

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

THE INTELLIGENT BROWSER FOR TEXPROS

by
Chih-Ying Wang

Browsing is a technique, which helps users to formulate their query and retrieve

information in the information retrieval system. This technique provides users with

capabilities of understanding their information needs and gaining system knowledge

during the course of the browsing and thus it eases the users' burden when issuing

queries. The basic components of the browser provides an underlying structure which

allows users to navigate and a browsing process controller which provides users with the

needed assistance during each browsing session.

In this dissertation, a new infrastructure (OP-Net), transformed from the existing

object network is proposed. Each object in the object network is transformed into a

predicate-augmented information repository. The predicate associated with each

information repository governs the content of relevant documents in the depository

during the browsing process and is updated continuously according to queries given by

the user. The OP-Net with the relevant information repositories provides a dynamic and

efficient environment for browsing.

A new ranking model is also proposed based on the signature of the documents and

the user's query. The signature of a document is a document representative which utilizes

the information provided by the dual model in TEXPROS (TEXt PROcessing System).

With the signatures, the similarity of the document and the query can be computed, and

the ranks of the documents can be derived.

This dissertation describes a three-layer architecture for the browser. At the top

layer, the browsing process controller conducts and monitors the browsing process, and

utilizes the services provided by the service providers. At the bottom of this architecture

is the storage management system which stores the documents and then associated frame

instances and responses to the requests from the service providers in the second layer.

This architecture supports the principle of information hiding by allowing the change of

the design of each component without changing the others. In the conclusion of this

dissertation, the potential improvements and future research will be proposed.

THE INTELLIGENT BROWSER FOR TEXPROS

by

Chih-Ving Wang

A Dissertation
SulnnWcd rn the Farnlly of

New Jersey hrntii111e of Teclmology
in Partial Fulfillment of the Requircrncnis for lhe Degree of

Doctor of Philosophy

Department of Computer and Information Science

May 1998

Copyright 1998 by Chih-Ying Wang

ALL RIGHTS RESERVED

APPROVAL PAGE

THE INTELLIGENT BROWSER FOR TEXPROS

Chih-Ying Wang

Dr. Peter A. Ng, Dissertanon Advisor 	 Date
Professor of Computer and Information Science, NJIT

Dr. Murat M. Tanik, Committee Member 	 Date
Associate Professor of Computer and Information Science, NJIT

Dr. D.C. Douglas Hung, Committee Member 	 Date
Associate Professor of Computer and Information Science, NJIT

Dr. Ronald S. Curtis, Committee Member 	 Date
Assistant Professor of Computer Science, William Paterson University

Dr. Tina Taiming Chu, Committee Member 	 Date
Assistant Professor of Mechanical Engineering, NAT

BIOGRAPHICAL SKETCH

Author: 	Chih-Ying Wang

Degree: 	Doctor of Philosophy

Place of Birth: Taiwan, Republic of China

Undergraduate and Graduate Education:

Doctor of Philosophy in Computer and Information Science,
New Jersey Institute of Technology, Newark, New Jersey, 1998

Master of Science in Computer and Information Science,
New Jersey Institute of Technology, Newark, New Jersey, 1994

Bachelor of Science in Computer Science,
Soochow University, Taipei, Taiwan, Republic of China, 1989

Major: 	Computer and Information Science

Publications:

C.Y. Wang, Q. Liu, and P.A. Ng. Browsing in an Information Repository. In
Proceedings of 2nd World Conference on Integrated Design and Process
Technology (edited by MAI. Tanik, etc), IDPT-Vol. 2, pages 48-56, 1996.

C.Y. Wang, Q. Liu, and P.A. Ng. Intelligent Browser for TEXPROS. In RATED
Proceedings of International Conference on Intelligent Information Systems (IIS'
97) (edited by H. Adeli), IEEE computer Society Press, pages 388-398, December 8-
10, 1997.

X. Li, J. Flu, X. Fan, C.Y. Wang, and P.A. Ng. Automated Document Filing and
Retrieval System: An Overview. To appear in Proceedings of 3rd World Conferenece
on Integrated Design and Process Technology, Berlin, Germany, July 6-8, 1098.

iv

This dissertation is dedicated to
my parents

ACKNOWLEDGMENT

The author wishes to express his gratitude to his advisor, Professor Peter A. Ng, who

spent many sleepless nights and effort to review the drafts of the manuscripts, and also

provided the valuable comments that made this final manuscript possible. Special thanks

are given to Dr. Ronald S. Curtis, Dr. D.C. Douglas Hung, Dr. Murat M. Tanik and Dr.

Tina T. Chu for actively participating in my committee.

vi

TABLE OF CONTENTS

Chapter 	 Page

1 INTRODUCTION 	1

1.1 Background 	1

1.2 Related Work 	 5

1.3 	Organization of the Dissertation. 	6

2 NETWORK TRANSFORMATION 	 9

2.1 	Previous Work 	 9

2.2 Motivation 	 11

2.3 Network Transformation 	 16

2.4 Object Transformation 	 19

2.5 Operation Network 	22

2.6 The Relation between OP-Net and ON 	25

3 BROWSING PROCESS 	 26

3.1 	Topic Input and Topic interpretation 	27

3.2 	OP-Net Construction 	28

3.3 	Topic Refining Process 	29

3.4 	Exploring Process 	31

3.4.1 Exploring Network 	 32

3.4.2 OP-Net and E-Net 	36

3.5 Examining Process 	36

4 THE SERVICE PROVIDERS AND THE STORAGE SYSTEM 	 37

4.1 	The Controller Layer 	37

vii

Chapter Page

4.2 The Service Provider Layer 38

4.3 The Storage System Layer 40

4.4 The Local Memory 43

5 SYSTEM ARCHITECTURE... 44

5.1 Topic Interpreter 44

5 .2 Request Model Builder . 46

5.3 Network Constructor.. 49

5.4 Search Engine 52

5.4.1 First Type Request.. 53

5 .4.2 Second Type Request .. 54

5.5 Frame Instance Base and Original Document Base 56

5.6 Browser.. 57

5.6. i Browsing Controller 58

5.6. l. l Task Identification and Dispatching Process.............. 58

5.6.1.2 Object-Originated and Non-Originated Task 59

5.6.2 Topic Refining Process Controller..................................... 6 l

5.6.3 Exploring Process Controller 65

5.6.4 Examining Process Controller 70

5.6.5 Interface Contrniler 70

6 KNOWLEDGE BASE... T!..

6.1 Information Retrieval 72

6.2 Knowledge Based System for the Browser 73

viii

Chapter 	 Page

6.3 Object Network 	74

6.3.1 Knowledge Representation 	74

6.3.2 Example 	76

6.3.3 Object Network in the Browser Architecture 	79

6.4 Thesaurus 	80

6.4.1 Main Component 	 ... 	80

6.4.2 Subsidiary Component 	81

6.4.3 Thesaurus in the Browser Architecture .. . 	82

6.5 Summary 	 83

7 DOCUMENT RANKING 	 84

7.1 	Ranking Unit 	 86

7.2 Ranking Model 	 86

7.3 Ranking Model — TEXPROS Approach 	 87

7.4 Ranking Function 	 89

7.5 Normalization 	92

7.6 Example ... 93

8 CONCLUSION AND FUTURE RESEARCH 	 97

REFERENCE ... 99

ix

LIST OF TABLES

Table 	 Page

2-1 	New Relations 	20

7-2 	The Result of the Computation of the Similarity 	96

LIST OF FIGURES

Figure Page

1-1 The Simplified information system architecture 	 2

2-2 The Objects and the Relationships 	 10

2-3 Document Type Hierarchy 	 10

2-4 Semantic Network 	 11

2-5 Semantic Network with Objects of Different Types 	 15

2-6 System Catalog 	 16

2-7 Network Transformation — Step 1 	 17

2-8 Network Transformation — Step 2 	 19

2-9 Network Transformation — Step 3 	 21

2-10 Network Transformation — Step 4 	 22

3-11 The Browsing Process Flow 	 26

3-12 The Changes of FIR(F1) 	 20

3-13 A Snapshot of the OP-Net 	 32

3-14 The E-Net 	 34

4-15 The System Architecture 	 37

4-16 The Storage System 	 42

5-17 System Template SYSSYNONYMS 	 45

5-18 The Data Flow of the Topic Interpretation Process 	 48

5-19 The Data Flow of the Request. Model Builder 	 40

5-20 The Data Flow of the Network Constructor 	 52

5-21 The Data Flow of the Search Engine 	 54

xi

Figure Page

5-22 The Data Flow of the Second Type Request 	 57

5-23 The Data Flow of an Object-originated Task 	 64

5-24 The Data Flow of an Non-object-originated Task 	 66

5-25 The OP-Net for CONF ARTICLE 	 67

5-26 The E-Net for PUBLICATION 	 69

6-27 The Frame of the Object FrameTemplate (Memo) 	 74

6-28 Semantic Network Architecture 	 75

6-29 Example of the Semantic Network 	 76

6-30 Another Example of the Semantic Network 	 78

6-31 The Data Flow of the Thesaurus 	 82

7-32 The Ranking Example 	 94

xii

CHAPTER 1

INTRODUCTION

1.1 Background

Information systems can be divided into five categories [1], namely, the management

information systems, the database management systems, the decision support systems,

the question-answering system, and the information retrieval systems. According to

Salton's description [1], TEXPROS belongs to the information retrieval systems since it

is an information system aimed to provide users with the information of potential interest

based on the stored documents. TEXPROS thus has to deal with the representation,

storage, and access to documents (or document representatives). The information

retrieval system typically provides three facilities:

1. An interface for specifying queries,

2. A collection of algorithms for retrieving the information from stored

documents; and

3. A storage system for storing the information and supporting the efficient

implementation of the algorithms.

Fig 1-1 depicts the architecture of a simplified information system and the

information acquisition process. The information system provides users with an interface

that allows the users to specify their queries by using natural language (NL), Boolean

expressions (BL), SQL, etc. Then the request will be translated into internal queries.

which are sent into the storage management system, that typically is a database

management system, and executed. The results will then be returned to the users. Since

these three facilities (the interface, the algorithms, and the storage system) are also

Fig 1-1 The simplified information system architecture

provided by the traditional database systems, some of the researchers treat the

information system as a special case of the database system [2].

One essential difference between the database systems and the information systems

is the way of handling the user's query. The traditional database systems expect that: the

users give the precise information about what they need. However, they always encounter

many difficulties when issuing the query [3]. The reasons are as follows:

1. Most of the database systems require users to specify queries of their needs

using one of the formal query languages provided by the system. Users who are

not familiar with the syntax of the language cannot specify the query.

2. It is very difficult for users to precisely specify the contents of the query. The

database system contains a collection of data which simulates the real world of a

given problem. To specify a query, although they are familiar with the syntax of

the formal language, users need to describe the contents of the query which

consist of the attribute names and the values stored in the system. Users cannot

3

get the desired result if they don't know the correct terms for the attribute names

or the values.

From the information system's point of view, the system also expects users to

provide the "high quality" information need. Upon the arrival of a request, the similarity

can be computed between the user's request and the information stored in the system, and

the relevant information can then be retrieved. The goal of the retrieval sub-system of the

information system is to retrieve possibly all the relevant information. In order to achieve

this goal, the information system needs to provide a better interface than that of the

database system so that users can easily and more precisely specify their needed

information. The typical interfaces of information systems for specifying the query are

natural language interface, Boolean expression interface and the traditional SQL or SQL-

like language. With the exception of the SQL, these query languages (which will be

discussed in next section) provide an intuitive way for specifying queries. The burden of

issuing queries can be eased by introducing different and proper interfaces for specifying

queries. With these interfaces, since the syntax is much easier than the formal query

language, users need not put a lot of effort in to learning the syntax. Users also need not

worry about the data model and schemas of the system before issuing the query.

However, providing different interfaces complicates the internal query transformation

process. In summary, instead of users, the information system lends to take full

responsibilities for completing the task of formulating a query by providing users with

some easy-to-use query interfaces. The information retrieval system focuses on helping

users to formulate queries (more specifically, to better understand users' information

needs so the relevant information or documents can be efficiently retrieved). From this

4

aspect, the retrieval process of the information retrieval system diverts from that of the

traditional database system.

Another difference is that the information system emphasizes the feedback process.

The query specified by users is treated as an indication of the needed information in

information retrieval system. However, the needed information may not be precisely

specified in the query. The reasons are as follows:

1. The user may have the definite idea of what he/she needs, but he/she does not

know how to specify it or simply forgets the exact terms. For instance, assume

that a mechanic needs to look up the information of a part in order to tell the

customer its exact cost. However, the only information he/she knows is that the

part belongs to the suspension system. In this case, the initial query will

somehow relate to the term "suspension system" according to the interface

provided by the system. The mechanic can then examine the returned

preliminary information and refine the original query to locate the information

he/she needs.

2. The user may have a concept or an exact term in mind, without the perception

of what he/she needs when first coming to the system. For instance, the user

may want the information of the document extraction. When coming to the

system, he/she first only has "extraction" in mind. Therefore the initial query

will somehow relate to the term "extraction". Then the results returned by the

system may reveal that this term has different meanings in different fields (e.g.

computer information science and chemical engineering) and guide the user to

refine his/her original query.

5

However, the system will help users to continue the retrieval process by presenting

the preliminary results with the indications of how close it is to the query. The feedback

process is important in the sense that it improves the quality of the result in a controlled

and systematic way. On the contrary, in database system, when the result of the query

(specified in formal query language) is returned, the retrieval process halts. Users find it

very difficult to refine their original query based upon the returned result owing to the

lack of suggestions and the guidance.

1.2 Related Work

To ease the burden of formulating the query, the early research focused on providing the

traditional database system with a better language. One of the early user-friendly

database languages was the example-based database language. Zloof's Query-by-

example (QBE) was the earliest graphical database query language [4]. In QBE, instead

of writing lengthy queries, users specified the example output by making entries into

relation skeletons. There are numerous example-based languages including Summary-

Table-by-Example, Time-by-Example, Generalized-Query-by-Example, Office-by-

Example, Formanager, Picquery, etc [5]. These languages provide a two-dimensional,

graphically aided example for formulating queries; but they have different features. For

example, the Generalized-Query-by-Example supports nested relations and the

Summary-Table-by-Example allows the user to produce a summary table by using two-

dimensional skeletons. The advantage of using an example-based query language is that

the user does not have to know the syntax of the language or the data model schema such

6

as the attribute name. However, the major drawback of these languages is the inability to

handle complicated queries.

From the information system's point of view, although it eases the burden of issuing

a query, example-based query language lacks a mechanism to refine the query. To

support the need of information retrieval discussed in the last section, the information

system needs a mechanism for returning the result along with the guidance according to

user's query. This mechanism requires an interface for users to specify the queries easily

and an underlying structure which can hold the intermediate result and the suggestion

provided by the system.

Browsing technique has received more attentions since 80's after the advent of the

relational database management system (DBMS). The users of the DBMS have

difficulties of issuing queries by using the formal query language provided by the system.

Under this situation, browsing mechanisms, such as Cattell's browser for the entity-

relational database [6], SDM [7], TIMBER [8], Metro's browser for loosely structured

database [9], BAROQUE [10], and KIVIEW [11] are helpful for the users. However,

there are some limitations among the browsers for databases [3, 10]. One of them is the

scrolling boundary for browsing. The earlier browsing mechanism used for relational

databases is restricted to one relation at a time. To solve this problem, Motro proposed a

loosely structured database, which eliminates the difference between the schemas and

values [9, 10].

In traditional text-based information retrieval system, documents are represented by

collections of index terms called the representatives of documents. When a user issues a

query by a method, which is more intuitive than the formal query language, it is

7

processed and represented by a collection of index terms. The retrieval system then seeks

the representatives of documents which match the representative of the query. From the

database point of view, the information retrieval system is similar to the loosely

structured database in the sense that the whole collection of documents is treated as a

universal relation. Much of the research work has been on finding better representatives

for documents and developing faster searching techniques [1, 12]. However, little effort

has been made to help users formulate a better query [13, 14, 15]. That means, in the

information retrieval system, users can encounter the same problems as in the relational

database system but the browsing techniques for assisting query formulation can be used

in information retrieval systems. CANSEARCH [16] and CoaISORT' 1171 are browsers

which aimed to help query formulation. Some systems, including ZOG [18], 13R[2], and

Kabiria [19], built their browsers as general-purpose interfaces between users and the

system. These browsers not only assist users to formulate their query but also provide

users with an environment to explore the system knowledge and examine the documents.

As an interactively searching process involving the user and the system, the browsing

process will guide users to express precisely and to gain the information needed, step by

step.

Almost all the browsers we mentioned here share the following common properties.

They constructed a network-like structure as an underlying structure 120, 13, 21, 22, 23,

24], mostly the semantic network, which forms a browsing space. The browsing process

can traverse the network. Sometimes, the browsing process cannot proceed further

without the user understanding the meanings of the links of the semantic networks and

selecting links for traversing across the network. The other problem is that most of the

8

browsers provide only "short-sighted" browsing. The process can only start from a node

of the network and traverse to one of its neighbors. The relevant nodes which are not

neighbors of the current node cannot be examined. The final problem is the performance

issue. The browsing process heavily counts on the feedback process, which could be time

consuming because of the large number of the documents in the collection [2, 15].

In this dissertation, we propose a browser for TEXPROS. This browser consists of a

query interface for users to issue queries, a knowledge base for resolving users'

information needs, a ranking system with ranking functions for evaluating the retrieved

documents, and a retrieval process controller for monitoring browsing sessions.

1.3 Organization of the Dissertation

The rest of the dissertation is organized as follows. In Chapter 2, we briefly introduce

TEXPROS and then describe the underlying network and its construction. In Chapter 3,

we discuss the browsing processes provided by the system. In Chapter 4, we describe the

system architecture which supports the browsing processes. Among the components in

the system architecture, we give special attention to the knowledge base and ranking unit

in Chapter 6 and 7, respectively. We give the conclusions and our future research work in

Chapter 8.

CHAPTER 2

NETWORK TRANSFORMATION

2.1 Previous Work

In TEXPROS [25, 26], there are four kinds of objects, namely folders, frame templates,

attributes and values. Documents are deposited into folders, which are organized as the

folder organization (FO) [26, 27]. Documents are classified into different types. Those of

the same type share common properties, which are characterized in terms of attributes to

form a frame template. The frame templates are organized as the document type

hierarchy (DTH) (Fig 2-3) [26, 28]. The relationships among objects are summarized in

Fig 2-2. The system catalog serves as the depository of this information (called the meta-

data knowledge) and the information about the database itself. It supports all the activities

of the system and thus it is the central part of the system. Both the system catalog and

database itself are represented uniformly.

These meta-data and information about the database itself can be organized as a

semantic network called the object network (ON) [14, 29, 26], which captures all the

relations of the objects in the system.

An object network is created to describe the view of the meta-data of TEXTPROS

(i.e. the document type hierarchy and the folder organization) and the documents (frame

instances)[14, 25]. The characteristics of the object network include:

I. The dual model is captured. The dual modeling approach is used for

classifying and categorizing documents in terms of the document type hierarchy

and the folder organization. The system catalog contains information describing

the folder organization and document type hierarchy. Both descriptions of the

9

Fig 2-2 The objects and the relationships

folder organization and the document type hierarchy with their contents are

unified as a single description, called an object network.

2. The information of all stored documents is captured. The access by value

gives users the capability of retrieving all the occurrences of an attribute value

from the database. The occurrences of an attribute value are the values of a given

attribute. In order to realize the method of access by value, an item directory is

needed to store the mapping from the values into attribute names [10].

3. A snapshot of the system catalog is provided. TEXPROS is a dynamic

document processing system. At any time, the object network always provides a

10

Fig 2-3 Document type hierarchy

11

Fig 2-4 Semantic Network

consistent snapshot of the current system. Providing a snapshot could enhance

the performance of the browsing process, as well as the classification and filing

processes.

2.2 Motivation

A semantic network consists of two major components, namely the nodes connected by

the links. The semantic meanings of these links and nodes are varied depending upon the

system [15, 30, 31]. Generally speaking, each node represents an object and each link

represents a relationship that connects two related objects. Given a node on the semantic

network, each of its outgoing links has an attribute. The labels of the links are utilized to

describe their semantic meanings. However, the excessively large number of links of

various types becomes a burden for the user [in because they have to understand the

meanings of these links.

In TEXPROS, the object network is a semantic network [30, 31]. It can be used to

describe the folders and the relationships among the folders and the document type

12

hierarchy with the attribute-values pairs. This helps the system to answer queries. If we

provide users with this network, then they are able to find out all the meta-data

knowledge in the system, which can help them, to some extent, to formulate their queries.

For instance, given a simplified semantic network as shown in Fig 2-4, we are able to

find out the child folder of the folder NJIT, if we follow its outgoing link is-parent-of

The object network of TEXPROS has four object classes FOLDER, FRAME

TEMPLATE, ATTRIBUTE, or VALUE. From the object-oriented point of view, all the

folders in TEXPROS can be organized as a class. They share a common property: each

folder contains frame instances which satisfy its criteria specified in terms of a predicate.

The relationship is-an-instance-of is used to describe the associations between instances

and their classes. In Fig 2-4, CIS and NJIT are two instances of the class FOLDER. The

FOLDER class has an attribute called has-predicate, and every instance of FOLDER also

inherits the attribute has-predicate. In the example, the predicate of the folder CIS is

..SENDER.STATUS= 'CIS'. In Fig 2-4, the sub-folder and parent-folder relationships are

represented by two attributes, is-parent-of and is-child-of According to [31], we need to

decide at what level of the knowledge that the system intends to represent when using the

semantic network. In object network, the knowledge is represented at the instance level.

This supports the "access by value" [101

However, there are some drawbacks for browsing across the object. network:

I. 	One of the issues of the semantic network is that how the property of an object

described by the attribute values can be accessed. Since the relationships do not

satisfying the property of transitivity, it is not a trivial task to identify precisely

the related objects in the object network. Consider the simplified object network

13

in Fig 2-5. In this network, three different kinds of relationships are presented,

namely has-type, has-attribute, and has-value. There are two folder objects

(NJIT and CIS); each of the folders NJIT or CIS contains documents of a type

referred to as a frame template object (Letter); the frame template object. consists

of an attribute object (Sender), which has two value objects (Roy and John).

Since the folder CIS is a child of the folder NJIT, and the folder CIS contains

documents of the Letter type, we conclude that both NJIT and CIS folders

contain documents of the Letter type. In TEXPROS, a frame template specifies a

document type in terms of attributes. Following through the relationship has-

attribute in Fig 2-5, we can conclude that the attribute Sender is an attribute of

the frame template Letter. Given the attribute Sender, following through the has-

value relationship, we find its associated values, Roy and John. In this case, we

can conclude only that there are some documents, which are sent by Roy or

John. It would become more complicated if we add that the folder CIS contains

documents of the Memo type, which has an attribute Sender also. Now, we

cannot conclude that the CIS folder contains a letter, which is sent by Roy,

although we already had some conclusion from the earlier explanation. The

reason is that these relationships, has-type, has-attribute, and has-value do not

satisfy the transitivity property. Therefore, it is not a trivial task to identify the

related information from an object in the realm of the object network.

The object network (ON) is used to capture the knowledge, which contains the

properties of objects and the relationships between objects. However, these

captured relationships tend to explore the structural relationship between objects

14

instead of the real semantic relations. For example, it is difficult to use ON only

to answer the following query: (Q1) Find documents which were sent by Roy.

Assume that the folder organization has a folder ROY, which is a child of the

folder CIS. We may retrieve the documents sent by Roy from the folder Roy.

However, some documents sent by Roy can also be located in the other folders.

Therefore, for the worst case, we may have to search through every folder of the

folder organization to find the documents sent by Roy, although these

documents must satisfy "Sender = Roy". This is a time-consuming process. Let

us take a look at those processes prior to the retrieval process before we reveal

the reason of this problem.

3. In TEXPROS, the object network is physically stored in the system catalog (14,

261. At the arrival of a new document into the system, it goes through the

classification and extraction process. This process generates the frame instance

for the document. Then the filing process stores this frame instance in the

appropriate folders. Each process is responsible for updating the system catalog.

However, after completing these processes, the object network does not keep the

relations between the frame instance and the objects such as folders where it is

kept, the frame template which specifies its type, etc. The connection between

the objects in the object network and the frame instances in the frame instance

base is lost. Without this connection, the browsing process cannot be performed

at the frame instance level. Therefore, upon the arrival of a query like Q I , die

associated frame instances cannot be found immediately.

15

The object network is used to help users to retrieve the documents they want. Since

ON cannot fully support the associations between the frame instances and the objects, we

need to transform ON into another network, which has the following characteristics:

1. To support the browsing process. The transformed network that supports the

browsing process must be able to enlarge or reduce the scope of the search

throughout the course of browsing.

2. To answer any questions related to the system catalog. The transformed

network must be able to answer questions related to the system. The obtained

network can respond to any query in the way that the ON does.

3. To retrieve the documents. The transformed network must be able to capture the

associations between frame instances (each corresponds to a document) and the

objects such as folders (where the frame instances are resided), frame templates

(which classify the documents into various types), attributes (which characterize

the properties of the document types).

In the next section, we shall describe the network transformation.

Fig 2-5 Semantic network with objects of different type

16

2.3 Network Transformation

The first step of the transformation is eliminating the relations among the objects of the

same object type. Therefore, the information of the folder organization and the document

type hierarchy will no longer exist in the transformed network (the explanation this

removal will be given in the later sections). Then objects of the same type are grouped

into classes, namely FOLDER, TEMPLATE, ATTRIBUTE, and VALUE. This simplifies

Fig 2-6 System Catalog

17

Fig 2-7 Network transformation -- Step 1

the ON (shown in Fig 2-7). By introducing the concept of classes, we can construct a

semantic network at a higher abstract level by considering the behaviors at the class

instead of the instance level.

The next step is to simplify the link relations among object classes as shown in Fig

2-7. A new temporary relation at a higher abstract level is created. That means all the link

relations in Fig 2-7 can be generalized into a unique relation relates depicted in Fig 2-8.

The frame instances which are stored in the frame instance base can also he

considered as a class FRAME-INSTANCE. In order to capture the associations between

objects and frame instances as we have described in the previous section, we introduce

18

eight new relations' between FRAME-INSTANCE and the object classes FOLDER,

TEMPLATE, ATTRIBUTE, and VALUE, introduced in Step one. These relations are

created by heuristics [32, 33] to capture any relation which is significant to the system.

For example, relation IslnFolder and its inverse relation HasFInstance are created

between the FOLDER and FRAME-INSTANCE to capture the fact that each frame

instance is deposited in some folders. These relations and the facts captured by the

system are shown in Table 2-1. Fig 2-9 is the transformed network after we augmented

these new relations into the transformed network in Fig 2-7.

The efficiency of document retrieval performance could not be enhanced if we

simply introduce the FRAME-INSTANCE class to the system. The reason is if the

semantic network is employed for retrieving documents, we have to return to the instance

level, in which every instance will be represented by a node. For users to retrieve the

documents by going through such a huge network could be frustrated. The other problem

is that during the course of the retrieval process, the browsing process has to identify a

sub-network from the original network. Without reducing the size of the original

network, the process for identifying a sub-network can be time consuming. Therefore, we

must eliminate as many as possible objects and links from the network without

downgrading the achievement of the retrieval goals. The central part of this step Of

transformation is to transform the object in ON into frame instance repository (FIR).

I Since the association between each object ctass and the frame instance class shoutd be defined for both
directions, we actually created eight new relations (four relations and their inverse relations).

19

2.4 Object Transformation

In the previous section, we enriched the semantics of the ON by introducing the frame

instance class at the cost of enlarging the size of the network, which is not a desirable

property. The goal of object transformation is to capture the associations between objects

and frame instances without creating an enormous size of the network.

In Section 2.3, a set of relations between classes (as shown in Table 2-I) is defined

for describing associations between an object and its associated frame instances. These

relations are total relations. For instance, the IslnFolder relation between the class

FOLDER and the class FRAME-INSTANCE is a total. relation because all the ►instances

of the FOLDER and FRAME-INSTANCE participate in this relation. Given an instance

of the FOLDER, a set of frame instances could be identified according to the relation

defined between the class FOLDER and the class FRAME-INSTANCE. In the

Fig 2-8 Network transformation -- Step 2

20

Table 2-1 New relations

Relation 	I Association 	1 Fact
IsInFolder(fi, F) FOLDER, FRAME-INSTANCE Frame instance fi is deposited in the folder

F.
islnFolder-1 Folder F contains frame instance fi.
IsOfTemplate(fi, FT) TEMPLATE, FRAME-INSTANCE Frame 	instance 	fi 	belongs 	to 	document

type FT.
IsOfTemplate

-1

 Template FT has a frame instance fi in t he

frame instance base.

ContainsAttr(fi, A) ATTRIBUTE, FRAME-INSTANCE Frame instance Ii contains. the attributes A.

ContainsAttr

-1

 Attribute is in the frame instance Ii.
ContainsVal(fi, V) VALUE, FRAME-INSTANCE Frame instance ii contains the value V.
ContainsVal-1 Value V i 	in the frame instance fi.

identification process, the IsinFolder behaves like a predicate which instantiates all the

instances. IslnFolder(fi, Fl) specifies all the frame instances Ii, which are kept in the

folder, Fl. Likewise, the other relations defined in Table 2-1 are self-explanatory. Based

on this concept, each node in the original ON is transformed into a frame instance

repository. In the remaining section, we shall define formally the object and FIR.

Definition 2-1 : (Object)

An object. is a. two-tuple, Obj = [Name,Type] where:

1. Name is the name of the object.

2. Type r {Folder, FrameTemplate, Attribute, Values

We shall use the notations Type(Name) and [Name, Type] interchangeably.

According to this definition, every node of ON is an object and each object belongs

to an object Type. By using name and type for identifying an object, objects of different

types are allowed to have the same name.

Definition 2-2: (Frame Instance Repository)

A frame instance repository is a four-tuple FIR = [Obj, PO, FIOP, FIE] where:

1. Obj is an object, [name, type].

2. Po is a predicate defined on the Obj, which is one of IsInFolder, IsOfTemplate,

ContainsAttr, and ContainsVal.

3. Flop= 	{fi| fi is a frame instance which satisfies Pop} where Pop is the predicate derived

from the user's vague query.

4. FIE = {fi| fi is a frame instance which satisfies PE} where PE is the predicate derived

from the topic of the exploring process.

In this dissertation, we will use FIR(Obj) to refer to the frame instance repository

associated with the object Obj. We also use Po(Obj) to refer to the predicate associated

Fig 2-9 Network transformation -- Step 3

22

with the object Obj. This notation also applies to FIop(Obj) and FrE(Obj). Note that, when

the object type is trivial, the object name alone can be used to identify the Obj.

Since the associations between the object and the frame instances are embedded in

the FIR, a new transformed network is obtained as shown in Fig 2-10 (in which, the

double-lined circles represent the FIR class).

2.5 Operation Network

By transforming the original ON into a new network, the transformed network includes

the associations among the frame instances stored in the frame instance base and the

objects stored in the system catalog. It provides a better environment (in the sense of

preciseness and efficiency) to users for effective browsing. Our intention is to use this

Fig 2-10 Network transformation -- Step 4

23

transformed network as an underlying structure for browsing. This transformed network

is called an Operation Network (OP-Net).

Definition 2-3: (Operation Network)

An operation network (OP-Net) is a four-tuple, OP = [Top, POP, FIop, G(V, E)], where:

. 	Top is a topic related to the context of the browsing process;

2. Pop is a predicate related to the topic Top;

3. Flop={fi I fi is a frame instance satisfying Pop}; and

4. G(V, E) is a graph, where

• 	Each node in V(G) is a frame instance repository; and

• Each edge (i, j) between two repositories FIR(i) and FIR(j) represents that.

these two repositories have at least one common frame instance.

In the definition of OP-Net, the first component of the four-tuple Top is a topic which is

specified in terms of objects, connected using connectives AND, OR and NOT. Any

query in the form of Boolean expression [1, 14, 25] can be transformed into a topic. For

the rest of this paper, the term topic and query will be used interchangeably. The

inclusion of Top in the definition captures the fact that the OP-Net is dynamically changed

over topics. The browsing process can be viewed roughly as a topic refining process.

Until deriving the desired result, users will keep changing from one topic to the other.

The introduction of a new topic requires reconstructing the OP-Nei. Initially, assume that

the topic is null. In this case, since the OP-Net is derived by transforming the ON, before

a user issues a topic, there corresponds a peer node and a link in the ON for every node

and the link in the OP-Net, respectively.

The second and the third components should be considered at the same time. Pop is

the predicate of an OP-Net. This predicate is produced by the system based upon the

interpreted query. It is specified in terms of relations between frame instances and objects

connected using connectives AND, OR and NOT. For example, given a topic CIS, after

topic interpretation, we find that the object CIS is a folder. If we use fi to represent a

frame instance, then the predicate Pop can be represented by IslnFolder(fi, CIS) which

characterizes the associations between the objects and the frame instances given in Table

2-1. Any frame instances that qualify this predicate appear in the OP-Net. Flop is the set of

these qualified frame instances.

The first three components defines the global property (i.e., the domain and the

contents of each node) of the OP-Net in a certain state of the browsing process. The

fourth component is a graph which describes the impact of a topic on each relevant frame

instance repository. This graph will be the interface displayed to users. For the frame

instance repository, the predicate Po of an object is used to define all the frame instances

which satisfy the predicate. In the initial state, all the qualified frame instances are

associated with the object. However, during the browsing process, we may augment strict

conditions to the global predicate Pop and thus reduce the number of the frame instances

associated with the frame instance repository. This set of frame instances is stored in Flop

and is dynamically updated throughout the browsing process.

The OP-Net is defined at the instance level. The network shown in Fig 2-10 is a

skeleton of OP-Nets. The underlying network for browsing is defined by representing

each FIR a node in the OP-Net at the instance level.

25

2.6 The Relation between OP-Net and ON

An OP-Net is derived by transforming the ON. All the relations in ON fall into two

categories, either horizontal or vertical relations. Generally speaking, the horizontal

relations are the relations between objects of the same object type and the vertical

relations are those between objects of different object types. However, the horizontal

relations do not appear in the OP-Net, because the property of the links in OP-Net and

ON are different. The only relation type has-common-frame-instance in the OP-Net is

defined on frame instances. Very often, the relations of the horizontal type are difficult to

convert into a frame-instance based relation. Consider the folder organization as an

example. It can have more than one filing path for some specific folders. Therefore, the

frame instance in the child folder which has more than one parent folders may not be in

one of its parent folder. With this, it is difficult to convert the relations among folders into

frame-instance based relations. These relations which are not in OP-Net, can be obtained

from the ON. This will be explained in Chapter 6.

CHAPTER 3

BROWSING PROCESS

Once the ON is transformed into an OP-Net, the OP-Net will serve as an underlying

structure, upon which add-on functionality will be added. A typical browsing process

consists of the following phases: the topic interpretation and rewriting, the OP-Net

construction, the topic refinement, the fact exploring, and the result examining. The

browsing process proceeds interactively. The order of the phases is insignificant. For

instance, a user may refine their original topic after examining the result. Some users may

go directly to refine the original topic immediately after viewing the constructed OP-Net.

Users are allowed to arrange the phases of the browsing process in order to meet their

needs. The flow of the browsing process is depicted in Fig 3-1].

Fig 341 The Browsing Process Flow

26

27

In this section, we shall briefly describe the browsing process and the rationale of

each sub-process. We will reveal more details of these processes when we discuss the

browsing system architecture in Chapter 4 and Chapter 5.

3.1 Topic Input and Topic Interpretation

The input of this process is a query (called raw query) issued by the user. Before the

system can do further processing, the raw query is required to be transformed into a topic.

We use topic to represent a vague query. Our intention for using topic is to have a clear

separation between the formal query and the vague query. When issuing the formal

query, users are constrained to use the formal query language, which is normally SQL or

SQL-like language. However, most information systems provide an easy-to-use interface

when dealing with the vague query. For example, by using a Boolean expression the user

needs not spend so much time becoming familiar with the syntax. Moreover, the logic of

the user's thoughts can be easily expressed by using those basic logic operators such as

AND and OR. Another common interface is the one which is supported by the natural

language processing (NLP). NLP provides an interface that allows users to make a short

statement to describe their information needs. The users have no problem using the

natural language to state any expressions. However, there is an overhead for dealing with

the language. The difficulty of using the NLP is given in [1].

Currently, TEXPROS supports only Boolean expressions. In the beginning of this

section, we have explained briefly the rationale of the topic interpretation, and we will

discuss it in detail when we present the browsing system architecture. Since users are

offered to use the Boolean expression to express their information needs, without

excessive usage of knowledge or inferences, most of the concepts in a user's mind could

be represented by a group of key-terms connected by the logical operators. However, the

system catalog in TEXPROS provides users with a lot of knowledge, which can help

reach the high recall or precision. For example, a user issues a vague query CIS. If the

system. has no knowledge, then only the documents containing the term CIS will be

retrieved. However, the term CIS that the user has in mind might be the location of the

document instead of the content of the document. That means the user perceives that this

intended document possibly is in a folder called CIS. In TEXPROS, the topic

interpretation process will identify the CIS both as a term contained in a document and as

a folder in the folder organization. In this way, both the documents containing the term

CIS and the documents stored in the CIS folder will be retrieved. In this case, we improve

the recall {I].

3.2 OP-Net Construction

The input of this process is derived from the topic interpretation. After the topic

interpretation process successfully identified the topic, the system is able to find its

relevant documents. Based upon these relevant documents, the OP-Net constructor

constructs au OP-Net to include them as an environment for browsing process. All the

key terms in the topic are transformed into objects which are represented in a formai

ObjType(ObjName). The now-formed topic contains the key terms with their types,

connected by the logic operators. Therefore we combine the relevant documents and the

relevant objects together to form an OP-Net. By specifying the relationships between the

objects and the documents, we can provide an environment for incrementally formulating

29

the precise query. Therefore, one of the most important tasks of this process is to find

those relationships.

3.3 Topic Refining Process

As shown in Fig 3-1I, after initialization, a browsing session can be proceeded by

entering into the topic refining mode, the exploring mode, and the examining modes

interchangeably. Each mode is conducted by the controller. The details of these

controllers will be presented in the next chapter.

Consider a query as a set of conditions [34]. Assume that a user issues a null query at

the beginning of the browsing. Since the null query does not have any conditions, the

whole collection of documents can be the answer. The user starts the browsing session by

issuing a query. In this case, the user has already performed the topic refining process

Fig 3-12 The changes of FIR(FI)

30

because s/he has refined the original null query. From this perspective, we say that every

browsing session starts at the topic refining process.

The other case for performing the topic refining process is quite straightforward.

During the process of browsing, after gathering some knowledge, the user is ready to

refine his/her original query. When the interface controller sends the user's topic refining

request to the topic refining process controller (which will be discussed in the next

section), the process controller will arrange the procedure for performing and generating

the request.

Upon the arrival of the query issued by the user, the topic refining process outputs

an OP-Net corresponding to the query.

During the topic refining process, the frame instance repositories are derived from

the object network. For each new topic, the OP-Net needs to be reconstructed. For

simplicity, let us consider the initial state of the browsing process. In the initial state, the

topic is null. Then the user issues a topic Top=V2. After pre-processing, the topic is

rewritten as Value(V2) and the predicate Pop=ContainsVal(fi,V2), and

FIop = {fi|ContainsVal(fi,V2)} are computed. Flop contains the frame instances relevant to

Top, which contains the value V2. Then the graphical representation G(V,E) of the UP-

Net is constructed. Assume that there is an object F1 of the OP-Net which is a folder. The

left hand side of Fig 3-12 is the frame instance repository corresponding to the folder F I

before the topic refining process. FIopF6(F1) will be changed to reflect that the refinement of

the topic from null to V2. Every frame instance in FIop(F1) will be checked whether it

satisfies the new predicate Po /\ Pop, which is ContainsVal(fi, V2) /\ IsInFolder(fi, F1) in this case. The frame instances in FIop(F1) will be removed if they are not satisfied the new

31

predicate. If FIop(F1) = 0 , then Fl is irrelevant to the current topic and will be removed

from the new OP-Net. The right hand side of the Fig 3-12 is FIR(F1) after the new Top

was introduced. Fig 3-13 is the resulting OP-Net for the topic V2.

3.4 Exploring Process

For browsing, the topic refining process seems to be adequate. The state of the browsing

process is changed by introducing a new query to the browser. Either issuing a new query

or modifying the original query can be considered as constructing a new query. If this is

the case, the topic refining process is adequate. However, our reasons of having the

exploring process are as follows:

1. Users tend to modify their original queries during the browsing process. The

AND operation is commonly used for modifying the queries during the

browsing [1, 29], and is used to reduce the searching space.

2. At the end of the topic refining process, the process controller generates an OP-

Net. The OP-Net is construct by consulting the system catalog and the frame

instance base. This could be time consuming.

These two observations inspire an improvement in the topic reining process. The

basic idea is that at any state of the browsing process, the intermediate result may be

useful for the successive processes. For instance, consider a user's original query (CIS

AND Peter). After pre-processing, CIS will be identified as a folder and Peter will be

identified as a value. Then the OP-Net shows the user the relations between the CIS

folder and two kinds of documents: LETTER and MEMO. The user then realizes that

although not sure what kind of a document is desired ,documents of the letter type are of

Top = V2
Pop = ContainVal(V2)
Flop = {I, 2, 3, 4, 5)
Fl(F1)= (1, 2,3)
Fl(F2) = (2, 3, 4)
Fl(F3) = (4, 5}
Fl(T1)= {1,2,3}
FI(T2) = (4, 5)
Fl(A1)= (1,2,3)
Fl(A2) = {1, 2, 3, 4, 5}
Fl(A3) = (1, 2, 3)
Fl(A4) = (4, 5)
FI(V1) = (1,2,3)
F1(V2) = { I, 2, 3, 4, 5)
FI(V3) = { I, 2, 3)
FI(V4) = {4}
FI(V5) = {5}

Fig 3-13 A snapshot of the OP-Net

interest. In this case, the original query should be refined to (CIS AND Peter AND

LETTER). Without the exploring process, this refinement requires reconstructing the OP-

Net. Since the user is not sure what is needed, s/he may go back to the original query and

refine the query to (CIS AND Peter AND MEMO). Then the system will be busy in

reconstructing the OP-Net with respect to each refinement. We therefore introduce an

exploring process, which allows the system to construct exploring networks (E-Net) from

an existing OP-Net or F-Net, with respect to a given query.

3.4.1 Exploring Network

The exploring process can be activated by users at any time during the browsing process.

When a user activates the exploring process, the topic refining process will be disabled.

The exploring process controller will then control the browsing process. During the

33

exploring process, users are allowed to issue queries within the realm of the current OP-

Net. The objects which could be used in the query to be issued are restricted to those on

the current OP-Net. Given the query, the system constructs an Exploring Network (E-

Net) to display the result. Given the same OP-Net, many E-Nets can be constructed, each

of which reflects an input query. We treat each E-Net and the OP-Net as objects of the

class Net. They share common properties. For example, users also can perform the

examining process on E-Net in the same way that they do on the OP-Net. Some functions

may be overridden to fulfill the needs. For example, on OP-Net, when a user activates the

exploring process and issues a query, a new E-Net will be created. However, on E-Net, if

the user performs the exploring process and also issues a query, the resulting E-Net will

replace the original E-Net.

At any time during the browsing process, the browsing process controller keeps

track of the relevant frame instance set (Flop) with respect to the user's query (Toe). All

relevant objects of FIRs and their associated frame instances are also kept in the OP-Net.

Assume that the current OP-Net is the one in Fig 3-14. The user activates the exploring

process by issuing a query, say (Fl AND TI). In applying the exploring process, users are

restricted to constructing their queries by using those objects existing on the OP-Net.

Therefore, the query needs not go through the topic interpretation process and can be

directly rewritten into (Folder(F1) AND Template(T1)). The intersection of Flop(F1) and

Flop(T1) forms the new frame instance set FIG. After deriving the FIe, the E-Net can be

easily derived by doing the set intersection operation for each object.

The next step is to complete the graphical representation (G(V,E)) for the E-Net.

The G(V,E) of E-Net is constructed from the G(V,E) of the current OP-Net. For each FIR

= Folder(F1) AND
Template(T1)
Pe = IslnFolder(fi, Fl) AND

IsOfTemplate(T1)
FIB = (1, 2, 3)
Fl(F1)= (1, 2, 3)
FI(F2) = {2, 3)
FI(T1)= {1, 2, 3)
FI(A1)= {1,2, 3}
FI(A2) = {1, 2, 3}
FI(A3) = { 1, 2, 3)
FI(V1) = (1, 2, 3)
FI(V2) = {1, 2, 3)
FI(V3) = (1, 2, 3)

34

in the OP-Net, its Fe, which are those frame instances satisfying the predicate PB, is

computed. Basically, PE is computed from Po, Pop, and the predicate derived from the

query issued during the application of the exploring process. As explained in the topic

refining process, the query issued by the user can be used to produce the predicate PE.

Then PE can be represented by Po A Poe A Ps . For instance, let OP-Net be the current

network which corresponds to a user's query John. At this moment, we know that John is

a value. Therefore, we know that the topic of the OP-Net T = John and

Pop = ContainsVal(fi,John). Now, the user activates the exploring process and then the user

issues a query Letter. Since the user is now performing at the phase of the exploring

process, the object Letter must be on the OP-Net. Assume that there is a frame instance

repository which corresponds to the folder CIS and we want to find out its predicate P.

For the folder CIS, Po = IsInFolder(fi,CIS). PE can be computed as follows:

Pe = POAPopAPE =IsInFolder(fi,CIS)AContainsVal(fi,John)/\OfType(fi,Letter).

Fig 3-14 The E-Net

35

At this particular state of the browsing process, the frame instance which is associated

with the object CIS must meet the following conditions. First, it is deposited in the CIS

folder during the filing process. Secondly, it must contain a value John. Finally, it has

been classified as a letter. In this way, FIE is computed for each object of the OP-Net. In

the real world, for the object obj, FIe(obj) is computed from its Flop(obj) as follows:

For constructing the E-Net with respect to an active OP-Net, if FIe(obj) = Ø , the

object obj will not appear in the E-Net. Fig 3-14 depicts the resultant E-Net.

We now give the formal definition of the exploring network.

Definition 3-1: (Exploring Network)

An exploring network (E-Net) is a four-tuple, E = [[Te, PE, FIE, G(V,E)], where:

I. 	Te is a topic related to the context of the exploring process which can be

recursively introduced using AND, OR arid NOT operators;

2. PE is a predicate related to the topic TB;

3. FIe = {fi| fi is a frame instance satisfing PE A Pop} ; and

4. G(V, 13) is a graph, where

• Each node in V(G) is a frame instance repository

• Each edge(i, j) between two repositories FIR(i) and FIR(j) represents that

these two repositories have at least one common frame instance.

36

3.4.2 OP-Net and E-Net

Finally, we conclude this section by given the differences between the OP-Net and E-Net

which are as follows:

1. The OP-Net and the E-Net are produced by the topic refining process and the

exploring process, respectively.

2. For each OP-Net in the browsing session, it is always constructed by consulting

the system catalog (object network).

3. For the E-Net in the exploring process, the first one is constructed from the

current OP-Net and the succeeding E-Nets can be constructed from either the

OP-Net or the previous E-Net.

3.5 Examining Process

With the functional capability of exploring the system knowledge, the examining process

controller also has to provide the knowledge that cannot be expressed by the OP-Net. or

E-Net. For example, the examining process has access to the system catalog for exploring

the relation between folders. The examining process controller keeps a set of pre-defined

queries over the system catalog, which produces various views of the system catalog. For

instance, during the course of the browsing, through the OP-Net or E-Net, the user may

want to know the child folder of the folder CIS. Since the OP-Net or the E-Net does not

carry the horizontal relations, the answer cannot be provided directly. Instead, the

examining process controller will issue a formal query against the system catalog. We

explore the request by heuristics and convert it into a set of functions, which provide the

user with different views of the system catalog.

CHAPTER 4

THE SERVICE PROVIDERS AND THE STORAGE SYSTEM

In this chapter, we will present a system architecture of the browser for supporting the

functionality discussed in the previous chapter. The major components of the system are

shown in Fig 4-15 and divided from top to bottom into three layers.

4.1 The Controller Layer

The first layer contains interface controller, browsing controller, topic refining process

controller, exploring process controller, and examining process controller. The interface

controller consists of a graphic interface and a control unit. The graphic interface contains

many physically graphical components: buttons, text fields, canvases, etc. When users

interact with these components, events are generated. From the component where the

Fig 4-15 The System Architecture

37

38

event occurs, the control unit gathers two pieces of information: the name of the

component and the action happened on the component. The responsibility of the control

unit is to filter out those insignificant events and send the important message to the

browsing process controller. For dispatching jobs, the browsing process controller

analyzes the message received from the interface controller and decides the succeeded

process to be taken according to the current browsing mode. In order to direct the

message to the appropriate process controllers, the browsing controller keeps track of

each browsing session and maintains the browsing history. The rest of the components in

this layer are the browsing process controllers. These controllers receive requests from

the browsing controller. There are some protocols between the browsing controller and

the browsing process controllers. Each of the browsing process controllers has a set of

functions that can be organized as a procedure based upon the request. Therefore upon

the arrival of a request, the browsing process controller knows how to deal with it. These

browsing process controllers process the request and generate additional events which are

sent back to the browsing controller and wait there for processing. In the later sections of

this chapter, we will take a closer look at these functions provided by these sub-process

controllers.

4.2 The Service Provider Layer

The second level of the system architecture contains the topic interpreter, the request

model builder, the network constructor, the ranking unit, and the search engine. These

components are service providers because they provide services to the controllers at the

first level.

39

Upon the arrival of a raw topic issued by users, the topic interpreter performs two

tasks: the key-term replacement and the raw topic normalization, with the assistance of

the system catalog. These two processes and their structures will be discussed in the later

sections. The output of the topic interpreter will he sent to the request model builder for

further processing.

The request model builder receives its input from the topic interpreter and it

performs two tasks: the object identification process and the topic rewriting process. The

request model builder also consults the system catalog while performing the tasks. The

aim of the processes performed by the topic interpreter and the request model builder is

searching for precise interpretation of users' information need.

Upon the arrival of a preprocessed topic, the network constructor builds an OP-Net

or an E-Net depending on the browsing mode encountered. In the process of constructing

the OP-Net (E-Net), the network constructor derives the frame instance set and searches

for the relevant objects, with the assistance of the search engine.

In TEXPROS, a ranking model which ranks the frame instances related to a topic is

developed. After each frame instance receives a rank, the frame instance repositories are

also ranked. The ranking of the frame instance repositories can help users decide which

portion of the network should be examined first.. The ranking unit conducts the ranking

process. The input of the ranking unit is the OP-Net or the E-Net delivered by the

network constructor. During the ranking process, the ranking unit also consults the

system catalog, We will give more details oldie ranking model in the following sections.

The last component in this layer is the search engine. The input of the search engine

comes from the network constructor or the examining process controller. The network

40

constructor requests the search engine to provide the OP-Net (E-Net) or a particular

frame instance repository with frame instance sets. The requests from the examining

process are more complicated. Some requests can be directly solved by consulting the

frame instance base. For example, at the examining process, the user wants to see the

content of a frame instance in a specific frame instance repository. For another type of the

requests, the search engine asks help from the object network. Consider the previous

example. In the examining process, the user can issue a request for finding sub-folders of

a specific folder in the OP-Net (or E-Net). Since the OP-Net does not contain the folder

relationship of the folder organization, the search engine has to consult the object

network for gathering the folder relationships. This is the reason although the horizontal

relations are removed from the OP-Net, the user will not be aware of this removal

because they are still in the object network.

4.3 The Storage System Layer

The third level contains three components: the knowledge base, the frame instance base

and the original document base. In addition to supporting the browsing process, the

components at this level also provide the service to other processes such as document

classification, extraction, and filing process. In other words, these are the core

components managed by the system.

The knowledge base gives the system the ability to resolve users' information needs

in the topic interpretation process. The details of the knowledge base will be discussed in

Chapter 6.

41

Each incoming document is stored in the original document base and its address on

the physical storage device will be recorded as the document identifier. Based on the

document identifier, effective index mechanisms (such as hashing technique) can be used

to speed up the performance of the retrieval. However, the user seldom retrieves the

original document because the important information has been extracted during the

extraction process to form the frame instance.

The frame instances are stored in the frame instance base. The basic goal of the

frame instance base is to find the needed frame instance effectively. If the retrieval of the

frame instances is predictable, then grouping these frame instances together can achieve

better performance. Since there is no way to predict the sequence of the retrieval, there

won't be a unique grouping (clustering) that can satisfy all the users. The heuristics can

solve this problem to some extent. That means, although the sequence for every user is

unknown, it would help if the perception of the document or the frame instance of most

users can be derived statistically. The dual model adopted by TEXPROS captures the

natural perception of the document. When people receive a new document, most of them

identify the type of the document immediately. If the document is important, it will be

stored in the storage (such as the folder) for later reference. In our browser, two indexes

(SYSFMAP and SYSTMAP) corresponding to the dual model are created to improve the

performance of retrieval (which will be discussed in the next chapter). Two index maps

in the system catalog, namely The SYSFMAP and the SYSFMAP, are used to help the

search engine to retrieve the frame instances from the frame instance base.

In the frame instance base, the frame instances are clustered by their document type,

instead of the deposited folders. The reasons are as follows:

42.

Fig 4-16 The storage system

1. The frame instances of the same document type share a common structure.

Since the structure is of fixed length, it can be easily organized for better

performance.

2. Since the frame instance can be deposited into more than one folder, organizing

the frame instances based on the folders may cause redundancy of the

occurrence of the same frame instance.

Fig 4-16 shows the storage system used by the browser. For simplicity, only one

frame instance is shown in this figure. Each frame instance in the frame instance base

will be assigned a unique integer Identifier (FiNo). This identifier is computed from the

physical address of the original document in the original document base. Since the frame

43

instances are used throughout the processes (except for the examining process) for the

performance concern, there is no direct mapping between the folder and the original

document base.

4.4 The Local Memory

Along with each browsing process session, there are lots of intermediate results produced

by the components in the three layers. These intermediate results are stored in shared

memory called the local memory because it is used internally by the system and hidden

from users. The usage of the local memory and its interaction with other components will

be explained in the next chapter.

CHAPTER 5

SYSTEM ARCHITECTURE

In this chapter, the browser which is the control unit of the browsing process is described.

The browsing process monitors four major processes in any browsing sessions, namely

the topic interpretation process, the topic refining process, the exploring process and the

examining process. The topic interpreter transforms a user query into a normalized topic

(which is in disjunctive normal form), in which the values of the standard term (called

key terms) are used. For each normalized topic, more information, such as the properties

of a key term (e.g., the key term could be a value type or a folder name) can be obtained

through the request model builder which rewrites the topic to include this additional

information. In supporting the refining, exploring or examining process, the OP-Nei and

the E-Net for a given topic are needed. Given this normalized topic, the network

constructor creates and OP-Net or an E-Nei, using the search engine for finding all the

frame instances from the frame instance base, which are pertinent to the given topic. If

necessarily, the search engine consults with the knowledge base for additional

information.

5.1 Topic Interpreter

The topic interpretation process of the topic interpreter consists of the key term

replacement and the raw topic transformation. Upon the arrival of a raw topic (which is

entered by the user), the topic interpreter receives the raw topic from the browsing

controller, and then transforms it into a normalized topic.

44

45

The topic interpreter has two major tasks, namely the key term replacement. and the

raw topic transformation.

I. Key term replacement

Normally, a user begins a browsing session by entering a vague query, which

comprises terms and logical operators such as AND, OR, and NOT. This vague

query is called a raw topic. The terms appearing in the raw topic are

uncontrolled in the sense that these terms may not be the standard terms used by

the system. For consistency, the uncontrolled terms are replaced by the key

terms which are used internally by the system. To identify the key terms for the

uncontrolled terms, the topic interpreter consults the system catalog. The

thesaurus in the system catalog provides the ability of resolving users'

uncontrolled terms. Currently, the thesaurus which consists of two system frame

templates, SYSSYNONYMS and SYSNARROWER, is part of the system

catalog. Fig 5- 17 is an example of the SYSNARROWER frame template.

2. Raw topic transformation

After uncontrolled terms have been replaced by the key terms, an intermediate

Fig 5- 17 System Template SYSSYNONYMS

46

query is obtained. The next step is to transform this intermediate query into a

topic, which is in disjunctive normal form and will be used by the succeeding

processes.

To conclude this section, the following example is given to explain these two

processes. Given a raw topic Q1: (dsanders OR png) AND CIS, the topic interpreter first

identifies three uncontrolled terms, dsanders, png, and CIS. After consulting the system

catalog, these three terms are replaced by the key terms D. Sanders, P. Ng and CIS

respectively. Therefore, we obtain an intermediate query Q2: (D. Sanders OR P. Ng)

AND CIS. The next step is to transform Q2 into a topic of disjunctive normal form.

During this process, after checking the correction of the syntax, Q2 is transformed into a

normalized topic according to the priority of the operators and the parentheses. The topic

Q3: (D. Sanders AND CIS) OR (P. Ng AND CIS) is then obtained. The data flow of the

process of topic interpretation is given in Fig 5-18. Dot lines, double dot lines, arrows,

rectangles, and round rectangles are used to represent the data flows, multiple data flows,

the directions of the flow, the components, and the processes inside the components,

respectively.

5.2 Request Model Builder

Based on the normalized topic produced by the topic interpreter, the request model

builder [2] is used to gather, construct and disseminate detailed representation of the

user's information needs. The output is a rewritten query, which reveals more

information.

47

As in most the full-text search information systems, queries that contain only key

terms fail to capture users' information needs, such as the types of key terms. The request

model builder consists of two processes, namely, the object identification process and the

query rewritten process.

1. Object identification process

Given a normalized topic, the object identification process searches through the

system catalog to find out the type for each term in the topic. Applying this

process, all the key terms in the topic are transformed into objects which are

represented in a format ObjType(ObjName) where ObjName is a key term and

ObjType is key term type. In this way, the full-text system becomes a special

case of our system in the sense that it contains only one object type VALUE. The

output of this process will be a new topic containing the key terms along with

their type of key terns (and is expressed in terms of ObjType(ObjName)), and the

logic operators. When a key term is related to more than one type (as in our later

example), the operator OR will be used between types, e.g. ObjType,(ObjName)

OR ObjType2(ObjName) OR 	

2. Query rewriting process

After the end of the object identification process, the topic could no longer be in

disjunctive normal form. The query rewriting process is applied for normalized

the topic and outputs the final topic which is in disjunctive normal form.

Consider the example from the previous section. In Q3, there are three key terms,

namely D. Sanders, P. Ng, and CIS. After consulting the system catalog, the object types

of these terms can be identified. Assume that D. Sanders and P. Ng are values and CIS

Fig 5-18 The Data flow of the Topic Interpretation Process

can be a value and also a folder. These terms will be rewritten as VALUE(D. Sanders),

VALUE(P. Ng), VALUE(CIS), and FOLDER(CIS). Q3 is then converted into

Q4: (VALUE(D. Sanders) AND (VALUE(CIS) OR FOLDER(CIS)) OR

(VALUE(P. Ng) AND (VALUE(JS) OR FOLDER(CIS)).

Since Q4 now is not in disjunctive normal form, it will be normalized to

Q5: (VALUE(D. Sanders) AND VALUE(CIS)) OR

(VALUE(D, Sanders) AND FOLDER(CIS)) OR

(VALUE(P. Ng) AND VALUE(CIS)) OR

(VALUE(P. Ng) AND FOLDER(CIS)).

49

Fig 5-19 The Data Flow of the Request Model Builder

The final topic Q5 is returned to the Browsing Controller for later use. The data flow

of these processes for the request model builder is shown in Fig 5-19.

5.3 Network Constructor

Given a normalized topic produced by the topic interpreter and the request model builder,

the network constructor creates an OP-Net or an E-Net.

The network constructor has two main processes.

1. 	Deriving the frame instance set

According to the definition of the OP-Net (E-Net), each OP-Net (13-Net) is

corresponding to a topic TOP and an associated predicate Pop is derived from T.

The Pop is a predicate that specifies conditions for all the frame instances. For

any document related to the Top, its corresponding frame instance fi must satisfy

50

the predicate Pop. The first task of the network constructor is to find the set F6 of

those qualified frame instances.

2. 	Finding the relevant object

In the initial state, which is the state before users bring up the browsing process

session, conceptually the object network is considered to be the virtual OP-Net.

When a user issues a new query or modifies the original query, the network

constructor modifies the original network to represent the query. As the user

changes the topic, the predicate changes, and the criteria of selecting relevant

frame instances is also changed. Therefore, the modified network captures the

changes, such as adding or removing frame instances from the contents of nodes

in the network, or adding or removing nodes from the network.

According to the definition of the frame instance repository, given a frame

instance repository FIRM of an object f, Flop(f) represents the frame instance set

containing all the frame instances associated with the frame instance repository

of f that satisfy Pop. The frame instance set FIop(f) associated with each frame

instance repository FIRM will be changed dynamically throughout the browsing

session. Objects can be classified into two categories, namely relevant and

irrelevant objects.

51

Definition 5-1: (Relevant and Irrelevant Objects)

Given a frame instance repository FIR(f) where f is an object, if Flop(f) =Ø , then

f is an irrelevant object. Otherwise, it is a relevant object.

Definition 5-2: (Active and Passive Objects)

Given a frame instance repository FIR(f), where f is an object, if f is a relevant

object and appears in a topic Top, then f is an active object. Otherwise f is a

passive object.

The frame instance repository of an irrelevant object will be removed from

the original network. The active objects are those identified by the request model

builder. For example, D. Sanders, P. Ng, and OS in the earlier example are

active objects. These objects are important because they set up the conditions for

qualifying frame instances; and we compute the Flop or FIE based on these active

objects. The objects of the original OP-Net containing frame instances in Flop or

FIE while are not active will be considered as passive objects. Any remaining

objects which do not contain any frame instance in F6 or FIE are considered as

irrelevant objects. Intuitively, the OP-Net construction is similar to a graph

traversal process in which every object of the original network is examined to

check whether it is a relevant object.

During the network construction, the network constructor requires a search engine

for finding the frame instance set for a final topic and the frame instance repositories for

each object in the topic. Since the OP-Net (E-Net) serves as the underlying structure, the

network will be stored in the public local memory which allows it to be accessed by other

processes. Fig 5-20 shows the data flow of the network constructor.

52

5.4 Search Engine

The search engine serves as a general interface of accessing the components in the third

layer. Since the components in the third layer count on the physical implementation

structure, the components that are not in this layer can only see the public methods

provided by this layer.

* This happens only when constructing the OP-Net.

Fig 5-20 The Data Flow of the Network Constructor

When the search engine receives a request from the network constructor or the

examining process controller, a procedure, which utilizes the primitive methods provided

by the storage system, achieves the request. The outputs of the search engine are varied

depending on the type of the requests.

53

Based on the components involved, the requests can be divided into two types. For

the first type of the requests, the search engine has to consult the knowledge base. For the

second type of the requests, it needs the services provided by the frame instance base and

the original document base.

5.4.1 First Type Request

In Chapter 2, we described the transformation of an object network into OP-Net, by

removing the horizontal relationships among the objects of the same object type from the

object network. The information of the folder organization and the document type

hierarchy is no longer in the transformed network. The removal of these relationships

does not reduce the power of responding to requests. Its explanation and the mechanism

of how it works will be given fully in the later sections of this chapter. The search engine

is the only component that supports the examining process and has access to the storage

system. Therefore, this is the appropriate unit to support. those horizontal relationships

which are removed during the network transformation. Consider the following scenario

as an example. Assume that, during the examining process, a user is interested in finding

sub-folders of a particular folder CIS. This function will be integrated in the user

interface and an intuitive name of the function is given so that users can easily understand

the meaning of this function. When a user activates this function, the necessary

information will be directed to the search engine. The search engine is able to find ow

that this is a first type request which requires information from the knowledge base. The

search engine then calls an internal procedure that makes a request to the system catalog

in the knowledge base and derives the answer from the system template SYSFOLDER.

54

Fig 5-21 The Data Flow of the Search Engine

The Fig 5-21 depicts an example of a folder organization stored in the knowledge base

and the data flow of the process for handle the finding of the subfolders of the folder CIS.

5.4.2 Second Type Request

The second type requests mainly inquire the frame instances, the original documents, or

their associated information. All the different cases of the second type request can be

covered by using some primitive public methods provided by the frame instance base and

the knowledge base. The functionality of the primitive public methods provided by the

frame instance base are as follows:

1

. 	Given a frame template, the frame instance base returns the frame instance set,

and

2. 	Given a frame instance ID, the frame instance base returns the frame instance.

55

The frame instance base will be explained in the next section. Similarly, the knowledge

base also provides a set of primitive methods for the public use.

The search engine has to provide some high level functions by utilizing those

methods that provided by the third layer. In order to explain how this mechanism works,

consider an example of using the function FindFiNoSet provided by the search engine.

The functionality of the function can be described as follows. The FindFiNoSet takes an

object as the argument and returns a set of associated frame instances based on the

association defined in Chapter 1. Let us use an object of the ATTRIBUTE type as an

argument. Upon receiving a request FindFiNoSet((ATTRIBUTE, SENDER)), the search

engine has to come up with a procedure to find the set of the frame instances. The

procedure is described as follows:

1. Consult the system catalog to find all the frame templates that contain the

attribute SENDER. Assume that the two document types, namely the Memo and

the E-Mail, contain the attribute SENDER.

2. For each document type derived in the step 1, the search engine issues a request

to the frame instance base and returns the result of finding all the frame

instances of the types containing the attribute SENDER.

In this procedure, step one will use a method provided by the system catalog to find

the templates. In step two, the search engine will use the method provided by the frame

instance base to find the frame instances for each document type containing the attribute

SENDER. In this procedure, the search engine provides the logic to call these methods

and organizes the returned results. The data flow for this example is given in Fig 5-22.

Since there are too many cases of the second type requests, we cannot describe them all.

56

From the system architecture described in Chapter 4, obviously the second type

requests can be directed from either the network constructor or the examining process

controller. The search engine in our system provides an interface for communicating with

the core components namely, the knowledge base and the frame instance base. Although

the search engine is a small part, it is a crucial component for enhancing the performance

of the system. One of the basic functions of the search engine is to find the related frame

instances for a given object. Based on this basic function, the search engine can support

the following processes.

1. Find the frame instance set for the OP-Net or E-Net.

2. Find the associated frame instance set for each frame instance repository on the

OP-Net or E-Net.

Another important function of the search engine is to support the examining process.

Users and the system use the search engine to get information contained in the system

catalog. This is the reason that the system can provide the information about the

horizontal relations, even though they are not included in the OP-Net.

5.5 Frame Instance Base and Original Document Base

Through the search engine, the frame instance base gets two types of requests from the

network constructor or the examining process controller. The first one is to return a set of

frame instance of a given frame template type and the other one is to return a frame

instance if the frame instance id is given.

After the classification and the extraction processes, a frame instance of a given

original document is formed. Each frame instance will be assigned a unique ID, FiNO,

57

and stored in the frame instance base. The frame instances are organized by their

document types (frame templates). That is, all the frame instances of the same document

type will be clustered. Therefore, the search engine needs to identify the document type

before issuing the request to the frame instance base. For speeding up this process, two

system templates which will serve as the indexes are created in the system catalog. One is

created over frame instances and folders (SYSFMAP). The other one is created over

frame instances and frame templates (SYSTMAP).

5.6 Browser

Browser is the control unit of the browsing process. It monitors browsing sessions

Fig 5-22 The data flow of the second type request

58

between the system and the user. The main function of the browser is to extensively

utilize the functions provided by the other components to fulfill the user's needs. The

browser consists of five parts: the browsing controller, three sub-process controllers, and

the interface controller.

5.6.1 Browsing Controller

The browsing controller is like a task dispatcher. It receives the request from the interface

controller, then analyzes and assigns it to a proper sub-process controller to continue the

process of finding the answer of the user's request. The sub-process controllers are the

topic refining process controller (TRPC), the exploring process controller (EXPC), and

the examining process controller (EPC). Browsing process controller monitors three

major processes in the browsing session, namely, the topic refining process, the exploring

process, and the examining process. Therefore the browsing session proceeds by

switching back and forth between these three process modes. The precise task

descriptions assist the browsing process controller to dispatch tile task correctly.

Therefore, the responsibility of the browsing process controller is to conduct the task

identification and dispatching process to identify the task description for each user's

request and dispatch these tasks to the proper controller (The details of dispatching tasks

will be given in the next sections). The task identification and dispatching process is

described in next. section.

5.6.1.1 Task Identification and Dispatching Process: The objective of this process is

to find the task ID (TaskID) and the controller which can achieve that task. This browsing

59

process controller receives the user's request and needed information such as the name of

the function selected by the user during the browsing process, the browsing process mode

changed by the selected function, and possibly the name of the object in the OP-Net or E-

Net, from the interface controller. The browsing process controller keeps this important

information in the local memory. Upon receiving the new request from the interface

controller, if necessary, the browsing process controller updates the information in the

local memory. One thing needs to be pointed out is that in the graphical interlace,

intuitive names are used for the provided functions. From the implementation point of

view, each function name is considered as a tag of the physically graphical components.

For instance, there is a function "Find the child folders" which can find the child folders

for a folder object. The name "Find the child folders" can be considered as a tag for the

graphical component (the menu item). Each graphical component has its unique ID.

When a user clicks on this menu item, instead of sending "Find the child folders", the

interface controller sends the ID of the menu item to the browsing process controller.

In the local memory, there is a task description table. Compared with the

information dynamically received from the interface controller, this map is static. 13y

utilizing the dynamic information and the task description table, the browsing process

controller is able to identify the task ID corresponding to a user's request and the suitable

controller. The details of the task description table and how it works will be explained

shortly in an example.

5.6.1.2 Object-Originated and Non-Object-Originated Task: There are two kinds of

tasks to be achieved, namely object-originated and non-object-originated task. In

60

TEXPROS, the requests of users are made through the use of the graphical interface. The

graphical interface consists of graphical components for interacting with the user and

accepting user's input. The difference between two kinds of tasks depends on the

graphical components in which the users' requests are made. Two examples are given in

the next sections to explain the difference between these two types of tasks.

Object-Originated Task Fig 5-23 is the data flow of processing an object-originated

task. Assume that the user examines the OP-Net displayed in the graphical interface and

wants to find out the child folders of a folder CIS. In this case, the user will click on the

node representing the folder CIS. The node responses with displaying a menu consisting

of a list of provided functions. The request is made and sent to the system as the user

selects one of the functions from the displayed menu. In this example, the user selects a

predefined functions associated with the object (e.g. FOLDER(CIS)). Therefore, it is an

object-originated task. The browsing process controller receives the request and

information from the interface controller. To identify object-originated task, the browsing

process controller has to know the current browsing mode, the object in which the request

is originated, the function that the user asks to perform and its corresponding graphical

component ID. In Fig 5-23, the browsing mode is the examining mode, the object is the

CIS folder, and the function to be performed is FindChildFolder and the ID of it's

corresponding graphical component is EX_Menu_Item2. The task identification and

dispatching process takes these information and look up in the task description table. The

returned result of this process are the TaskID (in our example is S) and the controller

(EXPC) which is responsible for achieving this task.

61

Non-Object-Originated Task An example of the non-object-originated task is the topic

refining process. When a user wants to refine the current topic, s/he needs to find the text

field in the graphical interface and to enter in the modified topic. In this case, the request

has nothing to do with any particular object in the OP-Net or E-Net. Therefore, this is an

non-object-originated task.

Fig 5-24 is an example of the topic refining process. The user inputs the new topic in

the text field provided by the graphical interface. The graphical component ID

(TE_TextField1), the new topic (CIS AND Roy), and the switched browsing mode (topic

refining mode) are sent to browsing process controller. Upon receiving the needed

information, the browsing controller conducts the tasking identification and dispatching

process to look up the task description table. The result which consists of the TasIcID (2)

and controller (TRPC) will be returned to the browsing controller.

5.6.2 Topic Refining Process Controller

The topic refining process controller (TRPC) conducts and controls the topic refining

process. The whole topic refining process can be initiated by the interface controller.

Upon the arrival of a user's query, the interface controller sends ii to the browsing

controller. The browsing controller performs two tasks. First it checks the current

browsing mode. There could be several cases. Here we assume that the current browsing

mode is in the topic refining mode. We will explain how the browsing controller decides

which mode should be in the later section. After knowing the current browsing mode, the

browser directs the query to go through the topic interpretation process. The output of the

topic interpretation process is stored in the local memory for later use.

62

From the user's point of view, after providing a query (topic), the system will

display an OP-Net. Throughout the browsing session, the user could perform some

operations on this network. From the TRPC's point of view, in order to provide an OP-

Net, it needs a procedure for constructing this network. After the OP-Net is constructed,

the TRPC keeps track of all the processes and operations performed on the OP-Net. In

brief, TRPC has two main tasks: namely, construct the OP-Net and monitor the topic

refining process.

Constructing an OP-Net is straightforward. From the discussion in section 5.3, once

the necessary information is provided in the local memory, all TRPC needs to do is to

issue a command to network constructor and the network constructor will take care of the

rest.

Let us take a close look at the second task of TRPC. The goal of the topic refining

process is to provide an environment with a set of primitive functions in which a user can

continue issuing new topics or modifying the current topic. 13y using these functions, the

topic refining process can provide some procedures, which are meaningful to the users.

The topic refining process provides the following functions:

• NewTopic() This function is called when the user issued a new raw topic through

the interface controller. The topic interpretation process generates the normalized

query and related information which are stored in the local memory. In this case,

the TRPC notifies the network constructor to construct an OP-Net by examining

the normalized topic produced by the topic interpretation process and consulting

the system catalog.

• NEW(Object) This function takes an object as its argument and constructs a new

63

OP-Net. Intuitively, this function is activated when a user issues a query which

contains only a term, which is represented by the argument Object. Therefore,

TRPC schedules for constructing an OP-Net based on the Object. The difference

between this function and NewTopic() arises because of the way they have been

activated. In the interface controller, the input of the NewTopic() is derived from

a text field provided by the interface. However, the argument Object of NEW() is

derived by clicking on a node of the current OP-Net. Since the input for the

NewTopic() is a raw topic, it needs to go though the topic interpretation process.

The input for NEW() is a controlled object in the OP-Net, which does not need to

go though the topic interpretation process.

• AND(Object) This function is activated when the user wants to modify the

current topic from the existing OP-Net. There are two cases according to the

inputs of the function.

1. The Object is in the current OP-Net The user inputs this argument by

clicking on a node on the current OP-Net. In this case, the argument is a

controlled object and needs not to go through the topic interpretation

process.

2. The Object is not in the current OP-Net The user enters this argument by

typing it in a text field provided by the interface controller. In this case, the

argument is an uncontrolled object and needs to go through the topic

interpretation process.

Normally, this function will reduce the size of the current OP-Net by removing

nodes or sub-networks, which are not qualified by the AND condition, from the

OP-Net.

Fig 5-23 The data flow of an object-originated task

65

• OR(Object) This is another function for modifying the current topic. Two cases

will arise which are the same as the cases for the AND() function. Normally, this

function will enlarge the size of the current OP-Net by adding nodes or sub-

networks, which are satisfied by the OR condition, into the OP-Net.

• NOT(Object) When this function is activated, the frame instance set associated

with the argument Object will be excluded from the frame instance set associated

with the current OP-Net's Flop. If the argument Object is in the current OP-Net,

then it will become irrelevant object in the new OP-Net. When this function is

used with other functions, its effect is equivalent to AND NOT.

• REDO() This function provides a way to go back to the original OP-Net. To

support this function, the TPRC needs to maintain a modification history during

the browsing session.

These primitive functions, according to the perception of users and the application

domain, will be assigned a friendly label and organized in the user interface. For instance,

the OP-Net can be displayed in a window and a button for the function REDO() should

be arranged close to the OP-Net. However, instead of using REDO as the label of the

button, the label BACK is used because of its popularity among various browsers.

5.6.3 Exploring Process Controller

The exploring process controller WPC) controls the exploring process. Before

performing the exploring process, the user needs to activate some particular functions,

which force the system to switch to the exploring mode from the current mode. The

interface controller receives this request and makes the necessary changes to the interface

in order to support the exploring process, and informs the browsing controller that the

browsing mode has been changed. The browsing controller will then give control to EPC.

From now on the EPC is ready to take any request from users.

All the functions provided for the exploring process are similar to those provided by

the topic refining process. Each function provided by the EPC produces a new E-Net. As

Fig 5-24 The data flow of an non-object-originated task

67

Fig 5-25 The OP-Net for CONF_ARTICLE

we mentioned in Section 3.2, the OP-Net and E-Net are structurally identical but they

originate from different networks. The E-Net focuses on exploring the inter-relations

between objects in the OP-Net. However, to perform these functions in exploring mode

the user needs to follow the following steps.

1. Select a node on the OP-Net.

2. Select a function to be performed.

From the user's point of view, they can only modify the current topic by using the

objects in the OP-Net, since the range of browsing process in exploring mode is restricted

in the current OP-Net. Moreover, since all the information about the objects in the OP-

Net is stored in the corresponding frame instance repository, it could be easy liar the

network constructor to construct the E-Net. The topic of the exploring process combines

the topic of the OP-Net and those functions performed by the user. For example, assume

that the topic is Top before switching to the exploring mode. Then the user switches to the

exploring mode and performs a function AND(obj1). The new topic Te became Top AND

objl.

68

The following functions controlled by the EPC support the exploring process.

• NEW(Object) This function has an object as its argument and construct a new E-

Net. This function can be performed only when the OP-Net has been constructed

and the browsing mode has been switched to exploring mode. The following

example is used to explain this function. Consider an OP-Net for a frame template

CONF_ARTICLE in Fig 5-25. If the user switches to exploring mode, selects the

PUBLICATION and requests to perform NEW() function, then the resulting E-

Net is shown in Fig 5-26 (Assume that there is no common frame instance in the

PUBLICATION, the LIBRARY, and the INTERLIBRARY_LOAN). This E-Net

has the documents of the document type CONF_ARTICLE, which are stored in

the folder PUBLICATION. This E-Net allows the user to explore the information,

such as "find all conference articles from the PUBLICATION folder authored

solely by John".

• AND(Object) In the exploring mode with an E-Net displayed, this function is

called to modify the current. topic. Not like the topic refining process, users can

only perform this function by clicking on an object. The object does not have to

go through the topic interpretation process for it is a controlled object. This

function reduces the size of the current E-Net.

• OR(Object) This function can be used to enlarge the browsing range of the

exploring process. When a user switches the browsing mode to the exploring

mode, the underlying network becomes an E-Net, but the OP-Net is still available.

This function makes sense only when the Object is in the OP-Net but not in the

current E-Net. Since the E-Net is a subset of the underlying OP-Net, it can grow

69

only as large as the OP-Net, regardless of the number of times the OR() function

is applied.

• NOT(Object) This function is similar to the NOT(Object) in the topic refining

process. The frame instance set associated with the selected object will be

excluded from the current frame instance set FIR of the E-Net.

• RESET() The function allows users to go from the current network to the

previous one.

For the topic refining process or the exploring process, The TRPC and EPC provide

users with a set of functions. The EPC is only responsible for preparing the information

for the network constructor. This information contains the result from the topic

interpretation process if it is an uncontrolled argument, and the corresponding Boolean

operator if one of the AND, OR, or NOT functions is performed. Based on this

information, the network constructor is able to construct the network.

Fig 5-26 The E-Net for PUBLICATION

70

5.6.4 Examining Process Controller

The examining process controller provides functions for exploring the system knowledge

provided by the knowledge base documents, the frame instances stored in the frame

instance base or the original documents stored in the original document base. These

functions are well organized in the user interface and monitored by the interface

controller. In this way, users can switch to the examining mode at any time during the

browsing session. For instance, in the topic refining process, after the OP-Net has been

constructed, the user can select a node in the OP-Net and ask to view all the associated

frame instances or the original documents. The user can also ask 10 view all the frame

instances related to the query. Some examining functions which are associated with

objects, are bound to objects according to their object types. For instance, for the objects

of the FOLDER type, the examining process may provide users with the functions

allowing users to examine the child or the parent folder of a particular folder. But for an

object of the frame template type, the functions would be changed to allow users to

examine the super type or the sub-type of the frame template.

5.6.5 Interface Controller

The interface controller controls the interface between the system and the users. Each

sub-process controller provides users with a set of functions. From the system point of

view, these functions can be activated at certain time in certain browsing mode. From the

user point of view, they don't care about the current browsing mode; instead, they only

care which functions they can perform. Under this consideration, we want to create an

environment that is easy to use. To achieve this, the interface must take charge of the

71

system logic. That means, if a certain function should not be performed at a certain time,

then the interface should disable this function so that the user will not have any chance to

perform it.

The interface controller consists of two main components namely the interface unit

and the control unit. The interface has graphical components such as buttons, text fields,

and the menu bar. Behind these graphical components, the functions are waiting for the

events to happen. These functions make up the control unit. For instance, the graphical

component text field is designed for users to enter the topic. When the user enters the

topic, an event will be produced. The event triggers the function behind the text field.

This function collects the topic issued by the user, gathers all the information when the

event is produced, and then sends it to the browsing controller. Among this information,

the most important one probably is the task ID. As being discussed in Section 5.9.1, the

browsing controller needs the task ID to figure out the suitable sub-process controller to

take care of the request.

These functions are organized in such a way that the browsing modes are almost

transparent to the user. Consider an object in the OP-Net as an example. The functions

provided by the browsing sub-processes would be organized for operating upon objects.

If the object is a folder, users can see the function "modify the current topic", "Examine

the associated frame instances", "Explore the folder organization" and many others.

Executing the function "Examine the associated frame instances" will trigger the

examining process. Executing the function "modify the current topic" will trigger the

topic refining process or the exploring process. However, these changes are transparent to

the user.

CHAPTER 6

KNOWLEDGE BASE

6.1 Information Retrieval

In [12, 35], van Rjisbergen has pointed out the difference between data retrieval and

information retrieval. The most important differences are as follows:

I. Matching mechanism: In information retrieval, it's not always possible to have

information which is a perfect match against the user's request, because the

information can be unstructured and unorganized. Information may be searched

within documents. The partial match between information and the user's request

is a better and effective approach. In data retrieval system, data are well organized

and structured and therefore the exactly matching items can be obtained.

2. Inference mechanism: In data retrieval systems (e.g. database system), the

inference is more like the simple deduction among relations. For example, given

two facts a is-a b and b is-a c, then we can conclude that a is-a c also. However,

information retrieval systems use inductive inference to specify the degree of

certainty or uncertainty. With this degree, our confidence in the inference is

variable. This difference also describes that data retrieval system is deterministic

but the information retrieval system is probabilistic.

3. Query mechanism: In data retrieval systems, an artificial query language (e.g.

structured query language) is commonly used, the query needs to be complete for

retrieving data items. On the contrary, the use of natural language is a better way

for information retrieval.

4. Classification: From the classification point of view, the data retrieval system is

72

73

interested in the monothetic classification instead of polythetic classification

which is a better approach for the information retrieval system.

When compared with the data retrieval system, the information retrieval system

provides an environment which is closer to the human's perception for issuing a query

and getting the result. Usually a user will begin his/her search for the needed information

by starting the search process with something that impressed him/her the most; however,

most of the time the query is vague and incomplete because this impression is not

complete, well structured and well organized data. In data retrieval systems, there is no

way to get the answer if the query is not complete.

TEXPROS aims to be an intelligent document processing system. Therefore, as a

retrieval sub-system, the browser needs to provide the functionality of the information

retrieval system.

6.2 Knowledge Based System for the Browser

Sometimes, a knowledge-based system is called a rule-based system or an expert system.

A typical knowledge-based system contains a knowledge base and an inference engine

[36, 37, 38, 39, 40, 41, 42, 43, 44]. The knowledge base contains knowledge and the

inference engine is built to operate on the knowledge. Before storing the knowledge into

the knowledge base, we have to decide the knowledge representation. There are several

ways to represent the knowledge. In TEXPROS, a semantic network called the object

network is used to represent the knowledge. During the browsing process, the object

network is transformed into OP-Net; since these networks are structural identical, the

Frame template : Memo

Super-type Document
Sub-type MeetingMemo, QE_Memo,

VenderMemo
Has-attributes Sender, Receiver, Subject,

Date, CC
Contain-in-folder CIS, NJIT

Fig 6-27 The frame of the object FrameTemplate (Memo)

same inference engine can be used for all the networks. In other words, during the

browsing session, the OP-Net (E-Net) also becomes a part of the knowledge base.

In addition to the knowledge base and the inference engine, a knowledge-based

system needs to provide tools to help users maintain or use the system. In TEXPROS,

during the processes (such as the classification process, the extraction process, the filing

process, and the browsing process), the controller, which conducts these processes,

provides a knowledge base with the information they gathered from each of the

processes.

The current system catalog serves as the knowledge base of TEXPROS and supports

many of these processes. We shall explain this component in the next section.

6.3 Object Network

6.3.1 Knowledge Representation

The object network can be considered as a semantic network [14, 25], which is a way to

represent the knowledge with data structures for responding to user's requests efficiently.

The information stored in the object network contains the folder organization, the

document type hierarchy, and the relationships between the same type (e.g. the

74

75

relationship between attributes of a frame template) and the different type of objects (e.g.

the relationship between the folder objects and frame template objects). These

relationships provide the underlying facts for the knowledge base. Based on these facts,

upon the arrival of a request from the user or an internal component, the object network

can do the reasoning and return the result by spreading activation from node to node

through the links.

Since the object Network is a semantic network, there are various ways of

implementing it. One of them is to consider it as a collection of frames [31]. A frame is a

collection of attributes and values associated with a particular object, which is

represented as a node in the network. Fig 6-27 is an example for representing the frame

template. By using Contain-in-folder(FrameTemplate(Memo)), the value of the attribute

contain-in-folder can be retrieved. The following equation explains this procedure.

contain-in-folder(FrameTemplate(Memo)) = (Folder(CIS), Folder(NJIT))

These primitive functions provided by the frame can be organized into routines and

augment the power of the semantic network. En the next section, we take the document

type hierarchy as an example to explain how the semantic network mechanism works.

Fig 6-28 Semantic Network Architecture

Fig 6-29 Example of the Semantic Network

6.3.2 Example

As we stated in the previous section, a semantic network contains a way of representing

the knowledge with an efficient data structure for reasoning [45). In TEXPROS, since the

users are not allowed to interact with the knowledge base directly, the knowledge base is

an internal service provider. From the implementation point of view, although the

semantic network is a large and fully connected network, it needs to be broken down into

smaller pieces with interconnections. We called this an encoded network. To access this

encoded network, a set of routines needs to be defined. A simplified semantic network

architecture (in Fig 6-20 has been shown In [45].

We now start with a simple example.

Example 6-1: (To find the sub-type of the MEMO)

Let us consider the document type hierarchy (DTH) as shown in Fig 6-29, which is a

portion of the object network. DTH is a simple example in the sense that it is organized

by using a typical relationship is-a. In this example, in order to make it clearer, we also

76

77

removed the properties and their values associated to the document types in the hierarchy

in Fig 6-29.

We shall describe the notation we used in Fig 6-29. In this example, we adopted the

notation used in [45]. There are only two kinds of links that appear in the DTH, namely

is-a and the inverse of the is-a which are represented by the solid arrow and the dotted

arrow, respectively. The inverse of the is-a relation can also be denoted as is-subtype-of.

However, we use the inverse to show that it originated from the is-a relation. There are

two kinds of arcs that connect the coded network and the routines. First, the arcs leaving

the nodes in the routines to the nodes in the network represent that the nodes in the

network receive the activation from the routines. Secondly, the arcs that come out of the

network activate the answers. The oval nodes in the routines represent the action steps

and the hexagonal nodes represent the queries.

In semantic network, it is assumed that the default relation among the nodes in the

network is the is-a relation. This example expresses a typical routine in the semantic

network. This routine activates the node MEMO and from the MEMO node it follows

(is-a)-1 links (represented by a highlighted dotted arc). The action will activate a set of

nodes and links. Each activated node will be considered as a starting point. By following

the activated links, a set of nodes will be identified. These identified objects will be

directed back to the routine as alternate answers. In our example, the VENDER MEMO

and the MEETING MEMO will be identified and sent back to the routine.

Next, we shall introduce another example to show why we use the semantic network

in our system.

78

Fig 6-30 Another Example of the Semantic Netowrk

Example 6-2: (To find the document types of the documents stored in the folder

CIS)

This example is more complicated than the previous one in the sense that we have to

utilize more than one type of relation in the network for solving this query. The semantic

network in Fig 6-30, unlike the one in Example 6-1, contains the typical elements of a

semantic network which are concepts (objects), their properties, and the

superclass/subclass relationships. The triangle symbols (called the triangle binder nodes)

in the semantic network are used to associate objects with properties, and property

values. Therefore, each triangle binder node has three links. When two nodes propagate

the activation through links, the binder node is activated and by following the only

inactivated link of the activated binder node, the alternate answers can be found.

In this example to find the document types in the folder CIS, the routine has to look

up the property has-type of the folder CIS. The routine activates the regular node CIS and

then activates the property node has-type. Consequently, the activation propagates to

79

reach the binder node BI and B2, which are, in turn, activated and then the activation

reaches the property value nodes MEMO and VENDOR MEMO which will be returned

as alternate answers.

These two examples are used to explain the architecture of the semantic network. In

the following section, how this architecture of the semantic network fits into our three-

layer browser architecture will be discussed.

6.3.3 Object Network in the Browser Architecture

As part of the knowledge base, the object network has routines to provide portions of the

services. In the previous section, before finding the answers of the requests, the

corresponding routines need to be called first. However, can we predict. what are the

routines we need? Before construct the semantic network, the designer derives a small set

of routines by analyzing the problem domain where the system will be used, and

consulting with the users of the system. In TEXPROS, these routines become the public

methods for other components in the three-layer architecture. These basic routines are

summarized but not limited to those given below:

1

. Given a folder, find its parent folder.

2. Given a folder, find its child folders.

3. Given a folder, find its sibling folders.

4. Given a folder, find the document types of its contained documents.

5. Given a template, find its associated attributes.

6. Given a template, find all folders which contain at least one document of the

template type.

80

7. Given an attribute, find all the frame templates which have the attribute.

8. Given an attribute, find its associated values.

9. Given a value, find all the attributes which contain the value.

These basic routines can further be assembled to form another set of routines. For

instance, for finding out the folders which contain documents sent by John, a procedure

consisting of a set of routines that can respond to this query is needed. In TEX.PROS, the

procedure for dealing with the query is taken care of by the search engine. The new

routines could be composed by the basic routines provided by the knowledge base.

6.4 Thesaurus

Another important component of the knowledge base is the thesaurus [1, 46l. Currently,

the thesaurus only provides service to the topic interpreter. The basic idea of the

thesaurus is to form the word groups, each group having its common properties, and

assign the group to a representative called index term. The index terms are thus used

internally by the system for every process. From the retrieval point of view, the thesaurus

improves the matching capability by broadening the interface for users' input. To design

a thesaurus, we first need to consider how to group words, and we also need an efficient

data structure to support. fast access.

6.4.1 Main Component

In a traditional information system, the indexing approach deeply affects the way that the

system organizes the thesaurus. However, in an office information system this may not

necessarily be true. In TEXPROS, the extraction process is more complicated than the

81

traditional full text information system. The frame instance is used as the document

representative instead of using a vector of key terms. By using frame instances, we

incorporate not only the vector composed by key terms but also the information about the

metadata. Since the vector representation is a subset of the frame instance, all the

mechanism developed for the key term vector can still be used in our system to a certain

extent.

In TEXPROS, the thesaurus contains two parts, which are stored in the system

folder as system frame templates, namely SYSSYNONYMS and SYSNARROWER. The

SYSSYNONYMS provides a mapping between the key term and its synonymous terms.

The SYSSNARROWER provides a mapping between the key term and its narrow terms.

For instance, Teaching Assistant can be a narrow term of Student Assistant. From the

implementation point of view, besides these two system frame templates, we still need

some subsidiary structures to augment the capability of the thesaurus.

6.4.2 Subsidiary Component

Most of the thesaurus provides stern resolution utility to improve the matching capability

[I). Consider the following example. A user enters a query containing a term

"happiness". It's possible that in our thesaurus there is no such key term. However since

we have stem resolution utility, we can reduce the word from the thesaurus entry. For

example, to reduce the word "happiness", the word stem utility needs to perform the

following procedure.

82

Fig 6-31 The Data Flow of the Thesaurus

• Reduce the "happiness" to "happi" by removing the "ness".

• Use a final 'y' for an 'P. As a result, the "happy" will be replaced by "happy".

We then take "happy" as a thesaurus entry for finding its key term.

Obviously, in order to provide the word stem resolution, we also need a dictionary

of suffixes to assist the word form reducing process.

6.4.3 Thesaurus in the Browser Architecture

In TEXPROS, currently the thesaurus only provides its services for the topic

interpretation process. During this process, the thesaurus will receive the requests from

the topic interpreter. The thesaurus checks each term in the user's topic and replaces it by

the key term used by the system. When the thesaurus cannot find the key term for the

83

term in the query, it reports to the browsing controller. The browsing controller will then

request the interface controller for interacting with the user. At this point, the user joins

the resolution process and gets a chance to update the thesaurus. The process is shown in

Fig 6-31.

6.5 Summary

It is of utmost important to have better and precise understanding of the needed

information for the retrieval system. From the system point of view, it's a tradeoff

between the preciseness and the broadness of acquiring the information based on a user's

vague query. Therefore, to understand a user's information need is crucial for the

retrieval system. The knowledge base is an important component that can help the system

to achieve the reasonable compromise between preciseness and broadness. However,

currently our knowledge base provides mostly the facts but not rules. This needs to be

strengthened especially for the thesaurus. Synonyms, narrow terms, or word stems only

focus on the structural similarity of terms. For example, assume that Beth is the

chairperson of EE department. When a user wants to find a technical paper authored by

Beth, then it is possible that the paper can be retrieved if the user's query includes the

term Beth but cannot be retrieved if the user only knows that the paper is written by the

chairperson of EE department. That means it's very difficult for the system to identify

that Beth and the chairperson of the EE department are identical without using the

thesaurus. In our future research, we should investigate the solution for this problem.

CHAPTER 7

DOCUMENT RANKING

The browsing process is activated by users' query. Since the initial query normally does

not precisely describe users' intentions because of the inadequate or the incorrect

information provided by users [14, 25,47], the result returned by the browser may not

always be satisfactory. Therefore, there is an evaluation process which allows users to

review the result, gather some information about the system, and decide what's the next

step to be taken. From the system point of view, during the evaluation process, the

browser needs to provide all the information (such as the child folders and the parent

folders of a particular folder, the sub-type and super-type of a particular document type,

or the attribute type of an attribute) that might be useful for users. These can be done by

incorporating the semantic network architecture into the graphical user interface, along

with the functions offered by the browsing process controllers. However, in the initial

steps of the browsing session, the size of the network could be large and the number of

retrieved documents could be huge. Users could easily get lost in such a big information

jungle. We try to provide mechanisms for reducing the size of the network and the

volume of the retrieved documents.

The evaluation process has the functional capabilities of providing users with the

system knowledge and an environment for reviewing the relevant documents with respect

to the current topic. in TEXPROS, the system knowledge can be obtained from the

knowledge base. Every request for getting any system knowledge could be precisely

specified and therefore can be answered directly by the semantic networks. In this

84

85

chapter, we shall investigate the other problems, how to provide an environment for users

to examine the relevant documents, and then continue the browsing process.

In TEXPROS, various semantic networks (OP-Net, E-Net and 0-Net) are the main

components in the graphical user interface. We organize the returned documents by

categorizing them and associating them with the objects. In [10], Motro proposed an

important concept -- "access by values". People tend to remember the content of the

document, but a user can not query in a formal retrieval system unless he/she also knows

some attribute-value pairs. By providing "access by values", the system gives users an

intuitive way of retrieving the information. In our browser, we extend this concept by

considering its applications in an office automation environment. The values in "access

by values" are not restricted to those values referred to in the traditional database system.

In TEXPROS, these values can also refer to the name of a folder, a template, and an

attribute. This is a way to cover more relevant documents and improve the recall. High

recall also means that more documents are retrieved at the same time. This may create a

problem for users during the evaluation phase. Among these documents, users don't even

know where to start the evaluation process. A solution for this problem can be provided

by ranking the documents.

in TEXPROS, we created a new ranking model by taking into account the traditional

ranking model and the situation we encountered in the office automation environment. In

the following sections we shall introduce our ranking model.

86

7.1 Ranking Unit

Ranking unit is responsible for producing the ranking list for relevant frame instances

(documents) with respect to a given query in FIop or FIE. After the OP-Net or E-Net is

constructed, the network constructor allows the user to make a request to the ranking unit.

In this section, we first describe our ranking model and then we introduce the ranking

function.

7.2 Ranking Model

Various models of the information retrieval system [I, 48,49, 50, 51] have been proposed.

The Boolean model compares Boolean query statements with the terms, which represent

the document. The probabilistic model uses the probabilities of relevance for the

documents of the collection. The vector-space model represents both user queries and the

documents by a set of controlled terms (e.g. index terms) and computes the similarities

between them. Most of these models do not support the ranking ability. We take the

traditional Boolean model as an example [1]. There are only two valid similarity values, 0

and 1. In this model, both the document and users query are also represented by a set of

index terms. A. document is retrieved if the term set of the document. matches the term set

of the query. Therefore, this model cannot produce the ranking list for the relevant.

documents. The probabilistic model [34] does not improve the retrieval effectiveness,

since it is difficult to obtain the values for the term-occurrence parameters (e.g. term

dependencies) [I], the probabilistic model did not improve the retrieval effectiveness. In

the vector-space model, the document and the query are represented by the vectors,

which allow the system to compute the distance between them. The similarity between

87

documents and queries can then be defined by these distances. The vector-space model is

easy to use and productive. A shortcoming of this model is that any user has no way to

express the dependencies between terms that appeared in the document or the query. In

our system, we extended the vector-space model which allows us to express the

dependency of terms to some extent.

7.3 Ranking Model — TEXPROS Approach

In TEXPROS, a frame instance is a synopsis of an original document and is defined as a

set of attribute-value pairs [25, 26]. Each document will be deposited into folders of a

folder organization and be classified as a document type according to the document type

hierarchy. The folder organization and document type hierarchy can be treated as the

property of a document. We thus define the signature for documents.

Definition 7-1: (Signature for a document)

The signature of a document D, Sig(D)=[Fd,Td,Fi], where

1

. 	Fd is the set of folders where D is deposited;

2. TD is the document type of D, and

3. Fi is the frame instance corresponding to D.

For example, let. Sig(D)=[(CIS, PHD), MEMO, {(Sender, John),(Receiver, Tom),

(Subject, TA meeting), (Date, 9/11/96), (CC, CIS))]. Then there is a document D of the

memo type which is deposited in the folders, CIS and PHD. The information ohm the

content of a document is revealed by the frame instance in the signature.

We also need to define the signature for user's query. Given an original query Q,

applying the query rewriting and normalization processes, Q is rewritten as Q', which is

88

in the disjunctive normal form. Therefore, Q' can be represented by Uqi , where each qi

is in the conjunctive normal form. We call qi the And-Clause. For each qi, its signature is

defined as follows.

Definition 7-2: (The signature for And-Clause)

The signature of a And-clause qi, Sig(qi)=[Fqt,Tqt,Aq,V0], where

I. 	FQ is the set of folders appearing in qi;

2. TQ is the set of templates appearing in qi;

3. AQ is the set of attributes appearing in qi, and

4. VQ is the set of values appearing in qi.

We extract information about the sets of folders, templates, attributes and values

from each qi in Q and put them in the signature. Sometimes, some information is not

available. For instance, the And-Clause qi =(VALUE[D. Sanders] AND FOLDER[CIS])

does not contain any information about the document type and the attributes. For this

case, the information about the document type and the attributes in qi is insignificant. We

use "*" in Sig(qi) to indicate the don't-care values. Therefore, Sig(qi)=[{CIS }, *, *, {D.

Sanders)]. With the definition of the And-Clause, we now define the signature of the

query.

Definition 7-3: (The signature for the query)

Both the signatures of a document and the qi's appearing in a user's query are

structurally identical. This allows us to compute and to compare the similarity of these

89

two signatures, In the next section, we will describe how we can compute the similarity

between these two signatures. The similarity between a document and the user's query

can be computed, if the similarity between a document and each qi in Q is computed.

Therefore, it is possible to rank the relevant frame instances in our system.

7.4 Ranking Function

The ranking function is to compute the similarity between a document and the given

query, The query is represented in a format of the disjunctive normal form. The ranking

function needs to take into consideration the dependency between terms introduced by

AND and OR operators. Our approach is to use the signature to take care of AND

operator; then we take care the OR operator by summing up the scores of each And-

Clause, The document which receives higher score will have the higher rank. The

similarity is computed using the following equation,

Equation 7-1:

This equation consists of the following three parts,

1, Sim(Fd,Fqi)

Sim(Fd, Fqi) can be perceived as an equation for computing the similarity between the

query and the document based on the information revealed by the folders, The similarity

can he computed by counting the number of common frame instances associated with the

query and the document.

90

Let

be sets of folders, where n and m are the number of the folders in FQ and Fqt, respectively.

Let FI(Fqi) represents the frame instance set associated with the folder F. Then FL. and

FIo can be computed as follows:

If Fqit = Ø , then Sim(Fd, Fqt) is equal to 0, When Fqt ≠ Ø, Sim(Fd,Fqi) can be computed using

the following equation,

Equation 7-2:

In this equation, #A represents the number of elements in the set A,

2, Sim(Td,Tqi)

In the ranking function, the second contribution comes from the information about them

document types,

If Tqt= Ø , then Sim(Td,Tqi) is equal to 0, When Tqt ≠ Ø , we compute Sim(Td,Tqt by using

the following equation,

Equation 7-3:

Frame templates are used to represent various document types. Each frame template is

identified by a set of attributes. For instance, if we treat e-mails as a document type, then

libstudent3
StrikeOut

where: specified by the user is

91

it is reasonable to have SENDER, RECEIVER, SUBJECT, and CC as their attributes. In

this case, we say that the document type Td is an e-mail and it is identified by AD =

{SENDER, RECEIVER, SUBJECT, CC}.

Let Tqt ={Tqtp | Tqtp is a frame template, 1 < p < k} . be a set of frame templates specified by the

user's query.

Each Tqip can be identified by a set of attributes Aqtp Then Aqi can be represented as

follows:

3. Sim(Fid,Vqi))

In computing Sim(Fid, (Aqi, Vqt)), we take all of the values filled in the frame template into

consideration. In the vector model [1], the index terms form a vector space, In this vector

space, we use the distance between vectors to compute the similarity between a user's

query and documents, which are represented by vectors,

Each value filled in the frame template is treated as an index term. For each document, it

corresponds a set Vd of values. Vqt is used for values specified by a user. A weight is

assigned to each index term, In [1], the weight for an index term is computed as follows:

Equation 7-4:

In equation 7-4, V is an index term occurring in a document; N is the number of total

documents stored in the system, and n is the number of documents containing the value

V. Then, the common value set between the values occurred in document and values

92

V = {Vi | V, is a value,1 < i < r} , Vd = {Vi | Vj, is a value,1 < j <

s}, and

Vqi = {Vk | Vk, is a value,1 < k <

t}.

Then Sim(Vd, Vqi) can be computed as follows,

Equation 7-5:

7.5 Normalization

All components in the ranking function share a common characteristic. That is, if s

represents the range for the computed value for each components, then 0 < s < 1. The

purpose of the normalization process is to keep Sim(Fi, Q) within a reasonable range for

every different frame instance and query pair.

Assume p is the number of the And-clauses appearing in the query Q. Then the

normalized ranking value R can be derived as follows,

Equation 7-6:

It's apparent. that,

0

< R < 1 , The higher value R means that the document. Ft is more

relevant to the query Q,

In the remainder of the section, a complete ranking example will be given,

93

7.6 Example

Given a user's query Q and two exemplary frame instances (namely fl, f2), The

similarity between the query and each frame instance will be computed. The query and

the description of three frame instances are given in Fig 7-32, Assume that after the

object identification and the query rewriting processes, Q will be rewritten to Q',

(ATTRIBUTE(Sender) AND VALUE(Roy) AND TEMPLATE(Memo) AND

VALUE(TA Meeting) AND VALUE(CIS))

OR (ATTRIBUTE(Sender) AND FOLDER(Roy) AND TEMPLATE(Memo) AND

VALUE(TA Meeting) AND VALUE(CIS))

OR (ATTRIBUTE(Sender) AND VALUE(Roy) AND TEMPLATE(Memo) AND

VALUE(TA Meeting) AND FOLDER(CIS))

OR (ATTRIBUTE(Sender) AND FOLDER(Roy) AND TEMPLATE(Memo) AND

VALUE(TA Meeting) AND FOLDER(CIS)).

According to the ranking model, four And-Clauses can be derived.

qt = ATTRIBUTE(Sender) AND VALUE(Roy) AND TEMPLATE(Memo) AND

VALUE(TA Meeting) AND VALUE(CIS);

q2 = ATTRIBUTE(Sender) AND FOLDER(Roy) AND TEMPLATE(Memo) AND

VALUE(TA Meeting) AND VALUE(CIS);

ATTRIBUTE(Sender) AND VALUE(Roy) AND TEMPLATE(Memo) AND

VALUE(TA Meeting) AND FOLDER(CIS);

q, = ATTRIBUTE(Sender) AND FOLDER(Roy) AND TEMPLATE(Memo) AND

VALUE(TA Meeting) AND FOLDER(CIS).

Then the signature for each And-Clause can be represented as follows:

Sig(qt) = [*, {Memo), {Sender), (Roy, TA Meeting, CIS)];

Sig(q,) = [{Roy}, {Memo}, {Sender), {TA Meeting, CIS)];

Sig(q3) = 	{Memo), {Sender), (Roy, TA Meeting)];

Sig(q4) = [{Roy, CIS}, {Memo), {Sender), {TA Meeting)].

The signatures of two exemplary frame instances are represented as follows:

Sig(f1) = [{CIS, Roy), {Memo), ((Sender, Ng), (Receiver, Roy), (Subject, TA

Meeting), (Date, 10/15/97), (CC, Jason))];

Sig(f2) = [{EE, Smith), {Letter), ((Sender, Ng), (Receiver, Smith), (Subject, TA

Meeting), (Date, 10/15/97))].

Q = Sender AND Roy AND Memo AND TA meeting AND CIS

Frame instance : fl

Deposited in Folder : CIS, Roy
Document type (Frame template) : Memo

Frame instance : f2

Deposited in Folder : EE, Smith
Document type (Frame template) : Letter

94

Fig 7-32 The ranking example

95

The similarity between the document and the query consists of three components,

which compute the similarities in terms of folders, templates, and frame instances,

Considering the And-clause q3 and the frame instance fl. The similarity between the

document and the query can be computed using the following procedure.

Step 1: Compute Sim(Fd, Fqt)

In this example, Fd = Fn {Roy, CIS} and Fqt = Fq3 = {CIS}. Assume that the number of the

frame instances deposited in the folder Roy and CIS are 6 and 10 respectively, and the

number of the common frame instances deposited in these two folders is 5. According to

Equation 7-2,

Step 2: Compute Sim(Td, To)

The similarity between the document and the query is defined based on the common

attributes contained in the document type, For this example, since Td = Tn= {Memo} and

Tqt = To = {Memo} are of the same type, Therefore, the similarity is 1,

Step 3: Compute Sim(Fid, (Aqi, Vqt))

Assume that there are 400 documents in the system and 100 of them contain the value

Roy and 200 of them contain the value TA Meeting, Then the weights for the value Roy

and the value TA meeting are computed as follows:

Similarly, assume W(Ng) = 1,20, W(10/15/97) = 2, W(CIS)=1.02, W(Smith) = 2.50, and

W(Jason) = 2,6. Then using the Equation 7-5,

96

Table 7-2 The result of the computation of the similarity

q1 q2 q3 q4 Sim R

fl 1.46 1.96 2.46 2.32 8.20 0.68

f2
1.09 1.17 1.11 1.25 4.62 0.38

Step 4: Compute Sim(Fi, qi)

Sim(Fi, Q)= Sim(FD, Fqi) + Sim(TD, Tqi) + Sim(FiD, (Aqi, Vqi)) = 0.95 + 1 + 0.51 = 2.46.

Up to step 4, only computation of the similarity of one And-clause (q.i) is completed. The

computation of the similarity between Q' and fl requires computing the similarity of the

rest. of the And-clauses. The complete result of the similarity and the normalized ranking

value between q1 and the f1 and f2 are listed in Table 7-2. Since fl has a higher ranking,

it is closer to the user's request and should be considered first.

CHAPTER 8

CONCLUSION AND FUTURE RESEARCH

In this dissertation, we proposed a new infrastructure (called an OP-Net) for the browsing

process, Several of the major differences between an OP-Net and other networks are as

follows: Firstly, we simplify the semantic meanings of the links on the network. In OP-

Net, there is only one kind of link, and therefore users are easy to understand the relation

between two connected objects. Secondly, documents are not explicitly represented in the

network, and therefore the size of the network is small. This improves the efficiency of

the retrieving performance during the browsing process, Thirdly, since the size of the

network is small, instead of locating the relevant objects on the large static network, we

are able to construct dynamically the OP-Net based upon the arrival of the user's query.

Fourthly, every node of an OP-Net is a frame instance repository, which contains the

relevant documents, Since the whole network can be displayed, users need not to be

restricted in a short-sighted navigation when they evaluate the result, This makes the

examining process more powerful. Finally, to create the representative for the documents

and the query, we combine the Boolean query and ranking of the documents by

introducing the signatures of the document and the query. The ranking suggests to the

user which document should be examined first. In the near future, we intend to develop a

ranking function for frame instance repositories based on the ranking of their associated

frame instances,

At present, our research is focused on understanding the user's information need,

We are taking an approach which identifies the concepts revealed by the user's request

instead of only doing some string manipulation. We employ the concept matching

97

98

technique for understanding user's needs more precisely. Currently, we use a simplified

version of thesaurus, which is part of the system catalog. The thesaurus now features

synonyms and narrow terms which is presented in [14]. We intend to augment the current

thesaurus with the description of facts within the realm of application domains, and

inference rules which allows the system to derive facts by reasoning and convert it into a

knowledge base. The other issue is the problem of dealing with an empty result during

the browsing process. During the browsing process, a user refines continuously their

query and receives the immediate result generated by the system accordingly. However, it

is possible that the system returns an empty result. That means, there is no document

which is relevant to the current query. However, sometimes this is not the case, and in

fact, there might be relevant documents for a given query [52], The system needs to

analyze why the empty answer set is generated and give the explanation, possibly with

suggestions,

Future research will also focus on the document-based information retrieval instead

of the document retrieval, Research work on information mining in the original

documents and knowledge discovery from the original documents, mostly from their

unstructured part, needs to be conducted. How the system can automatically build the

knowledge base and how it can support the decision making are critical issues if we

intend to make the document processing system applicable and useful in many office

environments,

REFERENCES

1. G. Salton and M.J. McGill. Introduction to Modern Information Retrieval, NY,
McGraw-Hill, 1983.

2. W.B. Croft and R.H. Thompson. I3R: A New Approach to the Design of Document
Retrieval. Journal of the American Society for Information Science. Vol. 38, No. 6,
pages 389-404, 1987.

3. A. D'Atri and L. Tarantion. From Browsing to Querying. IEEE Data Engineering, Vol.
12, No. 2, pages 46-53, June 1989.

4. M.M, Zloof. Query-by-Example: A Database Language. IBM Systems Journal, Vol. 21,
No, 3, pages 324-343, 1977.

5. G. Ozsoyoglu and H, Wang. Example-Based Graphical Databases Query Languages.
Computer, pages 25-38, May 1993.

6. R.G, Cattell, An Entity-Based Database Interface. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, pages 144-150, Santa Monica,
CA, May 1980,

7. C. Herat. Spatial Management of Data. ACM Transactions on Database ,Systems, Vol.
5, No, 4, pages 493-513, December 1980.

8. M, Stonebraker and J, Kalash. TIMBER: A Sophisticated Relation Browser. In
Proceedings of the 8th International Conference on Very Large Data Bases, pages
1-10, Mexico City, Mexico, September 1982.

9. A. Motro, Browsing in a Loosely Structured Database. In Proceedings of ACM
SIGMOD International Conference on Management of Data, pages 197-207,
Boston, MA, June 1984,

10. A, Motro, BAROQUE: A Browser for Relational Databases. ACM Transactions on
Office Information Systems, Vol, 4, No, 2, pages 164-181, April 1986.

11. A, Motro, D'Atri, and L, Tarantino, KIVIEW: The Design of an Object-Oriented
Browser. In Proceedings of the 2nd International Conference on Expert Database
Systems, pages 17-31, Vienna, VA, 1988,

12. CJ, Van Rijsbergen. Information Retrieval. Boston, MA, Butterworths, 1979.

13. M, Hertzum and E, Fmk*. Browsing and Querying in Online Documentation: A
Study of User Interfaces and the Interaction Process, ACM Transactions on
Computer-Human Interaction, Vol, 3, No. 2, pages 136-161, June 1996.

99

100

14. Q. Liu and P.A, Ng. A Browser of Supporting Vague Query Processing in an Office
Document System. Journal of Systems Integration, Vol. 5, No. I, pages 61-82,
1995.

15. R.H. Thompson and W.B. Croft. Support for Browsing in an Intelligent Text Retrieval
System. International Journal of Man-Machine Studies, Vol, 30, pages 639-668,
1989,

16. A.S, Pollitt, End User Touch Searching for Cancer Therapy Literature—a Rule Based
Approach, In Proceedings of the 6th Annual International ACM SIGIR
Conference, Vol. 17, No, 4, pages 136-145, 1984.

17. I. Monarch and J, Carbonell, CoaISORT: a Knowledge-Based Interface, IEEE Expert,
2, pages 39-53, Spring 1987,

18. D,L. McCracken and R,M. Akscyn, Experience with the ZOG Human-Computer
Interface System. International Journal of Man-Machine Studies, Vol, 21, pages
293-310, 1984.

19. A, Celentano, M,G, Fugini, and S, Pozzi. Knowledge-Based Document Retrieval in
Office Environments: The Kabiria System. ACM Transactions on Information
Systems, Vol, 13, No, 3, pages 237-268, July 1995.

20. C,J, Crouch, D.B, Crouch, and K. Nareddy, A Connectionist Model for Information
Retrieval Based on the Vector Space Model, International .Journal of Expert
Systems, Vol, 7, No, 2, pages 139-163, 1994.

21. P,D, Kochevar and L,R, Wanger, Tecate: A Software Platform for Browsing and
Visualizing Data from Networked Data Sources, Digital Technical Journal, Vol. 7,
No, 3, pages 66-83, 1995.

22. A, Poulovassilis and M, Levene. A Nested-Graph Model for the Representation and
Manipulation of Complex Objects, ACM Transactions on Information Systems,
Vol. 12, No, 1, pages 35-68, 1994,

23. A, Schaffer, Z, Zuo, S, Greenberg, L, Bartram, J. Dill, S. Dubs, and M, Roseman,
Navigating Hierarchically Clustered Networks through Fisheye and Full-Zoom
Methods, ACM Transactions on Computer-Human Interaction, Vol, 3, No. 2,
pages 162-188, June 1996,

24. C,Y, Wang, Q, Liu and P,A, Ng, Intelligent. Browser for TEXPROS, In ISATED
Proceedings of International Conference on Intelligent Information Systems (IIS'
97) (edited by H. Adeli), IEEE Computer Society Press, pages 388-398, Dec 8-10,
1997.

101

25. Q. Liu and P.A. Ng. Document Processing and Retrieval: TEXPROS. Kluwer
Academic Publishers, Norwell, MA, 1996.

26. J,T.L, Wang and P.A. Ng, TEXPROS: An Intelligent Document Processing System,
International Journal of Software Engineering and Knowledge Engineering, Vol.
15, No. 4, pages 171-196, April 1992.

27. Z, Zhu, J.A. McHugh, and P.A. Ng. A Predicate Driven Document Filing System,
Journal of Systems Integration, Vol. 6, No, 3, pages 373-403, 1996.

28. C, Wei, J.T.L. Wang, X. Hao, and P.A. Ng, Inductive Learning and Knowledge
Representation for Document Classification: The TEXPROS Approach. In
Proceedings of 3rd International Conference on Systems Integration, pages 1166-
1175, Sao Paulo, SP, Brazil, August 1994,

29. C.Y. Wang, Q. Liu, and P,A. Ng, Browsing in an Information Repository. In
Proceeding of 2nd World Conference on Integrated Design and Process
Technology (edited by MM. Tanik etc), IDPT-Vo12, pages 48-56 ,1996,

30. P.H. Winston, Artificial Intelligence. Reading, MA, Addison-Wesley, 1992.

3I . E. Rich and K. Knight. Artificial Intelligence. NY, McGraw-Hill, 1991.

32. F, Hayes-Roth, Rule-Based Systems, Communications of the ACM Vol. 28, No. 9,
pages 921-932, September 1985,

33. M, Stonebraker and J, Kalash, TIMBER: A Sophisticated Relation Browser. In
Proceedings of the 8th International Conference on Very Large Data Bases, pages
1-10, Mexico City, Mexico, September 1982.

34. N, Fuhr, Integration of Probabilistic Fact and Text Retrieval, In Proceedings of the
15th Annual International ACM SIGIR Conference, pages 211-222, Denmark, June
1992,

35. C,J, van Rijsbergen, A New Theoretical Framework for Information Retrieval, In
Proceedings of the I986 ACM Conference on Research and Development in
Information Retrieval pages 194-200, September 8-10, 1986,

36. R, Fikes and T, Kehler, The Role of Frame-based Representation in Reasoning,
Communication of the ACM, Vol, 28, No. 9, pages 904-920, 1985,

37. D.D. Jaco and G. Garbolino. An Information Retrieval System Based on Artificial
Intelligence Techniques. In Proceeding of the ACM Conference on Research and
Development in Information Retrieval, pages 214-220, 1986.

102

38. A.R. Kaye and G,M. Karam. Cooperating Knowledge-Based Assistants for the Office.
ACM Transactions on Office Information Systems, Vol. 5, No, 4, pages 297-326,
October 1987.

39. L. Kerschberg. Expert Database systems: Knowledge/Data Management Environments
for Intelligent Information Systems, Information Systems, Vol, 15, No. 1, pages
151-160, 1990.

40. A.R. Rao and R. Jain. Knowledge Representation and Control in Computer Vision
Systems. IEEE Expert, pages 64-79, Spring 1988.

41. A. Shepherd and L, Kerschberg. PRISM: A Knowledge Based System for Semantic
Integrity Specification and Enforcement in Database Systems,

42. P. Shoval. Principles, Procedures and Rules in an Expert System for Information
Retrieval, Information Processing & Management, Vol. 21, No. 6, pages 475-487,
1985.

43. P,J, Smith, S.J, Shute, D. Galdes, and M,H, Chignell. Knowledge-Based Search
Tactics for an Intelligent Intermediary System. ACM Transactions on Information
Systems. Vol, 7, No, 3, pages 246-270, July 1989.

44. S,K,M, Wong and W, Ziarko, A Machine Learning Approach to Information Retrieval,
In Proceeding of the ACM Conference on Research and Development in
Information Retrieval, pages 228-233, 1986.

45. E, Lim and V, Cherkassky. Semantic Networks and Associative Databases. IEEE
Expert, pages 31-40, August 1992.

46. R, Rada and 13,K. Martin, Augmenting Thesauri for Information Systems. ACM
Transactions on Office Information Systems. Vol. 5, No, 4, pages 378-392,
October 1987,

47. Q, Kong and 0, Chen, On Deductive Databases with Incomplete Information. ACM
Transactions on Information Systems, Vol, 13, No, 3, pages 354-369, July 1995,

48. A, bookstein, A Comparison of Two Systems of Weighted Boolean Retrieval—Journal
of the American society for Information Science, pages 275-279, July 1981,

49. G. Salton, A Wong and C,S, Yang, A Vector Space Model for Automatic Indexing,
Communications of the ACM, Vol, 18, No, 11, pages 613-620, November 1975,

50. K,S, Jones. A Statistical Interpretation of Term Specificity and its Application in
Retrieval, Journal of Documentation, Vol. 28, No. 1, pages 11-21, March 1972.

103

51. C.T. Yu and G. Salton. Effective Information Retrieval Using Term Accuracy.
Communications of the ACM, pages 135-142, Vol. 20, No. 3, March 1977.

52. F. Corella, S.J. Kaplan, G. Wiederhold, and L. Yesil. Cooperative Responses to
Boolean Queries. In Proceedings of the 10th International Conference on Very
Large Data Bases, pages 77-85, Singapore, August 1984.

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract (1 of 2)
	Abstract (2 of 2)

	Title Page
	Copyrights
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment
	Table of Contents (1 of 4)
	Table of Contents (2 of 4)
	Table of Contents (3 of 4)
	Table of Contents (4 of 4)
	Chapter 1: Introduction
	Chapter 2: Network Transformation
	Chapter 3: Browsing Process
	Chapter 4: The Service Providers and The Storage System
	Chapter 5: System Architecture
	Chapter 6: Knowledge Base
	Chapter 7: Document Ranking
	Chapter 8: Conclution and Future Research
	References

	List of Figures (1 of 2)
	List of Figures (2 of 2)

