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ABSTRACT 

CANTILEVER BEAM MICROACTUATORS WITH 
ELECTROTHERMAL AND ELECTROSTATIC DRIVE 

by 
Murat M. Okyar 

Microfabrication provides a powerful tool for batch processing and minia-

turization of mechanical systems into dimensional domain not accessible easily by 

conventional machining. CMOS IC process compatible design is definitely a big 

plus because of tremendous know-how in IC technologies, commercially available 

standard IC processes for a reasonable price, and future integration of 

micromachined mechanical systems and integrated circuits. Magnetically, electrostatically 

and thermally driven microactuators have been reported previously. These actuators 

have applications in many fields from optics to robotics and biomedical engineering. 

At NJIT cleanroom, mono or multimorph microactuators have been fabricated 

using CMOS compatible process. In design and fabrication of these microactuators, 

internal stress due to thermal expansion coefficient mismatch and residual stress 

have been considered, and the microactuators are driven with electro-thermal power 

combined with electrostatical excitation. They can provide large force, and in- or 

out-of-plane actuation. In this work, an analytical model is proposed to describe 

the thermal actuation of in-plane (inchworm) actuators. Stress gradient throughout 

the thickness of monomorph layers is modeled as linearly temperature dependent 

∆σ . The nonlinear behaviour of out-of-plane actuators under electrothermal and 

electrostatic excitations is investigated. The analytical results are compared with 

the numerical results based on Finite Element Analysis. ANSYS, a general purpose 

FEM package, and IntelliCAD, a FEA CAD tool specifically designed for MEMS 

have been used extensively. The experimental results accompany each analytical 

and numerical work. 



Micromechanical world is three dimensional and 2D world of IC processes sets 

a limit to it. A new micromachining technology, reshaping, has been introduced 

to realize 3D structures and actuators. This new 3D fabrication technology makes 

use of the advantages of IC fabrication technologies and combines them with the 

third dimension of the mechanical world. Polycrystalline silicon microactuators have 

been reshaped by Joule heating. The first systematic investigation of reshaping has 

been presented. A micromirror utilizing two reshaped actuators have been designed, 

fabricated and characterized. 
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CHAPTER 1 

INTRODUCTION 

During the past thirty years, a continuing series of advances have carried microelec-

tronics to ever higher levels. Monolithic logic chips, operational amplifiers, memory, 

microprocessors, data converters, digital signal processors, microcomputers, and a 

wide variety of ASICs have been the focus, which has produced a worldwide explosion 

in the processing and communication of information. Most of this information is now 

entered by typing, optical scanning, or voice. Looking ahead, however, many of the 

functions needed for future systems involve enhancing the ability to gather infor-

mation and use it for control. Thus a. major emphasis will be on microsystems that 

can gather information from the non-electronic world and/or use it to control the 

environment which surrounds us. The key devices for these microsystems are the 

sensors and actuators that perform the transductions function. 

Today the successful fabrication and operation of microactuators and micro 

mechanical parts by merely IC-based micromachining technology enabled us to 

produce MEMS. The three characteristic features or the three "1\4"s of the technology 

are: Miniaturization, multiplicity, microelectronics.[1] Miniaturization is clearly 

essential. However, the mere miniaturization of macroscopic machines is not possible 

because of the scaling effect. Like a swarm of ants carrying large food, cooperative 

work of many micro elements can perform a large task, even when one single device 

can only produce small force or perform simple. motion. Multiplicity is the key to 

successful micro systems. The integration of microelectronics is essential for micro 

moving elements to cooperate with each other and to perform a given task. In order 

to realize MEMS with above mentioned features, fundamental technological issues 

are materials, machining processes and devices. There are two kinds of machining 

1 
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processes: one is based on semiconductor technologies and the other on mechanical 

means. 

Microstructures fabricated by surface micromachining are planar by nature 

and have thickness of up to 10 p.m in most cases. Some applications require thicker 

structures or three-dimensional-complicated structures. LIGA process [2] utilizes 

deep X-ray lithography [3], electroplating and molding to fabricated thick devices. 

UV-lithography with special resist, and deep RIE have also been used to make high 

aspect ratio microstructures and mold. If plated metals are used to make replicas, 

resulted structures are called HARMS, meaning high aspect ratio metallic structures. 

Wafer bonding technologies have been developed to build 3-D structures. 

Modifications of surface micromachining have been introduced, too. One 

approach is to fold up micromachined plates from the substrate to construct a 3-D 

structure. The plate is released from the substrate and reconnected by hinges, 

flexible films or even active hinges. In other trials, overhanging structures were 

made. 

Mechanical processes such as electro discharge machining (EDM), and ultrasonic 

machining [4] for microstructures have also been demonstrated. Unfortunately there 

is a trade-off between batch fabrication capabilities and 3-D complicated machining 

capability. 

1.1 Background Information 

1.1.1 Microactuators 

A microactuator is the key device for MEMS to perform physical functions. Because 

of the scaling considerations [5], electromagnetic force [6, 7] which is most commonly 

used in the macro actuators is not the only driving force for microactuator. Many 

microactuators utilize other driving principles such as the electrostatic force [8, 9, 
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10. 11, 12], piezoelectric force [13, 14], shape memory alloys [15], thermal expansion 

116, 6, 17], and pneumatical actuation [18, 19]. 

Each actuation principle has its own advantages and disadvantages. The choice 

and the optimization should be made according to the requirements of applications. 

Generally speaking, the electrostatic actuator can be completed within a chip 

(positioning of devices/heads/probes, sensors with servo feedback, light deflection 

and modulation etc.) since it is easily integrated on a chip, easily controlled and 

consumes little power. On the contrary, the other types of actuators are more 

robust, produce large force and are suitable to perform external tasks (propulsion, 

manipulation of objects, etc.) 

Linear and rotary micromotors driven by electrostatic force have been improved 

over the last decade to reduce the friction, increase the speed, and driving voltage 

value, which can be still considered high and not IC compatible. 

One way to reduce the effect of friction is utilizing elastic supports. The most 

popular example is a comb-drive actuator [11, 20]. It is supported by double fold-

beams and actuated by interdigitating comb-like structures. The electrostatic force 

to increase the overlapping is generated when voltage is applied between suspended 

and fixed comb. The typical displacement is 10 /OM and the force is 10 µN. 

Microactuators utilizing other driving principles as piezoelectric, thermal 

expansion and electromagnetic move, in terms of reducing friction, elastically with 

some exceptions. The ultrasonic micromotor/actuator utilizes the standing wave to 

drive the rotor/slider. Vibrations of cantilevers can carry objects. Levitation by 

repulsive force between the permanent-magnet and superconducting material, by 

air pressure from small holes and controlled electrostatic force was demonstrated. 

Micromachined STM (scanning tunneling microscope) composed of piezoelectrically 

driven cantilever was successfully operated to take atomic images [13]. 
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Shape memory alloys (TiNi etc.) undergo a crystalline phase change when 

heated or cooled above ambient. This phase change is accompanied by a change 

in Young's modulus. The premier application of these microactuators lies in 

microvalves, but other potential applications include microconnecters, switches, 

and end effectors for microrobotic manipulators [21]. 

If we want to have MEMS to perform a macroscopic task, the key idea is to 

coordinate simple motions of many microactuators [22, 23]. Even when each moving 

step is small, actuation of many steps covers large distance. A heavy load can be 

distributed among many actuators, which produce only small force. Friction in micro 

scale prohibits us from using gears and joints. Suspended actuators do not suffer from 

friction, but their motion range is limited. If many such actuators are arranged in 

series or in parallel, the overall structure can produce larger force and displacement 

and perform more complicated functions than each simple actuator. Arrays of 

cantilever actuators which vibrate in synchronization [24] and convey objects, an 

in-plane conveyance system using controlled air flow from arrayed nozzles on the 

substrate were operated successfully [25]. A projection display based on arrayed 

movable micromirrors is commercialized. 

1.1.2 Micromirrors 

In 1977, Petersen demonstrated deflecting light beams by small cantilevers driven 

by electrostatic force [26]. Since then, many implementations of 

micro-opto-electro-mechanical systems (MOEMS) for a variety of applications have been demonstrated. 

Such applications go beyond single devices to include whole optical systems on a chip, 

comprising mirrors, gratings, Fresnel lenses, shutters, and actuators. Now MOEM 

structures are reaching commercialization. 
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First micromirrors were planar micromachined structures and they needed 

manually to be lifted up and locked with hinges in place to 90°. 	Recently, 

micromirrors actuated electrostatically [27] and electrothermally [28] were reported. 

Many optical devices, especially micromirrors have been developed for commu-

nication systems, especially for fiber communication networks. MEMS displays 

based on movable mirrors [29] utilizing Digital Micromirror Devices (DMD) were 

developed. DMD is TI's commercialized micromirror device, which is an aluminum 

mirror, suspended over an air gap by two thin torsion hinges that permit a mirror 

rotation of ±10°. 

An integrated external-cavity-laser module, which incorporates a silicon-

micromachined micromirror with on-chip actuators [30]. Another possible appli-

cation of micromirrors is microscanners for barcode readers [27]. 

1.2 Objective of this Research 

The goal of this research has been to understand the nonlinear actuation behavior 

of thermally and electrostatically driven microactuators, and to propose a novel 

microfabrication technology to realize 3D microstructures and actuators. 

The ability of actuators to produce large displacements in all three dimensions 

with small power consumption makes them very desirable for MEMS applications. 

Mono- or multimorph cantilever beam actuators promise large in- and out-of-plane 

actuation by employing stress gradient, residual stress in the layers, or thermal 

expansion coefficient mismatch between the layers. 

Deflection of released monomorph beams due to the stress gradient throughout 

the thickness has been observed and reported before. In this work, for the first ti rue, a 

linear model is proposed to describe this linearly temperature dependent deflection, 

by employing thermal expansion coefficient gradient throughout the thickness of 

monomorph beams. 
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Thermally driven bimorph microactuators were first discussed by Benecke and 

Ricthmuller in 1988. Recently, bimorph inchworm in-plane actuators were fabricated 

in NET. In this work, a linear analytical model, which considers the temperature 

dependent residual stress, is proposed, and results obtained are compared with 

numerical PEA results, where the residual stress is included in the solid model as 

thermal load. To improve the inchworm, a novel two-segment bimorph actuator is 

proposed, and nonlinear PEA simulation results for three cases with different MEMS 

material combinations are presented. 

The actuation of bimorph out-of-plane actuators have been described with 

linear analytical models, and the validity of these models have never been questioned. 

In this work, the results based on these models are compared to numerical results 

obtained from. PEA and experimental measurements due to fabricated devices, and 

it is shown that nonlinearities need to he considered while designing actuators with 

large displacements, and accurate results are obtained by using iterative numerical 

methods or PEA. 

A novel technique, reshaping, is introduced to fabricate 3D actuators. In this 

technique reshaping is achieved through introduction of elastic stresses in polysilicon 

structures compensated by annealing due to Joule heating. A similar approach was 

proposed by Fujita and his group, but no further analysis has been done. In this 

Ph.D. work, a detailed investigation of the reshaping process is presented, exper- 

imental results to understand the physical fundamentals are given and discussed. 

Reshaped actuators to realize a micromirror system are introduced. The actuation 

mechanisms are studied on the fabricated devices and successful demonstration of 

the proposed approach is presented. 
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1.3 Organization of this Dissertation 

The introductory concepts about microactuators and micromirrors are presented 

in this chapter. Chapter 2 deals with mechanical properties of thin films, origin 

and characteristics of stresses in thin film materials utilized in MEMS fabrication. 

Furthermore in the same chapter, a model is proposed, which takes temperature 

dependent stress gradient observed in monomorph materials popular in MEMS into 

account. 

Chapter 3 is devoted to in-plane cantilever (inchworm) actuators. 	The 

temperature dependent residual stress is used in order to obtain large in-plane 

displacement. An analytical model is proposed to explain the thermal behavior 

of the inchworm actuator, and the validity conditions of this linear model are 

discussed. The numerical results obtained from this model are compared with the 

simulation data and test results. It is shown, that the friction between the tip of 

the actuator and the surface may cause a degradation in the performance of the 

actuator. To overcome this problem the design of a novel two-segment bimorph 

actuator is discussed. 

Chapter 4 deal with the analysis, design and fabrication of out-of-plane 

actuators. The thermal mismatch is utilized to obtain large displacements at 

the tip of these bimorph cantilever actuators. It is shown, that well known 

analytical equations for linear thermal models are not valid, when nonlinearities 

start dominating. Models for numerical methods are discussed and the numerical 

results of nonlinear Finite Element Analysis (PEA) are compared with the test 

results measured from fabricated devices. Also, the electrostatic drive of out-of-

plane actuators is discussed. An analytical. 2D model is compared with th.e PEA 

and test results. Finally in this chapter, design, fabrication and test results of 

a micromirror are reported. Two out-of-plane bimorph actuators are utilized to 
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position this micromirror, which is driven combined with thermal and electrostatic 

excitation. 

In Chapter 5, a new 3D micromachining technology, reshaping, is introduced 

into MEMS technology. The fabrication and detailed experimental results are 

presented. A novel reshaped micromirror is reported as an example of the reshaping 

technology, and an MOEM system, Microscanner for Barcode Readers is proposed. 

Finally, Chapter 6 includes conclusion and discussions. 



CHAPTER 2 

MECHANICAL PROPERTIES OF THIN-FILMS AND STRESS 

Interest in mechanical-property effects in thin films has focussed on two major issues. 

The primary concern has been with the deleterious effects that stress causes in 

films. This has prompted much research to determine the type, magnitude, a.nd 

origin of stress as well as means to minimizing and controlling stresses. A second 

important concern is related to enhancing the mechanical properties of hardness and 

wear resistance in assorted coating applications. 

The topic of stress in films has historically generated the greatest attention. 

It is virtually always the case that stresses are present in thin films. Nucleation 

conditions and high deposition rates which are typical in physical and chemical vapor-

deposited films produce high stress which can be measured. However, their origins 

are not known with certainty. What must be appreciated is that stress (stray stress 

[31]) exists even though film is not externally loaded. Stresses directly affect a 

variety of phenomena, including adhesion, generation of crystalline defects, perfection 

of epitaxial deposits, and formation of film surface growths such as hillocks and 

whiskers. Film stresses that tend to increase with thickness are a. prime limitation. 

to the growth of very thick films because they promote film peeling. 

Integrated circuit (IC) technologies employ substrates which are decorated 

with a variety of thin films. As device sizes continue to shrink, various material 

properties, which were acceptable, can cause problems, at smaller geometries. When 

high strain fields are present, electronic device performance degrades. For example, 

increase in leakage currents leads to severe problems in dynamic MOS circuits which 

increase with size reduction. Increased etch and diffusion rates in strained regions 

are common and reduce yield. Mechanical stress induced dislocation generation and 

cracking cause device yield problems, too. Even slight bowing of silicon wafers in 

9 



10 

IC technology presents significant problems in maintaining precise tolerances in the 

definition of device features. 

The developing field of micro-electro-mechanical systems (MEMS) utilizes 

processes developed for ICs and employs micron scale thin film structures that are 

totally or partially freed from substrate. High stress is undesired for mechanical 

structures, because upon release, the large stress present in thin films can cause 

device failure by instability, curling, or fracture. In addition, stress affects device 

performance by, for example, altering the resonance of resonant microstructures and 

thin film diagrams. In mechanical sensors, small stray stresses are manifested as 

noise signals that are detected by the sensor yielding incorrect results. 

As seen from the discussion above stress has been harmful. in both ICs and 

MEMS. However, in this work, it is shown that controlled stress in thin films 

can be put to use in a. constructive way with the generation of electro-thermal 

actuation. In this chapter, some basic mechanical concepts, measurement techniques 

of mechanical properties of thin films towards understanding origin of stress and 

mechanical behavior of thin films is discussed. 

2.1 Strength of Materials 

2.1.1 Stress and Strain 

Stress is a basic concept used to denote the intensity of internal force. It is a 

convenient basis for analyzing the internal resistance of a structure subjected to 

load. If the plate in Figure 2.1(a) is stretched by equal and opposite axial tensile 

forces F, then it is both in mechanical equilibrium and in a. state of stress. Since 

the plate is in static equilibrium, it can be cut as shown in Figure 2.1(b), revealing 

that internal forces must act on the exposed surface to keep the isolated section from 

moving. Regardless where and at what orientation the plate is cut, balancing forces 

are required to sustain equilibrium. These internal forces distributed throughout the 
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plate constitute a state of stress. In the example shown, the normal force F divided 

by the area A defines the tensile stress σx.  

(2.1) 

Similarly, normal stresses in the remaining two coordinate directions, a and 

σz  can be imagined under more complex loading conditions. If the force is directed 

into the surface, a. compressive stress arises. Convention assigns it a. negative 

sign, in contrast to the positive sign for a tensile stress. In addition, mechanical 

equilibrium on internal surfaces cut an arbitrary angle will generally necessitate 

forces and stresses (shear stress, r) resolved in the plane itself. Two subscripts are 

generally required to specify a shear stress: the first to denote the plane in which 

the shear occurs,a nd the second to identify the direction of the force in this plane 

(Figure 2.1(c)).[32] 

All bodies undergo deformation when subjected to load. The deformation may 

be a constant for a given load, or it may be progressive and cumulative, depending 

upon the magnitude of load, and perhaps upon the manner in which the load is 

applied. A basic unit to represent the deformation in a relative sense is needed. 

Strain is such a. unit, defined as the deformation per unit length. 

(2.2) 

In a similar way, the unit angular deformation, shearing strain, can be given 

as: 

 (2.3) 
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Figure 2.1 (a) Tensile force applied to plate. (b) Arbitrary free-body section 
revealing spatial distribution of stress through plate. Both tensile and shear stresses 
exist on exposed plane. (c) Distortion in plate due to applied shear stress. 

2.1.2 Elastic Deformation and Hooke's Law 

All materials deform when subjected to load. For most materials a change in 

load results in a corresponding, but not necessarily linear, change in deformation. 

Furthermore, most materials tend to regain their original shape after the removal of 

a load, if the load and temperature are not excessive. If, upon the removal of the 

load, a body returns to its original size and shape, the body has undergone elastic 

deformation. The ability of a body to regain its original shape is known as elasticity. 

The elastic regime is at one extreme. At the other extreme are the irreversible plastic 

effects induced at stress levels above the limit of the elastic response (i.e. the yield 
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stress). Figure 2.2 gives the typical shape of the load-deformation (or stress-strain) 

relationship for many materials. 

Figure 2.2 Load-Deformation curve 

Robert Hooke recognized a definite relationship between elastic deformation 

and load. Generalized in its simplest form Hooke's law says that stress is 

proportional to strain. Thomas Young introduced a constant of proportionality, 

the modulus of elasticity, or Young's modulus (designated by E), which is a 

measure of stiffness of the material [33]. 

(2.4) 

For shear stresses and strains, the proportionality constant is G (sometimes 

called the modulus of rigidity). 

(2.5) 

Axial elongation is always accompanied by a lateral contraction (or vice versa). 

The ratio of lateral strain to the axial strain is expressed by a constant known as the 

Poisson's ratio, after a French mathematician, Simeon Poisson. Represented by u, 

the Poisson ratio is 

¹In his 1678 treatise Ut tensio sic vis 
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(2.6) 

The Poisson ratio for the <100> bulk silicon is 0.28. [31] 

2.2 Stress in Thin Films 

A variety of thin film materials is available for the construction of sensors and 

actuators. High quality insulators such as silicon dioxide or silicon nitride, conductors 

such as aluminum, and semiconductors such as silicon are a few examples. It is 

known that the thin film materials can have properties which differ from their bulk 

counterparts. Thin films exhibit; stray stress, and this internal stress is strongly 

process dependent. Other materials are metals, piezoelectrics, polyimides. Some 

of the thin film deposition techniques are low-pressure chemical vapor-deposition 

(LPCVD), plasma-enhanced chemical vapor-deposition (PECVD), sputtering, spin-

on coating, and evaporation. 

There are two major sources of stray stresses: thermal stresses and residual 

stresses. Thermal stresses are the product of mismatches in the thermal expansion 

coefficients of different films. In thin films, thermal stresses develop because these 

films are grown at higher than ambient temperature. Typically thermal strains in 

the order of 5x10-4  are observable in silicon micromachined structures. Thermal 

stresses also develop at microdevice- package interface. Stress isolation techniques 

that use soft buffer layers [34] and stress relaxation [35, 36] structures are essential 

for the proper operation of microstructures. 

A much larger component of stray stress is residual stress. Residual stresses 

develop because as-deposited thin films are not in the most favorable energetic config-

uration. Residual stresses can be compressive, which make the film expand, or tensile, 

which makes the film shrink. A model for the generation of residual stress during 
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the deposition of films is illustrated in Figure 2.3. Origin of the process dependent 

residual stress in a variety of thin film materials will be discussed later in this chapter. 

Figure 2.3 Sequence of events leading to (a) residual tensile stress in film; 
(b) residual compressive stress in film 

Since these films are firmly attached to the substrate, the internal strain cannot 

be relaxed, hence causing mechanical deformation. Residual stresses can be relaxed 

by high temperature anneals; however, the anneal temperatures are quite high and 

may not be practically applicable for particular structures. 

Regardless of the stress distribution that prevails, maintenance of mechanical 

equilibrium requires that the net force (F) and bending moment (M) vanish on the 

film-substrate cross section. Thus 

(2.7) 

(2.8) 

where A is the sectional area and y is the moment lever arm. 
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The formulas that have been used in almost all experimental determinations of 

film stress are variants of an equation first given by Stoney [37]. It makes use of (2.7) 

and (2.8). The equation can be derived with reference to Figure 2.4, which shows a 

composite film-substrate combination of width w. The film thickness and Young's 

modulus are df  and E f , respectively, and corresponding substrate values are ds  and 

Es. In the free-body diagrams of Figure 2.4(b) each set of interfacial forces can be 

replaced by the statically equivalent combination of a force and moment: Ff  and 

Mf  in the film, Fs  and Ms  in the substrate, where F s  = F s. Assuming that ds  is 

normally much larger than d f , the film stress u f  is, to a. good approximation, given 

by Stoney's formula [32]: 

(2.9) 

In order to convert the measured deflection into film stress, the curvature-

beam displacement relationship (i.e. 1/R = d2y(x)/dx 2 ) is used. After integration, 

y(x) = x2 /2R. For a cantilever of length 1. if the free-end displacement is δ, then δ 

 = 12 / 2R, and Stoney's formula yields 

(2.10) 

2.3 Origin of Stress in Thin Films 

Over the years, many investigators have sought universal explanations for the origin 

of the constrained shrinkage that is responsible for the residual stress. Buckel [38] 

classified the conditions and processes conductive to internal stress generation into 

the following categories: 

- Differences in the expansion coefficients of film and substrate 

- Incorporation of atoms (e.g. residual gases) or chemical chemical reactions 
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Figure 2.4 Stress analysis of film-substrate combination: (a) composite structure; 
(b) free-body diagrams of film and substrate with indicated interfacial forces and 
end moments; (c) elastic bending of beam under applied end moment. 



18 

Differences in the lattice spacing of monocrystalline substrates and the 

film during epitaxial growth 

Variation of the interatomic spacing with the crystal size 

Recrystallization processes 

Microscopic voids and special arrangements of dislocations 

Surface quality 

Phase transformations 

2.4 Stress Gradient in Monomorph Films 

It is almost always the case, that stresses exist in thin films. When a surface-

micromachined monomorph beam or diaphragm is released from the substrate, it 

curls up or down (Figure 2.5). The cause of this deformation is the gradient, of the 

in-plane residual stress throughout the thickness of the film. The variation of internal 

stress through the thickness of a film leads to an internal bending moment. To 

analyze this, consider a structural member having width w, thickness t and residual 

stress σ(y) (Figure 2.6). There will be an internal bending moment M1  which is 

given by 

(2.11) 

where or is the average stress. y = 0 is the middle of the film. From Eq. 2.11, 

the moment is zero unless σ(y) varies with y. A linear variation of stress is assumed 

throughout the film thickness. 

When a polycrystalline thin film is deposited on top of another layer, a 

transition layer of small grains is expected. to form at the interface. Columnar grains 

grow out of this transition layer (Figure 2.7) [39]. This structural change of the 
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Figure 2.5 Schematic of released monomorph beams with internal stress (a) uniform 
internal stress, (b) positive stress gradient throughout the thickness, (c) negative 
stress gradient throughout the thickness. 

Figure 2.6 A structural member with the coordinate system. 
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film is modeled with thermal expansion coefficient, which varies uniformly through 

the thickness of the film. According to this proposed model, ∆σ(y)  is temperature 

dependent and it given as 

(2.12) 

where T is thermal expansion coefficient gradient, and ∆T is the temperature 

difference with respect to the process high temperature, where the film is stress free. 

Figure 2.7 Cross-sectional TEM micrograph of columnar grains grown out of a 
transition layer of small grains at the SiO2  interface. 

Inserting Eq. 2.12 into Eq. 2.11 and integrating, the moment is obtained as 

(2.13) 

For small stress values (i.e. small displacements), the vertical deflection b at 

any point of the cantilever is found to be 
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(2.14) 

where I is the moment of inertia and it is equal to wt3//12 for the cantilever 

beam with a rectangular cross-section. The displacement at the tip of the beam 

(x = L) clue to stress gradient is 

(2.15) 

Eq. 2.15 is valid only for small displacements. In case of large displacements, 

one needs to use numerical methods. 

Under the assumption, that the curled cantilever beam is perfectly circular the 

radius of curvature can be written as 

(2.16) 

where Ao/Ay is stress gradient per ,um. Once the radius is calculated, the 

displacement throughout the beam can be calculated from trigonometry (Figure 2.8). 

The shape of a poly cantilever with a stress gradient of 1.7 MPa/µm is shown in 

Figure 2.9. The dimensions of the beam is 1mmX30µmX1.5µm. The gap between 

the cantilever beam and the substrate at the fixed end is 1 µm. 

In FEA, stress gradient is included into the model as a load as follows. The solid 

model is meshed with layered elements or created in a layered manner (Figure 2.10). 

The thermal expansion coefficients are calculated in such a way that the internal 

stress varies throughout the thickness according to the experimental stress gradient 

value. This value is calculated from the displacement of the released, up- or clown-

curled test cantilever beams. 
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Figure 2.8 Calculation of the displacement from the circle with a radius r. 

2.5 Process-Dependent Residual Stress 

2.5.1 Silicon Nitride 

Silicon nitride is normally formed by chemical vapor deposition, either from mixtures 

of ammonia and silane (at atmospheric pressure, APCVD), or from ammonia and 

dichlorosilane (at low pressure, LP CVD). The thermal expansion coefficient is slightly 

larger than that of silicon. This implies that there will be a small component of 

tensile stress resulting from cooling to room temperature from typical deposition 

temperatures. However, Tamura and Sunami have shown [40] that the thermal 

mismatch stress accounts for only a small fraction of the total observed tensile stress. 

The mechanism for this additional stress component is not well understood, 

although it is clearly sensitive both to deposition temperature and to composition 

variations induced by modification of the silane or dichlorosilane to ammonia ratio 

during deposition [41, 42]. The stress is not strongly dependent on post-deposition 

annealing, even though it is observed [41] that residual Si-H and N-H bonds are 

present immediately after deposition, but can be removed by high temperature 

anneal. 
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Figure 2.9 Calculated shape of a polysilicon cantilever with a stress gradient 
mbox(1.7 MPa/um) throughout the thickness. The beam was divided into 100 small 
elements for the following numerical pull-in calculations discussed in Section 4.3. 
(Dimensions 1 mm X 30 µm  X 1.5 µm ) 

Figure 2.10 Layered solid model for FICA. Stress gradient throughout the thickness 
is modeled with thermal expansion gradient (α1 ≠ α2  ≠  α3...). 
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2.5.2 Polysilicon 

Either tensile and compressive stress can occur in polysilicon layers depending on 

the process temperature and process conditions. The origin of large tensile and 

compressive intrinsic stresses can be discussed in relation to the evolution of the 

polysilicon microstructure. Undoped polysilicon films deposited by LPCVD near 

600°C consist of more or less equi-axed grains and are tensile, due to an amorphous 

to crystalline solid state transformation that occurs during the film deposition. At 

deposition temperatures exceeding 630°C, the grains are columnar and the stress 

is compressive. The source of compression is still uncertain, but was shown to be 

related to a transition layer of small grains at the film/substrate interface. [39] 

Doping [43] and annealing [44] can affect, the stress profile. lt was shown that, a 

2-hour annealing step in N2  environment at 1100°C can decrease the internal stress 

significantly [44]. 

Stress profile throughout a polysilicon film can change sign (from tensile at the 

bottom to compressive at the top) [39]. Different researchers tried to explain this 

phenomena. One explanation is the plastic deformation of the top surface, while 

oxidation and doping [45]. According to a recent work, the varying stress profile is 

related to oxygen diffusing in polysilicon during doping [46]. 

2.6 Stress Measurement Techniques 

There are a large number of techniques for the determination of stress in thin 

The goal may differ: a technique for average stress determination or one for local 

stress measurement. 

The first method is a simple one to measure average stress. It utilizes two lasers 

and a mirror and a full wafer (a test wafer cover with the film whose internal stress 

is to be measured) is required. Figure 2.11 Two laser beams, directed towards the 

wafer, are reflected from the surface and creates two spots on the millimetric scale. 
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The distance between these spots gives information about the warpage of the wafer 

only if it is compared with the distance between two spots obtained from the same 

wafer without the particular film. (2.17) gives the residual stress in the thin film in 

MPa, 

(2.17) 

where t f  is the film thickness in µm  and da  and db  represent the distances 

between the two spots on the scale obtained with and without the film, respectively. 

In this work, this method was utilized to obtain residual stress value in thin films. 

A precise technique for local rather than average stress determination is based 

on X-ray diffraction method. By measuring the lattice spacing in the stressed film ao 

as well as unstressed bulk lattice (a0) with X-rays, film stress can be determined 

from the following equation. 

(2.18) 

Even though of X-ray techniques are highly accurate, requirement of special 

equipment is an important drawback. 

Another technique employs circular plates of the substrate with the particular 

film on top of it. Equation (2.10) describes the resultant stress, where I is now 

the plate radius and δ  represents the center deflection. a typical arrangement for 

stress measurement of plates is shown in Figure 2.12, where the change in the optical 

fringe pattern between the film-substrate and an optical flat is used to measure the 

deformation. Alternatively, a calibrated optical microscope can be used to measure 

the extent of bowing. [47] 

In another film-substrate configuration, the substrate is fashioned into the 

shape of a. cantilever beam. With the film deposited on one surface, the deflection of 

the free end of the beam is then determined utilizing Stoney's formula.. Elongation 
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Figure 2.11 Schematic diagram of two-laser film stress measurement technique. 
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Figure 2.12 Schematic diagram of circular-plate film stress measurement technique. 

measurements of clamped beams overhangs are acceptable but require destructive 

measurement techniques. 

Buckling offers an alternative for the accurate determination of compressive 

stress in thin films. This technique involves the fabrication of doubly supported 

beams. It requires one step photolithography, after release of the beams local film 

strain can be easily found out. Beams with identical cross sections but changing 

lengths were found to be perfectly straight and free of bowing below a critical length 

and buckled above this cutoff point [48]. 

As the double-beam type structures are not susceptible, for buckling at tensile 

stress another shape of structure is necessary. A 'diamond beam' structure, which 

converts tensile strain to compressive strain, was proposed [49]. 

Other techniques with more complicated structures for the measurement of 

residual stress and Young's modulus of thin films with a better accuracy exist [50]. 



CHAPTER 3 

INCHWORM (IN-PLANE) ACTUATOR 

The driving principles of microactuators were reviewed in the first chapter. LICA 

type processes have a monopoly on magnetic applications and until recently, large 

vertical dimensions. In the recent years, reactive ion etching has been an important 

alternative. However, electromagnetic force, which is most commonly used in the 

macro actuators is not the only driving force. 

Electrostatic attraction force has been considered since 1960s [51]. The 

use of this force as a driving force has been studied for both in-plane and out-

of-plane actuators. It has been demonstrated that interdigitated finger (comb) 

structures are very effective for exciting electrostatically the resonance of polysilicon 

microstructures parallel to the plane of the substrate [11]. Another electrostatically 

actuated structure is a curved electrode actuator [52]. Although the typical driving 

voltage required has been reduced from 100's of volts to a few 10's of volts [53], 

these values are still above the CMOS compatibility limit. The driving power is very 

small, so is the output torque (or force), which is in [pN-m] range [54]. 

In 1992, Guckel et al. proposed a thermo-magnetic metal flexure actuator, 

which was driven by magnetic forces and thermal expansion [6]. A so called SLIGA 

(deep x-ray lithography, metal plating coupled with sacrificial etch) process was 

required to fabricate very high aspect ratio structures. Air Force Institute of 

Technology (AFIT) adapted the thermal drive part of this idea to a surface micro-

machining process, which was utilizing thick polysilicon as the actuator material 

[55]. The thermal actuation was based on the deflection of a U-shaped actuator 

because of the temperature difference between the actuator arms with different 

widths (Figure 3.1). 

28 
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Figure 3.1 AFIT's thermal actuator. 

Keller and Howe demonstrated another type of thermally actuated structures, 

namely nickel-filled hexsil tweezers. These in-plane actuators were molded microma-

chines consisting of a high aspect-ratio CVD polysilicon shell with electroless nickel 

for the conductive regions. The process was totally an unconventional one. [16] 

Many thermally excited microactuator structures based on bimorph structures 

[56] and their applications [17] were proposed by Benecke and Riethmüller. 

The main advantage of electro-thermally driven actuators is the significant 

increase in force (or torque). However, the power dissipation increases, too. 

3.1 Device Description 

In this chapter the design, fabrication and test of an in-plane actuator will be 

discussed. The actuator is a bimorph cantilever and the structure is in balance at 

high temperature. Following the sacrificial etch at room temperature, the cantilever 

bows upwards due to internal stress. The actuator exhibits an actuation similar to 

an inchworm to achieve a lateral in-plane displacement of its tip along the underlying 

surface (Figure 3.2). 

The actuator can be driven by either thermal or electrostatic force or both. At 

least one layer needs to be metal or highly doped semiconductor, which serves as 

the heater. When thermal voltage Va  is applied, Ia  passes through the heater, the 
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Figure 3.2 A schematic view of up-bowed actuator 

up-bowed cantilever beam heats up and stretches out. During electrostatic drive, V6 

causes the actuator to be attracted towards the substrate, the tip is pushed laterally 

along the substrate, and the actuator reaches its closed position. Its actuation 

sequence is shown in Figure 3.3. 

The internal stress can be the product of mismatches in the thermal expansion 

coefficients of different films or residual stress in either or both of the layers as 

discussed in Section 2.2. Usually both stress components can exist simultaneously, 

but in many cases one of them dominates. 

The inchworm actuator can be designed using either type of internal stress. 

However, one should keep certain design constraints in mind. To obtain large tip 

displacements, either the thermal expansion coefficient mismatch must be large (for 

the first case) or the residual stress in either layer must be large (for the second case). 

In both cases, both layers, which the bimorph beam consists of, must be stiff enough 

to handle the large actuation, and to overcome high forces. 
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Figure 3.3 Actuation sequence illustration 

To fulfill the first requirement for the first case one needs a material with high 

thermal expansion coefficient. Metals, even in thin film forms, usually have high 

thermal expansion coefficients, but thin films of almost all metals lack high stiffness. 

Silicon nitride films are known to have high tensile residual stress. Although, 

as discussed in Section 2.4, the stress mechanism and the origin of this high stress 

are not understood well, one can control the stress in LPCVD silicon nitride layer, as 

long as the process parameters (temperature, gas flow rates etc.) are under control, 

and the deposition tube is clean. It was also shown that the residual stress in LPCVD 

nitride layers is temperature dependent and this dependence is linear in a large range 

of temperature [57]. 

In the rest of this chapter, an actuation based on temperature dependent 

residual stress will be discussed. 
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Figure 3.4 Schematic view: (a) top, (b) side. 

The inchworm actuator under study, consists of a 1 µm thick, high doped 

polysilicon layer, which serves as the heater, and a 300 nm thick silicon nitride layer. 

The schematic view of the bimorph structure is shown in Figure 3.4. The insulation 

and HF-resistant layer consists of Si3N4/SiO2  and 2µm thick LTO serves as the 

sacrificial layer. The final release step is done by dipping the wafers into 49% HF for 

over 15 min. 

The fabrication flow of the inchworm actuator is given in Appendix B. 

The average stress in the thin films were measured from the warpage of 4" test 

wafers using the two-laser stress measurement technique as discussed in Section 2.5. 

First the warpage of the test wafer with the layer of interest was measured. Then 

that particular layer was removed chemically, The chemical etch process is believed to 

make only a small contribution to the stress level of the wafer. Finally, the warpage 

of the wafer was measured again and from the difference between the first and second 
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measured values the average stress value was calculated. The average stress in the 

silicon nitride and the polysilicon layers at room temperature was measured as 700 

MPa (tensile) and 50 MPa (compressive), respectively. 

3.2 Analytical Model 

3.2.1 1D Cantilever Beam 

Following the release, the polysilicon/Si3N 4  bimorph cantilever bows up, and the tip 

of the actuator of 1000 gm length and 30 µm width was observed to move back 

30 pm at room temperature. The thermal coefficients of polysilicon and Si3N4  are 

2.3X10-6/K and 2.6X10-6/K respectively. When heated up the actuators became 

flat. The calculations show that only the thermal stress is not large enough to 

cause such a large displacement. (Detailed calculations for the tip displacement of a 

bimorph beam due to the thermal mismatch will be given in Chapter 4.) 

A model to describe the thermal actuation is given here, where 1D beam 

equations are utilized. Internal stresses are assumed to be linearly dependent to 

temperature. It has been demonstrated that for the nitride layer with the dominating 

stress value, the stress is linearly temperature dependent over a wide temperature 

range, while for polysilicon layer, this is an approximation [57, 58]. With this 

assumption, the average stress is defined by 

(3.1) 

where σo  is the stress value measured at room temperature, and To  is the 

temperature, where the average stress is zero. From the orange color of the polysilicon 

beam, the temperature was estimated as 625°C. Using these numerical values, we 

obtain the following equations for polysilicon and nitride layers: 

(3.2) 
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(3.3) 

The 1D model of the bimorph actuator is shown in Fig. 3.5, where the principle 

of superposition can be used as long as the problem is linear. (How to deal with 

nonlinearities will be discussed later in this section.) Then the total tip deflection is 

the algebraic sum of the tip deflection in both cases. 

Figure 3.5 1D Cantilever beam model. 

The cross-section of the cantilever beam is shown in Fig 3.6. The device 

dimensions and material properties of the cantilever are summarized in Table 3.1. 

Figure 3.6 Cross-section of the bimorph cantilever beam. 

The geometric centroid (zc) and force centroid (zcc) (the point where an 

equivalent force can be applied without inducing a rotational moment) can be 

computed as follows: 
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Table 3.1 Thin film dimensions and stress properties 

Layer 
name 

Width 
(µm ) 

Thickness 

(µm ) 

Thermal 
expansion 
coefficient 
[10-6 /K] 

Young's 
modulus 
[MPa] 

Residual 
stress 
[MPa] 

Polysilicon 50 1 2.4 160 50 (comp.) 
Si3N4  50 0.3 2.6 	 300 700 (ten.) 

(3.4) 

(3.5) 

where F is force for the cross-section of the beam, and is defined by [591 

(3.6) 

The resulting bending moment for the cross-section is therefore 

(3.7) 

The equivalent EI property of the bimorph structure can be calculated as 

follows: [60] 

(3.8) 

where the stiffness factor K is defined by 

(3.9) 

Using the equivalent EI, the displacement of any point on the cantilever beam 

in the x and z direction can calculated by the following equations: 
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(3.10) 

(3.11) 

The equation for the vertical force at the tip is as follows: 

(3.12) 

The horizontal force at the tip can be calculated from Fz(L) and rotation at 

the tip θ(L): 

(3.13) 

(3.14) 

The calculated values (according to the analytical model given in this section) 

for x and y displacement of the inchworm actuator were used to construct the up-

bowed actuator at room temperature (Figure 3.7). These values can be extrapolated 

to obtain a 3D shape (Figure 3.8). The calculated lateral tip displacement variation 

with temperature is compared with the results obtained from FEA simulations 

Figure 3.13. The + 5% uncertainty from the stress measurement setup was included 

into the calculated results by errorbars. 

3.2.2 Validity of the Analytical Model 

The 1D formulas used in this model are based on some assumptions, which are listed 

in Ref [60] in detail. The one, which assumes that the beam is straight or nearly so, 

must be considered very carefully. If the beam is curved, the curvature must be in 

the plane of bending and the radius of curvature must be at least 10 times the depth. 
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Figure 3.7 The 2D shape of the up-bowed actuator at room temperature constructed 
from the analytical model (dimensions are in micron). 
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Figure 3.8 The 3D shape of the up-bowed actuator at room temperature constructed 
from the analytical model 
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The inchworm problem discussed in this work is at the limit of this assumption, any 

decrease in the layer thicknesses or any increase in internal stresses will cause such 

a curvature, that the cantilever beam cannot be considered as a straight beam. 

Another case, which can not be modeled with the proposed analytical model, 

is the one, where the beam buckles up instead of bending in a controlled way. In 

this case, the buckling theory should be applied. 

3.3 	Finite Element Modeling of the In .Plane Actuator 

3.3.1 Solid Model and Boundary Conditions 

During a finite clement analysis, creating a. complete solid model, an appropriate 

mesh and applying the correct boundary conditions are the most designer's time 

consuming parts. The duration of the next step, computation tune, depends on the 

complexity of the problem as well as on the platform the simulation is running. The 

last step is evaluation of the simulation results. 

The inchworm actuator is a cantilever beam, whose total thickness (1.3 µm)  

compared with its length (1 mm) is very small (almost 1000 times), so the error is 

negligible, when the beam is represented with a 2D model. The width-length ratio 

is 1:33, which means that even a 1D model can give reasonable results. 

The static thermal and structural simulations carried out by using ANSYS 

ver5.3. The FEA results of a solid model with 3D structural solid element with 

rotations SOLID73, and with 2D structural layered element SHELL91, didn't show 

any significant difference, so the remaining simulations are carried out with 2D model. 

Although SHELL91 is 2D element, layer thicknesses ha,s to be included into the model 

as Real Constants (zero-thickness layers are not allowed), and it allows nonlinear 

analysis, which is another advantage of this element type. This element has 6 degrees 

of freedom at each node: transitions in x, y, and z directions and rotations about the 

nodal x, y and z axes. 
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Applying the displacement boundary conditions is straight forward. The 

cantilever beam is clamped at one end. All the nodes at this end have zero-

displacement and zero-rotation constraints. When the um thick sacrificial oxide 

layer is removed at room temperature, the tip touches the substrate and moves on 

it all the way till the rest point. The nodes at the tip are constraint in y direction 

and have a fix displacement value -1 um . The mesh of the model with displacement 

boundary conditions applied is shown in Figure 3.9. 

Internal stress needs to be introduced at the next step. The limitations of 

applying internal stress to the solid model directly is discussed in Appendix D. 

Indirect way, of applying internal stresses to the solid model, is to apply both the 

thermal and residual stresses as thermal stress to the model. 

If the thermal expansion coefficient mismatch causes the internal stress, the 

designer just needs to apply the temperature, which brings the structure into balance 

(zero stress condition), as a boundary condition to the model. 

If the residual stress is dominating, which is the case here in the inchworm 

actuator, again the internal stress is introduced as thermal stress [611 but the fictive 

thermal expansion coefficients need to be calculated. The fictive thermal expansion 

coefficients were chosen so that 1 °C change corresponded to 1 MPa of thermal stress 

in polysilicon layer. The applied thermal stress in the freed structure corresponds to a 

stress in the not yet freed structure that is a factor 1/0-0 larger, and that was taken 

into account. The Poisson's ratio for both polysilicon and Si3N 4  was chosen as v = 

0.25. The calculated fictive thermal expansion coefficients are αpoly=3.53X10-6  1/°C 

and αsi3

N 4 

 =32.3X10-6  1/°C. 

3.3.2 Simulation Results 

After the internal stress was included into the model, the model was solved. When 

the results were examined, the displacement in x direction at the tip was found 
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to be less than 1 µm, while the curvature of the beam was very large and the 

maximum displacement in y direction was more than 400 pm, which was indicating 

a questionable result set (Figure 3.10). Simple calculations showed that the beam 

must have expanded about 20% to get the final shape. The huge expansion of the 

beam couldn't be explained with the thermal expansion coefficients given above. The 

results were indicating, that the problem was nonlinear. The same model was re-

simulated with nonlinear (large displacement) option on, and the load (temperature) 

was applied step by step. 

Figure 3.10 The questionable result set of linear FEA analysis 

The simulation results (x and y displacements at room temperature) are given 

in Figure 3.11 and Figure 3.12. The 1D FEA showed a difference of < 2% between 

the 1D and 2D simulation results, and it can be inferred that 1D beam model can 

be used with a small error to model the inchworm actuator. In Figure 3.13, the 

calculated results are compared with the FEA 2D results. The difference is 5 % . 

It can be inferred, that for this case the proposed analytical model gives results, 

which are in good agreement with the numerical results obtained from FEA. 

The SEM picture (Figure 3.14) shows the upbowed inchworm actuator at room 

temperature. The test results for the case, where the inchworm actuator was excited 

with thermal input power only, are shown in Figure 3.15. [62]. 
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Normalized Temperature (T/To 

Figure 3.13 Tip displacement of the inchworm actuator vs. normalized 
temperature: Calculated and FEA results. 
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Figure 3.14 SEM picture of the up-bowed actuator. 

3.4 Two-segment Bimorph Structure 

Neither the FEA, nor the analytical model given in the previous sections includes 

the friction at the tip. This friction occurs due to the vertical force at the tip, 

which pushes the tip towards the substrate. The test results for the case, where 

the inchworm actuator was excited with thermal input power only, are shown in 

Figure 3.15. [62]. It can be seen from this figure clearly, that the differing nature of 

the friction at the tip during back and forth movement of the tip causes hysteresis. 

The surface topology may effect the lateral actuation. Test have shown that a rough 

surface like the one of a polysilicon layer can alter the actuation dramatically and even 

prevent a smooth motion. The variation of the calculated horizontal and vertical force 

with temperature is shown in Figure 3.16. If the vertical force at the tip is minimized 

or the interaction of the tip with the substrate is prevented, the friction can be 

avoided. To do so, a 2-segment bimorph actuator design can be used. As shown in 

Figure 3.17 (a), the cantilever beam is made of 3 types of materials. The cantilever 



47 

Thermal.  Power P t  (mW) 

Figure 3.15 Measured lateral tip displacement as a function of input power for 
thermal actuation without electrostatic excitation (Vb) 
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is balanced at high temperature and when it is released at room temperature, it gets 

the shape shown in Figure 3.17 (b). The materials, the layer thicknesses and the 

length of each segment (11  and 12 ) can be chosen in such a way, that there is a small 

separation (h) between the tip of the actuator and the substrate. As an example, 

metals with a large thermal expansion coefficients can be chosen as material # 1 

and # 3 and LTO as material # 2. In this case, the stray stresses in the structure 

are mainly due to the thermal expansion coefficient mismatch (this topic will be 

discussed in detail in Chapter 4). The material properties of candidate materials are 

given in Table 3.2 1 . The meshed solid model of the two-segment actuator is shown 

in Figure 3.18. The segment lengths 11  and 12  are both 430 µm and the width of each 

beam is 8 µm . The blue elements are bimorph structures consisting of material # 

1 and # 2, the purple elements are bimorph structures consisting of material # 2 

and # 3, and the red elements are monomorph and have the material properties of 

material # 2. The two-segment simple cantilever and the two-segment full actuator 

structure were simulated for three cases with varying 12 /11  ratio (11+-12=860µm). 

The material information and the dimensions are summarized in Table 3.3. The 

simulation results for the cantilever beam are summarized in Table 3.4, and are 

plotted in Figure 3.19, Figure 3.20, and Figure 3.21. Negative g in the table means, 

that the tip is below the surface under these particular simulation conditions. The tip 

displacements of the full two-segment actuator structure (Figure 3.18) with varying 

12 /11  ratio (11 +12=860 in.) obtained from FEA are summarized in Table 3.5 and 

plotted in Figure 3.22, Figure 3.23, and Figure 3.24. (The temperature difference 

∆T was 200°C.) 

The gap between the tip and the surface (g) is a very important parameter. 

Its value has to be as close to zero as possible. The designer has to pick the 12 /11  

'Thermal expansion coefficients and Young's Moduli listed in Table 3.2 have been taken 
from MEMS Clearinghouse, MEMS Material Database (http://mems.isi.edu ), except the 
values for TaSi2 , which have been taken from [63] 
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ratio from the g vs. 12/11  curves where g is zero, if he wants to minimize the friction 

between the tip and the surface. The segments can be driven separately. A dc voltage 

can be applied to the first segment of the actuator. when the first segment heats 

up and the tip comes close to the surface. Then by applying a signal to the second 

segment of the actuator, the horizontal actuation at the tip is obtained. 

The frequency analysis of the two-segment bimorph actuator with the segment. 

lengths 11 =12  was performed using ANSYS. The deformed shaped at. the first and 

second modal frequencies are given in Figure 3.25 and Figure 3.26, respectively. The 

modal frequencies for three cases are given in Tabel 3.6. 

Table 3.2 Material Properties of candidate materials for two-segment actuator 

Layer 
name 

Thermal expansion 
coefficient [10-6 /K] 

Young's modulus 

[MPa] 

 Poisson's Ratio 

Polysilicon 2.4 160 0.22 
LTO 0.4 74 0.22 
Aluminum 23 69 0.3 
TaSi2  8.8 111 0.3 
Gold 14.3 80 0.3 

Table 3.3 Material information, dimensions of the simulated two-segment bimorph 
cases. 

Case # 1 
M1: Gold 	t1= 0.5 µm  

M2: LTO 	t2= 1.5 µm  
M3: Gold 	t3= 0.5 µm  

Case # 2 
M1: Al 	t1 = 0.4 µm  

M2: LTO 	t2 ='1.5 µm  

M3: Gold 	t3= 0.5 µm  

Case #3 
M1: TaSi2 	t1 = 0.5 µm  

M2: LTO 	t2 = 1.5 µm  

M3: Gold 	t3= 0.5 µm  
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Normalized Temperature (T∆/To  ) 

Figure 3.16 The calculated horizontal and vertical force at the tip of the actuator 
as a function of temperature. When temperature increases, the actuator flattens out 
and the tip moves forward (T

o

=625°). 
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Figure 3.17 Two-segment bimorph actuator: (a) Before sacrificial layer release (b) 
After sacrificial layer release. 
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Table 3.4 Simulation results for the two-segment cantilever beam. 

Case # 12 /11  g (µm)  h (µm)  
1 0 

0.33 
1 
1.87 
2.58 

511 
474 
999 

92 
-17 

256 
192 

70 
32 
36 

2 0 
0.33 
1 
3 
3.53 

612 
612 
462 

46 
-15 

480 
390 
170 

39 
42 

3 0 
0.33 
1 
1.87 
2.07 

362 
312 
138 
-28 
-57 

112 
75 
26 
30 
34 

Table 3.5 Simulation results of the two-segment full actuator structure. 

Case # 12 /11  g 

(

µm)  h 

(

µm)  
1 0.55 

1 
1.83 

.84 
-41 

-165 

10 
16.7 

50 
2 0.55 

1 
1.83 

174 
16 

-123 

26 
14 
40 

3 0.55 
1 
1.83 

-8 
-108 
-217 

-7 
-25 
65 

53 
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1 2  /11  ratio 

Figure 3.19 Simulation results of the two segment bimorph cantilever beam: 
Case # 1 

Table 3.6 Simulated modal frequency values. (11=12=430µm) 

Case # Mode # 1 (Hz) Mode # 2 (Hz) 
1 2213 11504  
2 2116 12124 
3 2295 12386 
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1 2  /11  ratio 

Figure 3.20 Simulation results of the two segment bimorph cantilever beam: 
Case # 2 
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Figure 3.21 Simulation results of the two segment bimorph cantilever beam: 
Case #3 
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1 2  /11  ratio 

Figure 3.22 Simulation results of the two segment bimorph actuator: Case # 1 
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1 2  / 11  ratio 

Figure 3.23 Simulation results of the two segment bimorph actuator: Case # 2 
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1 2  /11  ratio 

Figure 3.24 Simulation results of the two segment bimorph actuator: Case # 3 
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CHAPTER 4 

OUT-OF-PLANE ACTUATOR 

In this section, the design of the bimorph out-of-plane actuators, which make use 

of thermal or residual stress, is discussed. The results are compared with the test 

results of the fabricated devices. 

4.1 Thermal Design 

In late 80's, bimetallic effect were presented as a promising microactuation technique, 

which relies on the thermal mismatch between two components of the sandwiched 

layer to provide force and displacement with change in temperature [17, 64, 65]. 

Figure 4.1 shows a. schematic of the bimetallic cantilever, forces and moments 

acting on the cross-sections of a segment along the length of the composite beam 

as the temperature is increased. The internal stress over the cross-section can be 

reduced to a tensile force P and a couple M. Finally, the expression for the curvature, 

r can be derived as: 

( 4.1 ) 

Assuming a constant radius of curvature r throughout the cantilever of the 

length L, the displacement 6 at the cantilever tip can be obtained as follows: 

(4.2) 

One must be careful with this equation. It is valid only, if the straight beam 

assumption mentioned in Section 3.2.2 is valid. When the tip displacement becomes 

large (e.g. curvature becomes small), the problem becomes nonlinear, and numerical 

methods need to be used. 

62 



Figure 4.1 (a) Schematic of the bimetallic cantilever, (b) forces and moments acting 

on the cross-sections of a segment along the length of the composite beam 
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A bimorph, out-of-plane actuator was fabricated. It consists of a 0.9 µm  thick 

SiO2  as the lower layer and 0.6 µm  TaSi2  as the upper layer. The mechanical 

properties are given in Table 3.2. A 1 µm  thick Al layer serves as the sacrificial 

layer. When the actuator is released, it bows up due to the thermal mismatch 

between SiO2  and TaSi2  (Figure 4.2). 

Figure 4.2 Released, bimorph, out-of-plane actuator. 

The actuator can be driven by thermal and/or.  electrostatic excitation. The 

TaSi2  layer serves as both the heater for thermal actuation and the upper electrode 

for electrostatic actuation. 

Figure 4.4 shows a 1D lumped model, where the cantilever is represented by 

an ideal linear spring. The linear spring constant k is defined as the load per unit 

deflection. The deflection yL  at the tip of cantilever, which has a point load F at the 

tip (x=L), can be calculated as 
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Figure 4.3 The bimorph, out-of-plane actuator can be driven thermally and/or 
electrostatically . 

(4.3) 

which gives a linear spring constant 

(4.4) 

The thermal force Fth due to the thermal mismatch and F,. (the restoring force 

of the cantilever beam) are contradicting each other, and they bring the cantilever 

to the steady state position. The restoring force is 

F = k y(x) . 

The tip displacement due to thermal actuation can be calculated from Eq. 4.2 

as long as the problem is linear. In all other cases, the 1D lumped model needs to 

be considered and numerical methods ¹  needs to be applied to solve the problem. 

1Newton-Raphson method, one of the many numerical methods, is discussed in 
APPENDIX A. 

(4.5) 



Figure 4.4 Loading of the cantilever beam and its ID lumped model. 

Thermo-mechanical finite element analysis of the out-of-plane actuator were 

performed using ANSYS ver5.3. The coupled electro-thermo-mechanical IntelliCAD, 

a CAD tool developed specifically for MEMS design by IntelliSense Inc. 

First, the thermal drive was considered. The tip displacement of a bimorph 

cantilever beam with the properties given in Table 4.1 calculated from Eq. 4.2. A 

cantilever beam structure with the same dimensions and material properties was 

simulated using ANSYS with the large displacement (nonlinear analysis) option 

ON and the thermal uniform load applied in substeps. The calculated results are 

compared with the simulation results in Figure 4.5. From the figure, it can be 

easily seen, that the nonlinearities become significant at large temperature variations. 

Further simulations have shown, that the longer the cantilever beam is, the narrower 

is the linear region. 

The process flow of the out-of-plane actuator is given in APPENDIX 13. The 

TaSi2  was sputtered on the LTO layer at 125°C. The actuator, which was in balance 

at sputtering temperature, curls up after the sacrificial aluminum etch at room 

temperature (Figure 4.2). To obtain the shape of the actuator after the release 

process, FEA was performed. To simulate the cooling from the process temperature 

to room temperature, negative uniform temperature was applied to the solid model. 

The deform shaped obtained from ANSYS is shown in Figure 4.6, which looks quite 
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Table 4.1 Dimensions and properties of the analyzed out-of-plane actuator 

Beam length 1 mm 
Beam width 8 µm  
Top Layer: 
Material 
Thickness 

TaSi2  
0.6 µm 

Bottom Layer: 
Material 
Thickness 

SiO2  
0.9 µm 
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Temperature Variation (∆ T) 

Figure 4.5 Tip displacement of the bimorph cantilever vs. temperature. 
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different from the test structure. From this figure one can conclude, what the 

simulation results reflect, is far from the deformed shaped of the actual, fabricated 

actuator. However, when the shape is reconstructed from the horizontal and vertical 

displacement values along the actuator obtained from FEA, one reaches the shape 

shown in Figure 4.7. The graphical user interface of FEA tools may be inappropriate 

to represent the real view, especially when large displacements are concerned. This 

example stresses the importance of correct evaluation of the simulation results. 

4.2 Electromechanical Design 

The thermal force can be combined with electrostatic force to drive the curled 

cantilever beam. The simplest model of electrostatic actuation is a. 1D parallel plate 

capacitor with one fixed plate and one plate suspended from an ideal spring as 

shown in Figure 4.8(a). However, the rigid-parallel plate capacitor is a bad model 

for a bending beam. Instead, the 2D beam differential equations with a. position 

dependent electrostatic load need to be used (Figure 4.8(b)). The load is derived 

from the expression for the force on an incremental parallel plate capacitor, whose 

value varies inversely with the position dependent gap. Under this assumption, the 

differential equation to be solved for a cantilever beam becomes [66] 

(4.6) 

The term in parenthesis on the right hand side is a correction term, and can 

be considered as fringing term. This term originates from an analytical expression 

for the capacitance of a zero-thickness stripline over a ground plane as obtained by 

Morganthaler [67]. 

Numerical finite-difference solution of Eq. 4.6 was performed using 

Newton-Raphson method implemented in MATLAB. The length of the beam (L) was 
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Figure 4.7 3D shape of the out-of-plane actuator reconstructed from the vertical 
and horizontal numerical data obtained by ANSYS. 

Figure 4.8 (a) 1D lumped parallel plate capacitor model (b) Visualization of the 
2D problem 

70 
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discretized into small elements, and Eq. 4.6 was solved according to the Newton-

Raphson method. User chosen number of successive iterations were performed to 

converge to the final solution. The 2D model with fringing correction was found 

reasonably accurate when the aspect ratio (gap relative to beam width) is small, 

and when the gap is small enough so that the pull-in instability is reached before 

the beam bending enters the large-deflection region. In this MATLAB script, also 

included was the ability to model a curled cantilever subjected to a stress gradient. 

before release. The model accounts for this deformation by varying the gap according 

to the Eq. 2.16. The MATLAB script is given in APPENDIX C. 

The electromechanical FEA analysis was performed using IntelliCAD. Cooling 

down from the process temperature was simulated with the uniform negative 

temperature. The voltage values were also applied to the solid model as a load 

case. The pull-in voltage was obtained by increasing the applied voltage difference 

between the cantilever beam and the substrate. 

In Figure 4.9, the calculated pull-in voltage vs. vertical tip displacement of the TaSi2-SiO

2 

 cantilever beam of interest is compared with FEA and test results. As 

mentioned above, the numerical solution of the Eq. 4.6 gives correct results only in 

the linear region. 

4.3 Application 

As a system application of bimorph out-of-plane actuators, micromirrors were 

designed and fabricated. They can be positioned precisely utilizing bimorph out-

of-plane actuators as discussed in previous sections. The micromirror is a SiO2  

platform placed between two actuators (Figure 4.10. Process temperature dependent 

internal stress causes the TaSi2-SiO2  actuators (Figure 4.11.) to bow upward after 

the sacrificial layer etch, and they lift the micromirror up. The dimensions of 

the micromirror are 500  µm  x 400  µm . When thermal or combined thermal and 
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Vertical displacement at the tip (p.m) 

Figure 4.9 Pull-in voltage vs. vertical tip position of the TaSi2-LTO out-of-plane 
actuator. 
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electrostatic drive is applied, the actuators flatten out and position the micromirror 

precisely (Figure 4.12). 

The fabrication process can be summarized as follows. First, a thermal oxide 

layer of 3000 A of thermal oxide was grown on n type < 100 > oriented wafer, 

followed by a 2000 A Si3N4  LPCVD. These two layers served as the insulation layer. 

1 µm . Al sputtered as the sacrificial layer. Then, 9000 A LTO deposited, which was 

both the first layer of the bimorph actuators and the micromirror platform. After 

the LTO layer was patterned to form the actuators and micromirror, 6000 A thick 

TaSi2  was sputtered and patterned to form the second layer of the bimorph actuator. 

The final step was the Al sacrificial layer etch and the release of the structure. The 

detailed process steps are given in APPENDIX B. 

The released micromirror is shown in Figure 4.13. The curvature of the mirror 

platform, is due to high residual stress in LTO. Because of the underlying aluminum 

sacrificial layer, LTO couldn't be annealed at high temperature to released its internal 

stress. 

The static thermal-electromechanical behavior of the micromirror was simulated 

using IntelliCAD. The mesh used in mechanical and electrostatic simulations is 

shown in Figure 4.14. The green area is the substrate, the yellow and gray areas are 

bimorph actuators, and the red one is the mirror platform. 

Simulated vertical tip displacement vs. temperature difference (with only 

thermal drive and Vb=0) is shown in Figure 4.15. The FEA results for the thermal 

drive combined with electrostatic (Vb=30V) is shown in Figure 4.16. The new version 

of IntelliCAD can handle nonlinear Contact Analysis. To simulate the structure with 

decreasing thermal power, first it was brought into contact with the substrate by 

applying the temperature and the pull-in voltage to the solid model as the load case. 

Then this displacement case is used as the initial value for the consecutive contact 

analysis steps. 



Figure 4.10 Layout of the micromirror designed using Mentor Graphics; LTO (blue) 
and TaSi2  heater (pink) mask. 
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Figure 4.11 Schematic view of the bimorph actuator, (a) top, (b) cross-section. 

Figure 4.12 Schematic view of the micromirror with combined thermal and electro-
static drive. 



Figure 4.13 Released micromirror actuated by two out-of-plane actuators. 

The micromirror was tested with thermal and combined thermal-electrostatic 

drive (Figure 4.12). In Figure 4.17 shows the variation of the tip displacement with 

the thermal input power (Vb=0). The sheet resistance of the unannealed TaSi

2 

 

film was measured to be 1Ω/□ , and the resistance value of the TaSi2  heater was 

calculated to be 40012. At a thermal input power 15 mW, a degradation of the 

heater's shape was observed. At higher input power values, the heater was damaged. 

In Figure 4.18, the vertical tip displacement of the micromirror with the varying 

input power is given. In this case the thermal driving force is combined with the 

electrostatic force with Vb=30V. The hysteresis is because of the very high electro-

static force, when the mirror becomes flat. One can make use of this hysteresis. The 

mirror can be brought to the flat position. Then the thermal power can be decreased, 

and the mirror can be kept flat even with the low thermal power and electrostatic 

drive. 
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Figure 4.14 Meshed solid model of the micromirror (IntelliCAD). 
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Temperature difference ∆  T 	(°C) 

Figure 4.15 Calculated vertical tip displacement vs. temperature difference - 
IntelliCAD (without electrostatic drive). 



79 

Temperature difference ∆  T (° C) 

Figure 4.16 Simulated vertical tip displacement vs. temperature difference for the 
out-of-plane actuator - IntelliCAD (with Vb=30V). 
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Thermal Power (m W) 

Figure 4.17 Measured tip displacement vs. thermal input power without electro-
static drive. 
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Thermal Power (m W) 

Figure 4.18 Measured tip displacement vs. thermal input power for the out-of-plane 

actuator with electrostatic drive (Vb=30). 



CHAPTER 5 

RESHAPING AS A NEW MICROMACHINING AND 
SELF-ASSEMBLY TOOL 

Today, the fabrication of microactuators and micromechanical parts is merely based 

on IC fabrication technologies. The main reasons are tremendous know-how in 

IC fabrication and available IC based services for a reasonable price. However, 

the micromechanical world is three-dimensional and 2D world of microelectronics 

sets a limit to it. There are techniques available to construct 3D microstructures, 

which were briefly discussed in Chapter 1. Although successful products have been 

demonstrated utilizing these techniques, they are expensive, and there are still many 

challenges to overcome. 

A new micromachining and self-assembly technology is introduced to realize 3D 

structures, actuators, and micro-electro-opto-mechanical systems. The advantages 

of two-dimensional IC fabrication are combined with the third dimension of the 

mechanical world. With the new technology, a structure fabricated by the surface 

micromachining technology can be deformed to any desired 3D shape. In this process 

the micromachined structure is first elastically deformed and then annealed by Joule 

heating generated by the current passed through the structure (thermal power dissi-

pation, Pt=I2R). 

A similar technique was proposed by Fujita [68], but there is a lack of a detailed 

investigation, which will help to understand the reshaping process. These details are 

discussed in an elaborate manner in this chapter. Different reshaping setups are 

proposed and discussed. The reshaped structures can be used in many applications 

including fabrication of 3D actuators. First 3D reshaped actuators and a micromirror 

as an application example, which makes use of reshaped actuators, were designed and 

fabricated. The design, fabrication and test results of the micromirror are given in 

this chapter along with a 3D optical system example. 
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5.1 Fabrication 

The polysilicon structure to be reshaped was fabricated with the following process: 

First, a thermal oxide of 3000 A was grown and a. 2000 Å  thick LPCVD Si3N4  

layer was deposited. These two layers serve as an insulation layer between the 

polysilicon layer and the substrate. Then 2µm thick LTO was deposited as the 

sacrificial layer, followed by LPCVD of a 1.6µm thick polysilicon layer. After the 

polysilicon structures were patterned by reactive ion etch with photoresist as mask, 

the sacrificial LTO layer was etched in 49% HF to release the actuators. In order 

to avoid any sticking onto the substrate, isopropanol vapor was used, which led to 

≈ 100% release yield. The detailed process steps are given in APPENDIX. B. 

The basics of the reshaping process can be summarized in the following steps: 

First, the free end of the actuator is lifted with one probe, and the actuator is 

deformed to the desired shape (Figure 5.1(b)). Then voltage applied between the 

anchored end and the tip. Joule heat raises the temperature of the arm high enough 

to cause the anneal effect, and the stress in the arm is released. After removing the 

voltage, the arm cools down and the structure keeps its 3D shape (Figure 5.1(c)). 

5.2 Recrystallization of Polysilicon and Grain Growth 

Heat treatments of polysilicon were investigated in mid 70's [69]. The primary recrys-

tallization temperature was defined as the temperature at which 95% of the material 

was recrystallized within half hour. It was found to be between 1100°C and 1.250°C 

depending on the shape and dimensions of the grains. Secondary recrystallization 

was observed to occur from 1350°C onwards [69]. 

During reshaping process, the annealing occurs at much lower temperature than 

the recrystallization temperatures mentioned above. When the polysilicon beam 

was heated up to be reshaped, it's color was observed to turn to orange, where the 

beam was reshaped. This color indicates a temperature of 625-650°C. There is an 



Poly structure to be reshaped 

Probe 

Reshaped structure 

Figure 5.1 Setup for reshaping process 
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approach developed independently by Johnson and Mehl, Avrami and Kolmogorov 

(JMAK theory), which forms the basis for analytical models of recrystallization. This 

theory recognizes that recrystallization is a thermally activated process in which new, 

strain free grains are nucleated and grow into the grow matrix [70]. This explains 

the stress release in the reshaped arm. However, the annealing process also causes a 

major change in grain size as reported in the literature [39]. Deposition temperature, 

doping level [71], effects the grain size, structure, and residual stress. Depending on 

the annealing current and annealing time, a change of mechanical properties was 

observed. Later in this chapter, it will be shown that there is a 10% difference 

between the simulated natural frequency and the measured natural frequency of 

the reshaped beam, and it can be inferred, that Young's modulus changes due to 

reshaping. This can be attributed to plastic deformation at the highly stressed 

region involves in the reshaping process (Figure 5.2) [72]. A similar change was 

reported before [44], and it was explained with texture change and modification of 

Si-Si bonds. 

Figure 5.2 Plastically deformed and modified regions of the reshaped arm. 

Annealing with Joule heating shows similarities to Rapid Thermal Annealing 

(RTA). During RTA process, the wafers are heated up to 1300°C for very short 

time with high power lamps, and results obtained with RTA are different than those 
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obtained with conventional furnace heating. Since early 80s, intensive studies about 

RTA of polysilicon have been done [73]. Annealing of polysilicon at high temperature 

(1100-1225°C) for <10 seconds [74], and at low temperatures (525°C) for longer 

durations (4min.) was reported [75]. Change in electrical and structural properties, 

and grain growth were observed. 

5.3 Reshaping Process 

5.3.1 Description of the Reshaping Process 

The experiments showed, that the basic setup displayed in Figure 5.1 would fail 

because of the lack of a good ohmic contact. Only if the polysilicon layer is very 

thick, the necessary force can be applied to the tip, and also the contact area is 

increased, but this contradicts with IC process compatibility. To solve this problem, 

three different ways are proposed in this work. The first one makes use of a probe with 

a special tip as shown in Figure 5.3. However, this will increase the complexity of the 

test bench. The second solution requires a slightly complicated fabrication process 

(Figure 5.4). Depending on the thickness of the sacrificial layer, dimple holes can. 

be opened in the sacrificial layer. If this layer is not thick enough to form a vertical 

tall base, a trench. can be etched in the substrate at the beginning of the fabrication 

process. Another alternative approach is to fabricate a U-shaped structure with a 

fixed pad at either end. 

Another problem encountered was the difficulty to deform the structure to the 

desired round shape with only two probes. This problem can be overcome with 

employing a third probe as shown in Figure 5.5. Actually, this case brings up the 

real power of the reshaping technology. One can use more than two probes to give 

exotic shapes to the structure in three dimensional world (Figure 5.6). 
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Poly structure to be reshaped 

Probe 

Figure 5.3 Reshaping with a special probe. 

5.3.2 Experimental Results 

In order to investigate the reshaping process, the micromirror structure shown in 

Figure 5.7 was used. While the thermal power was applied through the probe pads, 

the actuators were lifted and brought to the desired position by lifting the mirror 

platform (Figure 5.8). The edge of the platform was elevated by 350 µm, where the 

angle was α≈45° (for the definition of a, see Figure 5.1). Voltage was applied between 

two pads as a pulse with varying pulse width, and the actuators were annealed with 

Joule heating due to the current passing through them. Then the mirror platform 

was released and the deflection of the platform edge with respect to the substrate was 

measured. For large displacements, the laser-photodiode setup shown in Figure 5.9 

was utilized, while for small displacements the focus of the optical microscope was 

used. 

Figure 5.10 and Figure 5.11 show, that the structures can be deformed in 

complicated 3D shaped and it is possible to give an initial angle of 45° and 90° to 



Poly structure to be reshaped 

Probe 

Figure 5.4 Fabricating dimple as a base to make an ohmic contact with the tip. 
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Figure 5.5 An alternative reshaping setup. 

Polysilicon beam to be reshaped 

Probe 

Probe 
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Poly structure to be reshaped 

Probe 

Figure 5.6 Setup for three-dimensional reshaping with many probes. 
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Figure 5.7 Released actuators and mirror platform before reshaping. 

Figure 5.8 The edge of the mirror platform was lifted ≈ 350µm before applying 
thermal power. 
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Figure 5.9 Laser-Photodiode setup to measure micromirror deflection 

the micromirror platform. Even an angle larger than 90° is possible (e.g. 120° as 

displayed in Figure 5.12). 

Three sets of samples (A, B and C) were prepared 5.1. The detailed process 

flow for all three cases are given in APPENDIX B. In case A, 1.6µm thick LPCVD 

polysilicon layer was only doped from solid phosphorus disks at 950°C for 2 hours in 

O2  rich environment, while in case B, the polysilicon layer was doped at 950°C 

and annealed at 1100°C in 

N2

. In case C, the polysilicon layer was doped at 

950°C, followed by a 2000 Å  thick Si3N4  layer deposition. The structures with 

monomorph actuators in group A were bowed upwards mainly due to the stress 

gradient throughout the layer. The structures with bimorph actuators in group 

C were also bowed upwards mainly due to residual stress discussed in Chapter 3 

(Figure 5.14). The mirror platform and actuators in group B were found to be 

perfectly flat due to the annealing at high temperature. 

The structures were reshaped in two different ways. First a 1 second long 

voltage pulse with increasing voltage values were applied to the test structure, the 

percentage of deformation was measured with increasing electro-thermal power and 



Figure 5.10 Actuators and mirror platform reshaped at 45°. 
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Figure 5.11 Actuators and mirror platform reshaped at 90°. 



Figure 5.12 Actuators and mirror platform reshaped at 120°. 

Table 5.1 Three sets of samples used for investigation of the reshaping process. 

Sample Process 
A Polysilicon Layer Doped at 950° 
B Polysilicon Layer Doped at 950° 

Annealed at 1100° 
C Bimorph 

Bottom: Polysilicon Doped at 950° 
Top: 1200A LPCVD Si3N4  
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Figure 5.13 SEM photograph of a micromirror reshaped at 45°. 

current. The percentage of deformation was defined as the ratio of the deflection of 

the deformed actuator with respect to the initial deflection given with the probe. All 

three types of devices were reshaped with incremental power and the deformation 

vs. input power and input current curves are give in Figure 5.15 and Figure 5.16, 

respectively. From the figures, one can see that phosphorus doped and annealed 

structures (samples A) can be reshaped with lower input power and input current 

compared to input power and input current necessary to deform phosphorus doped 

only polysilicon structures (samples B). 

Figure 5.15 displays, that significantly lower power is required to deform 

structures coated with a Si3N4  layer (samples C). This is mainly because of the low 

thermal conductivity of Si3N4  layer, which causes additional temperature increase, 

and the annealing starts at lower power values. 
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Figure 5.14 Bimorph micromirror after release. 

Another group of actuators were reshaped with a single 1 second long voltage 

pulse high enough to cause different amounts of permanent deformation. The effect 

of incremental annealing is compared with one step annealing in Figure 5.17 and 

Figure 5.18. From these figures, it can be seen, that the same amount of permanent 

deformation occurs at lower input power values, if the electro-thermal power is 

applied in one step. This may be because of previous recrystallization, and grain 

growth already inserted into the structure in incremental annealing case. These are 

believed to make further recrystallization and permanent deformation require higher 

power. 

The experiment was repeated with a pulse with 4, 10 and 30 second durations. 

Test structures were reshaped with incremental pulses and deformation vs. input 

power and input current plots are given in Figure 5.19, Figure 5.20, Figure 5.21, and 

Figure 5.22. 
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Input Power (mW) 

Figure 5.15 Deformation vs. input 1power. Pulse duration=1 sec 
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Input Current (mA) 

Figure 5.16 Deformation vs. input current. Pulse duration=1 sec 
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Input Power (mW) 

Figure 5.17 Input power vs. Deformation. Polysilicon layer was doped at 950°C and 
annealed at 1100°C. Comparison of incremental annealing with one step annealing. 
Pulse duration=1 sec 
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Input Power (mW) 

Figure 5.18 Deformation vs. input current. Polysilicon layer was only doped 
at 950°C. Comparison of incremental annealing with one step annealing. Pulse duration=1sec 
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Input Power (mW) 

Figure 5.19 Deformation vs. input power. Pulse duration=4 sec 
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Figure 5.20 Deformation vs. input current. Pulse duration=4 sec 
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Input Power (mW) 

Figure 5.21 Deformation vs. input power. Pulse duration=10 sec 
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Input Current (mA) 

Figure 5.22 Deformation vs. input current. Pulse duration=10 sec 
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Figure 5.23 displays the relationship between the applied voltage and the 

measured current for the undeformed (original) and deformed structures. At low 

voltage values, the resistance of the deformed structures is higher than original 

structures because of the additional stress generated during the lifting the mirror 

platform with the probe tip. Up to 8 mA, both currents are almost equal. Above 

this value one can conclude, that the reshaping process starts. The deformation vs. 

pulse duration plots are given for four different current values in Figure 5.24 and 

Figure 5.25. A significant deformation takes place at 13 mA input power even for a 

very short pulse duration. Above 15 mA, the actuators start shining at the elastically 

deformed region in orange due to Joule heating. At this spot, the temperature is 

ti 625°C. Because of this- heating effect, the resistance values- in both cases drop. 

For the undeformed beam, the substrate acts like- a heat sink, but static thermal. 

FEA showed, that this effect is small. 

Figure 5.26 and-Figure 5.27 show the variation of the required input power with 

the annealing time to create a certain amount of deformation. To obtain the same 

deformation percentage, one needs less input power for increasing pulse durations, 

while this decrease saturates at 4 sec, and there is not much change after 10 sec and 

30 sec annealing. This indicates that the annealing process can be achieved very 

quickly. 

From the detailed investigation, the following results can be concluded: 

Elastic stresses can be annealed by Joule heating, where both recrystallization, 

grain growth and plastic deformation play a major role. 

• Increasing electro-thermal power causes increased deformation. • 

The initial crystalline structure effects the required input power. 
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Voltage (V) 

Figure 5.23 I-V characteristics of the actuators under investigation. 
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Anneal Time (s) 

Figure 5.24 Deformation versus anneal time of the samples in group A for four 
different current values. 
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Anneal Time (s) 

Figure 5.25 Deformation versus anneal time of the samples in group B for four 
different current values. 



In
p

u
t  

P
o

w
er

  (
m

W
)  

108 

• A 3x104  A/cm2  current density supplied for 4 sec. is sufficient to achieve a 

complete reshaping. Further increase in annealing time does not effect the 

deformed shape significantly. 

• The ohmic resistance of the deformed structures is lower than the initial 

(undeformed) one after the annealing occurs. Moreover, the I-V deviates from 

the linear Ohm's law indicating a change in polysilicon properties. 

Anneal Time (s) 

Figure 5.26 Required input power versus annealing time of the samples in group A 
to obtain four different deformation amounts. 
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Anneal Time (s) 

Figure 5.27 Required input power versus annealing time of the samples in group B 
to obtain four different deformation amounts. 
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5.4 Application: Reshaped Micromirror 

Micro-opto-electro-mechanical (MOEM) systems become more and more available 

for a variety of applications. Such applications go beyond single devices to include 

whole optical systems on a chip, comprising mirrors, gratings, Fresnel lenses, and 

shutters [76]. Today most of them are fabricated with available IC processes, which 

allow only couple of micron high devices. Most of these devices have a bight of couple 

of hundred microns, so they are fabricated as horizontal structure. They are freed 

after sacrificial layer etch, and an actuation mechanism flips them up and positions 

them precisely. Hinges and locks make sure that the released devices are kept at 

their positions. Most of the time, these mechanisms occupy a large area and they 

need to be driven with complicated control signals. 

The micromirror structure is a good example to show, how reshaping technology 

can eliminate the silicon area consuming complicated actuators. The fabrication 

steps of the reshaped structures are much more simpler that the reported MOEM 

devices. 

In previous section, it was displayed, how the structure could be deformed so 

that the micromirror platform was tilted at the desired angle. 45° is a very useful 

angle, because a micromirror tilted at this angle can be used to couple the beam of 

a monolithic laser to an optic fiber (Figure 5.28), or a signal from a fiber lying in a 

bulk-micromachined groove to another fiber positioned perpendicular to the surface 

(Figure 5.29). 

External-cavity semiconductor lasers are of interest for applications such as 

laser linewidth narrowing, emission wavelength tuning, and laser mode locking. For 

this purpose, micromirrors standing vertically (900 ) are required (Figure 5.30). 

Angles larger then 90° are also useful. An optical beam from a surface 

photodiode can be directed to a subject (e.g. lens, optical fiber) by utilizing a. 

micromirror tilted 135° from its original position. 



Figure 5.28 Application # 1 for 45° tilted micromirror. 
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Figure 5.29 Application # 2 for 45° tilted micromirror. 



Figure 5.30 Application for a vertical micromirror. 
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Figure 5.31 Application for a 135° tilted micromirror. 
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The micromirror can be driven electro-thermally and/or electrostatically. 

To investigate static and dynamic structural response of the micromirror, sample 

structures from all the three groups (A, B and C) were reshaped so that the mirror 

platforms1  were tilted ≈45°. Throughout the experiment, the deflection of the 

micromirror was measured with the laser-photodiode setup shown in Figure 5.9. 

The laser beam, which was focussed on the mirror platform, was reflected from 

the mirror surface towards a screen-photodiode system (Figure 5.32). The large 

displacements were measured from reflected image at the screen, while dynamic data 

were collected with the photodiode. 

Figure 5.32 Schematic of the measurement setup for the scan angle of the 
micromirror. 

First, the actuators were driven with dc thermal power. A varying dc voltage 

was applied. The displacement of the micromirrors in group C was found to be the 

largest, while the response of the structures in group A was less and the displacement 

of the micromirrors in group B was negligible. This result was expected. The small 

actuation effect observed at the micromirrors in group A is due to the gradient stress 

throughout the polysilicon as discussed in Chapter 4. The bimorph actuators in 

1The size of the micromirror platform is 500x400µm2  
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group C showed a large deflection due to the temperature dependent residual stress 

as discussed in Chapter 3. The largest scan angle for the micromirror was measured 

11° (22° for the deflected laser beam), which corresponds to a 61µ

m 

 vertical and 

73µm horizontal displacement of the mirror's upper edge. 

To obtain the dynamic response of the micromirror with bimorph actuators, it 

was driven with an ac signal (10 V in amplitude) with varying frequency combined 

with 10V dc voltage. The measured frequency response of the micromirror is plotted 

in Figure 5.33. 

The photodiode response to the reflected laser beam at 10 Hz and 166 Hz were 

shown in Figure 5.34 (1 div = 2mV, 20msec) and Figure 5.35 (1 div = 2mV, 2msec), 

respectively. 

The resonance frequency was measured 1030Hz with a system quality factor 

Q of 2.5. The modal frequencies were simulated with the following parameters:  

Young's modulus Epoly=160MPa, Poisson v= 0.25, p=2300 kg/m³ . The first modal 

frequency was found to be 740Hz with the lower edge of the mirror platform free 

and 940Hz with the edge simply supported (displacement in y direction is zero, e.g. 

uy=0)(Figure 5.36). This simulation result agrees with the observation, that the 

lower edge of the micromirror was in touch with the substrate all the 

time. The first four modal frequencies are given in Table 5.2. The modal shapes are given in  

Figure 5.37 to Figure 5.40. 

Table 5.2 The simulated modal frequencies of the reshaped rnicromirror. 

Mode # Freq. (Hz) 
1  
2  
3  
4 

940 
12301 
13448 
14203 
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Figure 5.33 Frequency response of the reshaped micromirror with Dimorph 
actuators driven with 10 V ac signal superimposed on 10 V dc voltage. 



1 1 6 

Figure 5.34 The photodiode response to the reflected laser beam at 10 Hz. 

Figure 5.35 The photodiode response to the reflected laser beam at 166 Hz. 



Figure 5.36 Solid model and mesh used to do modal FEA of the reshaped 
micromirror. 
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The reliability of the reshaped micromirror was tested under fatigue test and 

shock test. The mirror was driven at the resonance frequency with thermal drive 

only (6.5V ac signal superimposed on 10V dc input voltage). The deflection was 

6°, one half of the maximum deflection. The reshaped structure survived more than 

1.5x109  cycles. The mirror was dropped on a metal surface from a Night of 30 cm, 

which corresponds to a shock of more than 200g, and the reshaped micromirror was 

found to be fully functional after this test. 

The reshaped micromirror was also tested with electrostatic excitation, where 

a varying dc voltage was applied between the actuators and the substrate. The 

measured and simulated normalized tip position vs. the normalized electrostatic 

voltage was plotted in Figure 5.41. For 45° initial angle, the pull-in voltage was 

measured to be 300V. The maximum tip position was 350p.m. While the simulation 

results show, that the micromirror is pulled in when the tip reaches 85% of the 

maximum value, during the test of the micromirror much smaller values were 

measured. The reason is the friction between the lower edge of the mirror platform 

and the surface. In measured and simulated data, a hysteresis can be seen very 

clearly. The measured hysteresis is larger than the simulated results. In a few cases, 

the mirror platform got stuck to the substrate and didn't get released, even when 

the electrostatic input voltage was turned off completely, and both the substrate 

and the actuators were connected to ground. A gentle touch with the probe tip 

was enough to release the stuck micromirror. One solution to prevent sticking and 

friction problems is to open a window right under the mirror platform by etching 

through the wafer from back-side. This step requires a photolithography step which 

involves double-side alignment. 
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Normalized Voltage 

Figure 5.41 Normalized tip position (t/tmax) 
versus normalized voltage (V/Vpull-in)•  Vpull-in=350V, tmax=353µm. 
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5.5 A Proposed System Application: Microscanner for Barcode 
Readers 

The micromirror, discussed in the previous sections, can be used as a part of an 

MOEM system, i.e. a microscanner for barcode readers. Resonant optical scanners 

have long been used for scientific and industrial applications that range from laser 

imaging and displays to laser surgery tools and home-office appliances such as fax 

machines and printers. Barcode scanners are widely used for automatic object identi-

fication in many industries. In this section, the use of silicon micromachined and 

reshaped micromirror and other MOEM devices to construct a resonant microscanner 

will be described. A conceptual sketch of an integrated barcode reader is displayed 

in Figure 5.42. 

Figure 5.42 A prototype design for an integrated barcode-scanner module on a 
silicon substrate. 
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The proposed system does not require a sophisticated driving mechanism. As 

investigated in details above, one can drive a reshaped micromirror with simply 

applying thermal power. A novel resonant microscanner requires a fast scan rate, and 

a large scan angle, low mass and low operating power. The designed and fabricated 

micromirror with reshaped bimorph actuators can be set to any initial angle. It 

has a scan rate of 1 kHz with a Q-factor of 2.5. One can modify the length of the 

actuators a.nd change the scan rate by changing the resonant frequency. The laser 

beam scan angle of the fabricated micromirror is 22°, which compares favorably with 

angles typically achieved in bulk resonant scanner. By optimizing the polysilicon-

Si3N4  thickness ratio, this scan angle value can be improved further. The recent 

micromirror dissipates less than 100 mW, when thermal drive is combined with the 

electrostatic drive. 

The laser diode has a beam divergence of 0.25-0.4 mrad, and the solid angle is 

α=10-12°. If the distance between the laser and the micromirror is large, then the 

laser beam may need to be focussed. The lens could consist of a: surface microma-

chined structure, which can be reshaped to 90circ  and brought to the vertical position. 

Successful fabrication of polysilicon Fresnel lenses were reported [76]. Mounting the 

photodetector on a platform actuated with reshaped beams helps to bring it to the 

desired position. 



CHAPTER 6 

SUMMARY AND CONCLUSION 

In this work, the design, simulation, fabrication and characterization of bimorph and 

monomorph cantilever beam actuators were investigated. These actuators are driven 

by electro-thermal power combined with electrostatic excitation, and they are able 

to produce large force and in and out-of-plane actuation. 

A linear analytical model, which describes the thermal actuation of bimorph 

in-plane (inchworm) actuators, was proposed. The temperature dependent residual 

stress in both layers was included into the model. The numerical results obtained 

from the analytical model were compared to simulation results obtained with the 

FEA (Finite Element Analysis) and experimental measurements. The validity limits 

of the proposed model were discussed. The design of an improved two segment 

inchworm actuator was presented. 

Out-of-plane actuation of monomorph and bimorph cantilever beams due to 

the thermal expansion coefficient mismatch and stress gradient was investigated. 

It was shown that the well known equations were not valid for large displacements. 

Thermal and electrostatic models for numerical methods were discussed. 2D actuator 

model for the electrostatic drive was solved using Newton-Raphson method. These 

results were compared to the results obtained from the nonlinear FEA and to the 

experimental tests of the fabricated TaSi2-SiO2  bimorph actuators. 

The gradient stress throughout the thickness of a mono layer was shown to be 

responsible for bending of beams and membranes. A linear analytical model was 

proposed to account temperature dependent bending clue to gradient stress. 

Today's micromachining technology is limited merely by two dimensional IC 

process technologies. To overcome this limitation, a powerful technique, reshaping 

was introduced. With this technology, 3D structures, actuators, even more complex 

systems can be created out of the 2D IC world. Different setups for reshaping 
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process were proposed. As an example, three different types of surface  microma-

chined polycrystalline structures were reshaped and 3D actuators were formed. It 

was found that elastic deformation inserted in the polycrystalline structure could be 

annealed with a current density  of 3x104 A/cm2  in as low as 4 seconds. The  effects of 

process time, input power and annealing current on the reshaping were investigated 

in details. 

A micromirror, which made use of reshaped out-of-plane actuators were 

designed, fabricated and characterized. The micromirror, which can be driven with 

combined thermal and electrostatic excitation, was found to be a good candidate as  

a microscanner in a proposed barcode reader system with its wide laser beam scan 

angle of 22°, resonance frequency of 1 kHz, and the system quality factor Q of 2.5. 



APPENDIX A 

NEWTON-RAPHSON PROCEDURE 

A.1 Mathematical Method 

The purpose of this appendix is to present the Newton-Raphson method to solve 

general nonlinear equations. There are some other methods to solve nonlinear 

equations, but all of them have the same first step: The problem has to be brought 

into the standard form f(x)=O. Then to solve the problem, the zeros of the function 

are determined. 

Newton-Raphson method uses the tangent line of f(x) at a point as the model 

for f(x). Although the search for the zeros of a function using this method has the 

potential of rapid convergence, there is also the possibility of overlooking zeros and 

not converging at all. The method starts with an assumption of the zero. At each 

step, the function is approximated with a straight line of the form 

(A.1)  

having the same value and slope as f(x) at x = x i , then the constants ai  and bi  

satisfy 

(A.2)  

where 

(A.3)  

The zero crossing using this straight-line approximation occurs at 
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(A.4) 

And this is a good choice for the next trial value of 	Then 

(A .5) 

The result in equation A.5 can be arrived at geometrically by examining 

Figure A.1, where at each step the slope of the function at the point of evaluation 

is used to give the next value of the variable to be used. [TI] 

This algorithm will converge to a zero of a function very rapidly, if it can. 

However, neither it is possible to guarantee the convergence, nor there is a guaranteed 

convergence test. Yet one must stop iterations according to a reliable convergence 

test. There are three basic reasons for stopping an iteration: [78] 

The problem is solved or nearly so. Either f(x)=0 or the lath iterate has f (xk)=0 

very small. 

The iteration has converged or nearly so. If the values xk  stop changing, there 

is no point in continuing the iteration. Specific tests one could use include: 

(A.6) 

where Tolerance is a parameter set by the user, and errors less than Tolerance are 

acceptable. 

The iteration has gone on too long or the results are unreasonable. Every 

iteration should have a fixed limit unless one knows that it converges in all cases. 



Figure A.1 Newton-Raphson method of iterative locating zeros. 

130 



131 

There are usually bounds on the solution so that some values for f(xk ) or xk  are 

unreasonable for that particular problem. This means that the iteration has gone 

astray. Tests that one could use include 

(A.7)  

where KLimit, FHuge, and XHuge are specific values, which are not always easy to 

choose and depend on the problem at hand as well as the machine parameters. 

A.2 Finite Element Analysis 

The finite element discretization process yields a set of simultaneous equations: 

(A.8)  

where [K] is the coefficient matrix, {u) is the vector of unknown DOF (degree of 

freedom) values, and {Fα} is the vector of applied loads. If the coefficient matrix [K] 

is itself a function of the unknown DOF values (or their derivatives) then equation 

equation A.8 is a nonlinear equation. The Newton-Raphson method is an iterative 

process of solving the nonlinear equations and can be written as: 

(A.9)  

(A.10)  

where [KiT] is the Jacobian matrix (tangent matrix), i is the subscript representing 

the current equilibrium iteration, and {Finr) is the vector of restoring loads corre-

sponding to the element internal loads. 



One iteration 
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Both [KiT] and {Finr} are evaluated based on the. values given by {ui}. The right 

hand side of equation equation A.9 is the residual or out-of-balance load vector;i.e., 

the amount the system. is out of equilibrium. A single solution iteration is depicted 

graphically in Figure A.2 for a one DOF model. In a structural analysis, [KiT]  is the 

tangent stiffness matrix, {ui} is the displacement vector and {Finr

} 

 is the restoring 

force vector calculated from the element stresses. 

Next iteration 

Figure A.2 FEA Newton-Raphson Solution. 

As seen in Figure A.2, more than one Newton-Raphson iteration is needed to 

obtain a converged solution. The general algorithm proceeds as follows: 

e Assume {u0}. {u0} is usually the converged solution from the previous time 

step. On the first time step, { uo} = {0}. 

e Compute the updated tangent matrix [KT] and the restoring load {Finr } from 

configuration {ui}. 

• Calculate {∆ui } from equation equation A.9. 
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6 Add {∆ui} to {ui}  in order to obtain the. next approximation {u i+1} (equation 

equation A.10). 

• Repeat steps 2 to 4 until convergence is obtained. 

Figure A..2 shows the solution of the ith and (i+1)th iterations. The subsequent  

iterations would proceed in a similar manner. The solution obtained at the end of the 

iteration process would correspond to load level {Fα}. The final converged solution. 

would be in equilibrium, such that the restoring load vector {Finr} (computed from 

the current stress state) would equal the applied load  vector {Fα} (or at least to  

within some tolerance. None of the intermediate iteration solutions would be in 

equilibrium. 

The Newton-Raphson procedure guarantees convergence if and only if the 

solution at any iteration {ui} is "near" the exact solution. Therefore, even without  

a path-dependent nonlinearity (such as plasticity), the 

incremental approach (i.e. applying the loads in increments) is sometimes required in order to obtain a solution 

corresponding to the final load level. [79] 



APPENDIX B 

PROCESS STEPS OF MICROSTRUCTURES DISCUSSED IN THIS  
THESIS 

B.1 Inchworm Actuator 

1- Wafer cleaning 
2- Wet oxidation 	(3000 Å, 1 h, 1050°C) 
3- Si3N4  LPCVD 	(3000 Å, 50 min, 725°C) 
4- LTO deposition 	(2 µm , 20 h, 425°C) 
5- Si3N 4  LPCVD 	(3000 Å, 50 min, 725°C) 
6- Polysilicon LPCVD 	(1 µm , 10 h, 600°) 
7- Polysilicon doping 	(Phosphorus, 2 h, 950°) R0  < 10Ω/□  
8- Photolithography 
9- Polysilicon RIE 
10- Si3N 4  RIE 
11- Au sputtering 
12- Photolithography 
13- Au wet etch 
14- Sacrificial oxide etch (49% HF, 8 min.) 

B.2 Out-of-Plane Actuator 

1- Wafer cleaning 
2- Wet oxidation 	 (3000 Å, 1 h, 1050°C) 

3- Si3N 4  LPCVD 	 (2000 Å, 50 min, 725°C) 

4- Aluminum sputtering 	(1 µm , 75°C) 

5- LTO deposition 	 (0.9 µm , 10 h, 425°C) 

6- TaSi 2  sputtering 	(0.6 µm , 125°C) 

7- Photolithography 
8- TaSi2  RIE 
9- LTO RIE 
10- Sacrificial aluminum etch 
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B.3 TaSi2  Micromirror 

1- Wafer cleaning 
2- Wet oxidation  	 (3000 Å, 1 h, 1050°C) 

3- Si3N 4  LPCVD 	 (2000 Å, 50 min, 725°C) 

4- Aluminum sputtering 	(1 µm , 75°C) 
5- LTO deposition 	 (0.9 µm , 10 h, 425°C) 
6- LTO Photolithography 	(Bimorph Layer # 1. and 

micromirror platform) 
7- LTO RIE 
8- TaSi2  sputtering 	 (0.6 µm , 125°C) 
9- Photolithography 	(Bimorph Layer # 2) 
10- TaSi2  RIE 
11- Sacrificial aluminum etch 

B.4 Reshaped Actuator - A 

1- Wafer cleaning 
2- Wet oxidation 	(3000 Å, 1 h, 1050°C) 
3- Si3N4  LPCVD 	(3000 Å, 50 min, 725°C) 
4- LTO deposition 	(2 µm , 20 h, 425°C) 
5- LTO anneal  	(N2, 1 h, 950°C) 
6- Polysilicon LPCVD 	(1.6 µm , 12 h, 600°) 
7- Polysilicon doping 	(Phosphorus, 2 h, 950°), R□  ≤  10Ω/□  
8- Photolithography 
9- Polysilicon RIE 
10- Sacrificial oxide etch (49% HF, 8 min.) 
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B.5 Reshaped Actuator - B 

1- Wafer cleaning 
2- Wet oxidation 	(3000 Å, 1 h, 1050°C) 
3- Si³ N 4  LPCVD 	(3000 Å, 50 min, 725°C) 
4- LTO deposition 	(2 µm , 20 h, 425°C) 
5- LTO anneal 	 (N2, 1 h, 950°C) 
6- Polysilicon LPCVD 	(1.6 µm , 12 h, 600°) 
7- Polysilicon doping 	(Phosphorus, 2 h, 950°), R❑ < "OWE 
8- Polysilicon annealing   (N2, 1. h, 1100°) 
9- Photolithography 
10- Polysilicon RIE 
11- Sacrificial oxide etch  (49% HE, 8 min.) 

B.6 Reshaped Actuator - C 

1- Wafer cleaning 
2- Wet oxidation 	(3000 Å,1 h, 1050°C) 
3- Si3N4  LPCVD 	(3000 Å, 50 min, 725°C) 
4- LTO deposition 	(2 µm y 771,, 20 h, 425°C) 
5- LTO anneal 	(N

2

, 1 h, 950°C) 

6- Polysilicon LPCVD 	(1.6 µm, 12 h, 600°C) 

7- Polysilicon doping 	(Phosphorus, 2 h, 950°C), Ro  < 10Ω/❑ 

8- Photolithography 
9- Polysilicon RIE 
10- Si3N4  LPCVD 	(2000 A, 35 min, 725°C) 

11- Photolithography 
12- Si3N4  RIE 
13- Sacrificial oxide etch   (49%© HF, 8 min.) 
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APPENDIX C 

MATLAB CODE FOR ELECTROMECHANICAL CALCULATIONS 
OF PULL-IN VOLTAGE FOR OUT-OF-PLANE ACTUATOR USING 

NEWTON-RAPHSON METHOD 

% Save this file as cbeam.m . 

cs=input('New case ? (1=yes or 0=no): '); if cs==1 

clear; 

d = input('Enter discretization number (50 to 100 range is suggested): '); 

N = d+4; 

Z = input('Enter newton iteration number (5 to 10 range is suggested): '); 

L = 1e-6*input('Enter length in urn: '); 

w = 1e-6*input('Enter width in urn: '); 

t = 1e-6*input('Enter thickness in urn: '); 

g = 1e-6*input('Enter gap in urn: '); 

E = 1e9*input('Enter youngs modulus in GPa: '); 

step = 1e-6*input('Enter step height in urn: '); 

dsdy = 1e12*input('Enter transverse stress gradient (MPa/um): '); 

end 

tip = d+2; 

e = 8.8541878e-12; 

h = L/(d-1); 

if dsdy 

Radius = E/dsdy; 

mxphi = 	L/(2*Radius); 

else 

mxphi = g/L; 

end 
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w1 = w; 

I = t3/36 * (w^2+4*w*w1+w^2)/(w+w1); 

k = 2*E*t^3/(3*L^4); 

V-pull-in-estimate =  

g1 = 0.28; 

c1 = 0.42; 

V-pull-in-HH= real((g1*E*t^3*g^3/(e*L^4*(1+c1*g/w)))0.5) 

y = g*ones(N,1); 

y-old = y; 

phi-old = 0; 

= zeros(N,1); 

A = zeros(N,N); 

C = zeros(N,1); 

y4p = zeros(N,1); 

con = zeros(N,1); 

if dsdy = 0 

for i = 1:N 

con(i) = Radius - sign(Radius)*(Radius^2-((i-3)*h)^2)0.5; 

end 

else 

con = zeros(N,1); 

end 

A(1,3) = 1; 

A(2,2) = -1; 

A(2,4) = 1; 

A(N-1,N-3) = 1; 

A(N-1,N-2) = -2; 
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A(N-1,N-1) = 1; 

A(N,N-4) = -1; 

A(N,N-3) = 2; 

A(N,N-1),= -2; 

A(N,N) = 1; 

mode=input('Normal Mode or Pull-In Mode ? (1=Normal or 0=PuII-In): '); 

if mode == 1 

% BEGIN MODE 1 = NORMAL 

= input('Enter voltage: '); 

-e*V2*w/(2*E*I); 

c = 0.651)/w; 

phi = 0; 

count = 0; 

r(tip) = 1; 

while abs(r(tip)/y(tip)) > 1e-5 

for i=3:N-2 

y4p(i) = (y(i-2)-4*y(i-1.)+6*y(i)-4*y(i+1)-Ey(i+2))/114; 

A(i,i-2) = 1; 

A(i,i-1) = -4; 

A(i,i) = 6+2*h4/(y(i)+con(i))*(y4p(i)-c/(2*(y(i)+con(i)))); 

A(i,i+1) = -4; 

A(i,i+2) = 1; 

C(i) = h4*b/(y(i)+con(i))^2-y4p(i)+c/(y(i)+con(i))); 

end 

r=A\ C; 

if count > Z 

y=y+(r/(count)0.5); 
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else 

y=y+r; 

end 

y(N-2); 

count = count + 1; 

if step = 0 

Mo = (y(4)-2*y(3)+y(2))/(h^2)*E*I; 

phi = -Mo*(step)/(E*I); 

y1p3 = -(y(4) - y(2))/(2*h); 

C(2) = -2*h*(phi - ylp3); 

end 

end 

% END OF NEWTON ITERATIONS FOR MODE 1 

y=(y+con); 

cap = 0; 

for i=4:N-2 

f = w/y(i); 

cap = cap+(e*w*h/y(i))*4*((4/(pi*f)(3/20+pi/4*+(1+ 

4/(pi*f)(-1/2)*atanh((1+4/(pi*f))(-1/2)))/(pi*f); 

end 

Capacitance = cap 

plot(le0y); 

axis([0 105 0 10]); 

xlabel('Discretization in x'); 

ylabel('Gap (urn)'); 

Tip-gap = y(tip) 

Error = r(tip)/y(tip) 
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% END OF MODE 1 = NORMAL 

else 

% BEGIN MODE 2 = PULLIN 

VMIN = 0; 

VMAX = 500*V-pull-in-HH; 

V = 0.01*VMAX; 

phi = 0; 

% BEGIN BINARY SEARCH FOR PULLIN VOLTAGE 

while abs(VMAX-VMIN) > 0.001 

b = -e*V2*w/(2*E*I); 

c = 0.65*b/w; 

% BEGIN NEWTON ITERATIONS FOR VOLTAGE = V 

r(tip) = 0.5; 

err = 1; 

count = 1; 

ling = 2*floor((log(VMAX/(VMAX-VMIN)))) Z; 

while (((abs(r(tip)) < err & count <= lim) -- (count < Z))&(phi>=0)&(phi<=mxphi)) 

if (count < 5) 

err = abs(r(tip)); 

end 

for i=3:N-2 

y4p(i) = (y(i-2)-4*y(i-1)+6*y(i)-4*y(i+1)+y(i+2))/h4; 

A(i,i-2) = 1; 

A(i,i-1) 	-4; 

A(i,i) = 6+2*h4/(y(i)+con(i))*(y4p(i)-c/(2*(y(i+con(i)))); 

= -4; 

A(i,i+2) = 1; 
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C(i) = h4*(b/(y(i)+con(i)r2-y4p(i)+c/y(i)+con(i))); 

end 

r=A\ C; 

if count > 10 

y =y+(r/(count)^0,5 .5); 

else 

y=y+r; 

end 

count = count + 1; 

if step = 0 

Mo = (y(4)-2*y(3)+y(2))/(h^2)*E*I; 

phi = -Mo*(step)/(E*I); 

y1p3 = -(y(4) - y(2))/(2*h); 

C(2) = -2*h*(phi - y1p3); 

end 

end 

% END NEWTON ITERATIONS FOR VOLTAGE = V 

V-pull-in = V 

Tip-gap = y(tip)+con(tip) 

if step = 

rotation = phi 

end 

Error = r(tip)/y(tip) 

iterations = count-I 

if ((abs(Error)>le-4)—(y(tip)<-con(tip))—(y(tip)>g) -- (phi<0)—(phi>mxphi)) 

VMAX = 

V = (VMIN+V)/2; 



y = y-old; 

phi = phi-old; 

C(2) = 0; 

else 

VM.IN = V; 

V = (VMAX+V)/2; 

y-old = y; 

phi-old = phi; 

end 

end 

% END BINARY SEARCH FOR PULLIN VOLTAGE 

cap = 0; 

for i=4:N-2 

f = w/y(i); 

cap = cap+(e*w*h/y(i))*4*((4/(pi*f)^(3/20)+pi/4*f+(1+4/(pi*f)(-1/2)* 

atanh((1+4/(pi*M(-1/2)))/(pi*f); 

end 

Capacitance = cap 

plot(y*le6); 

axis auto 

xlabel('Discretization in x'); 

ylabel('Gap (urn)'); 

end 

cs2=input('Again? (yes=1 or no=0:)'); 

if cs2==1; run cbeam; end 
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APPENDIX D 

NUMERICAL MODELING AND SIMULATION OF MEMS 

Today, the microsensors and actuators are getting more and more complicated, and 

it is very well known, that it is very difficult (and most of the time impossible) 

to obtain an analytical equation, even if the model and boundary conditions are 

simplified drastically. 

Due to the very high prototyping costs, simulation plays an important role in 

microsystem domain as much as it does in microelectronics domain. The modeling 

and simulation of microsystems follows a logical development flow: 

• layout and design : Mask editors and design rule checkers (DRCs ). 

• process simulation : Semiconductor process simulation and etch simulation. 

• device simulation : Field solvers (FEM, BEM), equivalent circuits, HDL. 

• system simulation : Equivalent circuit, HDLs , analog simulators. 

• verification and measurement : Validation of simulation. 

• global simulation : Iterative execution of the above steps (optimization). 

CAD systems for MEMS require the 3D and coupled physics modeling and 

the planar mask layout and circuit simulation of integrated circuits. Seamless data 

transfer between the levels is required to accelerate development time and extend 

the usefulness of simulation. Challenges include geometric construction from mask 

and process data, 3D coupled field simulation, construction of lumped macro models, 

and computer aided insertion of those macro models into dynamical simulators [80]. 

The study of the dynamic behavior of a microsystem is complex as most trans-

ducers are nonlinear, involving at least two energy domains and often executing large 

motions which introduce geometric nonlinearities into the problem. The system-level 

is increasingly becoming important in the design of market-driven MEWS [81]. 
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D.1 Finite Element Method and CAD Tools 

Finite element method is not new. It has been used throughout centuries for 

evaluating certain quantities (particularly area and volume) by adding or counting 

well-defined geometric figures (elements). Today's understanding of the finite element 

method, however, is finding an approximate solution to a boundary and initial value 

problem by assuming that the domain is divided into well defined subdomains 

(elements), and that the unknown function of the state variable is defined approx-

imately within each element. With these individually defined functions matching 

each other at the element nodes or at certain points at the interfaces, the unknown 

function is approximated over the entire domain. [82] 

Since the entire domain is divided into numerous elements and the function is 

approximated in terms of its values at certain points (nodes), it is inevitable that 

the evaluation of such a function will require solution of simultaneous equations. 

Because of this, the finite element methods were not widely used until the middle of 

this century, at which time the computer became a powerful computational tool. 

The most important requirement for a MEMS designer is that the CAD 

system be able to analyze realistic 3D structures, whose geometry is either provided 

directly by the designer, or is derived from simulation of the fabrication process 

using a process flow and mask description. Most of the time, a combined analysis 

(e.g. thermo-structural, electrostatic-thermal-structural) is needed to simulate the 

performance of the sensor or actuator. To be able to include the very important 

dependence of material properties on process conditions is another very important 

requirement. 

Despite of many improvements over the last 2 decades, the available finite 

element packages (e.g. ANSYS, IDEAS), which were designed to solve general 

mechanical or civil engineering problems, haven't been appropriate to handle MEMS' 

problems. In 80's, the need for a new kind of CAD system for microelectromechanical 
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devices and systems was identified [83], and the development of dedicated MEMS 

device analysis programs began. One of them is MEMCAD, which was the result 

of the systematic approach to create a CAD tool for MEMS design in MIT [58]. 

Since 1.993. MEMS design and simulation tools have been available, and tremendous 

improvements have been done. 

D.2 Modeling Internal Stress 

Internal stress needs to be introduced at the next step . Internal stress exists in 

almost all thin films used in MEMS process, so applying internal stress as a boundary 

condition must be as easy as applying other boundary conditions. Unfortunately, 

this is not the case with the conventional PEA software packages. Two of the most 

popular and commercially available CAD tools, IntelliCAD and MEMCAD, have 

recently had the internal stress as a load in their latest releases. However, both of 

them failed to converge to a solution for the highly nonlinear inchworm problem. The 

author believes, that this is because of the FE solver, ABAQUS/Standard. In most of 

the Finite Element Modeling oriented CAD tools, mechanical analysis is performed 

using ABAQUS/Sta.ndard, which is a general purpose finite element analysis program 

with special emphasis on linear and nonlinear structural engineering and heat transfer 

applications. In the latest release, ABAQUS includes a package ABAQUS/Explicit, 

which is a transient dynamics program designed specifically to serve advanced 

nonlinear structural analysis needs. The program includes element formulations for 

beams, shells, and continuum elements'. The use of ABAQUS/Explicit may have 

the above mentioned CAD tools be able to solve the inchworm problem with internal 

stresses applied as a load. 

'More information about ABAQUS can be obtained from http://www.hks.com  
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