Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use" that user may be liable for copyright infringement,

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select "Pages from: first page # to: last page #" on the print dialog screen

The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.

ABSTRACT

THERMODYNAMIC PROPERTIES OF CHLOROCARBONS AND KINETIC ANALYSIS FOR α - AND β -ADDITION OF OH + C₂H₃Cl

by Li Zhu

A complete reaction system consisting of 12 elementary reaction and 19 species has been developed to model the reaction system of OH + C₂H₃Cl. There are two different carbon sites where addition can occur, α -addition and β -addition, as well as two different abstractions, α -abstraction and β -abstraction. Thermochemical kinetic parameters are developed for each elementary reaction and a chemical activation kinetic analysis using Multi-frequency QRRK theory for k(E) and modified strong collision approach for fall-off is used to calculate k's as function of pressure and temperature. Thermodynamic parameters are determined by MOPAC6/PM3 and the Group Additivity estimation. We are trying to use ab initio and density function methods at different levels to calculate the addition reactants, products and the transition states. All reactions in the mechanism incorporate reverse reaction rates calculated from thermodynamic parameters and Microscopic Reversibility. Results show good agreement with several experimental data. Recommended rate constants for the primary addition channels at 760 torr are: k(OH + C₂H₃Cl \rightarrow CH₂OHC.HCl) = 4.22×10³⁰×T^{-5.88}e^{4837RT} cm³mol⁻¹sec⁻¹, k(OH + C₂H₃Cl \rightarrow Cl + CH₂CHOH) = 8.61×10¹²×T^{0.01}e^{4114/RT} cm³mol⁻¹sec⁻¹.

THERMODYNAMIC PROPERTIES OF CHLOROCARBONS AND KINETIC ANALYSIS FOR α - AND β -ADDITION OF OH + C₂H₃Cl

by Li Zhu

A Thesis Submitted to the Faculty of New Jersey Institute of Technology in Partial Fulfillment of the Requirements for the Degree of Master of Science in Applied Chemistry

> Department of Chemical Engineering, Chemistry, and Environmental Science

> > January 1998

 \bigcirc \langle

APPROVAL PAGE

THERMODYNAMIC PROPERTIES OF CHLOROCARBONS AND KINETIC ANALYSIS FOR α - AND β -ADDITION OF OH + C₂H₃Cl

Li Zhu

Dr. Joseph W. Bozzelli, Thesis Advisor Distinguished Professor of Chemistry, NJIT

Dr. Carol A. Venanzi, Committee Member Distinguished Professor of Chemistry, NJIT

Dr' Barbara B. Kebbekus, Committee Member Professor of Chemistry, NJIT Date

Date

Date

BIOGRAPHICAL SKETCH

Author: Li Zhu

Degree: Master of Science

Date: January 1998

Undergraduate and Graduate Education:

- Master of Science in Applied Chemistry, New Jersey Institute of Technology, Newark, NJ, 1998
- Bachelor of Science in Chemistry, Beijing Polytechnic University, Beijing, China, 1992

Major: Applied Chemistry

Presentations and Publication:

Li Zhu, Joseph W. Bozzelli and Tsan H. Lay, "Comparison of AM1 and PM3 in MOPAC6 with Literature for the Thermodynamic Properties of C₁, C₂ Chlorocarbons." (In process of submission)

ACKNOWLEDGMENT

I wish to express my appreciation to my advisor, Prof. Joseph W. Bozzelli, for his guidance, patience and encouragement throughout this research.

Special thanks to Professors Babara B. Kebbekus and Carol A. Venanzi for their help and suggestions.

I gratefully acknowledge funding from the New Jersey Institute of Technology NSF Industry/University Hazardous Substance Management Research Center grant number NJ 92-240050 and the USEPA-CalTech-MIT-NJIT Research Center on Airborne Organics grant number R819679.

C	haptei	r	Page
PA	ART I	COMPARISON OF AM1 AND PM3 IN MOPAC6 WITH LITERATURE FOR THERMODYNAMIC PARAMETERS OF C1, C2 CHLOROCARBONS	1
1	PREI	FACE	
2		RODUCTION	
3	MET	HODOLOGY	. 5
	3.1	AM1 and PM3 in MOPAC6	. 5
	3.2	Modified Group Additivity: THERM	. 10
4	RESU	JLTS	. 13
	4.1	Enthalpy	. 13
	4.2	Entropy	. 14
	4.3	Heat Capacity	15
5	SUM	MARY	. 30
RI	EFERE	ENCES (FOR PART I)	. 32
PA	ART II	REACTION OF OH RADICAL WITH C2H3CI, RATE CONSTANT AND REACTION PATHWAY ANALYSIS	35
1	INTR	ODUCTION	. 36
2	THE	RMODYNAMIC PROPERTIES	. 40
		Thermodynamic Properties of Stable Molecules and Their Daughter Radicals in OH + C ₂ H ₃ Cl System	. 40
	2.2	Thermodynamic Properties of Molecules in Transition State	. 40
3	QRR	K CALCULATIONS FOR ADDITION REACTIONS OF OH + C ₂ H ₃ Cl	. 46

TABLE OF CONTENTS

TABLE OF CONTENTS (Continued)

Cl	napte	er Pa	age
4	ADI	DITION AND ABSTRACT REACTIONS OF OH + C ₂ H ₃ Cl	48
	4.1	α -Addition of OH + C ₂ H ₃ Cl and Continuing Reactions	48
	4.2	β -Addition of OH + C ₂ H ₃ Cl and Continuing Reactions	51
	4.3	TST Calculations for Abstract Reactions of $OH + C_2H_3Cl$	53
5	RES	SULTS AND DISCUSSIONS	54
	5.1	Results	54
	5.2	Conclusions	57
A	PPEN	NDIX THERM FILES OF CHLOROCARBONS (FOR PART I)	66
RJ	EFER	ENCES (FOR PART II)	73

LIST OF TABLES

Table	Pa	age
IA. 1	Thermodynamic Properties of C ₁ , C ₂ Chlorocarbons	6
IA. 2	Reduced Moments of Inertia and Rotational Barriers	8
IA. 3	Moments of Inertia of C ₁ , C ₂ Chlorocarbons Calculated by PM3	8
IA. 4	PM3-Calculated Bond Length, Angles and Dihedral Angles	9
IA. 5	PM3-Calculated Vibrational Frequencies of C ₁ , C ₂ Chlorocarbons	10
IA. 6	Chlorocarbon Groups and Interaction Groups for Multichloro Alkanes, Alkenes and Alkynes	12
IIA. 1	Previous Studies on $OH + C_2H_3Cl$	38
IIA. 2	Thermodynamic Properties of all Species in OH + C ₂ H ₃ Cl systems	45
IIA. 3	Thermodynamic Properties of Transition States in $OH + C_2H_3Cl$ System	45
IIA. 4	Input Parameters of α -addition of OH + C ₂ H ₃ Cl for QRRK Calculation	50
IIA. 5	Input Parameters of β -addition of OH + C ₂ H ₃ Cl for QRRK Calculation	52
IIA. 6	Apparent Rate Constants for OH + C ₂ H ₃ Cl at Different Pressures	58

LIST OF FIGURES

Figure	e	Page
IB, 1	Comparison of ΔHf_{298} of C_1 , C_2 Chlorocarbons: TRC vs. AM1	16
IB. 2	Comparison of ΔHf_{298} of C_1 , C_2 Chlorocarbons: THERM vs. AM1	. 17
IB. 3	Comparison of Δ Hf ₂₉₈ of C ₁ , C ₂ Chlorocarbons: TRC vs. PM3	. 18
IB. 4	Comparison of Δ Hf ₂₉₈ of C ₁ , C ₂ Chlorocarbons: THERM vs. PM3	19
IB. 5	Comparison of ΔHf_{298} of C ₁ , C ₂ Chlorocarbons: TRC vs. PM3	. 20
IB. 6	Comparison of ΔHf_{298} of C ₁ , C ₂ Chlorocarbons: THERM vs. PM3	21
IB. 7	Comparison of S298 of C1, C2 Chlorocarbons: TRC vs. AM1	. 22
IB. 8	Comparison of S_{298} of C_1 , C_2 Chlorocarbons: THERM vs. AM1	. 23
IB. 9	Comparison of S298 of C1, C2 Chlorocarbons: TRC vs. PM3	24
IB. 10	Comparison of S ₂₉₈ of C ₁ , C ₂ Chlorocarbons: THERM vs. PM3	25
IB. 11	Comparison of Cp_{300} of C_1 , C_2 Chlorocarbons: TRC vs. AM1	. 26
IB. 12	Comparison of Cp ₃₀₀ of C ₁ , C ₂ Chlorocarbons: THERM vs. AM1	. 27
IB. 13	Comparison of Cp ₃₀₀ of C ₁ , C ₂ Chlorocarbons: TRC vs. PM3	28
IB. 14	Comparison of Cp ₃₀₀ of C ₁ , C ₂ Chlorocarbons: THERM vs. PM3	29
IIB. 1	Potential Energy Diagram for OH α -Addition to Vinyl Chloride	41
IIB. 2	Potential Energy Diagram for OH β-Addition to Vinyl Chloride	42
IIB. 3	Transition States of OH α -Addition to Vinyl Chloride	49
IIB. 4	Transition States of OH β-Addition to Vinyl Chloride	. 50
IIB. 5	k vs. 1000/T of α -addition of OH + C ₂ H ₃ Cl at 760 torr	61
IIB. 6	k vs. 1000/T of β -addition of OH + C ₂ H ₃ Cl at 760 torr	62

LIST OF FIGURES (Continued)

Figure	Page
IIB. 7 Calculated and Experimental Rate Constants of $OH + C_2H_3Cl$ at 1 atm	63
IIB. 8 Calculated Rate Constants of $OH + C_2H_3Cl$ Versus Pressure at 300 K	64
IIB. 9 Calculated and Experimental Rate Constants of $OH + C_2H_3Cl$ at 300K	65

PART I

COMPARISON OF AM1 AND PM3 IN MOPAC6 WITH LITERATURE FOR THE THERMODYNAMIC PARAMETERS OF C₁, C₂ CHLOROCARBONS

CHAPTER 1

PREFACE

Ideal gas thermodynamic properties, ΔHf°_{298} , S°_{298} and Cp(T) (300 $\leq T/K \leq 1500$) for 21 C₁ and C2 chlorocarbons are calculated using AM1 and PM3 in MOPAC6, then compared with the literature data. AM1- and PM3-derived S°_{298} and Cp(T) (300 \leq T/K \leq 1500) are found to be consistent with the literature data (Rd $\leq \pm$ 5%) except Cp(300-500K) of C₂HCl, C₂Cl₂ and S°₂₉₈ of C₂HCl₅. Δ Hf°₂₉₈ obtained by PM3 for some multichlorocarbons, \cdot such as CH₂Cl₂, CH₂ClCH₂Cl, CH₂ClCHCl₂, CHCl₂CHCl₂, C₂Cl₄ and C₂Cl₂, are not in good agreement with the literature (D $\geq \pm 5$ kcal/mol). Δ Hf^o₂₉₈ (kcal/mol) calculated by PM3 are corrected as following: $\Delta Hf^{\circ}_{298,PM3} = -2.35 + 1.09 \times \Delta Hf^{\circ}_{298,literature}$ for the partially chlorinated C₁ and C₂ hydrocarbons; $\Delta Hf^{\circ}_{298,PM3} = 5.36 + 1.07 \times \Delta Hf^{\circ}_{298,literature}$ for the fully Cl substituted C1 and C2 hydrocarbons. ΔHf^o298 of CCl4, C2HCl3, C2Cl4, C2Cl2 obtained by AM1 have more than \pm 5 kcal/mol deviations. A modified Group Additivity method is also used to calculated ΔHf°_{298} , S°_{298} and Cp(T) (300 $\leq T/K \leq 1500$) for the 21 C₁ and C2 chlorocarbons, and shown to be precise when compared with the literature. The use or application of AM1 and PM3 calculated ΔHf°_{298} for chlorocarbons needs to include estimation of results due to the limited accuracy of the methods. We cautiously recommend use of modified Group Additivity as a method of thermodynamic property data estimation.

CHAPTER 2

INTRODUCTION

Chlorocarbons are widely used chemicals as solvents in syntheses, as cleaning agents and starting materials and in polymer, pesticide and other product manufacture. Chlorocarbons are present in the atmosphere, in both municipal and hazardous material combustion, as well as in destruction/cleanup process related to the above industrial applications. Thermodynamic properties of chlorocarbons are important to the industry and governmental agencies in analysis of environmental effects and in evaluation of kinetics for destruction and synthesis processes. There are a limited number of experimental studies on the thermodynamic properties data of chlorocarbons¹⁻⁴. There are also several publications on estimation methods, or modification, evaluation of these methods.⁵⁻¹² Estimation techniques primarily include empirical or semiempirical methods, such as Group Additivity⁵⁻¹⁰ or modified Group Additivity THERM (a computer code based on modified Group Additivity for chlorocarbons. See also 3.2 in Part I and Appendix)^{11,12}, and MOPAC¹³⁻¹⁶ semiempirical calculations. Group Additivity method⁵ is to treat a molecular property as being composed of contributions due to groups. A group is defined as a polyvalent atom (ligancy ≥ 2) in a molecule together with all of its ligands. Semiempirical MOPAC and theoretical ab initio¹⁷⁻²⁷ are all molecular guantum-mechanical methods. Semiempirical methods such as MNDO¹³, AM1¹⁴ and PM3¹⁵ in MOPAC use a simpler Hamiltonian than the correct molecular Hamiltonian and use parameters whose values are adjusted to fit experimental data or the results of ab initio calculations. In contrast, high level ab initio calculation¹⁷⁻³² use the correct Hamiltonian and does not use experimental data other than the values of the fundamental physical constants. Ab initio methods are currently limited by computational cost as well as memory and scratch disk storage availability.

Group Additivity method of Benson⁵ does not accurately treat multi chloro hydrocarbon molecules, and a set of added interaction parameters are needed^{10,33}. Ab initio methods may be precise at higher levels but they are time-consuming and it is difficult to treat large systems.³⁴ High level theoretical calculations at MP2^{25,26} or density function²⁶ levels are limited to about 6 or so Cl atoms. A method is clearly needed for providing accurate and convenient estimation of chlorocarbon and oxychlorocarbon species for multi carbon systems (3 carbons and higher). Semiempirical methods are faster than ab initio because some approximations and parameterizations are incorporated. Recently, Lay et al.³⁵ compared the enthalpies of formation (kcal/mol) of 10 cyclic oxygenated hydrocarbons and found a linear correction served to improve the PM3 values to within 3.2 kcal/mol: Experimental-determined Enthalpy = $-1.642 + 0.882 \times MOPAC6/PM3$ determined enthalpy, $R^2 = 0.993$. The objective of this paper is to determine if MOPAC6 or a calibrated MOPAC6 calculation method is suitable for prediction of higher carbon number chlorocarbon species. We use AM1 and PM3 in MOPAC6 to obtain the thermodynamic quantities of C1 and C2 chlorocarbons, then compare with the respective values from literature^{1,2} and THERM^{11,12} (see 3.2 in Part I and Appendix).

CHAPTER 3

METHODOLOGY

3.1 AM1 and PM3 in MOPAC6

AM1 and PM3 calculations in MOPAC6 are performed to obtain the thermodynamic parameters, ΔHf^{o}_{298} , S^{o}_{298} , Cp(T) (300 \leq T/K \leq 1500) on 21 C₁, C₂ chlorocarbons, the results are given in Table IA. 1. For molecules having hindered rotors about C-C single bonds, i.e. saturated C₂ chlorocarbons, the approximation method of Pitzer and Gwinn³⁶ is used to account for the internal rotor's contribution to the entropies and heat capacities. The two input parameters (Table IA. 2) for this calculation are determined as following: The reduced moments of inertia are calculated by Moment = $\sum m_i \times r_i^2$; The barriers to free internal rotation are calculated by ab initio MP2/6-31G* method (unpublished) and from literature when available^{3,5}. PM3-determined moments of inertia, molecular geometries (bond lengths, angles, dihedral angles) and vibrational frequencies are given in Tables IA. 3, 4 and 5. Structures obtained by AM1 are similar to those obtained by PM3.

Available literature data on ΔHf^{o}_{298} , S^{o}_{298} , Cp(T) ($300 \le T/K \le 1500$) for C_1 , C_2 chlorocarbons are listed in Table IA. 1, as well as the results of THERM (see 3.2 of Part I and Appendix). The differences of ΔHf^{o}_{298} among three literature, TRC^1 , JANAF² and SWS³, for some chlorocarbons are greater than ± 1.0 kcal/mol, such as CH_3Cl , CCl_4 , $CH_2ClCHCl_2$, C_2Cl_6 , C_2H_3Cl , E- and Z-CHClCHCl. We choose TRC^1 and THERM results as references to represent the experimental values and evaluate literature data in our comparison with MOPAC6 AM1 and PM3. JANAF² data of chloroacelyenes are used for TRC data to compare with AM1 and PM3 since no TRC^1 data are available for chloroacelyenes.

Molecule	ref.	ΔHf° ₂₉₈	S°298			(Cp (T)			
	والانتحاذة وتحريب ويروعه والانتفاد والمروان			300K	400K	500K	600K	800K	1000K	1500K
CH3CI	this work (AMI)		55.88	9.69	11.52	13.25	14.37	17.07	18.85	21.69
	this work (PM3)	-	56.02	9.91	11.70	13.37	14.80	17.08	18.82	21.65
	TRC		56.02	9.75	11.52	13.20	14.67	17.07	18.89	21.82
	JANAF ²		55.99	9.73	11.50	13.17	14.64	17.03	18.86	21.75
	SWS ³		56.04	9.77	11.52	13.19	14.66	17.04	18.86	
CH₂Cl₂	this work (AM1)		64.22	12.03	14.21	16.00	17.39	19.42	20.82	22.94
	this work (PM3)		64.78	12.59	14.67	16.34	17.66	19.58	20.93	22.99
		-22.82	64.67	12.17	14.25	15.94	17.32	19.34	20.78	22.92
	JANAF ² SWS ³		64.57	12.16	14.24	15.93	17.30	19.32	20.76	22.91
			64.59	12.26	14.46	15.87	17.36	19.38	20.80	24.16
CHCI₃	this work (AM1)		70.00 71.21	15.27	17.51	19.14	20.32	21.87	22.85	24.18
	this work (PM3) TRC ¹	-20.87 -24.62	70.70	16.34 15.65	18.37 17.77	19.81 19.29	20.83 20.40	22.20	23.07	24.29
	JANAF ²	-24.62	70.63	15.63	17.75	19.29	20.40	21.89 21.87	22.85 22.83	24.23 24.16
	SWS ³		70.65	15.76	17.83	19.34	20.38	21.87	22.85	24.10
CCL	this work (AM1)		72.98	19.15	21.26	22.58	23.43	24.39	24.88	25.40
	this work (PM3)		75.21	20.75	22.55	23.58	24.21	24.39	25.21	25.55
	TRC ¹	-22.92	74.14	19.96	21.94	23.11	23.84	24.66	25.07	25.53
	JANAF ²		74.02	19.93	21.92	23.09	23.82	24.64	25.05	25.47
	SWS ³	-24.00	74.12	20.08	22.04	23.28	24.07	25.00	25.52	29.17
C ₂ H ₅ Cl	*this work (AMI)		65.66	14.57	18.07	21.24	23.90	28.02	31.07	35.86
o /i i jei	* this work (PM3)		65.96	15.03	18.58	21.71	24.31	28.31	31.27	35.96
	TRC	-26.86	65.97	14.98	18.56	21.68	24.30	28.41	31.46	36.24
	JANAF ²		66.01	15.03	18.57	21.61	24.22	28.37	31.44	36.16
	SWS ³		65.93	15.05	18.56	21.68	24.31	28.42	31.48	
	this work (THERM)	-27.00	66.26	14.93	18.38	21.48	24.10	28.17	31.24	
CH ₃ CHCl ₂	*this work (AM1)		72.32	17.74	21.38	24.44	26.89	30.54	33.14	37.14
	* this work (PM3)	-26.53	73.16	18.63	22.21	25.15	27.48	30.94	33.43	37.28
	TRC		72.98	18.26	21.86	24.81	27.21	30.82	33.43	37.44
	SWS ³	-31.05	72.89	18.29	21.85	24.82	27.24	30.85	33.45	
	this work (THERM)	-31.10	73.05	18.40	21.82	24.67	27.15	30.69	33.35	
CH ₂ CICH ₂ CI	*this work (AM1)	-33.81	74.68	17.04	20.84	24.18	26.88	30.78	33.45	37.4 0
	* this work (PM3)	-24.68	75.23	17.68	21.50	24.77	27.38	31.16	33.74	37.57
	TRC	-30.33	73.17	18.50	21.97	24.98	27.48	31.19	33.81	37.68
	SWS ³		73.66	19.00	22.00	24.70	26.90	30.40	33.00	
	this work (THERM)	-31.05	73.84	18.23	21.54	24.39	26.70	30.25	32.94	
CH3CCI3	*this work (AM1)	-31.92	76.44	21.64	25.04	27.69	2 9.78	32.84	34.99	38.25
	* this work (PM3)	-31.91	78.12	23.02	26.23	28.68	30.57	33.35	35.33	38.40
	TRC	-34.04	76.56	22.09	25.74	28.55	30.71	33.78	35.84	38.84
	this work (THERM)	-33.90	76.55	22.02	25.70	28.65	30.89	34.08	35.98	
CH ₂ CICHCl ₂	*this work (AM1)		82.18	20.16	24.06	27.29	29.83	33.40	35.72	38.89
	* this work (PM3)		83.29	21.22	25.03	28.10	30.51	33.88	36.08	39.09
	TRC ¹		79.77	20.31	24.49	27.77	30.32	33.88	36.18	39.33
	SWS ³		80.57	21.34	25.03	27.92	30.13	33.28	35.42	
	this work (THERM)	-34.00	81.43	21.53	24.85	27.39	29.55	32.58	35.05	10.10
CH2ClCCl3	*this work (AM1)		85.29	23.95	27.76	30.69	32.93	35.99	37.94	40.40
	*this work (PM3)		87.38	25.47	29.06	31.75	33.78	36.56	38.34	40.61
	TRC ¹	-35.74	85.13	24.61	28.39	31.19	33.31	36.28	38.21	40.74
	this work (THERM)	-35.16	84.46	24.62	28.29	31.07	33.17	36.11	37.68	10.10
CHCl ₂ CHCl ₂	*this work (AM1)		86.02	23.47	27.39	30.44	32.76	35.93	37.93	40.45
	*this work (PM3)		88.34	24.85	28.56	31.39	33.53	36.46	38.33	40.67
	TRC	-35.65	84.92	23.68	27.70	30.68	32.92	36.02	38.05	40.70
	SWS ³	-36.50	86.69	24.16	27.90	30.77	32.91	35.85		
	this work (THERM)	-36.46	86.36	24.47	27.85	30.28	32.48	35.24	37.16	

Table IA. 1Thermodynamic properties of C_1 , C_2 chlorocarbons

Molecule	ref. 4	ΔHf° ₂₉₈	S° ₂₉₈			(Cp (T)			
			_	300K	400K	500K	600K	800K	1000K	1500K
C ₂ HCl ₅	*this work (AM1)	-38.02	93.65	27.28	31.09	33.85	35.84	38.40	39.97	41.90
	*this work (PM3)	-33.41	96.93	29.11	32.60	35.04	36.77	39.01	40.39	42.11
-	TRC ¹	-34.83	91.25	28.25	31.99	34.55	36.38	38.75	40.21	42.03
	SWS ³	-34.00	90.95	28.23	31.77	34.42	36.22	38.52	39.88	
	this work (THERM)	-34.00	90.95	28.49	31.86	34.21	36.02	38.20	39.79	
C_2Cl_6	*this work (AM1)	-35.78	95.39	31.23	34.94	37.39	39.03	40.97	42.02	43.17
	*this work (PM3)	-36.48	100.08	33.42	36.66	38.70	40.04	41.60	42.44	43.37
	TRC ¹	-33.23	95.39	32.71	36.24	38.44	39.86	41.52	42.42	43.35
	JANAF ²	-32.08	95.07	33.21	36.68	38.78	40.14	41.71	42.55	43.37
	SWS ³	-33.80	94.77	32.67	36.11	38.29	39.69	41.29	42.11	
	this work (THERM)	-34.06	94.77	32.72	36.16	38.35	39.76	41.39	42.42	
C ₂ H ₃ Cl	this work (AM1)	5.88	62.89	12.54	15.14	17.35	19.17	21.94	23.97	27.17
	this work (PM3)	9.72	63.13	13.01	15.65	17.83	19.60	22.29	24.26	27.37
	TRC ¹	6.81	63.15	12.82	15.55	17.78	19.60	22.35	24.36	27.46
	SWS3	8.40	63.08	12.89	15.56	17.80	19.61	22.35	24.35	
	this work (THERM)	5.06	63.01	13.00	15.56	17.81	19.70	22.37	24.37	
CH ₂ CCl ₂	this work (AMI)	-0.05	68.43	15.53	18.22	20.29	21.91	24.27	25.92	28.39
	this work (PM3)	3.11	69.15	16.42	19.05	21.01	22.52	24.71	26.24	28.57
	TRC ¹	0.57	68.87	16.01	18.79	20.85	22.43	24.72	26.30	28.65
	SWS ³	0.30	68.85	16.08	18.80	20.86	22.44	24.71	26.29	
	this work (THERM)	0.50	67.00	16.07	18.78	20.84	22.42	24.70	26.28	
Z-CHCICHCI	this work (AM1)	-3.31	69.06	15.06	17.82	20.01	21.72	24.18	25.87	28.39
	this work (PM3)	3.99	69.49	15.77	18.48	20.58	22.20	24.55	26.17	28.58
	TRC ¹	-0.67	69. 28	15.55	18.40	20.56	22.23	24.61	26.24	28.64
	SWS ³	0.45	69.20	15.61	18.41	20.57	22.23	24.60	26.23	
	this work (THERM)	0.00	69.25	16.26	18.97	21.08	22.72	24.79	26.17	1
E-CHCICHCI	this work (AM1)	-3.43	69.11	15.42	17.96	20.06	21.73	24.17	25.86	28.38
	this work (PM3)	3.56	69.55	16.02	18.58	20.62	22.21	24.54	26.17	28.57
	TRC	-0.10	69.34	15.92	18.57	20.65	22.28	24.63	26.25	28.64
	SWS ³	1.00	69.29	15.99	18.58	20.65	22.28	24.62	26.24	
	this work (THERM)	0.30	69.25	16.45	19.01	21.05	22.68	24.79	26.20	
C ₂ HCl ₃	this work (AM1)	-8.41	77.17	18.45	21.05	23.00	24.47	26.50	27.80	29.59
	this work (PM3)	-2.33	78.19	19.43	21.95	23.76	25.10	26.94	28.13	29.77
	TRC ¹	-2.30	77.77	19.20	21.83	23.71	25.10	26.98	28.18	29.82
	SWS ³	-1.40	77.63	19.25	21.80	23.67	25.06	26.94	28.15	
	this work (THERM)	-2.22	77.67	19.26	21.80	23.67	25.06	26.94	28.11	
C ₂ Cl ₄	this work (AM1)	-12.43	80.83	21.79	24.26	26.00	27.24	28.83	29.74	30.80
	this work (PM3)	-8.08	82.70	23.05	25.37	26.91	27.97	29.31	30.07	30.96
	TRC	-2.90	81.54	22.70	25.13	26.75	27.89	29.31	30.10	31.00
	JANAF ²	-2.97	82.05	22.84	25.19	26.78	27.91	29.30	30.09	30.98
	SWS ³	-3.40	81.46	22.73	25.10	26.73	27.86	29.29	30.07	
	this work (THERM)	-3.15	81.47	22.73	25.10	26.72	27.86	29.28	30.02	
C ₂ HCl	this work (AM1)	47.77	56.50	11.71	13.31	14.42	15.24	16.44	17.33	18.74
	this work (PM3)	46.57	56.54	11.80	13.39	14.50	15.32	16.53	17.41	18.81
	JANAF ²	51.10	57.81	12.98	14.39	15.30	15.97	16.98	17.75	18.99
	this work (THERM)	51.42	58.10	13.18	14.39	15.19	15.87	16.87	17.56	
C_2Cl_2	this work (AM1)	41.59	62.99	14.80	16.05	16.90	17.53	18.43	19.04	19.88
	this work (PM3)	42.02	63.16	14.80	16.12	17.00	17.64	18.54	19.14	19.95
	JANAF ²	50.10	65.01	-15.80	16.86	17.69	18.31	19.13	19.60	20.20
	this work (THERM)	50.89	64.58	16.55	17.26	17.63	18.08	18.75	19.20	1
ويستحصب فيعتبك المكرف يستحقنهم		50.07	01.00				10.00	10.15		

Table IA. 1 Thermodynamic properties of C_1 , C_2 chlorocarbons (Continued)

*: S°_{298} , Cp(T) from hindered internal rotations are included. Units of ΔHf°_{298} , S°_{298} and Cp(T) are kcal/mol, cal/mol.K and cal/mol.K, respectively.

Internal Rotor in molecules	Ia (amu x Å ²)	Ib (amu x Å ²)	V (kcal/mol)	ref.
CH ₂ Cl - CH ₃	103	3.2	3.70	Benson ⁵
CHCl ₂ - CH ₃	198	3.2	3.75	SWS ³
CH ₂ Cl - CH ₂ Cl	102	102	5.42	MP2/6-31G***
CCl ₃ - CH ₃	287	3.2	2.75	SWS ³
CHCl ₂ - CH ₂ Cl	196	101	6.87	MP2/6-31G***
CCl ₃ - CH ₂ Cl	287	101	8.89	MP2/6-31G***
CHCl ₂ - CHCl ₂	196	196	9.20	MP2/6-31G***
CCl ₃ - CHCl ₂	288	196	12.66	MP2/6-31G***
CCl ₃ - CCl ₃	288	288	15.00	Benson ⁵

 Table IA. 2
 Reduced moments of inertia and rotational barriers

a: Unpublished work.

Table IA. 3 Moments of inertia (10 ⁻⁴⁷ kg m	1 ²)
--	------------------

Molecule	I _A	I _B	I _C	Molecule	I _A	I _B	I _C
CH ₃ Cl	5.32	62.55	62.55	C ₂ H ₅ Cl	27.45	148.43	165.35
CH_2Cl_2	28.57	240.44	263.66	CH ₃ CHCl ₂	131.35	252.76	359.54
CHCl ₃	249.53	249.70	467.75	CH ₂ ClCH ₂ Cl	29.07	553.26	571.74
CCl ₄	478.84	478.86	478.98	CH ₃ CCl ₃	350.75	350.79	482.34
C ₂ H ₃ Cl	15.12	133.87	148.99	CH ₂ CICHCl ₂	226.10	570.40	766.95
CH_2CCl_2	110.59	238.82	349.42	CH ₂ CICCl ₃	429.39	743.45	796.81
Z-CHCICHCI	74.15	302.58	376.73	CHCl ₂ CHCl ₂	490.06	629.30	1091.50
E-CHCICHCI	16.11	529.03	545.14	C₂HCl₅	699.90	846.10	1100.79
C_2HCl_3	201.15	534.15	735.20	C ₂ Cl ₆	956. 8 0	1155.90	1155.92
C_2Cl_4	473.25	587.31	1060.56	C ₂ HCl	0.00	140.38	140.38
1				C_2Cl_2	0.00	566.34	566.34

		Contraction of the local division of the loc	and the second	bond len	Contraction of the local division of the loc	Contraction of the local division of the loc		Contraction of the local division of the loc			
Molecule	Bond			Molecule				Molecule	Bond		Dihedral
	length	-	angle		length	-	angle		length	-	angle
	(Å)	(deg)	(deg)		(Å)	(deg)	(deg)		(Å)	(deg)	(deg)
CH ₃ Cl				CH ₃ CCl ₃				C_2H_3Cl			
C1-H1	1.094			C1-C2	1.501			C1-C2	1.326		
C1-H2	1.094	109.1		CI-CII	1.759	111.0		CI-CII		121.0	
C1-H3	1.094	109.1	119.1	C1-C12	1.760	110.8		CI-HI		123.5	180.0
CI-CII	1.765	109.8	120.4	C1-C13	1.759	111.0		C2-H2	1.086	123.2	180.0
CH_2Cl_2				C2-H1	1.098	111.1		С2-Н3	1.086	122.4	-180.0
C1-H1	1.103			C2-H2	1.098	111.1		CH_2CCI_2			
C1-H2	1.102	108.4		С2-Н3	1.098	111.1	-120.0	C1-C2	1.329		
C1-CI1	1.758	110.1		CH ₂ CICH	Cl ₂			CI-CII	1.682	122.7	
<u>C1-Cl2</u>	1.758	110.1	118.8	C1-C2	1.506			C1-Cl2	1.682	122.7	180.0
CHCl ₃				CI-CII	1.769	109.3		C2-H1	1.086	122.5	-180.0
CI-HI	1.111			C1-C12	1.764	110.1	117.4	C2-H2	1.086	122.5	-180.0
CI-CII	1.752	110.4		CI-HI	1.113	111.8	121.6	Z-CHCICI	HCI		
CI-Cl2	1.753	110.2	119.9	C2-C13	1.772	108.9	52.76	C1-C2	1.334		
C1-Cl3	1.752	110.4	119.9	C2-H2	1.105	110.9	-120.0	C1-CI1	1.678	121.4	
CCL				С2-НЗ	1.105	111.5	-120.0	С1-Н1	1.096	122.2	180.0
CI-CII	1.747			CH ₂ CICC		<u>-</u>		C2-C12		121.4	-180.0
C1-Cl2	1.746	109.5		C1-C2	1.506			C2-H2	1.096		-180.0
C1-Cl3	1.747	109.4	120.0	CI-CII	1.755	110.8		E- CHCIC			
CI-CL4	1.746	109.5		CI-CI2	1.755	110.8	120.5	C1-C2	1.333		
$\frac{C_2 + C_2}{C_2 H_5 CI}$				CI-CI3	1.760	110.1		C1-C11	1.681	120.6	
C1-C2	1.502			C2-C14	1.768	109.1	180.0	8	1.096	123.0	180.0
CI-CII	1.782	109.0		C2-H1	1.105	110.9	-120.4		1.096	123.0	180.0
CI-HI	1.104	112.1	119.6	C2-H2	1.105	110.9		C2-C12	1.681	120.6	-180.0
C1-H2	1.104	112.0		CHCI ₂ CH				C ₂ HCl ₃			
C2-H3	1.098	111.6		C1-C2	1.509			C1-C2	1.337		
C2-H4	1.098	111.0		CI-CII	1.764	109.4		C1-C11	1.674	122.5	
C2-H5	1.098	111.6		CI-CI2	1.764	109.4		C1-C12			-179.9
CH ₃ CHCl ₂				CI-HI	1.114	111.5		C2-C13	1.672		-179.9
C1-C2	1.502			C2-C13	1,763	109.5		C2-H1			-180.0
CI-CII	1.770	109.9		C2-C14	1.764	109.4	-117.5	Contraction of the local division of the loc	1.070	122.0	100.0
C1-Cl2	1.770	109.9	117.3	C2-H2	1,114	111.4	-121.2		1.345		
C1-C12	1.112	112.3		C ₂ HCI ₅	1.1.1.1			C1-C11	1.670	121 9	
C2-H2	1.098	111.6		$C_1 - C_2$	1.511			C1-C12	1.670		179.8
C2-H2	1.098	111.1		CI-CII	1.757	110.2		C1-C12 C2-C13	1.670		179.8
C2-H5	1.098	111.1		C1-C12	1.753	110.2	120.2	C2-C13 C2-C14			-179.8
$\frac{C2-114}{CH_2CICH_2}$		111.1		C1-C12	1.756	110.7		$C_2 + C_1 + C_2 + C_1$	1.070	121.7	-177.0
Cl-C2	1.505			C2-C14	1.760	109.5		C1-C2	1.190		
CI-CI	1.505	108.6		C2-C14	1.761	109.5	-118.0		1.664	180.0	
CI-HI	1.104	111.7		C2-C13 C2-H1	1.113	1109.5	-121.0			180.0	0.0
CI-HI CI-H2	1.104	111.7		J	1.113	110.7		C_2Cl_2	1.004	100.0	0.0
				C_2Cl_6	1 612				1 100		
C2-Cl2	1.776	108.6		C1-C2	1.512	110.2		C1-C2	1.190	190.0	
C2-H3	1.105	111.6		CI-CII	1.754	110.2		C1-CI1	1.664		0.0
<u>C2-H4</u>	1.104	111.8	-120.1	C1-C12	1.754	110.1		C2-C12	1.664	180.0	0.0
				C1-C13	1.754	110.2	120.0				
				C2-C14	1.754	110.2	179.9				
				C2-C15	1.754	110.1	-120.0				
				C2-C16	1.754	110.2	-120.0				

 Table IA. 4
 PM3-calculated bond lengths, angles and dihedral angles

Molecule Frequencies (cm ⁻¹)
CH ₃ Cl 676 1007 1007 1344 1383 1383 3125 3125 3195
CH ₂ Cl ₂ 274 660 670 888 1090 j218 1353 3033 3076
CHCl ₃ 240 240 347 637 661 662 1146 1146 2966
CCl ₄ 195 195 284 284 284 458 670 670 671
C ₂ H ₅ Cl 164 337 634 820 1014 1033 1127 1136 1254 1366 1395 1403 1421 3009 3067 3087 3087 3184
CH ₃ CHCl ₂ 147 258 300 399 622 é25 1001 1018 1126 1161 1218 1385 1393 1394 2952 3085 3087 3180
CH ₂ ClCH ₂ Cl 60 225 290 690 739 788 975 1062 1124 1127 1204 1298 1364 1400 2999 3011 3063 3065
CH ₃ CCl ₃ 135 218 218 320 322 323 522 632 633 1027 1028 1180 1380 1381 1382 3086 3087 3177
CH ₂ CICHCl ₂ 171 237 316 378 622 687 741 923 1073 1119 1151 1183 1283 1370 2947 3001 3059
CH ₂ CICCl ₃ 127 208 216 287 312 355 533 630 689 759 935 1083 1149 1264 1358 3000 3056
CHCl ₂ CHCl ₂ 117 183 272 280 311 358 683 688 731 746 1109 1124 1141 1158 1260 2939 2945
C ₂ HCl ₅ 116 139 181 206 251 305 306 387 548 683 686 754 762 1112 1147 1223 2943
C ₂ Cl ₆ 113 116 178 181 181 242 243 320 321 348 431 663 688 688 776 777 1189
C ₂ H ₃ Cl 391 594 654 907 996 1024 1190 1303 1805 3069 3141 3148
CH ₂ CCl ₂ 285 348 463 572 607 686 1013 1023 1292 1798 3140 3146
Z-CHCICHCI 156 358 528 661 763 796 944 1163 1202 1781 3059 3079
E-CHCICHCI 201 240 335 764 798 888 895 1163 1195 1783 3064 3068
C ₂ HCl ₃ 148 185 263 368 469 591 771 840 874 1180 1771 3066
C ₂ Cl ₄ 89 129 202 295 305 327 438 586 737 799 883 1758
C ₂ HCl 395 395 760 844 844 2232 3356
C ₂ Cl ₂ 196 197 484 500 500 1009 2312

Table IA. 5 PM3-calculated vibrational frequencies of C1, C2 chlorocarbons

3.2 Modified Group Additivity: THERM

We have developed a new, unique set of chlorocarbon groups plus interaction terms (Table IA. 6) for use by Group Additivity to estimate the thermodynamic properties of chlorocarbon molecules and daughter radicals (here daughter signifies the parent molecule with a hydrogen atom removed from central atom). This is because most groups needed for chlorocarbon or oxygenated chlorocarbons do not exist in the literature, and current Benson group additivity does not work to a reasonable accurate degree (it is not accurate

to within ± 3 kcal/mol for chlorocarbons). We have developed chlorocarbon groups by taking a core set of literature experimental data for chlorocarbons plus a specific, consistent definition for each chlorocarbon group in the derivation for use in Group Additivity. This when combined with a set of interaction terms leads to accurate calculation of chlorocarbon thermodynamic parameters. Fluorocarbon groups are derived in a similar manner.

Correct definition of initial groups is important to development of a Group Additivity scheme for accurate property estimation. Group Additivity is known to work well for hydrocarbons with Gauche interaction terms.⁵ Chlorocarbon groups are therefore derived from the experimental thermodynamic property data on respective chlorinated hydrocarbons. These groups are defined by use of groups where there are only carbon or hydrogen atoms on adjacent carbons. For examples the C/C/Cl/H₂, C/C/Cl₂/H or C/C/Cl₃ groups are derived from chloroethane (CH₃-CH₂Cl); 1,1-dichloroethane (CH₃CHCl₂); and 1,1,1-trichloroethane (CH₃CCl₃). respectively. There are no chlorines on the carbon atoms adjacent to the carbon atoms containing the chlorines. The C/C/Cl₃ group, for example, is defined from the parent 1.1.1-trichloroethane, and the $C/C/H_3$ group. Thermodynamic properties of chlorocarbons with no Cl or F on the carbon atoms adjacent a carbon with Cl are now accurately predicted, but an adjustment needs to be made for chlorocarbon or fluoro-chloro carbon species where there is a Cl or F on an adjacent carbon, such as 1,2dichloroethane or 1,1,2-trichloroethylene. This adjustment comes in the form of an interaction group to count the total number of Cl atoms (that interact) on the two adjacent carbons. There is no interaction group when the Cl atoms are only on one of two adjacent carbons.

Group	∆Hf° ₂₉₈	S° ₂₉₈ _	Cp(T)					
			300K	400K	500K	600K	800K	1000K
C/C/Cl/H ₂	-16.80	38.03	8.74	10.54	12.08	13.31	15.15	16.47
C/C/Cl ₂ /H	-21.04	44.91	11.99	13.98	15.53	16.62	18.09	18.80
C/C/Cl ₃	-23.84	50.69	15.83	17.86	19.25	20.10	21.06	21.21
C _D /Cl/H	-1.20	35.40	7.90	9.20	10.30	11.20	12.30	13.10
C_D/Cl_2	-5.76	40.77	10.97	12.42	13.33	13.92	14.63	15.01
C _T /H	27.25	24.70	5.28	5.99	6.49	6.87	7.47	7.96
C _T /Cl	24.17	33.40	7.90	8.40	8.70	9.00	9.40	9.60
INT/Cl ₂	2.55	-0.84	0.75	0.46	0.23	0.08	-0.05	-0.05
INT/Cl ₃	3.70	-1.42	0.58	0.33	0.04	-0.12	-0.24	-0.24
INT/Cl4	5.34	-1.90	0.05	-0.11	-0.26	-0.24	-0.10	0.43
INT/Cl ₅	10.60	-2.20	0.45	0.02	-0.31	-0.44	-0.53	0.02
INT/Cl ₆	13.34	-0.51	1.06	0.44	-0.15	-0.44	-0.73	-0.17
$INT/C_D/Cl_2$	2.70	-0.17	0.65	0.61	0.45	0.28	0.19	0.15
INT/C _D /Cl ₃	4.74	1.50	0.39	0.18	0.04	-0.06	0.01	0.04
INT/C _D /Cl ₄	8.37	2.68	0.79	0.26	0.06	0.02	0.02	0.05

 Table IA. 6
 Selected chlorocarbon groups and interaction groups for multi chloroalkanes, alkenes and alkynes^a

a: Only chlorocarbon groups used in this work are listed.

Units of ΔHf°_{298} , S°₂₉₈ and Cp(T) are kcal/mol, cal/mol.K and cal/mol.K, respectively.

THERM (modified Group Additivity) files for the 17 chlorocarbons discussed in

this work are attached as Appendix.

CHAPTER 4

RESULTS

4.1 Enthalpy

 Δ Hf°₂₉₈ for C₁, C₂ chlorocarbons from PM3 (or AM1), TRC¹ and THERM are compared in Figures IB. 1 to 6. Each class of chlorocarbons (saturated C₁, saturated C₂, C₂ containing carbon-carbon double bonds and C₂ containing carbon-carbon triple bonds) are shown in different legends.

Data in Table IA. 1 illustrates that the deviations of Δ Hf°₂₉₈ between AM1 and TRC data range from -9.53 kcal/mol (C₂Cl₄) to -5.20 kcal/mol (CCl₄). Four compounds have more than ±5 kcal/mol deviations, i.e. CCl₄, C₂HCl₃, C₂Cl₄, C₂Cl₂. The deviations of Δ Hf°₂₉₈ between PM3 and TRC data are within +7.12 kcal/mol (CH₂ClCHCl₂) and -8.08 kcal/mol (C₂Cl₄). Six compounds have more than ±5 kcal/mol deviations, i.e. CH₂Cl₂, C₂Cl₄ and C₂Cl₂. It is seen from the comparison of Figures IB. 1, 3 and Figures IB. 2, 4 that AM1 is better than PM3 for predicting Δ Hf°₂₉₈ of C₁, C₂ saturated chlorocarbons.

Statistics in Figures IB. 3 and 4 indicate that ΔHf^{0}_{298} for all C₁, C₂ chlorocarbons between PM3 and TRC or PM3 and modified Group Additivity (THERM) do not have a good linear relationship: R² factors are 0.980 and 0.984, respectively. An important observation is that the each class of chlorocarbons has similar, local non linearity: PM3 consistently predicts ΔHf^{0}_{298} of the fully chlorinated hydrocarbons to be too low. For examples, PM3-determined ΔHf^{0}_{298} of CCl₄, C₂Cl₆, C₂Cl₄ and C₂Cl₂ to be 3.04, 3.25, 5.18, 8.08 kcal/mol lower than experimental data, respectively. Two types of these C₁, C₂ chlorocarbons are separately considered: (i) the fully chlorinated and (ii) the partially chlorinated hydrocarbons (containing one or more C-H bond). Comparisons of the separate fits to the literature data are plotted in Figures IB. 5, 6 and show much better linearity. This suggests that PM3 under-predicts Gauche interactions or Cl-Cl interactions. Conventional Gauche interactions⁵ are not appropriate for chlorocarbon species and a series of new interaction terms are developed.^{10,33} Figures IB. 5 and 6 suggest, in part, the correction terms to the PM3 calculated $\Delta H f^{\circ}_{298}$ (in kcal/mol) for the respective TRC and THERM data as following:

 $\Delta H f^{\circ}_{298,PM3} = -2.35 + 1.09 \times \Delta H f^{\circ}_{298,literature}$ for the partially chlorinated hydrocarbons; $\Delta H f^{\circ}_{298,PM3} = 5.36 + 1.07 \times \Delta H f^{\circ}_{298,literature}$ for the fully chlorinated hydrocarbons; $\Delta H f^{\circ}_{298,PM3} = -2.19 + 1.08 \times \Delta H f^{\circ}_{298,THERM}$ for the partially chlorinated hydrocarbons; $\Delta H f^{\circ}_{298,PM3} = 5.48 + 1.08 \times \Delta H f^{\circ}_{298,THERM}$ for the fully chlorinated hydrocarbons.

To estimate higher carbon number chlorocarbons (C_n , $n \ge 3$), we define on extension of these two types of chlorocarbons: (i) the fully chlorinated and (ii) the partially chlorinated hydrocarbon species.

Table IA. 1 shows that modified Group Additivity (THERM) is consistent with the literature. Deviations of Δ Hf^o₂₉₈ between literature and THERM are within ±1 kcal/mol for all 17 C₂ chlorocarbons except C₂H₃Cl (+1.75 kcal/mol).

4.2 Entropy

Comparisons of S°_{298} for C_1 , C_2 chlorocarbons are shown in Figures IB. 7 to 10 for data from TRC and THERM, respectively. Relative deviations between AM1 and TRC are all less than $\pm 5\%$. Deviations between PM3 and TRC range from -1.85 cal/mol.K (C_2Cl_2) to +5.68 cal/mol.K (C₂HCl₅), relative deviations are all less than \pm 5% except C₂HCl₅ (6.2%) and most are within \pm 2%. The slopes greater than 0.85 and R² greater than 0.993 (Figures IB. 7 to 10) indicate that the AM1 or PM3 data are sufficiently accurate for estimation of the standard entropies of chlorocarbons. THERM results of S°₂₉₈ in Table IA. 1 are in good agreement with the literature. Relative deviations of S°₂₉₈ between THERM and TRC are less than \pm 2% for all C₁, C₂ chlorocarbons

4.3 Heat Capacity

Figures IB. 11 to 14 show comparison of MOPAC6-derived Cp_{300} with the literature values, where all the deviations between AM1 or PM3 and TRC are less than ± 1.5 cal/mol.K. Relative deviations are all within $\pm 5\%$ except CH=CCl (-9.8%) and CCl=CCl (-6.3%). Figures IB. 11 and 13 show that the slopes are greater than 0.94 and R² factors are greater than 0.992 for all C₁, C₂ chlorocarbons. The agreements of AM1 or PM3 calculation with literature data indicate that AM1 and PM3 can be useful in estimation Cp(T), providing account of internal rotations is included when appropriate. Relative deviations of Cp(T) between THERM and TRC less than $\pm 1.2\%$ for all C₂ chlorocarbons show that THERM-calculated Cp(T) are consist well with literature data.

The AM1 and PM3 calculations are satisfactory for Cp(T) ($400 \le T/K \le 1500$) of chloromethanes, chloroethanes and chloroethenes since relative deviations of AM1 and PM3 Cp(T) ($400 \le T/K \le 1500$) compared with literature are all within \pm 5% and most are less than \pm 1%. Cp(T) of CH=CCl and CCl=CCl have more than \pm 5% of relative deviations at 300-500 K.

Figure IB. 1 Comparison of Hf^o₂₉₈: TRC vs. AM1

Hf° (THERM, kcal/mol)

Figure IB. 2 Comparison of Hf^o₂₉₈: THERM vs. AM1

Figure IB. 3 Comparison of Hf° 298: TRC vs. PM3

Hf°₂₉₈ (THERM, kcal/mol)

Figure IB. 4 Comparison of Hf^o₂₉₈: THERM vs. PM3

Figure IB. 5 Comparison of Hf^o₂₉₈: TRC vs. PM3

ł

Figure IB. 6 Comparison of Hf^o₂₉₈: THERM vs. PM3

Figure IB. 7 Comparison of S° 298: TRC vs. AM1

----- All data:
$$y = 0.94 x + 4.52$$
, $R^2 = 0.994$

Figure IB. 8 Comparison of S°₂₉₈: THERM vs. AM1

$$S_{298}^{\circ}$$
 of C_2 HCl and C_2Cl_2 are from JANAF (Ref. 2) since no TRC data are available

Figure IB. 9 Comparison of S°₂₉₈: TRC vs. PM3

----- All data:
$$y = 0.85 x + 10.27, R^2 = 0.993$$

Figure IB. 10 Comparison of S^o₂₉₈: THERM vs. PM3

Figure IB. 11 Comparison of Cp₃₀₀: TRC vs. AM1

All data: y = 1.01 x + 0.75, $R^2 = 0.994$

Figure IB. 12 Comparison of Cp₃₀₀: THERM vs. AM1

Figure IB. 13 Comparison of Cp₃₀₀: TRC vs. PM3

----- All data:
$$y = 0.91 x + 1.74$$
, $R^2 = 0.990$

Figure IB. 14 Comparison of Cp₃₀₀: THERM vs. PM3

SUMMARY

Thermodynamic properties, ΔHf°_{298} , S°_{298} , Cp(T), $(300 \le T/K \le 1500)$ for 21 C₁, C₂ chlorocarbons are calculated by the AM1 and PM3 methods in MOPAC6, then compared with TRC literature¹ and modified group additivity values, where calculated values of S°_{298} , Cp(T) include substitution of contribution from a Pitzer and Gwinn³⁵ treatment of internal rotors in place of the MOPAC6 calculated torsion.

PM3-determined ΔHf°_{298} have obvious differences from two references (Deviations from -8.08 to +7.12 kcal/mol). The calibrations between PM3-determined enthalpies and literature enthalpies are calculated as: $\Delta Hf^{\circ}_{298, PM3} = -2.35 + 1.09 \times \Delta Hf^{\circ}_{298, literature}$ for hydrogen containing chlorocarbons; $\Delta Hf^{\circ}_{298, PM3} = 5.36 + 1.07 \times \Delta Hf^{\circ}_{298, literature}$ for fully Cl substitute chlorocarbons; $\Delta Hf^{\circ}_{298, PM3} = -2.19 + 1.08 \times \Delta Hf^{\circ}_{298, THERM}$ for hydrogen containing chlorocarbons; $\Delta Hf^{\circ}_{298, PM3} = 5.48 + 1.08 \times \Delta Hf^{\circ}_{298, THERM}$ for fully Cl substitute chlorocarbons. AM1 is better than PM3 for prediction of standard enthalpies of formation of saturated C₁, C₂ chlorocarbons.

Standard entropies and heat capacities (300 to 1500K) calculated by AM1 or PM3 show good agreement with the references (Rd $\leq \pm 5\%$). Only S°₂₉₈ of C₂HCl₅ by PM3, Cp(300-500K) of C₂HCl and C₂Cl₂ by AM1 and PM3 have more than $\pm 5\%$ relative deviations.

Standard enthalpies of formation, entropies and heat capacities calculated by modified group additivity are in good agreement with TRC data: deviations of ΔHf°_{298} are

less than 2 kcal/mol and relative deviations of S°_{298} and Cp(T), (300 \leq T/K \leq 1500) are less than \pm 5%.

AM1 and PM3 in MOPAC6 provide us accurate methods to estimate entropy and heat capacity for larger chlorocarbon species where limited or no experimental data are available. Enthalpy data from MOPAC6 AM1 and PM3 are not accurate enough for direct estimation. Density function or ab initio calculations at different levels can be tried but they are expensive and may not be able to deal very large molecules at present. Modified Group Additivity is recommended because it is faster, easier and more precise than semiempirical MOPAC6 calculations.

REFERENCES (FOR PART I)

- 1 R. D. Rodgers, Selected Values for Properties of Chemical Compounds. Thermodynamic Research Center, Texas A&M University, College Station, TX, 1982.
- 2 D. R. Stull, H. Prophet, JANAF Thermochemical Tables, 2nd Ed. (NSRDS-NBS 37). U. S. Government Printing Office. Washington D. C., 1970.
- 3 D. R. Stull, E. F. Jr. Westrum, G. C. Sinke, *The Chemical Thermodynamics of Organic Compounds*. Robert E. Krieger Publishing. Malabar, FL, 1987.
- 4 J. B. Pedley, R. O. Naylor, S. P. Kirby, *Thermodynamic Data of Organic Compounds*. *Second ed.* Chapman and Hall., London, 1986.
- 5 S. W. Benson, *Thermochemical Kinetics*. Weily-Interscience. New York, 1976.
- 6 S. W. Benson, Buss, J. H., "Additivity Rules for the Estimation of Molecular Properties." J. Chem. Phys. vol. 29, pp. 546-572, 1958.
- 7 C. Reid, J. M. Prausnitz, T. K. Sherwood, *The Properties of Gases and Liquids. 3rd Ed.* McGraw-Hill Book Company. New York, 1977.
- 8 N. Cohen, Aerospace Report 88-(7073)-2. Aerospace Co., Washington D. C., 1988
- 9 S. Domalski, E. D. Hearing, "Estimation of the Thermodynamic Properties of Hydrocarbons at 298.15 K." J. Phys. Chem. Ref. Data, vol. 17, pp. 1637-1678, 1988.
- 10 D. K. Wong, D. A. Kretkowski, J. W. Bozzelli, "Standard Chemical Thermodynamic Properties of Monochloroalkanes." *Ind. Eng. Chem. Res.* vol. 32, pp. 3184-3188, 1993.
- 11 E. R. Ritter, "THERM: A Computer Code for Estimating Thermodynamic Properties for Species Important to Combustion and Reaction Modeling." J. Chem. Info. Comp. Sci., vol. 31, pp. 400-408, 1991.
- 12 E. R. Ritter, J. W. Bozzell, "THERM: Thermodynamic Property Estimation for Gas Phase Radical and Molecules." *Int. J. Chem. Kinetics*. vol. 23, pp. 767-778, 1991
- 13 M. J. S. Dewar, W. Thiel, "Ground States of Molecules. 38, the MNDO Method. Approximations and Parameters." J. Am. Chem. Soc. vol. 99, pp. 4899-4907, 1977.
- 14 M. J. S. Dewar, E. G. Zoebisch, E. F. Healy, J. J. P. Stewart, "AM1: A New General Purpose Quantum Mechanical Molecular Model." J. Am. Chem. Soc. vol. 107, pp. 3902-3909, 1985.
- 15 (a) J. J. P. Stewart, "Optimization of Parameters for Semipirical Methods. I. Method."
 J. Comput. Chem. vol. 10, pp. 209-220, 1989. (b) J. J. P. Stewart, "Optimization of

Parameters for Semiempirical Methods. III. Extension of PM3 to Be, Mg, Zn, Ga, Ge, Ge, As, Se, Cd, In, Sn, Sb, Te, Hg, Tl, Pb, and Bi." J. Comput. Chem. vol 12, pp: 320-342, 1991.

- 16 (a) MOPAC: A General Molecular Orbital Package (QCPE 445). QCPE Bull. CO, 1983. (b) MOPAC6.0. F. J. Seiler Research Lab., US Air Force Academy, CO, 1990.
- 17 D. Feller, E. R. Davidson, Basis Sets for Ab Initio Molecular Orbital Calculations and Intermolecular Interactions. Reviews in Computational Chemistry. Vol. 1, pp. 1-43, VCH. New York, 1990.
- 18 W. J. Hehre, R. Ditchfield, J. A. Pople, "Self-Consistent Molecular Orbital Methods: XII Further Estimations of Gaussian-Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules." J. Chem. Phys. vol. 56, pp. 2257-2261, 1982.
- 19 Harriharan, P. C., Pople, J. A. "Self-Consistent Molecular Orbital Methods. Supplementary Functions for Basis Sets." *Chim. Phys. Acta* vol. 28, pp. 213-223, 1973.
- 20 M. J. Frisch, J. A. Pople, J. S. Binkley, "Self-Consistent Molecular Orbital Methods 25. Supplementary Functions for Basis Sets." J. Chem. Phys. vol. 80, pp. 3265-3269., 1984.
- 21 J. A. Pople, K. Raghavachari, G. W. Trucks, "Gaussian-2 Theory of Molecular Energies of First- and Second-Row Compounds." J. Chem. Phys. vol. 94, pp. 7221-7230, 1991.
- 22 L. A. Curtiss, C. Jones, G. W. Trucks, K. Raghavachari, J. A. Pople, "Gaussian-1 Theory of Molecular Energies for Second-Row Compounds." J. Chem. Phys. vol. 93, pp. 2537-2545, 1990.
- 23 L. A. Curtiss, K. Raghavachari, G. W. Trucks, J. A. Pople, "Gaussian-2 Theory Using Reduced Moller-Plesset Orders." J. Chem. Phys. vol. 98, pp. 1293-1298, 1993.
- 24 W. J. Hehre, L. Radom, P. R. Schleyer, J. A. Pople, *Ab Initio Molecular Orbital Theory*. John Weily and Sons. NY, 1986.
- 25 M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A., Robb, J. R. Cheeseman, T. A. Keith, G. A. Peterson, J. A. Montgomery, K. Raghavachari, M. A. Al-laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, M. W. Wong, E. S. Replogle, R. Gomperts, J. L. Andres, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. J. P. Stewart, M. Head-Gordon, C. Gonzalez, J. A. Pople, *Gaussian 94*. Gaussian Inc., Pittsburgh, PA, 1995.
- 26 M. J. Frisch, G. W. Trucks, M. Head-Gordon, P. M. W. Gill, M. W. Wong, J. B. Foresman, B. G. Johnson, H. B. Schlegel, M. A. Robb, E. S. Replogle, R. Gomperts, J. L. Andres, K. Raghavachari, J. S. Binkley, C. Gonzalez, R. L. Martin, D. J. Fox, D.

J. Defrees, J. Baker, J. J. P. Stewart, J. A. Pople, Gaussian 92. Revision C Eds., Gaussian Inc., Pittsburgh, PA, 1992.

- 27 C. F. Melius, *BAC-MP4 Heats of Formation and Free Energies*. Sandia National Laboratories, Livermore, CA, 1993.
- 28 J. A. Seetula, "An Ab Initio Study of Bond Strengths in Partly Chlorinated Saturated Small Hydrocarbons." 4th Internaional Conference on Chemical Kinetics, Gaithersburg, MD, July 14-18, 1997,
- 29 B. T. Colegrove, T. B. Thompson, "Ab Initio Heats of Formation for Chlorinated Hydrocarbons: Allyl Chloride, Cis- and Trans-1-Chloropropene and Vinyl Chloride." J. Chem. Phys. vol. 106, pp. 1480-1488, 1997.
- 30 M. N. Glukhovtsev, R. D. Bach, "A High-Level Computational Study on the Thermochemistry of Vinyl and Formyl Halides: Heats of Formation, Dissociation Energies, and Stabilization Energies." J. Phys. Chem. vol. 101, pp. 3574-3579, 1997.
- 31 Zachariah, M. R, "BAC-MP4 Predictions of Thermochemical Data for C₁ and C₂ Stable and Radical Hydroflourocarbons and Oxidized Hydroflourocarbons." J. Phys. Chem. vol. 100, pp. 8737-8747, 1996.
- 32 T. H. Lay, L. N. Krasnoperov, C. A. Venanzi, J. W. Bozzelli, N. V. Shokhirev, "Ab Initio Study of Alpha-Chlorinated Ethyl Hydroperoxides CH₃CH₂OOH, CH₃CHClOOH, and CH₃CCl₂OOH: Conformational Analysis, Internal Rotation Barriers, Vibrational Frequencies, and Thermodynamic Properties." J. Phys. Chem. vol. 100, pp. 8240-8249, 1996.
- 33 Y. G. Wu, S. N. Patel, E. R. Ritter, J. W. Bozzelli, "Group Additivity Thermodynamic Parameters (Terms) for Br, Cl, F, CH₃ and OH Interactions and CH₃ Buttress Effects in Multisubstituted Aromatics." *J. Thermochemical Acta* vol. 222, pp. 153-185, 1993.
- 34 I. N. Levine, Quantum Chemistry, 4th Ed. Prentice-Hall Inc., NJ 07632, 1991.
- 35 T. H. Lay, T. Yamada, P. Tsai, J. W. Bozzelli, "Thermodynamic Parameters and Group Additivity Ring Corrections for Three- to Six-Membered Oxygen Heterocyclic Hydrocarbons." J. Phys. Chem. vol. 101, pp. 2471-2477, 1997.
- 36 (a) K. S. Pitzer, "Thermodynamic Functions for Molecules Having Restricted Internal Rotations." J. Chem. Phys. vol. 5, pp. 469-472, 1937. (b) K. S. Pitzer, W. D. Gwinn, "Energy Levels and Thermodynamic Functions for Molecules with Internal Rotation. I. Rigid Frame with Attached Tops." *ibid.* vol. 10, pp. 428-440, 1942. (c) J. E. Kilpatrick, K. S. Pitzer, "Energy Levels and Thermodynamic Functions for Molecules with Internal Rotation. III. Compound Rotation." *ibid.* vol. 11, pp. 1064-1075, 1949.

PART II

REACTION OF OH RADICAL WITH C₂H₃Cl, RATE CONSTANT AND REACTION PATHWAY ANALYSIS

INTRODUCTION

Gas phase reactions of OH radicals are important in combustion and incineration of chlorinated hydrocarbon (CHCs) as well as in atmospheric chemistry. In combustion environments, OH is often the active radical present in the highest concentrations, where it serves to initiate breakdown of hydrocarbons (HCs) and it also reacts with CO producing CO_2 , plus H atoms, plus energy. Here if temperature is high, H atoms may react with O_2 in the critically important chain branching step H + $O_2 \rightarrow$ OH + O. OH is often the most important active species in combustion and atmospheric oxidation process. It abstracts hydrogen atom from saturated hydrocarbons forming HC radicals, which then combine with O_2 forming peroxy radicals. Peroxy radical then reacts with NO or undergoes other reactions related to photochemical smog. OH radicals also add to unsaturated hydrocarbons and carbonyls forming radicals which then further react with O2 and NO. Previous studies on OH radical reaction with unsaturated hydrocarbons such as vinyl chloride as well as this work show that the addition reaction is predominate at low temperature, while abstraction of H atom becomes important above 1400 K.

Howard¹ has determined the rate constant for reaction of OH with six different ethylene compounds (C₂H₄, C₂H₃Cl, C₂HCl₃, C₂Cl₄, CH₂CF₂, C₂ClF₃) at 296 K and in 0.7 - 7.0 torr helium buffer gas, using a discharge - flow reactor with Laser Magnetic Resonance (LMR) detection of OH. The rate constants at 7.0 torr are all in the range (1.2 - 4.2)×10¹² cm mol s⁻¹⁻¹, except for C₂Cl₄ which is lower, about 1.0×10^{-11} cm mol s⁻¹⁻¹. The accuracy of the measurements was estimated to be about \pm 20%. Howard measured 8 points between 0.7 and 7 torr. These data showed that the rate constant for OH reaction with vinyl chloride to be pressure dependent (in the fall-off regime), increasing from $12 \quad 3 \quad -1 \quad -1$ $1.2 \times 10^{-12} \quad \text{cm mol s}^{-1} \quad \text{at } 0.7 \text{ torr to } 3.01 \times 10^{-12} \quad \text{cm mol s}^{-1} \quad \text{at } 7.0 \text{ torr, where it still was not}$ at the high pressure limit.

Perry et al.² measured the absolute rate constants for reactions of OH radical with vinyl chloride, vinyl fluoride, and vinyl bromide by using a flash photolysis-resonance fluorescence technique over the temperature range 299-426 K at total pressure of ca. 50 torr (for C₂H₃Cl and C₂H₃Br) or ca. 100 torr (for C₂H₃F) of argon. They measured 6-8 points at each temperature for each reaction. The Arrhenius expressions for the rate $\frac{3}{100} - \frac{1}{100} + \frac{1}$

11 (775±300)/RT or $(3.35\pm0.34)\times10^{12}$ at room temperature $k(C_{2}H_{3}F + OH) = 8.91 \times 10^{\circ} e$ $k(C_2H_3C_1 + OH) = 6.87 \times 10^{-11} e^{(1045\pm300)/RT}$ or $(3.97\pm0.40) \times 10^{12}$ at room temperature 12 (805±300)/RT or $(4.10\pm0.42)\times10$ at room temperature $k(C_2H_3Br + OH) = 1.08 \times 10$ e The k's decreased with the increasing temperature. Combining these data with the reference rate constant (note: high pressure) for OH + ethylene (4.73×10 cm mol s which they measured before this work), they obtained the following relative rate constants: C_2H_4 : C_2H_3Br : C_2H_3Cl : $C_2H_3F = 1 : 0.87 : 0.84 : 0.71$. This appears to show a trend — the more electronegative the halogen substituent, the lower the rate constant. However, the total pressure from 100 to 52 torr for C₂H₃F, from 50 to 100 torr for C_2H_3Cl had no effect on the rate constants within the experimental errors (\pm 5 %) at room temperature.

Liu et al.³ studied the gas phase reaction of OH radical with vinyl chloride at l atm of argon over 313-1173K by using pulse radiolysis, resonant absorption for OH measurement. Temperature dependence of the rate constants showed behavior similar to that of OH + ethylene in that, the predominant reaction changed from an addition reaction below 588 K to abstraction of hydrogen atom above 723 K. They also observed negative 12 (700±120)/RT 3 -1 -1 temperature constant for the addition reaction as: 1.29×10 e cm mol s . The linear and nonlinear form rate constants for the H atom abstraction reaction were 13 (-4020±700)/RT and $8.43 \times 10^6 \times T^2 e^{(-1200)/RT}$ 3 -1 -1 cm mol s . However, no measurement 1.79×10 e was made between 588 and 723K, and no reason was explained why there was such a big temperature jump in their experiment.

The low temperature addition reactions $OH + C_2H_3Cl$ are complex and nonelementary. OH can add to either α - or β -carbon of C_2H_3Cl (α -carbon is the Cl-attached carbon, β -carbon is the carbon next to α -carbon). In each case, an adduct is formed, which can undergo stabilization via collisions, or before stabilization it may undergo unimolecular reaction to products, or reverse reaction — dissociation back to reactants. There are also two different C-H bond where abstraction can occur at the same time.

The summary of literature are shown in Table IIA. 1.

Researchers	Experimental Technique	T (K)	P (torr)	k at room temp. (cm ³ mol ⁻¹ s ⁻¹)	High Pressure Limit
Howard	Laser Magnetic Resonance	296	0.7-7.0	1.20e12 3.01e12	No
Perry et al.	Photolysis Resonance Fluorescence	299-426	50	3.97e12	Yes
Liu et al.	Pulse Radiolysis	313-1173	760	4.55e12	Yes

Table IIA. 1 Previous studies on $OH + C_2H_3Cl$

It would be helpful for both combustion and atmospheric kinetic modeling, to know the rate constants and specific reaction pathways for reaction of OH in each of the above four cases. A complete analysis of the OH addition reactions to the two carbon atom sites in vinyl chloride is presented in this work. The addition reactions are analyzed by multi-frequency Quantum RRK (Rice and Ramsperger and Kassel) analysis for k(E) and a modified strong collision approach of Gilbert et al.⁴ The abstraction reactions have been analyzed by Ho et al. using Transition State Theory of Benson.⁵ The rate constants are recommended for the two different addition reactions to specific products versus pressure. Thermodynamic parameters of the intermediate radicals and products are also listed.

THERMODYNAMIC PROPERTIES

2.1 Thermodynamic Properties Stable Molecules and Their Daughter Radicals in C₂H₃Cl + OH System

Thermodynamic properties including ΔHf^{0}_{298} , S°_{298} , Cp(T) ($300 \le T/K \le 1500$) of reactants, intermediates and products were obtained from literature when available. Because thermodynamic properties for many chloro-oxy-carbon species have not been previously measured or calculated, we calculated their thermodynamic parameters using the techniques of Group Additivity⁵⁻⁶ (see part I) and the "THERM"⁷⁻⁸ (see part I) computer code. Bond dissociation energies from the literature⁹ and hydrogen bond dissociation (BD) groups developed by Lay et al.¹⁰ were used to calculate thermodynamic properties of the respective radicals and are listed in Table IIA. 2. The potential energy diagrams for the chemical reactions, both α - and β -addition (to the C_D/Cl/H and C_D/H₂ carbons respectively), is shown in Figures IIB. 1 and 2.

2.2 Thermodynamic Properties of Molecules in Transition State

PM3 method in MOPAC6.0 was used to calculated the ΔHf_{298}° , S_{298}° , Cp(T)(300 \leq T/K \leq 1500) of transition state structures of 12 elementary reactions in this C₂H₃Cl + OH system. The structures, moments of inertia and vibrational frequencies are listed in Figure IIB. 3 and Figure IIB. 4 for α - and β -addition, respectively. The thermodynamic properties of these transition states are shown in Table IIA. 3.

unit: kcal/mol

HO		Moments of Inertia (cm-	Vibrations 1) (cm-1)	
$\frac{H_{1}}{H} C \frac{1.33}{C_{1}} C \frac{1.33}{C_{1}} C \frac{1.1}{C_{1}} C C C C C C C C C C C C C C C C C C $	OH + C2H3Cl -> CHClOHC.H2	0.290659 0.126471 0.097523	-479.11 642.69 91.55 779.69 149.21 990.09 292.94 1018.82 388.26 1101.92 602.48 1168.38	1301.35 1711.00 2970.72 3314.75 3138.51 3975.77
$H_{H} = C = \frac{1 \cdot 33}{C} + H_{H} = \frac{1 \cdot 33}{C} + H_{H} = \frac{1 \cdot 35}{1 \cdot 35} + \frac{1 \cdot 35}{C} + \frac$	СНСІОНС.Н2 -> Cl + C2H3OH	0.332346 0.083322 0.068868	-121.31 908.91 949.76 164.75 980.09 364.87 1073.48 512.14 1251.10 643.62 1361.92	1419.88 1854.44 2997.91 3149.12 3164.85 3874.29
$H_{H}^{\vee C} \xrightarrow{1.49}_{H}^{C} \xrightarrow{0}_{H}^{H}$	CHClOHC.H2 -> CHClO.CH3	0.397663 0.1 4 3764 0.117363	-2056.62 869.36 316.83 973.62 362.84 997.90 458.13 1018.94 618.31 1152.21 658.04 1236.98	1249.87 1361.05 1625.70 2945.18 3117.64 3139.22
H H H H H C H C H C H C H C H C H C H C	CHClO.CH3 -> CHClO + CH3	0.285734 0.151170 0.108074	-745.75 790.81 83.09 813.16 204.21 889.79 307.67 1076.65 421.05 1192.70 592.13 1309.06	1323.00 1673.63 2901.69 3181.57 3197.75 3204.63
$H = \begin{pmatrix} 2.03 \\ H \\ H \end{pmatrix} \begin{pmatrix} C \\ H \end{pmatrix} \begin{pmatrix} C$	CHClO.CH3 -> Cl + CH3CHO	0.313893 0.142887 0.104931	-682.51 948.10 -87.52 997.71 208.89 1047.93 282.85 1104.23 475.81 1380.28 689.15 1389.96	1396.08 1639.71 2703.40 3081.78 3089.64 3182.49
1.65 H C C C C C H C L H C L.35 H C H C L	CHClOHC.H2 -> H + CH2CClOH	0.325987 0.168186 0.114867	-2335.18 656.90 315.09 704.01 345.68 954.08 408.68 977.10 486.64 1190.93 585.96 1315.38	1380.30 1406.97 1834.90 3140.93 3150.04 3887.63
$\begin{array}{c} 1.72 H \\ C1 \\ H \\ 2.40 \\ H \\ C \\ 1.45 \\ C \\ \end{array}$	СНС1ОНС.Н2 -> НС1 + С.Н2СНО	0.365028 0.138542 0.104150	-2108.42 786.77 174.04 846.59 271.85 897.35 415.12 993.34 609.32 1121.73 666.11 1239.49	1390.75 1466.11 1771.20 2996.99 3118.16 3154.26
H H H $_{H_{H_{H_{H_{H_{H_{H_{H_{H_{H_{H_{H_{H_$	HCl + CH2C.OH	0.330556 0.119376 0.091216	-281.88 906.12 123.10 945.15 266.85 988.41 416.97 1056.70 476.69 1237.12 575.42 1327.12	1355.47 1658.75 2543.24 3135.74 3152.03 3902.70

Figure IIB. 3 Transition states of α -addition of OH + C₂H₃Cl

	Moments of Inertia (c		brations (cm-1)	Name of
H O OH + C2H3Cl -> 2.06 CH2OHC.HCl H_{H} C Cl	0.613986 0.081257 0.078050	96.59 142.42	166.30	1287.98 1685.69 3013.87 3062.64 3122.11 3987.21
H 1.39 1.40 CH2OHC.HC1 -> CH2OHC.HC1 -> CH2OHC.HC1 -> CH2OHC.HC1 -> CH2OHC.HC1 ->	0.623185 0.106441 0.103612		972.89 007.01 040.55 153.28	1284.76 1401.54 1622.08 2976.61 3020.64 3057.36
1.25 H).806519).087250).081317	-919.58 7 74.15 10 236.68 10 281.18 10 665.82 11 682.84 12	010.98 024.74 044.12 .44.08	1320.51 1638.75 2945.85 2981.17 3099.91 3101.18
1.45	.091587 0.083878 0.081109	2656.19 8 198.05 9 283.64 10 329.18 10 428.86 11 753.06 12	01.45 1 10.20 1 68.66 3 70.51 3	404.95 535.53 989.17 030.43 052.84 879.94

Figure IIB. 4 Transition states of β -addition of OH + C₂H₃Cl

Species ^b	Hf° ₂₉₈	S°298	<u>: محمد او البنية</u> الملك الشريع المكاني		Ср	ннанца <u>на со 2000 года и со 1</u> 000 года и с		(× j-4
			300K	400K	500K	600K	800K	1000K
Н	52.10	27.36	4.97	4.97	4.97	4.97	4.97	4.97
CI	28.90	39.50	5.32	5.32	5.32	5.32	5.32	5.32
OH	9.49	43.88	6.95	6.99	7.04	7.08	7.20	7.34
HCl	-22.07	44.60	6.89	6.95	7.03	7.12	7.32	7.54
CH3	35.20	46.30	9.21	10.02	10.79	11.52	12.86	14.02
CH2O	-26.00	50.90	7.93	9.43	10.68	11.74	13.36	14.51
CH2Cl	29.10	58.51	9.97	11.42	12.60	13.55	14.94	15.88
CHCIO	-39.30	61.81	11.11	12.41	13.48	14.36	15.68	16.61
C2H3Cl	5.06	63.01	13.00	15.56	17.81	19.70	22.37	24.37
CH2CHOH	-29.61	62.91	14.15	17.32	19.97	22.08	25.19	27.44
CH2C.OH	24.79	64.77	14.19	16.59	18.52	20.04	22.26	23.86
CH2COHCI	-39.74	71.71	17.40	19.26	20.83	22.73	25.29	27.28
CHOHCHCI	-37.07	70.70	16.95	20.16	22.76	24.78	27.42	29.27
CH3CHO	-39.18	63.13	13.22	15,71	18.22	20.47	24.22	26.97
C.H2CHO	3.12	60.40	12.92	15.31	17.44	19.24	22.10	24.12
CH2OHC.HCI	-18.30	78.91	18.61	21.60	24.30	26.17	29.48	31.88
CH2O.CH2Cl	-10.84	75.44	17.05	20,59	23.59	26.08	29.90	32.61
CHCIOHC.H2	-16.30	77.26	17.30	19.67	22.05	24.21	27.77	30.26
CHCIO.CH3	-13.34	72.40	16.41	19.18	21.92	24.37	28.27	30.98

Table IIA. 2 Thermodynamic properties of all species in $C_2H_3Cl + OH$ system^a

a : Units: Δ Hf°₂₉₈, kcal/mol; S°₂₉₈ and Cp (T), cal/mol.K; b: \cdot are radical sites.

an a	Hf° ₂₉₈	S° ₂₉₈	<u></u>		Ср	and an experimental designs		nin maa kalaan mari Palingin middaa ahaa
			300K	400K	500K	600K	800K	1000K
ts of reaction 1	26.88	75.48	18.11	21.28	23.84	25.88	28.95	31.22
ts of reaction 2	-16.54	72.78	16.90	20.06	22.74	24.94	28.27	30.74
ts of reaction 3	19.09	69.96	16.83	20.83	24.12	26.73	30.50	33.07
ts of reaction 4	2.85	74.86	17.54	20.73	23.36	25.50	28.78	31.21
ts of reaction 5	-6.15	72.69	17.51	20.70	23.41	25.63	29.02	31.50
ts of reaction 6	17.53	73.71	18.14	21.44	24.17	26.38	29.64	31.94
ts of reaction 7	7.84	73.34	15.82	19.16	22.07	24.50	28.27	31.02
ts of reaction 8	-4.12	74.05	17.31	20.45	23.08	25.24	28.57	31.02
ts of reaction 9	27.89	77.37	17.93	21.08	23.67	25.75	28.87	31.17
ts of reaction 10	22.92	70.34	16.28	20.27	23.63	26.33	30.25	32.93
ts of reaction 11	7.93	77.57	16.51	19.88	22.74	25.06	28.58	31.16
ts of reaction 12	5.40	73.73	17.39	20.56	23.35	25.66	29.13	31.60

Table IIA. 3 Thermodynamic properties of transition state in C₂H₃Cl+OH system

Units: ΔHf°_{298} , kcal/mol; S°₂₉₈ and Cp (T), cal/mol.K

QRRK CALCULATIONS FOR ADDITION REACTIONS OF C2H3CI + OH

A method to treat chemical activation reaction systems, which provides a framework to evaluate product channel distributions and fall-off effects as they change with temperature and pressure was developed by Dean¹¹. This approach is based on the quantum version of Kassel theory $(QRRK)^{12}$ to estimate the k(E)'s (dissociation rates of the energized adduct). The current version of the computer code utilizes a reduced set of vibration frequencies which accurately reproduce the molecule (adduct) heat capacity data, plus one external rotation in order to calculate density of states $\rho(E)$. Comparisons of ratios of these $\rho(E)/Q$ (partition function Q) with direct count $\rho(E)/Q$ are shown to be in good agreement.¹³ Non-linear Arrhenius effects resulting from changes in the thermodynamic properties of the respective transition states relative to the adduct with temperature are incorporated using a two-parameter Arrhenius pre-exponential factor (A, n) in AT^a. Falloff is incorporated using modified strong collision approach (beta collision) of Gilbert et al.⁴. Comparisons of calculation for this $OH + C_2H_3Cl$ system with ones using a Master Equation formalism¹⁴ yield results which are effectively identical to ones presented in this study.

Branching ratios for vinyl chloride + OH reactions at different temperature and pressure were calculated using this procedure. Pre-exponential A factors and activation energies (Ea) for the bimolecular addition/combination and the isomerization reactions at the high pressure limit were obtained from literature¹⁵, Transition State Theory and thermochemical kinetic methods of Benson¹⁶. A and Ea for the dissociation reactions, back to reactants, and to products come from analysis of thermodynamic heats of

46

formation, entropies for the relevant species and were obtained from the reversal addition or combination reaction rate constants by applying the Microscopic Reversibility (MR):

k eq. = kf / kr.

Where k eq. — equilibrium constant;

kf — rate constant of forward reaction;

kr — rate constant of reverse reaction.

Details on specific reaction rates are described in the following chapters.

ADDITION AND ABSTRACT REACTIONS OF $C_2H_3CI + OH$

The input parameters, high pressure limit rate constants, and the sources are listed in Tables IIA. 4 and IIA. 5 for OH addition to the α - and β -carbon sites in CH₂=CHCl respectively. The parameters in Tables IIA. 4 and IIA. 5 are referenced to the ground (stabilized) state of the complex because this is the formalism used in QRRK Theory.

4.1 α -Addition of OH + C₂H₃Cl and the Continuing Reactions

Two parameter Arrhenius pre-exponential factors A_1 , n_1 are calculated from Transition State Theory (TST).

$$A' = A \times T^{n} = e^{m} \times (k_{B}T/h) \times (P^{0}/RT)^{1-m} \times e^{\Delta S \neq 0/R}$$

 $Ea = \Delta H^{x,0} + mRT$

Where k_B — Boltzman constant

h --- Planck constant;

R — The ideal gas constant;

m — 1 (unimolecular reaction) or 2 (bimolecular reaction).

Two parameters (A₁, n₁) of the high pressure limit rate constant for OH addition to the α -carbon (k₁ in Table IIA. 4) are obtained by applying bimolecular TST. Since OH addition to α -carbon is more hindered by the chlorine atom than that to β -carbon, Ea for α -addition (Ea₁) should be higher than that for β -addition. Here Ea₁ is assigned as 2 kcal/mol. The reverse reaction k₋₁ is calculated from k₁ by the Microscopic Reversibility (MR). The isomerization reaction k_3 is obtained from unimolecular transition state. Activation energy of this isomerization Ea_3 is estimated from the transition state structure which is 1,2-hydrogen shift via four-member ring. So $Ea_3 =$ energy of ring strain + E_{abs} + $\Delta H_{rxn} = 40.47$ kcal/mol, where the ring strain for four member ring is 26 kcal/mol, abstraction energy of H atom by a primary carbon site, E_{abs} , is 11.51 kcal/mol, and ΔH_{rxn} of this isomerization is 2.96 kcal/mol.

Rate constants for dissociation to products k_2 , k_4 , k_5 , k_6 , k_7 and k_8 , are obtained from application of thermodynamics and the microscopic reversibility (MR) to the respective reverse addition reactions. The input parameters and literature references for all reactions in the α -addition systems are listed in Table IIA. 4.

OH addition to the α -carbon forms the CHClOHC.H₂[#] energized adduct. There is an obvious presence of a low energy channel for the this adduct: Cl atom elimination (k₂):

$$OH + C_2H_3Cl \rightarrow CHClOHC.H_2^{\#} \rightarrow Cl + CH_2CHOH$$

This makes vinyl alcohol the dominate product of this adduct's formation for all conditions (temperature and pressure). Unimolecular isomerization (k_3) of this adduct requires higher energy than that of the initial reactants at atmospheric conditions, so only a relative small fraction will isomerize, and further react at high temperature due to the higher Ea and the tight transition state.

Lennard-Jones parameters in Table IIA. 4 and Table IIA. 5 were obtained from tabulations¹⁷ and a calculation method based on molar volumes and compressibility¹⁸.

Read	ction	³ A(cm, mol, sec)	n	Ea(kcal/mol)
$\overline{k_1}$	$C_2H_3CI + OH \rightarrow CHCIOHC.H_2$	2.7812E+7	1.71980	2
k.1	$CHClOHC.H_2 \rightarrow C_2H_3Cl + OH$	9.8764E+7	1.71980	32.09
k ₂	$CHCIOHC.H_2 \rightarrow CI + CH_2CHOH$	7.4183E+11	1.4122	17.82
k3	$CHCIOHC H_2 \rightarrow CHCIO.CH_3$	8.2793E+8	1.04958	40.47
k_3	$CHClO.CH_3 \rightarrow CHClOHC.H_2$	1.6635E+10	1.04958	37.23
k4	$CHClO.CH_3 \rightarrow CHClO + CH_3$	2.2344E+13	0.30289	15.68
k5	$CHClO.CH_3 \rightarrow Cl + CH_3CHO$	4.3012E+12	0.39427	3.07
k_6	$CHClOHC.H_2 \rightarrow H + CH_2CCIOH$	1.1168E+10	0.95470	30.48
k7	$CHClOHC.H_2 \rightarrow HCl + C.H_2CHO$	9.2185E+11	0.12430	25
\mathbf{k}_{8}	$CHClOHC.H_2 \rightarrow HCl + CH_2C.OH$	4.1391E+11	0.35209	30

Table IIA. 4 Input parameters of α -addition of C₂H₃Cl + OH for the quantum Kassel calculation

 k_1 A₁ from TST. Ea₁ = 2, evaluated for OH addition to CH₂=<u>C</u>HCl

 k_{-1} Thermodynamics and microscopic reversibility $\langle MR \rangle$

 k_2 A₂ from TST. Ea₂ from Ea₂, Ea₂ = 2.5, evaluated for Cl addition to CH₂=<u>C</u>HOH

k₃ A₃ from TST, Ea₃ = ring strain + E_{abs} + ΔH = 26 + 11.5 + 2.96 = 40.47 k₋₃ <MR>

 k_4 A₄ from TST. Ea₄ from Ea₄, Ea₄ = 8.0 from 0.5 for CH₃ + C₂H₄ (ref. 57)

 k_5 A₅ from TST. Ea₅ from Ea₅, Ea₅ = 1.0, evaluated for Cl addition to CH₃<u>C</u>HO

 k_6 A₆ from TST. Ea₆ from Ea₋₆. Ea₋₆ = 2.1 from $k_{-6} \equiv 10^{11.1}$ for H + CH₂=<u>C</u>(CH3)₂. (ref. 57)

 k_7 A₇ from TST, Ea₇ = 25, evaluated for HCl elimination via 4-member-ring

 k_8 A₈ from TST, Ea₈ = 30, evaluated for HCl elimination via 3-member-ring

Reduced frequency sets for CHClOHC.H₂ (from CPFIT¹²) VIBRATION #1: MODES = 5.510 FREQUENCY = 344.8 cm⁻¹ VIBRATION #2: MODES = 8.127 FREQUENCY = 1517.9 cm⁻¹ VIBRATION #3: MODES = 3.363 FREQUENCY = 3999.7 cm⁻¹ GEO MEAN VIBRATION: MODES = 17.000, FREQUENCY = 1137.3 cm⁻¹

Reduced frequency sets for CHClO.CH₃(from CPFIT¹²) VIBRATION #1: MODES = 5.447 FREQUENCY = 419.1 cm⁻¹ VIBRATION #2: MODES = 8.911 FREQUENCY = 1522.3 cm⁻¹ VIBRATION #3: MODES = 3.141 FREQUENCY = 3999.9 cm⁻¹ GEO MEAN VIBRATION: MODES = 17.500, FREQUENCY = 1211.8 cm⁻¹

Lennard-Jones parameters: $\sigma = 4.55$ Å, $\epsilon/k = 576.7$ K

4.2 β -Addition of OH + C₂H₃Cl and the Continuing Reactions

The parameters of rate constant for OH addition at the β -carbon of C₂H₃Cl (A₉ and Ea₉ in Table IIA. 5) are 1.29×10^{12} cm mol⁻¹⁻¹ and -0.7 kcal/mol which are abstracted form Liu et al.³. The reverse reaction k₋₉ is calculated from MR.

A₉, and n₉ calculated from bimolecular TST are also shown in the bottom of Table IIA. 5. The reason for not using them in QRRK calculation will be discussed in Chapter 5.

The unimolecular isomerization reaction k_{10} is obtained from TST and Ea_{10} = energy of ring strain + E_{abs} + ΔH_{rxn} = 26 + 10.01 + 7.46 = 43.47 kcal/mol. Dissociation reactions k_{11} , k_{12} to products CH_2O + CH_2Cl and H + CHCl=CHOH are obtained from the reverse combination reactions and MR. The input parameters and literature references for all reactions in the β -addition systems are listed in Table IIA. 5.

The OH addition reaction to the β -carbon forms the CH₂OHCHCl[#] energized adduct. Unimolecular isomerization (k₁₀) of this adduct requires higher energy than that of the initial reactants when ring strain + Ea of H abstraction + Δ H_{rxn} are considered. Relative small fractions of this adduct will isomerize and further react at higher temperatures due to high barrier and the tight TST. The adduct is, therefore, either stabilized or it dissociates back to the initial reactants (C₂H₃Cl + OH), as this is the lowest energy dissociation channel.

Reac	tion	A(cm ,mol, sec)) n	Ea(kcal/mol)
k9ª	$C_2H_3Cl + OH \rightarrow CH_2OHC.HCl$	1.29E+12	0	-0.7
k.9 ^b	$CH_2OHC.HCl \rightarrow C_2H_3Cl + OH$	1.37E+12	0	29.39
k_{10}	$CH_2OHC.HCl \rightarrow CH_2O.CH_2Cl$	8.5120E+7	1.23115	43.47
k_10	$CH_2O.CH_2Cl \rightarrow CH_2OHC.HCl$	1.0384E+9	1.23115	35.85
k11	$CH_2O.CH_2Cl \rightarrow CH_2O + CH_2Cl$	1.5579E+14	-0.07821	19.14
k ₁₂	$CH_2OHC.HCI \rightarrow H + CHCI=CHOH$	3.3427E+9	0.91969	34.61

Table IIA. 5 Input parameters of β -addition of $C_2H_3Cl + OH$ for the quantum Kassel calculation

 k_9 A₉ from TST, Ea₉ = -0.7³

k_9 <MR>

 k_{10} A₁₀ from TST, $Ea_{10} = ring strain + E_{abs} + \Delta H = 26 + 10.01 + 7.46 = 43.47$ k_{10} <MR>

 k_{11} A₁₁ from TST, Ea₁₁ from Ea₁₁. Ea₁₁ = 8.0 from C₂H₅ + C₂H₄ (ref. 57)

k12 A_{12} from TST, $Ea_{12} = 1.5$, evaluated for H addition to CHOH=CHCl

Reduced frequency sets for CH₂OHC.HCl (from CPFIT¹²)

 VIBRATION #1: MODES = 4.652 FREQUENCY = 250.5 cm⁻¹

 VIBRATION #2: MODES = 7.603 FREQUENCY = 1062.2 cm⁻¹

 VIBRATION #3: MODES = 4.745 FREQUENCY = 3022.4 cm⁻¹

 GEO MEAN VIBRATION: MODES = 17.000, FREQUENCY = 957.9 cm⁻¹

 Reduced frequency sets for CH₂O.CH₂Cl (from CPFIT¹²)

 VIBRATION #1: MODES = 6.761 FREQUENCY = 519.0 cm⁻¹

 VIBRATION #2: MODES = 7.207 FREQUENCY = 1380.4 cm⁻¹

 VIBRATION #3: MODES = 3.532 FREQUENCY = 3234.8 cm⁻¹

GEO MEAN VIBRATION: MODES = 17.500, FREQUENCY = 1123.4 cm^{-1}

- a: k_9 calculated by TST: $A_9 = 9.0747E+7$, $n_9 = 1.67739$
- b: $k_{.9}$ calculated by TST: $\langle MR \rangle = 9.6611E+7$, $n_{.9} = 1.67739$

4.3 Transition-State-Theory Calculations for Abstraction Reactions of C₂H₃Cl + OH

This part of work was done by Winpin Ho and Joseph. W. Bozzelli. Their methods and results are summarized as following:

The pre-exponential A factors for bimolecular abstraction reactions were calculated using TST of Cohen and coworkers¹⁹⁻²². Modified Evans-Polanyi plot was used for obtaining the activation energy. The rate constants for these two abstraction channels are:

$$k_a = 1.40 \times 10^7 \times T^2 e^{-5310/RT}$$
 in cm³, mol, sec
 $k_b = 2.54 \times 10^7 \times T^2 e^{-6200/RT}$ in cm³, mol, sec

where k_a , is the rate constants for α -abstraction channel: OH + CH₂=CHCl \rightarrow CH₂=C.Cl + H₂O; and k_b for β -abstraction channel: OH + CH₂=CHCl \rightarrow C.H=CHCl + H₂O, respectively.

Above k_a and k_b are assumed to be pressure independent.

RESULTS AND DISCUSSIONS

5.1 RESULTS

Howard¹ has predicted that elimination of Cl from the adduct with formation of vinyl alcohol (k₂ in this work) dominates for the α -addition. Perry et al.² estimated the rate constant of this channel is about 6.0×10^{11} cm mol s⁻¹⁻¹ at room temperature which is about 15% of total rate constant. Our calculation shows that OH addition to the C_D/Cl/H carbon is a low fraction of that for addition to the C_D/H₂ carbon; 10-20%, which is in agreement with the estimation of Perry et al.². This channel behaves differently than β-addition due to the lower energy (exothermic relative to the initial reactants) reaction channel available to the adduct — unimolecular elimination of Cl. This product slate dominates for the α -addition channel at all pressures and all temperatures (0.076 to 7600 torr, 300 to 1500K).

Figure IIB. 5 presents a plot of rate constants versus 1000/T for the various channels resulting from OH addition at the α -carbon at 760 torr. The apparent rate parameters to the specific product channels are listed in Table IIA. 6. The vinyl alcohol + Cl channel dominates the reaction in the temperature range 300-1500K. As temperature increases, other product channels (excluding stabilization) start to become more important; but are still below the major product channel — vinyl alcohol + Cl at 1500K. The stabilization rate constant (k₁) is lower than that for vinyl alcohol + Cl channel (k₂) at 300K. k₁ increases to its peak value 10^{10.425} at 500K then decreases with increasing temperature.

A plot of rate constants versus 1000/T at 760 torr for β -addition product channels is shown in Figure IIB. 6. The stabilization channel dominates the reaction in the temperature range 300-1200K. Reverse reaction, dissociation to vinyl chloride + OH, increases and dominates stabilization above 1200K. Above 2000K, the unimolecular reaction H + CHOHCHCl and CH₂O + CH₂Cl is predicted to become important. Calculated apparent rate parameters to the specific product channels are also listed in Table IIA. 6.

Figure IIB. 7 illustrates a plot of rate constant to the major channels from both addition and abstraction reaction channels over the temperature range 300-2000 K for comparison with experimental data at 760 torr. At low temperature, the β -addition channel k₉ dominates the reaction, as reported by Liu et al.³ At high temperature, however, we calculate that reverse reaction k₂ — dissociation to vinyl chloride + OH (experimentally observed as reduced reaction rate or negative activation energy) dominates over stabilization. A small, near constant (15%), fraction of the reactions proceed via α -addition to products C₂H₃OH + Cl.

The abstraction reactions dominate above 1100K, also shown in Figure IIB. 7. The rate constants of two abstraction channels calculated by Transition-State-Theory are also shown. The calculated total abstraction rate constant $(k_a + k_b)$ are consistent with the observed experimental data of Liu et al.³. The calculation indicates that total abstraction reaction becomes important above 1400 K, while Liu et al.³ report that it dominates above 723 K. The total rate constant — addition plus abstraction, is shown to be in good agreement with experimental data over the low temperature range 300 to 600K at 760 torr.

Figure IIB. 8 shows the rate constants versus pressure at 300 K for all addition reaction channels. The β -addition channel (k₉) is at least 2 orders of magnitude faster than other reactions and it dominates the reaction as suggested by others¹⁻³.

Figure IIB. 9 shows a comparison of the calculated results for both addition reactions with the experimental data of other researchers¹⁻³. At room temperature the β -addition reaction channel (k₉) dominates all other channels and it almost equals to k_{total} over the pressure range of 0.076 to 7600 torr. Howard¹ extrapolated his experimental data (0.7 to 7 torr) for the reaction of OH radicals with C₂H₃Cl using a curved Lindemann plot and estimated a value for k $\approx 4.20 \times 10^{12}$ cm³mol⁻¹s⁻¹ in the high pressure limit (ca. 100 torr) while Perry et al.² proposed that their work at 50 torr were at the high pressure limit and estimated a value of k $\approx 3.97 \times 10^{12}$ cm³mol⁻¹s⁻¹. The model indicates from Figure IIB. 9 that the results of both the Perry et al.² and Liu et al.³ research groups is near the high pressure limit. The rate constant increases only 5% from 7 torr to 760 torr as illustrated in Figure IIB. 9.

MOPAC6/PM3-calculated TS's were used to obtain all the rate constants except for that of β -addition of OH + C₂H₃Cl (k₉) which is from the value of Liu et al.³. The transition state structure and two parameter rate constant of k₉ is shown in Figure IIB. 4 and Table IIA. 5, respectively. Although the structure seems reasonable (Figure IIB. 4), the QRRK calculation is not consistent with the experiments: it shows a positive temperature dependence of k₉. The experimental data from Liu et al.³ was used in this model instead of the TS in PM3 derived rate constant. There is future work that can be done to refine and improve/complete this modeling: (1) Ab initio method or density function calculations (see page 520 of ref. 34.) at high levels are suggested to perform to determined the thermodynamic properties and parameters (A, n and Ea) of rate constants from the transition state structures and properties; (2) All possible reaction channels are included into this system: 1,2-OH and/or Cl shift in both α - and β -addition subsystems.

5.2 Conclusion

The addition reactions of vinyl chloride with hydroxyl radical were analyzed using PM3 transition states and chemical activation formalism based on a multi-frequency Quantum RRK Theory for k(E) and a modified strong collision approach of Gilbert et al.⁴ for fall-off. Rate constants and reaction paths were predicted versus temperature and pressure and were compared with experimental data where available. The two abstraction paths were analyzed using an Evans-Polanyi relation for activation energy and Transition-State-Theory for Arrhenius A factors. The calculations serve as useful estimates for rate constants and reaction paths in applications of combustion and atmospheric modeling (pressure and temperature), where experimental data are not available. We evaluated and recommended rate constants over wide pressure and temperature range for the addition and abstraction reaction at the two distinct carbon atom sites on vinyl chloride. Rate constant expressions for the primary addition channels at 760 torr are:

 $OH + C_2H_3Cl \rightarrow CH_2OHC.HCl, \quad k = 4.22 \times 10^{30} \times T^{-5.88} e^{4837/RT} \text{ cm}^3 \text{mol}^{-1} \text{sec}^{-1}$ $OH + C_2H_3Cl \rightarrow Cl + CH_2CHOH, \quad k = 8.61 \times 10^{12} \times T^{0.01} e^{4114/RT} \text{ cm}^3 \text{mol}^{-1} \text{sec}^{-1}$

Extension of these analysis technique should allow reasonable estimation of the expected product distributions for a variety of addition reactions of hydroxyl radicals to other halogenated ethylenes.

$k = A \times T^{n} \times e^{-Ea/RT}$ units in cm³/mol/sec, Ea in kcal/mol

 $OH + C_2H_3Cl$ at 7600 torr

Reaction	A	n	Ea	remark
$OH + C_2H_3CI \rightarrow H_2O + CH_2C.CI$	1.06E+07	2.0	5.31	α -abstraction
$OH + C_2H_3CI \rightarrow H_2O + CHCIC.H$	1.59E+07	2.0	6.2	β-abstraction
$OH + C_2H_3CI \rightarrow CHCIOHC.H_2$	2.32E+24	-3.99	5.877	α -addition
$OH + C_2H_3CI \rightarrow CI + CH_2CHOH$	1.43E+14	-0.31	5.714	
$OH + C_2H_3CI \rightarrow H + CH_2COHCI$	3.97E+03	2.79	5.736	
$OH + C_2H_3CI \rightarrow HCI + C.H_2CHO$	1.60E+09	0.98	5.264	
$OH + C_2H_3CI \rightarrow HCI + CH_2C.OH$	2.73E+05	2.11	5.629	
$OH + C_2H_3CI \rightarrow CHCIO.CH_3$	2.59E+00	2.17	11.278	
$OH + C_2H_3CI \rightarrow CHCIO + CH_3$	7.30E-03	3.98	11.812	
$OH + C_2H_3CI \rightarrow CI + CH_3CHO$	6.45E+02	2.65	12.549	
$OH + C_2H_3CI \rightarrow CH_2OHC.HCI$	3.67E+22	-3.29	2.551	β-addition
$OH + C_2H_3CI \rightarrow H + CHCICHOH$	1.03E+14	2.68	7.943	
$OH+ C_2H_3Cl \rightarrow CH2O.CH2Cl$	5.74E+12	-1.26	16.104	
$OH+ C_2H_3Cl \rightarrow CH2O + CH2Cl$	7.90E+06	1.61	16.849	

 $OH + C_2H_3Cl$ at 760 torr

Reaction	A	n	Ea	remark
$OH + C_2H_3Cl \rightarrow H_2O + CH_2C.Cl$	1.06E+07	2.0	5.31	α -abstraction
$OH + C_2H_3Cl \rightarrow H_2O + CHClC.H$	1.59E+07	2.0	6.2	β-abstraction
$OH + C_2H_3Cl \rightarrow CHClOHC.H_2$	2.82E+22	-3.77	4.379	α -addition
$OH + C_2H_3Cl \rightarrow Cl + CH_2CHOH$	8.61E+14	0.01	4.114	
$OH + C_2H_3CI \rightarrow H + CH_2COHCI$	7.03E+01	3.26	4.003	
$OH + C_2H_3CI \rightarrow HCI + C.H_2CHO$	5.38E+07	1.37	3.588	
$OH + C_2H_3CI \rightarrow HCI + CH_2C.OH$	5.12E+03	2.58	3.889	
$OH + C_2H_3CI \rightarrow CHClO.CH_3$	7.16E-03	2.60	9.948	
$OH + C_2H_3CI \rightarrow CHClO + CH_3$	1.67E-04	4.43	10.46	
$OH + C_2H_3CI \rightarrow CI + CH_3CHO$	1.73E+01	3.08	11.216	
$OH + C_2H_3CI \rightarrow CH_2OHC.HCI$	4.22E+30	-5.88	4.837	β -addition
$OH + C_2H_3CI \rightarrow H + CHClCHOH$	2.98E+12	0.15	9.566	
$OH+ C_2H_3CI \rightarrow CH2O.CH2CI$	1.71E+18	-3.21	16.858	
$OH+ C_2H_3CI \rightarrow CH2O + CH2CI$	3.41E+12	-0.11	17.239	

 $OH + C_2H_3Cl$ at 76 torr

Reaction	A	n	Ea	remark
$OH + C_2H_3Cl \rightarrow H_2O + CH_2C.Cl$	1.06E+07	2.0	5.31	α -abstraction
$OH + C_2H_3CI \rightarrow H_2O + CHCIC.H$	1.59E+07	2.0	6.2	β-abstraction
$OH + C_2H_3CI \rightarrow CHCIOHC.H_2$	3.09E+20	-3.50	3.658	α -addition
$OH + C_2H_3Cl \rightarrow Cl + CH_2CHOH$	8.74E+11	0.28	3.390	
$OH + C_2H_3CI \rightarrow H + CH_2COHCI$	7.18E+00	3.54	3.319	
$OH + C_2H_3CI \rightarrow HCI + C.H_2CHO$	5.22E+06	1.66	2.868	
$OH + C_2H_3CI \rightarrow HCI + CH_2C.OH$	5.14E+02	2.86	3.208	
$OH + C_2H_3Cl \rightarrow CHClO.CH_3$	2.53E-04	2.73	9.633	
$OH + C_2H_3Cl \rightarrow CHClO + CH_3$	5.82E-05	4.56	10.146	
$OH + C_2H_3Cl \rightarrow Cl + CH_3CHO$	6.10E+00	3.21	10.901	
$OH + C_2H_3CI \rightarrow CH_2OHC.HCI$	8.42E+37	-8.31	6.577	β-addition
$OH + C_2H_3CI \rightarrow H + CHCICHOH$	1.23E+16	-0.99	9.243	
$OH+ C_2H_3Cl \rightarrow CH_2O.CH_2Cl$	9.56E+17	-3.50	15.649	
$OH+ C_2H_3Cl \rightarrow CH_2O+CH_2Cl$	3.64E+12	-0.19	15.771	

 $OH + C_2H_3CI$ at 7.6 torr

Reaction	A	n	Ea	remark
$OH + C_2H_3CI \rightarrow H_2O + CH_2C.Cl$	1.06E+07	2.0	5.31	α -abstraction
$OH + C_2H_3CI \rightarrow H_2O + CHCIC.H$	1.59E+07	2.0	6.2	β-abstraction
$OH + C_2H_3CI \rightarrow CHCIOHC.H_2$	2.17E+19	-3.46	3.551	α -addition
$OH + C_2H_3CI \rightarrow CI + CH_2CHOH$	6.11E+11	0.33	3.284	
$OH + C_2H_3CI \rightarrow H + CH_2COHCI$	5.13E+00	3.58	3.223	
$OH + C_2H_3CI \rightarrow HCl + C.H_2CHO$	3.66E+06	1.70	2.764	
$OH + C_2H_3CI \rightarrow HCl + CH_2C.OH$	3.66E+02	2.90	3.111	
$OH + C_2H_3Cl \rightarrow CHClO.CH_3$	2.24E-05	2.74	9.597	
$OH + C_2H_3CI \rightarrow CHCIO + CH_3$	5.14E-05	4.58	10.11	
$OH + C_2H_3CI \rightarrow CI + CH_3CHO$	5.39E+00	3.23	10.864	
$OH + C_2H_3Cl \rightarrow CH_2OHC.HCl$	4.89E+42	-10.04	7.211	β-addition
$OH + C_2H_3CI \rightarrow H + CHCICHOH$	9.44E+14	-0.72	7.377	
$OH+ C_2H_3Cl \rightarrow CH_2O.CH_2Cl$	2.45E+15	-3.06	14.29	
$OH+ C_2H_3Cl \rightarrow CH_2O+CH_2Cl$	6.42E+10	0.30	14.377	

 $OH + C_2H_3Cl$ at 0.76 torr

Reaction	A	n	Ea	remark
$OH + C_2H_3CI \rightarrow H_2O + CH_2C.CI$	1.06E+07	2.0	5.31	α -abstraction
$OH + C_2H_3CI \rightarrow H_2O + CHCIC.H$	1.59E+07	2.0	6.2	β-abstraction
$OH + C_2H_3CI \rightarrow CHClOHC.H_2$	2.09E+18	-3.45	3.539	α -addition
$OH + C_2H_3CI \rightarrow CI + CH_2CHOH$	5.88E+11	0.33	3.273	
$OH + C_2H_3CI \rightarrow H + CH_2COHCI$	4.95E+00	3.58	3.213	
$OH + C_2H_3CI \rightarrow HCI + C.H_2CHO$	3.52E+06	1.70	2.753	
$OH + C_2H_3CI \rightarrow HCI + CH_2C.OH$	3.53E+02	2.90	3.101	
$OH + C_2H_3CI \rightarrow CHClO.CH_3$	2.21E-06	2.75	9.593	
$OH + C_2H_3Cl \rightarrow CHClO + CH_3$	5.08E-05	4.58	10.106	
$OH + C_2H_3CI \rightarrow CI + CH_3CHO$	5.33E+00	3.23	10.864	
$OH + C_2H_3Cl \rightarrow CH_2OHC.HCl$	2.64E+44	-10.89	6.711	β-addition
$OH + C_2H_3Cl \rightarrow H + CHClCHOH$	5.43E+12	-0.09	5.726	
$OH+ C_2H_3Cl \rightarrow CH_2O.CH_2Cl$	8.01E+13	-2.92	13.95	
$OH+ C_2H_3Cl \rightarrow CH_2O+CH_2Cl$	2.06E+10	0.44	14.042	

 $OH + C_2H_3Cl$ at 0.076 torr

Reaction	A	n	Ea	remark
$OH + C_2H_3Cl \rightarrow H_2O + CH_2C.Cl$	1.06E+07	2.0	5.31	α -abstraction
$OH + C_2H_3CI \rightarrow H_2O + CHCIC.H$	1.59E+07	2.0	6.2	β-abstraction
$OH + C_2H_3CI \rightarrow CHCIOHC.H_2$	2.08E+17	-3.45	3.538	α -addition
$OH + C_2H_3CI \rightarrow CI + CH_2CHOH$	5.86E+11	0.33	3.272	
$OH + C_2H_3Cl \rightarrow H + CH_2COHCl$	4.93E+00	3.58	3.212	
$OH + C_2H_3CI \rightarrow HCI + C.H_2CHO$	3.51E+06	1.71	2.752	
$OH + C_2H_3CI \rightarrow HCI + CH_2C.OH$	3.52E+02	2.91	3.100	
$OH + C_2H_3CI \rightarrow CHCIO.CH_3$	2.21E-07	2.75	9.593	
$OH + C_2H_3CI \rightarrow CHCIO + CH_3$	5.07E-05	4.58	10.106	
$OH + C_2H_3CI \rightarrow CI + CH_3CHO$	5.32E+00	3.23	10.86	
$OH + C_2H_3CI \rightarrow CH_2OHC.HCI$	4.62E+43	-11.01	5.496	β -addition
$OH + C_2H_3CI \rightarrow H + CHClCHOH$	8.86E+11	0.13	5.218	
$OH+ C_2H_3Cl \rightarrow CH_2O.CH_2Cl$	6.98E+12	-2.91	13.91	
$OH+ C_2H_3Cl \rightarrow CH_2O+CH_2Cl$	1.80E+10	0.46	14.003	

Figure IIB. 5 Rate constants vs. temperatures for α -addition of OH + C₂H₃Cl at 760 torr

Figure IIB. 6 Rate constants vs. temperatures for β -addition of OH + C₂H₃Cl at 760 torr

Figure IIB. 7 Comparison of model with experiments for temperature dependence of rate constants at 760 torr

lgk (in cm³, mol, sec)

Figure IIB. 8 Rate constants vs. pressures for $OH + C_2H_3Cl$ at 300K

Figure IIB. 9 Comparison model with experiments for pressure dependence of rate constants at room temperature

APPENDIX (FOR PART I)

THERM FILES OF CHLOROCARBONS

SPECIES C2H5CL Thermo estimation for molecule C2H5CL C2H5CL UNITS:KCAL GROUPS 2 Gr # - GROUP ID - Quantity 1 - C/C/H3 - 1 2 - C/C/CL/H2 - 1 Hf S Cp 300 400 500 600 800 1000 1500 -27.00 66.26 14.93 18.38 21.48 24.10 28.17 31.24 .00 CPINF = 42.72NROTORS: 1 SYMMETRY 3 CREATION DATE: 3/13/97 ENDSPECIES **SPECIES** CH3CHCL2 Thermo estimation for molecule CH3CHCL2 C2H4CL2 UNITS:KCAL GROUPS 2 Gr # - GROUP ID - Quantity 1 - C/C/H3 - 1 2 - C/C/CL2/H - 1 Hf S Cp 300 400 500 600 800 1000 1500 -31.10 73.05 18.40 21.82 24.67 27.15 30.69 33.35 .00 CPINF = 42.72NROTORS: 1 SYMMETRY - 3 CREATION DATE: 3/13/97 **ENDSPECIES SPECIES** CH2LCH2L Thermo estimation for molecule CH2LCH2L C2H4CL2 UNITS:KCAL GROUPS 2 Gr # - GROUP ID - Quantity

1 - C/C/CL/H2 - 2 2 - INT/CL2 - 1 Hf S Cp 300 400 500 600 800 1000 1500 -31.05 73.84 18.23 21.54 24.39 26.70 30.25 32.94 .00 CPINF = 42.72NROTORS: 1 SYMMETRY 2 CREATION DATE: 3/13/97 **ENDSPECIES SPECIES** CH3CCL3 Thermo estimation for molecule C2H3CL3 CH3CCL3 UNITS:KCAL GROUPS 2 Gr # - GROUP ID - Quantity - 1 1 - C/C/H3 2 - C/C/CL3 - 1 Hf S Cp 300 400 500 600 800 1000 1500 -33,90 76,55 22,02 25,70 28,65 30,89 34,08 35,98 .00 CPINF = 42.72NROTORS: 1 SYMMETRY 9 CREATION DATE: 3/13/97 **ENDSPECIES** SPECIES CH2LCHL2 Thermo estimation for molecule C2H3CL3 CH2LCHL2 UNITS:KCAL GROUPS 3 Gr # - GROUP ID - Quantity 1 - C/C/CL/H2 - 1 2 - C/C/CL2/H - 1 3 - INT/CL3 - 1 Hf S Cp 300 400 500 600 800 1000 1500 -34.00 81.43 21.53 24.85 27.39 29.55 32.58 35.05 .00 CPINF = 42.72NROTORS: 1 SYMMETRY 1 CREATION DATE: 3/13/97 ENDSPECIES

SPECIES 1112CLEA Thermo estimation for molecule 1112CLEA C2H2CL4 UNITS:KCAL GROUPS 3 Gr # - GROUP ID - Quantity 1 - C/C/CL/H2 - 1 2 - C/C/CL3- 1 3 - INT/CL4 - 1 Hf S Cp 300 400 500 600 800 1000 1500 -35.16 84.46 24.62 28.29 31.07 33.17 36.11 37.68 .00 CPINF = 40.73NROTORS: 3 SYMMETRY 3 CREATION DATE: 3/13/97 **ENDSPECIES SPECIES** 1122CLEA Thermo estimation for molecule 1122CLEA C2H2CL4 UNITS:KCAL GROUPS 2 Gr # - GROUP ID - Quantity 1 - C/C/CL2/H - 2 2 - INT/CL4 - 1 Hf S Cp 300 400 500 600 800 1000 1500 -36.46 86.36 24.47 27.85 30.28 32.48 35.24 37.16 .00 CPINF = 42.72NROTORS: 1 SYMMETRY 2 CREATION DATE: 3/13/97 **ENDSPECIES SPECIES** C2HCL5 Thermo estimation for molecule C2HCL5 C2HCL5 UNITS:KCAL GROUPS 3 Gr # - GROUP ID - Quantity 1 - C/C/CL2/H - 1 - 1 2 - C/C/CL3 3 - INT/CL5 - 1

Hf S Cp 300 400 500 600 800 1000 1500 -34.00 90.95 28.49 31.86 34.21 36.02 38.20 39.79 .00 CPINF = 42.72NROTORS: 1 SYMMETRY 3 CREATION DATE: 3/13/97 **ENDSPECIES SPECIES** C2CL6 Thermo estimation for molecule C2CL6 C2CL6 UNITS:KCAL GROUPS 2 Gr # - GROUP ID - Quantity 1 - C/C/CL3 - 2 2 - INT/CL6 - 1 Hf S Cp 300 400 500 600 800 1000 1500 -34.06 94.77 32.72 36.16 38.35 39.76 41.39 42.42 .00 CPINF = 42.72NROTORS: 1 SYMMETRY 18 CREATION DATE: 3/13/97 **ENDSPECIES SPECIES** C2H3CL Thermo estimation for molecule C2H3CL C2H3CL UNITS:KCAL GROUPS 2 Gr # - GROUP ID - Quantity 1 - CD/CL/H - 1 2 - CD/H2 - 1 Hf S Cp 300 400 500 600 800 1000 1500 5.06 63.01 13.00 15.56 17.81 19.70 22.37 24.37 .00 CPINF = 31.79SYMMETRY 1 CREATION DATE: 3/13/97 **ENDSPECIES SPECIES** CH2CCL2 Thermo estimation for molecule C2H2CL2 CH2CCL2

UNITS:KCAL GROUPS 2 Gr # - GROUP ID - Quantity 1 - CD/CL2 - 1 - 1 2 - CD/H2 Hf S Cp 300 400 500 600 800 1000 1500 .50 67.00 16.07 18.78 20.84 22.42 24.70 26.28 .00 CPINF = 31.79SYMMETRY 2 CREATION DATE: 3/13/97 **ENDSPECIES SPECIES** ZC2H2CL2 Thermo estimation for molecule ZC2H2CL2 C2H2CL2 UNITS:KCAL GROUPS 3 Gr # - GROUP ID - Quantity 1 - CD/CL/H- 2 2 - INT/CD/CL2 - 1 3 - CIS/CL/CL - 1 Hf S Cp 300 400 500 600 800 1000 1500 .00 69.25 16.26 18.97 21.08 22.72 24.79 26.17 .00 CPINF = 31.79SYMMETRY 2 CREATION DATE: 3/13/97 **ENDSPECIES** SPECIES EC2H2CL2 Thermo estimation for molecule C2H2CL2 EC2H2CL2 UNITS:KCAL GROUPS 2 Gr # - GROUP ID - Quantity 1 - CD/CL/H - 2 2 - INT/CD/CL2 - 1 Hf S Cp 300 400 500 600 800 1000 1500 .30 70.63 16.45 19.01 21.05 22.68 24.79 26.20 .00 CPINF = 31.79SYMMETRY 1 CREATION DATE: 3/13/97 **ENDSPECIES**

SPECIES C2HCL3 Thermo estimation for molecule C2HCL3 C2HCL3 UNITS:KCAL GROUPS 3 Gr # - GROUP ID - Quantity 1 - CD/CL2 - 1 2 - CD/CL/H - 1 3 - INT/CD/CL3 - 1 Hf S Cp 300 400 500 600 800 1000 1500 -2.22 77.67 19.26 21.80 23.67 25.06 26.94 28.11 .00 CPINF = 31.79SYMMETRY 1 CREATION DATE: 3/13/97 **ENDSPECIES SPECIES** C2CL4 Thermo estimation for molecule C2CL4 C2CL4 UNITS:KCAL GROUPS 2 Gr # - GROUP ID - Quantity - 2 1 - CD/CL22 - INT/CD/CL4 - 1 Hf S Cp 300 400 500 600 800 1000 1500 -3.15 81.47 22.73 25.10 26.72 27.86 29.28 30.02 .00 CPINF = 31.79SYMMETRY 4 CREATION DATE: 3/13/97 **ENDSPECIES SPECIES** C2HCL Thermo estimation for molecule C2HCL C2HCL UNITS:KCAL GROUPS 2 Gr # - GROUP ID - Quantity 1 - CT/H - 1 - 1 2 - CT/CL Hf S Cp 300 400 500 600 800 1000 1500 51,42 58,10 13,18 14,39 15,19 15,87 16,87 17,56 .00 CPINF = 19.87

SYMMETRY 1 CREATION DATE: 3/13/97 ENDSPECIES SPECIES C2CL2 Thermo estimation for molecule C2CL2 C2CL2 UNITS:KCAL GROUPS 2 Gr # - GROUP ID - Quantity 1 - CT/CL - 2 2 - INT/CL2 - 1 Hf S Cp 300 400 500 600 800 1000 1500 50.89 64.58 16.55 17.26 17.63 18.08 18.75 19.20 .00 CPINF = 19.87SYMMETRY 2 CREATION DATE: 3/13/97 **ENDSPECIES**

REFERENCE (FOR PART II)

- C. J. Howard, "Rate Constants for the Gas-Phase Reactions of OH Radicals with Ethylene and Halogenated Ethylene Compounds." J. Chem. Phys. vol. 65, pp. 4771-4777, 1976.
- 2. R. A. Perry, R. Atkinson, J. N. Jr. Pitts, "Rate Constants for the Reaction of OH Radicals with CH₂=CHF, CH₂=CHCl, and CH₂=CHBr over the Temperature Range 299-426K." J. Chem. Phys. vol. 67, pp. 458-462, 1977.
- 3. A. Liu, W. A. Mulac, C. D. Jonah, "Pulse Radiolysis Study of the Gas-Phase Reaction of OH Radicals with Vinyl Chloride at 1 atm." *J. Phys. Chem.* vol. 93, pp. 4092-4094, 1989.
- 4. R. G. Gilbert, K. Luther, J. Troe, "A Modified Strong Collision Approach." Ber. Bunsenges. Phys. Chem. vol. 87, pp. 169-177, 1983.
- 5. S. W. Benson, Thermochemical Kinetics. Weily-Interscience. New York, 1976.
- 6. S. W. Benson, J. H. Buss, "Additivity Rules for the Estimation of Molecular Properties." J. Chem. Phys. vol. 29, pp. 546-572, 1958.
- 7 E. R. Ritter, "THERM: A Computer Code for Estimating Thermodynamic Properties for Species Important to Combustion and Reaction Modeling." J. Chem. Info. Comp. Sci. vol. 31, pp. 400-408, 1991.
- 8 E. R. Ritter, J. W. Bozzelli, "THERM: Thermodynamic Property Estimation for Gas Phase Radical and Molecules." *Int. J. Chem. Kinetics.* vol. 23, pp. 767-778, 1991.
- 9. Y. Chen, E. Tschuikow-Roux, "Ab Initio Study of the Structures, Rotation/Inversion Barriers, Fundamental Frequencies, and Thermodynamic Functions of CH₂ClCH₂, CH₃CHCl, and CH₃CCl₂ Radicals." *J. Phys. Chem.* vol. 96, pp. 7266-7276, 1992.
- 10. L. T. Lay, E. R. Ritter, J. W. Bozzelli, "The Combustion Institute, Central and Eastern States Meeting." pp. 14-17, *New Orleans, LA*, 1993.
- 11. A. M. Dean, "Predictions of Pressure and Temperature Effects upon Radical Addition and Recombination Reactions." J. Phys. Chem. vol. 89, pp. 4600-4608, 1985.
- A. M. Dean, E. R. Ritter, J. W. Bozzelli, "CHEMACT: A Computer Code to Estimate rate Constants for Chemically-Activated Reactions." *Combust. Sci. Tech.* vol. 80, pp. 63-84, 1991.
- J. W. Bozzelli, A. Y. Chang, A. M. Dean, "Molecular Density of States from Estimated Vapor Phase Heat Capacities." *Int. J. Chem. Kinetics.* vol. 29, pp. 161-170, 1997.

- 14. J. W. Bozzelli, A. M. Dean, "Personal Communication." Exxon Coporate Research, Annandale, NJ, 08801.
- 15. J. A. Kerr, S. J. Moss, CRC Handbook of Bimolecular and Trimolecular Gas Reactions. Volume I and II. CRC Press Inc., Boca Raton, FL, 1981.
- 16 S. W. Benson, "Molecular Models for Recombination and Disproportion of Radicals." Can. J. Chem. vol. 61, pp. 881-887, 1983.
- 17. R. C. Reid, J. M. Prausnitz, B. E. Polling, *Properties of Gases and Liquids. 4th Ed.*, McGraw Hill, New York, 1989.
- D. Ben-Amotz, D. R. Herschbach, "Estimation of Effective Diameters for Molecular Fluids." J. Phys. Chem. vol. 94, pp. 1038-1047, 1990.
- 19 (a) N. Cohen, "The Use of Transition State Theory to Extrapolate Rate Coefficients for Reactions of OH with Alkanes." *Int. J. Chem. Kinetics.* vol. 14, pp.1339-1362, 1982. (b) N. Cohen, "The Use of Transition State Theory to Extrapolate Rate Coefficients for Reactions of OH with Alkanes. Erratum." *Int. J. Chem. Kinetics* vol. 15, pp. 503-504, 1983.
- 20 N. Cohen, K. R. Westberg, "The Use of Transition State Theory to Extrapolate Rate Coefficients for Reactions of O Atoms with Alkanes." *Int. J. Chem. Kinetics.* vol. 18, pp. 99-140, 1986.
- 21 N. Cohen, S. W. Benson, "Transition-State-Theory Calculations for Reactions of OH with Haloalkanes." J. Phys. Chem. vol. 91, pp. 162-170, 1987.
- 22 N. Cohen, "Predicting the Preexponential Temperature Dependence of Bimolecular Metathesis Reaction Rate Coefficients Using Transition State Theory." Int. J. Chem. Kinetics. vol. 21, pp. 909-922, 1989.