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ABSTRACT 

ROBUST FUZZY CLUSTERING IN OBJECT RECOGNITION AND CLASSIFICATION 
OF RELATIONAL DATA 

by 
Sumit Sept 

Prototype based fuzzy clustering algorithms have unique ability to partition the data while 

detecting multiple clusters simultaneously. However since real data is often contaminated with 

noise, the clustering methods need to be made robust to be useful in practice. This dissertation 

focuses on robust detection of multiple clusters from noisy range images for object recognition. 

Dave's noise clustering (NC) method has been shown to make prototype-based fuzzy clustering 

techniques robust. In this work, NC is generalized and the new NC membership is shown to be a 

product of fuzzy c-means (FCM) membership and robust M-estimator weight (or possibilistic 

membership). Thus the generalized NC approach is shown to have the partitioning ability of FCM 

and robustness of M-estimators. Since the NC (or FCM) algorithms are based on fixed-point 

iteration technique, they suffer from the problem of initializations. To overcome this problem, the 

sampling based robust HAS algorithm is considered by extending it to fuzzy c-LMS algorithm for 

detecting multiple clusters. The concept of repeated evidence has been incorporated to increase the 

speed of the new approach. The main problem with the LW approach is the need for ordering the 

distance data. To eliminate this problem, a novel sampling based robust algorithm is propbsed 

following the NC principle, called the NI.,S method, that directly searches for clusters in the 

maximum density region of the range data without requiring the specification of number of 

clusters. 

The NC concept is also introduced to several fuzzy methods for robust classification of relational 

data for pattern recognition. This is also extended to non-Euclidean relational data. 

The resulting algorithms are used for object recognition from range images as well as for 

identification of bottleneck parts while creating desegregated cells of machine/ components in 

cellular manufacturing and group technology (GT) applications. 
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CHAPTER 1  

INTRODUCTION 

1.1 Purpose of Research  

Clustering techniques are an hum-Want part of many engineering and scientific 

applications. They have been extensively used in pattern recognition and computer vision 

tasks. Research in classification has laid significant emphasis on the development of 

variety of fast and efficient algorithms that cwt recognize clusters of various geometric 

shapes (e.g. lines, planes, circles, ellipses etc,). Key aspect of these clustering methods is 

their potential to obtain a neat and compact mathematical shape description of a 

geometric prototype. The input data to such algorithms is the spatial information of 

geometric objects, described by two-dimensional intensity or three dimensional range 

image. Range data are often produced in the form an array o.f numbers, referred to as a 

range image. The numbers quantify the distances from the origin of a global coordinate 

frame to object surface within the field of view along rays emanating points on a regularly 

spaced grid. However, in a real application, the data is often contaminated with noise and 

outliers. Therefore clustering algorithms need to be robust to useful in practice. One 

emphasis of this research is to formulate new methods for robust recognition of geometric 

models from noisy two dimensional intensity images as well as three dimensional range 

images. Second, these robust algorithms have also been validated in the relational 

domain where the data is represented by mutual similarity or dissimilarity of objects. 

The results of this research are applicable to areas like computer aided graphic 

design (CAGD), rapid prototyping, computer aided inspection (CAI) through coordinate 

measuring machine (CMM) for quality control in manufacturing industry or reverse 

1  
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engineering. The applications of robust classification in relational data space is often 

required in areas like management and social science. The application of these robust 

algorithms in group technology and specifically to solution of desegregated cells and 

identification or bottleneck parts in cellular manufacturing has been discussed in detail in 

this research. 

1.2 Background and Motivation  

Identifying the features that promote good representation is the key to the progress in 

computer vision [28. 44]. Although the choice of representation obviously depends on 

the context, task and the form of image data, There is a traditional dichotomy between 

object- and viewer-centered representations hi computer vision [28, 44]. While object-

centered representation relies heavily on an explicit three-dimensional description of the 

object of interest in some world coordinate frame; viewer-centered schemes generally 

depend on possible abstraction of collection of images of objects as the implicit 

description of its shape[44, 79]. 

Since recent approaches may store photometric, color. or texture information from 

image data, the whole body of viewer-based techniques are referred as "appearance-

based" methods [79]. These techniques impose a structure on the data by first extracting 

features into aspects (or "view class") or by explicitly identifying invariants of these 

features. These approaches differ in the type of features used and the criteria utilized for 

grouping or clustering the features into invariant sets [79]. A relatively new approach 

getting lot of attention is the physics-based approach. This approach typically models 

shape as a mechanical system submitted to forces that reflect material properties as well 
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as smoothness and image constraints. However the difficulty of these models due to 

involvement of complex differential equations makes them hard to use in abstract visual 

recognition task [79]. 

Constructing an object description from image data requires solving of two 

mutually complementary problems: first, the object of interest moist be isolated from the 

background (figure / ground discrimination), Second, reliable features must be found and 

clustered together into significant structure (based on geometric connectivity) [28]. Due 

to unavailability of explicit three-dimensional information for segmentation in top-down 

manner: appearance-based techniques rely substantially on bottom-up feature grouping 

and figure / ground discrimination. Bottom-up segmentation is intrinsically very difficult; 

which limits the general applicability of appearance-based methods [79]. 

Most obiect-centered approaches rely on one type or another of shape primitives. 

Primitives as diverse as parametric surfaces, volume patches, generalized cylinders, point 

or curve sets with various invariant properties that have been used to support recognition 

[14, 15. 17. 20, 52, 53, 54. 55, 57. 58]. These approaches can be classified according to 

the degree of generality of the underlying primitives and the method of detection. 

Primitive shapes are explicitly defined by numerical parameters. As prototypes with 

more parameters are used, it may take fewer of them to describe the complicated object. 

It may take hundreds of triangles or quadric patches to capture a shape, which can very 

well be approximated by a handful of super quadrics or algebraic surfaces. More 

generality can be achieved by a representation that applies to a wide variety of shapes 

while still capturing the intended object structure. Considering this, the application of 

quadric surfaces is more sensible  [3,4, 44, 79]. 
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The primary emphasis of this research is on the primitive based robust object 

detection through fuzzy clustering. Selecting the fuzzy clustering method has certain 

merits. The range image of an object is a large array of data points at specific temporal 

location and the algorithm attempts to agglomerate them together to fit the clusters 

representing the shape of the prototype [3, 71]. fuzzy clustering is an ideal tool in this 

regard [4. 8]. Fuzzy partitioning the data into few components with each containing one 

cluster, simultaneously extracting the reliable features and combining them together Into 

a significant structure for concurrent detection of multiple clusters are key features of the 

fuzzy clustering technique [21, 22, 23, 24, 25, 26. 27, 31]. The segmentation capability 

of fuzzy clustering is a built-in feature, hence only the solution technique to detect the 

actual shape needs to be inter-linked with prototype representation. However the number-

of clusters needs to be specified a priori, Prototypes include multiple shapes such as 

cylinders, spheres, cones and planer surfaces, from noisy intensity and range image data, 

typically found in mechanical and manufacturing engineering environment. Recent 

robustification of fuzzy clustering [18, 26, 55] has enabled the method to identify the 

good clusters from background noise. By robustness we mean that the performance of a 

technique should not be affected significantly due to small deviations from an assumed 

model and it should not deteriorate drastically due to noise and outliers [37, 38. 46, 47, 

65. 66]. Fuzzy clustering technique is a prototype based fixed point iteration scheme. 

which requires initialization of the prototype at the start. This initialization issue often 

complicates the robustness aspect of the algorithm. 
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1.3 Fuzzy Clustering Techniques 

The Fuzzy c-means (FCM) algorithm [4] is one of the earliest fuzzy clustering methods 

proposed that is generally used to detect blob type shapes. They are based on objective 

function optimization technique and generate a fuzzy partition of the data. It is the most 

widely used standard algorithm that might be changed to different variations by using 

different norm inducing matrices for distance measurement in it. Bezdek et al [4, 6, 8, 

13] generalized FCM by allowing the prototype to be linear manifolds of arbitrary and 

different dimensions. The Fuzzy c-Shells (ITS) algorithm is a novel generalization of 

FCM that uses hyper spherical shells as cluster prototypes. it has proved to be a great 

success as a method for detecting and representing circular and elliptical sub-structure in 

two dimensional data-sets [22, 31]. Based on the "shell" concept a series of algorithms 

have been developed, Fuzzy Ellipsoidal-Shell Clustering algorithm [17, 52], Adaptive 

Fuzzy C-Shell Clustering algorithm [20], Fuzzy C Quadric Shells Clustering algorithm 

[53, 55, 56] etc. 

Fuzzy clustering techniques partition data point based on membership values 

between 0 and 1, and this value indicates the degree to which a point belongs to different 

cluster. The clustering methods with hard memberships partition a point with only one of 

two values, either 0 or 1. In other words, a point can only be classified to one cluster. 

Certainly, the hard clustering method can be taken as a special case of fuzzy method. 

Following the notations and definitions of Bezdek [6] the basic Fuzzy c-Means algorithm 

can be described as follows: 

The FCM minimizes an objective functional Jm,: Mf c x Rcp  ---> R+  
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Jm(U,v) = ∑c ∑n(uik)m(dik)2 	
i=1 k = 1 

where 

M jc is the fuzzy partition space 

RCP are the cp-tuples of the real numbers. 

U є M fc is a fuzzy c-path lion of data set X 

(v=v1,v2,..vc)) is the cluster center vectors 

(dik is given by 

(dik)2 =||xk-vi||2                                                            (1 .2 ) 

 

  

and ||●|| is any inner product induced norm on RP and m є [1,∞) is the weighting 

exponent or the fuzzifier. 

In the above equations, index i denotes one each of c number of clusters, p the dimension 

of R space from which the data is derived, and index k one each of n number of data-

points. It can be realized that Jm is El squared error clustering functional, and solutions 

that minimize Jm are least-squared error stationary points of Jm. The basic procedure to 

find the solution is Picard iteration, consisting of following steps. 

FCM Algorithm  

Fix c, 2≤c<n; choose any inner product norm; fix m , 1≤ m<∞  initialize the 

membership matrix U(0)

. 

 

Calculate c fuzzy cluster centers v, as vi = ∑nk=1(uik)m xk /  ∑nk=1(uik)m                                                          (1.3) 

 
 

Update membership function U(i+1)  as 

 



 |U(i+1) - U(i) | < ε (1.5) 
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uik = 1 /[ ∑c( dik /d jk )2/(m-1)]                                                                             (1.4)  
j=1 ] 

 

Compare the change in the membership values using a convenient norm; stop if 

Else i = 1+1 and. return to 2. 

This algorithm tends to find clusters that are spherical in shape. Although it may 

not be directly used rot plane or quadrlc surface detection in an image space, it may be 

used in a range image segmentation [31]. Although there are numerous new development 

of FCM. the family of fuzzy clustering methods follow the same fixed point iteration 

scheme. 

1.4 Fuzzy Classification of Relational Data  

While clustering of object data using fuzzy technique has been a very active field of 

research. clustering of relational data has received much less attention. This may in part 

due to the fact that most engineers and mathematicians usually deal with object data, and 

rarely encounter purely relational data. However in fields like management and social 

sciences, relational data are frequently encountered. The relational data comes from 

measure of similarity or dissimilarity between objects, and in some cases actually based 

on object data [7, 34, 40, 41, 42, 49]. For example, in problem of building of a supply 

warehouse, one often considers the distance from various plants as a basis for generating 

relational data [73]. On the other hand, when the data is purely relational, and does not 

easily fit into any metric axioms, one cannot efficiently apply any object based clustering 

method, and must employ a relational clustering technique. For n objects, the relational 
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data is usually a n x n matrix (if the relational measure Rij = Rji then only a lower 

triangular portion of n x n matrix is required. In such cases, there is no explicit 

knowledge of the "location" of objects in the real space, but such information may be 

implicit in relational matrix, and could be made explicit through use of techniques based 

on multidimensional scaling, albeit at a significant computational cost. The concept of 

noise or outlier is hard to visualize in relational data space. Currently there is no robust 

fuzzy classification algorithm available to handle the noise and outliers in relational data. 

This problem has been explored herein details, 

1.5 Robust Classification in Group Technology  

A problem from group technology and cellular manufacturing has been identified to 

demonstrate the application of robust clustering method. In group technology or cellular 

manufacturing. one needs to assign n parts and p machines into c fixed cells in order to 

form disconnected and self-sufficient cells. Typically it is a classification problem. Since 

it requires simultaneous detection of multiple cells, fuzzy clustering is an ideal candidate 

for solution of this problem. Often, some exceptional parts require processing by 

machines from more than one cell and thereby create bottleneck in production planning 

and necessitates inter-cell material flow. Industrial engineers often recommend 

identifying these parts and handling them as special cases, like subcontracting {59j. Here 

in this research it is shown how NC method can automatically identify these parts as well 

as correctly classify the rest of the parts. 
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1.6 The Outline of Thesis  

The thesis has seven chapters, primarily dealing with the development of robust 

clustering algorithms for detection of various geometric cluster sub-structures. Secondly, 

robust classification of relational data has been explored along with its application to 

identify the noise and outliers in group technology problem. 

Chapter 2 describes how Dave's noise clustering algorithm has been generalized so 

that each point can take different value of δ , It is shown that NC membership is a 

product of two terms, original FCM membership, and the generalized possibilistic 

membership. 

Chapter 3 concentrates on the robust least median square (LMS) algorithm and 

extends it to fuzzy c-LMS method for simultaneous detection of c clusters. The number 

of minimum random sampling necessary has been predicted probabilistically. Further the 

concept of 'repeated evidence in sampling' like RHT has been incorporated along with 

fuzzy c-LMS algorithm for faster and more precise estimates. 

Chapter 4 introduces the new concept of sampling based noise clustering algorithm. 

The new robust algorithm, noise least square (NLS), has been formulated by combining 

the good features of other robust fitting and sampling based algorithms like NC, LMS and 

RHT. All results are illustrated with examples. 

In chapter 5, considers the application of robust fuzzy clustering to relational data. 

Several fuzzy models of relational data has been surveyed and extended with the Dave's 

noise concept to handle noise and outliers in data. A new algorithm has been formulated 

to handle non-euclidean relational data. 
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Chapter 6 illustrates how we can apply the fuzzy model and noise clustering, 

concept in group technology problem of machine-component cell formation and 

identification of the exceptional parts and bottle-neck machines. 

Chapter 7 describes the overall summary of current dissertation and presents the 

direction of future research for robust clustering and possibility of new applications, 

Appendix A describes the 'hybrid' subroutine in the Miupack library of non-linear 

Functions. 

Appendix 13 shows algebraic equivalence of objective function of FANNY and 

FCM algorithm. 

Appendix C shows a few intermediate steps for derivation of memberships for non-

Euclidean relational data. 



CHAPTER 2 

GENERALIZED NOISE CLUSTERING 

2.1 Introduction  

Although the minimization of least squared error has been a popular technique to fit 

models to data for many decades, It is well known that this approach is not very 

robust[37, 38, 46. 47, 66]. Since the classical fuzzy c-means (FCM) clustering algorithm 

[4,6] and many of its derivatives are based on the minimization of least squared error, 

they are also not very robust against noisy data, In particular, the presence of outliers in 

the data may drastically affect their performance. The noise clustering (NC) algorithm 

has been proposed to overcome this major deficiency of the FCM algorithms [18, 25]. It 

has been shown to be very successful in detecting a variety of cluster shapes in noisy[18, 

21, 23, 24, 25]. in this chapter, the NC algorithm is revisited. Several issues regarding 

the NC algorithm are considered. First, it is argued that the original NC algorithm [18] is 

made restrictive due to the basic definition of the distance of a feature vector from the 

noise prototype. It is not necessary to make this distance, called the noise distance, a 

constant value. Second, it is shown that the individual membership generated by the NC 

algorithm is comprised of a product of two terms, the first of this is the ordinary FCM 

membership, while the second one is the robust component of membership. This 

component is also comparable to the membership in the possibilistic clustering (PC') 

algorithm [55, 58], as well as the weights in robust M-estimators [23, 24]. Next, it is 

shown that based on this fact, the NC algorithm can be considered a C-class 

generalization of the PC algorithm. 

11  



 

∑ci=1 uij < 1.                                         (2.2)   
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2.2 Noise Clustering Technique  

Dave [18] considered noise to be a separate class, and represented it by a prototype that 

has the same distance, d, from all the feature vectors. His definition was: 

Noise prototypye:  Noise prototype is an universal entity such that it is always at the 

same distance from every point in the data-set. Let β* be the noise prototype, and 

x, be the point in feature space. Then the noise prototype is such that the distance 

d(xj,βi) which is the distance of point xj  from β*, Is a constant value δ . 

This definition does not specify what the distance is, but it states that all the points 

have equal apriori probability of belonging to the noise cluster. Although this makes 

sense, it does not allow different clusters to view the outliers in different ways. This 

makes the NC algorithm somewhat restricted. The membership u*j  of a data point xj  in 

the noise cluster is defined as,x u*j 

= 1- ∑c i=1uij (2.1) 
 

Here C is the number of clusters and ui j  denotes the grade of membership 

(belonging) of point in the i th fuzzy subset of X. Since (2.1) is used to define the 

membership xj  in the noise class, the usual membership constraint of FCM algorithms is 

not required. Thus, the membership constraint for the good clusters is effectively relaxed 

to 
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This allows noise points to have arbitrarily small membership values in good 

clusters. The objective function is given as 

	  

J(B,U; X) =  ∑ci=1 ∑Nj=1(uij)md2(xj,βj)+∑Nj=1δ2ij(1-∑ci=1)m (2.3)  
 

 

 

In (2.3), d 2  (xj,βi ) is the distance from 8 feature point xj  to the prototype 

The above functional can be optimized with respect to the prototypes and the 

memberships in a manner similar to FCM functional. The resulting equations for the 

prototype parameters are very similar, however, the equation for the memberships is 

different, and is given as,+ 

uij  = (1/d2ij)1/(m-1) / ∑ck=1(1/d2ij)1/(m-1) +(1/δ2ij)1/(m-1) ( 2 .4 ) 

 

 
  

In the above, dij is equivalent to d2 (xj βi) It can be easily seen that the 

membership for FCM does not have the second term in the denominator, and thus the NC 

memberships are different. 

2.3 Generalizing the Noise Distance  

The first modification one can make to the noise clustering technique is by allowing the 

noise distance to be different for different feature points. This simply means that each 

point views the noise prototype in a different perspective. This makes better sense 

because points belonging to different clusters or different regions in the space may have 
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different proximity to noise cluster prototype. To understand the effect of the noise 

distance, consider the simplified case of a single cluster (C = 1) and the fuzzifier m = 1, 

representing the hard partition. Then, all the points having the distance from the 

prototype less than the noise distance are classified into the good cluster, while all the 

points having the distance from the prototype more than the noise distance are classified 

into the noise cluster. Thus the noise distance becomes a switching criteria. For m ≠ 1, 

the case is fuzzy, and one can visualize the points belonging to the cluster in terms of its 

fuzzy membership. In such cases too, the noise distance becomes a switching criteria. but 

the switch is fuzzy. When C ≠  1, the situation becomes much harder to visualize, but the 

effect is essentially same. 

According to the first modification, the noise distance is defined as δ j , so that each 

point j has a different noise distance. This is a rather simple and obvious generalization. 

but further examination reveals that it eliminates some of the criticism of NC approach as 

compared to other techniques such as possibilistic clustering. The possibilistic clustering 

technique has been compared in some detail with the NC method in [24], and the two 

were shown to be identica1 for the case of a single cluster (C = 1). Although there are 

disadvantages of PC technique when C ≠ 1, as will be discussed later [2], when C = 1, the 

PC method [55] has one advantage that it allows the noise distance (or the possibilistic 

distance) to be different for different clusters. However, since in this chapter the noise 

distance is allowed to be different for different points, this original disadvantage of the 

NC can be eliminated. Before discussing this further, the basics of the PC technique are 

presented. 
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The approach, called the Possibilistic C Means (PCM) algorithm [55], was 

introduced to overcome the relative membership problem of the FCM by specifying the 

objective function as follows. Here, relative membership means that the membership of a 

point in one cluster is related to its membership in other clusters.+ 

 

J(B,U; X) =  ∑ci=1 ∑Nj=1(uij)m  + ∑ci=1η1∑Nj=1(1-uij)m 	(2.5) 

 

 

In (2.5), the ni are suitable positive numbers. The first term in (2.5) requires that 

the distance from the feature vectors to the prototypes be as low as possible, whereas the 

second term forces ui j  to be as large as possible, so that it avoids the trivial solution. The 

membership due to the PCM functional can be found by the following. 
uij = 1/1+[d2(xj,β1)/η1]1/(m-1)                                                                  (2.6) 

 

 

It can be easily observed from (2.3) and (2.5) that when C = 1, both NC and PCM 

are identical for δ2  = η. When C ≠ 1, the PCM has a different η, for each cluster i. In 

case of the original NC technique, there is only one noise distance, however in its 

generalized version, the following equation allows for utilizing a different noise class for 

each cluster through setting up δj  for each j such that 

δ2  = η1,  

for i such that max 1 ≤ i ≤ C{uij}                            (2.6a) 

In the above, η1, can be chosen in the manner similar to PCM clustering, see for 

example [24]. In fact, they may be computed in a robust way as proposed in [24]. The 
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above modification allows for having one noise class per cluster through such 

specification of δ,  as the algorithm progresses. 

As can be observed from equation (2.6), the PCM membership is independent of 

other points and/or clusters, and depends only cm the parameter η, . This makes the 

resulting memberships "possibilistic", as they just show the degree of typicality. As 

mentioned before. when C both NC and PCM are identical. When C > 1, however, 

there are many subtle and not so subtle differences between these two methods. The 

major difference is that in NC, there is one noise class, while PCM can be interpreted as 

having C noise classes. Although it is preferable to have one noise class per cluster as in 

PCM, it is easy to recognize that since the PCM functional in (2.5) is separable in C 

independent functional, it is equivalent to C separate NC functional, each looking for a 

single cluster. Moreover, without proper initialization in PCM, it is quite possible to 

obtain C identical clusters (all finding the same single cluster) as was observed and 

reported in [24], thus missing out the other C-1 clusters. In this light, the number of 

clusters C is somewhat irrelevant and arbitrary for the PCM algorithm, and it may be 

more meaningful to use it for C = 1, Despite the number of arguments and "insights" 

presented in [58]. the fact remains that possibilistic C-means is a misnomer, and it should 

just be called possibilistic clustering, and be considered a mode seeking algorithm, best 

suitable for finding a single highest density cluster. However, in that disguise, it is really 

a special case of NC algorithm. This can be further examined by deriving a new 

interpretation of the noise membership. 
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Further insight or new interpretation of noise membership can be gained by 

recognizing the appearance of the harmonic mean distance in equation (2.4). One can 

compute harmonic mean distance, η,  for each feature point xj over all C clusters as, 

h

2j = 1 /∑ci=1 1/(dij)2                                                                                     (2.7) 

  

This distance, as defined above, Is not. 8 true harmonic distance, because it is not 

divided by the number of clusters C. However, hi the rest of the chapter, this modified 

definition will be used. As defined here, It has a very unique relation to the ordinary 

Euclidean distance of a point from all the clusters. For instance, when there is only one 

cluster. this distance is same as the distance of the point from the cluster center, but when 

there are multiple clusters, it tends to attain a value closer to the smallest of all the 

distances of the point from cluster prototypes. This property is further addressed in the 

next section. When the above definition Is substituted in (2.4), the following is obtained. 

uij  = (1/d2ij)1/(m-1) / ∑ck=1(1/d2ij)1/(m-1) +(1/δ2ij)1/(m-1)                                                    (2.8) 

This can be expressed as a product of two terms as follows,                           

uij  = ( (1/d 2ij )1/(m-1) /(1/h 2ij )1/(m-1) )((1/h 2j )1/(m-1) /(1/h 2j )1/(m-1) +(1/ δ 2j )1/(m-1) 

 

(2.9) 
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In the above, the first term is same as the membership of FCM, while the second 

term can be shown to be a possibilistic membership through rearrangement as below, 

uij  = (FCMuij)(1/1+(h2/δ2)1/(m-1))                                                 (2.10)   

The first term is denoted to be FCM membership by a pre-superscript FCM. The 

second is a possibilistic membership with the harmonic mean distance, ηi , as the basis 

for the distance in evaluating the membership, This equation is comparable to equation 

(2.6) of membership for PCM. The pre-superscript for the second term is PCM* to 

denote its similarity with PCM, but the "*" indicates that it utilizes the harmonic mean 

distance (defined as in this chapter) as its basis. Thus finally, the noise membership can 

be written as, 

NCuij=FCMuijPCM*uij (2.11) 

 

The above shows that the NC is a generalized algorithm for which both the FCM 

and PCM are its special cases, 

The PCM algorithm has been called a mode seeking algorithm [58], and in contrast, 

the FCM is termed as a partitioning algorithm. Such description is very true, however, it 

does not make the disadvantages of PCM go away. The major disadvantage is that 

without good initialization, which ironically is usually provided by the FCM, the PCM 

may have a difficult time reaching a desired solution. In some cases, it may even find 

same clusters many times, and miss the other clusters. As discussed elegantly in [58], 



J (FCM) = ∑Nj=1 h2j                                                               (2.12)   
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this could happen for a number of reasons, including improper choice of fuzzifier, or ηi , 

or more commonly when there is one dominant cluster along with other less prominent 

clusters. When the latter occurs, it may be a blessing in disguise in some cases. However, 

for many other clustering applications, such a result is highly undesirable. For most 

cases, one needs the PCM's power of partitionIng, coupled with the PCM's power of 

mode seeking. When viewed in the light of equation (2.11), the NC has a power to 

provide both these abilities simultaneously. Use of NC, however, may not allow one to 

obtain the membership values which represent typicality or possibility, but there are a 

number of simple ways to overcome that, This will be addressed later in this chapter. 

Regarding the interpretation of equation (2.10, the only question remains is that of the 

use of the harmonic mean distance versus the Euclidean distance in PCM membership 

computation. Next, that issue is examined. 

2.4 Harmonic Mean Distance  

Harmonic mean distance has many interesting features in FCM type clustering. It is the 

distance that gives FCM its partitioning capability, and in fact, it may be used to eliminate 

the membership term altogether from the FCM functional through an alternate 

formulation {39], such that the FCM functional is modified as follows, 

In the above, the harmonic mean distance is defined as in equation (2.7). so that the 

summation on the right hand side is not divided by C as would be the case if true 



20 

harmonic distance were used [39]. Implicit in the above equation is the fact that the 

fuzzifier m is used in computing the memberships, see [39] or [51] for details. 

Figure 2.1 Show two clusters and harmonic distance  

When (2.12) is compared with a single cluster case (or the ordinary minimization of 

least squared error fit), one can notice that the harmonic distance takes the role of the 

Euclidean distance in the ordinary least squared error minimization. This fact was used 

by Kim etal. [51] to derive a least trimmed squared error clustering algorithm, where the 

trimming was performed on harmonic mean distance, rather than the Euclidean distance 

as in a single cluster case. One can gain useful insight into the harmonic mean distance 

by considering a simple, one dimensional, two class problem. Consider Figure 2.1, where 

a one dimensional data-set is shown with two clusters. In this figure, all the distances are 

"squared"  distances. It can be seen clearly in this figure that the distances from either left 

or right clusters, plotted as curves, become very large as one moves away from the data 

point, while the harmonic distance, shown as open circles, is always closer to the smaller 

of the two distances. In possibilistic clustering, the outliers as well as the points 
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of the two distances. In possibilistic clustering, the outliers as well as the points 

belonging to other clusters are treated as noise points for computing the membership of a 

particular cluster, while in NC, only the real outliers would be treated as noise points 

when computing the possibilistic component of the membership using the harmonic mean 

distance. It is interesting to observe that for computing the membership in right cluster, 

the points belonging to left cluster will not be treated as outliers. However, real outliers 

(not shown in this figure) will have a high harmonic mean distance, and they will be 

treated as outliers by both the clusters. it is true that if ones objective is to only allow for 

the memberships to represent the degree of typicality. such as what is realized by the 

PCM technique. then the use of harmonic distance as shown here is not proper. It is true 

that the PCM technique achieves what it planned to achieve, which is eliminating the 

problem of relative membership so that the sum of memberships across the classes is not 

one. However. in doing that. it really throws away any proper meaning to the value of C. 

as that becomes arbitrary, Basically, it turns out that if one wants the typicality as in 

PCM. then one loses the partitioning capability of FCM, and vice versa. Although it may 

seem from the previous paragraph that the NC approach cannot have the degree of 

typicality in its possibilistic component of membership. A clever manipulation of the 

definition of allows one to mimic the effect of PCM in that component. 

Before that is investigated, we consider Figure 2.2, where for those same clusters. 

the FCM and PCM component of memberships are plotted, where the value of m is 

chosen as 2. and the δ are selected through equation (2.6a), with ηi values of 5 and 9 

respectively for the left and right clusters. 
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Notice in this figure that use of two different 1 to effectively obtain two different 

levels of values for δj gives rise to different width of the PCM membership component 

around two cluster centers. As seen in the plot, the FCM components behave quite 

Figure 2.2 Plot show two clusters and memberships 

predictably, while the PCM component only takes care of outliers, and not the so-called 

typicality of individual clusters that the PCM algorithm is concerned with. Having said 

that. one can further exploit the power of equation (2.11), by noticing that the PCM 

component can be a function of both j (i.e. the point), and i (i.e. the cluster). So far, 

because of the straight forward definition used from equations (2.6a) and (2.10), the PCM 

component is made same for both the clusters for each data point, as evidenced by a 

single curve in Figure 2.2 One could further generalize the NC technique by specifying 

the noise distance which is a function of both i and j such that the PCM component is also 



   

δij2   = ηi

(

FCMuij )                                 (2.13)   
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Figure 2.3  Show two clusters and new PCM memberships.u 

a function of both i and j in term PCMuij . This can be done by defining the noise distance 

as δij for the put-pose of evaluating the NC membership. It is noted that equation (2.4) 

and its subsequent modifications are riot valid if δij  is used as a noise distance in the 

original functional of equation (2.3). However. for the sake of derivation. the noise 

distance is considered to be independent of both i and j (and also the cluster-point 

distances). but for the sake of membership computation it may become a function of both 

i and j (and also the cluster-point distances). This type of dual treatment is standard 

practice for example in computing weights in weighted least squared approach. In this 

respect. one can even specify a value for each δij  such that 

where PCMuij is exactly same as in equation (2.6), thus the NC algorithm can be 

made to behave like a generalized combination of FCM and PCM algorithms. Such 

version would have a combination of partitioning and mode seeking capabilities. Thus it 



NCuij =FCMuijPCMuij (2.14) 
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is a true C-class extension of PC approach. This can be illustrated by re-plotting Figure 

2.2 as Figure 2.3, to show how PCMuij  for two clusters look for all the data points. 

Substituting above in (2.10) gives the following for the NC membership, 

Once again, it is reminded that the above plot, and equation (2.14) ate obtained by 

treating δij  independent of i and j during optimization. If the noise distance is considered 

a function of both i and j during optimization, one needs to modify the NC functional in 

(2.3) to the following. 

J(B,U;X) = ∑Ci=1 ∑Nj=1(uij )

md2 (xj,βi)+∑Ci=1 ∑Nj=1δ2ij(1-∑Ci=1)m                         (2.15) 

 

 

 

Based on the above. the following is obtained for the NC membership. 

uij  = (δij2/dij2)1/(m-1) / ∑Ci=1 (δkj2/dkj2)1/(m-1) (2.16) 

	

The above equation is very similar to equation (2.4), but one cannot simplify it 

directly to  obtain equation (2.14) in conjunction with (2.13). It shows, however, that the 

power of typicality in (2.16) comes through scaling of the distances by δij  and the power 

of  partitioning comes from the first term in the denominator. Thus the generalized NC 

membership has benefits of FCM as well as PCM. 
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2.5 Results and Conclusion 

The original NC algorithm considered noise to be a separate class, and represented it by a 

prototype that has the same distance δ, from all the data points. Although this concept 

has been successful in developing a class of NC algorithms to detect a variety of cluster 

shapes in noisy data, use of the same constant value of the noise distance δ, for all the 

feature vectors in the data-set makes it somewhat limited in its scope. 

Generalization of the NC technique is achieved through relaxing the original 

definition of the noise distance. By letting the noise distance be different for each data 

point, and even for each cluster. a variety of interesting effects can be obtained, It is also 

shown that the original NC membership is a product of two terms;  one which is the FCM 

component responsible for data partitioning, while the other is the possibilistic 

component that achieves a mode seeking effect, and imparts robustness. in this light. it is 

shown that the NC technique is a generalization of the possibilistic clustering technique. 

The aspect of robustness are not discussed here, but is obtainable from reference [21, 23, 

24. 25] where a detailed discussion that shows the similarities between NC technique 

with robust statistical techniques such as M-estimators [37, 38, 46, 47, 66]. While the 

discussion in [23. 24] consider only the NC for a single cluster, it is easy to see from 

equation (2.11) or (2.14) that the NC membership is a product of the ECM term and a 

robust term that can be equivalent to a robust M-estimator. Comparison with the PC 

technique shows that the NC can be considered its generalization, and it can allow one to 

combine the partitioning capability of FCM with the typicality of PCM. 

The issue of needing partitioning capability versus mode seeking capability is 

debatable, and perhaps one can find equally strong arguments for either case. In practice, 
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however, the nature of application and the desired outcome would decide which one to 

select. One should realize that PC is a combination of C independent functional having 

no connection to each other, and thus should be viewed as a single cluster seeking 

algorithm. While that may be an advantage that one does not need to know the exact 

number of clusters, it becomes susceptible to many other problems related to single 

cluster seeking algorithms, such as the problem of scale and initialization and/or need for 

validity measures for removal of clusters. For instance, the PC is very similar to the 

potential function approach, which suffers from extreme sensitivity to the choice of scale 

parameters [24]. It is useful to know that the NC approach combines both partitioning 

and mode seeking traits, and may be a better overall choice. Also. if one wants it to be a 

purely mode seeking, single cluster finding algorithm, then too it works by letting C = 1, 

and in that form it inherits all the good as well as bad qualities of the PC algorithm. 

Moreover, when used in a manner similar to equation (2.13) and (2.14), it becomes an 

extension of an ordinary robust M-estimator to a C-class M-estimator. In fact, this 

version can be called a Fuzzy C-Robust-M-estimator clustering algorithm. Through a 

judicious choice of δij ,  one can produce a variety of  M-estimators. 

The last issue is regarding the appearance of harmonic mean distance in the PCM 

component of basic NC membership (see equation (2.10)). This is indeed a fortunate 

occurrence. because this distance has a great significance in terms of the extension of 

single cluster robust estimators to multiple clusters. As mentioned before, Kim etal. [51] 

were perhaps first to exploit this to achieve a rather easy extension of robust Least 

Trimmed Squared (LTS) technique [66] to the case of multiple clusters, and thus avoided 

the usual paradox related to the fraction of contaminated data, and the upper limit on 
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breakdown point of robust techniques. This paradox occurs for multiple clusters, because 

in the traditional sense, all the points outside a cluster, including the points in other 

clusters are considered to be outliers, and in that sense, any robust method should have a 

breakdown point of greater than 50%, which is considered a theoretical maximum [661. 

In case of NC. the harmonic mean distance allows one to discriminate between true 

outliers and good points that belong to one of the clusters. In particular, if the scale 

of each cluster is estimated properly, than the NC will discriminate between outliers and 

good points even when the clusters differ much in size. It is noted that just like η, in the 

original PCM, selection of proper δij  is crucial and nontrivial for NC, Albeit somewhat 

less sensitive due to the built-in partitioning capability. 



CHAPTER 3 

FUZZY C-LMS CLUSTERING ALGORITHM 

3.1 Introduction 

Cluster analysis deals with the problem of partitioning the data-set into a number of 

subsets. In partitioning an unlabelled data-set, there have been two fundamental 

strategies are in practice, namely (a) search for the evidence of a good cluster (b) fitting 

the clusters based on minimization of squared error. The search based clustering 

techniques, include Hough transform (HT) [45], generalized HT [1], randomized HT or 

commonly known as (RHT) [77], often converting a difficult global detection problem in 

image space into a more easily solved local peak detection problem, within limited 

search, in parameter space to collect evidence of a good cluster. 	The resulting 

computational and storage complexity is directly proportional to the accuracy of results 

and the number of parameters of the cluster to be detected. While fitting the clusters by 

minimizing the squared errors, e.g. the family of fuzzy clustering algorithms [4, 6, 8,  13, 

18 etc.], are based on objective function minimization is truly C-class fuzzy 

generalization of squared error criterion following a fixed point iteration scheme. 

Algorithms of both types are highly sensitive to noise and outliers. 

Robustness against noise and outliers is an indispensable characteristic for any 

clustering algorithm to be useful in practice [24, 25]. Since noise and outliers are 

common phenomenon in both real world sensors and low-level image processing 

algorithms, so robust clustering techniques are strongly mandated for real world 

applications. Of late, several robust .estimators were developed in statistical field being 

able to handle noise and outlier problem in the context of single cluster with considerable 

28 
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success [37, 38, 46, 47, 64, 65, 66]. According to Huber [46, 47], robustness of an 

estimator from statistical view point should have following characteristics:- (1) a 

reasonable good efficiency at the assumed model, (2) small deviations from the assumed 

model should alter the performance of the algorithm by small amount and the larger 

deviations should not cause a catastrophe, (3) should reject those outliers beyond a finite 

limit, (4) the estimate should be resistant against small fluctuation of intermediate 

residual values, (5) the largest fraction of contamination that can be tolerated by the 

estimator, commonly known as breakdown point, should be high. The objective is to 

describe the structure of the cluster best fitting the bulk of the data and identify the 

deviating data points ("outliers") and highly influential data points ("leverage points"). 

New clustering algorithms are therefore inspected in the perspective of the robustness. 

Here we show that the robust LMS method [65. 66] can be upgraded to detect concurrent 

multiple clusters to produce noise-resistant fuzzy c-LMS algorithm or FCLMS method. 

3.2 The Robustness of LMS Algorithm  

There has been a variety of robust algorithms available in robust statistics for detecting 

single cluster in digital image [37, 38, 46, 47, 64, 65, 66]. Robustness of an estimator is 

enhanced by reducing the influence of the outliers and noise data. The Least Median 

Square (LMS), Repeated Median (RM), Andrews's, Tukey's and Theil's median based 

estimators and their extensions are some of the search based robust algorithms with break 

down point between 0.25 to 0.5 [65, 66]. Of all robust estimators with their relative 

merits and demerits, the LMS has the highest break-down point value of 0.5. This 

indicates, if data has up to 50% of outliers and noise, the algorithm can still estimate 



correctly. As we know, the theoretical maximum breakdown point achievable is 0.5 since 

if more than half of the data are bad, they may "conspire" to look better than the correct 

fit. LMS algorithm achieves its robustness by considering the median value of the 

residual, since the median of any ordered distribution always lies most dense region of the 

data and the addition of one extreme outlier shifts ate "middle" order statistics move in 

that direction. LMS does not reject arty outlier while evaluating the median residual. 

The quantitative information about robustness is provided by influence curve IC or 

influence function IF and derived quantities. It is more precisely called as 'influence 

curve' since most of the robustness informiation are derived from its shape. The 

contamination by one extreme residual has at the most a small finite influence  √π/2 or 

Figure 3.1  Influence Function of Least Square, LS and Least Median Square. LMS 

1.253 on the median of residual distribution Figure 3.1 [Figure 1, page 90, 66]. Therefore 

irrespective of the position of the outlier the worst (approximate) influence which a small 
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amount of contamination of fixed size can have on the value of the estimator is very low. 

So the median is less sensitive against extreme outliers. However Influence Function' 

has a jump at zero indicates median is sensitive to 'wiggling' near the center of 

symmetry. So the estimates based on minimization of median of the residuals are robust 

fit to majority of the data but sometimes not very accurate. The LMS is computationally 

very expensive since there is no closed form expression for LMS estimator. Theoretically 

it is a process of exhaustive sampling over the whole data-set. 

The objective function for EMS is expressed as 

Minimize  (med i=1,...,n  ( yi  — xi  θJ ) 2) 	(3.1)  

The trial estimate for which this value is minimal is the LMS solution of 0J for 

one cluster. How many times we need to search over the data space so that the probability 

of the found bandwidth being correct depends upon the number of parameters (p) of the 

cluster to be estimated.. If we consider all possible subsatnples of size p , there are 

in total. As we can understand Cpn  increases very fast with n and p . hi fact the 

computational complexity is inherent to all known high breakdown point regression or 

search based robust estimators. Here Rousseeuw [65, 66] suggested to perform a certain 

number of random selections, such that the probability P that at least one out of in 

subsamples or picked points is "good" is almost 1 [66]. He expressed this P assuming 

that n/p is large, as 

P = 1- (1-(1-ε)p+1 )

m 

                                           

(3.2) 
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where the data-set contains a fraction of s of outliers and noise and p is the degree of 

freedom i.e. the number of parameters of the cluster to be estimated. By requiring that 

this probability must be near 1, one can determine m for any given value of p and 

e has been tabulated by Rousseeuw [66]. Clearly if we try to evaluate a reliable estimate with 

probability or 0.995 while detecting the line p = 2) from a data-set that has say 0.5 

fraction outliers, we will require at least l I picking. This is the suggested minimum trials 

necessary for detecting one cluster. Obviously with the increasing number of parameters 

p of the cluster to be estimated and the fraction of contamination e, the number of 

random sampling m requiring to detect one good cluster with a probability of 0.95 or 

above rises astronomically. If data contain Multiple clusters, conventional LMS neither 

been able to handle the data-set nor suggests the number of sampling should we consider. 

It is therefore necessary to upgrade LMS to tackle c-clusters where c is the number of 

clusters. The number of minimum sampling necessary for that is also discussed [27]. 

3.3 Fuzzy c-LMS (FCLMS) Clustering Algorithm  

Simultaneous detection of c clusters by multiple partitioning of the dataset is one of the 

key features of fuzzy clustering. However the segmentation into multiple clusters is 

obtained here by the weighted averaging method where the squared membership is the 

weight. This contradicts with the LMS approach, where the desired value is obtained 

from the middle position of an ordered distribution. It may be possible to formulate the 

objective function of fuzzy C-LMS algorithm, altering the FCM functional by substituting 

ei distance, where the median appears as the solution of cluster parameters as in [50]. if 

we follow the fixed point iteration scheme, the objective function needs to be 



∑ci=1 uik = 1                                          (3.5) 
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differentiated w.r.t. the cluster parameters. This leads to derivative of a distance function 

f (x) = |x| w.r.t.x.  It is not defined at x = 0 since f (x) is not continuous at x = 0 . So 

the fixed point iteration scheme is not appropriate here. We therefore apply a global 

search based technique through nutty partition or data to formulate the objective function. 

3.3.1 Least Median Square in tinny Clustering  

Strong points of fuzzy clustering is Its ability to partition the data set into multiple high 

density regions, as well as detect multiple clusters simultaneously. To get a better 

understanding of Dizzy clustering let us analyze the fuzzy c-means or FCM algorithm [4. 

6]. The mathematical formulation of FCM algorithm is the minimization of the weighted 

sum of the squared distance between the points and the cluster prototypes are minimized. 

Following the notations of Bezdek [el, 6], the minimization functional is 

	 

J(U, v) =  ∑ci=1 ∑nk=1(uik )m(dik )2                                                        (3.3) 
 

since in our examples line is consider as prototype, here the distances are defined as 

 

(dik)2=yk-mixk-ci)2/(mi2+1)                                  (3.4) 

 

 

with irk  and xk  being the coordinate of point k (k=1 through n number of points), and 

m1 	the cluster prototype parameters (i =I through c). Here m is the exponent, I <m< 

a, and uik  is the membership of point k in cluster i . The following restriction apply to 

the membership uik  
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If the memberships uik  are hard, i.e. 0 or 1, then the exponent m>1 has no  meaning, 

hence m =1 is chosen. The membership value is 1 when an object belongs to  a class, and 

0 when it does not. The memberships can also be fuzzy, i.e. It can also  take the value 

between 0 and 	If the memberships are fuzzy, the following equation  for uik can be 

obtained using lagrange multiplier technique [4. 5] is given below: 

 uik = dik2/(1-m)/∑cj=1d2jk/(1-m)                                                                 (3.6) 
 

Careful observation of the above formulation shows that the constraint imposed by the 

equation (3.3) causes the bias due the outliers which affects the prototype parameters 

estimate. Since the sum of the memberships of a point k must be equal to unity, means 

that the point must be assigned to one of the classes. Thus the outliers must be identified 

and treated separately from good data as an objective of robust clustering. As we know 

the fuzzy clustering technique creates a c-partition of the data while minimizing the 

objective function. The local minima is achieved if individual clusters have been 

detected with its associated noise. 

Hathaway etal. [39] reformulated this FCM algorithm by substituting equation 

(3.6) into (3.3) and assume m=2. we obtain) J(U,v)FCM = ∑Nk=1(∑cj=1d2jk/(1-m))1-m  = ∑Nk=1h2k (3.7) 

 

 
 

 
 

where h2k is the modified harmonic mean of the distances d2jk , i =1,...,c of a point k . 

Since c is a constant, it can be ignored in (3.7). Let us investigate the characteristics of 

modified harmonic mean of the distances (h2jk) of a point k. The harmonic mean-

distance of a point is defined as 
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h2k = 1/ ∑cj=1 1/ d2jk      (3.8) 
 

 

It is observed. the value of h2k  Is always smaller than the smallest d2jk for 1,....,c. If a data point  

data point k  is very close to only one duster and far away from others, then  h2k value  is 

marginally less than its distance from the nearest cluster d2knearest,k  Therefore all good 

data, 

 

close to any cluster will have smaller h2k value, may be even zero if on the 

prototype, compared to the outliers and noise, as  those points are usually far away from 

all the clusters. Consider the example in Figure 3.2. with three clusters and 25 noise 

points in the inter-cluster space, There are 150 points in data. If we assume, all three 

Figure 3.2  Three blob clusters constituted of 125 points and added 25 noise points 
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clusters has been correctly detected. the fraction of noise and outliers ε , in the ordered h2k 

 

distribution will appear at the far end, as evident in the Figure 3.3. Even the h2k  of 

outliers and noise are relatively much less than its distances to the nearest cluster. Figure 

3.4 and figure 3.5 shows the 3-dimensional plot of  h2k   and r, along with N. Due to the 

scale of the data. the 	profile has flattened out in figure 3.5. This indicates that h2k  of 

all points gives a measure of proximity of the pints to its nearest cluster. 

Figure 3.3  The ordered h2k distribution of 150 points of the Figure 3.2 

It may be observed that if a point k is close to ac cluster i the h2k is approximately  same as 

d2jk. To get a better understanding of the relation between h2k and d2jk , it may also  be 

useful to investigate the following function 
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 f(d 2ik )=(d 2ik - h 2k ) = d 2ik (1-1 /d 2ik  / 1/ h2k ) = d2ik (1-uik )                    (3.9) 
 

 

Since uik ≤  1 so (3.9) is always positive, The point k locat ed far away from the cluster 

i, the distance d 2ik , is high and the corresponding membership uik is low; overall f (d 2ik 

)  

 

will be high. For points close to the clusters, the reverse occurs. This observation will be 

used in the formulation of objective function of fuzzy C-LMS algorithm in later section. 

3.3.2 Objective Function of Fuzzy c-LMS Algorithm  

Considering the data set has as high as 50% contamination, the median h2k  will 

correspond to the limit beyond that the k will correspond to a noisy data point and all 

good data will have h2k  less than the median value. From this observation it may appear 

logical to conclude that minimizing the median h2k should be the objective of fuzzy c-

LMS algorithm. However, for less than 0.5 contamination in data set, it will not partition 

good and bad data in the ordered h2k distribution and the above minimization may detect 

only c - c1  clusters containing 50% 'good' data. Since the points corresponding to cl 

clusters may have h2k above median are free to have any higher value, as a result cl 

clusters may remain undetected in spite of the objective of minimum median h2k  has been 

achieved. We can overcome this problem by trimming a fraction from the beginning so 

that the median value is at the boundary of good and bad data of ordered h2k  distribution. 

The trimming percentage depends on the degree of contamination ε , can be found out as 

t = 2 * (0.5 - ε ) and is an unknown to this problem. 



J( (U,v)FCLMS =  min(h2k:med )t (3.10)  

	Here, h2J:N ≤...≤ h2 N:N are the ordered harmonic mean distances w.r.t  all the feature 

points  xj:N. The (h2k:med

) 

is the median harmonic mean distance after trimming away t % 
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Therefore we can formulate the objective function of fuzzy c-LMS as given by 

 

of data from the beginning. The key Issue in this algorithm is therefore the 

determination of the trimming ratio t so that the minimum median harmonic mean 

distance is at the boundary of 'good' data and noise points. Since h2k  is function of 

cluster parameters we can apply a strategy of globally searching for the clusters to achieve 

the minimum of the above functional. Since the exact value of t  needs to be evaluated 

by gradually increasing the trimming fraction. It is therefore necessary to use some type 

of validity criterion to measure the 'goodness of fit' of the data to the clusters at each step 

and complete the cycle of gradual increase of t  in order to determine optimum trimming 

fraction for best performance. But this technique should not be recommended as a good 

practice. Since we are actually solving the same problem repeatedly at each step of 

trimming, results in high computational burden. More over the optimum trimming 

percentage t is based on validity criterion. Decision based on only validity measures is 

questionable because a single validity criterion is not appropriate for all kinds of data set. 

To eliminate the problem of repeated estimation of the same clusters we propose an 

alternate strategy, to partition the data set into c regions through fuzzy segmentation and 

compute the minimum median residual (i.e. LMS) in each zone and formulate the 

objective function accordingly to sum them over all partitions. Since the partition has 
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already been established it is practical to considered only those points within each 

partition and compute the regular LMS estimate only with in each region. The 

partitioning of the data set is obtained by assigning the point k to that partition i for 

which (d2k — h2k) is minimum and subsequently minimize the median value. This has 

similarity with a -cut of the i th partition and where no link exists of the data among 

regions 051. The objective function of Wm C-LMS algorithm can be written by slightly 

altering the minimization criterion as 

J(U,v) = min∑ci=1med(min(d2ik 

- 

h2k))k=1..Ni (3.11) 

 

 

where Ni  is the number of data points in the partition i.   

The distribution of f(ik) = (d2ik 

- 

h2k ) is shown Figure 3.4. It is observed, if all the 

estimates are picked correctly in one iteration. the ordering of this function of distance of 

point k shows a behavior of arranging the points assigned to region i at the top and its 

associated noise points at the far end. The correct estimate of all cluster parameters will 

ensure minimum value of the above functional. We therefore globally search for the c 

clusters by sampling c x p points at a time. Now the question is how many sampling is 

at least necessary to find all the clusters simultaneously. 

3.3.3 Number of Minimum Random Sampling (m)  

Obviously it is computationally very expensive to achieve the global minimum by fuzzy 

C-LMS algorithm In many applications this would become unfeasible. In such cases we 

can perform certain number of random selections, such that the probability (Pr ob ) that at 

least one of the m iterations will result in detection of all good clusters simultaneously is 
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almost 1. An iteration is "good" c samples of p points each correspond to all the correct 

clusters. According to Dr. Dhar [27], assuming n/p is "large" from the theory of 

multinornial and multivariate hyper geometry the probability ( P) of detecting c clusters 

in one iteration can be expressed as 

P = Cg1p....Cg1p    /  Cnc x p (3.12) 

 

If g1  represents the number points in cluster i then for large n if g1/n converges to a 

constant we may approximate the above expression as [27] 

P≈ (cp)!/(p!)c  (g1 /n)P (g2 /n)P... (gc /n)P                                             (3.13)   

If oh the clusters has nearly equal number of points we can approximate g/n=(1-ε)/c.  

Therefore the probability of detecting c dusters at least once in m iterations can be 

expressed as... 

Pr ob = 1 - (1-(cp)!/(p!)c(1-ε/c)cp)m                                    (3.14) 
 

 

based on the number of clusters c the degree of contamination c and the number of 

parameters of the cluster p we can determine m. Clearly if p =1 corresponds to 

equation (3.2). In fact we tabulated the minimum iterations m required for p 5 5, with ε  

between 0.1 and 0.5 and c=1, 2, 3. This permits us to avoid the extensive search and 

reduce computations substantially while data contains up to 50% noise. As we can find 

the number of iterations computed from equation (3.11) becomes tremendous for large p 

arid c , at least in the most extreme case of ε=0.5. In fact after a certain stage, the 

computation time become astronomically high and is therefore impractical to calculate. 
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This problem has been solved in a faster approach based on gathering repeated evidence 

of the clusters as described later in a later section. 

Table 3.1a  Number m of random iterations, determined in function of p , c and ε  by 

requiring that the probability of at least one good sampling 95%. Number of cluster c=1 

intension 
 Fraction     ε  of contaminated data 

P 0.1 0.2 0.3 0.4 0.5 
1 2 2         3 4 5 

2 2 3                        5 7 11 

3 

3 

5 

8 	13 23 

4 3 6 11 22 47 

5 4 

8 

17 38 95 

Table 3.1b  Number m of random iterations, determined in function of p c and ε  by 

requiring that the probability of at least one good sampling 95%. Number of cluster c=2 

Dimension 
f 	. 

 	Fraction Fraction ε of contaminated data    	 
P 0.1 0.2 0.3 0.4 0.5 
1 6  8 11 16 23  
2 11 18 32 61 126 

3 17 36 80 204 613 
4 24 64 189 651 2804 
5 34 112 430 2012 12464 

Table 3.1c Number m of random iterations;  determined in function of p , c and ε  by 

requiring that the probability of at least one good sampling 95%. Number of cluster c =3 

Dimension Fraction ε  of contaminated data 

P 0.1 0.2 0.3 0.4 0.5 
1 17 25 38 61 107 
2 45 92 205 519 1552 
3 90 261 869 3482 17969 
4 162 668 3319 21107 188196 
5 179996 1.0533E+06 7.80603E+06 7.88192E+07 lnf 
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3.3.4 The Fuzzy c-LMS Method  

We assume c  number of clusters being detected from a data-set containing edge data 

points within m times of sub-sampling. The data-set is assumed to contain c fraction of 

contamination, The distance of point k to to cluster i is d2ik,  its harmonic mean distance is 

h2k and the fuzzy membership of the point to cluster i is 

uik . 

 

(1) Pick c x p number of distinct different points randomly; ensure the set of points 

were not picked in earlier iterations. 

(2) Calculate the parameters of c clusters, p picked points for each cluster, 

(3) Calculate all d2ik of each point k from c estimates of clusters and the h2k . 

(4) Calculate h2k of N points, create fuzzy partition by minimum f(ik) = d2ik - 

h2k for i=1,..,c clusters. 

(5) Order all points k = 1.. 

Ni 

 in each partition i according to f(ik) = d2ik - h2k  — 

and sum the median values for all c regions. 

(6) Sample iterativly 'maxiter' times, the 'maxiter' obtained from Table 3.1. 

(7) While sampling, the estimates produce the minimum value of equation (3.10) 

are the correct results. 

3.4 Blending FCLMS with RHT  

To get a better understanding the role of repeated evidence in random sampling let us 

analyze the randomized Hough transform or RHT algorithm [77]. RHT is a kind of 

probabilistic method, aims at gathering evidence of a good cluster directly from image 

space. It randomly picks p points in image space for an p -parameter curve, and maps 
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them into one point in the parameter space at each step of the iterative procedure by 

solving p joint equations. Since any RHT related algorithm is a local search based 

estimation process, uses a parameter data set with each element containing both a real 

valued vector and an integer score to implicity represent the parameter space. RHT 

detects one cluster at a time, wily based on repeated evidence level (nt) of cluster 

parameters within closed tolerance δ . For convenience, if we assume there are c 

clusters within an image without any outlier and p parameters to be detected for each 

cluster and number of data points n, total possible number of sub-sampling required to 

extract all clusters is 

NRHT=(cp+(c-1)p+...+2p+1p) x nt = ∑ci=1 (i)p x nt (3.15)  

where nt  represents the threshold number fur searching a possible cluster. In [31] a , has 

been suggested as 2 or 3. 

The number of computations required to can be obtained from the above equation 

(3.14) is astronomically high. In presence of noise and outliers the number of mapping 

for extracting all clusters is given by 

NRHT=((c+1)p +cp +...+3p +2p) x nt = ∑ci=1 (i)p x nt +2  

 

 

where all the noise points may be considered another cluster and nt  represents the 

threshold number for searching a possible cluster. Here n, should be larger than 2 or 3 as 

degree of contamination increases. Clearly the number of computations become even 

higher. It may be observed that to apply RHT we need the apriori information of the 

values of two parameters, tolerance δ  and threshold nt. Both these parameters are very 
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important for accurate estimation of the cluster parameters, are difficult to evaluate before 

hand with out any earlier information of the data set. Consequently the usefulness of this 

extensive computation in practice is questionable. It is therefore necessary to 

probabilistically predict the limited iterations necessary to come up with a list of 

distinctly different possible estimates that will include all the correct ones. also has 

several other limitations. The problems encountered in clustering through RHT are. 

ability to search only one cluster at a time leads to higher computations for repealed 

search in data-set for multiple clusters and validating the detected cluster. 

In sampling based fuzzy c-LMS cluster detection algorithm, while randomly 

picking the points in each iteration It is hard to predict the location of picked points 

relative to the cluster position and orientation. In fact it is impossible to know while 

sampling whether the picked points are 'good° or belong to the noise and outliers. Since 

the fraction of 'good' points belonging to the clusters are generally more or at least equal 

compared to the that of the outliers, it is more likely that while sampling, the picked 

points will represent the correct estimate (at least within close tolerance δ ) repeatedly 

assuming that the dataset is large enough and there is no repetition of previous sampling. 

If there is biasing noise resembling the cluster shape, it may generate the evidence of 

spurious clusters. However, as we increase the number of random sampling, it will 

exhibit more evidence of the correct estimates. In fact if we conduct an exhaustive search 

by sampling all the points in all possible combinations, the correct estimates will have the 

maximum number of evidences. 

The tolerance δ  needs to be specified apriori, is introduced primarily to reduce 

storage of estimates. The repetition of evidence is directly related to the value of δ. It is 
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difficult to select without any information about scale of data. It also depends on 

goodness of fit of the points assigned to the clusters. The problem of specifying tolerance δ 

 is similar to the problem of specifying the 'noise distance δ'  in noise clustering [18

,26]. In fact both the approaches eliminate the Influence beyond a certain distance δ  

while estimating the cluster parameters, while RHT does it in parameter apace but noise 

clustering requires it in the Image space, If we consider clusters with parameters p =1, 

i.e. image space and parameter space are identical, then this δ  in both RHT and noise 

clustering are equal. Essentially.  noise clustering tries to fit a prototype that contains 

maximum number of points within a pre-specified distance δ  from the estimate. As 

shown in [24, 25], noise clustering algorithm can be reformulated as a robust M-estimator 

[46]. 	Similarly the evidence gathering technique can enhance robustness, while 

estimating through sampling, by elimination of those estimates beyond a distance δ  in 

the parameter space. In fact the averaging of those candidates in parameter space within a 

distance δ  should be a better estimate of the cluster. 

As we know in fuzzy C-LMS the number minimum sampling is as shown Table 

3.1c is very high, we therefore propose an optimal blending of the concept of repeated 

evidence while searching for the correct clusters there by reduce the number of sampling. 

Since all those cluster parameters with higher evidences are more probable to be the 

correct estimate therefore one combination of such probable estimates of clusters, results 

in minimum sum of median f (ik) in all partitions, is concluded as the correct estimates 

of the clusters. Since the performance of this algorithm rely heavily on probable 

estimates obtained through repeated evidence while sampling, it may be wise to use RHT 

alone. But here we can eliminate the requirement of specifying the fixed threshold nt  
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since only high evidence level estimates are considered as possible candidates. These 

estimates can be grouped based on clustering algorithm. 

3.4.1 Modified Fuzzy c-LMS Method  

(1) The first two steps are same as fuzzy c-LMS algorithm of sampling the cluster 

parameters, 

(2) Increase the counter by comparison With the previous estimates' of the cluster 

parameter values, if they are within tolerance limit, as a measure of the collected 

evidence. 

(3) One of the c cluster found at least 3 times while searching iteratively is 

considered as possible estimate. 

(4) Complete picking iteratively 'max' times, the 'max' depends upon and generate 

the list of possible estimates of c clusters. 

(5) Try all possible combination of sets amongst the probable estimates of the 

clusters and apply fuzzy c-LMS algorithm. The one combination, that results in 

minimum value of sum of median f(ik) in all partitions, is concluded as the 

correct estimates of the c clusters. 

3.5 Experimental Results and Discussion  

To test the algorithm we considered line as a prototype. Since a line can be described by 

only two points. therefore a few outliers and noise may "conspire" to generate more 

evidences for a fictitious line, is more than just possibility. From [7, 10] it is known that 
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if the data-set contains only one line the LMS estimate will be in the middle of a 

narrowest 'strip' or a 'band' that will contain 50% of the data points. Instead of 

performing a minimization of median residual as in LMS, here we minimized the median 

f(ik)=d2ik - h2k  in each partition i. Figure 3.6 shows a noisy data with three clusters al 

lines and the algorithm works fine, The data contain 30% random noise and estimates 

found within 56 sub-sampling. Also the Figure 3.7 shows contaminated data of three 

clusters but here noise is 50%. The correct estimates were found in 95 sampling. 

In order to increase the probability from 0.95 to 0.995 that the estimates has been 

found at least once in m iterations. obviously the value of m will rise tremendously. So 

if we keep on increasing this probability although this results in more computations. it 

will be highly probable that the estimates are closer to the global minimum. In fact if the 

sampling has been performed following all possible combinations of the data points i.e. Cpn  

it will guarantee that the global minimum of the objective has been reached. But 

Cpn  usually results in a very large number as n and p increases and is not at all useful in 

practice. However if the precision of estimate is more critical in an application and the 

computation time is not a constraint. this exhaustive search process should not be 

inappropriate. 

This is a search based algorithm, so it does not involve the problem of good 

initialization. Since the correct estimate will have one cluster of good points along with 

its associated noise in each of the c components of the partition, minimization of the 

objective in each component will ensure estimation of each cluster perfectly. It is 

important to mention that component wise the number of good points in the cluster 

should be more or at least equal to its associated noisy data. Otherwise the 'bad' points 
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may appear to look like a good estimate. Therefore the algorithm achieves component 

wise breakdown point of 0.5 and thereby can tolerate 50% noisy in the whole data set. It 

will find it difficult to estimate if component wise noise exceeds above 50%. However 

an improvement is suggested by setting the partition so that more noise points are 

assigned to the larger cluster• thereby smaller clusters will have less noise points 

associated with it. One way to reduce this problem is to incorporate the concept of 

collecting repeated evidence of the clusters, similar to RHT, while sampling. While 

sampling. there is no way to estimate the position of the picked points. Since the fraction 

of good points is more in the data set. obviously there will be more sampling from good 

points. This will lead to repetition of the same estimate in subsequent samplings. Thus 

we can generate a list of possible estimates with repeated evidences and apply fuzzy c-

LMS to these estimates only. So this will reduce the number of false iterations and the 

computation cost will also reduce substantially. This leads to the development of a fast 

and robust clustering algorithm, named as fast fuzzy c-LMS algorithm. The strategy has 

been tested and proved successful. For the example in Figure 3.6 with 30% noise in data. 

the regular FCLMS require 55 sampling while fast FCLMS completed the task in only 20 

sampling. The same estimates were obtained for Figure 3.7 with 50% noise in data. by 

Fast-FCLMS in 35 iterations while regular FCLMS method required 95 sampling. As the 

fraction of contamination in data increases, algorithms require more sampling. Although, 

not shown here. many other examples were tested and similar good results were obtained. 

However. when a typical range image of quadric surfaces is considered. e.g. Figure 3.8. 

even Fast-FCLM could not detect the clusters. For each cluster, ten points were required 

to be picked. Here good sampling requires each set of ten points to be picked from each 
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individual cluster. This requirement apparently proved to be quiet stringent. So the 

quadric surfaces could not be detected even after substantial amount of sampling. 

3.6 Conclusion  

LMS, a robust estimator can detect the single cluster, with high break down point 0.5. if 

the data has only one cluster. It is extended here to concurrent multiple cluster detection 

through fuzzy partition, We show that the concept of evidence gathering technique, 

similar to randomized Hough transform can be incorporated along with fuzzy c-LMS 

algorithm for faster and improved estimation. Ii is possible to apply this technique to 

detect other type of prototype shapes e.g. circles, ellipses, spheres ellipsoids, cylinders. 

As such the computation of distance of each point from quadric surface prototype is 

computationally very expensive. More over the algorithm requires ordering of points of 

all points based on residual in each iteration has turned out to be big task. So in our 

problem of detecting of quadric surfaces from range image, since the number of data 

points are very high, often more than 5000. the ordering of points in each sampling is a 

big computational burden.. Though FCLMS is a robust method, it is not very appropriate 

for the current problem. To overcome this problem a similar sampling based robust 

algorithm has been introduced in next chapter. 
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Figure 3.4 The distribution of h2k of the points of the three clusters in Figure 3.2 

Figure 3.5  The distribution of h2k  and d2ik of the points of three clusters in Figure 3.2 



Figure 3.6  Three clusters detected as lines by FCLMS method with 30% noise in data 

Figure 3.7  Three clusters detected as lines by FCLMS method with 50% noise in data 
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Figure 3.8 Three quadric surfaces could not be detected by FCLMS method 52  



CHAPTER 4 

SAMPLING BASED NOISE CLUSTERING  

In Chapter 2 we generalized the NC algorithm so that points may have variable noise 

distance, however the problem of initialization of cluster prototype is still a disadvantage. 

In Chapter 3, we discussed the sampling based robust LMS algorithm to avoid the 

problem of initialization and extended it to detect c clusters simultaneously. Considering 

the requirement of exhaustive search, a limited probabilistic search was attempted, and 

we tried to further reduce the number of computations. A faster version of the algorithm 

has been presented by blending LMS with RHT. Although it performed well in detection 

of multiple clusters from 2 dimensional edge images, its applicability in object detection 

from range images was not very successful. Since the number of data points are usually 

very high in range images of quadric surfaces, the ordering of all points based on the 

distance from the prototype in each sampling is an impractical task. 

4.1 Comparative Analysis of NC, LMS and RHT  

Cluster analysis handles the task of classifying the data into a number of subsets. There 

are two fundamental approach of classification, namely (a) solving the model fitting 

problem based on minimization of squared error criterion through analytical technique 

such as gradient descent, and (b) model fitting by search based technique that finds the 

best fitting cluster through sampling the data through an evidence collection based 

approach. Both areas have received considerable attention in research, which resulted in 

development of number of clustering algorithms. However each method has a limitation 

53 
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in its robustness features. The analytical approach is primarily derived from least square 

(LS) error minimization whose performance degrades drastically with noise and outliers. 

Since, fitting the clusters according to prototype based fuzzy c-means (FCM) algorithms 

is such an approach; it is not very robust. The noise clustering (NC) algorithm has been 

proposed to robustify the ECM-type algorithms by making it less sensitive to noise and 

outliers through relaxing the constraint on the memberships. Due to this, the sum of the 

memberships of a bad point to all good clusters is not forced to be equal to one. The 

noise clustering (NC) considers noise to be a separate class and represents it by a 

prototype that has same distance δ from all points. In an earlier chapter. section 2.3. 

noise clustering has been generalized to detect variable size clusters and shown to be 

equivalent to a c-class robust M-estimator, where the modified harmonic mean distance is 

used as a residual. While M-estimator are very popular due to their high efficiency and 

good robustness. their major shortcoming is that they do not have high break down point. 

The low breakdown point of an M-estimator based approach may be even serious 

disadvantage when coupled with a sensitivity to initialization for FCM and even NC 

techniques. The problem arises due to use of re-weighted least squared error 

minimization approach. The iterative minimization scheme is not guaranteed to converge 

to a global minimum. Therefore incorrect initialization in presence of biasing noise in 

data may result altogether in poor classification. 

The sampling based methods on the other hand does not suffer from this problem 

of initialization, where the objective is to find strong or repeated evidence of the correct 

estimate. It is possible to search for a cluster directly in image space, e.g. least median 

square (LMS), minimum volume ellipsoid (MVE) etc. [66]. Alternatively we can search 
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the cluster in parameter space through randomized Hough transform (RHT), which 

searches the parameter space for the peaks or highest evidence of the cluster [77]. One of 

the advantage of sampling based approaches is that it guarantees that the global minimum 

may be achieved, but at the cost of the high amount of computations required due to the 

need for an almost exhaustive search. Though it is argued that based on probabilistic 

reasoning as suggested by Rousseeuw and shown in earlier chapter section 3.4, the search 

may be made limited for specific problem. The number of random sampling necessary to 

guarantee that a good cluster may be detected depends on the fraction of contamination in 

data and the number of parameters of the estimate of the cluster. The RHT method has 

been discussed in chapter 3 and also In [31] shows that as the dimension of the estimate 

or the threshold increases, the number of computation increases astronomically. The 

robustness aspects of least median square (LMS) algorithm and c-class extension has 

been discussed in details. Although it guarantees high breakdown point, up to 0.5, b 

requires ordering of data in each sampling. If the number of data points is very high, as in 

our case of classifying clusters in the range image of quadric surfaces, the ordering of all 

the data points in each sampling is a big computational task. These difficult limits the 

application of the algorithm in range images with large number of data points. 

Comparatively, the main advantage of RHT technique is that it does not require 

specifying the number of clusters apriori. One cluster at a time is removed from data set 

until not enough data points are left to be classified. While searching, RHT requires to 

maintain an accumulated array of the parameters of the prototypes that determined in 

earlier sampling thereby it necessitates continually expanding runtime memory. This may 

often exhaust the runtime memory available. It requires user to specify the tolerance δp  
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in the parameter space and the threshold value of iteration kmax. The selection δp  and 

kmax is often very difficult since the scale of data in the parameter space is  almost 

impossible to predict from image data. 

In order to circumvent these problems a new  sampling based clustering algorithm 

is proposed that produces robust solution  by combining the good features of other search 

based algorithms. This includes high robustness or breakdown point of least median 

square (LMS) or the capability to detect clusters without the knowledge of number of 

clusters of RHT as Well as faster solution of fitting based techniques. The method 

basically attempts to search for one cluster at a time directly from image space following 

the similar principle as NC algorithm. The algorithm is detailed in the next section. 

4.2 Sampling Based NC Algorithm for Single Cluster  

The noise clustering technique is detailed in an chapter 2 section 2.4. In the  original 

algorithm, Davé  [18] considered noise to be a separate class, represented it  by a prototype 

that has same distance δ from all feature vectors. The definition of noise  prototype and 

related material is repeated below specifically for a single cluster problem. 

Noise prototype:  Noise prototype is an universal entity such that it is always at the 

same distance from every point in the data-set. Let β*  be the noise prototype, and 

x j be the point in feature space. Then the noise prototype is such that the distance 

d(x j,βi), which is the distance. of point xj 
 
 from  β* , is a constant value δ . 

This definition does not specify what the distance is, but it states that all the points have 

equal apriori probability of belonging to the noise cluster. Considering a hypothetical 



u*j = 

1 

- uj (4.1)   

u

j ≤ 1 (4.2)   
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situation that the data contains only one cluster with some outlying elements, the 

membership of the point x j  is u, and to the noise cluster as u.j  is defined as. 

Since (4.1) is used to define the membership u,j  in the noise class, the usual membership 

constraint of FCM algorithims Is not required. Thus, the membership constraint for the 

good clusters is. effectively relaxed to 

This allows noise points to have arbitrarily small membership values in good clusters. 

The objective function is given as 

 

J(B,U;X) = ∑Nj =1 umj 

d

2(xj , β) + ∑Nj =1δ2(1-uj )                           (4.3) 

 

In (4.3). 

d

2(xj  ,β ) is the distance from a feature point xj , to the prototype β. 

The above functional is optimized with respect to the prototypes and the memberships in 

a manner similar to FCM functional as shown in Ref. [4, 6]. The resulting equations for 

the prototype parameters are very similar to that of FCM, however, the equation for the 

memberships reduces to as given, 

u

j  = 1 / 1+(d2 / δ2)1/(m-1)                                                                           (4.4) 

 

 

For m = 1 this gives a better understanding of the effect of the noise distance. All  

the points having the distance from the prototype less than the noise distance δ  are 

classified into the good cluster, while all the points having the distance from the prototype 
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more than the noise distance are classified into the noise cluster. Thus the noise distance 

becomes a switching criteria. For m ≠  1 the case is fuzzy, and one can visualize the 

points belonging to the cluster in terms of its fuzzy membership. In such cases too, the 

noise distance becomes a switching criteria, but the switch is fuzzy. When there are more 

than one cluster, the situation becomes much harder to visualize, but the effect is 

essentially same which Is discussed in Chapter 2. It is even reported in Ref. [18, 24, 25] 

that if the scale of data is known, the selection of δ  is not problem. In fact in many in 

scientific and engineering situation the value of δ  is known apriori. Under this 

circumstance it is possible to globally search for one cluster at a time by sampling p 

points from feature space to estimate the cluster with p parameters, similar to LMS or 

RHT. The noise distance δ  acts like a switch and actually determines whether a point 

belong to a cluster or not. All points beyond δ  from the estimated prototype are 

considered as noise. It is clear, the specific sampling that result in maximum number of 

points in the cluster as per the membership equation (4.4), can be used to calculate the 

cluster parameters. As we know if data contains only one cluster (i.e. c = 1 ), fuzzy c-

means (FCM) reduces to least square (LS) algorithm. It has been discussed in detail in 

Ref. [18, 21, 23, 24. 25], NC is truly a robust version of FCM, therefore for c=1 case 

this sampling based algorithm may appropriately be called as Noise Least Square or NLS 

method. Here after this algorithm is called as NLS algorithm. Since the algorithm is 

framed in global search mode directly in image space, the method is not plugged with the 

problem of initialization. The sampling based noise clustering for single cluster, 

maintains only the coordinate of p sampled points that produce maximum number of 
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points within distance 6 from the estimated prototype. This method substantially 

reduces memory requirement compared to RHT where the runtime memory usage 

gradually increases. In fact, since clusters are removed one at a time the computation 

load gradually reduces and it does not require prior knowledge of number of clusters. 

Here the algorithm sampling for a better estimate directly in the image 

space from the region with density of good points to estimate the cluster 

parameters. 

NLS Algorithm  

(1) Fix the minimum number of points in a cluster N and the minimum             number 

of sampling Ns , of the, cycle before selecting the cluster parameter. 

(2) Randomly select p points from the image space and calculate p parameter of 

the prototype by solving p joint equations. 

(3) Calculate the distance of all the points from the calculated prototype and the 

number of points N k  within the specified distance δ. 

(4) The value of maximum 

N k 

 is updated in each sampling. The estimate that 

produce maximum 

N k 

 is considered as the most probable estimate. 

(5) At the end of sampling cycle all the points within distance δ  from the most 

probable estimate is removed. If the remaining number of points is less than 

Nk then stop otherwise go to step (2). 

Since one cluster at a time is detected and removed from original data, it is not 

necessary to know the number of clusters in the data. Moreover as the points are 
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removed the original data, also the number of distance computations in each cycle of 

sampling gradually reduces. This increases the speed of solution. 

The NLS algorithm can be constructed so as to determining c clusters 

simultaneously. The method lig described below. Similar to regular NLS, prior 

specification of δ  is mandatory 

C-NLS Algorithm:  

(1) Fix the minimum number of points in a duster N, and the minimum number 

of sampling Ns  of the cycle before selecting the cluster parameter. 

(2) Randomly select c x p points from the image space and calculate p 

parameters of each of the c prototype by solving c x p joint equations. 

(3) Calculate the distance of each point from c prototypes and the number of 

points c within the specified distance δ  for each cluster N. 

(4) Maintain and update the maximum Nik in each sampling. Ensure all the c 

prototypes are not identical with each other. 

(5) Continue sampling until all c prototypes are detected. 

One of the disadvantage of C-NLS algorithm is, it requires prior knowledge of the 

number of clusters in the data. This somewhat limits its applicability in situations when 

we have no knowledge of the image. Moreover the method has to ensure, clusters 

detected in each sampling are not identical with each other. This later problem often 

forces large number of random sampling and thereby reduces the speed of detection. 

From the algorithm it is clear, unless each set of 

N

ik  points is sampled from each 

individual cluster, C-LMS algorithm won't generate correct result. This is relatively a 



61 

restrictive condition compared to regular NLS, which poses to be a better candidate for 

detection quadric surfaces from range image. 

4.3 Mathematical Analysis a NLS Algorithm  

The key aspects of NLS algorithm are: (1) high breakdown point of up to 0.5 (2) 

precision and accuracy of estimation. (3) increased speed of detection, thereby reduced 

computational load. 

The high breakdown point or NLS algorithm has been derived from its close 

resemblance of its procedure with LMS algorithm. Usually the good points in the data 

are close to each other, forms the doter sub-structure and noise and outliers are spread 

all over the image space. Often the outliers combine together to form biasing noise and 

may even conspires to look like the prototype. Since the estimates obtained by NLS 

method will be in the region that contains maximum density of points. it can tolerate high 

level of contamination in data. As long as the δ for the particular data set is selected 

correctly. the NLS algorithm can tolerate 50% noise in data i.e. the theoretical maximum. 

If there is more contamination in data, the noise and outliers can form denser region and 

then NLS algorithm may evaluate incorrectly that as an estimate. However, if noise is 

spread evenly all over the image and the good points forming the cluster as the densest 

region in image, as in some practical situations, NLS algorithm may tolerate more than 

50% noise in data. The mathematical basis for this observation is required to be checked. 

The issue of selection of δ  in correct range is very important. Over and above, it 

determines the precision of the prototype parameters evaluated. Most often the S will 

depend on the scale of data. The value of δ  also influences the number of sampling in. 
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each cycle Ns. It is also very important issue in successful detection of the cluster. If δ  

is relatively small NS  will be required to be comparatively high or vice versa.. Because 

if Ns  is low the sampling may not be able to detect the right cluster whereas if Ns  is 

high there will be large number of false iterations. The false iterations will obviously 

increase computational burden. By false iteration we mean that the sampling in which all 

the randomly selected p  points are not from the same cluster. 

In order to improve the sampling a better practical method has been suggested. 

This idea has also been tested in Ref. [31]. The objective of this technique is to restrict 

the search only within a specified region so the randomly selected points are more 

probable to be from the same cluster, Though this does not restrict the distance 

calculation of all the points from every other region. Although the number of clusters in 

an image is invariant, we can arbitrarily divide the whole image into multiple regions so 

that each small region contains approximately one cluster, This is schematically shown 

in Figure 4.1a. The left image is an ideal situation with one cluster per partition. Where 

as the right image has one cluster in partition A that spreads over other three (B-C-D) 

regions. Searching in the smaller region will more likely ensure that the sampled points 

are from the same cluster. Each smaller windowed region (A, B etc.) will be sampled 

sequentially. If one partition contain mote than one cluster, as in right image, the largest 

image is more likely to detected and removed faster. The remaining clusters will be 

detected in subsequent cycle of sampling over the same region. If one cluster spreads 

over several regions and it is detected while sampling one region where it is first 

encountered, e.g. the cluster in region A in right image. Once found, the algorithm will 
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remove the cluster from entire image. This may reduce some of the regions empty and 

thereby requiring no sampling. The sampling cycle Ns  for each partition may be 

restricted to a smaller value thereby minimize the overall computational load. 

Figure 4.1  Dividing an image into multiple regions 

4.4 Distance from Quadric Surface  

For a general quadric curved surface, the model can be expressed as 

a1x2  + a2y2  + a3z2 + a4xy + a5xz + a6yz + a7x + a8x + a9z + a10 = 0            (4.5) 

  

Obviously. there are ten parameters for each surface. and nine of them are independent. 

When some of the parameters are set to zero, Equation (4.5) represents a specific case, for 

instance, if a1 = a2  = a3  > 0,a10 and  a4 =  a5  = a6 = a7  = a8  = a9  = 0 , then the 

surface represents a sphere. Without any prior information about the detected surface, a 

general equation of (4.5) is always taken as the default model. 

4.4.1 Exact or Euclidean Distance  

How to determine the distance of a point from a quadric surface may appear to be simple 

is it could be decided just by checking whether the values of the point satisfy the 

 



64 
 

expression of the detected cluster. In reality, it is difficult to satisfy the expression even 

with the points on the cluster because of different types of errors, such as the errors from 

data acquisition and computation. This problem may be solved by setting a tolerance ε, i.e., 

if the values of a point (xi, yi, zi) are substituted into the expression of the cluster and 

satisfy 

||a1xi2  + a2yi2  + a3zi2  + a4xiyi  + a5xiyi  + a6yizi  + a7xi  + a8yi + a9zi  + a10 || < ε  (4.6)   

then the point can be considered to lie on the cluster. However. a proper value for ε  can 

not be easily selected without Mot information about the cluster as it does not have any 

physical meaning. Therefore, it is suggested to use the actual distance between a point 

and a cluster to determine whether a point belongs to a cluster, The distance D is defined 

as the shortest distance between the point (xi ,yi, zi) and the cluster. Let (xc ,yc, zc) be the 

point on the cluster, which has the shortest distance to point 

(xi ,yi, zi), then 

D = min(√(

x

i  - xc)2  + (yi  - yc)2  + (zi  - zc)2  

), subject to  
ai 

xc2  + a2 yc2  + a3 zc2  + a4 xcyc + a5 xczc + a6 yczc + a7 xc  + a8 zc  a10  = 0   (4.7) 

The Lauangian method and the routines from MINPACK (refer to  the Appendix A for 

more details) can be used to calculate this distance. In  Equation (4.6), nine of ten 

parameters of the model are independent and the  other one can be set as a constant in 

actual applications. With the Euclidean  distance, it is easy to set a threshold value 6' to 

classify a point to a cluster. If  the distance D between a point and a cluster satisfies 

D < δ then the point is  classified to the cluster. There is an alternative method of 

calculating the  distance of a point from a quadric surface. 

 



(dik )2  =  (vTk Ai vk + vTk  Bi + Ci )2. (4.11) 
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4.4.2 Approximate Distance 

Considering the general quadric curved surface in (4.6), the hyper-spheres and hyper-

ellipsoids are extreme cases of it. The definition for the quadric prototype in 3-D space is 

given as below.] 

Definition 1: The ith quadric curved surface prototype in 3-D space is the set 

pi = {v E R3 |v T Ai v+vT Bi +Ci = 0}                       (4.8) 

where 

vT = [x,y,z],                                         (4.9) 

and [     ai1 ai1 / √2 ai5 / √2 ] [ ai7 ] 

Ai =  [ai1   /  √2      ai2             ai6  / √2 ],B1  =  [ ai8 ] , Ci   = ai10.                     (4.10) 

[ai5   /  √2      ai6 / √2 ai3           ]        [ ai9 
]    

Equation (4.8) is different from the above defined prototype, where the constant 	√2 is    

introduced for simplifying the following derivation. Correspondingly, the distance from a 

point to a  cluster can be defined as below.) 

Definition 2:  The distanced dik between a point vk and a cluster p, is defined as 

Because the computation of Euclidean distance is very time consuming, it is required to 

be improved. Fortunately, some approaches using approximate distance to replace exact 

distance have been performed [31]. What interests us is the first-order approximation of 

the exact distance by which the approximate distance of a point from a surface can be 

represented as: 
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(d Aik)2  = (dik )2 /|V dik | 2 (4.12) 

where Vdik  is the gradient of the algebraic distance functional dik  evaluated at point k. 

Undoubtedly, the approximate distance is still a kind of nonlinear distance. Equation 

(1.12) brings a closed form of distatiro, solution to our algorithms so the computation 

speed might be extremely raised, and correspondingly, the improved NLS algorithm with 

approximate distances can be implemented. 

4.45 Numerical Results  

The NLS algorithm has been tested on various examples of two dimensional edge data 

and range images. Both exact distance and approximate distance of the points to the 

prototype has been used in the NLS method. 

Consider the range image in Figure 4.2. It is an artificially generated range image 

of 200x200 pixels, with three clusters, one truncated cone, one cylinder and a sphere. 

There are all together 8122 points. Apparently this data does riot contain any outlying 

noise. Since only one cluster at a time is detected by NLS algorithm, other clusters are 

considered as outliers while the method is implemented. If depth values are recorded 

floating point numbers, NLS could detect all the clusters with δ = 0.001. The results are 

graphically displayed in Figure 4.3. The strategy to improve speed paid off. The number 

of iterations have reduced from 110 to 20 while the image is partitioned into 3x3 regions. 

Each cycle consist of 10 samplings and iterations continued until not enough points are 

remained to classify. While the depth values are integers, the required δ = 1,  since the 
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image is coarse or noisy. NLS detected the clusters in 40 iterations. The performance of 

course varies with strategy of partition of the range image. 

	

The next range image in Figure 4.4 is generated by adding some noise to an image 

containing real images, one cylinder and one sphere. The original images were obtained 

from the Michigan State Unlversity, PERP Lab. The total number of points is 16225. 

NLS method identified the clusters with δ 

= 

0.1 and is displayed in Figure 4.5. it 

required 160 iterations in regular method and reduced to 50 iterations by the improved 

version of 2x2 windowing the image. The results clearly indicate NLS as highly robust 

clustering method. The strategy to improve the speed of detection has been successful. 

Figure 4.4 shows an computer generated synthetic image of a lamp shade. There 

are 13065 points in the image and depth values are recorded in integer numbers. The 

NLS algorithm could find all the clusters successfully with a δ = 1.8. To implement the 

faster algorithm the image was partitioned horizontally into three rows. The clusters were 

detected in 60 sampling and is displayed in Figure 4.7. 

All these examples clearly demonstrate that the NLS is a robust algorithm that does 

not require any specification of number of clusters. Only requirement is specification of δ  

in correct range. If δ  is comparatively smaller. NLS will require more iterations. 

However if δ is large, the points from other clusters may wrongly get classified and 

estimate may be wrong all together. 

To improve speed of detection the image is partitioned so that each smaller 

windowed region has only one cluster was successful in all the above examples. The 

method increased the possibility of sampled points being picked from the same cluster. 

However determination of the number of partitions is done by trial and error. 
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4.6 Conclusion  

The NLS algorithm has demonstrated very good performance for detection of quadric 

surface from range image. However if the data contains several adjacent clusters then 

removal points as a good cluster may pose a problem. The points on the edge of any two 

intersecting quadric profiles belong to both the clusters. In fact almost every geometric 

objects have intersecting profiles. Therefore removal of those points by the first detected 

cluster often lead to incorrect estimates. This problem requires to be addressed with in 

the algorithm. 

The presence of noise and outliers has been handled adequately. While searching 

for one cluster, points on other cluster appear as noise. in view of that, algorithm is 

highly robust against high fraction of contamination in data. Therefore the algorithm 

apparently have a high breakdown point. However a mathematical proof of that is due. 

The other robustness characteristics of the algorithm are needed to be evaluated from the 

Influence function curve. 

The strategy to improve the speed by partitioning the image was very useful. 

However for complex objects with multiple adjacent profiles, the simple partitioning 

strategy may not work. it will need to be reformulated. The algorithm is needed to be 

checked by using the range image of solid objects in used engineering. Application. 



Figure 4.2 The range image of three quadric surfaces with 8122 points  

Figure 4.3 Results of the range image in Figure 4.2 by NLS method with δ = 0.001 
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Figure 4.4 Typical noise range image with two real images and some noise points 

Figure 4.5  Results of the range image shown in Figure 4.4 by NLS method with δ = 0.1  
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Figure 4.6 The range image of a lampshade with 13065 integer coordinate points 

Figure 4.7 Results of the range image in Figure 4.6 by NLS method with δ = 0.1  
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CHAPTER 5 

ROBUST FUZZY CLUSTERING OF RELATIONAL DATA 

5.1 Introduction 

While clustering of object data using fuzzy techniques has been a very active field of 

research (see for example, [8]), clustering of relational data has received much less 

attention. This may partly due to the fact that most engineers and mathematicians usually 

deal with object data, and rarely encounter purely relational data. However, in fields like 

management and social sciences, relational data are frequently encountered. The 

relational data comes from the measure of dissimilarity (or similarity) between objects, 

and in some cases it is actually based on the object data. For example, in problem of 

building of a supply warehouse, one often considers the distance from various plants as a 

basis for generating relational data (see for example, Vinod [73]). Relational data can 

also be based on subjective expert knowledge, see for example microcomputer data in 

Gowda and Diday [34], or subjective dissimilarity between countries in Kaufman and 

Rousseeuw [49]. In general, however, if the object data is available, direct clustering of 

object data may be more efficient (computationally) than generating relational data from 

the object data and then partitioning through relational clustering methods. On the other 

hand, when the data is purely relational, and does not easily fit into any metric axioms, 

one cannot efficiently apply any object based clustering method, and must employ a 

relational clustering technique. For n objects, the relational data is usually a nxn matrix 

(if the relational measure Rij  between objects i and j, is reflective, i.e. Rij  = Rji  then only a 
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lower triangular portion of n x n matrix is required). In such cases, there is no explicit 

knowledge of the "location" of objects in the real space, but such information may be 

implicit in the relational matrix, and could be made explicit through use of techniques 

based on multidimensional scaling, albeit at a significant computational cost. 

Noteworthy fuzzy techniques for clustering relational data include the methods by 

Ruspini [67], Roubens [63], Windham [76], Hathaway etal [42], and Kaufman and 

Rousseeuw [49]. Majority of the relational clustering techniques mentioned above are 

based on minimization of two types of functionals. For example, techniques by 

Hathaway etal [42] and Kaufman and Rousseeuw [49] are based on the minimization of 

essentially the same functional, while the techniques by Roubens [63] and Windburn [76] 

are based on another very similar functional. Although Hathaway etal [42] and Kaufman 

and Rousseeuw [49] start from almost the same functional, the algorithms for 

minimization are somewhat different. Not too surprisingly, Hathaway eta] [42] cast the 

minimization as what is called the Relational Dual of FCM (RFCM). In that, clustering 

of relational data is performed in the relational space using an algorithm that is based on 

the classical FCM algorithm of Bezdek [6]. As will be discussed later, Hathaway etal 

[42] use clever arguments to derive this algorithm. On the other hand, the minimization 

algorithm of Kaufman and Rousseeuw [49] is based on direct application of Lagrange 

multiplier approach with Kuhn-Tucker conditions to derive the algorithm called FANNY. 

The approach used by FANNY appears to be a better choice, and it is utilized in this 

paper to derive new algorithms. Roubens [63] and Windham [76] start from a very 

similar functional, but Windham defines two different types of memberships instead of a 

single one in Roubens, and derives a more stable minimization procedure. 
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One of the objectives of this chapter is to consider increased robustness of 

clustering techniques for relational data. Several techniques have been introduced to 

increase robustness of algorithms for clustering of object data, see for example Dave [18], 

and a review in Dave and Krishnapurum [25]. Davé  [18] proposed the concept of noise 

clustering for making all the fuzzy c-means type object data algorithms robust against 

noise. Consequently, use of such technique in all the derivatives of FCM type object data 

clustering algorithms would make those algorithms robust against noise. However, the 

relational clustering techniques mentioned above are not very robust, although Kaufman 

and Rousseeuw [49] claim that since the dissimilarity measure Rij appears as an Li norm, 

it finds "medoids" (median based centroids) instead of ordinary centroids, and hence is 

more robust. However, it is not clear if the use of Li norm in this context is equivalent to 

having a robust location estimator, see for example the treatment of breakdown point of 

various least-squared error based techniques in Rousseeuw and Leroy [66]. Recently, 

Hathaway etal [41] have suggested that incorporation of the concept of noise clustering 

(Davé  [18]) in their RFCM would make it robust. However, no results or specific 

algorithm have been presented. Here, application of the concept of noise clustering is 

considered to specifically address the problem of robustness in all the popular relational 

clustering techniques. This also includes robustification of the techniques by Hathaway 

etal 021 (RFCM) and Kaufman and Rousseeuw [49] (FANNY) through an approach 

which is based on directly converting the original functional to a noise clustering 

functional. 

Another objective of this paper is to address issues regarding the restrictions 

imposed on the dissimilarity relation Rij  in order to derive different algorithms. Original 
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RFCM [42] requires that the relation Rij  must be derived from Euclidean distance 

between two objects, and hence is a more restrictive assumption regarding Rij, as 

compared to the constraints imposed by methods of Roubens [63], Windham [76], and 

Kaufman and Rousseeuw [49]. The latter group only requires that, 

Rij ≥ 0, Rij = 0, and Rij = Rji. 	 (5.1)   

The restriction in RFCM occurs due to the algorithm being a relational dual of 

FCM. Later, Bezdek etal. [7] compared the performance of Windham's [76] assignment 

prototype (AP) algorithm with the RFCM to show that while AP has a less restrictive set 

of assumptions than RFCM, its performance on several synthetic examples that include 

non-Euclidean distance measures is not any better than (in fact worse, in some cases) 

RFCM. To overcome the restriction regarding the Euclidean metric, Hathaway and 

Bezdek [40] proposed NERFCM (non-Euclidean relational fuzzy c-means) clustering 

technique. In NERFCM, the original RFCM algorithm is modified by adding a step that 

involves an innovative technique to expand the original non-Euclidean relational data to 

make it Euclidean. Here we show that an algorithm can be constructed in a manner 

similar to FANNY that does not require any restrictions besides (5.1) to handle the 

RFCM functional, and the resulting algorithm can be applied to non-Euclidean relational 

data in a computationally more efficient manner than NERFCM. This new algorithm is 

simply named the Fuzzy Relational Clustering (FRC) algorithm. Both ordinary and 

robust versions of this algorithm are proposed. 

Ref. [27] describes the current work, is presently under peer review for publication. 

In what follows, in section 5.2, the terminology and definitions for clustering relational 

data are presented, followed by the comparison of popular objective functions of fuzzy 
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relational classification methods, This section also describes Roubens, AP, RFCM, and 

FANNY algorithms. Through generalization of FANNY, a new relational clustering 

algorithm (FRC) is also introduced. Section 5.3, the noise clustering concept [18] is 

described, deals with the extension of Roubens, AP RFCM and FRC techniques to noise 

clustering. FRC is generalized using the noise clustering concepts to develop a Robust 

version of Fuzzy Relational Clustering algorithm (R-FRC). Qualitative equivalence of all 

these algorithms with noise fuzzy c-means (NFCM) [18] is considered to show 

comparison of noise distance for relational clustering and object clustering. In section 

5.4, the derivation of R-FRC includes inequality constraint for the fuzzy memberships, 

and by using Kuhn-Tucker conditions, the resulting algorithm is shown to systematically 

handle non-Euclidean data. This version, called Noise Resistant, non-Euclidean Fuzzy 

Relational data Clustering (NR-NE-FRC), is the most general form of relational 

clustering algorithm presented in this research. in section 5.5, several examples are 

presented to demonstrate the differences and similarities of different approaches, 

followed by the conclusions of this chapter in section 5.6. 

5.2 Fuzzy Relational Clustering Methods 

 

Similarity (or dissimilarity) data are usually found in social sciences, marketing, and 

management information systems. Vinod [73] may have been the first to introduce a non-

hierarchical clustering method based on an optimization model to classify inter-point 

distances and dissimilarity data. The objective was to minimize total dissimilarity 

amongst all objects and their corresponding most representative objects. This idea was 
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further discussed by Rao [63], and Malvey and Cowder [61]. The optimization model of 

Vinod [73] can be stated as below. 

minimize ∑nj=1 ∑nk=1zjkRjk                                                     (5.2)  
 

 

subject to 

∑nj=1zjk = 1, k=1,2,.....,n                              (5.3) zjk  ≤ yj,     j, k=1,2,.....,n                               (5.4) ∑nj=1yj  = c,  c=number of clusters                  (5.5) zjk , yj  є {0,1}, j,k = 1,2,......n                     (5.6) 

 

 

 

In the above, for a given k, only one zjk  is equal to 1 and all others are zero, so along with 

constraint in (5.4), an object k can only be assigned to an object j if object I has been  

selected as a representative object. For j to be a representative object, yj must be one, and 

only c of  n objects can be representative objects, as imposed by (5.5). Thus the 

minimization of (5.2) using the constraints (5.3) through (5.6) can generate a c-partition 

of the objects, where exactly c objects are chosen as prototypical objects. There are two 

types of "crisp" (or "hard") memberships in the above, designated through zjk. and yj. 

This algorithm is comparable to the approach by Windham [76] as shown later. 

Fuzzy algorithms to handle relational data include methods of Ruspini [67] and 

Roubens [63]. According to Windham [76], and Bezdek [6] criteria on which Ruspini's 

algorithms are based are considered difficult to interpret, and numerically complex, and 

although simpler, Roubens numerical procedure is unstable. Based on these observations, 



subject to constraints 

∑ci=1 uik  = 1,  k = 1,2,........,.n                                 (5.10) ∑ci=1 vij  = 1,  i = 1,2,.........,c                                 (5.11) 
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Windham [76] proposed a functional. that resembles like a slightly modified version of 

Roubens functional, and proposed a stable numerical scheme to derive the AP algorithm. 

The technique due to Roubens is described first, followed by Windham's AP algorithm. 

FR = ∑nj=1 ∑nj=1 ∑nk=1 uik2 uij2 Rjk                                          (5.7) 

 

subject to constraint 

∑ci=1 

uik  = 1,  k = 1,2,.........n                        (5.8) 

 

 

as well as the constraint from (5.0. The functional in equation (5.7) has "R" as the 

subscript denoting that it is Roubens algorithm (similar subscripts are used in subsequent 

functional equations). The minimization of FR  can be easily done through Lagrange 

multiplier approach, and an iterative procedure can be utilized to create a partition. The 

resulting algorithm is described in Roubens [63]. and can be used to generate fuzzy c-

partitions. Our limited experience with this algorithm, however, indicated instabilities in 

convergence, thus corroborating the observation of Windham[76].. 

The AP algorithm utilizes two types of memberships, assignment type, and 

prototype weight type. The functional to be minimized by AP algorithm is as below. 

 

FR = ∑nj=1 ∑nj=1 ∑nk=1 uik2 vij2 Rjk                                                        (5.9) 
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as well as the constraint from (5.1). As can be seen, this is similar to Roubens[63]. but 

Windham [76] has two different types of memberships instead of one in Roubens. 

Although not easy to recognize, AP can be seen as a fuzzy extension of Vinod's method 

[73], by recognizing that yj  in Vinod's method are like the prototype weights in AR In 

other words, only the objects that are prototypes have the weight 1 in Vinod's method, 

like weights vij in AP algorithm if the memberships in AP are hard. Moreover. the zjk in 

Vinod's method are like uik in AP, because j in zjk now stands for only those cases when 

the jth object is a (prototype, thus making/ equivalent  to i in AP. It is clear that Windham 

[40. 76]) does not recognize that the AP algorithm is a fuzzy extension of Vinod's 

method. Another interesting observation that can be made is that since Vinod utilizes 

only hard memberships. his c prototypes are exactly c distinct objects. while due to the 

utilization of fuzzy memberships in AP. each or the c prototypes of AP is a weighted 

average of n prototypes as seen in the constraint (5.11). 

Hathaway etal. [42] proposed the RFCM algorithm, based on the functional which 

is a further extension of Roubens functional in equation (5.7). This functional. shown 

below. originally appeared in Tucker [74 albeit in a different context. 

FRFCM = ∑ci=1 ∑nj=1 ∑nk=1 uikm uijmRjk 

/ 2∑nt=1 

u

itm (5 12) 

where the fuzzifier exponent m I. A very important restriction of RFCM is that the 

dissimilarities Rjk  must be derived from Euclidean distances between the objects in the 

object space as 



vi = (ui1 ,ui2 ,........., uin

)

T / ∑nk=1 uik (5.1 5 )  
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Rjk = d2jk = ll xj - xk ll2  for j,k = 1,....,n                                    (5.13)   

As can be seen, apart from this restriction and the use of fuzzifier m, the functional in 

(5.12) is a normalized version of the Roubens functional (equation (5.7)), through 

dividing by twice the fuzzy cardinality of each cluster. It can be noticed that (5.13) 

guarantees that Rjk  satisfy (5.1), but the restriction in (5.13) is more severe than in (5.1). 

It is noted that the constraint on the memberships from (5.10) also applies here, and the 

additional membership constraint shown below also applies. 

 

uik ≥ 0, i = 1,2,.....,c;   k = 1,2,.....,n                                      (5.14) 

 

Tucker [72] derived (5.12) from the FCM functional. and thus established 

equivalence of two algorithms. This equivalence could provide the directions for 

deriving the minimization algorithm for RFCM. In fact, the algorithm for RFCM is 

developed through arguments that cast it as a relational dual of FCM. Since the 

new membership uik  in the fixed point iteration scheme for FCM is computed through dik, the 

distance of objects from cluster prototypes. Hathaway etal. propose the following 

equations to, compute dik, from memberships and the relational data. The first equation is, 

 

where the V, represents a mean (i.e. averaged) unit vector of memberships for the ith 

cluster. These are then used to obtain object to cluster distances dik,  as following. 

d2ik = (RVi

)

k - (Vi TRVi ) / 2 with R = [Rik ] = [d2jk ], (5 16)   

In the above, j and k are two objects, and index i represents the ith cluster. It is 

emphasized that (5.15) and (5.16) are valid only when the relational data comes from 
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Euclidean measure in (5.13). Now since dik the distance of objects from cluster 

prototypes, are available, one can use standard membership equation from FCM 

algorithm. Therefore, the new memberships are, 

uik  = (1/d2jk

)

1/(m-1) / ∑cw=1  (1/d2w k

)

1/(m-1)                                                     (5.17) 

 

 

Thus the RFCM algorithm is very similar to FCM algorithm, and thus inherits all 

its well-established properties. The only problem remaining is that the constraint on 

memberships from (5.14) is not explicitly satisfied, and unlike FCM, the uik from (5.17) 

are not guaranteed to be non-negative because dik from (5.16) may not be always non-

negative. However, if constraint from (5.13) is satisfied, then uik will be always non-

negative because it can be shown that it is the square of Euclidean distance from 

prototype to the object. The RFCM algorithm. when m > 1, is presented below. 

RFCM Algorithm  

1 For relational data satisfying (5.13). fix c, 2 S c S n, and m > 1. and initialize 

fuzzy c-partition, uik

. 

 

2. Compute c mean vectors, Vi

. 

from (5.15) and then compute distances,dik,  from 

(5.16) 

3. Update memberships, uik  from (5.17) 

4. Check for convergence using some convenient norm on uik and if converged stop, 

else go to step 2. 
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One can notice a strong resemblance of the above with the FCM algorithm. 

Next the FANNY (Fuzzy Analysis) algorithm of Kaufman and Rousseeuw [49] is 

considered. The original FANNY technique starts with essentially the same functional as 

RFCM in (5.12), except that it has a fixed value of fuzzifier m = 2. Moreover, FANNY 

does not impose (5.13) on Rjk  but has the usual restriction of (1). The FANNY functional 

is similar to (5.12),= 

FFANNY = ∑ci=1 / ∑nj=1 ∑nk=1 u2ik u2ij d(j,k) / 2∑ nt=1 u2it (5.18) 
 

 

 

 

with the membership constraints From (8) and (14). In the above. d(j, k) is the distance or 

dissimilarity between objects j and k, and it is usually implied to be the L 1  distance. The 

reader is referred to [49] for details of derivation of an algorithm that is based on 

application  of Lagrange multiplier and Kuhn-Tucker conditions to directly minimize 

(5.18) subject to the  constraints (5.8) and (5.14). 

If the fuzzifier exponent m, is used in (18) along with Rjk as to denote any 

dissimilarity measure, then one obtains a functional shown below that looks exactly same 

as RFCM functional in (5.12). 

FFRC = ∑ci=1 / ∑nj=1 ∑nk=1

u

mik umijRjk / 2∑nt=1 umit                                  (5.19) 

 

In the above. the subscript FRC stands for Fuzzy Relational Clustering, which is an 

extension of FANNY technique. To reiterate, the difference between the two are; (a) the 
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fuzzifier m, which makes the fuzzy memberships more general, and (b) the use of Rjk  

instead of d(j,k) in the original FANNY [49], implying that while the relational data in 

FANNY usually comes from L 1  norm, in FRC it could be from any dissimilarity measure. 

The difference due to the use of the fuzzifier m becomes an important issue when FRC is 

made robust using the concept of noise clustering [18] in section 5. Thus hereafter, the 

version in (5.19) is referred to as FRC, to derive the necessary conditions for the 

minimization of (5.19), a Lagrangian is constructed based on the constraint (5.8), while 

the inequality constraint in (5.14) is ignored with a hope that it may be automatically 

satisfied. This treatment is similar to the derivation of original FCM algorithm, where the 

inequality constraint was not directly included in the optimization problem. Thus this 

derivation is different from the exact derivation in Kaufman and Rousseeuw [49]- 

L =  ∑cj=1 / ∑nk=1 ∑nk=1 umik umij Rjk / ∑nk=1 λk  (∑cj=1ujk - 1)                       (5.20) 

 

The above can be minimized with respect to u and through eliminating the Lagrange 

multipliers λk,  one can obtain the following for the memberships. 

uik = (1/aik)1/(m-1) / ∑cW=1 

(1/awk)1/(m-1) (5.21) 

 

 

where the terms aik are given by, 

 

aik = m∑nj=1umij Rjk / ∑nj=1umij - m∑nh=1∑nj=1umijumih Rjh  / 2(∑nj=1umijv)2 (5.22) 
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Thus by direct application of Lagrange multiplier technique to derive constrained 

minimization of (5.19), we obtain the solution for the c-partition from (5.21) and (5.22). 

It is noted that in deriving the above, the only constraint on Rik  has been (5.1). Thus this 

derivation has an advantage over the derivation in RFCM. A few observations regarding 

(5.21) and (5.22) are in order. First, equation (5.21) is a transcendental equation in uik , 

and second, the constraint (5.14) is not explicitly,  satisfied. To solve for uik  from (5.21), 

one can use a gradient descent technique such as Newton's method, or simply use a 

successive substitution method, in which one can repeatedly use old values of uik  in (5.22) 

to obtain aik  and then solve for new values of uik from (5.21) till convergence. In practice, 

one can improve the order of convergence of this method by using the Seidel iteration 

scheme, where in solving for aik  one utilizes all the new available membership values. In 

other words, when computing the aik. the membership values uik  when j <  k are all newly 

computed (or from current iteration), while for j ≥ k they are old (or from previous 

iteration) values. This can be illustrated in the following algorithm for FRC, which is 

similar to FANNY algorithm. 

FRC Algorithm:  

1. For relational data satisfying (5.1), fix c,≤ 2 ≤ c ≤ n, and m > 1, and initialize fuzzy 

c-partition, uik. Initiate a counter p = 0 

2. Compute for each k = 1, 	 n 3. 

a) Compute for each i = 1,.............., c:  

a

ik  from equation (5.22), using memberships 

(p+1)uij  for j < k and (p)uij  for j ≥  k (here the pre-superscript denotes iteration 

number). 



a

ik = (RVi)k - (VTiRVi) / 2                           (5.23) 

 

85 

b) Compute membership (p+1)uik using (5.21). 

3. Check for convergence using some convenient norm on uik  and if converged stop, 

else set p = p + 1, and go to step 2. 

As mentioned before. there is no guarantee that constraint (5.14) will be satisfied as 

a result of the above algorithm. In fact, when any of the aik  becomes negative, then a 

corresponding uik  also becomes negative. A dose examination of (5.22) requires to 

determine the conditions under which aik  are non-negative, In fact, one can rewrite (5.22) 

as 

This reveals that (5.22) is indeed comparable to the right hand side of (5.16) in derivation 

of RCM. Hence the equations (5.21) and (5.17) are also equivalent, as the factor m will 

drop out in (5.21). it is noted that in rewriting (5,22) as (5.23), no further assumptions are 

necessary. Therefore, this result points out that although the condition (5.13) was 

required in derivation of RFCM. the actual algorithm may not be as restrictive, since the 

same equations can be also obtained without requiring (5.13) as in FRC derivation shown 

here. This may explain why RFCM works for many non-Euclidean examples as reported 

in Bezdek etal [7]. We will come back to the results from Bezdek etal. [7] later in this 

chapter. When the relational data is derived from Euclidean distance as in (5.13). then 

(5.23) indicates that aik  are indeed related to the Euclidean distance;  because now, 

aik = m(dik )2                                                                                            (5.24)  



86 

hence. for FRC, if the relational data is Euclidean, it will automatically satisfy the 

constraint (5.14) that the memberships are positive. However, when the relational data is 

non-Euclidean, neither RFCM nor FRC will automatically satisfy (5.14). The only way 

to make sure that (5.14) is satisfied, one must employ that constraint also in the 

minimization procedure. However, this form of FRC algorithm is derived here to (a) 

obtain a simple relational clustering algorithm that is based on first principles of 

optimization, and (5.2) explain observations in Bezdek etal [7] regarding why RFCM 

worked for many non-Euclidean examples. Later (5.14) will be also included in 

derivation for the robust version of the FRC In section 5.5. The first step towards 

robustification of relational clustering comes through consideration of noise clustering 

technique. that is described in next section. 

5.3 Noise Clustering Applied to Relational Clustering Techniques  

The equivalence of RFCM and FCM algorithms indicate that RFCM inherits the major 

deficiency of FCM e.g. poor performance in presence of noise and outliers. Similarly, 

FANNY and the FRC presented here are not highly robust. In FANNY, the authors claim 

that since the relational data can be derived from L1  norm, it will be less susceptible 

against evenly distributed random noise. This may not be true for a general case of 

relational data, including the relational data derived from Euclidean measure. Thus all 

the relational clustering algorithms described in section 5.2 will not be robust against 

noisy data. The main reason for this is that all these algorithms must create a c-partition 

of the data, and thus must even include noisy data in this c-partition. Therefore, the noisy 
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data may bias the resulting partition. Dave's noise clustering (NC) [18] was proposed to 

alleviate this major drawback of such partitioning algorithms by creating a separate noise 

class. The idea of having a noise class is not new, but the concept of noise as a prototype, 

and how to determine distance of an object from noise prototype was a novel idea 

proposed in [18]. In this section, this concept is briefly described. 

The concept of noise clustering works well for object data clustering methods such 

as FCM and FCS (fuzzy c-shells clustering) [15], as the definition of the noise distance 

has a direct physical meaning. In the object data clustering, there are object prototypes, 

and hence there is also a noise prototype. The extension of noise clustering to relational 

data clustering techniques is not obvious, because in a strict sense, there are no cluster 

(and hence noise) prototypes in relational clustering, and there is only a need to generate a 

partition. need for detecting cluster prototypes is not explicit. Since Hathaway etal. [42] 

developed their relational clustering method (RFCM) as a relational dual of FCM. 

robustification of RFCM though use of noise clustering is somewhat easy. However. 

such extension for other techniques is not that obvious. In this section, robustification of 

all the relational clustering methods discussed in section 5.2 is considered. First the 

Roubens algorithm [63] is considered. Although the Roubens algorithm is found to be 

unstable and thus not useful, it is considered for this exercise, because the extension of 

Roubens algorithm also paves way for the extension of RFCM, FANNY, and FRC 

techniques due to the similarities in the memberships. Considering the Roubens 

functional from (5.7), one needs to add a noise class, thus making the number of clusters 

to become c + 1. When this is done, the new functional becomes, 



 

 NFR = ∑c+1i=1 / ∑nj=1 ∑nk=1 u2ik u2ij Rjk (5.25) 
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In above equation, the pre-superscript "N" denotes extension to noise clustering. In 

(5.25), it is not obvious how to introduce the noise distance, since the noise distance in 

the original paper is defined as a distance Duni the noise prototype to the object data 

point. In relational data, since there is no explicit object data available, one must modify 

the definition of the noise distance. Pot this purpose, (5.25) is rewritten as follows.+ 

 
NFR = ∑ci=1∑nj=1∑nk=1 u2iku2ij 

(

Rjk)i + ∑nj=1∑nk=1u2*ku2*j

(

Rjk)*                        (5.26) 

 Jk 
 

 

In the above, the first term on RI-IS (right hand side) is same as the original Roubens 

functional, while the second term is the extra term due to the extension to noise 

clustering. Another modification here is the extra subscript to the dissimilarity distance 

(Rjk)i denoting that this is the "amount"  of dissimilarity between objects j and k as viewed 

by class i. Under ordinary circumstances, the dissimilarity should be independent of the 

class, thus Rjk = 

(

Rjk)i  for all i.  However, when introducing the noise class, we must 

make a distinction that it is a special class and it imposes its own bias (or lack there of) to 

determine the "amount" of dissimilarity. Then analogous to the original noise clustering, 

we specify that the noise class views all dissimilarities as equal. Thus, (Rjk )i = δ, the 

dissimilarity noise distance. This noise distance, δ can be the same for all cases, or :

similar to the generalized noise clustering [26], it could take different values for different 

pairs of points as well as clusters. in this chapter, we restrict this to be a constant value, 

and thus (26) is written as, 
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NFR = ∑ci=1 ∑nj=1 ∑nk=1 u2ik u2ij Rjk + ∑nj=1 ∑nk=1 u2*k u2*j δ                            (5.27) 

 
 

 
 

 

To understand the physical meaning of the dissimilarity noise distance, δ, in the 

above equation, let us consider the following. If all dissimilarities Rhk  are greater than the 

dissimilarity noise distance, δ , then In order to minimize the objective functional, the 

membership of object h in the noise class must be made higher, and thus all other uih, 

would be made very small, and consequently the multipliers to larger Rhk  values will be 

much smaller as compared to the multiplier for the dissimilarity noise distance, δ. Thus 

the hth object is classified as an outlier. However, a more restrictive interpretation for the 

dissimilarity noise distance, δ  would be that within a given cluster, none of the object 

pairs will have a dissimilarity larger than the dissimilarity noise distance, δ. Based on 

this interpretation, it is clear that if there exists an object h in the data-set such that its 

dissimilarity with even one object in every cluster is larger than the dissimilarity noise 

distance, S, then it will be classified as an outlier. On the other hand, if for object h in the 

data-set, its dissimilarity with at least one object of any one good cluster is less than 

dissimilarity noise distance, δ, then it will belong to that cluster, and not to the noise 

class. This interpretation is similar to object data noise distance, where the distances (or 

dissimilarities) are measured always from the cluster prototype and not from cluster 

members. Thus for object data clustering, if a given object is farther to all the cluster 

centers as compared to object noise distance, then that object is classified as a noise point, 

and on the other hand, if an object is closer than the object noise distance to any one 

cluster prototype then it will belong to that cluster, and not to the noise class. 
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The algorithm to solve for the partition based on the above equations can be derived 

to obtain the following: 

5.3.1 Robust Version of Roubens (R-Roubens) Algorithm  

(1) For relational data satisfying (5.1), fix c,  2 ≤ c ≤ n, and initialize fuzzy (c+1)- 

partition, uik  Select noise distance, δ > 0., 

(2) Compute terms Dik  defined as below                                                                     Dik  = ∑nj=1 

u2ij Rjk                                                                                                                               (5.28) 

and the noise term, 

D*k  = ∑nj=1 u2*jδ = δNnc , (5.29) 

 

where Nnc is the equivalent fuzzy clardinality of noise class, i.e. Nnc = ∑nj=1u2*j.                                           (5.30)  

 
 

Note that all these terms are ≥ 0. 

(3) Compute memberships by solving the new minimization problem that 

resembles the original noise clustering for FCM formulation: 

min   ∑ci=1 ∑nk=1u2ik Dik + ∑nk=1u2*k D*k                                                                                  (5.31) 

uik   

 

to obtain the memberships as uik  = (1/Dik ) / ∑cj=1 (1/Dik ) + (1/δNnc).                                 (5.32) (5.31)  

 

 

 



 

 

 
 

91 

(4) Check for convergence using some convenient norm on 

u

ik and if converged stop, 

else go to step 

In the above, it is easy to see how the noise distance appears in the solution 

procedure. It is noted that the term D*k  in (5.29) is a product of the noise distance S and 

the equivalent fuzzy cardinality of noise class defined in (5.30). In step 3, one can also 

easily compute the membership in the -noise class as shown in (5.32). 

Now one can proceed with other relational clustering methods. Since the functional 

of RFCM is basically a normalized version of Roubens functional, it can be extended to 

noise clustering in a similar way as follows: 

NFRFCM = ∑ci=1  ∑nj=1∑nk=1 u2iku2ij Rjk / 2∑nt=1 + ∑nj=1∑nk=1um*kum*jδ / 2∑nt=1um*1                   (5.33) 

 

The equation (5.15) for the membership vector can still be used for computing the 

first c vectors Vi, and similarly, the equation (5.16) can be used to compute the object to 

class distances for the first c classes. However. the noise membership vector 

(membership of objects to the noise class) is computed as below.= 

V* = (u*1,u*2,..............,u*n

)

T / ∑nk=1

u

*k                                                        (5.34) 

 

These are used to obtain object to noise cluster distances. d*k, as follows using (5.16). 

d2*k = (RV*)k - (V*TRV*)/2  with R = [Rjk]* = δ,                                       (5.35)  

In the above, j and k are two objects, and index * represents the noise cluster. Although it 

may not be apparent, in this noise cluster extension. the dissimilarity distance (Rjk), is 

viewed differently by each class, thus the dissimilarity distances in (5.35) are all same as 



d2  = δ /2, (5.36)   
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δ  because this equation is written specifically for the noise class. Knowing that the 

expansion of (5.16) is related to (5.22) as shown in (5.23), using (5.35), we obtain that the 

object to noise class distance is directly related to δ  as + 

It is clear that (5.34) is not even required for evaluating object to noise cluster 

distances, d*k as those terms drop out from (5.35). Subsequently, (5.17) for 

memberships can be modified to obtain memberships in good classes as 

uik = (1/d2ik )1/(m-1)  / ∑cw=1 (1/d2wk)

1/(m-1) + (2/δ

)

1/(m-1) (5.37) 

 

 

 
 

and the memberships in the noise class is 

u*k = (2/δ)1/(m-1)  / ∑cw=1 (1/d2wk )

1/(m-1) + (2/δ

)

1/(m-1)                                            (5.38) 

 

Thus the robust version of RFCM algorithm can be written down using above equations. 

5.3.2 Robust RFCM (R-RFCM) Algorithm  

(1) For relational data satisfying (5.13), fix c, 2 ≤ c ≤ n, and m > 1, and m > 1,  and initialize 

fuzzy (c+1)  -partition,  uik

. 

 Select noise distance δ,  and compute object to noise 

cluster distances, d*k ,  from (5.36). 

(2) Compute c mean vectors, from (5.15), then compute distances, dik, from (5.16). 
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(3) Update membership, uik  from (5.37) the noise membership (if require) from 

(5.38). 

(4) Check for convergence using some convenient norm on  uik  and if converged stop. 

else go to step 2. 

A careful observation of the above algorithm shows that the only major difference 

between this and the original RFCM is in equation (5.37). It may be seen that one does 

not require explicit computation of noise memberships, and thus there is only a minor 

modification necessary from the old algorithm to new one, which is in terms of changing 

(5.17)10 (5.37). This indicates simplicity of this approach. More understanding for the 

physical meaning of the noise distance for the relational data (as compared to the object 

data) can be made from the results shown in (5.37). Comparing (5.37) with (2.4). it is 

seen that the noise distance for the relational data would be twice that of noise distance 

for object data, if the relational data is computed as Euclidean measure of distance 

between two objects. This can be illustrated in Figure 5.1, where for the sake of 

convenience, a single round cluster (of two-dimensional object data) is shown. along with 

an outlier. just outside the cluster. Since the outlier is at a distance larger than 6' (radius 

of the circle) it does not belong to the good cluster, and will be classified as a noise point 

by use of NC-FCM algorithm (see equation (2.4)). However, if one were to use NC-

RFCM to do this classification, the largest dissimilarity of this object from any good 

object must be less than the diameter of the circle, i.e. twice the radius of the circle. Thus 

as shown in Figure 5.3. the noise object (i.e. outlier) is at a distance greater than twice the 

radius from object A. which is the farthest object from outlier in Euclidean sense. 



∑nj=1 v*j  = 1                                                      (5.40)  
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Next, the noise clustering is incorporated into Windham's AP algorithm. Since AP 

requires two types of memberships (or weights), the formulation becomes somewhat 

more complex. Let uik be the membership assignment of point k in noise class, and v*k be 

the noise prototype weight of object k. These quantities are constrained through the 

following equations.j 

 uik  = ∑ci=1 uik, k = 1,2,....,n                                          (5.39) 

Now the functional is modified in the usual fashion where the extra subscript to the 

dissimilarity distance  (Rik

)

i  denotes that this is the "amount" of dissimilarity between 

objects j and k  as viewed by class i. 

NFAP = ∑ci=1 ∑nj=1∑nk=1

u2ijv2ik (Rjk

)i + ∑nj=1∑nk=1

u2ijv2ik (Rjk

)*                                 (5.41) 

 

	

 
 

 

In the above, inter-point dissimilarity viewed by the noise class is the constant noise 

dissimilarity δ   and hence the functional becomes, 

NFAP = ∑ci=1 ∑nj=1∑nk=1

u 2ijv2ik(Rjk

)

i + ∑nj=1∑nk=1u2*jv2*kδ (5.42) 

 

 
   

 
 

The algorithm to solve for the partition based on the above is much more involved as 

compared to Roubens algorithm, and can be derived to obtain the following: 

5.3.3 Robust Version of AP (RAP) Algorithm  

(1) For relational data satisfying (5.1), fix c. 2 ≤  c ≤ n, and initialize fuzzy (

c+1)-partition, 

uik

. 

 Select noise distance, δ > 0. 
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(2) Compute terms Dik defined as in (5.28) and the noise term as in (5.29). along 

with the equivalent fuzzy eardinality of noise class as in (5.30). Note that all 

these terms are 0. 

(3) Compute new prototype weights by solving the minimization problem that. 

resembles the original noise clustering for FCM formulation with a small 

modification due to the constraint (5.11) 

min 

∑ct=1 ∑nk=1 v2ikDik+∑nk=1v2*kδNnc                                                                      (5.43) 

vik 
NFAP = ∑ci=1 ∑nj=1∑nk=1

u 2ijv2ik(Rjk

) i + ∑nj=1∑nk=1

u 2ijv2ik(Rjk

) *  

 

to obtain the prototype weights for regular clusters as 

vik  = (1/Dik ) / ∑nj=1(1/Dij)                                              (5.44) 

 

 

and the noise class as 

v*k  = 1/n                                                                   (5.45) 

 

(4)   Now that the prototype weights are determined. compute the class 

memberships by first                      computing terms Bik defined as below 

Bik = ∑nj=1 vij2 Rij                                                                                                (46a) 

  
 

and the noise term through using the result from (5.45), 

B*k = ∑nj=1 v2*jδ = δ (46b) 

Note that all these terms are ≥ 0. 
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minimization problem, along with constraint (5.39), that resembles the 

original noise clustering for FCM formulation: 
min  ∑ct=1 ∑nk=1 v2ikDik+∑nk=1u2*kδB*k                                                             (5.47) 

uik  
 

 

to obtain the memberships as 

uik = (1/Bik ) / ∑cj=1 (1/Bjk ) + (1/δ)                               (5.48)  

 

(6) 	Check for convergence using some convenient norm on uik  and if converged 

stop, else go to step 2. 

The results obtained above for noise clustering version of AP algorithm further 

show the power of the NC approach. As seen in (5.45), the prototype weights for the 

noise class are all equal to value (1/n) indicating that all the points have equal probability 

to be a noise prototype, and thus when the noise distance is a constant value, then the 

noise class is truly an universal entity. In other words, the noise class is spread 

throughout the space, and each object data contributes equally towards the noise 

prototype. The results for the class memberships, uik, are similar to the NC-FCM type 

algorithm;  as shown in (5.48), where the AP dissimilarity noise distance δ  is directly 

equivalent to the object noise distance in NC algorithms. Next, let us reconsider the 

functional for FRC, with one extra cluster for noise class. Using the same treatment for 
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the dissimilarity distance by adding the extra subscript to (Rik), and then incorporating the 

noise distance, we obtain, 

NFFRC = ∑ci=1  ∑nk=1umikumijRjk  / 2∑nt=1umit  + ∑nj=1 ∑nk=1um*kum*jδ / 2∑nt=1um*t (5.49) 

To derive the necessary conditions for the minimization of (5.49), a Lagrangian is 

constructed based only on the constraint (5.8) 

L = ∑ci=1  ∑nk=1umikumijRjk  / 2∑nt=1umit  + ∑nj=1 ∑nk=1um*kum*jδ / 2∑nt=1um*t  - ∑nk=1λk (∑c+1j=1ujk  - 1 (5.50) 

 

From the above, equation for membership can be obtained just as for robust RFCM as, 

where the terms aik are given by, aik  = m∑nj=1 umij Rjk / ∑nj=1 umij - m∑nh=1∑nj=1 umij umih Rjh  / 2( ∑nj=1 umijv

)2 (5.52) 

 

 

 

 

 

In a manner similar to how the FRC was derived, the algorithm for robust version 

of FRC (R-FRC) is presented below. 

5.3.4 Robust Version of FRC (R-FRC) Algorithm  

(1) For relational data satisfying (5.1), fix c, 2 ≤ c ≤ n, and m > 1 , and initialize 

fuzzy (c+1)-partition, uik

. 

 Initiate a counter p = 0. Select noise distance, δ > 0. 
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(2) Compute for each k = 1,.....,n  

a) Compute for each i = 1,.....,  c: aik  from equation (5.52), using 

memberships (p+1)uij  for j < k and (p)uij  for j ≥ k . (here the pre- 

superscript denotes iteration number) 

b) Compute membership (p+1)uik   using (5.51) 

(3) Check for convergence using some convenient norm on uik  and if converged 

stop, else set p = p + 1. and go to step 2. 

The above algorithm is very similar to the FRC algorithm, except for the minor 

differences in the equations. In this section, conventional relational clustering algorithms 

are extended to noise clustering. The results obtained for doing that show consistency of 

the NC approach. In the next section, the FRC algorithm is considered again for extension 

to noise clustering. However, while doing that, the issue of the membership constraint 

from equation (5.14) is also explicitly handled in objective function minimization. 

5.4 Robust Non-Euclidean FRC Algorithm  

The functional for FRC, with one extra cluster for noise class is considered again, as 

shown in (5.49). To derive the necessary conditions for the minimization of (5.49), a 

Lagrangian is constructed based on the constraint (5.8) as well as the inequality constraint 

in (5.14).     
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L = ∑ci=1  ∑nk=1 umik umij Rjk  / 2∑nt=1 umit  + ∑nj=1 ∑nk=1 um*k um*j δ / 2∑nt=1 um*t  - ∑nj=1 ∑c+1i=1 Ψij ujij    (5.53)  

In the above, λk and Ψij  are the Lagrange multipliers. The above can be minimized with 

respect to uik  to obtain 

∂L / ∂uij = muijm-1∑nk=1umikumijRjk  / ∑nk=1 - (m/2) uijm-1∑nk=1∑nl=1uikmuikmRkl / (∑nk=1umik)2 - λj - Ψij = 0                                                                                             (5.54) 

 

 

 

and then the corresponding Kuhn-Tucker conditions are as follows. 

Ψij ≥ 0                                              (5.55) ∂L / ∂uij = 0                                            (5.56) uij Ψij  = 0                                           (5.57) 

One can simplify (5.54) to write the following 

aijuijm-1 - λj  - Ψij  = 0                                              (5.58) 

  

where the terms aij are given by equation (5.22) as in the case of FRC. However. to 

eliminate Lagrange  multipliers λj , it is more convenient to define another quantity as 

bij = aij uijm-2 (5.59) 

and then, one can obtain the following for the memberships. 

uij = 1/bij / ∑c+1 w=1  1/b wj + Ψij / bij - ∑c+1 w=1 Ψ wj /bwj) / biv ∑c+1 w=1(1/b wj)        (5.60)   

 
 



 
  

Considering that all memberships must be non-negative as per (5.14). the solution of 

(5.61)  is valid for each object j. if the right hand side of (5.61) is also non-negative. If 

not. then  (5.61) is not valid. In other words. one cannot accept the memberships from 

(5.61) if the  turn out to be negative. 
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In the above equation, keep in mind that clusters sum to c-Fl, due to the extra noise 

cluster. Now the same type of arguments as in the derivation of FANNY [49] can be 

applied here to take care of the remaining Kuhn-Tucker conditions. First, observing 

(5.55), for each object j, we can have one of the following two conditions. 

1. 	Ψij = 0 For all i,  so that (5.57) becomes 

uij = 1/bij / ∑c+1w=1 1/bwj                                                                                      (5.61) 

 

2.  Ψij  > 0 for some i. so according to (5.57), for those i, the membership will be zero.+ 

 

uij = 0 = 1/bij / ∑c+1w=1 1/bwj + Ψij /bij - ∑c+1w=1 (Ψwj / bwj ) / bij∑c+1w=1(1/bwj) (5.62) 
 

 

However. the membership constraint from (5.8) dictates that (5.62) is not valid for all i 

for the same object j. Thus we can define the partition of clusters as: 

I-  = {i:uij = 0}                                                     (5.63) 

 

I+  = {i:uij  > 0 => Ψij  = 0} ≠ Ø                                   (5.64) 

 

 

Note that in order to satisfy (5.8), the set I+  cannot be a null set. Assuming that the term 

bij is finite, for  set defined by (5.63), we obtain from (5.62), 



1 0 1 

Ψij  = ∑c+1w=1( Ψwj / bwj) 

/ ∑c+1 w=1(1/b wj) - 1/ ∑c+1 w=11/b wj for i є I- (5.65)  

Noting that the right-hand side of (5.65) is independent of i, after some manipulations 

(see Appendix C), one can obtain the following. 

Ψij  = - 1/∑weI+ (1/bwj

) 

for i є I- (5.66) 

For the set in (5.64), equation (5.60) becomes 

uij = 1/bij /∑w=1 1/bwj - ∑c+1w=1 ( Ψwj /bwj)

/ bij∑c+1w=1 (1/bwj

) 

(5.67) 

and then using (5.66) in (5.67), after some manipulations (Appendix C), one can obtain the following,  

uij = 1/bij /∑weI+ (1/bwj

) 

for i є I+ (5.68) 

Based on the above equation, one obtains following conditions for local minima of (5.49). 

uij = 0 for i є I-  ; and  uij  = 1/bij /∑weI+ (1/bwj) for i є I+ (5.69)      

 

where the cluster sets are defined as; 

I- = {i; 1/bij / ∑c+1w=1 (1/biw

) 

≤ 0}                                       (5.70) 

 

 

 

 



 

from which one can obtain b*k using (5.59). 
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I+ = {i; 1/bij / ∑c+1w=1(1/biw) > 0}                                  (5.71)  

 

 

The above conditions do not take care of the situations when any bij is zero. However, in 

the limit, that makes the corresponding membership uij to go to 1 . ln. all the above 

equations, the noise class is implicitly included and thus is taken care of. 

Thus by direct application of Lagrange multiplier technique to derive constrained 

minimization of (5.49). we obtain the solution for the c +1 -partition from (5.69) through 

(5.71). 11 is noted that in deriving the above, the only constraint on Rik has been (5.8). 

Thus this derivation has an advantage over the derivation in RFCM. It should be clear 

that (5.69) can be used to find memberships in good clusters as well as noise class. while 

from (5.22), the quantity a*k can be obtained by the following simplified equation. 

a*k = m δ/2 

 

(5.72)   

It is clear that equation (5.69) is a transcendental equation in u*k .  To solve for 

uik from (5.69), one can use a gradient descent technique such as Newton's method, or 

simply use a successive substitution method. As in FRC, one can improve the order of 

convergence of this method by using the Seidel iteration scheme. This is shown in the 

following algorithm. 
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5.4.1 Noise Resistant, Non-Euclidean FRC (NR-NE-FRC) Method  

(1) For relational data satisfying (5.1), fix c, 2 ≤ c ≤ n, and m > 1, and initialize 

fuzzy c+l- partition,  uik. Select value of δ. Initialize I-  = I+ = Ø . Set a 

counter p = 0. 

(2) Compute for each k = 1,...n (a) Compute for each i = 1,.., c: bik from equation (5.59), using memberships 

for 

(p+1)uij  for j > k and (p)uij for j ≥ k .(here the pre-superscript denotes iteration  number)  

 

c) Compute for each i =1,...,c: the quantities 

 Bi = 1/bij / ∑c+1 w=1(1/biw )                                      (5.73) 

and define the following cluster sets: 

if Bi ≤ 0 then I- = I- U {i} , and if Bi > 0 then I+ = I+  U {i} 	(5.74) 

c) Compute membership (p+1)uik for i є I-  as (p+1)uij = 0   

d) Compute membership (p+1)uik for i є I+ from second part of (5.78). 

e) Set I-  

= 

I+ = Ø and go to (a) with next value of k. 

(3)    Check for convergence using some convenient norm on uik and if converged 

stop, else set p = p+1, and go to step 2. 

The above algorithm is further improvement over the FRC algorithm in two ways. 

First, it is able to handle noisy data (like R-FRC), and second, it handles situations when 
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for FRC or R-FRC the memberships become negative, through use of Kuhn-Tucker 

conditions that include the non-equality constraint (5.14), When the relational data is 

such that robustness to outliers in not an important issue, one can "disable" the NR 

feature of this algorithm either by explicitly discarding the noise class from the algorithm. 

or by setting the noise distance δ to a very large value. That is called NE-FRC algorithm. 

5.5 Numerical Results  

In this section we consider several numerical examples for the relational clustering. The 

results are organized in several parts. First, we consider several classical examples of 

relational data from literature. In most cases, the results are presented for FRC and its 

improved versions. In terms of the classic examples from literature, there are three cases. 

First, a data set from Kaufman and Rousseeuw (Table 5, Chapter 2) [49] called "countries 

data" (CD). In this data set, dissimilarities between 12 countries in obtained by averaging 

the results of a survey among political science students. Second, from Table VII of 

Gowda and Diday [34], example of similarity matrix for fat-oils, called FAT. This 

example is also used by Hathaway and Bezdek [40] as an example of non-Euclidean 

relational data. Third, is also from Table X of Gowda and Diday, [34], example of 

similarity matrix for microcomputers, called COMP. The original similarity matrices for 

these examples are shown in Tables 5.1 to 5.3, for CD, FAT, and COMP, respectively. 

When the original RFCM and FRC algorithms are used, the results for CD are 

shown in Table 5.4, and are very similar to that reported in using FANNY. These results 

show for a three class partition, USA, Belgium, France, and Israel as one group (cluster # 
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1, developed countries); Cuba, China, former USSR, and Yugoslavia as second group 

(cluster # 0, communist countries); and Brazil, Egypt, India, and Zaire (cluster # 2, 

developing countries) as third group. However, further analysis of the fuzzy partition 

reveals that Egypt is unlike any of the three typical groups, and its membership in cluster 

#2 and cluster # I are very close to each other. In [49], their silhouette plot (page 170) 

also indicated that Egypt was "worst clustered" object. This example will be later  Etter 

analyzed using robust version of FRC. It is noted that using RFCM, the number of 

iterations for convergence was 43 and while for FRC, it was 15 for the same termination 

criteria. This indicates a modest increase in convergence due to the use of Seidel iteration 

technique. If the Siedal iteration scheme is not implemented it takes 35 cycles to 

converge. 

Next. the FAT example is considered. Once again, the final results are similar for 

FANNY. FRC and RFCM. In Table 5.5, results using FRC are shown for two different 

cases of converting similarity measures to dissimilarity measures, as in Hathaway and 

Bezdek [40]. Unlike what is reported in Hathaway and. Bezdek [40], the first case of 

computing dissimilarity measure did not require the computation of β  in the NERFCM 

implementation that was used from MATLAB code downloaded from Hathaway's home 

page. And likewise, during the computation in FRC, the condition of obtaining negative 

aij was never encountered, and the memberships were always positive. Thus despite the 

dissimilarity being non-Euclidean, the FRC algorithm worked just fine. Again, we note 

that the number of iterations for NERFCM for case 1 and 2 were 13 and 10 respectively. 

while that of FRC for case 1 and 2 were 8 (9 without Siedal iteration) and 7 (8 without 
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Siedal iteration) respectively. This once again shows an advantage of using Seidel 

iteration. When the results in Table 5.5 are examined carefully, it is seen that the 2-

partition looks fine. However, when the similarity matrix is examined, it is seen that the 

similarity of all oils in class 0 to Linseed oil is rather low as compared with the other,  

members of that class. Thus when this example is run under FRC with 3 classes, we 

obtain results showed in Table 5.6. These results indicate that indeed Linseed oil may be 

classified into a class of its own. The results shown here are for case 2 dissimilarity 

measure. These results of FRC show that it is a good partitioning algorithm. 

Next the COMP data is considered. However, during the computations, the FRC' 

does run into getting negative memberships. Thus this data set appears to pose 

difficulties for the regular FRC algorithm. which does not explicitly satisfy constraint 

(5.14). This requires the use of either NR-NE-FRC or NE-FRC algorithm. The results 

using NE-FRC are shown in Table 5.7. The NE-FRC algorithm works well on this 

example, as shown. The classification obtained here is slightly different from that 

reported in [34]. as the microcomputer "Ex. Sorcerer" and "O.S.I1 Series" are classified 

differently. However, a careful examination of the data in Table 3, and the original 

properties listed in Table IX of [34], may explain that this difference is in fact quite 

reasonable. For instance, the four-prototypical microcomputers according to the 

classification in Table 5.7, are, HP-85, Zenith H89, 0.5. Challenger, and Atari 800. 

From Table 5.3, one can see that Ex. Sorcerer has higher similarity to Atari 800, than 

Zenith H89, and O.S.II Series has higher similarity to O.S. Challenger than Atari 800. 

Thus the classification shown in Table 5.7, is also an acceptable classification. When this 
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example was tried with RFCM, it failed, and then it was tried with NERFCM. Our 

results for NERFCM were not good, as the algorithm yielded two identical clusters out of 

four, indicating either a problem of convergence or of coding. This issue was not further 

investigated. 

Now we consider the CD again. In that example, it was discussed that Egypt is a 

difficult country to classify, as it is poorly classified. For this purpose. we may consider it 

as an outlier object, as it does not belong very well in the class of developing countries 

due to its simultaneous low dissimilarity with for example USA as well as India. Here. 

we then consider application of noise clustering, namely, R-FRC. The results using R-

FRC are shown in Table 5.8. where class # 3 corresponds to the noise class. As seen 

from these results. Egypt is classified as an outlier. while the rest of the classification 

remains as before. One may argue that original FANNY or FRC could have been tried 

with a 4-class partition, and similar results could have obtained. That may work for El 

situation such as this where there is only one outlier, as one can see in Table 5.9. where 

ordinary FRC is applied to find a 4 class partition. As seen in Table 5.9. Egypt is in a 

class by itself, while the previous classification remains the same. However, when the 

outliers are well dispersed, such strategy will not work. This leads to an example. 

discussed in the next paragraph, which is derived from directly converting two 

dimensional object data into dissimilarity data using Euclidean distance measure. 

We consider a modification of example from [49], page 165. Here, as compared to 

22 data points in the original example, we have added 3 points to show that the noise 

clustering can handle dispersed biasing outliers. This example is shown in Figure 5.2. It 
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is easy to see through human eye that in the object space, there are three distinct clusters 

and several outliers. Since the data is from Euclidean measure, R-FRC can be applied. 

The results of R-FRC are shown in Figure 5.4. Similar results are found through robust 

version of RFCM and FANNY. As can be seen, the outliers, plotted as "o" are clearly 

identified, and a perfect three good class partition is obtained. This shows that the noise 

clustering also works for relational data. When the original FANNY is run on this 

example, the results are shown in Figure 5.2, where FANNY classification is not perfect. 

As seen, three outliers belong to cluster on left. while one outlier each belongs to the 

other two clusters. Examination of the membership matrix (not shown here) reveals that 

all 5 outliers do have more fuzzy memberships as compared to the good points. 

However. with R-FRC. one can get automatic outliers identification. To illustrate the 

point made in the previous paragraph regarding the use of ordinary FANNY or FRC: with 

an extra class, the results of FRC with four classes are shown in Figure 5.3. Here. it is 

clear that mere use of an extra class does not take care of outliers. 

A textbook example shown in [18] is also considered in [69] using R-FRC. Here, a 

similar example is considered to see how robust FANNY is as compared to RFCM or 

FRC based on L2  norm. in Figure 5.5, two clusters and one biasing outlier. at a medium 

distance from the right cluster, are shown. The results of partition of FANNY, and FRC 

with L1  norm (i.e. using distances induced through such norm as measures of 

dissimilarity) are shown. Unlike the results in Figure 5.5, which shows outcome due to 

FRC with L2  norm, the outlier does not completely bias the classification. While, in 

Figure 5.6. as in [18] and [69], the outlier itself becomes one class, and two good cluster 
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become another class. To further test robustness of FANNY, one more outlier is added to 

this example, as shown in Figure 5.7. Here the classification results for FANNY, and 

FRC with L1 norm, L2 norm or √L22 norm are the same, and the outliers are put into one 

class, and the two good clusters are put into another one. Thus for higher bias, FANNY 

is not as robust. Next, the R-FRC is applied, and as shown in Figure 5.8, the outliers are 

classified as noise points, plotted using "+" symbol, and perfect two good classes are 

identified. Thus, though this simple example, it is shown that explicit use of noise 

clustering technique is better than relying on L1  norm to take care of bias due to outliers. 

Although not shown here, many other examples were tested using R-FRC, and good 

results were obtained. While in is clear from these examples that use of L1 norm may be 

better than L2  norm, detection of outliers is not automatic through use of FANNY. For 

this type of examples, Kaufman and Rousseeuw [49] argue that use of FANNY versus 

non-fuzzy, i.e. hard clustering technique, is better, as hard clustering would automatically 

classify outliers (object 6 and 13 in their original example), to good classes, while the 

fuzzy memberships indicate that these objects are not well-classified. However, even 

with that knowledge, one cannon easily determine that these are outliers, while the R-FRC 

can do that automatically. Moreover, the claim by Kaufman and Rousseeuw [49] that use 

of L1  norm in FANNY makes the result more robust is also non entirely valid as seen from 

previous example. 

Nest, we consider cases of data that is far from being Euclidean. In this segment of 

the results, our aim is to show how the NR-NE-FRC or NE-FRC take care of such 

situations, without needing complex scheme as in NERFCM. As evident by now, in 
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some of these cares, the regular FRC fails, as it runs into situations when the 

memberships turn negative, thus violating (5.14). The object data from example X of [7] 

is considered here, as shown in Figure 5.9. In this figure, each data point is labeled by a 

number (in bold, italic), used as the object number in the following results. As done in 

[7, 40], this object data is converted to relational data using several different norms, most 

of which are non-Euclidean. Euclidean norm (i.e. L22) is contaminated (or distorted) by 

adding different fixed values, ranging from 10 to 40. Other norms such as Mahalanobis 

and sup norms are also used as in [7, 40]. The results for one of the two classes for this 

example for a 2-class partition are shown in Table 10. In all cases except the last one. 

which is the L12 , required use of NE-FRC, instead of FRC. For that case. FRC resulted in 

negative memberships. These results are consistent with those reported using RFCM and 

NERFCM. The β-spread expansion was needed for that case only, when using 

NERFCM. The membership results shown for the L12 norm are interesting. since the two 

points closest to each clusner center have perfect hard memberships. This indicates that 

each of these points is seen as either being right at the center or "within" the perceived 

center or prototype for each cluster. If it is the latter situation;  it explains why the 

ordinary FRC runs into negative memberships due to negative distances. 

As shown before, the microcomputer data required application of NE-FRC instead of 

FRC, while the countries data did not. Both are examples of true relational data, and are 

far from being derived using the Euclidean norm. Yet when FRC (or RFCM or FANNY) 

are applied, the behavior is different. This is in line with the observations made in Table 

5.10. Thus it is clear, being non-Euclidean alone is not a reason for the data to require 
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NE-FRC or NERFCM. Next, we briefly examine the effect of the fuzzifier, rn. The 

FANNY algorithm uses a fixed value of 2 as the membership exponent. The FRC and 

other algorithms derived here use a variable exponent. In some cases, use of variable m 

may become a significant issue. Consider the example of Figure 5.9 again. We apply 

FRC for Euclidean dissimilarity for different values of m. The results for values of m 

varying from 1.4 to 2.5 are shown in Table 5.11. As shown, there is a gradual variation 

from very crisp to quite fuzzy memberships, as value of m becomes higher. This 

information is plotted in Figure 5.10 to show this variation. Thus it is clear to see the 

effect of m on the memberships. When the robust versions of these algorithms are used. 

the exponent m plays a great role in how the outlier rejection is done in the sense of 

weights of an equivalent robust M-estimator. This is seen in Figure 2 of [25], where the 

rejection smoothness changes as the exponent m changes. Since m does play a crucial 

role in fuzziness of memberships as well as outlier rejection, it is important to allow the 

user to select a proper value according to the application. Thus use of variable m in FRC 

as compared to a constant value in FANNY is more appropriate for wide range of 

applications. 



Table 5.1 Countries data (CD): dissimilarity to other countries [49]  

Countries CI C2 C3 C4 CS C6 C7 C8 C9 C10 C11 C12 

CI :Belgium 0.00 5.58 7.00 7.08 4.83 2.17 6.42 3.42 2.50 6.08 5.25 4.75 

C2:Brazil 5.58 0.00 6.50 7.00 5.08 5.75 5.00 5.50 4.92 6.67 6.83 3.00 

C3:China 7.00 6.50 0.00 3.83 8.17 6.67 5.58 6.42 6.25 4.25 4.50 6.08 

C4:Cuba 7.08 7.00 3.83 0.00 5.83 6.92 6.00 6.42 7.33 2.67 3.75 6.67 

C5:Egypt 4.83 5.08 8.17 5.83 0.00 4.92 4.67 5.00 4.50 0.00 5.75 5.00 

C6:France 
2.17 5.75 6.67 6.92 4.92 0.00 6.42 3.92 2.25 6.17 5.42 5.58 

C7:India 
6.42 5.00 5.58 

6.00 
4.67 6.42 0.00 6.17 

6.33 
6.17 6.08 4.83 

C8:Israel 
3.42 5.50 6.42 6.42 5.00 3.92 6.17 0.00 2.75 

6.92 
5,83 6.17 

C9:USA 
2.50 4.92 6.25 7.33 4.50 2.25 6.33 2.75 0.00 6.17 6.67 5.67 

C10:USSR 
6.08 6.67 4.25 2.67 

6.00 
6.17 6.17 6.92 0.17 0.00 3.67 0.50 

C 11 :Y_slavia 5.25 6.83 4.50 3.75 5.75 5.42 6.08 5.83 0.67 3.67 0.00 6.92 

C12:Zaire 4.75 3.00 6.08 6.67 5.00 5.58 
4.83 

6.17 5.67 6.50 6.92 0.00 

Table 5.2 Fat-Oil data (FAT): similarity to other types of fat [34]  

Type of Fat F1 F2 F3 F4 F5 F6 F7 F8 

F1 : Linseed Oil 0.00 4.98 3.66 3.77 3.84 3.24 0.86 1.22 

F2: Perilla Oil 4.98 0.00 5.70 5.88 4.70 5.30 2.78 3.08 

F3: Cotton-Seed Oil 3.66 5.70 0.00 7.00 6.25 6.68 4.11 4.44 

F4: Sesame Oil 3.77 5.88 7.00 0.00 5.90 6.37 3.61 3.97 

F5: Camelia Oil 3.84 4.70 6.25 5.90 0.00 6.24 3.48 3.89 

F6: Olive Oil 3.24 5.30 6.68 6.37 6.24 0.00 4.28 4.68 

F7: Beef-tallow 0.86 2.78 4.11 3.61 3.48 4.28 0.00 6.74 

F8: Lard 1.22 3.08 4.44 3.97 3.89 4.68 6.74 0.00 
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Table 5.3 Microcomputer data (COMP): similarity measure of microcomputers[34] 

Microcompute MI M2 M3 M4   M5 	'M6 M6 M7 M8 M9 MW M11 M 12 

M1 Apple II 0.00 5.27 4.40 4.32 3.29 3.42 1.15 3.68 4.31 5.02 5.56 4.09 

M2 Atari 800 

5.27 

	0.00 

0.00 

4.65 4.98 	3.54 3.67 -1.35 4.35 4.23 4.94 4.98 4.34 

M3 VIC 20 4.40 4.65 0.00 3.64 3.55 3.71 2.36 3.03 4.75 4.04 3.64 4.47 

M4 Sorcerer 4.32 4.98 3.64 0.00 4.07 4.06 1.24 4.74 4.12 4.83 5.22 4.66 

M5 Zenith H8 3.29 3.54 3,55 4.07 0.00 5.81 1.18 

4.71 

2.65 
3.35 

3.74 5.00 

M6 Zenith H89 3.42 3.67 3.71 4.06 5.81 0.00 1.30 

0.00 

2.77     

3.48 3.87 5.13 

M7 HP-85 1.14 1.35 2.36 1.24 1.18 
1.30                 

0.00 0.61 1.90 1.20 1.23 2.17 

M8 Horizon 

3.68 

4.35 3.03 4.74 4.71 
4.83    

0.61 

0.00 

 3.06 3.77 4.16 4.02 

M9 Challenger 4.31  4.23 4.75 4.12 2.65 2.77 1.90 3.06 0.00 
5.23 4.77 

3.44 

M10  0.S.II  Ser 5.02 4.94 4.04 4.83 

3.35 3.48 

1.20 3.77 5.23 0.00 

5.48 4. 15 

M 11 TRS-801  5.56 4.98 3.64 5.22 3.74 3.87 1.23 
4.16 

4.77 5.48 0.00 4.61 

M I 2TRS-80 11! 4.09 4,34 4.47 4.66 5.00 5.13 2.12 4.02 3.44 4.15 4.61 0.00 

Table 5,4 Results of FRC for countries data 

Country Membership Cluster 0 Membership Cluster 1 Membership Cluster  Cluster 

Belgium 0.162085 T 	0.596511 0.241404 1 

Brazil 0.211748 0.261950 0.526302 2 

China 0.493488 0.223969 0.282543 0 

Cuba 0.634196 0.158889 0.206915 0 

Egypt 0.250809 0.331799 0.417392 2 

France 0.169511 0.597835 0.232654 1 

India 0.288711 0.253162 0.458127 2 

Israel 0.214003 0.491960 0.294037 1 

USA 0.145707 0.628702 0.225591 1 

USSR 0.599672 0.182350 0.217978 0 

Yugoslavia 0.507477 0.234015 0.258508 0 

Zaire 0.215261 0.252782 0.531957 2 
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Table 5.5 FRC results for FAT dissimilarity data, two class partition 

Type of Fat Membership of Cluster 0 
Dij = 1/Sij - min{1/ Sri} 

Membership: Cluster 0 
Dij = max {Sri} -Sij  

Cluster 

Linseed Oil 0.919404 0.703728 0 

Perilla Oil 0.931349 0.818098 0 

Corton-seed Oil 0.898728 0.934605 0 

Sesame Oil 0.924036 0.923698 0 

Camelia Oil 0.852621 0.815740 0 

Olive Oil 0.770371 0.833682 0 
 

Beef Tallow 0.010047 0.036179 I 

Lard 0.003215 0.028367 1 

Table 5:6  FRC result, FAT dissimilarity data, three class partition, 

D

ij  = max{Sri} - Sij  

Type of Fat Membership: Cluster 0 Membership: Cluster 1 Membership: Cluster 2 Cluster 

Linseed Oil 0.978027 0.014389 0.007584 0 

Parilla Oil 0.374620 0.481974 0.143405 1 

Cotton-seed Oil 0.006855 0.985786 0.007359 
 

1 

Sesame Oil 0.045338 0.915294 0.039368 1 

Camelia Oil 0.153041 0.715315 0.131644 1 

Olive Oil 	0.063652 0.851195 0.085153 1 

Beef Tallow 0.012414 0.023604 0.963983 2 

Lard 0.011594 0.023580 0.964827 2 

Table 5.7  FRC results for COMP dissimilarity data, Dij = 1/Sij min {1/Srt} 

Type of Fat Membership: CO Membership: CI Membership: C2 Membership: C3 Cluster 

M1: Apple II 0.015833 0.103860 0.327705 0.552602 
 

3 

M2: Atari 800 0.012020 0.081054 0.20/650           0.702276 3 

M3: Corn. VIC 20 
0.008804                                      0.156431 0.534898 0.240867 2 

M4: Ex. Sorcerer 0.012008 0.141872 0.166658 0.678663 3 

M5: Zenith 148 0.002547 	 0.964177 0.012164 
 

 0.021113 1 

M6: Zenith 1489 0.000631 	 0.991320 0.002948 0.005101 1 

M7: HP-85 0.999936 0.000017 0.000028 0.000019 0 

M8: Horizon 0.010957 0.523816 0.139712 0.325515 1 

M9: O.S. Cha_ger 0.012817 0.026393 0.858304 0.102485 2 

M10: O.S.II Series 0.008838  0.057624 0.475860 0.457677 2 

 M I 1: TRS-80 I  0.013582 0.118326 0.315086 0.553005  3 

 M12: TRS-80 Ill 0.035551 0.526332 0.152710 0.285407 1 
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Table 5.8  R-FRC results for countries data 

Country Membership: C0 Membership: C1 	r  Membership: C2 Membership: NC Cluster 

Belgium 0.125768 0.463865 0.193747 0.216621 1 

Brazil 0.148109 0.184149 0.390133 0.277609 2 

China 0.331957 0.156315 0.198473 0.313255 0 

Cuba 0.492317 0.114395 0.150414 0.242875 0 

Egypt 0.178903 0.229919 0.294235 0.296942 3 

France 0.127283 0.473710 0.177866 0.221141 1 

- India 0.193075 0.169230 0.324208 0.313487 2 

Israel 0.151614 0.364953 0.211434 0.271999 1 

USA 0.103371 0.543078 0.163064 0.190487 I 

USSR 0.488580 0.125214 0.150562 0.235644 0 

Yugoslavia 0.384422 0.159538 0.177857 0.278184 0 

Zaire  0.144097 0.16674 0.426731 0.262428 2 
 

Table 5.9 FRC results for countries data for a four class partition 

Country Membership: CI 0 Membership: CI Membership: C2 Membership: C3 Cluster 

Belgium 0.117684 0.279481 0.412446 0.190389 2 

Brazil 0.153291 0.275696 0.210442 0.360571 3 

China 0.376661 0.215909 0.177566 0.229864 0 

Cuba 0.544052 0.161583 0.125879 0.168486 0 

Egypt 0.168994 0.297609 0.244644 0.288753 1 
 

France 0.123400                                                          0.267822 0.421788 0.186990 
 

1 

India 0.196259 0.266691 
0.191019 0.346031 2 

Israel 0.145553 0.289336 0.317041 0.217170 2 

USA 
 

0.106570 
 

0.255417 
 

0.458249 0.179763 
 

2 
	 

USSR 0.489838 0182214           0.146281 0.181667 0 

Y_slavi 0.364596 0,231649 0,186632 0.217123 0 
Zaire                        

0.157387 0.276484 0.203468 0.362661 3 
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Table 5.10  Memberships in class 0 using FRC or NE-FRC for objects of X from [7] 

Norm (E is the Euclidean, (L2)2  ) 

Object E Mahalanobis L1  Sup E+10 E+20 E+30 E+40 

(L1)2 

1 0.931 0.900 0.931 0.943 0.859 
 

0.787 
 

0.715 0.631 0.920 

2 0.905 0.679 0.905 0.919 0.819 0.745 0.678 0.605 0.906 

3 0.999 0.992 0.999 0.981  0.879  0.785 0.703 0.619 1.000 

4 0.905 0.679 0.905 0.919 0.818 0.745 0.677 0.605 0.906 

5 0.810 0.842 0.810 0.842 0.703 0.641 0.595 0.553 0.792 

6 0.498 0.496 0.498 0.499 0.500 0.499 0.500 0.500 0.499 

7 0.188 0.153 0.188 0.156  0.296 0.358 0.404 0.447 0.206 

8 0.095 0.320 0.095 0.081 0.181 0.255 0.323 0.396 0.094 

9 0.001 0.008 0.001 0.019 0.121 0.214 0.297 
 

0.383 0.000 

10 0.095 0.320 0.095 0.081 0.181 0.255 0.323 0.396 0.094 

11 0.069 0.100 0.069 0.057 0.141 0.212 0.287 0.373 0.080 

Table 5.11 Memberships in class 0 using FRC for objects of X from [7, 40] with 

(L2)2  

norm, and different values of m. 

No 
m=1.4 

m =1.5 m=1 .6 in =1 .7 m =1 .8 m =1.9 m =2.0 
m=2.1 

m=2.2 m =2 .3 m=2 .4 m =2.5 

1 0.982 0.060 0.934 0.904 0.874 0.846 0.819 0.794 0.771 0.750 0.731 0.714 

2 2
.

0.970 0.940 0.907 0.874 0.843 0.8 H 0.787 0.764 0.743 0.724 0.707 0.693 

3 0.996 0.987 0.974 0.957 0.937 0.915 0.893 0.871 0.849 0.828 0.808 0.700 

4 0.970 0.940 0.907 0.874 0.843 0.814 0.787 0.764 0.743 0.724 0.707 0.693 

5 0.900 0.861 0.817 0.781 0.751 0.726 0.703 0.687 0.673 0.660 0.648 0.6.38 

6 0.496 0.499 0.499 0.499 0.500 0.500 0.498 0.500 0.500 0.500 0.500 0.500 

7 0.088 0.138 0.181-  0.218 0,249 0.274 0.294 0.312 0.327 0.340 0.352 0.362 

8  0.030 0.059 0.092 0.126 0.157 0.186 0.213 0.236 0.257 0.276 0.203 0.307 

9  0.004 0.013 0.026 0.043 0.063 0.085 0.107 0.129 0.151 0.172 0.192 0.210 

10 0.030 0.059 0.092 0.126 0.157 0.186 0.213 0.236 0.257 0.276 0.203 
0.307 

11 0.018 0.040 0.066 0.096 0.126 0.154 0.182 0.207 0.229 0.250 0.269 0.286 
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5.6 Conclusions  

Several existing fuzzy relational data clustering techniques are examined and the issue of 

robustness to outliers and noise is considered in this chapter. The existing techniques are 

shown to have several commonalties, such as similar objective functional, and in some 

cases, direct connection with prior work in hard clustering of relational data. One of the 

main contributions here is to show why RFCM is quite successful for many non-

Euclidean examples, despite having the restriction from equation (5.13). Further, it is 

shown that a generalization of FANNY, called FRC, has an identical objective function 

as RFCM, and one can minimize it without the restriction from (5.13). Next, the issue of 

robustness is addressed through application of concepts of noise clustering of object data 

[18). The robustness of NC approach through its connection to robust M-estimators from 

robust statistics [24, 25] is shown before its extension to relational clustering. Although 

the extension of NC approach to relational data is not trivial, based on the new 

interpretations of noise class and its perception of dissimilarities, all the relational 

clustering techniques are converted to robust versions. In doing show, it is shown that the 

NC concept is consistently well behaved, and in each algorithm, the noise dissimilarity 

distance and associated noise memberships are well defined. Even in case of Windham's 

AP algorithm [76], its dual types of memberships are handled nicely through application 

of NC concept.. 

Based on the NC approach, and optimization techniques from [49], several versions 

of FRC algorithm are introduced. The FRC and R-FRC are useful in particular when the 

relational data is derived from Euclidean dissimilarities, and in some cases, these 
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algorithms can handle the non-Euclidean data. The NE-FRC, and NR-NE-FRC can 

handle all types of non-Euclidean data through direct incorporation of the membership in-

equality constraint (5.14) in the minimization procedure. This versions compare well 

with NERFCM, which utilizes clever β-spread expansion of non-Euclidean data. Our 

results clearly show that it is unnecessary to perform such conversion of data at an added 

computational expense. Moreover, through the use of NC concept and extra noise class, 

these algorithms also handle noise and outliers in the data. 

Examples, both real relational data and relational data derived from Euclidean 

distance of synthetic object data, are considered to show how the new algorithms behave. 

The series of examples presented show that FRC and its different versions have good 

convergence for these examples, and produce good classification. They handle noisy data 

as well as highly non-Euclidean data. The NR-NR.-FRC should prove to be an excellent 

choice when analyzing large relational data sets, for which the expert prior knowledge is 

not available. Through varying the fuzzifier exponent, m, various grades of fuzzy 

memberships can be generated, and thus useful information about the data complexity 

could be generated. 

In summary, a class of very practical fuzzy relational data clustering algorithms are 

introduced, that allows for robust classification of all types of relational clustering 

problems. Such relational data may be obtained from a variety of management, decision 

science, and other engineering applications. 	If the data is based on Euclidean 

dissimilarities, then use of FRC is recommended, while if such data is suspected to 

contain much noise, it is recommended that the R-FRC should be used, with the relational 
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noise distance estimated through schemes similar to those for object data clustering [18, 

25, 26]. When the data is expected to be highly non-Euclidean, it is recommended that 

the NE-FRC be used when noisy data is not expected, else, NR-NE-FRC should be used. 

In all cases, the user must select a proper value of the fuzzifier exponent, m. 

Figure 5.1  The noise distance (Sin object data space 

Figure 5.2  The euclidean data set with 25 points including 5 outliers 
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Figure 5.3 The result of FANNY and FRC on Figure 5.2 with number of clusters (c = 4) 
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Figure 5.4 The results of R-FRC on Figure 5.2, number of clusters (c = 3) 
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Figure 5.9 The geometry of 11 points data  

Figure 5.10  The variation of membership with change of m= 1.4 to 2.5 



CHAPTER 6 

APPLICATION OF NOISE CLUASTERING IN GROUP TECHNOLOGY 

6.1 Introduction 

Simplicity of the process layout is one of the key issues that determine the productivity of 

any manufacturing facility. The smooth component-flow through process layout directly 

leads to simplified management, reduction of throughput times, reduction in investment 

in inventory and reduced handling cost. Since the components usually require processing 

by well-defined set of machine tools, the  flexibility of adding machines to the flow lines 

is often restricted due to high investment cost. Therefore it is advantageous to re-

structure the production factory into a number of desegregated manufacturing cells such 

that each unit includes a number of dissimilar machines constitute a self-sufficient unit to 

process a family of parts grouped together based on the commonality between parts and 

manufacturing processes. This leads to the concept of cellular manufacturing [9, 33, 59]. 

The main aim is to improve the flexibility and manufacturing productivity. Cell 

formation, the most important problem faced in designing cellular manufacturing 

systems, is to group parts with similar geometry, function, material and/or requiring a 

similar production process into part families and corresponding machines are organized 

as independent cells. Therefore the initial step in designing a cellular manufacturing 

system is the identification of part families and formation of machine cells. More often 

the flexibility in machine cells formation is limited compared to the  part-family formation 

since machine cell formation is dictated by economic constraints of resources and 

limitations in manufacturing facility. Therefore the problem boils down to assignment of 

125 
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n parts into c fixed cells in order to maximize the objective of manufacturing. Typically 

it is a classification problem [9, 10, 11]. 

Group technology is a manufacturing philosophy which seeks to exploit underlying 

similarity between components in order to achieve improved planning, operation of 

manufacturing system and increased productivity and efficiency. Obviously the GT 

principles constitutes the framework of cellular manufacturing concept[59] since the pans 

that require processing by similar machines are grouped together. Grouping algorithms 

are traditionally based on assuming a well-defined (preferred) routing of each component. 

This dictates the preferred set of machine tools to be used for its processing. Compared 

to the conventional analytical methods such as array based clustering, hierarchical 

clustering (or similarity coefficient-based) and considering other alternatives, fuzzy 

clustering has been advocated as an appropriate methodology for part family formation in 

cases where no clear division between component groups can be achieved and hence crisp 

logic of family formation does not seem appropriate[11]. Therefore fuzzy clustering 

provide a more realistic environment for decision making. So fuzzy mathematics is 

employed in this research. The employment of fuzzy membership functions allows us to 

include uncertainty inherent in part features and thus produce more realistic results. in 

recent past fuzzy clustering has also started receiving considerable attention for solution 

of part classification problem in cellular manufacturing and FMS. In [11] Chu and 

Hayya first applied fuzzy c-means clustering algorithm for solution of group formation. in fact 

work load balancing among different cells has been able to be achieved using fuzzy 

method. In [78] new approaches based on fuzzy classification and fuzzy equivalence are 

introduced in the process of part family formation. A dynamic part-family assignment 
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procedure is presented using the methodology of fuzzy pattern recognition to assign new 

parts to existing PFs. The problem of number of groups in GT is equivalent to the 

problem of cluster validity in fuzzy clustering. In [33] the grouping algorithms has been 

extended to develop the criteria for partitioning the components into an 'optimum 

number' of groups. Clearly the fuzzy clustering method has evolved to be an extremely 

valuable tool in the classification type of problems in GT. 

	

Overall GT is an organizational technique to improve manufacturing productivity 

focusing on factors like delivery speed, quality, design flexibility, delivery reliability, as 

well as manufacturing costs. One of the main weakness of the conventional grouping 

methods, including the fuzzy clustering technique [4, 6], is that they implicitly assume 

that the components belong to one of the part families. In reality, some parts often 

require processing by machines from multiple cell and thereby belong to more than one 

part families and appear as bottleneck. As a result the cells ceases to be self-sufficient 

units. This requires material handling between cells, leading to complex material flow. 

increased lead time and escalation of investment in inventory. It is therefore necessary to 

identify these bottleneck parts while grouping, and may process alternatively by 

subcontracting. Truly the identification of bottleneck parts is equivalent to the isolation 

of noise and outliers in robust fuzzy classification task. So to solve this problem we 

propose to apply Dave's noise model of fuzzy [18] clustering. 

The rest of the chapter proceeds as follows. In the next section the fuzzy clustering 

formulation of the problem is described with its inability to handle outlier elements or 

exceptional parts. How Dave's noise model of fuzzy clustering is implemented to solve 

the problem is outlined in section 6.3 with example. In section 6.4 the grouping 
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efficiency of this method is compared with other analytical methods in the context of 

examples from the literature. The paper is concluded by the discussion of the results and 

summary on this approach in section 6.5. 

6.2. Fuzzy Clustering in Group Technology  

In 1965 Zadeh [80] first proposed the theory of fuzzy sets was the fuzzy generalization  of 

the ordinary mathematical concept of sets. In a universe of discourse U , a fuzzy  subset 

A of U is defined by a membership function µ(x) representing the degree of 

membership of each element x. in a fuzzy subset A . The value of µ(x) lies between l 

and 0 depending on full, partial or no membership. In 1981 Bezdek[6] incorporated to 

the fuzzy concepts in k-means clustering and proposed the classical theory of fuzzy c-

means (FCM) clustering. Applications in various field have proved FCM as a powerful 

classification tool. The fuzzy clustering method [4, 6] was first introduced in group 

technology by [11]. 

	

Assume that there are n parts and p machines to be grouped c part families and 

corresponding machine cells. Conventional grouping methods implicitly assume that 

disjoint part families exist in data set; therefore a part can only belong to one part family. 

We can represent it as a binary matrix. 

T = [                         ] 

1 0 0 .,. 0 

0   1   1  ...     0 .    .    .   ...    . .    .    .   ...    . 

0 0 0 ... 1  

(6.1) 
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(6.2) 

(6.3) 

(6.4) 

and that 

µik = 0 or 1, i = 1,2,...,c and k = 1,2,...,n                         (6.2) ∑ci=1 uik = k = 1,2,...,n,                                    (6.3) 

 
 

0 < 

∑ci=1 uik  ≤ n  = 1,2,...,c                               (6.4) 

 

The constraint (6.2) ensures that that uik  equals to 1 if the k th part belongs to the i  th 

part family. Constraint (6.3) ensures that each part exactly belongs to one part family. 

Constraint (6.4) ensures that each part family consists of at least one part. 

But in many cases, while classifying real parts, some families are not completely 

disjoint, rather separation of part families and machine cells is rather fuzzy. Under the 

circumstances Chu and Hayya ....applied the fuzzy clustering technique i.e. FCM for 

better representation of the classification problem where the degree or the grade of 

membership of a part to each family is expressed by a value between 0 and I. 

Consequently each element of the above membership matrix T is represented by decimal 

number. While the constraint (6,3) and (6.4) remains unaltered, the constraint. (6.2) is 

only modified to represent to represent fuzzy membership of the parts to the family, such 

that 

0 

≤ uik  ≤ 1, i = 1,2,...,c, k = 1,2,...,n                                      (6.2a) 

So the parts now belong to various part families with different degree of 

membership. The application of FCM in machine cells / part family formation in GT is 

simple. 
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Though there may be infinite number of classifications possible it is obvious to 

group the parts into C families that results in most compact clusters. If we represent the 

prototype part of the i th part family V1  as V1 = (vi1

, 

vi2,....., vip ) and 

vik  = ∑nj=1uij *  µ(xjk) / ∑Nj=1uij where i = 1,2,...,c ; k = 1,2,....,p                   (6.5) 

 

the distance of the jth part from the prototype of i th family can calculated as 

[∑pk=1(µ(xjk) - vik)2]1/2                                                                        (6.6) 

 

and the weighted sum of squares of the distance of the j th part from C prototype part of 

the respective families is expressed as 

∑Ci=1 uij ∑ pk=1 ∑ pk=1(µk( xjk ) - vik )2                                                                   (6.7) 

 

The total weighted sum of squares of the distance of N parts from C reference 

pattern is J(U,V) = ∑Nj=1∑Ci=1uijm∑pk=1(µk(xjk) - vik)2  (6.8)  

 
) 

Here m refers to the fuzzifier has a value > 1; used primarily to reduces the 

effective membership value. The minimization of the above functional under the 

constraint (6.2), (6.3) and (6.4) Bezdek (1983) consist of following few steps 

(1) Choose desired number of part families C, 1 < C < N and a value of m > 1, 

usually 2 
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(2) Choose an initial classification matrix U10  and the value of S for stopping 

criterion 

(3) For iteration r = 0,1,2,..., calculate the mean vector 

vik (r)  = å Nj=1 mµ( x jk) /  å N j=1umij) for i = 1,2,....,c and k = 1,2,...,p  

 

(4) 
Update U(r) using U(r) using v(r)ik such that 

 

uij  = åpl=1 ( 1/ åpk=1(µk(xjk) - vik)2 / åpk=1(µk(xjk) - vlk)2)1/(m-1)  where i=1,2,...,c and j = 1,2,...,n  

 
 

(5) Compare U(r)  to U(r+1)    If │uik(r+1) - uikr │≤ ξ stop otherwise go to step (3) 

Clearly since the number of machines p is quite high, even comparable with the 

number of parts n , therefore data is often very sparse. The numerical implication is, the 

memberships tend to he more fuzzy. Since it is very high (p ) dimensional dataset, the 

visualization of it is a difficult task. 

The algorithm being applied to a data set shown in Table 6.1 and the resulting grouping in 

The grouping is perfect if all the parts to be grouped clearly belong to one of the cells. 

However some exceptional components that require processing by multiple cells while 

desegregating the production of the factory into disconnected cells, leads to noise or 

outlier problem. Noise or the outliers are those data that do not belong to any cluster. 
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Table 6.1 The example of 18 pans and 9 machines 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 
1 1    1    1   1   1   1   1   

2 1    1   1   1   1   1   1   

3 1    1   1   
 

1   1   1   

4 1   1    
 

	
1   1   1   1     

5 1   1   1   1    1   1   

6 1   1   1  
 

1   1   
 

1   

7 1   1   1   1   
1    

8 1   
 

1   1   1   
1    

1   

9 1  1  1   1   1    1  1   

Table 6.2 Classification of parts by 1TM of example in Table 6.1 

3 7 10 11 18 1 2 6 15 16  17  4  5  8  9  12  13  14  
1 1    1   1   1   1   1     1  

6 1    1   1     

1 

7 1  1  1   1     
 

2 1   1  1      1    1     1     1   

3 

9 1   
 

4   
 

1     1     1   1     1    1    

5 1   1     1     1   l      1    

8 1      1    1    

Unable to distinguish between a well-classified component and a bottleneck part is 

the main limitation for applying FCM type algorithm in group technology problems. An 

ideal solution would be one where these bottleneck elements get automatically identified 

and removed from the pool of parts. The concept of having an approach where one 
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cluster or cell, defined as noise cluster or noise cell where all the bottleneck parts could 

be dumped. Next it is required to define the similarity or dissimilarity measure for the 

noise cell. Based on this argument Dave proposed the algorithm of Noise clustering [18]. 

6.3 Segregation of Outliers by Noise Clustering Technique  

Dave [18] considered noise to be a separate class, and represented it by a prototype that 

has the same distance, δ, from all the feature vectors. His definition does not specify 

what the distance is, but it states that all the pans have equal apriori probability of 

belonging to the noise cell. This makes sense, since given no prior information, all parts 

should have an equal probability of falling in noise cell. As the algorithm progress, the 

parts belonging to good machine cells will increase their probability to be classified. The 

membership uij of a part xj  in noise cell is defined as, = 

u*j  = 1-∑Ci=1uij                                                                                                                (6.9)  

Here C is the number of clusters and denotes the grade of membership (belonging) of 

part xj in the i th fuzzy subset of X. Since (6.1) is used to define the membership u*j in 

the noise class, the usual membership constraints of FCM algorithms is not required. 

Thus, the membership constraint for the good clusters is effectively relaxed to 

∑Ci=1uij  ≤ 1                                                    (6.10)  
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This allows bottleneck part to have arbitrarily small membership values in good clusters. 

The objective function being optimized by noise clustering algorithm is given as 

J(B,U:X) = ∑Ci=1∑Nj=1(uij )

m d2(xj,βi)+∑Nj=1δ2ij(1-∑Ci=1uij)m                                  (6.11) 
 

 

In (6.11), d2 (xj ,βi) is the distance from a feature point xj to the prototype βi. 

The above functional can be optimized with respect to the part family prototypes and the 

memberships in a manner similar to FCM functional as shown in section 6.2. The 

resulting equations for the prototype parameters are very similar, however, the equation 

for the memberships is different, and is given as,+ 

uij = (1/d2

)

1/(m-1) / ∑Ck=1(1/d2)1/(m-1) +(1/δ2)1/(m-1)                                                            (6.12) 

In the above, dij 

i

s equivalent to d2  (xj , βi).  It can be easily seen that the membership 

for FCM does not have the second term in the denominator, and thus the NC 

memberships are different. Here, by specifying the value of δ , we can separate out the 

dissimilar parts. The noise distance δ is acts like a "limit" or "boundary" that eventually 

determines whether the part belong to any group or an outlying bottleneck element. It is 

interesting to note that in group technology problem of cell formation the bottleneck parts 

that require processing by additional machines from other cells will lead to generate intra-

cellular outliers and noise element. If a part require processing by the machines not in 

demand by any other cell, that will appear as an extra-cellular outlier during 

classification. However this type of biasing outlier are rarely encountered. To apply this 



135 

the δ  is described in detail [18, 25, 26]. Applying NC algorithm with δ  = 0.3 to the 

problem in Table 6.1 the resulting classification is shown in Table 6.3. 

Table 6.3  Classification of parts by NC algorithm with S = 0.3 

3 7 10 11 1 2 1 16 17 5 8 9 12 14 4 6 13 18 
1 1 1    1      

1 
 1   1    1    

6 1    1    1    1     l  1    1    

7   

2 

3 1      1    1       1      1      1   

9 

4 1   l   1   1   
1  

 1   1     

5 1   1    1   1   

8 

6.4 Numerical Results  

The fuzzy c-means (FCM) clustering algorithm [4,6] has unique ability of simultaneous 

detection of multiple clusters by segmenting data into multiple groups as well extracting 

their cluster prototype centers at the same time. Since noise clustering was introduced 

primarily to robustify the FCM-family of algorithms against noise and outliers in data, it 

inherits the partitioning capability into multiple clusters over and above identify the 

outlying elements as well. This makes it an ideal candidate for identification of 

bottleneck parts while forming the cells following the GT principles. The first example 

in Table 6.1 shows each of the 18 parts that require processing by several of the 9 

machines. The result obtained by FCM C = 3 is shown in Table 6.2. Though it produced 
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classification, clearly it could not create totally disconnected cells. After applying  noise 

clustering algorithm with same number of clusters C = 3 and noise distance δ  =  0.3, it is 

possible to identify the bottleneck parts at the same time while forming the  disconnected 

machine cells or part families. The results are shown in Table 6.3. However  selection of 

correct value of δ  is a very important issue for correct results. 

Table 6.4  The example of 20 parts and 8 machines from [11] 

1 2 3 4 5 6 7 8 
9 10 11 12 13 14 15 16 17 18 19 20 

1 1    1   l   1   1  1  1  1  1  1 

2 1   1     1   1    1  1  1   

3 1   1        1     1   1  1  1   1   1 
 

4 1    1   1  1    1   1  1   

5 1   
 

1   1  
  

1   1  1  1   

6 1  1   1 1  1  1  1   

7 1    1   1    1  1   1  1  1    

8 

1  1  1  1   

The example in Table 6.4 is obtained from [11] has 20 parts 8 machines. Though 

application of Fail produces identical pail families as reported in [11], is shown in Table 

6.5. That explains the FCM as a useful classification tool for cell formation in GT 

applications, it was evident that there are few bottleneck parts in the data set, it is 

therefore attempted to classify the good parts into groups and identify the bottleneck parts 

as outlying noise. While using the NC algorithm with δ = 0.9 we can identify all 

exceptional parts as well as classify the good parts in groups and forms disconnected cells 

as displayed in Table 6.6. 
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Table 6.5  Classification of parts by FCM of example in Table 6.4 

2 8 9 11  13 14 16 17 19 3 4 6 7 18 20 1 5 10 12 15 
1 1   1    1   1   1   1   1   1   1   1     

3 

1   1   1   1   1   1   1   1   

2   1   1   1   1 1 1 1 

4   1   1  1 1 1 1 

8    1 

7    1 1 1 1 1 1 1 1 

5 1 1 1 1 1 1 1 

6   1 1 1 1 1 1 1 

Table 6.6  Classification of example in Table 6.4 obtained by NC algorithm with δ =0.9 

2 8 13 16 19 4 7 18   1 

5 

15 3 

6 

9 
10 11 12 14 17 20 

1 1  1  1  1  1  1   1  1  1   1  
3 

1  

2 1   

4 1 

8 1   1 1 1   

7 1   

5 

6 

The Table 6.7 is collected from the literature [59]. Here the application of NC 

could not identify bottleneck parts directly, instead classified them among in detected 

cells. Due to constraint of space the machine component process Table 6.7 is displayed 

in reverse order with machines in columns and components along the rows. 
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Since there are only 41 parts to be classified in 30 dimensional space, since there are 30 

machines, visualization proves that data is very sparse. The resulting classification 

Table 6.7 The example of 30 machines and 41 components from [59] 

1 2 3 4 5 6 7 8 9 10 11 12 
131 4 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

1. II 1. 1 1 
2 1  1 1 
3 I  1 1 
4  1    1 5 

6 1   
7 1 
8  1    

1 
 

9 1  
1  

10  1   1 
11 1  1 12 1  1  1 1 1 

 
1 1 1 13 1  14   

11 
15   1 116 666  I   I 1 1 
17  1 

 

  
18 1  1    

19 1 I  20   	1 1  
22   I 1  1 
22      1  1  

23   1  -1--  1 
24     

25 
26 
27 

      1 1  28   29 
-1-    30    1  31    32  1  

  
33  	     1 11  

    34  1 
     35  1   36  , 1     

 
 

 
   1  

1  
 

 
 

37  1 1  
38  1_ 	 1 

39 1   1 1 1 1 1  1 1 
40 1 1  1 1 
41 1 1 1 
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produced will be too fuzzy, as evidenced by all membership coefficients have 

approximate value 0.33. Though, after assignment to the cells, the parts produced nice 

groups but not totally disconnected cells as shown in Figure 6.8. 

Table 6.8 Classification of 30 machines and 41 components by NC with δ  = 2.1 

1 21 11 2 22 12 3   23 10 14 25 15 5 6 18 17 26 7 24 13 4   16 27 2  28 8  29 9 
19

'  20 30 
11 1 1 1 1   
41 1 1 1  
32  1 1  
33 1 1 1 1  
11 
40 1 1 1  
11 1 1 

23 1                                    1 1 1 
39    
12  1 1 1 1 1   
20   1 1 
2  I 1 
4  

37  
5 

26  1  1 1  
17  1       1   
36  1       1  1         1  1     
27  1  1  1  

16 1     1  1  1  
34   _1  1  1  
38    1  1     
25     1   1    
28     _1_        
15   1            1  

35    1        1  - 

8 8     1   
29  1    1    l   

6    1    7     
14  1      1      
18 

 
1  

19    1          
    

24   1 -  
1       1  
3  1 1 
9   

1 
 1 

13   

1 

 
21     1 1 1 1 1 
22    1 1 
30  1 1 
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To identify the bottleneck parts we implement the following novel technique on the 

classification results. The uses of the machines in each cell are calculated from the 

classified parts in different part families. It is termed as Utilization coefficient 

U[machine][cell] of the machine. The machine will be assigned to the cell that has 

highest utilization coefficient for it. As we know if a specific machine is used by more 

than one cell, it will be termed as bottleneck machine. The parts in different cells that use 

the same machine are exceptional parts. Therefore those parts in other cells should be 

identified as bottleneck parts. It is therefore necessary these bottleneck machines. Since 

the number of machines in any manufacturing facility is less than the number of parts, 

due to obvious reason of process requirement or financial limitation, it is therefore 

comparatively easier to identify these machines. The visualization of utilization 

coefficient. U[machine][cell] is obtained in Table 6.9. Clearly the machine #1 2, 8 and 12 

are used by more than one cell, So all the parts using these machines i.e. 8, 14, 18, 19, 

24, 29 are considered as the exceptional parts causing bottleneck in processing. However 

it is mandatory to have good classification before applying this method. By good result, it 

is implied that the bias due the bottleneck parts has no drastically altered the 

classification. 

Table 6.9  The utilization co-efficient U[machine][cell] of 30 machines in 3 cells 

1 2 3 4 5 6 7 8  9 10 11 12 13.i 14 15  16 
17 18 

19 20 21 22 23 24 2529    26 27 28 29 30 

7 7 5 0 0 0 0 0 0 5 4  6 0  0 0  0 0 0 0 0 6 6 5 0 0 0 0 0  0 0 

0 1 0 6 3 1 4 3 0 0 0  2  3  5 2  2  3 00 0 
00 

 0 1 1 4 2 3 0 0 

0 0 0 0 0 0 0 2 3 0 0  0 0  0-   0  0-0 5 4 0 -  0 0 0 0 0-0 0 6 4 
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6.4.1. Grouping Efficiency  

To compare the result of classification by different algorithms instead of subjective 

consideration, Chandrasekharan and Rajagopaln in [10] provided a quantitative measure 

of how well the parts are grouped together with a set of machines while forming the cells. 

As aptly termed as grouping efficiency, defines the concentration of 1 's in diagonal 

matrix is considered as an indicator of within-cell utilization of machines, whereas 1's in 

nondiagonal locations are indicators of intercellular movements. It is desirable that each 

part should visit all the machines in their respective cell to utilize the entire capacity of 

the machines and minimize the intercellular trips. The within-cell work load factor for all 

components as a fraction of total work load in all the cells and the number of intracellular 

moves determine the overall goodness of the solution and reflects the level of 

independence achieved as a result of cell formation. Therefore, we get       

η = qη1 + (1-q)η2 (6.13) 

 

where η1 is the total intercellular moves as a fraction of total moves (intercellular and 

intracellular moves combined), η2  is the total within-cell work load as a fraction of total 

work load when combined for all the cells, and q is any user specified weight which 

reflects the user consideration of η1  and η1 . Usually the q is 0.5 selected. 

6.5 Conclusion  

The traditional machine-component grouping algorithms in cellular manufacturing 

including fuzzy clustering method, based on similarity analysis of production process, 

assign all the parts to one of the machine cells. Those components, require processing by 
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machines from multiple cells are the exceptional parts, lead to inter cellular movement, 

create bottleneck in manufacturing process planning. This leads to more complex 

material flow, increased inventory and overall throughput time. While desegregating the 

production process into disconnected manufacturing cells, it is essential to isolate the 

bottleneck pans thereby each sell achieve self sufficiency and improve grouping 

efficiency. Here we propose a strategy based on Dave's noise model of fuzzy clustering 

[18] approach to handle the task, The method is flexible enough of letting the designer 

choose the number of cells. Results are shown in the Table 6.1 to 6.8. Table 6.10 shows 

the grouping performance. Clearly, it establishes NC is an efficient tool in identification 

of bottleneck parts in CT application. 

Table 6.10  Comparison of grouping efficiency FCM and NC algorithm 

Fuzzy C Means Algorithm Noise Clustering Algorithm 

1 0.75 0.98 

2 0.66 0.99 

3 0.57 0.99 



CHAPTER 7 

CONCLUSION AND FUTURE DIRECTION 

7.1 Conclusion 

The main objective of this dissertation was the robust detection of multiple clusters from 

noisy range image. This was accomplished by considering improvement of NC approach 

for both the conventional gradient-descent based and the probabilistic search based 

methods that attempt to minimize objective function. 

For improving robustness, two most popular fuzzy clustering algorithms, namely 

NC and PCM are considered. It was shown that while PCM being a mode seeking 

algorithm, is capable of detecting clusters in noisy data, it lacks the partitioning capability 

of FCM. On the other hand, NC technique does have the partitioning capability of FCM, 

and can detect clusters in noisy data. Further NC algorithm was generalized by allowing 

the noise distance to take different values for different points. This generalization enables 

the NC technique to successfully detect clusters of varying sizes in noisy data. It was also 

shown that the NC membership is a product of FCM membership with partitioning 

capability and a type of robust possibilistic membership based on harmonic mean 

distance. Moreover, through judicious choice of variable noise distance, the generalized 

NC can be made equivalent to a Fuzzy c-M-estimator clustering algorithm, capable of 

mimicking various robust M-estimators. Hence, the generalized NC algorithm can have 

the desirable robustness aspects of M-estimators, and is thus used in subsequent work. 

To eliminate the problem initialization of NC method, we considered sampling 

based robust LMS estimator. LMS has the highest break down point 0.5, (the theoretical 
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maximum) which is applicable if the data contains only one cluster. In view of our 

problem the LMS algorithm required to be extended to fuzzy c-LMS algorithm for 

detecting multiple clusters simultaneously. Since LMS family of algorithms are sampling 

based methods, they require exhaustive search or probabilistic limited search over the 

data set. To reduce the number of sampling, the concept of repeated evidence of RHT 

has been blended to develop a faster fuzzy c-LMS. The algorithm is tested to be highly 

robust for two dimensional edge data. However the algorithm requires ordering of all 

points in each sampling. So its applicability for object detection from range image often 

becomes computationally a big task. 

Comparative analysis of NC, LMS and RHT methods is shown with relative merits 

and demerits. A new sampling based robust algorithm is proposed, based on noise 

clustering principle, called noise Ieast square or NLS method, that combine the good 

features of NC, LMS and RHT. The method basically searches for one cluster at a time 

directly from image space instead of parameter space. The noise distance 	is required 

to be specified similar to NC. This algorithm basically fits the prototype where the 

density of points in image is maximum. li is shown to be a very robust method for 

detection of quadric surface from range image. To improve the speed of detection, the 

range image is partitioned into several regions to restrict the sampling within single 

cluster thereby reduce the number of false iterations. The strategy is shown to he very 

successful. 

Several existing fuzzy clustering methods for relational data were examined. 

Commonality and differences were discussed. A new algorithm, which combine the good 

features of RFCM and FANNY, called FRC was introduced. The concept of noise 
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prototype and the distance it for relational data was also developed. Applying this FRC is 

extended to a robust method, named NFRC. Several popular fuzzy methods also have 

been robustified accordingly. Since relational data often does not conform to Euclidean 

metric, NFRC was further modified to handle non-Euclidean data by including inequality 

constraint (5.55) through Kuhn Tucker condition. This method was shown to be less 

computational compared to NERFCM. 

	

As an example application of fuzzy clustering in solution of engineering problems, 

we identified the machine/component cell formation in cellular manufacturing following 

the group technology (GT) principles. The problem of identification of exceptional parts 

to create desegregated cells for better manufacturing efficiency is detailed. 

Overall the robustness aspect of fuzzy classification has been addressed in this 

research. Apart from introducing new algorithms, both for object data and relational data 

space, new application has been tested in the field of group technology. Several 

interesting results do encourage continuing further investigation in future. 

7.2 Future Direction  

There are several interesting issues  that evolved during current research that requires 

being resolved. NLS algorithm has proved to be a very robust algorithm. Closer scrutiny 

of the algorithm reveals that it has very high breakdown point. It is therefore necessary to 

evaluate the other robustness features e.g. gross error sensitivity, local shift sensitivity, 

efficiency, asymptotic variance, finite outlier rejection etc. The influence function (IF) of 

the estimator is required to be evaluated to determine all these robustness properties. 
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In this research, the objects from range image have been recognized in the form of 

several clusters represented by quadric surfaces. These surfaces are then required to be 

combined to create the final solid model of single identity. In real application, objects 

with varied shape will obviously require complex combination of clusters of quadric 

surfaces. It is therefore necessary to formulate more reliable method cluster merging 

while developing the real entity. 

Only difficulty encountered in application of NLS algorithm is to classify the data 

points at the intersection of two clusters represented by quadric surfaces. Typically the 

points in a range image, located on the edge of an object are often get removed by the 

cluster detected first, which should evenly belong to two or more clusters. Although it is 

suggested to applying one step noise c-quadric shell, NCQS algorithm on NLS results, 

however a better strategy which can be incorporated to the sampling scheme of NLS is 

necessary. 

One of the primary requirements of fuzzy clustering method is that it requires the 

number of clusters required being specified apriori. In [29] a new competitive 

agglomerative clustering method has been derived for object data that automatically 

determines the optimum number of clusters during classification. This concept requires 

to be extended to FRC and N-FRC  algorithm to solve the problem of number clusters in 

relational data space. 

As we know clustering is an essential tool for various areas of scientific and 

engineering activity. There has been considerable research in fuzzy clustering in the last 

two decades that has produced a number of algorithms to the solution of several research 

issues. 



APPENDIX A  

DSCRIPTION OF SUBROUTINE HYBRD IN MINPACK  

/* 	subroutine hybrd */ 

/* 	the purpose of hybrd is to find a zero of a system of */ 
/* 	n nonlinear functions in n variables by a modification */ 
/* 	of the powell hybrid method.. the user must provide a */ 
/* 	subroutine which calculates the functions, the jacobian is */ 
/* 	then calculated by a forward-difference approximation. */ 

/* 	the subroutine statement is */ 

/* 	subroutine hybrd(fen,n,x,fvec,xtol,maxfev,ml,mu,epsfen, */ 
/* 	 diag,mode,factor,nprint,info,nfev,flac, *1 
/* 	 ldfjac,r,lr,qtf,wa ,wa2,wa3,wa4) 

/*    where */ 

/* 	fcn is the name of the user-supplied subroutine which */ 
/* 	calculates the functions. fen must be declared */ 
/* 	in an external statement in the user 

/* 	program, and should be written as follows. *7 

subroutine fen(n,x,fvec.iflag)*/ 
integer n,iflag */ 
double precision x(n),fvec(n) 

-------------  */ 

/* 	calculate the functions at x and */ 
return this vector in Nee. */ 

/*  ------------  -*/ 

/* 	return */ 
end 

the value of Wag should not be changed by fen unless */ 
the user wants to terminate execution of hybrd. 

/* 	in this case set iflag to a negative integer. */ 

/* 	n is a positive integer input variable set to the number */ 
/* 	of functions and variables. */ 

/* 	x is an array of length n. on input x must contain */ 
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/* 	an initial estimate of the solution vector. on output x */ 

	

/* 	contains the final estimate of the solution vector. */ 

	

/* 	fvec is an output array of length n which contains */ 

	

/* 	the functions evaluated at the output x. 

	

/* 	xtol is a nonnegative input variable. termination */  

	

/* 	occurs when the relative error between two consecutive */ 

	

/* 	iterates is at most xtol. */ 

	

/* 	maxfev is a positive integer input. variable. termination */ 

	

/* 	occurs when the number of calls to fen is at least maxfev 

	

/* 	by the end of an iteration. */  

	

/* 	ml is a nonnegative integer input variable which specifies */ 

	

/* 	the number of subdiagonals within the hand of the */ 
jacobian matrix. if the jacobian is not handed, set */ 
ml to at least n 

	

/* 	mu is a nonnegative integer input variable which specifies */ 

	

/* 	the number of superdiagonals within the band of the */  

	

/* 	jacobian matrix. if the jacobian is not banded, set */ 

	

/* 	mu to at least n - I. */ 

	

1* 	epsfcn is an input variable used in determining a suitable */ 

	

/* 	step length for the forward-difference approximation, this */ 
approximation assumes that the relative errors in the */ 

	

/* 	functions are of the order of epsfcn. if epsfcn is less */ 

	

/* 	than the machine precision, it is assumed that the relative */ 

	

/* 	errors in the 'functions are of the order of the machine 4 / 

	

/* 	precision. / 

diag is an array of length n, if mode I (see */ 

	

/4 	below), diag is internally set if mode = 2, diag 
must contain positive entries that serve as */ 
multiplicative scale factors for the variables, */ 

	

/* 	mode is an integer input variable. if mode = 1, the */ 

	

/* 	variables will be scaled internally. if mode = 2, 4 / 

	

/* 	the scaling is specified by the input diag. other */ 

	

/* 	values of mode are equivalent to mode = 1. */ 

	

/* 	factor is a positive input variable used in determining the */ 

	

/* 	initial step bound. this bound is set to the product of */ 

	

/* 	factor and the euclidean norm of diag*x if nonzero, or else */ 
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/* 	to factor itself. in most cases factor should lie in the */ 
/* 	interval (.1,100.). 100. is a generally recommended value. */ 

/* 	nprint is an integer input variable that enables controlled */ 
/* 	printing of iterates if it is positive. in this case, */ 
/* 	fcn is called with iflag = 0 at the beginning of the first */ 
/* 	iteration and every nprint iterations thereafter and */ 
/ 4 	immediately prior to return, with x and fvec available 4 / 
/* 	for printing. if nprint is not positive, no special calls 4 / 
/* 	of fcn with iflag = 0 are made. */ 

/* 	info is an integer output variable. if the user has 4 / 
/ 4 	terminated execution, info is set to the (negative) */ 
/ 4 	value of iflag. see description of fen. otherwise, */ 
/* 	info is set as follows. */ 

/* 	info = 0 improper input parameters. */ 

/* 	info = I relative error between two consecutive iterates */ 
/* 	is at most xtol. 

/* 	info = 2 number of calls to fen has reached or exceeded */ 
/* 	maxfev. */ 

/* 	info = 3 xtol is too small. no further improvement in 4 / 

the approximate solution x is possible. */ 

/4 	info = 4 iteration is not making good progress, as 4/ 
/4 	measured by the improvement from the last */ 
/ 4 	live jacobian evaluations. 4 / 

/ 4 	info = 5 iteration is not making good progress, as */  
/* 	 measured by the improvement from the last */  
/* 	 ten iterations. 4 / 

/* 	nfev is an integer output variable set  to the number of 
calls to fcn. 4 / 

/* 	fjac is an output n by n array which contains the */ 
/* 	orthogonal matrix q produced by the qr factorization 4 / 
/ 4 	of the final approximate jacobian. 4 / 

/* 	Idfjac is a positive integer input variable not less than n 4 / 
which specifies the leading dimension of the array fjac. 4/ 
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/* 	r is an output array of length lr which contains the 4'/ 
upper triangular matrix produced by the qr factorization */ 

7* 	of the final approximate jacobian, stored rowwise. 

lr is a positive integer input variable not less than */ 
/* 	(n*(n+1))/2. */ 

qtf is an output array of length n which contains .4 / 
/* 	the vector 	transpose)*fvec. 

wal, 	wa3, and wa4 are work arrays of length a. */ 

/* 	subprograms called 

/* 	user-supplied 	 fcn */ 

/* 	minpack-supplied dogleg,dpmpar,enorm,fdjac1, */ 
/* 	 qform,qrfac,r1mpyq,r1updt */ 

fortran-supplied dabs,dmax1,dmin 1 ,min0,mod */ 

/* 	argonne national laboratory minpack project. march 1980. */ 
7* 	burton s. garbow, kenneth e. hillstrom, jorge j. more 4/ 
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APPENDIX B 

THE RELATION BETWEEN FRC AND FCM ALGORITHM  

The fuzzy clustering technique was proposed by Bezdek [4] is primarily known as fuzz 

c-means or FCM method where c is the pre-specified number of clusters is attempted to be 

detected. This algorithm is actually the fuzzy generalization of the classical c-means 

approach of hard clustering. This method is based on the minimization of the objective 

function as stated below 

J=∑ni=1∑kv=1u2||xi - mv||2 =∑ni=1∑kv=1u2iv∑pf=1 (xif - mvf)2                                 (B.1) 

 

 

where p is the number of variables in the data uiv represents the fuzzy membership i   

data point to the v th cluster and the cluster centers are represented as/ 

mvf = ∑iu2ivxif / ∑iu2iv                                                                      (B.2) 

 

It is possible to replace the expression of mvf  from (B.2) into (B.1). Hence 

J=∑ni=1∑kv=1u2iv∑pf=1 (xif - ∑nj=1u2ifxjf  / ∑nj=1u2jf )2  J=∑ni=1∑kv=1u2||xi - mv||2 =∑ni=1∑kv=1u2iv∑pf=1 (xif - mvf )2       

 

by arranging the terms, we get 

∑kv=1∑pf=1[∑ni=1u2iv - 2∑ni=1u2ivxif∑nj=1u2ifxif  / ∑nj=1u2if  + (∑nj=1u2if

)2  / ∑nj=1u2if  ] 

 

 

Combining the suffix of i and j inside the parenthesis, we get 
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152 = ∑ kv=1∑ pf=1 [ ∑ nj=1 u2jv x if 2  - ∑ kj=1 u2if  x if )2 / ∑ nj=1 u2jv 

 

By linearizing the terms inside the paranthesis, it results in  

= ∑kv=1∑pf=1 ∑nj=1u2jv∑ni=1u2iv x2if   - ∑ni=1∑nj=1u2ivu2jvxif xif   / ∑nj=1u2jv 

Since the summation of i and j series terms from 1 to n , we rearrange the terms as 

= ∑kv=1∑pf=1 ∑ni=1∑nj=1u2ivu2jv (xif  - xif )2 / 2∑nj=1u2jv 

 

Finally, we can g et 

J = ∑kv=1  ∑ni=1∑nj=1u2ivu2jv ||xi - xj||2 / 2∑nj=1u2jv (B.3) 

The last expression is exactly the objective function of FANNY algorithm [49]. If the 

measurement consist of position of object in p dimensional space, it is possible 

implement L2 norm distance. Then the above derivation proves the equivalence of result 

by both FANNY and FCM algorithm. 



APPENDIX C 

DERIVATION OF EQUATIONS (5.66) AND (5.68)  

First, consider (5.65) rewritten as below. ψij  = ∑c+1w=1(ψwj /bwj)-1 / ∑c+1w=1(1/bwj) for i є 1-1                                        (C-1) 

  

Next we split the summation terms into two sets, and I .= 

ψij  = ∑wє1- ( ψwj /bwj)+ ∑wє1- ( ψwj /bwj)-1 / ∑wє1- (1/b wj)+ ∑wє1-( 1/b wj) (C-2) 

Since ψij  = 0 for i є  I+, by simplification we get the following. 

ψij  = ∑wє1- (1/b wj)+ ψij ∑wє1+ (1/b wj) = ψij ∑wє1-

( 1/b wj)-1                       (C-3) 

Terms cancel out from right hand and left hand sides, and thus (C-3) can be further 

simplified to obtain the following which is same as equation (5.66). 

 ψij  = - 1 / ∑wє1-(1/bwj) for i є I-                                                                            (C-4) 
 

Next, we consider derivation of (5.68). Reconsider (5.67) as shown below. uij  = - 1/bij /∑c+1wє1- 1/bwj - ∑c+1w=1(ψij/bwj) / bij∑c+1w=1(1/bwj

)                 
 

 

This can be simplified as below. 
uij  = 1- ∑c+1w=1(ψij /bwj)/bij∑c+1w=1(1/biw )                                          (C-5) 
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Once again the terms can be split into two sets, I+  and I- . 

uij = 1- ∑ wє1- ( ψiw /biw ) - ∑ wє1+ ( ψiw /biw )/bij ∑c+1 w=1(1/biw )                            (C-6) 
 

Noting again that ψij = 0 for i e I+, (C-6)  can be simplified as, 

uij = 1-ψij∑wє1-(1/biw) / bij∑c+1w=1(1/biw)  (C-7) 
 

substituting the value of ψij from (C-4), the following is obtained, 

1+∑wє1-(1/biw) / ∑wє1+(1/bwj) uij = bij∑c+1w=1(1/biw)  (C-8)                                           

By arranging the terms of the numerator and through further simplification the following 

which is same as (5.68) is obtained. 

uij = 1/bij / ∑ wє1+ (1/b wj) for i є I+                                                                                  (C-9) 
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