24	-0.10	0.43
$\mathrm{NNT} / \mathrm{Cl}_{5}$	10.60	-2.20	0.45	0.02	-0.31	-0.44	-0.53	0.02
$\mathrm{INT} / \mathrm{Cl}_{6}$	13.34	-0.51	1.06	0.44	-0.15	-0.44	-0.73	-0.17
INT/CD $/ \mathrm{Cl}_{2}$	2.70	-0.17	0.65	0.61	0.45	0.28	0.19	0.15
INT/CD $/ \mathrm{Cl}_{3}$	4.74	1.50	0.39	0.18	0.04	-0.06	0.01	0.04
$\underline{\mathrm{NT} / \mathrm{C}_{\mathrm{D}} / \mathrm{Cl}_{4}}$	8.37	2.68	0.79	0.26	0.06	0.02	0.02	0.05

a: Only chlorocarbon groups used in this work are listed.
Units of $\Delta \mathrm{Hf}^{\circ}{ }_{298}, \mathrm{~S}^{\circ}{ }_{298}$ and $\mathrm{Cp}(\mathrm{T})$ are $\mathrm{kcal} / \mathrm{mol}, \mathrm{cal} / \mathrm{mol} . \mathrm{K}$ and $\mathrm{cal} / \mathrm{mol} . \mathrm{K}$, respectively.

THERM (modified Group Additivity) files for the 17 chlorocarbons discussed in this work are attached as Appendix.

CHAPTER 4

RESULTS

4.1 Enthalpy

$\Delta \mathrm{Hf}^{\circ}{ }_{298}$ for $\mathrm{C}_{1}, \mathrm{C}_{2}$ chlorocarbons from PM3 (or AM1), TRC ${ }^{1}$ and THERM are compared in Figures IB. 1 to 6 . Each class of chlorocarbons (saturated C_{1}, saturated C_{2}, C_{2} containing carbon-carbon double bonds and C_{2} containing carbon-carbon triple bonds) are shown in different legends.

Data in Table IA. 1 illustrates that the deviations of $\Delta \mathrm{Hf}^{\circ}{ }_{298}$ between $\mathrm{AM1}$ and TRC data range from $-9.53 \mathrm{kcal} / \mathrm{mol}\left(\mathrm{C}_{2} \mathrm{Cl}_{4}\right)$ to $-5.20 \mathrm{kcal} / \mathrm{mol}\left(\mathrm{CCl}_{4}\right)$. Four compounds have more than $\pm 5 \mathrm{kcal} / \mathrm{mol}$ deviations, i.e. $\mathrm{CCl}_{4}, \mathrm{C}_{2} \mathrm{HCl}_{3}, \mathrm{C}_{2} \mathrm{Cl}_{4}, \mathrm{C}_{2} \mathrm{Cl}_{2}$. The deviations of $\Delta \mathrm{Hf}^{\circ}{ }_{298}$ between PM3 and TRC data are within $+7.12 \mathrm{kcal} / \mathrm{mol}\left(\mathrm{CH}_{2} \mathrm{ClCHCl}_{2}\right)$ and -8.08 $\mathrm{kcal} / \mathrm{mol}\left(\mathrm{C}_{2} \mathrm{Cl}_{4}\right)$. Six compounds have more than $\pm 5 \mathrm{kcal} / \mathrm{mol}$ deviations, i.e. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, $\mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{Cl}, \mathrm{CH}_{2} \mathrm{ClCHCl}_{2}, \mathrm{CHCl}_{2} \mathrm{CHCl}_{2}, \mathrm{C}_{2} \mathrm{Cl}_{4}$ and $\mathrm{C}_{2} \mathrm{Cl}_{2}$. It is seen from the comparison of Figures IB. 1, 3 and Figures IB. 2, 4 that AM1 is better than PM3 for predicting $\Delta \mathrm{Hf}^{\circ}{ }_{298}$ of $\mathrm{C}_{1}, \mathrm{C}_{2}$ saturated chlorocarbons.

Statistics in Figures IB. 3 and 4 indicate that $\Delta \mathrm{Hf}^{\circ}{ }_{298}$ for all $\mathrm{C}_{1}, \mathrm{C}_{2}$ chlorocarbons between PM3 and TRC or PM3 and modified Group Additivity (THERM) do not have a good linear relationship: R^{2} factors are 0.980 and 0.984 , respectively. An important observation is that the each class of chlorocarbons has similar, local non linearity: PM3 consistently predicts $\Delta \mathrm{Hf}^{\circ}{ }_{298}$ of the fully chlorinated hydrocarbons to be too low. For examples, PM 3 -determined $\Delta \mathrm{Hf}^{\mathrm{o}}{ }_{298}$ of $\mathrm{CCl}_{4}, \mathrm{C}_{2} \mathrm{Cl}_{6}, \mathrm{C}_{2} \mathrm{Cl}_{4}$ and $\mathrm{C}_{2} \mathrm{Cl}_{2}$ to be $3.04,3.25,5.18$, $8.08 \mathrm{kcal} / \mathrm{mol}$ lower than experimental data, respectively. Two types of these $\mathrm{C}_{1}, \mathrm{C}_{2}$ chlorocarbons are separately considered: (i) the fully chlorinated and (ii) the partially
chlorinated hydrocarbons (containing one or more $\mathrm{C}-\mathrm{H}$ bond). Comparisons of the separate fits to the literature data are plotted in Figures IB, 5, 6 and show much better linearity. This suggests that PM3 under-predicts Gauche interactions or $\mathrm{Cl}-\mathrm{Cl}$ interactions. Conventional Gauche interactions ${ }^{5}$ are not appropriate for chlorocarbon species and a series of new interaction terms are developed. ${ }^{10,33}$ Figures IB. 5 and 6 suggest, in part, the correction terms to the PM 3 calculated $\Delta \mathrm{Hf}_{298}$ (in $\mathrm{kcal} / \mathrm{mol}$) for the respective TRC and THERM data as following:
$\Delta \mathrm{Hf}^{\circ}{ }_{298, \mathrm{PM} 3}=-2.35+1.09 \times \Delta \mathrm{Hf}^{\circ}{ }_{298, \text { iterature }}$ for the partially chlorinated hydrocarbons;
$\Delta \mathrm{Hf}^{\mathrm{o}}{ }_{298, \mathrm{PM} 3}=5.36+1.07 \times \Delta \mathrm{Hf}^{\circ}{ }_{298, \text { literature }}$ for the fully chlorinated hydrocarbons;
$\Delta \mathrm{Hf}^{\mathrm{o}}{ }_{298, \mathrm{PM} 3}=-2.19+1.08 \times \Delta \mathrm{Hf}^{\circ}{ }_{298, \text { THERM }}$ for the partially chlorinated hydrocarbons;
$\Delta \mathrm{Hf}^{\circ}{ }_{298, \mathrm{PMB}}=5.48+1.08 \times \Delta \mathrm{Hf}^{\circ}{ }_{298,7 \mathrm{HERM}}$ for the fully chlorinated hydrocarbons.
To estimate higher carbon number chlorocarbons ($\mathrm{C}_{\mathrm{m}}, \mathrm{n} \geq 3$), we define on extension of these two types of chlorocarbons: (i) the fully chlorinated and (ii) the partially chlorinated hydrocarbon species.

Table IA. 1 shows that modified Group Additivity (THERM) is consistent with the literature. Deviations of $\Delta \mathrm{Hf}^{\circ}{ }_{298}$ between literature and THERM are within $\pm 1 \mathrm{kcal} / \mathrm{mol}$ for all $17 \mathrm{C}_{2}$ chlorocarbons except $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}(+1.75 \mathrm{kcal} / \mathrm{mol})$.

4.2 Entropy

Comparisons of $\mathrm{S}^{\circ}{ }_{298}$ for $\mathrm{C}_{1}, \mathrm{C}_{2}$ chlorocarbons are shown in Figures IB. 7 to 10 for data from TRC and THERM, respectively. Relative deviations between AM1 and TRC are all less than $\pm 5 \%$. Deviations between PM3 and TRC range from $-1.85 \mathrm{cal} / \mathrm{mol} . \mathrm{K}\left(\mathrm{C}_{2} \mathrm{Cl}_{2}\right)$ to
$+5.68 \mathrm{cal} / \mathrm{mol} . \mathrm{K}\left(\mathrm{C}_{2} \mathrm{HCl}_{5}\right)$, relative deviations are all less than $\pm 5 \%$ except $\mathrm{C}_{2} \mathrm{HCl}_{5}(6.2 \%)$ and most are within $\pm 2 \%$. The slopes greater than 0.85 and $\mathrm{R}^{2} \mathrm{~s}$ greater than 0.993 (Figures IB. 7 to 10) indicate that the AM 1 or PM 3 data are sufficiently accurate for estimation of the standard entropies of chlorocarbons. THERM results of $\mathrm{S}^{\circ}{ }_{298}$ in Table IA. 1 are in good agreement with the literature. Relative deviations of $S^{\circ}{ }_{298}$ between THERM and TRC are less than $\pm 2 \%$ for all $\mathrm{C}_{1}, \mathrm{C}_{2}$ chlorocarbons

4.3 Heat Capacity

Figures IB. 11 to 14 show comparison of MOPAC6-derived Cp_{300} with the literature values, where all the deviations between AM1 or PM3 and TRC are less than ± 1.5 $\mathrm{cal} / \mathrm{mol} . \mathrm{K}$. Relative deviations are all within $\pm 5 \%$ except $\mathrm{CH} \equiv \mathrm{CCl}(-9.8 \%)$ and $\mathrm{CCl} \equiv \mathrm{CCl}$ (-6.3%). Figures IB. 11 and 13 show that the slopes are greater than 0.94 and R^{2} factors are greater than 0.992 for all $\mathrm{C}_{1}, \mathrm{C}_{2}$ chlorocarbons. The agreements of AM 1 or PM3 calculation with literature data indicate that AM1 and PM3 can be useful in estimation $\mathrm{Cp}(\mathrm{T})$, providing account of internal rotations is included when appropriate. Relative deviations of $\mathrm{Cp}(\mathrm{T})$ between THERM and TRC less than $\pm 1.2 \%$ for all C_{2} chlorocarbons show that THERM-calculated $\mathrm{Cp}(\mathrm{T})$ are consist well with literature data.

The AM1 and PM3 calculations are satisfactory for $\mathrm{Cp}(\mathrm{T})(400 \leq \mathrm{T} / \mathrm{K} \leq 1500)$ of chloromethanes, chloroethanes and chloroethenes since relative deviations of AM1 and PM3 $\mathrm{Cp}(\mathrm{T})(400 \leq \mathrm{T} / \mathrm{K} \leq 1500)$ compared with literature are all within $\pm 5 \%$ and most are less than $\pm 1 \% . \mathrm{Cp}(\mathrm{T})$ of $\mathrm{CH} \equiv \mathrm{CCl}$ and $\mathrm{CCl} \equiv \mathrm{CCl}$ have more than $\pm 5 \%$ of relative deviations at $300-500 \mathrm{~K}$.

Figure IB. 1 Comparison of $\mathrm{Hf}^{\circ}{ }_{298}$: TRC vs. AMI

Figure IB. 2 Comparison of $\mathrm{Hf}^{\circ}{ }_{298}$: THERM vs. AM1

- $\mathrm{CH}_{3} \mathrm{Cl}$ to CCl_{4}

图 $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$ to $\mathrm{C}_{2} \mathrm{Cl}_{6}$
\& $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}$ to $\mathrm{C}_{2} \mathrm{Cl}_{4}$
$\nabla \quad \mathrm{C}_{2} \mathrm{HCl}$ and $\mathrm{C}_{2} \mathrm{Cl}_{2}$
All data: $y=1.09 x-0.78 R^{2}=0.980$
$\mathrm{Hf}^{\mathrm{O}}{ }_{298}$ of $\mathrm{C}_{2} \mathrm{HCl}$ and $\mathrm{C}_{2} \mathrm{Cl}_{2}$ are from JANAF (Ref. 2) since no TRC data are available

Figure IB. 3 Comparison of $\mathrm{Hf}^{\circ}{ }_{298}$: TRC vs. PM3

```
Hf
```


$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$ to $\mathrm{C}_{2} \mathrm{Cl}_{6}$
\triangle
$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}$ to $\mathrm{C}_{2} \mathrm{Cl}_{4}$
∇
$\mathrm{C}_{2} \mathrm{HCl}$ and $\mathrm{C}_{2} \mathrm{Cl}_{2}$
All data: $\mathrm{y}=1.10 \times-0.76, \quad \mathrm{R}^{2}=0.984$

Figure IB. 4 Comparison of $\mathrm{Hf}^{\circ}{ }_{298}$: THERM vs. PM3

- Partially chlorinated $\mathrm{C}_{1}, \mathrm{C}_{2}$ hydrocarbons
- $y=-2.35+1.09 x, R^{2}=0.992$
\square Fully chlorinated $\mathrm{C}_{1}, \mathrm{C}_{2}$ hydrocarbons
$y=5.36+1.07 x, R^{2}=1.000$
$\mathrm{Hf}^{\circ}{ }_{298}$ of $\mathrm{C}_{2} \mathrm{HCl}$ and $\mathrm{C}_{2} \mathrm{Cl}_{2}$ are from JANAF (Ref. 2)
since no TRC data are available

Figure IB. 5 Comparison of $\mathrm{Hf}^{\circ}{ }_{298}$: TRC vs. PM3

\square	Partially chlorinated C_{2} hydrocarbons
\square	$y=-2.19+1.081 x, R^{2}=0.991$
\square	Fully chlorinated C_{1}, C_{2} hydrocarbons
$\cdots \cdots .$.	$y=5.48+1.08 x, R^{2}=1.000$

Figure IB. 6 Comparison of $\mathrm{Hf}^{\circ}{ }_{298}$: THERM vs. PM3

All data: $\mathrm{y}=0.94 \mathrm{x}+4.41, \mathrm{R}^{2}=0.993$
$\mathrm{S}_{298}^{\mathrm{O}}$ of $\mathrm{C}_{2} \mathrm{HCl}$ and $\mathrm{C}_{2} \mathrm{Cl}_{2}$ are from JANAF (Ref. 2) since no TRC data are available

Figure IB. 7 Comparison of $\mathrm{S}^{\mathrm{o}}{ }_{298}$: TRC vs. AM1

$$
\text { - All data: } \mathrm{y}=0.94 \mathrm{x}+4.52, \mathrm{R}^{2}=0.994
$$

Figure IB. 8 Comparison of S_{298}° : THERM vs. AM1

Figure IB. 9 Comparison of $\mathrm{S}^{\circ}{ }_{298}$: TRC vs. PM3
$\mathrm{S}_{298}^{\mathrm{o}}$ (THERM, cal/mol.K)

$$
\text { All data: } \mathrm{y}=0.85 \mathrm{x}+10.27, \mathrm{R}^{2}=0.993
$$

Figure IB. 10 Comparison of $\mathrm{S}^{\circ}{ }_{298}$: THERM vs. PM3

$$
\begin{aligned}
& \text { All data: } \mathrm{y}=1.03 \mathrm{x}+0.08, \mathrm{R}^{2}=0.995 \\
& \mathrm{C}_{300} \text { of } \mathrm{C}_{2} \mathrm{HCl} \text { and } \mathrm{C}_{2} \mathrm{Cl}_{2} \text { are from JANAF (Ref. 2) } \\
& \text { since no } \mathrm{TRC} \text { data are available }
\end{aligned}
$$

Figure IB. 11 Comparison of Cp_{300} : TRC vs. AM1

$$
\text { _- All data: } y=1.01 x+0.75, R^{2}=0.994
$$

Figure IB. 12 Comparison of Cp_{300} : THERM vs. AM1

—— All data: $\mathrm{y}=0.94 \mathrm{x}+0.89, \mathrm{R}^{2}=0.992$
Cp_{300} of $\mathrm{C}_{2} \mathrm{HCl}$ and $\mathrm{C}_{2} \mathrm{Cl}_{2}$ are from JANAF (Ref. 2) since no TRC data are available

Figure IB. 13 Comparison of Cp_{300} : TRC vs. PM3

$$
\text { All data: } \mathrm{y}=0.91 \mathrm{x}+1.74, \mathrm{R}^{2}=0.990
$$

Figure IB. 14 Comparison of Cp_{300} : THERM vs. PM3

CHAPTER 5

SUMMARY

Thermodynamic properties, $\Delta \mathrm{Hf}^{\circ}{ }_{298}, \mathrm{~S}^{\circ}{ }_{298}, \mathrm{Cp}(\mathrm{T}),(300 \leq \mathrm{T} / \mathrm{K} \leq 1500)$ for $21 \mathrm{C}_{1}, \mathrm{C}_{2}$ chlorocarbons are calculated by the AM1 and PM3 methods in MOPAC6, then compared with TRC literature ${ }^{1}$ and modified group additivity values, where calculated values of $\mathrm{S}^{0}{ }_{298}, \mathrm{Cp}(\mathrm{T})$ include substitution of contribution from a Pitzer and Gwinn ${ }^{35}$ treatment of internal rotors in place of the MOPAC6 calculated torsion.

PM3-determined $\Delta \mathrm{Hf}^{\circ}{ }_{298}$ have obvious differences from two references (Deviations from -8.08 to $+7.12 \mathrm{kcal} / \mathrm{mol}$). The calibrations between PM3-determined enthalpies and literature enthalpies are calculated as: $\Delta \mathrm{Hf}^{\circ}{ }_{298}, \mathrm{PM3}=-2.35+1.09 \times \Delta \mathrm{Hf}^{\circ}{ }_{298}$, literaturc for hydrogen containing chlorocarbons; $\Delta \mathrm{Hf}^{\circ}{ }_{298, \mathrm{PM} 3}=5.36+1.07 \times \Delta \mathrm{Hf}^{\circ}{ }_{298}$, literature for fully Cl substitute chlorocarbons; $\Delta \mathrm{Hf}^{\circ}{ }_{298, \text { PM }}=-2.19+1.08 \times \Delta \mathrm{Hf}^{\circ}{ }_{298}$, THERM for hydrogen containing chlorocarbons; $\Delta \mathrm{Hf}^{\circ}{ }_{298}{ }^{\text {PM }}=5.48+1.08 \times \Delta \mathrm{Hf}^{\circ}{ }_{298, \text { THERM }}$ for fully Cl substitute chlorocarbons. AM1 is better than PM3 for prediction of standard enthalpies of formation of saturated $\mathrm{C}_{1}, \mathrm{C}_{2}$ chlorocarbons.

Standard entropies and heat capacities (300 to 1500 K) calculated by AM1 or PM3 show good agreement with the references ($\mathrm{Rd} \leq \pm 5 \%$). Only $\mathrm{S}^{\circ}{ }_{298}$ of $\mathrm{C}_{2} \mathrm{HCl}_{5}$ by PM 3 , $\mathrm{Cp}(300-500 \mathrm{~K})$ of $\mathrm{C}_{2} \mathrm{HCl}$ and $\mathrm{C}_{2} \mathrm{Cl}_{2}$ by AM 1 and PM 3 have more than $\pm 5 \%$ relative deviations.

Standard enthalpies of formation, entropies and heat capacities calculated by modified group additivity are in good agreement with TRC data: deviations of $\Delta \mathrm{Hf}^{\circ}{ }_{298}$ are
less than $2 \mathrm{kcal} / \mathrm{mol}$ and relative deviations of $\mathrm{S}^{\circ} 298$ and $\mathrm{Cp}(\mathrm{T}),(300 \leq \mathrm{T} / \mathrm{K} \leq 1500)$ are less than $\pm 5 \%$.

AM1 and PM3 in MOPAC6 provide us accurate methods to estimate entropy and heat capacity for larger chlorocarbon species where limited or no experimental data are available. Enthalpy data from MOPAC6 AM1 and PM3 are not accurate enough for direct estimation. Density function or $a b$ initio calculations at different levels can be tried but they are expensive and may not be able to deal very large molecules at present. Modified Group Additivity is recommended because it is faster, easier and more precise than semiempirical MOPAC6 calculations.

REFERENCES
 (FOR PART I)

1 R. D. Rodgers, Selected Values for Properties of Chemical Compounds. Thermodynamic Research Center, Texas A\&M University, College Station, TX, 1982.

2 D. R. Stull, H. Prophet, JANAF Thermochemical Tables, 2nd Ed.(NSRDS-NBS 37). U. S. Government Printing Office. Washington D. C., 1970.

3 D. R. Stull, E. F. Jr. Westrum, G. C. Sinke, The Chemical Thermodynamics of Organic Compounds. Robert E. Krieger Publishing. Malabar, FL, 1987.

4 J. B. Pedley, R. O. Naylor, S. P. Kirby, Thermodynamic Data of Organic Compounds. Second ed. Chapman and Hall., London, 1986.

5 S. W. Benson, Thermochemical Kinetics. Weily-Interscience. New York, 1976.
6 S. W. Benson, Buss, J. H., "Additivity Rules for the Estimation of Molecular Properties." J. Chem. Phys. vol. 29, pp. 546-572, 1958.

7 C. Reid, J. M. Prausnitz, T. K. Sherwood, The Properties of Gases and Liquids. 3rd Ed. McGraw-Hill Book Company. New York, 1977.

8 N. Cohen, Aerospace Report 88-(7073)-2. Aerospace Co., Washington D. C., 1988
9 S. Domalski, E. D. Hearing, "Estimation of the Thermodynamic Properties of Hydrocarbons at 298.15 K." J. Phys. Chem. Ref. Data, vol. 17, pp. 1637-1678, 1988.

10 D. K. Wong, D. A. Kretkowski, J. W. Bozzelli, "Standard Chemical Thermodynamic Properties of Monochloroalkanes." Ind. Eng. Chem. Res. vol. 32, pp. 3184-3188, 1993.

11 E. R. Ritter, "THERM: A Computer Code for Estimating Thermodynamic Properties for Species Important to Combustion and Reaction Modeling." J. Chem. Info. Comp. Sci., vol. 31, pp. 400-408, 1991.

12 E. R. Ritter, J. W. Bozzell, "THERM: Thermodynamic Property Estimation for Gas Phase Radical and Molecules." Int. J. Chem. Kinetics. vol. 23, pp. 767-778, 1991

13 M. J. S. Dewar, W. Thiel, "Ground States of Molecules. 38, the MNDO Method. Approximations and Parameters." J. Am. Chem. Soc. vol. 99, pp. 4899-4907, 1977.

14 M. J. S. Dewar, E. G. Zoebisch, E. F. Healy, J J. P. Stewart, "AM1: A New General Purpose Quantum Mechanical Molecular Model." J. Am. Chem. Soc. vol. 107, pp. 3902-3909, 1985.

15 (a) J. J. P. Stewart, "Optimization of Parameters for Semipirical Methods. I. Method." J. Comput. Chem. vol. 10, pp. 209-220, 1989. (b) J. J. P. Stewart, "Optimization of

Parameters for Semiempirical Methods. III. Extension of PM 3 to $\mathrm{Be}, \mathrm{Mg}, \mathrm{Zn}, \mathrm{Ga}, \mathrm{Ge}$, $\mathrm{Ge}, \mathrm{As}, \mathrm{Se}, \mathrm{Cd}, \mathrm{In}, \mathrm{Sn}, \mathrm{Sb}, \mathrm{Te}, \mathrm{Hg}, \mathrm{Tl}, \mathrm{Pb}$, and $\mathrm{Bi} .{ }^{.}$J. Comput. Chem. vol 12, pp: 320-342, 1991.

16 (a) MOPAC: A General Molecular Orbital Package (QCPE 445). QCPE Bull. CO, 1983. (b) MOPAC.6.0. F. J. Seiler Research Lab., US Air Force Academy, CO, 1990.

17 D. Feller, E. R. Davidson, Basis Sets for Ab Initio Molecular Orbital Calculations and Intermolecular Interactions. Reviews in Computational Chemistry. Vol. 1, pp. 143, VCH. New York, 1990.

18 W. J. Hehre, R. Ditchfield, J. A. Pople, "Self-Consistent Molecular Orbital Methods: XII Further Estimations of Gaussian-Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules." J. Chem. Phys. vol. 56, pp. 2257-2261, 1982.

19 Harriharan, P. C., Pople, J. A. "Self-Consistent Molecular Orbital Methods. Supplementary Functions for Basis Sets." Chim. Phys. Acta vol. 28, pp. 213-223, 1973.

20 M. J. Frisch, J. A. Pople, J. S. Binkley, "Self-Consistent Molecular Orbital Methods 25. Supplementary Functions for Basis Sets." J. Chem. Phys. vol. 80, pp. 3265-3269., 1984.

21 J. A. Pople, K. Raghavachari, G. W. Trucks, "Gaussian-2 Theory of Molecular Energies of First- and Second-Row Compounds." J. Chem. Phys. vol. 94, pp. 72217230, 1991.

22 L. A. Curtiss, C. Jones, G. W. Trucks, K. Raghavachari, J. A. Pople, "Gaussian-1 Theory of Molecular Energies for Second-Row Compounds." J. Chem. Phys. vol. 93, pp. 2537-2545, 1990.

23 L. A. Curtiss, K. Raghavachari, G. W. Trucks, J. A. Pople, "Gaussian-2 Theory Using Reduced Moller-Plesset Orders." J. Chem. Phys. vol. 98, pp. 1293-1298, 1993.

24 W. J. Hehre, L. Radom, P. R. Schleyer, J. A. Pople, Ab Initio Molecular Orbital Theory. John Weily and Sons. NY, 1986.

25 M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A., Robb, J. R. Cheeseman, T. A. Keith, G. A. Peterson, J. A. Montgomery, K. Raghavachari, M. A. Al-laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, M. W. Wong, E. S. Replogle, R. Gomperts, J. L. Andres, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. J. P. Stewart, M. Head-Gordon, C. Gonzalez, J. A. Pople, Gaussian 94. Gaussian Inc., Pittsburgh, PA, 1995.

26 M. J. Frisch, G. W. Trucks, M. Head-Gordon, P. M. W. Gill, M. W. Wong, J. B. Foresman, B. G. Johnson, H. B. Schlegel, M. A. Robb, E. S. Replogle, R. Gomperts, J. L. Andres, K. Raghavachari, J. S. Binkley, C. Gonzalez, R. L. Martin, D. J. Fox, D.
J. Defrees, J. Baker, J. J. P. Stewart, J. A. Pople, Gaussian 92. Revision C Eds., Gaussian Inc., Pittsburgh, PA, 1992.

27 C. F. Melius, BAC-MP4 Heals of Formation and Free Energies. Sandia National Laboratories, Livermore, CA, 1993.

28 J. A. Seetula, "An Ab Initio Study of Bond Strengths in Partly Chlorinated Saturated Small Hydrocarbons." th Internaional Conference on Chemical Kinetics, Gaithersburg, MD, July 14-18, 1997,

29 B. T. Colegrove, T. B. Thompson, "Ab Initio Heats of Formation for Chlorinated Hydrocarbons: Allyl Chloride, Cis- and Trans-1-Chloropropene and Vinyl Chloride." J. Chem. Phys. vol. 106, pp. 1480-1488, 1997.

30 M. N. Glukhovtsev, R. D. Bach, "A High-Level Computational Study on the Thermochemistry of Vinyl and Formyl Halides: Heats of Formation, Dissociation Energies, and Stabilization Energies." J. Phys. Chem. vol. 101, pp. 3574-3579, 1997.

31 Zachariah, M. R, "BAC-MP4 Predictions of Thermochemical Data for C_{1} and C_{2} Stable and Radical Hydroflourocarbons and Oxidized Hydroflourocarbons." J. Phys. Chem. vol. 100, pp. 8737-8747, 1996.

32 T. H. Lay, L. N. Krasnoperov, C. A. Venanzi, J. W. Bozzelli, N. V. Shokhirev, "Ab Initio Study of Alpha-Chlorinated Ethyl Hydroperoxides $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OOH}$, $\mathrm{CH}_{3} \mathrm{CHClOOH}$, and $\mathrm{CH}_{3} \mathrm{CCl}_{2} \mathrm{OOH}$: Conformational Analysis, Internal Rotation Barriers, Vibrational Frequencies, and Thermodynamic Properties." J. Phys. Chem. vol. 100, pp. 8240-8249, 1996.

33 Y. G. Wu, S. N. Patel, E. R. Ritter, J. W. Bozzelli, "Group Additivity Thermodynamic Parameters (Terms) for $\mathrm{Br}, \mathrm{Cl}, \mathrm{F}, \mathrm{CH}_{3}$ and OH Interactions and CH_{3} Buttress Effects in Multisubstituted Aromatics." J. Thermochemical Acta vol. 222, pp. 153-185, 1993.

34 I. N. Levine, Quantum Chemistry, 4th Ed. Prentice-Hall Inc., NJ 07632, 1991.
35 T. H. Lay, T. Yamada, P. Tsai, J. W. Bozzelli, "Thermodynamic Parameters and Group Additivity Ring Corrections for Three- to Six-Membered Oxygen Heterocyclic Hydrocarbons." J. Phys. Chem. vol. 101, pp. 2471-2477, 1997.

36 (a) K. S. Pitzer, "Thermodynamic Functions for Molecules Having Restricted Internal Rotations." J. Chem. Phys. vol. 5, pp. 469-472, 1937. (b) K. S. Pitzer, W. D. Gwinn, "Energy Levels and Thermodynamic Functions for Molecules with Internal Rotation. I. Rigid Frame with Attached Tops."ibid. vol. 10, pp. 428-440, 1942. (c) J. E. Kilpatrick, K. S. Pitzer, "Energy Levels and Thermodynamic Functions for Molecules with Internal Rotation. III. Compound Rotation." ibid. vol. 11, pp. 1064-1075, 1949.

PART II

REACTION OF OH RADICAL WITH $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}$, RATE CONSTANT AND REACTION PATHWAY ANALYSIS

CHAPTER 1

INTRODUCTION

Gas phase reactions of OH radicals are important in combustion and incineration of chlorinated hydrocarbon (CHCs) as well as in atmospheric chemistry. In combustion environments, OH is often the active radical present in the highest concentrations, where it serves to initiate breakdown of hydrocarbons (HCs) and it also reacts with CO producing CO_{2}, plus H atoms, plus energy. Here if temperature is high, H atoms may react with O_{2} in the critically important chain branching step $\mathrm{H}+\mathrm{O}_{2} \rightarrow \mathrm{OH}+\mathrm{O}$. OH is often the most important active species in combustion and atmospheric oxidation process. It abstracts hydrogen atom from saturated hydrocarbons forming HC radicals, which then combine with O_{2} forming peroxy radicals. Peroxy radical then reacts with NO or undergoes other reactions related to photochemical smog. OH radicals also add to unsaturated hydrocarbons and carbonyls forming radicals which then further react with O 2 and NO . Previous studies on OH radical reaction with unsaturated hydrocarbons such as vinyl chloride as well as this work show that the addition reaction is predominate at low temperature, while abstraction of H atom becomes important above 1400 K .

Howard ${ }^{1}$ has determined the rate constant for reaction of OH with six different ethylene compounds ($\left.\mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}, \mathrm{C}_{2} \mathrm{HCl}_{3}, \mathrm{C}_{2} \mathrm{Cl}_{4}, \mathrm{CH}_{2} \mathrm{CF}_{2}, \mathrm{C}_{2} \mathrm{ClF}_{3}\right)$ at 296 K and in 0.7 - 7.0 torr helium buffer gas, using a discharge - flow reactor with Laser Magnetic Resonance (LMR) detection of OH . The rate constants at 7.0 torr are all in the range (1.2 $-4.2) \times 10^{12} \mathrm{~cm} \mathrm{~mol}^{3} \mathrm{~s}^{-1}$, except for $\mathrm{C}_{2} \mathrm{Cl}_{4}$ which is lower, about $1.0 \times 10^{11} \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$. The accuracy of the measurements was estimated to be about $\pm 20 \%$. Howard measured 8 points between 0.7 and 7 torr. These data showed that the rate constant for OH reaction
with vinyl chloride to be pressure dependent (in the fall-off regime), increasing from $1.2 \times 10^{12} \mathrm{~cm}^{3} \mathrm{~mol}^{-1-1} \mathrm{~s}^{-1}$ at 0.7 torr to $3.01 \times 10^{12} \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$ at 7.0 torr, where it still was not at the high pressure limit.

Perry et al. ${ }^{2}$ measured the absolute rate constants for reactions of OH radical with vinyl chloride, vinyl fluoride, and vinyl bromide by using a flash photolysis-resonance fluorescence technique over the temperature range $299-426 \mathrm{~K}$ at total pressure of ca. 50 tor (for $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}$ and $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Br}$) or ca. 100 torr (for $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~F}$) of argon. They measured 6-8 points at each temperature for each reaction. The Arrhenius expressions for the rate constants (in $\mathrm{cm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$) obtained were:

$$
\begin{aligned}
& \mathrm{k}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~F}+\mathrm{OH}\right)=8.91 \times 10 \mathrm{e}^{11} \mathrm{e}^{(775 \pm 300) \mathrm{RT}} \text { or }(3.35 \pm 0.34) \times 10^{12} \text { at room temperature } \\
& \mathrm{k}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}+\mathrm{OH}\right)=6.87 \times 10^{11} \mathrm{e}^{(1045 \pm 300 y \mathrm{RT}} \text { or }(3.97 \pm 0.40) \times 10^{12} \text { at room temperature } \\
& \mathrm{k}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Br}+\mathrm{OH}\right)=1.08 \times 10^{12} \mathrm{e}^{(805 \pm 300) \mathrm{RT}} \text { or }(4.10 \pm 0.42) \times 10^{12} \text { at room temperature } \\
& \text { The k's decreased with the increasing temperature. Combining these data with the }
\end{aligned}
$$ reference rate constant (note: high pressure) for $\mathrm{OH}+$ ethylene $\left(4.73 \times 10^{12} \mathrm{~cm} \mathrm{~mol}^{3} \mathrm{~m}^{-1}\right.$ which they measured before this work), they obtained the following relative rate constants: $\mathrm{C}_{2} \mathrm{H}_{4}: \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Br}: \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}: \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~F}=1: 0.87: 0.84: 0.71$. This appears to show a trend - the more electronegative the halogen substituent, the lower the rate constant. However, the total pressure from 100 to 52 torr for $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~F}$, from 50 to 100 torr for $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}$ had no effect on the rate constants within the experimental errors ($\pm 5 \%$) at room temperature.

Liu et al. ${ }^{3}$ studied the gas phase reaction of OH radical with vinyl chloride at 1 atm of argon over $313-1173 \mathrm{~K}$ by using pulse radiolysis, resonant absorption for OH measurement. Temperature dependence of the rate constants showed behavior similar to that of $\mathrm{OH}+$ ethylene in that, the predominant reaction changed from an addition reaction below 588 K to abstraction of hydrogen atom above 723 K . They also observed negative temperature constant for the addition reaction as: $1.29 \times 10^{12} \mathrm{e}^{(700 \pm 120 \mathrm{VrT}} \mathrm{cm}^{3} \mathrm{~mol} \mathrm{~s}^{-1-1}$. The linear and nonlinear form rate constants for the H atom abstraction reaction were $1.79 \times 10^{13} \mathrm{e}^{(-4020 \pm 700 \gamma \mathrm{RT}}$ and $8.43 \times 10^{6} \times \mathrm{T}^{2} \mathrm{e}^{(-1200 \gamma \mathrm{RT}} \mathrm{cm} \mathrm{mol}^{3} \mathrm{~m}^{-1-1}$. However, no measurement was made between 588 and 723 K , and no reason was explained why there was such a big temperature jump in their experiment.

The low temperature addition reactions $\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}$ are complex and nonelementary. OH can add to either α - or β-carbon of $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}$ (α-carbon is the Cl -attached carbon, β-carbon is the carbon next to α-carbon). In each case, an adduct is formed, which can undergo stabilization via collisions, or before stabilization it may undergo unimolecular reaction to products, or reverse reaction - dissociation back to reactants. There are also two different C - H bond where abstraction can occur at the same time.

The summary of literature are shown in Table IIA. 1.
Table IIA. 1 Previous studies on $\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}$

Researchers	Experimental Technique	T (K)	P $($ torr $)$	k at room temp. $\left(\mathrm{cm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}\right)$	High Pressure Limit
Howard	Laser Magnetic Resonance	296	$0.7-7.0$	1.20 el 12	No
Perry et al.	Photolysis Resonance Fluorescence	$299-426$	50	3.97 e 12	Yes
Liu et al.	Pulse Radiolysis	$313-1173$	760	$4.55 \mathrm{el2}$	Yes

It would be helpful for both combustion and atmospheric kinetic modeling, to know the rate constants and specific reaction pathways for reaction of OH in each of the above four cases. A complete analysis of the OH addition reactions to the two carbon atom sites in vinyl chloride is presented in this work. The addition reactions are analyzed by multi-frequency Quantum RRK (Rice and Ramsperger and Kassel) analysis for $k(E)$ and a modified strong collision approach of Gilbert et al. ${ }^{4}$ The abstraction reactions have been analyzed by Ho et al. using Transition State Theory of Benson. ${ }^{5}$ The rate constants are recommended for the two different addition reactions to specific products versus pressure. Thermodynamic parameters of the intermediate radicals and products are also listed.

CHAPTER 2

THERMODYNAMIC PROPERTIES

2.1 Thermodynamic Properties Stable Molecules and Their Daughter Radicals in $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}+\mathrm{OH}$ System

Thermodynamic properties including $\Delta \mathrm{Hf}^{\circ}{ }_{298}, \mathrm{~S}^{\circ}{ }_{298}, \mathrm{Cp}(\mathrm{T})(300 \leq \mathrm{T} / \mathrm{K} \leq 1500)$ of reactants, intermediates and products were obtained from literature when available. Because thermodynamic properties for many chloro-oxy-carbon species have not been previously measured or calculated, we calculated their thermodynamic parameters using the techniques of Group Additivity ${ }^{5-6}$ (see part I) and the "THERM" ${ }^{7-8}$ (see part I) computer code. Bond dissociation energies from the literature ${ }^{9}$ and hydrogen bond dissociation (BD) groups developed by Lay et al. ${ }^{10}$ were used to calculate thermodynamic properties of the respective radicals and are listed in Table IIA. 2. The potential energy diagrams for the chemical reactions, both α - and β-addition (to the $\mathrm{C}_{\mathrm{D}} / \mathrm{Cl} / \mathrm{H}$ and $\mathrm{C}_{\mathrm{D}} / \mathrm{H}_{2}$ carbons respectively), is shown in Figures IIB. 1 and 2.

2.2 Thermodynamic Properties of Molecules in Transition State

PM3 method in MOPAC6.0 was used to calculated the $\Delta \mathrm{Hf}^{\circ}{ }_{298}, \mathrm{~S}^{\circ}{ }_{298}, \mathrm{Cp}(\mathrm{T})$ ($300 \leq \mathrm{T} / \mathrm{K} \leq 1500$) of transition state structures of 12 elementary reactions in this $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}+$ OH system. The structures, moments of inertia and vibrational frequencies are listed in Figure IIB. 3 and Figure IIB. 4 for α - and β-addition, respectively. The thermodynamic properties of these transition states are shown in Table IIA. 3.

unit: kcal/mol

Figure IIB. 1 Potential energy diagram for $\mathrm{OH} \alpha$-addition to vinyl chloride

unit: kcal/mol

Figure IIB. 2 Potential energy diagram for OH β-addition to vinyl chloride

Figure IIB. 3 Transition states of α-addition of $\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}$

Moments of	Vibrations
Inertia (cm-1)	$(\mathrm{cm}-1)$

H					
1.40					
H_{1}	CH2OHC. HCl ->		-2656.19	862.26	1404.95
C $\ldots \ldots \ldots \ldots$	$\mathrm{H}+\mathrm{CHClCHOH}$	1.091587	198.05	901.45	1535.53
-1.45		0.083878	283.64	1010.20	1989.17
$\mathrm{Cl}{ }^{\circ}$		0.081109	329.18	1068.66	3030.43
H			428.86	1170.51	3052.84
			753.06	1223.78	3879.94

Figure IIB. 4 Transition states of β-addition of $\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}$

Table MA. 2 Thermodynamic properties of all species in $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}+\mathrm{OH}$ system ${ }^{2}$

Species $^{\mathrm{b}}$	$\mathrm{Hf}^{\circ}{ }_{298}$	$\mathrm{~S}^{\circ}{ }_{298}$		Cp				
			300 K	400 K	500 K	600 K	800 K	1000 K
H	52.10	27.36	4.97	4.97	4.97	4.97	4.97	4.97
Cl	28.90	39.50	5.32	5.32	5.32	5.32	5.32	5.32
OH	9.49	43.88	6.95	6.99	7.04	7.08	7.20	7.34
HCl	-22.07	44.60	6.89	6.95	7.03	7.12	7.32	7.54
CH 3	35.20	46.30	9.21	10.02	10.79	11.52	12.86	14.02
CH 2 O	-26.00	50.90	7.93	9.43	10.68	11.74	13.36	14.51
CH 2 Cl	29.10	58.51	9.97	11.42	12.60	13.55	14.94	15.88
CHClO	-39.30	61.81	11.11	12.41	13.48	14.36	15.68	16.61
C 2 H 3 Cl	5.06	63.01	13.00	15.56	17.81	19.70	22.37	24.37
CH 2 CHOH	-29.61	62.91	14.15	17.32	19.97	22.08	25.19	27.44
$\mathrm{CH} C . \mathrm{OH}$	24.79	64.77	14.19	16.59	18.52	20.04	22.26	23.86
CH 2 COHCl	-39.74	71.71	17.40	19.26	20.83	22.73	25.29	27.28
CHOHCHCl	-37.07	70.70	16.95	20.16	22.76	24.78	27.42	29.27
CH 3 CHO	-39.18	63.13	13.22	15.71	18.22	20.47	24.22	26.97
$\mathrm{C} . \mathrm{H} 2 \mathrm{CHO}$	3.12	60.40	12.92	15.31	17.44	19.24	22.10	24.12
$\mathrm{CH} 2 \mathrm{OHC} . \mathrm{HCl}$	-18.30	78.91	18.61	21.60	24.30	26.17	29.48	31.88
$\mathrm{CH} 2 \mathrm{O} . \mathrm{CH} 2 \mathrm{Cl}$	-10.84	75.44	17.05	20.59	23.59	26.08	29.90	32.61
$\mathrm{CHClOHC} . \mathrm{H} 2$	-16.30	77.26	17.30	19.67	22.05	24.21	27.77	30.26
$\mathrm{CHClO} . \mathrm{CH} 3$	-13.34	72.40	16.41	19.18	21.92	24.37	28.27	30.98

a : Units: $\Delta \mathrm{Hf}^{\circ}{ }_{298}, \mathrm{kcal} / \mathrm{mol} ; \mathrm{S}^{\circ}{ }_{298}$ and $\mathrm{Cp}(\mathrm{T}), \mathrm{cal} / \mathrm{mol} . \mathrm{K} ; \mathrm{b}$: are radical sites.

Table LA. 3 Thermodynamic properties of transition state in $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}+\mathrm{OH}$ system

	$\mathrm{Hf}^{\mathrm{o}}{ }_{298}$	$\mathrm{~S}^{\circ}{ }_{298}$		Cp				
			300 K	400 K	500 K	600 K	800 K	1000 K
ts of reaction 1	26.88	75.48	18.11	21.28	23.84	25.88	28.95	31.22
ts of reaction 2	-16.54	72.78	16.90	20.06	22.74	24.94	28.27	30.74
ts of reaction 3	19.09	69.96	16.83	20.83	24.12	26.73	30.50	33.07
ts of reaction 4	2.85	74.86	17.54	20.73	23.36	25.50	28.78	31.21
ts of reaction 5	-6.15	72.69	17.51	20.70	23.41	25.63	29.02	31.50
ts of reaction 6	17.53	73.71	18.14	21.44	24.17	26.38	29.64	31.94
ts of reaction 7	7.84	73.34	15.82	19.16	22.07	24.50	28.27	31.02
ts of reaction 8	-4.12	74.05	17.31	20.45	23.08	25.24	28.57	31.02
ts of reaction 9	27.89	77.37	17.93	21.08	23.67	25.75	28.87	31.17
ts of reaction 10	22.92	70.34	16.28	20.27	23.63	26.33	30.25	32.93
ts of reaction 11	7.93	77.57	16.51	19.88	22.74	25.06	28.58	31.16
ts of reaction 12	5.40	73.73	17.39	20.56	23.35	25.66	29.13	31.60

Units: $\Delta \mathrm{Hf}^{\circ}{ }_{298}, \mathrm{kcal} / \mathrm{mol} ; \mathrm{S}^{\circ}{ }_{298}$ and $\mathrm{Cp}(\mathrm{T}), \mathrm{cal} / \mathrm{mol} \mathrm{K}$

CHAPTER 3

QRRK CALCULATIONS FOR ADDITION REACTIONS OF $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}+\mathrm{OH}$

A method to treat chemical activation reaction systems, which provides a framework to evaluate product channel distributions and fall-off effects as they change with temperature and pressure was developed by Dean ${ }^{11}$. This approach is based on the quantum version of Kassel theory (QRRK) ${ }^{12}$ to estimate the $k(E)$'s (dissociation rates of the energized adduct). The current version of the computer code utilizes a reduced set of vibration frequencies which accurately reproduce the molecule (adduct) heat capacity data, plus one external rotation in order to calculate density of states $\rho(E)$. Comparisons of ratios of these $\rho(\mathrm{E}) / \mathrm{Q}$ (partition function Q) with direct count $\rho(\mathrm{E}) / \mathrm{Q}$ are shown to be in good agreement. ${ }^{13}$ Non-linear Arrhenius effects resulting from changes in the thermodynamic properties of the respective transition states relative to the adduct with temperature are incorporated using a two-parameter Arrhenius pre-exponential factor (A, n) in $A T^{\text {a }}$. Falloff is incorporated using modified strong collision approach (beta collision) of Gilbert et al. ${ }^{4}$. Comparisons of calculation for this $\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}$ system with ones using a Master Equation formalism ${ }^{14}$ yield results which are effectively identical to ones presented in this study.

Branching ratios for vinyl chloride +OH reactions at different temperature and pressure were calculated using this procedure. Pre-exponential A factors and activation energies (Ea) for the bimolecular addition/combination and the isomerization reactions at the high pressure limit were obtained from literature ${ }^{15}$, Transition State Theory and thermochemical kinetic methods of Benson ${ }^{16}$. A and Ea for the dissociation reactions, back to reactants, and to products come from analysis of thermodynamic heats of
formation, entropies for the relevant species and were obtained from the reversal addition or combination reaction rate constants by applying the Microscopic Reversibility (MR)
k eq. $=k f / k r$.
Where k eq. - equilibrium constant;
kf — rate constant of forward reaction;
kr - rate constant of reverse reaction.

Details on specific reaction rates are described in the following chapters.

CHAPTER 4

ADDITION AND ABSTRACT REACTIONS OF $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}+\mathrm{OH}$

The input parameters, high pressure limit rate constants, and the sources are listed in Tables IIA. 4 and IIA. 5 for OH addition to the α - and β-carbon sites in $\mathrm{CH}_{2}=\mathrm{CHCl}$ respectively. The parameters in Tables IIA. 4 and IIA. 5 are referenced to the ground (stabilized) state of the complex because this is the formalism used in QRRK Theory.

4.1 α-Addition of $\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}$ and the Continuing Reactions

Two parameter Arrhenius pre-exponential factors $\mathrm{A}_{1}, \mathrm{n}_{1}$ are calculated from Transition State Theory (TST).

$$
\begin{aligned}
& A^{\prime}=A \times T^{n}=e^{m} \times\left(k_{B} T / h\right) \times\left(P^{0} / R T\right)^{1-m} \times e^{\Delta S *, 0, R} \\
& \mathrm{Ea}=\Delta \mathrm{H}^{2.0}+\mathrm{mRT} \\
& \text { Where } k_{B} \text { - Boltzman constant } \\
& \text { h-Planck constant; } \\
& \mathrm{R} \text { - The ideal gas constant; } \\
& m-1 \text { (unimolecular reaction) or } 2 \text { (bimolecular reaction). }
\end{aligned}
$$

Two parameters $\left(\mathrm{A}_{1}, \mathrm{n}_{1}\right)$ of the high pressure limit rate constant for OH addition to the α-carbon (k_{1} in Table IIA. 4) are obtained by applying bimolecular TST. Since OH addition to α-carbon is more hindered by the chlorine atom than that to β-carbon, Ea for α-addition ($E a_{1}$) should be higher than that for β-addition. Here $E a_{1}$ is assigned as 2 $\mathrm{kcal} / \mathrm{mol}$. The reverse reaction k_{-1} is calculated from k_{1} by the Microscopic Reversibility (MR).

The isomerization reaction k_{3} is obtained from unimolecular transition state. Activation energy of this isomerization $E a_{3}$ is estimated from the transition state structure which is 1,2 -hydrogen shift via four-member ring. So $\mathrm{Ea}_{3}=$ energy of ring strain $+\mathrm{E}_{\mathrm{abs}}+$ $\Delta \mathrm{H}_{\mathrm{xn}}=40.47 \mathrm{kcal} / \mathrm{mol}$, where the ring strain for four member ring is $26 \mathrm{kcal} / \mathrm{mol}$, abstraction energy of H atom by a primary carbon site, $\mathrm{E}_{\mathrm{abs}}$, is $11.51 \mathrm{kcal} / \mathrm{mol}$, and $\Delta \mathrm{H}_{\mathrm{ran}}$ of this isomerization is $2.96 \mathrm{kcal} / \mathrm{mol}$.

Rate constants for dissociation to products $k_{2}, k_{4}, k_{5}, k_{6}, k_{7}$ and k_{8}, are obtained from application of thermodynamics and the microscopic reversibility (MR) to the respective reverse addition reactions. The input parameters and literature references for all reactions in the α-addition systems are listed in Table IIA. 4.

OH addition to the α-carbon forms the $\mathrm{CHClOHC} . \mathrm{H}_{2}{ }^{\#}$ energized adduct. There is an obvious presence of a low energy channel for the this adduct: Cl atom elimination (k_{2}):

$$
\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl} \rightarrow \mathrm{CHClOHC} . \mathrm{H}_{2}^{\#} \rightarrow \mathrm{Cl}+\mathrm{CH}_{2} \mathrm{CHOH}
$$

This makes vinyl alcohol the dominate product of this adduct's formation for all conditions (temperature and pressure). Unimolecular isomerization $\left(k_{3}\right)$ of this adduct requires higher energy than that of the initial reactants at atmospheric conditions, so only a relative small fraction will isomerize, and further react at high temperature due to the higher Ea and the tight transition state.

Lennard-Jones parameters in Table IIA. 4 and Table MA. 5 were obtained from tabulations ${ }^{17}$ and a calculation method based on molar volumes and compressibility ${ }^{18}$.

Table IIA. 4 Input parameters of α-addition of $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}+\mathrm{OH}$ for the quantum Kassel calculation

Reaction	$\left.{ }^{3} \mathrm{~A}{ }^{3}, \mathrm{~mol}, \mathrm{sec}\right)$		n	$\mathrm{Ea}(\mathrm{kcal} / \mathrm{mol})$
k_{1}	$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}+\mathrm{OH} \rightarrow \mathrm{CHClOHC} . \mathrm{H}_{2}$	$2.7812 \mathrm{E}+7$	1.71980	2
k_{-1}	$\mathrm{CHClOHC} \mathrm{H}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}+\mathrm{OH}$	$9.8764 \mathrm{E}+7$	1.71980	32.09
k_{2}	$\mathrm{CHClOHC} \mathrm{H}_{2} \rightarrow \mathrm{Cl}+\mathrm{CH}_{2} \mathrm{CHOH}$	$7.4183 \mathrm{E}+11$	1.4122	17.82
k_{3}	$\mathrm{CHClOHC} \mathrm{H}_{2} \rightarrow \mathrm{CHClO} . \mathrm{CH}_{3}$	$8.2793 \mathrm{E}+8$	1.04958	40.47
k_{3}	$\mathrm{CHClO} . \mathrm{CH}_{3} \rightarrow \mathrm{CHClOHC} . \mathrm{H}_{2}$	$1.6635 \mathrm{E}+10$	1.04958	37.23
k_{4}	$\mathrm{CHClO} \mathrm{CH}_{3} \rightarrow \mathrm{CHClO}+\mathrm{CH}_{3}$	$2.2344 \mathrm{E}+13$	0.30289	15.68
k_{5}	$\mathrm{CHClO} . \mathrm{CH}_{3} \rightarrow \mathrm{Cl}+\mathrm{CH}_{3} \mathrm{CHO}$	$4.3012 \mathrm{E}+12$	0.39427	3.07
k_{6}	$\mathrm{CHClOHC} \mathrm{H}_{2} \rightarrow \mathrm{H}+\mathrm{CH}_{2} \mathrm{CClOH}$	$1.1168 \mathrm{E}+10$	0.95470	30.48
k_{7}	$\mathrm{CHClOHC} . \mathrm{H}_{2} \rightarrow \mathrm{HCl}+\mathrm{C} . \mathrm{H}_{2} \mathrm{CHO}$	$9.2185 \mathrm{E}+11$	0.12430	25
k_{8}	$\mathrm{CHClOHC} \mathrm{H}_{2} \rightarrow \mathrm{HCl}+\mathrm{CH}_{2} \mathrm{C} . \mathrm{OH}$	$4.1391 \mathrm{E}+11$	0.35209	30

$\mathrm{k}_{1} \quad \mathrm{~A}_{1}$ from TST. $\mathrm{Ea}_{1}=2$, evaluated for OH addition to $\mathrm{CH}_{2}=\mathrm{CHCl}$
$\mathrm{k}_{1} \quad$ Thermodynamics and microscopic reversibility $<\mathrm{MR}>$
$\mathrm{k}_{2} \quad \mathrm{~A}_{2}$ from TST. Ea from $\mathrm{Ea}_{2}, \mathrm{Ea}_{2}=2.5$, evaluated for Cl addition to $\mathrm{CH}_{2}=\underline{\mathrm{CHOH}}$
$\mathrm{k}_{3} \quad \mathrm{~A}_{3}$ from TST, $\mathrm{Ea}_{3}=$ ring strain $+\mathrm{E}_{2 \mathrm{~b}}+\Delta \mathrm{H}=26+11.5+2.96=40.47$
k_{-3} <MR>
$\mathrm{k}_{4} \quad \mathrm{~A}_{4}$ from TST. Ea from $\mathrm{Ea}_{4}, \mathrm{Ea}_{4}=8.0$ from 0.5 for $\mathrm{CH}_{3}+\mathrm{C}_{2} \mathrm{H}_{4}$ (ref. 57)
$\mathrm{k}_{5} \quad \mathrm{~A}_{5}$ from TST. Eas from Eas, $\mathrm{Ea}_{-5}=1.0$, evaluated for Cl addition to $\mathrm{CH}_{3} \underline{\mathrm{CHO}}$
$\mathrm{k}_{6} \quad \mathrm{~A}_{6}$ from TST. Ea_{6} from $\mathrm{Ea}_{-6} . \mathrm{Ea}_{-6}=2.1$ from $\mathrm{k}_{-6} \equiv 10^{11.1}$ for $\mathrm{H}+\mathrm{CH}_{2}=\underline{\mathrm{C}}(\mathrm{CH} 3)_{2}$. (ref. 57)
$\mathrm{k}_{7} \quad \mathrm{~A}_{7}$ from $\mathrm{TST}, \mathrm{Ea}_{7}=25$, evaluated for HCl elimination via 4 -member - ring
$\mathrm{k}_{8} \quad \mathrm{~A}_{8}$ from $\mathrm{TST}, \mathrm{Ea}_{8}=30$, evaluated for HCl elimination via 3 -member-ring
Reduced frequency sets for $\mathrm{CHClOHC} . \mathrm{H}_{2}$ (from CPFIT^{12})
VIBRATION \#1: MODES $=5.510$ FREQUENCY $=344.8 \mathrm{~cm}^{-1}$
VIBRATION \#2: MODES $=8.127$ FREQUENCY $=1517.9 \mathrm{~cm}^{-1}$
VIBRATION \#3: MODES $=3.363$ FREQUENCY $=3999.7 \mathrm{~cm}^{-1}$
GEO MEAN VIBRATION: MODES $=17.000$, FREQUENCY $=1137.3 \mathrm{~cm}^{-1}$
Reduced frequency sets for $\mathrm{CHClO}_{3} \mathrm{CH}_{3}$ (from CPFIT^{12})
VIBRATION \#1: MODES $=5.447$ FREQUENCY $=419.1 \mathrm{~cm}^{-1}$
VIBRATION \#2: MODES $=8.911$ FREQUENCY $=1522.3 \mathrm{~cm}^{-1}$
VIBRATION \#3: MODES $=3.141$ FREQUENCY $=3999.9 \mathrm{~cm}^{-1}$
GEO MEAN VIBRATION: MODES $=17.500$, FREQUENCY $=1211.8 \mathrm{~cm}^{-1}$
Lennard-Jones parameters: $\sigma=4.55 \AA, \varepsilon / \mathrm{k}=576.7 \mathrm{~K}$

4.2 β-Addition of $\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}$ and the Continuing Reactions

The parameters of rate constant for OH addition at the β-carbon of $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}$ (A_{9} and Ea_{9} in Table IIA. 5) are $1.29 \times 10^{12} \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$ and $-0.7 \mathrm{kcal} / \mathrm{mol}$ which are abstracted form Liu et al. ${ }^{3}$. The reverse reaction k_{-9} is calculated from MR.
A_{9}, and n_{9} calculated from bimolecular TST are also shown in the bottom of Table IIA. 5. The reason for not using them in QRRK calculation will be discussed in Chapter 5.

The unimolecular isomerization reaction k_{10} is obtained from TST and $\mathrm{Ea}_{10}=$ energy of ring strain $+\mathrm{E}_{2 \mathrm{bs}}+\Delta \mathrm{H}_{\mathrm{xx}}=26+10.01+7.46=43.47 \mathrm{kcal} / \mathrm{mol}$. Dissociation reactions $\mathrm{k}_{11}, \mathrm{k}_{12}$ to products $\mathrm{CH}_{2} \mathrm{O}+\mathrm{CH}_{2} \mathrm{Cl}$ and $\mathrm{H}+\mathrm{CHCl}=\mathrm{CHOH}$ are obtained from the reverse combination reactions and MR. The input parameters and literature references for all reactions in the β-addition systems are listed in Table IIA. 5.

The OH addition reaction to the β-carbon forms the $\mathrm{CH}_{2} \mathrm{OHCHCl}^{\#}$ energized adduct. Unimolecular isomerization (k_{10}) of this adduct requires higher energy than that of the initial reactants when ring strain +Ea of H abstraction $+\Delta \mathrm{H}_{\mathrm{rxn}}$ are considered. Relative small fractions of this adduct will isomerize and further react at higher temperatures due to high barrier and the tight TST. The adduct is, therefore, either stabilized or it dissociates back to the initial reactants $\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}+\mathrm{OH}\right)$, as this is the lowest energy dissociation channel.

Table IIA. 5 Input parameters of β-addition of $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}+\mathrm{OH}$ for the quantum Kassel calculation

Reaction		${ }^{3}$		$\mathrm{Ea}(\mathrm{kcal} / \mathrm{mol})$
		A(cm , mol, sec)	n	
kg^{3}	$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}+\mathrm{OH} \rightarrow \mathrm{CH}_{2} \mathrm{OHC} . \mathrm{HCl}$	$1.29 \mathrm{E}+12$	0	-0.7
$k_{9}{ }^{\text {b }}$	$\mathrm{CH}_{2} \mathrm{OHC} . \mathrm{HCl} \rightarrow \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}+\mathrm{OH}$	$1.37 \mathrm{E}+12$	0	29.39
k_{10}	$\mathrm{CH}_{2} \mathrm{OHC} . \mathrm{HCl} \rightarrow \mathrm{CH}_{2} \mathrm{O} \mathrm{CH}_{2} \mathrm{Cl}$	$8.5120 \mathrm{E}+7$	1.23115	43.47
k_{10}	$\mathrm{CH}_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{Cl} \rightarrow \mathrm{CH}_{2} \mathrm{OHC} . \mathrm{HCl}$	$1.0384 \mathrm{E}+9$	1.23115	35.85
k_{11}	$\mathrm{CH}_{2} \mathrm{O} . \mathrm{CH}_{2} \mathrm{Cl} \rightarrow \mathrm{CH}_{2} \mathrm{O}+\mathrm{CH}_{2} \mathrm{Cl}$	$1.5579 \mathrm{E}+14$	-0.07821	19.14
k_{12}	$\mathrm{CH}_{2} \mathrm{OHC} . \mathrm{HCl} \rightarrow \mathrm{H}+\mathrm{CHCl}=\mathrm{CHOH}$	$3.3427 \mathrm{E}+9$	0.91969	34.61

$\mathrm{k}_{9} \quad \mathrm{~A}_{9}$ from TST, $\mathrm{E} \mathrm{a}_{9}=-0.7^{3}$
k. 9 <MR>
$\mathrm{k}_{10} \quad \mathrm{~A}_{10}$ from TST, $\mathrm{Ea}_{10}=$ ring strain $+\mathrm{E}_{2 \mathrm{ba}}+\Delta \mathrm{H}=26+10.01+7.46=43.47$
$\mathrm{k}_{10} \quad$ <MR>
$\mathrm{k}_{11} \quad \mathrm{~A}_{11}$ from TST, Ea_{11} from $\mathrm{Ea}_{11} . \mathrm{Ea}_{11}=8.0$ from $\mathrm{C}_{2} \mathrm{H}_{5}+\mathrm{C}_{2} \mathrm{H}_{4}$ (ref. 57)
$\mathrm{k} 12 \mathrm{~A}_{12}$ from TST, $\mathrm{Ea}_{12}=1.5$, evaluated for H addition to $\mathrm{CHOH}=\mathrm{CHCl}$
Reduced frequency sets for $\mathrm{CH}_{2} \mathrm{OHC} . \mathrm{HCl}$ (from CPFIT^{12})
VIBRATION \#1: $\mathrm{MODES}=4.652$ FREQUENCY $=250.5 \mathrm{~cm}^{-1}$
VIBRATION \#2: MODES $=7.603$ FREQUENCY $=1062.2 \mathrm{~cm}^{-1}$
VIBRATION \#3: $\mathrm{MODES}=4.745$ FREQUENCY $=3022.4 \mathrm{~cm}^{-1}$
GEO MEAN VIBRATION: MODES $=17.000$, $\operatorname{FREQUENCY~}=957.9 \mathrm{~cm}^{-1}$
Reduced frequency sets for $\mathrm{CH}_{2} \mathrm{O} \cdot \mathrm{CH}_{2} \mathrm{Cl}$ (from CPFIT^{12})
VIBRATION \#1: $\mathrm{MODES}=6.761$ FREQUENCY $=519.0 \mathrm{~cm}^{-1}$
VIBRATION \#2: MODES $=7.207$ FREQUENCY $=1380.4 \mathrm{~cm}^{-1}$
VIBRATION \#3: MODES $=3.532$ FREQUENCY $=3234.8 \mathrm{~cm}^{-1}$
GEO MEAN VIBRATION: $\mathrm{MODES}=17.500$, FREQUENCY $=1123.4 \mathrm{~cm}^{-1}$
a: $\quad \mathrm{k}_{9}$ calculated by TST: $\mathrm{A}_{9}=9.0747 \mathrm{E}+7, \mathrm{n}_{9}=1.67739$
b: $\quad \mathrm{k}_{-9}$ calculated by $\mathrm{TST}:<\mathrm{MR}>\mathrm{A}_{-9}=9.6611 \mathrm{E}+7, \mathrm{n}_{9}=1.67739$

4.3 Transition-State-Theory Calculations for Abstraction Reactions of $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}+\mathrm{OH}$

This part of work was done by Winpin Ho and Joseph. W. Bozzelli. Their methods and results are summarized as following:

The pre-exponential A factors for bimolecular abstraction reactions were calculated using TST of Cohen and coworkers ${ }^{19-22}$. Modified Evans-Polanyi plot was used for obtaining the activation energy. The rate constants for these two abstraction channels are:
$\mathrm{k}_{\mathrm{a}}=1.40 \times 10^{7} \times \mathrm{T}^{2} \mathrm{e}^{-5310 / \mathrm{RT}}$ in $\mathrm{cm}^{3}, \mathrm{~mol}, \mathrm{sec}$
$\mathrm{k}_{\mathrm{b}}=2.54 \times 10^{7} \times \mathrm{T}^{2} \mathrm{e}^{-6200 / \mathrm{RT}}$ in $\mathrm{cm}^{3}, \mathrm{~mol}, \mathrm{sec}$
where k_{a}, is the rate constants for α-abstraction channel: $\mathrm{OH}+\mathrm{CH}_{2}=\mathrm{CHCl} \rightarrow$ $\mathrm{CH}_{2}=\mathrm{C} . \mathrm{Cl}+\mathrm{H}_{2} \mathrm{O}$; and k_{b} for β-abstraction channel: $\mathrm{OH}+\mathrm{CH}_{2}=\mathrm{CHCl} \rightarrow \mathrm{C} . \mathrm{H}=\mathrm{CHCl}+$ $\mathrm{H}_{2} \mathrm{O}$, respectively.

Above k_{a} and k_{b} are assumed to be pressure independent.

CHAPTER 5

RESULTS AND DISCUSSIONS

5.1 RESULTS

Howard ${ }^{1}$ has predicted that elimination of Cl from the adduct with formation of vinyl alcohol (k_{2} in this work) dominates for the α-addition. Perry et al. ${ }^{2}$ estimated the rate constant of this channel is about $6.0 \times 10^{11} \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$ at room temperature which is about 15% of total rate constant. Our calculation shows that OH addition to the $\mathrm{C}_{\mathrm{D}} / \mathrm{Cl} / \mathrm{H}$ carbon is a low fraction of that for addition to the $\mathrm{C}_{\mathrm{D}} / \mathrm{H}_{2}$ carbon; $10-20 \%$, which is in agreement with the estimation of Perry et al. ${ }^{2}$. This channel behaves differently than β-addition due to the lower energy (exothermic relative to the initial reactants) reaction channel available to the adduct - unimolecular elimination of Cl . This product slate dominates for the α addition channel at all pressures and all temperatures (0.076 to 7600 torr, 300 to 1500 K).

Figure IIB. 5 presents a plot of rate constants versus 1000/T for the various channels resulting from OH addition at the α-carbon at 760 torr. The apparent rate parameters to the specific product channels are listed in Table IIA. 6. The vinyl alcohol + Cl channel dominates the reaction in the temperature range $300-1500 \mathrm{~K}$. As temperature increases, other product channels (excluding stabilization) start to become more important; but are still below the major product channel - vinyl alcohol +Cl at 1500 K . The stabilization rate constant $\left(\mathrm{k}_{1}\right)$ is lower than that for vinyl alcohol +Cl channel $\left(\mathrm{k}_{2}\right)$ at $300 \mathrm{~K} . \mathrm{k}_{1}$ increases to its peak value $10^{10.425}$ at 500 K then decreases with increasing temperature.

A plot of rate constants versus $1000 / \mathrm{T}$ at 760 torr for β-addition product channels is shown in Figure IIB. 6. The stabilization channel dominates the reaction in the temperature range $300-1200 \mathrm{~K}$. Reverse reaction, dissociation to vinyl chloride +OH , increases and dominates stabilization above 1200 K . Above 2000 K , the unimolecular reaction $\mathrm{H}+\mathrm{CHOHCHCl}$ and $\mathrm{CH}_{2} \mathrm{O}+\mathrm{CH}_{2} \mathrm{Cl}$ is predicted to become important. Calculated apparent rate parameters to the specific product channels are also listed in Table IIA. 6.

Figure IIB. 7 illustrates a plot of rate constant to the major channels from both addition and abstraction reaction channels over the temperature range $300-2000 \mathrm{~K}$ for comparison with experimental data at 760 torr. At low temperature, the β-addition channel k_{9} dominates the reaction, as reported by Liu et al. ${ }^{3}$ At high temperature, however, we calculate that reverse reaction k_{2} - dissociation to vinyl chloride +OH (experimentally observed as reduced reaction rate or negative activation energy) dominates over stabilization. A small, near constant (15\%), fraction of the reactions proceed via α-addition to products $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{OH}+\mathrm{Cl}$.

The abstraction reactions dominate above 1100K, also shown in Figure IIB. 7. The rate constants of two abstraction channels calculated by Transition-State-Theory are also shown. The calculated total abstraction rate constant ($k_{a}+k_{b}$) are consistent with the observed experimental data of Liu et al. ${ }^{3}$. The calculation indicates that total abstraction reaction becomes important above 1400 K , while Liu et al. ${ }^{3}$ report that it dominates above 723 K . The total rate constant - addition plus abstraction, is shown to be in good agreement with experimental data over the low temperature range 300 to 600 K at 760 torr.

Figure IIB. 8 shows the rate constants versus pressure at 300 K for all addition reaction channels. The β-addition channel $\left(\mathrm{k}_{9}\right)$ is at least 2 orders of magnitude faster than other reactions and it dominates the reaction as suggested by others ${ }^{1-3}$.

Figure IIB. 9 shows a comparison of the calculated results for both addition reactions with the experimental data of other researchers ${ }^{1 \cdot 3}$. At room temperature the β addition reaction channel $\left(k_{9}\right)$ dominates all other channels and it almost equals to $k_{\text {total }}$ over the pressure range of 0.076 to 7600 torr. Howard ${ }^{1}$ extrapolated his experimental data (0.7 to 7 torr) for the reaction of OH radicals with $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}$ using a curved Lindemann plot and estimated a value for $\mathrm{k} \approx 4.20 \times 10^{12} \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$ in the high pressure limit (ca. 100 torr) while Perry et al. ${ }^{2}$ proposed that their work at 50 torr were at the high pressure limit and estimated a value of $\mathrm{k} \approx 3.97 \times 10^{12} \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$. The model indicates from Figure IIB. 9 that the results of both the Perry et al. ${ }^{2}$ and Liu et al. ${ }^{3}$ research groups is near the high pressure limit. The rate constant increases only 5% from 7 torr to 760 torr as illustrated in Figure IIB. 9.

MOPAC6/PM3-calculated TS's were used to obtain all the rate constants except for that of β-addition of $\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}\left(\mathrm{k}_{9}\right)$ which is from the value of Liu et al. ${ }^{3}$. The transition state structure and two parameter rate constant of k_{9} is shown in Figure IIB. 4 and Table IIA. 5, respectively. Although the structure seems reasonable (Figure IIB. 4), the QRRK calculation is not consistent with the experiments: it shows a positive temperature dependence of k_{9}. The experimental data from Liu et al. ${ }^{3}$ was used in this model instead of the TS in PM3 derived rate constant. There is future work that can be done to refine and improve/complete this modeling: (1) Ab initio method or density function calculations (see page 520 of ref. 34.) at high levels are suggested to perform to
determined the thermodynamic properties and parameters (A, n and Ea) of rate constants from the transition state structures and properties; (2) All possible reaction channels are included into this system: 1,2-OH and/or Cl shift in both α - and β-addition subsystems.

5.2 Conclusion

The addition reactions of vinyl chloride with hydroxyl radical were analyzed using PM3 transition states and chemical activation formalism based on a multi-frequency Quantum RRK Theory for $k(E)$ and a modified strong collision approach of Gilbert et al. for falloff. Rate constants and reaction paths were predicted versus temperature and pressure and were compared with experimental data where available. The two abstraction paths were analyzed using an Evans-Polanyi relation for activation energy and Transition-StateTheory for Arrhenius A factors. The calculations serve as useful estimates for rate constants and reaction paths in applications of combustion and atmospheric modeling (pressure and temperature), where experimental data are not available. We evaluated and recommended rate constants over wide pressure and temperature range for the addition and abstraction reaction at the two distinct carbon atom sites on vinyl chloride. Rate constant expressions for the primary addition channels at 760 torr are:

$$
\begin{aligned}
& \mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl} \rightarrow \mathrm{CH}_{2} \mathrm{OHC} . \mathrm{HCl}, \mathrm{k}=4.22 \times 10^{30} \times \mathrm{T}^{-5.88} \mathrm{e}^{4837 / \mathrm{RT}} \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \mathrm{sec}^{-1} \\
& \mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl} \rightarrow \mathrm{Cl}+\mathrm{CH}_{2} \mathrm{CHOH}, \mathrm{k}=8.61 \times 10^{12} \times \mathrm{T}^{0.01} \mathrm{e}^{4114 / \mathrm{RT}} \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \mathrm{sec}^{-1}
\end{aligned}
$$

Extension of these analysis technique should allow reasonable estimation of the expected product distributions for a variety of addition reactions of hydroxyl radicals to other halogenated ethylenes.

Table MA. 6 Apparent rate constants of $\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}$ at different pressures
$\mathrm{k}=\mathrm{A} \times \mathrm{T}^{\mathrm{n}} \times \mathrm{e}^{-\mathrm{EaRT}} \quad$ units in $\mathrm{cm}^{3} / \mathrm{mol} / \mathrm{sec}$, Ea in $\mathrm{kcal} / \mathrm{mol}$
$\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}$ at 7600 torr

Reaction	A	n	Ea	remark
$\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{CH}_{2} \mathrm{C} . \mathrm{Cl}$	$1.06 \mathrm{E}+07$	2.0	5.31	α-abstraction
$\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{CHClC} .$.	$1.59 \mathrm{E}+07$	2.0	6.2	β-abstraction
$\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl} \rightarrow \mathrm{CHClOHC} . \mathrm{H}_{2}$	$2.32 \mathrm{E}+24$	-3.99	5.877	α-addition
$\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl} \rightarrow \mathrm{Cl}+\mathrm{CH}_{2} \mathrm{CHOH}$	$1.43 \mathrm{E}+14$	-0.31	5.714	
$\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl} \rightarrow \mathrm{H}+\mathrm{CH}_{2} \mathrm{COHCl}$	$3.97 \mathrm{E}+03$	2.79	5.736	
$\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl} \rightarrow \mathrm{HCl}+\mathrm{C}^{2} \mathrm{H}_{2} \mathrm{CHO}$	$1.60 \mathrm{E}+09$	0.98	5.264	
$\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl} \rightarrow \mathrm{HCl}+\mathrm{CH}_{2} \mathrm{C} . \mathrm{OH}$	$2.73 \mathrm{E}+05$	2.11	5.629	
$\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl} \rightarrow \mathrm{CHClO} . \mathrm{CH}_{3}$	$2.59 \mathrm{E}+00$	2.17	11.278	
$\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl} \rightarrow \mathrm{CHClO}+\mathrm{CH}_{3}$	$7.30 \mathrm{E}-03$	3.98	11.812	
$\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl} \rightarrow \mathrm{Cl}+\mathrm{CH}_{3} \mathrm{CHO}$	$6.45 \mathrm{E}+02$	2.65	12.549	
$\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl} \rightarrow \mathrm{CH}_{2} \mathrm{OHC} . \mathrm{HCl}$	$3.67 \mathrm{E}+22$	-3.29	2.551	β-addition
$\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl} \rightarrow \mathrm{H}+\mathrm{CHClCHOH}$	$1.03 \mathrm{E}+14$	2.68	7.943	
$\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl} \rightarrow \mathrm{CH} 2 \mathrm{O} . \mathrm{CH} 2 \mathrm{Cl}$	$5.74 \mathrm{E}+12$	-1.26	16.104	
$\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl} \rightarrow \mathrm{CH} 2 \mathrm{O}+\mathrm{CH} 2 \mathrm{Cl}$	$7.90 \mathrm{E}+06$	1.61	16.849	

$\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}$ at 760 torr

Reaction	A	n	Ea	remark
$\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{CH}_{2} \mathrm{C} . \mathrm{Cl}$	$1.06 \mathrm{E}+07$	2.0	5.31	α-abstraction
$\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{CHClC} . \mathrm{H}$	$1.59 \mathrm{E}+07$	2.0	6.2	β-abstraction
$\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl} \rightarrow \mathrm{CHClOHC} . \mathrm{H}_{2}$	$2.82 \mathrm{E}+22$	-3.77	4.379	α-addition
$\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl} \rightarrow \mathrm{Cl}+\mathrm{CH}_{2} \mathrm{CHOH}$	$8.61 \mathrm{E}+14$	0.01	4.114	
$\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl} \rightarrow \mathrm{H}+\mathrm{CH}_{2} \mathrm{COHCl}$	$7.03 \mathrm{E}+01$	3.26	4.003	
$\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl} \rightarrow \mathrm{HCl}+{\mathrm{C} . \mathrm{H}_{2} \mathrm{CHO}}^{\mathrm{CHO}}$	$5.38 \mathrm{E}+07$	1.37	3.588	
$\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl} \rightarrow \mathrm{HCl}+\mathrm{CH}_{2} \mathrm{C} . \mathrm{OH}$	$5.12 \mathrm{E}+03$	2.58	3.889	
$\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl} \rightarrow \mathrm{CHClO.CH}$	$7.16 \mathrm{E}-03$	2.60	9.948	
$\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl} \rightarrow \mathrm{CHClO}+\mathrm{CH}$		$1.67 \mathrm{E}-04$	4.43	10.46
${\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl} \rightarrow \mathrm{Cl}+\mathrm{CH}_{3} \mathrm{CHO}}^{1.73 \mathrm{E}+01}$	3.08	11.216		
$\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl} \rightarrow \mathrm{CH} \mathrm{OHC}_{2} \mathrm{HCl}$	$4.22 \mathrm{E}+30$	-5.88	4.837	β-addition
$\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl} \rightarrow \mathrm{H}+\mathrm{CHClCHOH}$	$2.98 \mathrm{E}+12$	0.15	9.566	
$\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl} \rightarrow \mathrm{CH} 2 \mathrm{O} . \mathrm{CH} 2 \mathrm{Cl}$	$1.71 \mathrm{E}+18$	-3.21	16.858	
$\mathrm{OH}+\mathrm{C}_{2} \mathrm{H} 3^{2} \mathrm{Cl} \rightarrow \mathrm{CH} 2 \mathrm{O}+\mathrm{CH} 2 \mathrm{Cl}$	$3.41 \mathrm{E}+12$	-0.11	17.239	

$\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}$ at 76 torr

Reaction	A	n	Ea	remark
$\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{CH}_{2} \mathrm{C} . \mathrm{Cl}$	$1.06 \mathrm{E}+07$	2.0	5.31	α-abstraction
$\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{CHClC}$.	$1.59 \mathrm{E}+07$	2.0	6.2	β-abstraction
$\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl} \rightarrow \mathrm{CHClOHC} . \mathrm{H}_{2}$	$3.09 \mathrm{E}+20$	-3.50	3.658	α-addition
$\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl} \rightarrow \mathrm{Cl}+\mathrm{CH}_{2} \mathrm{CHOH}$	$8.74 \mathrm{E}+11$	0.28	3.390	
$\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl} \rightarrow \mathrm{H}+\mathrm{CH}_{2} \mathrm{COHCl}$	$7.18 \mathrm{E}+00$	3.54	3.319	
$\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl} \rightarrow \mathrm{HCl}+\mathrm{C}^{2} \mathrm{H}_{2} \mathrm{CHO}$	$5.22 \mathrm{E}+06$	1.66	2.868	
$\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl} \rightarrow \mathrm{HCl}+\mathrm{CH}_{2} \mathrm{C} . \mathrm{OH}$	$5.14 \mathrm{E}+02$	2.86	3.208	
$\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl} \rightarrow \mathrm{CHClO} . \mathrm{CH}_{3}$	$2.53 \mathrm{E}-04$	2.73	9.633	
$\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl} \rightarrow \mathrm{CHClO}+\mathrm{CH}_{3}$	5.82E-05	4.56	10.146	
$\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl} \rightarrow \mathrm{Cl}+\mathrm{CH}_{3} \mathrm{CHO}$	$6.10 \mathrm{E}+00$	3.21	10.901	
$\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl} \rightarrow \mathrm{CH}_{2} \mathrm{OHC} . \mathrm{HCl}$	$8.42 \mathrm{E}+37$	-8.31	6.577	β-addition
$\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl} \rightarrow \mathrm{H}+\mathrm{CHClCHOH}$	$1.23 \mathrm{E}+16$	-0.99	9.243	
$\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl} \rightarrow \mathrm{CH}_{2} \mathrm{O} . \mathrm{CH}_{2} \mathrm{Cl}$	$9.56 \mathrm{E}+17$	-3.50	15.649	
$\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl} \rightarrow \mathrm{CH}_{2} \mathrm{O}+\mathrm{CH}_{2} \mathrm{Cl}$	$3.64 \mathrm{E}+12$	-0.19	15.771	

$\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}$ at 7.6 torr

Reaction	A	n	Ea	remark
$\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{CH}_{2} \mathrm{C} . \mathrm{Cl}$	$1.06 \mathrm{E}+07$	2.0	5.31	α-abstraction
$\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{CHClC} . \mathrm{H}$	$1.59 \mathrm{E}+07$	2.0	6.2	β-abstraction
$\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl} \rightarrow \mathrm{CHClOHC} . \mathrm{H}_{2}$	$2.17 \mathrm{E}+19$	-3.46	3.551	α-addition
$\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl} \rightarrow \mathrm{Cl}+\mathrm{CH}_{2} \mathrm{CHOH}$	$6.11 \mathrm{E}+11$	0.33	3.284	
$\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl} \rightarrow \mathrm{H}+\mathrm{CH}_{2} \mathrm{COHCl}$	$5.13 \mathrm{E}+00$	3.58	3.223	
$\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl} \rightarrow \mathrm{HCl}+{\mathrm{C} . \mathrm{H}_{2} \mathrm{CHO}}^{\text {C }}$	$3.66 \mathrm{E}+06$	1.70	2.764	
$\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl} \rightarrow \mathrm{HCl}+\mathrm{CH}_{2} \mathrm{C} . \mathrm{OH}$	$3.66 \mathrm{E}+02$	2.90	3.111	
$\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl} \rightarrow \mathrm{CHClO} . \mathrm{CH}_{3}$	2.24E-05	2.74	9.597	
$\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl} \rightarrow \mathrm{CHClO}+\mathrm{CH}_{3}$	5.14E-05	4.58	10.11	
$\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl} \rightarrow \mathrm{Cl}+\mathrm{CH}_{3} \mathrm{CHO}$	$5.39 \mathrm{E}+00$	3.23	10.864	
$\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl} \rightarrow \mathrm{CH}_{2} \mathrm{OHC} . \mathrm{HCl}$	$4.89 \mathrm{E}+42$	-10.04	7.211	β-addition
$\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl} \rightarrow \mathrm{H}+\mathrm{CHClCHOH}$	$9.44 \mathrm{E}+14$	-0.72	7.377	
$\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl} \rightarrow \mathrm{CH}_{2} \mathrm{O} . \mathrm{CH}_{2} \mathrm{Cl}$	$2.45 \mathrm{E}+15$	-3.06	14.29	
$\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl} \rightarrow \mathrm{CH}_{2} \mathrm{O}+\mathrm{CH}_{2} \mathrm{Cl}$	$6.42 \mathrm{E}+10$	0.30	14.377	

$\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}$ at 0.76 torr

Reaction	A	n	Ea	remark
$\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{CH}_{2} \mathrm{C} . \mathrm{Cl}$	$1.06 \mathrm{E}+07$	2.0	5.31	α-abstraction
$\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{CHClC.H}$	$1.59 \mathrm{E}+07$	2.0	6.2	β-abstraction
$\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl} \rightarrow \mathrm{CHClOHC} . \mathrm{H}_{2}$	$2.09 \mathrm{E}+18$	-3.45	3.539	α-addition
$\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl} \rightarrow \mathrm{Cl}+\mathrm{CH}_{2} \mathrm{CHOH}$	$5.88 \mathrm{E}+11$	0.33	3.273	
$\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl} \rightarrow \mathrm{H}+\mathrm{CH}_{2} \mathrm{COHCl}$	$4.95 \mathrm{E}+00$	3.58	3.213	
$\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl} \rightarrow \mathrm{HCl}+\mathrm{C} . \mathrm{H}_{2} \mathrm{CHO}$	$3.52 \mathrm{E}+06$	1.70	2.753	
$\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl} \rightarrow \mathrm{HCl}+\mathrm{CH}_{2} \mathrm{C} . \mathrm{OH}$	$3.53 \mathrm{E}+02$	2.90	3.101	
$\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl} \rightarrow \mathrm{CHClO.CH}$	$2.21 \mathrm{E}-06$	2.75	9.593	
$\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl} \rightarrow \mathrm{CHClO}+\mathrm{CH}_{3}$	$5.08 \mathrm{E}-05$	4.58	10.106	
$\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl} \rightarrow \mathrm{Cl}+\mathrm{CH}_{3} \mathrm{CHO}$	$5.33 \mathrm{E}+00$	3.23	10.864	
$\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl} \rightarrow \mathrm{CH}_{2} \mathrm{OHC} . \mathrm{HCl}$	$2.64 \mathrm{E}+44$	-10.89	6.711	β-addition
$\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl} \rightarrow \mathrm{H}+\mathrm{CHClCHOH}^{2} \mathrm{ClCH}$	$5.43 \mathrm{E}+12$	-0.09	5.726	
$\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl} \rightarrow \mathrm{CH}_{2} \mathrm{OCH} \mathrm{CH}_{2} \mathrm{Cl}$	$8.01 \mathrm{E}+13$	-2.92	13.95	
$\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl} \rightarrow \mathrm{CH}_{2} \mathrm{O}+\mathrm{CH}_{2} \mathrm{Cl}$	$2.06 \mathrm{E}+10$	0.44	14.042	

$\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}$ at 0.076 torr

Reaction	A	n	Ea	remark
$\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{CH}_{2} \mathrm{C} . \mathrm{Cl}$	$1.06 \mathrm{E}+07$	2.0	5.31	α-abstraction
$\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{CHClC} . \mathrm{H}$	$1.59 \mathrm{E}+07$	2.0	6.2	β-abstraction
$\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl} \rightarrow \mathrm{CHClOHC} . \mathrm{H}_{2}$	$2.08 \mathrm{E}+17$	-3.45	3.538	α-addition
$\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl} \rightarrow \mathrm{Cl}+\mathrm{CH}_{2} \mathrm{CHOH}$	$5.86 \mathrm{E}+11$	0.33	3.272	
$\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl} \rightarrow \mathrm{H}+\mathrm{CH}_{2} \mathrm{COHCl}$	$4.93 \mathrm{E}+00$	3.58	3.212	
$\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl} \rightarrow \mathrm{HCl}+\mathrm{C} . \mathrm{H}_{2} \mathrm{CHO}$	$3.51 \mathrm{E}+06$	1.71	2.752	
$\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl} \rightarrow \mathrm{HCl}+\mathrm{CH}_{2} \mathrm{Cl} . \mathrm{OH}$	$3.52 \mathrm{E}+02$	2.91	3.100	
$\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl} \rightarrow \mathrm{CHClO.CH}$	$2.21 \mathrm{E}-07$	2.75	9.593	
$\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl} \rightarrow \mathrm{CHClO}+\mathrm{CH}$	$5.07 \mathrm{E}-05$	4.58	10.106	
$\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl} \rightarrow \mathrm{Cl}+\mathrm{CH}_{3} \mathrm{CHO}$	$5.32 \mathrm{E}+00$	3.23	10.86	
$\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl} \rightarrow \mathrm{CH} \mathrm{CH}_{2} \mathrm{OHC} . \mathrm{HCl}$	$4.62 \mathrm{E}+43$	-11.01	5.496	β-addition
$\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl} \rightarrow \mathrm{H}+\mathrm{CHClCHOH}^{2} \mathrm{CH}$	$8.86 \mathrm{E}+11$	0.13	5.218	
$\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl} \rightarrow \mathrm{CH}_{2} \mathrm{O} . \mathrm{CH}_{2} \mathrm{Cl}$	$6.98 \mathrm{E}+12$	-2.91	13.91	
$\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl} \rightarrow \mathrm{CH}_{2} \mathrm{O}+\mathrm{CH}_{2} \mathrm{Cl}$	$1.80 \mathrm{E}+10$	0.46	14.003	

Figure IIB. 5 Rate constants vs. temperatures for α-addition of $\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}$ at 760 torr

Figure IIB. 6 Rate constants vs. temperatures for β-addition of $\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}$ at 760 torr

Figure IIB. 7 Comparison of model with experiments for temperature dependence of rate constants at 760 torr

Figure IIB. 8 Rate constants vs. pressures for $\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}$ at 300 K

Figure IIB. 9 Comparison model with experiments for pressure dependence of rate constants at room temperature

APPENDIX

 (FOR PART I)THERM FILES OF CHLOROCARBONS

SPECIES

C2H5CL
Thermo estimation for molecule
C2H5CL C2H5CL

UNITS:KCAL
GROUPS 2
Gr \# - GROUP ID - Quantity
1-C/C/H3 - 1
2 - $\mathrm{C} / \mathrm{C} / \mathrm{CL} / \mathrm{H} 2-1$
Hf $\quad \mathrm{S} \quad \mathrm{Cp} 300 \quad 400 \quad 500 \quad 600 \quad 800 \quad 1000 \quad 1500$
$\begin{array}{lllllllllllllll}-27.00 & 66.26 & 14.93 & 18.38 & 21.48 & 24.10 & 28.17 & 31.24 & .00\end{array}$
CPINF $=42.72$
NROTORS: 1
SYMMETRY 3
CREATION DATE: 3/13/97
ENDSPECIES

SPECIES

CH 3 CHCL 2

Thermo estimation for molecule
CH3CHCL2
C2H4CL2
UNITS:KCAL
GROUPS 2
Gr \# - GROUP ID - Quantity
1-C/C/H3 - 1
2-C/C/CL2/H - 1
Hf S Cp $300 \quad 400 \quad 500 \quad 600 \quad 800 \quad 1000 \quad 1500$
$\begin{array}{lllllllllllllll}-31.10 & 73.05 & 18.40 & 21.82 & 24.67 & 27.15 & 30.69 & 33.35 & .00\end{array}$
CPINF $=42.72$
NROTORS: 1
SYMMETRY 3
CREATION DATE: 3/13/97
ENDSPECIES

SPECIES

CH2LCH2L
Thermo estimation for molecule
CH2LCH2L
UNITS:KCAL
GROUPS 2
Gr \# - GROUP ID - Quantity

```
        1-C/C/CL/H2 - 2
        2 - INT/CL2 - 1
    Hf S Cp 300 400 500 600 800 1000 1500
    -31.05 73.84 18.23 21.54 24.39 26.70}30.25 32.94 .00
        CPINF = 42.72
    NROTORS: 1
    SYMMETRY 2
    CREATION DATE: 3/13/97
    ENDSPECIES
```

SPECIES
CH3CCL3
Thermo estimation for molecule
CH3CCL3 C2H3CL3
UNITS:KCAL
GROUPS 2
Gr \# - GROUP ID - Quantity
1-C/C/H3 - 1
2-C/C/CL3 - 1
$\begin{array}{lllllllll}\text { Hf } & \mathrm{S} & \mathrm{Cp} 300 & 400 & 500 & 600 & 800 & 1000 & 1500\end{array}$
$\begin{array}{lllllllllllllll}-33.90 & 76.55 & 22.02 & 25.70 & 28.65 & 30.89 & 34.08 & 35.98 & .00\end{array}$
CPINF $=42.72$
NROTORS: 1
SYMMETRY 9
CREATION DATE: 3/13/97
ENDSPECIES
SPECIES
CH2LCHL2
Thermo estimation for molecule
CH2LCHL2 C2H3CL3
UNITS:KCAL
GROUPS 3
Gr \# - GROUP ID - Quantity
1-C/C/CL/H2 - 1
2-C/C/CL2/H - 1
3-INT/CL3 - 1
Hf \quad S Cp $300 \quad 400 \quad 500 \quad 600 \quad 800 \quad 1000 \quad 1500$
$\begin{array}{llllllllll}-34.00 & 81.43 & 21.53 & 24.85 & 27.39 & 29.55 & 32.58 & 35.05 & .00\end{array}$
CPINF $=42.72$
NROTORS: I
SYMMETRY 1
CREATION DATE: 3/13/97
ENDSPECIES

```
SPECIES
1112CLEA
Thermo estimation for molecule
1112CLEA C2H2CL4
UNITS:KCAL
GROUPS 3
    Gr # - GROUP ID - Quantity
        1-C/C/CL/H2 - 1
        2-C/C/CL3 - 1
        3-INT/CL4 - 1
    Hf S Cp 300 400 500 600 800 1000 1500
-35.16 84.46 24.62 28.29 31.07 33.17 36.11 37.68 .00
            CPINF = 40.73
    NROTORS: }
    SYMMETRY 3
    CREATION DATE: 3/13/97
    ENDSPECIES
```

SPECIES
1122CLEA
Thermo estimation for molecule
1122CLEA
C2H2CL4
UNITS:KCAL
GROUPS 2
Gr \# - GROUP ID - Quantity
1-C/C/CL2/H - 2
2-INT/CL4 - 1
$\begin{array}{lllllllll}\text { Hf } & \mathrm{S} & \mathrm{Cp} 300 & 400 & 500 & 600 & 800 & 1000 & 1500\end{array}$
$\begin{array}{llllllllllll}-36.46 & 86.36 & 24.47 & 27.85 & 30.28 & 32.48 & 35.24 & 37.16 & .00\end{array}$
CPINF $=42.72$
NROTORS: 1
SYMMETRY 2
CREATION DATE: 3/13/97
ENDSPECIES
SPECIES
C2HCL5
Thermo estimation for molecule
C2HCL5
C2HCL5
UNITS:KCAL
GROUPS 3
Gr \# - GROUP ID - Quantity
1-C/C/CL2/H - 1
2-C/C/CL3 - 1
3-INT/CL5 - 1

```
Hf S Cp 300 400 500 600 800 1000 1500
-34.00 90.95 28.49 31.86 34.21 36.02 38.20}39.79 .00
    CPINF = 42.72
NROTORS: 1
SYMMETRY 3
CREATION DATE: 3/13/97
ENDSPECIES
```


SPECIES

C2CL6
Thermo estimation for molecule

```
C2CL6
C2CL6
UNITS:KCAL
GROUPS 2
    Gr # - GROUP ID - Quantity
        1-C/C/CL3 - 2
        2-INT/CL6 - 1
    Hf S Cp 300 400 500 600 800 1000 1500
-34.06 94.77 32.72 36.16 38.35 39.76 41.39 42.42 .00
        CPINF = 42.72
    NROTORS: 1
SYMMETRY 18
    CREATION DATE: 3/13/97
    ENDSPECIES
```

SPECIES
C2H3CL
Thermo estimation for molecule
C2H3CL
C 2 H 3 CL
UNITS:KCAL
GROUPS 2
Gr \# - GROUP ID - Quantity
1-CD/CL/H - 1
2-CD/H2 - 1
$\begin{array}{lllllllll}\text { Hf } & \mathrm{S} & \mathrm{Cp} 300 & 400 & 500 & 600 & 800 & 1000 & 1500\end{array}$
$\begin{array}{lllllllllllllll}5.06 & 63.01 & 13.00 & 15.56 & 17.81 & 19.70 & 22.37 & 24.37 & .00\end{array}$
CPINF $=31.79$
SYMMETRY 1
CREATION DATE: 3/13/97
ENDSPECIES

SPECIES

CH2CCL2
Thermo estimation for molecule
CH2CCL2

```
UNITS:KCAL
GROUPS 2
    Gr# - GROUP ID - Quantity
        1-CD/CL2 - 1
        2-CD/H2 - 1
Hf S Cp 300 400 500 600 800 1000
    .50 67.00 16.07 18.78 20.84 22.42 24.70 26.28 .00
            CPINF = 31.79
SYMMETRY 2
CREATION DATE: 3/13/97
ENDSPECIES
```

SPECIES
ZC2H2CL2
Thermo estimation for molecule
ZC2H2CL2
C 2 H 2 CL 2
UNITS:KCAL
GROUPS 3
Gr \# - GROUP ID - Quantity
1-CD/CL/H - 2
2-INT/CD/CL2 - 1
3-CIS/CL/CL - 1
$\begin{array}{lllllllll}\mathrm{Hf} & \mathrm{S} & \mathrm{Cp} & 300 & 400 & 500 & 600 & 800 & 1000\end{array} 1500$

CPINF $=31.79$
SYMMETRY 2
CREATION DATE: 3/13/97
ENDSPECIES
SPECIES
EC2H2CL2
Thermo estimation for molecule
EC2H2CL2
C 2 H 2 CL 2
UNITS:KCAL
GROUPS 2
Gr \# - GROUP ID - Quantity
1-CD/CL/H - 2
2-INT/CD/CL2 - 1
$\begin{array}{lllllllll}\text { Hf } & \mathrm{S} & \mathrm{Cp} 300 & 400 & 500 & 600 & 800 & 1000 & 1500\end{array}$

| | 30 | 70.63 | 16.45 | 19.01 | 21.05 | 22.68 | 24.79 | 26.20 | .00 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

 CPINF \(=31.79\)
 SYMMETRY 1
CREATION DATE: 3/13/97
ENDSPECIES

SPECIES

C2HCL3

Thermo estimation for molecule
C2HCL3
C2HCL3
UNITS:KCAL
GROUPS 3
Gr \# - GROUP ID - Quantity
1-CD/CL2 - 1
$2-\mathrm{CD} / \mathrm{CL} / \mathrm{H}-1$
3-INT/CD/CL3 - 1
$\begin{array}{lllllllll}H f & \text { S } & \text { Cp } 300 & 400 & 500 & 600 & 800 & 1000 & 1500\end{array}$
$\begin{array}{lllllllllllllllllll}-2.22 & 77.67 & 19.26 & 21.80 & 23.67 & 25.06 & 26.94 & 28.11 & .00\end{array}$
$\mathrm{CPINF}=31.79$
SYMMETRY 1
CREATION DATE: 3/13/97
ENDSPECIES

SPECIES

C2CL4
Thermo estimation for molecule

```
C2CL4
C2CL4
UNITS:KCAL
GROUPS 2
    Gr # - GROUP ID - Quantity
        1-CD/CL2 - 2
        2-INT/CD/CL4 - 1
    Hf S Cp 300 400 500 600 800 1000 1500
    -3.15 81.47 22.73 25.10 26.72 27.86}29.28 30.02 .00
        CPINF = 31.79
    SYMMETRY
        4
    CREATION DATE: 3/13/97
    ENDSPECIES
```


SPECIES

C2HCL
Thermo estimation for molecule

```
C2HCL
                                    C2HCL
UNITS:KCAL
GROUPS 2
    Gr # - GROUP ID - Quantity
        1-CT/H -1
        2-CT/CL - 1
    Hf S Cp 300 400 500 600 800 1000 1500
```



```
    CPINF = 19.87
```

```
SYMMETRY 1
CREATION DATE: 3/13/97
ENDSPECIES
SPECIES
C2CL2
Thermo estimation for molecule
C2CL2 C2CL2
UNITS:KCAL
GROUPS 2
    Gr # - GROUP ID - Quantity
        1-CT/CL - 2
        2-INT/CL2 - 1
Hf S Cp 300 400 500 600 800 1000
50.89}64.58 16.55 17.26 17.63 18.08 18.75 19.20 .00
    CPINF = 19.87
SYMMETRY 2
CREATION DATE: 3/13/97
ENDSPECIES
```


REFERENCE

(FOR PART II)

1. C. J. Howard, "Rate Constants for the Gas-Phase Reactions of OH Radicals with Ethylene and Halogenated Ethylene Compounds." J. Chem. Phys. vol. 65, pp. 47714777, 1976.
2. R. A. Perry, R. Atkinson, J. N. Jr. Pitts, "Rate Constants for the Reaction of OH Radicals with $\mathrm{CH}_{2}=\mathrm{CHF}, \mathrm{CH}_{2}=\mathrm{CHCl}$, and $\mathrm{CH}_{2}=\mathrm{CHBr}$ over the Temperature Range 299-426K." J. Chem. Phys. vol. 67, pp. 458-462, 1977.
3. A. Liu, W. A. Mulac, C. D. Jonah, "Pulse Radiolysis Study of the Gas-Phase Reaction of OH Radicals with Vinyl Chloride at 1 atm." J. Phys. Chem. vol. 93, pp. 4092-4094, 1989.
4. R. G. Gilbert, K. Luther, J. Troe, "A Modified Strong Collision Approach." Ber. Bunsenges. Phys. Chem. vol. 87, pp. 169-177, 1983.
5. S. W. Benson, Thermochemical Kinetics. Weily-Interscience. New York, 1976.
6. S. W. Benson, J. H. Buss, "Additivity Rules for the Estimation of Molecular Properties." J. Chem. Phys. vol. 29, pp. 546-572, 1958.

7 E. R. Ritter, "THERM: A Computer Code for Estimating Thermodynamic Properties for Species Important to Combustion and Reaction Modeling." J. Chem. Info. Comp. Sci. vol. 31, pp. 400-408, 1991.

8 E. R. Ritter, J. W. Bozzelli, "THERM: Thermodynamic Property Estimation for Gas Phase Radical and Molecules." Int. J. Chem. Kinetics. vol. 23, pp. 767-778, 1991.
9. Y. Chen, E. Tschuikow-Roux, "Ab Initio Study of the Structures, Rotation/Inversion Barriers, Fundamental Frequencies, and Thermodynamic Functions of $\mathrm{CH}_{2} \mathrm{ClCH}_{2}$, $\mathrm{CH}_{3} \mathrm{CHCl}$, and $\mathrm{CH}_{3} \mathrm{CCl}_{2}$ Radicals." J. Phys. Chem. vol. 96, pp. 7266-7276, 1992.
10. L. T. Lay, E. R. Ritter, J. W. Bozzelli, "The Combustion Institute, Central and Eastern States Meeting." pp. 14-17, New Orleans, LA, 1993.
11. A. M. Dean, "Predictions of Pressure and Temperature Effects upon Radical Addition and Recombination Reactions." J. Phys. Chem. vol. 89, pp. 4600-4608, 1985.
12. A. M. Dean, E. R. Ritter, J. W. Bozzelli, "CHEMACT: A Computer Code to Estimate rate Constants for Chemically-Activated Reactions." Combust. Sci. Tech. vol. 80, pp. 63-84, 1991.
13. J. W. Bozzelli, A. Y. Chang, A. M. Dean, "Molecular Density of States from Estimated Vapor Phase Heat Capacities." Int. J. Chem. Kinetics. vol. 29, pp. 161-170, 1997.
14. J. W. Bozzelli, A. M. Dean, "Personal Communication." Exxon Coporate Research, Annandale, NJ, 08801.
15. J. A. Kerr, S. J. Moss, CRC Handbook of Bimolecular and Trimolecular Gas Reactions. Volume I and II. CRC Press Inc., Boca Raton, FL, 1981.

16 S. W. Benson, "Molecular Models for Recombination and Disproportion of Radicals." Can. J. Chem. vol. 61, pp. 881-887, 1983.
17. R. C. Reid, J. M. Prausnitz, B. E. Polling, Properties of Gases and Liquids. 4th Ed., McGraw Hill, New York, 1989.
18. D. Ben-Amotz, D. R. Herschbach, "Estimation of Effective Diameters for Molecular Fluids." J. Phys. Chem. vol. 94, pp. 1038-1047, 1990.

19 (a) N. Cohen, "The Use of Transition State Theory to Extrapolate Rate Coefficients for Reactions of OH with Alkanes." Int. J. Chem. Kinetics. vol. 14, pp.1339-1362, 1982. (b) N. Cohen, "The Use of Transition State Theory to Extrapolate Rate Coefficients for Reactions of OH with Alkanes. Erratum." Int. J. Chem. Kinetics vol. 15, pp. 503-504, 1983.

20 N. Cohen, K. R. Westberg, "The Use of Transition State Theory to Extrapolate Rate Coefficients for Reactions of O Atoms with Alkanes." Int. J. Chem. Kinetics. vol. 18, pp. 99-140, 1986.

21 N. Cohen, S. W. Benson, "Transition-State-Theory Calculations for Reactions of OH with Haloalkanes." J. Phys. Chem. vol. 91, pp. 162-170, 1987.

22 N. Cohen, "Predicting the Preexponential Temperature Dependence of Bimolecular Metathesis Reaction Rate Coefficients Using Transition State Theory." Int. J. Chem. Kinetics. vol. 21, pp. 909-922, 1989.

