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ABSTRACT
OBJECT ORIENTED 3D DYNAMIC SIMULATION
OF FLOW OF GRANULAR MATERIAL THROUGH
HOPPER

Development of object oriented 3D dynamic simulation of the particle 1s
considered. ThlS code is based on the soft sphere model dealing with both normal force ,
tangential force and the friction. The development of such a model and the code is
motivated by the need to understand the flow patterns of granular material. The prime
effort while developing this code was focused on the data encapsulation and secured
access to all the attributes of all physical parameters of the bulk solid, which might be
endangered by the random access of the interface of the software. A dynamically bound
array based container has been implemented though needs some more work to be done to
make it more robust. Data sorting and searching is also focused. Reduction of
computation overhead and increase of speed were tried to resolve through established
algorithms on searching and sorting. This is of crucial importance in dealing with
problems associated with bulk solids flows, which occur in almost all industries and

natural geological events.
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CHAPTER 1

INTRODUCTION

1.1 History and Literature Survey

For the development of powder flow technology, it is not enough just to measure the bulk
flow properties by uniaxial shear tester or isostatic shear tester or measuring the steady
state flow properties by Jenike shear tester( 1961, 1964). In many cases,measurement of
these properties is good enough for certain process. Often, however, circumstances, such
as the surrounding temperature, the humidity, the composition of the raw material, the
process conditions and so on, will change with time. This implies that the measurement of
the powder flow properties is just a snapshot of a large variety of possibilities Therefore,
measurement of the powder flow properties is limited to certain conditions.

In essence, the behaviour of the powder is determined by the interparticleforces
and by their response in time to changing conditions. The future of powder flow
technology is dependent on knowledge of this level of expertise. Many theories have been
developed in the past, of which the theory of Johnson, Kendall and Roberts (JKR, 1971) 1s
an interesting representative for particle adhesion forces. This theory deals with the case of
strong adhesion and particles with low elastic moduli. Another model, with opposite
starting points, was developed by Derjanguin, Muller and Toporov (DMT, 1975). Of
course, these models are still very limited, and do not include factors such as particle
shape, roughness and application of forces. To meet these restrictions, theories including
the effect of tangential forces, surface roughness and electrostatic forces have been

suggested. Often, this research is limited to two particles in contact. Nowadays, computer
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is able to simulate thousands of particles in contact and their behaviour with respect to
each other based on these and other theories. The main motivation for writing this code is
to meet those restrictions with thousand of particles.

Simulation on the microscopic level will be helpful in the future understand certain
macroscopic powder flow behaviour. It also will predict behaviour regarding certain
conditions and therefore it will provide a tool to manipulate the powder behaviour in a
fundamental way, rather than tnial and error. Several models have been developed over
years, of which Leonard & Jones contact force model for normal forces and Mindlin and
Deresiewicz (1953) and a new theory by Thronton (1991) for the tangential forces
between particles are utilized. With this model as a guide, the interparticle behaviour was
investigated. The purpose of this thesis is to develop a simulation code to find the particle
trajectories, velocities and consequently compute the macroscopic quantities which can be
great help in understanding the behaviour of flowing granular materials through hopper.
Moreover optimization of computer overhead by introducing object oriented concept, and
lattice structure for collision detection have been implemented so that the code can handle
a significant number of particles.

The force model used in this study is based on the “soft sphere” model introduced
by Walton et al. (), who foHowed nonequilibrium molecular dynamics method proposed by
Ashurst and Hoover (). In this force model, the collisions between particles do not occur
instantaneously but occur for a finite time duration. Therefore multiple contacts between
particles are possible. In order to determine an accurate trajectory change for a single

collision, many calculational steps are required.



Numerical Method

The numenical method utilizes a straight forward extension to 3D of the 2D contact force
models and integration equations of Walton and Braun (1986), (WB model). Explicit
intrigration is accomplished via the “leap-frog” method for each of 6 degrees of freedom.
Since the particles are spherical, only the magnitude and direction of the angular velocity
1s needed to determine the infinitesimal surface displacements between timesteps(i.e., the
information necessary to determine changes in tangential friction forces). For the motion
of one sphere in the x-direction and rotation about its x-axis the finite difference

equations are:

velocity vxn‘m=vx“‘m+(Fx“/m+g,c)At_ (1D
postiton X=X+ v AL (1.2)
angular velocity do,® “¥/dt = do," ~"/dt + (N / Io) At. (1.3)

Where the subscript n, refers to the current time step; Fy is the x-component of the sum of
the all contact forces acting on the particle; g, is the x-component of the applied body
force(i.e., gravity); m is the mass; N is the torque; Iy is the moment of inertia, and At is the
time step. Similarly other two directions can be formulated. The orientation of the
individual particle (e.g., Euler angles) are not needed to determine the forces or the
subsequent motion.

Normal force:

The normal force during collision, Fy is identical to WB model:

for loading Fx=K,a. (1.4)

for unloading Fx =Ky(a — ao). (1.5)



Where « 1s the “overlap” between the contacting spheres; K, > K,; and o, represents the
relative “overlap” where the unloading force is set to zero (due to inelastic deformation of
the surfaces). This normal-force model‘ produces binary collision with a constant
coefficient of restirution given by e = ¥ K\/K,, independent of the relativevelocity of
impact.
Tangential force:
The tangential friction force is a two dimensional (surface) extension to Walton and
Braun’s one-dimensional approximation to Mindlin’s (1949) elastic frictional sphere
contact force model. In that WB model the effective tangential stifftness of a contact
decreases with tangential displacement until it is zero when full sliding occurs. In the
present two-dimensional surface model the tangential displacement paralle/ to the
perpendicular to the existing friction force are considered separately. They are later
combined vectonally and their sum is checked against the total friction force limit, pFx.
The effective tangential stiffness in the direction paraliel to the existing
friction force 1s given by:
for T increasing Kr=Ko(1-(T-TH)(puFu-T)). (1.6)
for T decreasing Kr= Ko(1-(T =T) (uFx+ T ). (1.7)
Where Ko is the initial tangential stiffness; T is the current tangential force magnitude; T
starts as zero and is subsequently set to the value of the total tangential force, T, whenever
the magnitude changes from increasing to decreasing, or vice versa, v is a fixed parameter
often set to 1/3 to make the model resemblee Mindlin’s elastic frictional sphere theory,

and p is the coefficient of friction. A value of 1 or 2 for y more closely immutates the



behaviour of frictional contacts involving plastic deformation in the contact region (Drake

and Walton, 1992).

1.2 Overview of the Chapters
The chapter 1 introduces the subject and deals with literature survey and history of
simulation of flow of granular material. It also gives the overview of all other chapters.

The chapter 2 deals with the brief description of 3D dynamic simulation of the
particles, the force models that has been taken into consideration, the normal force model
and the tangential force model used.

The chapter 3 covers the code. It gives the datastructure, used in the code, the
objects, the member functions. It also covers the declaration of the different variables and
the algorithm used in the code .

The chapter 4 covers the result obtained during filling and emptying the hopper.

The chapter 5 deals with the summary and future works suggested.



CHAPTER 2

3D DYNAMIC SIMULATION OF PARTICLE

2.1 History and Introduction

The particle dynamic simulation has come a long way trailing lots of ideas and its
implication in history. In early 1950’s the traditional molecular dynamic simulationmethod
was developed to study the flow of viscous fluid. Later in order to study the granular
particles, particle dynamic simulation method was derived from the molecular dynamics.
The major short-coming for molecular dynamics method was, particles are considered to
be perfectly elastic. That means total energy of the system is conserved. No kinetic energy
is dissipated during collision. The particle dynamic simulation method, tried to solve this
drawback by taking into consideration that, a fraction of the initial kinetic energy is lost as
heat, elastic or plastic strain energy, acoustic energy or even light. Apart from that,
molecular dynamic simulation, theoretically, is supposed to be the core model.

Particle dynamics simulation method uses two types of interactive force
models. The “Hard Sphere Model” assumes that particles are rigid bodies with infinite
stiffness, ieparticles do not overlap each other during collision and collisions are
instanteneous. This model proceeds with irregular time jumps corresponding to the time
period between one collision and the next. The velocities of the particles are determined
by taking into account the normal and tangential coefficients of restitution, a frictional
coefficient, and the velocities of the particles before that time step.

The “Soft Sphere Model”, deals with finite time of collision. The particles are

allowed to overlap by an amount depending on their stiffness. The post-collision velocity



depends on number of parameters, which do not bear the the explicit relationship with the
material properties used in hardsphere.

The simulation code developed here, was inspired by molecular dynamics method
and contact force model implemented was developed Leonard & Jones. To handle the

short-coming of molecular dynamic method, the “Soft Sphere Model” is implemented.

2.2 The Force Models

2.2.1 Normal Force Model

In the “Soft Sphere Model” developed by Walton [], a “Partially Latching-spring Model”
is used to estimate the interactive force in collisions, and to approximate the energy loss
due to inelastic collision in “normal” direction, i.e., the direction defined by the line joining
the center of two ineracting spheres. In this force model, collision process is divided into
two regimes. The “Compression” regime and “Restoration” regime. Here, the overlaps
between particles are measured as the particle deformations. The “Compression” regime
starts at the begining of a collision. In this regime, the relative velocity between two
particles decreases as the particles approach each other. When the relative velocity
becomes zero and the overlap reaches its maximum value in the collision oy, the

“Compression” regime ends and the “Restoration” periods starts.

F] = K; o A
Fz = K2 . ( a - ao)
where F| is the force in “Compression” regime, F; is the force in the “Restoration” period,

K, and K, are the normal stiffness coeffiecients in the two periods, respectively, o is the



overlap between the particles, and o is the residual overlap. oo is initialized to zero
automatically when the restoring force F, goes to zero, because permanent deformations
of particles are not allowed. Figure 2.1 (a) (b) demonstrate the relationship between

forces and the deformations during collisions.

[Normal Force|

-3

Figure 2.1 (a) The partially Latching-spring Model
(b) The Normal force to Overlap diagram

K, is represented by the slope of the lineu'ab, K is equal to the slope of the line Be. Since
the slope bc is greater than the slope ac, the value of K, is greater than the value of K.
The energy loss during this collision is equal to the area of Aabd minus the area Aabe. To
determine the interactive force, F; and F; are both calculated for each time step during the
collision, and the smaller one is chosen as normal interactive force.

(a) In the “Compression” period from ap = 0: a—b.

Since K; is larger than K, and oy is equal to zero, then



F,=K, «
F.=Ky(a-0)=Ka
It 1s clear that F, is larger than F,, so the normal interactive force will be equal to F.
{(b) In the “Restoration” period : b—+¢
In this period, F; is always smaller than F, as it is shown in the Figure 2.1. F, will be

chosen as the normal interactive force.

(c) In the “Restoration” period from ag # 0 :
If the two particles are recompressed during the “Restoration” period, thatis b —» c, the
loading path will go backwards ¢— b, and F, will be chosen as the normal force since F; is
still less than F,. After reaching point b, F, will be chosen as the normal force again

because it is now smaller than F;, and the loading path goes b— .

2.2.2 Tangential Force Model

The tangential interactive force model developed by Walton and Braun [] and used in the
code, was derived from Mindlin and Deresiewicz {]. In this model, the tangential force at
time t is related to the tangential stiffness, the surface displacements and the tangential
force at the last time step t-dt. The tangential stiffness decreases with the surface
displacement, and when it becomes zero, full sliding takes place. The force model is
described in the following page by the Figure 2.2. The Tangential plane at time t will be
shifted to different orientation for time step t + dt and that for t-dt will be in different

orientation.
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... Tangental Plane
Y7 at time t-dt

T\'I‘emgen'{ial Plane

at time t

Figure 2.2 The Tangential Force Model

Figure 2.2 demonstrates the collision and the tangential plane between two particles.
Thetangential plane is always perpendicular to the line which connects the centers of the
two particles, and 1t will be changed if the particles move to new positions. The tangential
force at the current time step ft;; is calculated from the tangential force at the last time step
t-dt. In Figure 2.2, tf;; is the tangential force at the last time step, and tp; is its projection
onto the current tangential plane. AS is the total tangential displacement at the time t-
dt,(AS,, AS,) are its components in the plane’s normal and paralle!l directions. The force ft;

is then calculated as follows:

T. 1s the total tangential force acting on a particle. It is obtained by adding two

components, normal and the parallel.

To= T+ T, 2.1
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where Ty is the tangential force parallel to the displacement and T, is the tangential

forceperpendicular to the displacement. The contribution along the perpendicular direction

is given by:

T, = Ky . AS,

where K, is a constant (initial tangential stiffness) and AS, is the displacement
(from the previous time step) component perpendicular to the tangential force (from the

previous time step). The contribution along the parallel direction is given by:

Ty= Ty + Kr. AS; (23)

where Ty 15 the tangential force from the previous time step, projected onto the

current slip plane such that | T pcoj | is the same as in the previous time step, i.e.

-+ -+

- [TOM—EJ'(ELTM)] -+
To. =

proj — — . Toig | (2.4)
| Tou —Ej(mj Toa) |

-
where kij =(‘lri—+l'j)/ *T—i—}:

ASy is the displacement parallel to the tangential force ( previous time step ) for 1Tpmj |

increasing :

Kr= (1= ([T [=T)/ (WFx~T)) 25)

for 'T,mj | decreasing :

Kr= (1= (T = [Thi )/ (WFx+ T ) (2.6)

where T =0 in the begining (2.7)



= | Tul [F "™/ [F" otherwise (2.8)

AS = Ary - Ky (Rafy) + [n (@0« k) +1 (o x k) 1 At (29)

=g -, (2.10)
-+ > —
if t = Toe/ | T |
-+ —
AS, =[(AS™) 1]t 2.11)
AS, = A &S, (2.12)

The angular velocity of the i th particle ©; at the present time step can be

calculated from the equation given below:

I doy/dt = T,

_’
= 1% -3™)/ & =Tw s (2.13)
-+ — .
= Cl);1 =(Di‘ {‘*‘Tw“' At/ L (2.14)

Periodic Boundary Condition and Cell-Configuration :

The cell configuration is shown in the figure 2.3

5.

N,

’ <7 ¢
yd

e Tz

Penodic 2

Boundaries__/ X

W
T o o /Hopper all
__ﬁ3
Figure 2.3 The cell distribution in x,y and z
directions.

v




X

\ (X0, yi 2)

r/(ho - z) = tanB

<

L 4
r=N(x’+y)

Figure 2.4 The geometry of the hopper and the
particle position.

PB = Ad = ( hy — z )tanb,

The unit vector normal to the inclined slope of the hopper is given by:

13

(2.15)
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Tep=(xe-xp)T + (ys-ye)i'+ (zm—2p)k (2.16)
= Tep = ((PB cosBo) cosar) i + ((PB cosBo) sina) j — (PB sindo) k 217)
= |rap | = V[(PB cosBo) coso)® + (PB cosBs) sinar)? + (PB sinBo)? ] (2.18)

— —
rep = rop/ [Tep | (2.19)
- "

V= V. Igp (220)

—p — ~

Vafler collisoin = Vbefore collision — 2 Vi TBP (2.21)

2.3 Deciding on Scaling of Cell Distribution
For a particle having position given by ( xp , yp , zp ) , the scaling of x , y , z coordinates
are done with respect to the local radius R ( the radius of the hopper at z-position zp ) If
Xs , Vs , Zs be the scaled coordinate for that particle, then it can be represented by the

following relationships:

Xs = Xp / R'
ys= yr/R
and Zs= Zp since no scaling takes place in the direction of z-axis.

The cell distribution will take place depending on this scaled coordinates.Based on
(xs, ys, zs ) decide the cell :The index of cell in the x-axis direction alotted for the particle

is given by:

nx = xs / Ax (2.22)

The index of cell in the y-axis direction alotted for the particle is given by:



ny = ys/ Ay
The index of cell in the z-axis direction alotted for the particle is given by:
nz=2zs/ Az

Where Ax, Ay, Az are given by :

AX:I/N,\'
Ay=1/NY
AZzlz/Nz

I3

(2.23)

(2.24)

(2.25)

(2.26)

2.27)

Nx, Ny, Nz are the number of cells in the x-axis, y-axis, z-axis direction and {7 is the

height of the hopper.



CHAPTER 3

PROGRAMMING, DATASTRUCTURE AND THE CODE

3.1 Datastructure
3.1.1 The Short-Range Force

The total short-range part of the force on a particle i at position x; is given by the sum of

the interparticle short-range forces
Np
FFli= T £ 3.1

The elementary method of evaluating F°'; is to sweep through all particles | =
1,......Np, test whether the separation r;; = |x; - x;| is less than r., and, if so, compute fm;,-
and add it to F°';; . Such an approach is clearly impractical, since for each of the N, values
of i one would have to test N, - 1 separations r;j giving an operations count scaling as

2
N2,

3.1.2 The Chaining Mesh

The computational cost of locating those particles j which contribute to the short-range
force on particle i is greately reduced if the particle coordinates are ordered such that the
tests for locating particles j such that rj < r. need only be performed over a small subset
Np. It is for this reason that the chaining mesh is introduced. The chaining mesh (in three
dimensions) is a regular lattice of ( M; x M; x M3) cells, covering the computational box
(of side L, x L, x L3) in much the same manner as the (N; x Nz x N3) cells of the much

finer charge-potential mesh. The number of cells My along the s direction is given by the

16



17

largest integer less than or equal to Ly/r.. Consequently, the lengths of the sides of the
cells of the chaining mesh are always greater than or equal to the cutoff radius re.

The figure 1.1 depicts a chaining in two dimensions. Typically, the side lengths of
the chaining meshcells HCs are between three and four times greater than the side lengths
Hg of the cells of the charge-potential mesh. The circle of radius r, centered on particle I
in chaining cell q delineates the area in which particles j must lie if they are to have a
nonzero contributions to F°'; must either lie in the same cell q as particle i or in one of the
eight neighboring cells. If the particle coordinates are sorted into lists for each chaining
cell, then to find the force F°'; on particle i involves approximately 9N tests, where Ne
(= Ny/MM,) is the average number of the particles per chaining cell. Therefore,if
Newton'’s third law is used, the total number of tests in finding all the short-range forces is
approximately NyN, = 4.5NcN, as compared with sz for the elementary approach.
Similarly, in three dimensions, sorting coordinates into chaining cells gives the number of
tests NoN, ~ 13NcN,. The following Figure 3.1 depicts a two dimensional chaining mesh

configuration with HC, and HC; cell size in x and y direction for the cell q.

I HC,| * Chaining
HGC, =1 mesh cell
( Tell g )
T
A

Figure 3.1 Cell configuration of the chaining
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3.1.3 The Linked Lists
For serial computers(but not necessarily for vector or array processor machines) it is
computationally more efficient to sort the coordinate addresses rather than the coordinates
themselves. Address sorting is made possible by introducing the linked-list array LL.

For chaining cell q if, let, HOC[q] be the head-of-chain table entry for chaining cell
q, and let LL[i] be the link coordinate for particle i, then the procedure for sorting
coordinates into lists for each chaining cells by means of address sorting is summerized as

follows:

1. set HOC[q] = -1 for all q.

2. do for all particles 1.
(a) locate cell containing particle

= int(x,/HC,, xo/HC,, xy/HG5) (3.2)
(b) add particle 1 to head of st for cell q
LL[i] : = HOC[q] (33)
HOC[q] : =1 (3.4)
In two-dimension third components of q and x are omitted.
The way the sorting procedure works is illuminated by considering an example.
Let’s consider the case where three particles [, I, I; lie in the chaining cell g,where I, <1,

< I;. We represent the coordinates by a three-partition box..
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Where i1 is the address (or array element in FORTRAN), X; are the physical
particle coordinates (x;, P;), and LL, is the linked-list coordinate. If particle coordinates are
swept through in increasing i values then the linked list for cell q develops follows:Initially

(after step 1)

HOC[q] » —0

I <1 < 1y

HOC[g] > — 13 Xy | LLyjj>—0

b <1< i3

HOC[q] > —| &2 | X2 LLo}>— 1, | X, | LL}|>—0

i3<i

HOC[g) > — 5| Xz | LLy}»— 1| Xz | LL: b>—] i X, | LL, |- —0

The speed and simplicity of creating linked lists from scratch make it pointless
saving andupdating them timestep by timestep. The whole sorting process requires only
three real arithmatic operation per particle in three dimensions or two in two dimensions.

Once The HOC and LL tables have been filled, a zero entry in HOC[q] indicates
that there are no particles in chaining cell q. A nonzero entry gives the address of the
coordinates of the next particle in the list, or is zero to indicate the end of the lst.
Therefore, given HOC and LL, coordinates in each cell can be looked up without any
searching. This kind of sorting and reducing the search loops will eventually economise

the computation overhead.



3.2 Class and Members

Taking in to consideration that object-oriented programming with c++ is totally structured
approach towards programming, the total code has been divided into one Class, called
Particle, which in tumns contains number of member functions, and a series of datafield.
The datafield represents all possible variables required for the code All the datafield
members are transparently accessible by the member functions. The member functions,
independently contains several other datafields which are alive only during the operation
of the function and are inaccessible by other member functions.

The code contains several datafields for position,velocity and force components
acting on a specific particle, which have been defined as double dimension arrays taking
into consideration that one dimension of it will represent the co-ordinate axes i.e.
x[0][k},v{0]{k], F{O]{k] wll represent the position along x-axis, velocity component along
x-axis and the force component along x-axis of particle k.

The member function init(...) will initializes the initial position, velocity, force
acting on the particles. It also initializes the radius of the particle, mass of the particle,
angular velocity in different axes, initial tangential forces, and some datafields to contain
the old values, for the comparison of the data.

The member function march(...) will start working right after initialization, for a
given number of time steps. It will update the position, velocity and forces acting on the
particle and checks whether any collision with the wall takes place or not. If the particle

collides with the wall, it will keep the particle back to the hopper region applying collision



mechanics. And then print out the position data into an output file. Finally it will invoke
the member function search(...), for each time steps.

The member function search(...), after getting data from march(...) for each
particle, will allocate cell to each particle and put them into a link-list, from where the
indices of the particle, which are stored in a specific cell, can be found out. Then it will
start searching for each particle, 27 neighbouring cells, including that cell. It calculates the
forces, both normal and tangential, velocities and angular velocities for particles in contact
If, for a cell the loop comes accross more than one particle it will call the member function
listing(...).

The member function listing(...) is a recursive function which will find out, for a
definite cell how many particles are there. The function will calculate the forces, both
normal and tangential between particles, which are in contact, and update their normal and
tangential force components, velocities, and the angular velocities.

The main(...) function will arrange the systematic call of all the member functions.
This is done by creating an object of the class Particle. It will read the input data from the
input file( user specified ) by calling the member function init(...) and then call march(...)
function. All other funtion calls are done from different functions as specified above.Apart
from that the code is having several other functions which include
cross_prod(...),normalize(...) and surface(...) which eventually helps in deciding the

cross product of the of two vectors, normalize the vector and calculate the Vs/Vn vs 3

plot.
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3.3 Algorithm used in the Code

3.3.1 User Defined Constants

N1 : The number of cells in x direction.
N2 : The number of cells in y direction.
N3 - The number of cells in z direction.
num : Number of particles.

del_xx . Cell length in x direction.

del_yy : Cell length 1n y direction.

del zz : Cell length in z direction.

theta0 : The semi verticla angle of hopper.
alphal : The angle between the periodic boundary.
g . Acceleration due to gravity.

ht . Hopper height from the cone vertex.
K :Stiffness for particle -wall contact.
dt : Time step.

k1 - Stiffness for loading regime.

k2 - Stiffness for unloading regime.

3.3.2 Description of the Variables:
As Private Member in the Class
HOC [N1] [N2] [N3] : The three dimensional array containing the head of the chain

particle index. That means the last search particle in a cell.



LL [num]

x(3]{num]

xx{num]
y¥[num]
zz[num]

X|pum]

Y [num]

Z[num]

v[3][num]
v_x[num|
v_y[num]
v_z{num|
Vn[oum]
Vn_x{num]
Va_y[num]
Vo_z[num]
F[3][num]

f3](num]

: The link list array of maximum num element.
: Position array of the particle, x[0] along x-direction, y[0]
along y-direction and z[0] along z-direction.

: The initial x-positions of the particles are stored in this array

: The inttial y-position of the particles are stored in this array

: The initial z-position o fthe particles are stored in this array

: The updated x-positions of the particles are stored in this
array.

: The updated y-positions of the particles are stored in this
array.

: The updated z-position of th eparticles are stored in this
array.

: Initial velocities of the particles are stored in this array

: Updated velocity along x-direction is stored in this array.

: Updated velocity along y-direction 1s stored in this array.

: Updated velocity along z-direction is stored in this array

: Normal velocity of the particles

: Normal velocity of the particles along x-direction

: Normal velocity component of the particle along y-direction

: Normal velocity component of the particle along z-direction

: Three different components of force acting on the particles

: Old values of three different force component on particle.



Fo_x{num]

Fn_y[num]

Fn_z[oum]

T_x{num]

T_yi{num]

T_z{num]

T_old_x[num]

T_old_y{num]

T_old_z[num]

T_tot[3}[num]

Tp_x[num]

Tp_y|[num]

Tp_z[num]

Tn_x[num]

Tn_y[num]
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: The normal component of the force acting on the particle
rosolved in x-direction.
: The normal component of the force acting on the particle

resolved in y direction.

: The normal component of the force acting on the particle

resolved in z direction.

: Tangential force resolved in x-direction.

: Tangential force resolved in y direction.

: Tangential force resolved in z direction.

: Old value of the tangential component of the force resolved
in x-direction.

:0ld value of the tangential component of the force resolved

in y direction.

: Old value of the tangential component of the force resolved

in z direction.

: Total tangential force acting on the particle in three different
direction.

: Parallel component of the tangential force resolved in x axis. -

: Parallel component of the tangential force resolved in y axis.

: Parallel component of the tangential force resolved in z axis.

: Normal component of the tangential force resolved in x axis.

:Normal component of the tangential force resolved in y axis.



To_y[num]
To_z{num)]
w[3][num]
w_old[3][num]

PB|[num]

PA[num]

BP_x[num]

BP_y[num]

BP_z[num]

mass{num]

rad[num]

In function normalize(...)

k_unit[3]

:Normal component of the tangential force resolved in y axis.

: Normal component of the tangential force resolved in z axis.
: Angular velocity
: Old value of the angular velocity.
: Normal distance of the center of the particle from the wall of
the hopper.
: Distance of the center of the particle from the hopper wall in
normal direction to the axis.
: The normalized unit vector normal to the hopper wall
resolved in x axis.
: The normalized unit vector normal to the hopper wall
resolved in y axis.
: The normalized unit vector normal to the hopper wall
resolved In z axis.
: The mass of the hopper.

: The radius of the particle.

: Normalized unit distance vector between the center of

the particles

In function listing(...) and search(...)

: The index of the particle searched in the cell.

: variable that keeps the value of the stiffness.



k n|3]

Fn[num]

fn[num]

mod_proj_T{num]

T star[num]

del x

del y

del z

prod_x

prod_y

prod _z

prod_x2

prod_y2

prod_z2

: The variable to that is passed by reference and get the

normalized unit distance vector of the particles.

: Modulus of the force vector

: Modulus of the old force vector.

: Modulus of the projected tangential force vector

: Initialized to zero and takes subsequent total
tangential force.

: Distance between the particle centers in x-direction.

: Distance between the particle centers in y direction.

: Distance between the particle centers in z direction.

: Variable passed as reference and get the cross
product resolved in x direction.

: Variable passed as reference and get the cross
product resolved in y direction.

: Variable passed as reference and get the cross

product resolved in z direction.

: Variable passed as reference and get the cross

product resolved in x direction.

: Variable passed as reference and get the cross

product resolved in y direction.

: Variable passed as reference and get the cross

product resolved in z direction.

=)
foa



t_x[num] : Normalized unit projected tangential force vector
in x-direction.

t y[num] : Normalized unit projected tangential force vector
in y direction.

t z[num] : Normalized unit projected tangential force vector

in zdirection.

del sp x[num] : Deformation parallel to the plane resolved in x
direction.
del sp y[num] :Deformation unit vector paralle to the plane resolved

in y direction.

del sp z[num] :Deformation unit vector parallel to the plane resolved
in z direction.

del sn_x[num] : Deformation unit vector normal to the plane resolved

in x direction.

del sn_y[num] : Deformation unit vector normal to the plane resolved
in y direction.
del sn_z[num] :Deformation unit vector normal to the plane resolved

in z direction.

R : The distance between the searched particle and the
the particle for which the searching is done.

In function march(..)

thetal [num] : The angle between the line passing through the center



In function march(...)

thetal [num]

alphal{num]

X a[num]

Y a[num]

Z afnum]
which radially comes out of the
particle.

nearrad[num]

v_;_loc[num]
v_y_loc[num)]
v_z_loc[num]
F x loc[num]

F_y loc[num]
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: The angle between the line passing through the center

of the particle, cutting vertex of the hopper and the axis

of the hopper.

: The angle between the line passing through the center of

the particle, cutting hopper axis and the x axis.

: x coordinate of the point on the wall cut by the line

which radially comes out of the axas of the hopper

and passing through the center of the particle.

: y coordinate of the point on the wall cut by the line

which radially comes out of the axis of the hopper

and passing through the center of the particle.

: z coordinate of the point on the wall cut by the line

axis of the hopper and passing through the center of the

: Radius of the hopper in the same plane as the

particle is and normal to the verticle plane.

: Velocity along the x-direction, modified for the loop.
: Velocity along the y-direction, modified for the loop.
: Velocity along the y-direction, modified for the loop.
: Modified local force component along x direction.

: Modified local foorce component along y direction.
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F_z loc[num] : Modified local force component along z direction.

ndt : Number oof time steps

The function march(...) can access all the member datafield declared as the private
member of the class Particle. After creating an object of class Particle and initializing the
required parameters this member funnction is called. This function at the begining opens
up output datafile to write the positions of the particles at different time steps. Then it

operates the following steps.

1. do for all time steps ndt.
1.1 do for all particle j.

Determine alphal from the equation
; ol 3
alphal j]=tan ;) (3.5)
Determine radial distance of the particle (rr) from the axis of the hopper

=X +Y’ (3.6)

o alphal( j1> alpha0 .
Determine if alphall j]< 0 3.7
if true alphall j]1= f mod{alphall j],alpha0) (3.8)

X1j] = rr - cos(alphallj})

e YU) = rr - sin(alphall ) G2

Determine X _a[j],Y_a[j] and Z_a[j] from the equations
P (At — Z) - tan(theta0) (3.10)

=~ J1+tan*(alphal) -
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_ (ht - Z) - 1an(theta0) - tan(alphal)

Y a (3.11)
- J1+ tan® (alphal)
Z a=M-2) (3.12)
nearrad = |X_a* +Y_a’ (3.13)
Determine the normal distance PB of the particle from the wall of the hopper.
PB = ((ht - Z) - tan(theta0) ~ v X* + Y7 ) - cos(theta0) (3.14)
Determine if PB < radius of the particle (3.15)

N

if true calculate the unit normal vector BP

F _x=-K(rad- PB)-BP_x

L}

F, _y=-K(rad- PB)-BP_y (3.16)

n

F, z=-K(rad - PB)-BP_z.

Add this force to the existing force on the particle just before collision

F x loc=F[0]+F, «x
F_ y loc=F1]+F,_y (3.17)
F z loc=F2]+F, :

Now update velocities and positions

F,.-dt
mdass

n 1

vVi=v "+

(3.18)

x"=x" +v-dt (3.19)
where n is the current time step and n—1 is the previous time steps

F_x loc= F[0]
else F_y loc=F1] (3.20)
F_z loc=F[2]

and position and the velocity is calculated like before.

1.2 Call search(...) for all particle.
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The search(...) gets the near radius for each particle as argument and search 27 near
neighbot cells to find if there is any particle is there or not if any particle is there then it
calculates the distances between the centers of the particle and the particle on which
searching is done. If the distance is less than the summation of the radii of the particles
then imposes the contact forces on both the particles and go for the next particle. If it finds
one more particle in that cell it hands the control to the function listing(...).
1. Do for all cells N1, N2, N3

a. Initialize the head of the chain HOC[J{j{[]= -1.

b. Initialize the link list to —1.
2. Do for all particle j

a. Assign cell indices depending on the positions of the particle

initiating the equation(2.20.2.21,2.22).

b. Making of the link list is completed.

c. Head of the chain HOCJ][][] contains the most recent particle in the call.
3. Do for all particle j

a. Get the cell index for the particle j as stored through the step 2.

Letitbea b, c
b. Fix up the boundary conditions for the searching.

c. Get the value of the HOC[][][] for all 27 cells

m = HOC]Ja][b][c] jtobeinab,c cell (3.21)
m# -
d If and (3.22)

m# j



e.Calculate the value of R
R=J(XU]- X[m)* + (Y1~ Ym))* +(ZU] - Z[m))’ (3.23)
fIf R < radl j}+ radlm) (3.24)
(1)Apply normal force law.

(2)Calculate the deformation.

(3)Calculate projected tangential force on the slip plane of contact.

(4)Calculate Kt from the equation (2.5) if | T peos | increases or from the

equation (2.6) if | T | decreases with time steps.

(5)Calculate T* from equation (2.7) if in the begining or

or from the equation (2.8) if otherwise.

(6)Determine Kt from the equation (2.5) if T* is increasing or
from equation (2.6) if T* is decreasing.

(7) Determine the value of the angular velocity from the equation

(2.14).

(8) Determine the normal and tangential displacement (from the previous
time step).

(9) Determine normal and tangential component of the tangential force in
normal and tangential direction of the slip plane.and calculate the total
tangential force from the equation (2.1).

g. Call listing(...)
The function listing(...) takes the particle (j) on which searching is done, and the most

updated particle number (m) popped up by the HOC[][][], and searches for any other
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particle, if it finds that then calculates all forces, normal and tangential, acting on the
particle. If it finds more particle then calls the funtion back by recursively.

1. Calculate LL[] n=LL[m] (3.25)
2. If nis not equal to -1, then follow the steps from 3.4.1 to 3.4.2 of searching(...)

. Get the value of LL[n].

(V8

N

. If LL[n] is not equal to -1 then call listing(...) replacing the value of m by n.Else stop.



CHAPTER 4

THE SIMULATION RESULTS AND ANALYSIS

4.1 Introduction

The simulation was run varying a list of parameters including:

Particle sizes

Coefficient of friction

Particle stiffnesses
From the recorded data, plots were generated to analyze and interpret the data. In general,
the plots showed results which were in qualitative agreement with previous study
Walton[], but determination of coefficient of restitution, in normal and tangential, was
found to be more subtle than what has been found out by Walton[].To test the code
several test cases were run taking into consideration of two particles in two initial
positions. The first case deals with the particles in the same height but in offset position to
each other in y-direction, and the second case deals with the particles in same height and
the same line in both x and y direction and were assigned velocities so that they will collide
head on. In both the cases conservation of momentum was checked and found out to be
completely in agreement to the Newton’s law of inertia. Changing different parameters i.e.
particle sizes, coefficient of restituion and particle stiffnesses the results were checked and
found out to be in agreement.

4.2 Results

For the case one, the diameter of the first particle was taken to be equal to the diameter of

the second particle and was assigned to be 0.1 . The x co-ordinate and the y co-ordinate of

34
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the first particle to be 2.0, 0.55 and those for the second particle to be 2.4,0.5. The
velocity components along x and y direction were 5.0,0, and that for the second particle to
be -5.0,0, the coefficient of friction was 0.3. The stiffnesses for loading and unloading
were 900,1710. Time step essentially was assigned to be 0.0001. A loop of 900 time steps
were executed and the data were recorded in a file. From the recorded data it is clear that
particles are coming close to each other in the straight line and they are having finite time
of collision and they are getting separated with an angle with the initial direction of
approach. The momentum before collision and the momentum after collision were found to
be 0 and 0 which perfectly agrees with the conservation of momentum. The conservation
of kinetic energy is conserved for the aboved mentioned stiffnesses.

For the second case the first particle was placed in the position 2.0,0.1 in x and y
direction respectively and the second particle was placed in the 2.4 and 0.1 in x and y
direction respectively. The z co-ordinate of the particles are kept in constant that is to be
0.1. The velocities in x and y directions are 5.0 and O respectively for the first particle and
that of -5.0 and O respectively for the second particle respectively. The diameter of the
pérticles were taken to be constant and assigned 0.1. Time step to be 0.0001 and for time
loops of 900 they were allowed to travel. The output data shows that they are in
confidance with law of inertia. The summation of their momentum before collision was to
be 0 and the summation of their momentum after collision was 0. The conservation of
kinetic energy is found to be conserved for the stiffnesses of the particles 900 and 1710

respectively.






Figure 4.1 Two particles, aligned, started from their initial position
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Figure 4.2 They are at the point of co
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Figure 4.3 collision took place
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Figure 4.4 Separa



41

Figure 4.5 They are separated
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Figure 4.6 Two particles, in offset approaching



Figure 4.7 Two particles, in offset not yet collided




Figure 4.8 Collision took place




Figure 4.9 They are separating at different angles




CHAPTER S

SUMMARY AND CONCLUSION

The flow behavior of granular particles is determined by the interactions between the
individual particles. Many parameters concerned with the particle itself are of influence of
this behavior, such as surface energy, chemical composition, particle shape and particle
size distribution. To exactly define particle interaction based on these parameters will be
very difficult. However particle interaction can be modelled by parameters such as friction,
normal coefficient of restitution, and tangential coefficient of restitution. These factor
combines different forces such as tangential forces, normal forces.

The JKR theory (Johnson er al., 1971, Johnson, 1985) makes use of surface
energy to model adhesive force. The Hertz theory (Johnson, 1985) is a special case of this
theory for non-adhesive particles. Thornton (1991) developed a theory for the influence of
the tangential force on the interparticle contact, based on the work by Savkoor and Briggs
(1977) and Mindlin and Deresiewicz (1953). These theories except the adhesive force
model have been used in this code.

The code shows us, larger the value of the stiffness lesser the number of contact of
the particles and there is a tendency of the mass to go upwards.

The following future steps are suggested:

(a) Introduction of adhesive force will improve the flow behaviour of the powder.

16
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To do this one should focus on the surface energy, rather than on the friction between
particles. Abief description of van der waals force is described below, which can be used
as the model for cohesiveness.

van der waals forces: These forces arise from neutral atoms and molecules, and therefore,
are always present, like gravitational forces.

The van der waals force, F.gw , between two spheres can be calculated by:

_ h RR
O8I’ R +R,

Frm (5.1)

This is the force between spheres 1 and sphere 2 with radii R, and R,, where h is the
lifshitz-van der waals contant, which is in the order 1.10™” J, and z is the atomic separation
between the surfaces.
(b) Introduction to electrostatic force will make the model more realistic.Electrostatics
forces are the one that is caused by the charges of the particles. According to Bailey (
1984), the coulomb force F. between the charged and adjacent uncharged particle is given
by:
2]
qZLI— Rlz-l- z? J

F = 52
€ Iéﬂcpgqn,zz (5:2)

here @@, is the dielectric constant of the medium between the particles, R is the radius of

the both particles and q is the charge of the particle.



APPENDIX A

MAIN PARTS OF THE SIMULATION CODE
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on Code is Created by Krishnendu Roy, Graduated
IT.A11 rights reserved. No parts of this code may
be reproduced, //sorted, or transmitted, in any form or by an
meanb,electronlc,mechanical, / /photocopying, recording, Or
otherwise, without the prior written permission //of the
creator,or Dr.R.Dave,associated professor,or Dr.P. Singh,
assistant //professor of ME Dept. NJIT.

#include <iostream.h> #include <stdlib.h> #include <math.h>
#include <fstream.h> #define N1 5 #define N2 5 #define N3 5
#define num 250 #define del_xx 0.2 #define del_vyy 0.2 #define
h_actual 3 //actual hopper height for reference #define del_zz
0.6 #define thetal 30 #define alpha0 30 #define g 9.8 #define PI
3.14159265 #define ht 7.0 //hopper height from the cone vertex
#define K 1000 #define dt 0.01 #define k1 500 #define k2 1500
#define mu 0.3 #define I 100

R N N N NN NN N N
vl The main Class myclass ///7/7/7070 1707077007077
S N NN RN

privace: int C[N1][N2}([N3); /= head of the chain*/

deuble ~{3][num); +* position array of the particle x_1 along x
aris, »_2 along vy axls, x_3 along z axis */ double vI{3}[numl; /*
velncity array of the particle, v_1 vel. along x axis, v_2 vel
along v axis, v_3 vel. along z axis*/ double
v_xinum],v_v[num],v_z[numj;

double f[3)[num]; /* force array. f_1 force compeonent along x
axis. f_2 force compenent along y axis, f_3 force component
alcng z */

;

int LL[num]; /* link list updating */
int flag; /* index for chosing model */

double PR[num],Pa[numl; double BP_x[num],BP_v{num], BP_z[num];
double Vninum!,Vn_x(num},Vn_y({num]},Vn_z[num]},; double mass(num];
// mass of the particles double F{3][num]; double

¥[{num], Y{num],Z[num); // position array of the particle

doukle xx[num],yylinum],zz[num]; // initial positon stored in this
array

T l[num],T_2[num},T_col; 7/ Time of collision of t!
le with wall
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with wall

double Alnum],B{num),C{num],Dinum},E[num},G(num];// roots of the
collision function

double Fn_x[num},Fn_y[num],Fn_z[num); // Normal Force components
in X,y,z direction

double x_t{num) (num],x_tl[num) [num]; // defomation at this time
step // and the previous time step double
T_x{num],T_ylnum],T_z[num); // Tangential force components in //
in x,y,z direction double T old x[num],
T_old_y{num},T_old_z([num]; // Old tangential force // components
double w(3][num], w_old([3])[num);// angular velocity in X,y,z
directions and // and values in previous time steps double
T_toct(3])[num]; // Total tangential forces acting on particle )/
in three different directions. double x0[num],y0[num},z0[num);
// position of the particle in previous time step

double Tp_x[num],Tp_y(num],Tp_z[num];// Tangential parallel
forces projected on // plane double Tn_x[num],
Tn_y{num],Tn_z[num);// Tangential {normal comp) forces //
projected on plane

puklic: wvoid init(char *p); // The member function that
initializes void march{); // Particles that marches with
tims,action takes place // in this member funtion void
search(double *r); // The searching of 27 cells are completed //
in this member funtion void listing{int n,int sp); // This member
function helps member funtion // in this member funtion void
normalize(int ,int ,double &, doukle &,double &j; ¢/ This member

// function normalizes the position vectors // of the particles
passed as the first two // arguments of it and assigns the
addresses // of it in the last three variables void
cross_prod{double &, double &, double &, double ,double,double,
double *); // This funtion calculates the cross product // of the
vectors passed into it };

// Defining the member function cross_prod(...) // | 1 3 k | 7/
AxB = | al bl ¢l | /s | a2 b2 ¢c2 | // = (bl*c2 - cl*bl)i + (al*cl

- al¥c2)jy + {al’b2 - a2*bl)k

void myclass :: cross_prod(double &prodX,double &prodY, double

&prcdZ, double rotl,double rot2 ,double rot3, double *k) { prodx
= rotl*k([2] - rot3*k([l]); prodY = rot3*k[0] - rotl*k([2]; prodz =

rotl*k(1] - rot2*k([0]; )

// Initialize the arrays for particle: positions, velocity,
force and HOC

void myclass :: init{char *p) {



xx[1] = x[0)[i}; yy[i] = x[1)(i); zzli) = x[2)(%];
// initializes the the angular velocities of the particle

w[0]{z] = 10.0*PI/180.0; w({l)[i) = 10.0*PI/180.0; w[2)[1] =
10.0*PI/180.0;

It
<
<

w_old[0][1] 0.0; w_old[1}[i)

It
<o
o

w_old[2}{1]

T tot[0][i) T tot[2)[i) = 0.0;

"
O
o
-3
T
o]
o
—
i
o
o

/7 initializes the deformations

for(int k = 0; k < num; k++){ x_tfi][k]) = -1.0; =x_tl[2]{k] =
)

int ¥ = 0; v < N2; r+-){ for(int
] )

<"Input which contact force model you would like to use:
rer 1 for Otis enter 2 for Lenn. jones enter 3 for hard sphere
er 4

t

for Coheszive model'\n"<<"Enter :"; // c¢in >> flag;

p—

// Function that normalizes

void myclass :: normalize{int nsp,int nm,double &knl, double
&kn2,double &kn3) { double k_unit([3};

k_unitc{0] = (X{nsp) - X[nml)/

sqreo{ (Xinsp)- [nm y* (X [nsp)-X{nm})+ (Y [nspl-Yinm])*(Y[nsp]-Y[nm])
+{Z{nsp]-2[nm})*{2(nspl-Z{mm}));

k unit{1l} = (Y{nsp]-Y{nm])/

sgrt({X(nsp)-X[nm])* (X{nsp]-X[am}+ (Y (nsp]-Y[nm])* (Ynsp]-¥[nm])
+(Z[nsp)-Z{mm}}*(Z{nspl-Z(nm]});

k_unit{2} =

(Zi{nsp)-Zlnml}/sqgre (X [nsp)-Xinml} (X [nsp)-Xinm])+{¥Y{nspl-yinm) i~
+(Zinsp)-2(nm))* (Z{nsp]l-2(nm]))



11t {0); kn2 = k_unit(l]; kn3 = k unit[2];

// Function for looking at particles in the HOC

void myclass :: listing(int n,int sp) { int m; double
k_1,k_3,k_k; double Ko; double xt; double mod[num); double
mod_T[num]; double k_n[3]; double Fn[num]; double fn[num]; double
mod_prej_T{num); double T_star[num]; double Kt[num); double
del_x.del_y,del_z; double del_x_old,del_y_old,del_z_old; double
prod_x,prod_y,prod_z; double prod_x2, prod_y2, prod_z2; double
del_s_x, del_s_y, del_s_z; double t_x([num),t_y[num], t_z[num];
double del ~sp_x[num],del_sp_y[num),del_sp_z[num]); double
del_sn_x[num], deW_Sﬂ_y[numJ,del_sn_z[num]; double
mod_proj_T_old[num}; double k_nl,k_n2,k_n3; double R;

1E(LL{n} !'= -1){ m = LL{n)}; if (m!=sp) {

R = sgre((X{spl-X(m])* (X[sp)-X(m]} + {Y[sp)l-Y(m})*(Y(sp]-YIm])
+(Z(spl-Z{m])*(Z{spl-2(m]));

1£(R < (radlsp] + rad(m})} { x_tlsp)(m] = radispl + rad(m] - R;

else (Ko = k2 - kl; =t = z_tlsp)lim); )

F(Cllsp) += Ko*{-xt)*(X[m)-X[sp))/R; F[1l][sp] +=

Ko  {-xt) > (Y [m}-Y(sp)}/R; F[Z](sp) += Ko*(-xt)*{Z{m]-Z[sp])) /F
F{O)[m} -= Kor(-xt)*(¥[m}-¥[sp])/R; Fll}[(m] -=

For(-xo)* (Yimi-Y{spl)/R; F(2)[m] -= Ko*{(-xt)*(Z[m]-Z(spl)/R
v_tlisplim] = x_ti{sp](m};

[spl = sgrt((T_old
11*(k_nl*T_old x(sp
T_old_yl(sp] - k_n2
o]
2

x[sp) -

)y *(T_cld_x{spl] - k_nl*(k_nl*T_old_x{sp})]
(k_n2*T_old y[Sp] )*(T_old_ylsp] -

) o+ {T_old_z(sp] -

by x -
Y

. {k_n2*T_old_v(sp
* © (T_cld_z[sp]

]
sp]
(k n3*T_cld_z[sp]
*(k_n3*T_old_z[sp]

- k_nl*{k_nl*T_old_x[m] )} *(T_old »x[m] -

modim] = sgro{(T_old_x[m]
k_nl*(k nl*T_old x| m])) + (T_old_y[m] -
konZ¥(k_n2*T_old_vyim] i) *(T_old_vim] - k_n2Z*{(Kk_n2*T_old_vim]})
T_old_z([m} - k_n3*{k_n3*T_old_z([m]))*(T_old_zm] -
)y

{
kni=(k n3*T_old_z[m})}



mod_Tlsp)] = T_old_x[spl*T_old_x[sp] + T _old_v[sp]*T_old ylspl +
T_old z{sp]*T_old_z[sp}; mod_T(m) = T_old_x(m]*T_old x[m] +
T_old_y[m}*T_old_y(m] + T_old_z[m)*T_old_z(m];

T_x{sp] = (T_old_x[sp) - k_nl*(k_nl*T_old_x[spl))*mod_T{spl /
mod({sp}; T_v(sp] = (T_old_yl(sp] -

k_n2*(k_n2"T_old_y(sp]))*mod_T(sp)/modisp); T_z[sp] =
(T_old_z({sp] - k_n3*(k_n3*T_old_z(sp]))*mod_Tisp]/mod{sp];

T_»{m) = (T_old_x{m] - k_nl*(k_nl*T_old_x[m]))*mod_T(m] / mod[m];
T_yi{m) = (T_old_ylm] - k_n2*(k_n2*T_old_y(m]))*mod_T(m]/mod[m];
T_zim] = (T_old_z{m] - k_n3*(k_n3*T_old_z[m])) *mod_T([m]/mod(m];
k_nl0) = k_nl; k_n{1) = k_n2; k_n[2] = k_n3;

Fnispl = F[O0][sp}*F[0)(sp] + F[1][sp]l*F[1l])(sp] +
Fl2)[sp)*F{2)ispl; fnlsp] = £10)(spl*£(0)(sp] + £{1][spl~f[1](sp]
+ £i21(spl”fl2) {sp);

Fnl = F[Ollm1*r(o}[m] + F[1)[(m]*F(1)(m) + F{2)[m]*F[2]) [m];
fnim) = £10Y(m)*£(0) (m] + f[L)(m}*€£{1)(m) + £[2)V[m]I~Ef(2]([m];
mod_proi_Tlsp)] = sagro(T_x([spl*T_xisp] + T_y(spl*T_vlispl] ~

T z{sp]*T_z(sp)):; mod_proj_T[m)] = sgrt{T_x(m] *T_xIm] +

T vim]*T_y(m] + T_z[m]*T_z[m]);

T starisp) = sart(T_x[sp]*T_x[sp] + T_v(sp|*T_visp] +

T zlspl*T_zlsp)i*Fnlsp] / fnlsp) ; T_star(m] = sgro(T_x[m] T _x{m]
+ T_v(m]*T_vim) + T_z(m)*T_z[m])*Fnim] / fnim] ;

ifimed_proj_T old(sp) > mod_proj_Tlspel)

(1 - (mod_proj_Tlspl - T_star(spl)/(mu*Fnispl -

(1 - (T_star[sp] - mod_prci_T{sp))/(mu*Fn(spl -

if(mod_proj_T_ oldim] > mod_proj_T(m])

Kt{m] = Ko*(l - (mod_proj_T[m] - T star(m}}/ (mu*Fni{m] -
T star(m]));
elce

Ktim] = Ko*(l - (T_sterim] - mod_proj_Tim])/{mu*Fnim] +



del_x = X{sp] - X{m); del_y = Y{spl - Y[m); del_z = z{sp) - 2(m};
del_x_old = x0(sp] - x0[m); del v old = v0[sp} - yO(m]; del_z cld
= z0[sp]l - 20(m};

w[O]@sp] = w_0ld{0)Isp] + T_cot{0](spl*dt/I; wll)[sp] =
w_old[1]lsp] + T_tot{l)(spl*de/I; w[2][sp] = w_old[2)[sp] +
T_tot[2]) [spl*dt/I;

w[C][m) = w_old(0)(m] + T_tor{0)(m)*dt/I; w(l)(m) = w_old{1][m] +
T_tot[1)[m)=dc/I; wi2}{m) = w 0ld[2}[m] + T_tot{2)(m)*dt/I;

cress_prod(prod_x2, prod_yv2,prod_z2,wl0) {m), wil]l[m], wilZ)(m], k_n);
del_s_x = del_x - del_x_old - k_nl*k_nl*(del_x - del_x_old] ~+
(X{sp] prod_x + ¥[m)l*prod_x2)*drg;

del_s_v = del_y - del_v_old - k_n2*k_n2*(del_y - del_v_olcd); ~
{(Y{spl’prod_y + Y[m]*prod_v2)~d:r;

del s z = del_z - del =z 0ld - k_n3i*k n3-(del_z - del_z_old) ~
(Zisp) prod_z Zim) pred_z2) 4t

t_~isp] = T_»ispl/mod_proj_Tispl; t_ylspl =

T vispl/mod_proj_Tlsp); t_z(sp) = T_zlspl /mod_proj_Tlsp]

t_x(m] = T_x(m)/med_proj_Tim]; t_y(m) = T_y(m] mod_prol_Tim]l;
t_cim} = T_z(ml/mod_proj_Tim};

del _sp_x[sp] = del_s_x*t_x[spl t_x[sp); del_sp_vlisp] =
del_s_v*t_vy[spl*t_ylsp); del_sp zlsp] = del_s_z*t_z(spl*t_z(sp
del sp_xi{m] = del_s_x*t_x[m)*t_x[m]; del_sp_y(m] =

— i 1 — { -
del_s vy t_yim)*t_y(m]; del_sp_z[m) = del_s_z*t_z[(m]l*t_z([m];

del sn x[sp] = del_s_x - del_sp_x([spl: del_sn x[sp] = del_s_» -
del sp_vyispl; del_sn_z[sp) = del_s_z - del_sp_zl[sp]

_sn_x[m) = del_s_» - del_sp_x{m]; del_sn_x[m] = del_s_x -
del sp vy(m); del_sn_z[m] = del_s_z - del_sp_z[m]
Tp_x[sp] = T_x[spi + Kt{sp] * del sp_xispl: Tp_ylspl = T_vispl -
Krisp) * dzi_sp_vispl, Tp_zispl = T zisg]l = rulsy)
del_sp_zisp!;



Tp_x[m] = T_»x(m] + Kt[m) * del_sp_x[m}; Tp_ym] = T_y[ml + Ktim]
* Gei_sp_yim}; Tp_z(m} = T_zm] + Kt[m) * del_sp_zlm];

Tn_x[sp] = Ko * del_sn_x[sp}; Tn_x[sp] = Ko * del_sn_y(sp};
Tn_z{sp] = Ko * del_sn_z[sp):

Tn_»[m] = Ko * del_sn_x(m); Tn_x[m) = Ko * del_sn_y(m]; Tn_z[m} =
Ko * del_sn_z{m);

T_tot[0)[sp] = Tp_x[sp] + Tn_x[sp): T_tot[1l]lsp] = Tp_ylspl *
Tn_vispl); T_tot{2}(sp] = Tp_z(spl + Tn_zlspl;

T_coc(0llm] = Tp_x[m] Tn_x[m]; T_tot{l](m) = Tp_ylm] + Tn_vim];
T cor{Z)lim] = Tp_z[m] + Tn_z[m};

T_old_xisp] = T_x[sp}; T_old_v(sp] = T_ylsp); T_old_z(sp! =
T_zl[spl:

T_old_xim} = T_»im]; T_ecld_vim) = T_ylm}; T_old_zim) = T_z[m];
mod_prcej_T_old{sp) = med_proj_Tlsp); mod_proj_T_ old(m] =
mocG_prroi_Tim];

()

} else cout<<"No particle lefc’<<endl; return: )

void myclass: isearch(doukle *r) { int m; int 1i,3.k. int
a,p,c,ek,duir, tin; int borol,boro2,borel3; int n»,ny,nz; double
k_nl,k_nZ.k_n3; double Ko; double xt; double mod[num); double
mod_Tinum]; doukle k n[3); double Fn[num]; double fn{num}; double
mod_rroj_Tlnum)}; double T_star(num}; double Ktlnuml:. double

del x.,del_v,del_:z; double del_x old,del_y_old, del_z_old; dcuble
prod_»,prod_v,prod_z; doubkle prod_x2, prod_y2, prod_z2; double
del s x, del_s_ v, del_s_z; double t_x[num],t_vy[num], t_z[num);
doulle del_sp_x[num],

del_sp_vinum],del_sp_z[num]; double
v{num],del_sn_z[num]; double
med_proj_T_old(num]; double R;

int mri{num! ., nn{num],ppinum); double x_s[num)},y_s|nunm};

for( 1 = 0; 1 < num; 1i++){

FIOI[i)= 0.0; Fl1]{1] = 0.C; F[2}[2) = (mass[i]l*g}; LL[1) = -1:
n{i} = 0.0; fni2] = 0.0;

med _proy Ti:l = 0.0; T_.star[1] = 0.0;



del_sp_x[1]} = 0.0; del_sp_yfil = 0.0; del_sp_z[i] = 0.0;
del_sn x[i] = 0.0; del_sn_y[i) = 0.0; del_sn_z[i}] = 0.0;
}

PITITITELL LTI L ET I T i1 17000100770 0000017 00780 0000007017177¢

70114 70T1010] 11171 following three for loops assigns -1 to the

LELPLTITII0) 00000 1priiir i) BOCY ) () array
ey

JITTEIEG L TELTIII 7700111110000 771100007770000071710000i007071711

for{int 1x = 0;ix < NI; ix++){ for(int 1y = 0;iy < N2; 1y++){
for(lnt 12 0= 0; 1z <N3; iz++){ HOC[ix]{diy])liz] = -1; }}}
R P N N N RN NN NN NN RN SN

/////1,//1////,1// The following loop allocates different
/f///,//,//'/’f////f///// J1iilyirrillll ) cells depending upon

the position of the particle ///////77771111

Faid D i LTI PTG i

x_sfza) = Xlial/r(ia); y_slia) = Y{ial/r[ia); nx = int

(x_s{ial /del_»x); ny = int (y [ia}/del_vy); nz = int

(Zlia} dei_zz); if{nz »>= 5) ut <<"Z cells mere than 4"<<endl;

if{nx >= 5) cout <<"X cells more than 4"<<endl; if{ny »>= 5) cout
<<"Y cells more than 4"<<endl; mm{ial = nx; nnlial = ny; pplial =
n-;

LL{ia) = HOC[nx)Iny)(nz] ; EOC[nx][ny][nz)] = ia; )

RPN SN RSN DN NSRS U R S
dp Gl els il 1)) search back the indexing of the particle with

A e Sl RSP

RSN SEEERNESE SN S S S R
for(int Xxyz = 0; ®yZ < num; AyzZ++)

fori(int i1 = 0; ii < num ; 1i++){

i = mm(ii); J = nn{ii); k = ppliil;

N NN NN NN NN NN NN NN
PGPl IRiS iRt k 1s getting more and more orcder of

13../7277077

JI0i 2 il L id it il i il il il sl il
cout<<i<<j<<k<<endl;

NN NN NSNS NN RPN
JASRE iy follow1ng 1f statements assignes the boundary
PA e i g i fil) i cell configurations and
specificatvion ./ /i) i lai )

] ’ o N v / AT

T R A R N A AU AN A AV LY A AP A o A R B I A A SR A VR
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1f(1 == 0){ ek = 0;: borol = i+1;) else if(i == 4){ekx = i-1;borol
= 4;) else { ek = i-1;borol = i+1;)

1f(3 == 0) {Qui = O;boro2 = j+1;) else if(3j == 4){dui = j-1;boro2
= 4;) else { dui = j-1; boro2 = j+1;} if(k == 0) {tin = 0;boro3 =
k+l;} else if(k == 4){tin = k-1;boro3 = 4;} else{tin = k-1; boro3
= k+1;}

LLTTETTI T E T Tl d I T 007700707700 010 0000070007100 0i1707710::
PITEEEIE il i77077/ following is the nesting over the boundary

2T 000NN P reT i1l 777 search cells

NN

PIDSILLLTI LI T LT E b 0700001l 0iiilirilitiis

ek

for{a ;& <= borol;a++){ for(b = dui; b <= boro2;b++){ forlc
= tin; C<= borol3;c++){

m = HOC(a][bllci;

1f0im = 1) &&{11t=m) |

R o= saro((A0ii] - X(m])* (311} - ®{m)y + (Y[ii) - Y([m))*(v[ii) -
Yiml) + {Z[11] - Z(m))*(2{ii] - Z[m))); // distance of the part
i1 and m 1s calculated here

if{F < {radl(ii) + rad{m})) {

x_tlii}[m) = radlii] + radim) - R;

tf_t(ii)im) > x_tl{ii)l(m}){ Ko = kl1; xt = »_clii)Im); )

elese (Ko = ¥z - kl:; xt = x_tifii)[mj;: )

FLO)[11) += Ko*{-xu)*(X[{m]-X{11]}/R; F[1][1i1] +=
For(-xt) > (Yim]-Y[1ii])/R; F(2]{11] += Ko*{-xt)*(Z[m)-Z2{ii]}.R
F{0][m] -= Ke* (-xt)*(X[m]~-X[11]}/R; F[1)(m) -=

Ko* (-xt)* (Y [m]-Y{i1])/R; F[2)Im) -= Ko*(-xt)*{Z{m]-2{1i))/R
x_tif{ii}[m) = x_t[ii)(m);

normalize{ii,m, k_nl,k n2,kx n3i;

mod{ii] = sqgro((T_old »[ii] -

k_nl*(k_nl*T_old_ x{11]))*(T_old_x[11] - k_nl*(k_nl*T_old_x[ii]))
+ {(T_old_vli1] - k_n2*(k_n2*T_old_vI{i1)))*{T_cld_ylii] -
k_n2*(k_n2*T_old_vi{ii))) + (T_cld_zf{1i] -
Y¥on3t(kon3*T ola z([ii])) uT_old z{1i] -

k_n2*(k n3*T_old_z{i1])}));
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I (¥x_nl*T old_x[m}) od_Tlm] 7/ mod{m];
n2*(Kk_n2*T_old_vm]) cd_T(m] /mod{m];
n3*(k_n3*T_old z[m])) mod_T(m] /mod{m};

[1 2 T |
355
[N DJ

mod_proj_Tli
T zii1) 7T _z[11
T_yvim]*T_y[m]

_x[1i)] o+ T_y[ii)*T_y
n{ii} ; T_starim] =
zm}Y*Fn(m)] / fn[m] ;

1f{mod_proj_T old(ii] > mod_prej_T[ii])

Kel[ii] = Ko*{l - (mod_proj_Tiii} - T_star(ii])/muw*Fn[ii] -
T_star[iil])});

else

Folii) = Koo (1l - ({T_staer(ii] - mod_proj_T{iil]l)/(mu*Fniii) -«
T _sctar{il,i});



= RKo* ({1 - {mod_proj_T(m}
fm]) )
= Ko*{l - (T_star[m] - mo

- T_star[m])/{mu*Fnim} -

d_proj_T(m])/{(mu*Fnlm} +

del_» = X[ii] - 2lm}; del_vy = Y[ii] - Y[m); del_z = 2[1i] - Z(m];
del_»_old = x0[ii] - x0(m); del_y_old = y0[ii] - yO[m]; del_z_ol
= z0[11) - z0[m};

wi0}[i1] = w_oldi0}[{ii] + T_tot[0)}([ii]*dc/I; w(l){i1] =
w_old{1]f11] + T_tot([1)[ii)*dt/I; wl2){i1] = w_oldl2])[11]) -
T_tot!2)1{11}*dc/T;

w0l [m] = w_old{0){m] + T_tot(0)[m]*dt,/I; w(l){m} = w_old[l](m]
T_tot[1){m)*dt/I; wi2)(m) = w_old[2])(m] + T_tot[2])(m)*dc/I;
cross_prodi{prod_x,prod_y, prod_z,w(0)[21i),wi{l]{21],w[2][i1]) k_n)
cross_prodiprod_x2,prod_vy2,prod_z2,w(0) (m},w(l][m],w[2]) [m]. k_n);
prod_x = prod_v = prod_z = 1.0; prod_x2 = prod_y2 = prod_z2 =
1.0;

del_s_ = del_» - del_~_o0ld - k_nl*k_nl=*(del_x» - del_x_cld) -
(liil gred_ ¥ ~ Xim)*prod_»2)*dr;

del_s_v = del_y - del_y_ old - k_n2*k_n2*(del_y =~ del_y_ ocld); =~
(Y{ii]*prod_v + Y[ml*prod_v2}*dt;

del s z = del_z - del_z o0ld - k. _n3*k_n3*idel_z - del_z_oid) ~
{Ziti)l*pred_z + Z{m)]*prod_z2)*dtg;

o x[1i} = T_x[iil/mod_proj_TI([ii); t_vlii] =
T_yv[ii]/mod_proj_T{iil); t_zl[ii1] = T_z[il]/mod_proj _T(ii];

t_x(m] = T_x{m) /mod_proj_T{m]; t_ylm] = T_y[m]/mod_proi_T[m];

t z[m) = T_clm]/mod_proj_TI(m];

del _sp_»(ii) = del_s_»*t_x{ii)*t_x[11]; del_sp_y([ii] =

del s v*t_ylii)*t_y([ii1]; del_sp_z(i1] = del_s_z*t_z[ii}*t_z[11];
del_sp_x(m] = del_s_x*t_x[m]l t_x[m]; del_sp_y(m] =

del s y*t_y(ml*t_y(m]; del_sp_z(m] = del_s_z*t_zim]*t_z(m};

del srn_vliil = del_s_x - del_sp_xi11]; del_sn_x[1i] = del_c_ v -
del sp viii): del_sn_zliij = 4el_s_z - ael_sp_z{il]



60

del_sn_x[m] = del_s_x - del_sp_x(m); del_sn_x[m] = del s _x -
del_sp_vim]; del_sn_z[m] = del_s_z - del_sp_z[m]:

Tp_x[11] = T_x[ii] + Ke[ii} * del_sp_x[ii); Tp_ylii] = T_y[iil =
Kef{ii] = del_sp_viiil; Tp_z(ii) = T_z[ii) + Keofzi} *
del_sp_z[ii];

Tp_x[m] = T_x[{m] + Kt[m] * del_sp_xI[m]; Tp_yvim] = T
* del_sp_vim}; Tp_zim] = T_z(m] + Kt(m] * del_sp_zI

T_tot {0} (i1} = Tp_x[{ii] + Tn_x[ii); T_tot[1l}[ii] = Tp_v[ii] =«
Tn_y{ii]; T_tot[2)[ii] = Tp_z{i1i] + Tn_z[1i};
T_tot[0](m] = Tp_»[m] + Tn_x[m); T_tot(l](m] = Tp_vim] + Tn_vim]
T_tot{2)[m] = Tp_z(m) + Tn_z(m);
T_cold »{11] = T_x{1i}); T_old_vylii] = T_v{ii]; T_old_=zfii) =
T_zlail;
T olda »[m! = T_xim!} T old vim] = T_vyim}; T_old_z(m}! = T_zim};
med_proei_T_ oldiii] = mod_proj_Tlii}; mod_proj_T_oldim) =
moc_rrol_Tim];
} i
if {m!=-1) listing(m,ii); // Listing is called for searching
more than one particles in the cell else cout<<'No other
particle"<<endl; )
}
)
j
)
// Increment time, velocities and positions
void myclass march() { double thetallnum]; douple alphal [rnur]
e aln _a . num),Z_alnum}; double nezrradinur); dcurle
: loc{num),v_z _loc(num]}; double
icci{num}], F_z_locc[numj;




JEmirstwixxarrsxraxanaenzerxw OPEN FILES FOR QUTPUT

Y*Y"X""i"",‘ii"‘l"ﬂi‘*’(f‘/

i . . s 3YORC

our.open(“"PositionDropl”); ofstream albh.
tzngle

.ﬂp

L

ofstream fcutr; £
alph.open{"alpha”); olstream anout; ancut.open(

JErrrxxrvxmxxxaxxxxxxrsx Tho fOlOWing loop Will do for 10

rimescep EEEEHEL XA A A Tk kRN S
for(inrt ndc = 0: nar < 100; ndt++){

/ttK";OIvtx‘t'*vixx*!kl!(!(*tir! FOllOWiﬂg 100p iS ior
and finding Alphal =xxxvy

for{int 1 = 0: J < num; J++){
double radiant: alpnali{jl= atan2{Y{j),%X[{3)); doukle
rr=sero{Y (1Y 312 (11 R3]

if({alphalfil > PI.8) || (alphalfj) < 0)){ alphallil =
< PI'5; doulble phagsesh = fmodialphal|j),PI/6); alphal
bhagsesn

0

¢r Cormpute the normal distance from the curved wall o

torcint K = 0 k < num; R«+){ ¥_aihk)

=(ht-Zlk]) tan(cheta0 PI 150}/ (saro(l +

tantalphal [W]"PT/180) "tant alphal (k] *PI:1E011),
Y_glk]l =(ht-Zlk])*ran(thetal*Pi/1380)*tan(alphal (k! P
/{s3rc il + tanialphal{k]-PI/180)*tan (alphalik)*pijl
Z_alk) = (ho-2(k));

nearrad{k; = sqred_af{ki*X_alk]l + Y_afxi*Y_a(kl)
PL{K] = ( {(ht - Z[k]) » tan{theral PI/180) - sgvri{
YikD * Y[k

PEIK] = PA{K] * cositherad Pl 1280);

b
1t
v}
tu
/
'
SH
L

adjustain
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thetal*PI/18(C)) * (cos(alphallk]*PI/180)); BP_yIk
= (cos{theta0*PI/180))* (sin(alphal(k)*PI/180)); BP_z[k] =
-sin{thetal*PI/180);
Fn_x{k] = -kK*(radik] - PB[k})*BP_x[k]; Frn_vyik} = -K*(radlk}] -
PBIk]})*BP_y([k]}; Fn_z[k] = -K*{rad[k) - PB[k])*BP_z[k];

(k] = F[0] (k] + Fn_x(k); F_y_loc{k] = F[1][k] + Fn_y[k];
Fi2]{k] + Fn_z[k];

fxrxx2>=* alpha should be checked here

AR S AR IR IR I T A I O I O e ¢

double radiantl; alphal (k)= atan2(Y[k],x[k]),; double
rrl=sgre(y (k] *Y [k]1+x{k]1*®X{k]);
ifctalphal{k] > PI/€6) || (alphallk]) < 0)){ alphalik] = alphallk]
< PI’/6; deuble bhagseshl = fmod(alphallk],PI/6); alphallk) =
bhagseshl;
alph<<k<< <<alphal{k]<<endl

fk}l = cos(alphallkl)*rrl; Y(k] = sinf{alphallk))*rrl; } elce
alphi<k << "<zalphal lk]<<endl
fout << (K+1l)<<” "weWik]ce® "<<Y[k]l<<" "<<Z[k]<<endl;
‘sParticles falling from the bottom are put back on the top '/ ¢
be changed if((Z[k) > (4.00-radlkl)) || (2(k) == (2.00-radli}} )
Fn_zlk] = =X (4.00 - radik] - Z(kl); Fr_x[k] = 0.0; Fn_vik! =
.0
F » loc(k] = FI0][k] + Fn_x([k]); F_v_loclk] = F[{1}Ilk] + Fn_vI[k;
F z locik] = Fi{2){k] + Fn_z[k];

_ _v (] F_y_ loc[k]*dt. mass{k]

+= F_»_loc{k]*dt/mass/|
+= F = ss |

Vi voylk] +=
= lociki*dt/ma ;

¥
K]
= 0.50*v_x{kl: /7 v_v[k] = 0.50*v_ylkl; v_z[k] =
1.

+ v _x[k] * dt; Yk} = Y[k] + v_vlk] * dt; 27k} = 2[k]



}

else {

v_x(k]) += F[C]ik]*dt/mass{k); v_ylk] += F[1])[k)*dt/m
v_z{k] += F{2][k]l*dt/mass[k);

frrx=**+* zlpha should be checked here
w %

* K ok kX Rk kX ox ¥ E KK XX k% Kk WKk w Kk
!

if(falphal{k] > PI/6) || (alphallk) < 0))1{ alph
+ PI'6; double bhagseshl = fmod(alphallk],PI/6);
bhagseshl;
alph<<k<<” "<<alphalkl<<endl;
¥[k] = coslalphal(k]) rrl; Y[k) = sinf{alphallk))”r
alph<<k <<" “<<alphal[k]<<endl;
foutr <<(r+l)<c" "cad{klec "ex¥ [kl<<" "<<Z k]«
(4.00 - radi{kl)) || (2[K] == (4.00 - rad(kl)))
Fn_=[k} = 0.0; Fn_v(k] = 0.0; Fn_z{k] = -K*(Z{}

- -3 .
raciril);
F_x_loclk] = F[O)[k] + Fn_x{¥]; F_v_loclk] = F{1}]]
F_z_locik] = F[Z} (K] + Fn_z[k};
v_» Ikl += F_x_loclk]l*dt /mass[k); v_ylk] += F_v_
v_zik] += F_z_loclk)l*at/mass(k];

povomlk)] = 0.50*v_~[k); // v_ylk] = 0.50*v_vik

+ vox(k) v dr; Y{k] = Y[k] *+ v_y[k]

(@2
Lwd

3

—
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endl; search(nearrad): /* for
t inl = 0; inl < num; 1inl++)/{
oUTL<<"NO of loop"<<" "<<ndt<<
"Databasel";

name\n"; // cin »>> datafile;

.
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APPENDIX B

MAIN PARTS OF THE OPENGL CODE FOR VISUALIZATION
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#include <GL/gl.h> #include <GL/glu.h> #include <math.h> #include
<iostream.h> #include <fstream.h> #include "aux.h" #define PI

3.14159265 #define m 24 #define mm 21600/24

float alm} [mm], bim)[{mm], cim){mn); float r[m];

/* float aaim) =
{0.5848,0.9356,1.9696,1.8792,2.9544,2.8188,3.9392,3.7584 }; float
bb[m] = { 0.1736,0.342,0.3472,0.684,0.5208,1.02,0.6944,1.368};
float ccim] = {0.0,0.0,0.0,0.0,0.0,0.D 0.0,0.0}; */ float other =
0; float zoom = 0.0; void zoomin() { zoom = zoom +1.0; } void
zoomout () { zoom = zoom - 1.0:; )}

vold mev_ot({){ cther = other - 5; } void mov_ott() { other =

other + 5: )

int move = (:

volid aidros() { move = move + 1; cout<<'"xX_pos:“"<<alb][movel<<”
O

v_pos:"<<bit]{movel«<<" z_pos:"<<c[6]}[movel<<endl; } void subpos()
{ move = move - 1; }

int j = 0;

float angle = 0; void addangle() { angle = angle +5; } void
subangle() { angle = angle - 5; }

float rotats = 0; void rotadd{() { rotate = rotate + 5; } void
rotsul () { rotate = rotate - S5; )}

roid light () {

GLfloat ambient|! = { 0.0, 0.0, 0.0, 1.0 }; GLfloat diffusel] = {
1.0, 6.0, 1.0, 1.0 //GLfloatr specular()] = { 1.0, 1.0, 1.0, 1.0
}; GLflcar position|} = { 0.0, 3.0, 2.0, 0.0 ); GLfloact
imodel_ambient{] = { 0.4, 0.4, 0.4, 1.0 }; GLfloar local view(] =
{

{ 0.0 };

glEnable (GL_DEPTH_TEST); glDepthFunc({GL_LESS);

glLightfv(GL_LIGHTO, GL_AMBIENT, ambient); glLightfv(GL_LIGHTO,
GL_DIFFUSE, diffuse); glLightfv{GL_LIGHTO, GL_POSITION,
pesition); glLightModelfv (GL_LIGHT_MODEL_AMBIENT,
Imodel_ambient); glLightModelfv (GL_LIGHT_MODEL_LOCAL VI
local_view);

m

WER,

glErable (GL_LIGHTING); glEnablz=(GL_LIGHTO};

1Y)

1,—-'\ rc

[o0)

clori0.0, 0.0, 0.0, 0.0);

[{e}

——
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void datain() { extern float alm)[mm], b[m)[mm), clm)[mm), r[m);
int num; int 1,i,n,time; ifstream fin; fin.open{"PositionData");

n o= 8; time = 0; while(!fin.eof()){ for( i = 0; i <m; i++){ 1 =
time; fin>>num>>a{i)[l)>>bli ] 1)>>c (111 r[l] = 0.15;
cout<<a[i)[1)<<" "<<bli][l]< "<<c[i][ll<<endl; } time = time +
1; cout<<time<<endl; )} fin. close()
}
/*void myinit(} { glShadeModel (GL_FLAT); )} */ void myreshape(int
w,int h) { glViewport(0,0,w,h); glMatrixMode (GL_PROJECTION} ;
glLoadIdentity();
/¥ 1f{w < h)!
glOrctho(-15.0,15.0,-15.0*(GLfloat)h/ (GLfloat)w,15.0* (GLfloat h/
} else
glOrtho(-15.0* (GLfloat)h/ (GLfloat)w,15.0* (GLfloat)w/ (GLfloat)h,
*/'

gluPerspective (80, 1.0*(GLfloat)w/(GLfloat)h, 0.0,50.0);
glMatrixMode (GL_MODELVIEY); glLoadIdentity(}; }

GLfloat no_mat!] = { 0.0, 0.0, 0.0, 1.0 }; GLfloat

mat_diffuse_mat(] = { 0.8, 0.0, 0.0, 1.0 };

/7 CLfloat mat_ambient[) = { 0.7, 0.7, 0.7, 1.0 ): // GLfloat
mat_amplent_color(l = { 0.8, 0.8, 0.2, 1.0 }; // GLfloat
mat_specular{} = { 1.0, 1.0, 1.0, 1.0 }; GLfloat mat_diffuse!] =
0.1, 0.4, 0.7, 1.0 }; GLfloat no_shininess{} = { 0.0 }: //
GLfloat low_shininess{]) = { 5.0 }; //GLfloat high_shininess|] =
{ 90.0 }; GLfloat mat_emission_back[] = {0.45, 0.45, 0.45, 0.0}
GLfloat mat_emission_sidel[] = (0.2, 0.2, 0.2, 0.2}); GLfleoac:
mat_emission_side2 (] = {0.15, .15, 0.15, 0.0}; GLfloat
mat_emission_edge(] = {(0.15, 0.15, 0.45, 0.0};

glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_EIT);

glMaterialfu(GL FRONT_AND_BACK, GL_AMBIENT, no_mat);
glMaterialfv(GL_FRONT _AND_BACK, GL_DIFFUSE, mat_diffuse);
glMaterialfv{GL FRONT_AND BACK, GL_SPECULAR, no_mat);
glMaterial fv(GL_FRONT_AND BACFK, GL_SHININESS, no_shininess);
glMater1alfv(GL_FRONT_AND_ BACK, GL_EMISSION, mat_emission_back);

glPushMatrix(); glTranslatef(0.0,0.0,-29.0 + zoom); glPushMatrix
{}; glTranslatef (O g, 0.0, -39.0); glRectf(-10.0, -10.0, 10.0,
10.0); glPopMartrix ();

glPushMatrix (); glTranslacef (0.0, 0.0, -29.0};
glMaterialfv(GL_FRONT_AND_EACH, GL_EMISSION, mat_emission_sidel);
glPushMarri~ (); glBegin(GL_QUAD_STRIP)



glVertex3£(10.0,-10.0,10.0): glvVertex3f(10.0,-10.0,-10.0};
glVertex3f{-10.0,-10.0,10 .0); glvertex3f(-10.0,-10.0,-10.0);
glVerctex3f(-10.0,10.0,10. 0); glVertex3f(-10.0,20.0,-10.0)
glEnd(}; glPopMatrix ():

glPushMatrix (); glMaterialfv(GL_FRONT_ AND_ BACK, GL_EMISSION,
mat_emission_side2) glBegin{(GL_QUAD STRIP);
glVertex3£(10.0,-10.0,-10.0); glVertex3f(10.0,-10.0,10.0);
glVertex3£(10.0,20.0,-10.0); glVertex3£f(10.0,10.0,10.0);
glVerteyB‘(—lo.O,l0.0,-l0.0); glVertex3£(-10.06,10.0,10.0);
glEnd(); glPopMatriy ();

1fv(GL_FR

ix (); glenCWwdrn(4.5) ngeg*n(GL*LTN _Joov);

(10.0,-10.0,10.0); glvertex3f(10.0,-10.0,-10.0);

(-10.0,-10.0,-10.90); glVertex3f(-10.0,-10.0,10.0);
glEnd(); glBegin(GL_LINE_STRIP); glVertex3f(-10.0, -10 0,-10.0);

| (-10.0,10.0,-10.0); glvertex3f(-10.0,10.0,10.0);

£(-10.0,-10.0,10.0); glEnd(); g,Begln(GL_LINz~LOO?);

{

{

¥

glVe*te\Jf 10.0,10.0); glvertex3f(10.0,-10.0,-10.0);

;

glvertex3f (1l 0.0,-10.0}; glvertex3£fi(10.0,10.0,10.0); glEnc();
glBegin (GL_L N _STRIP); glVertex3f(10.0,10.0,-10.0});
glVertex2f(-10.0,10.0,-10.0); glvertex3f(-10.0,10.0,10.0};
glVertex3f(10.0,10.0,10.0);: glEnd(); glPopMatrix {(); /* drawing
of walls complete *: glPopMatrix ();
7/ glPopMatrix(); for(k = 0; k < m; k++}{ glPushMatrix();

glTranslatef(0.0,0.0,-29.0);

glMaterialfv(GL_ RONT_AND_BACK, GL_DIFFUSE,

mat_diffuse mat); 7/

glTranslatef(a{k) [move] . b[k][move],c(k] (movel);

glTranslatef( aik)(movel,-clk][move].bik] [move]);

auxSolidSrphere(r(j]); glPopMatrix(}); } glPopMatriz{);

int main{int argc , char**argv) { auxInitDisplayMode (AUX_SINGLE
| AUX_RGBA); auxInitPosition (0, 0, 800, B800);
auxInitWindow({argv{0]); light(); // myinit{); datain();
aurkKevFunc {AUX_LEFT, addangle); auxKeyFunc (AUX_RIGHT, subangle)
auxKeyFunc (AUX_UP, addpos); auxKeyFunc (AUX_DOWN, subpos) ;
auxKeyFunc (AUX_r,mov_ot); auxReshapeFunc ( myreshape );
auxFevFunc(AUX_k, zcomin); auxKeyFunc (RUX_1, zoomout) ;
auxMainLoop(display); return 0; )
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