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ABSTRACT 

REMOVAL OF VOLATILE ORGANIC COMPOUND (VOC) VAPORS IN 
BIOTRICKLING FILTERS: PROCESS MODELING AND VALIDATION 

WITH CHLORINATED AROMATIC COMPOUNDS 

by 
Christos J. Mpanias 

This study dealt with the removal of vapors of volatile organic compounds from 

airstreams in biotrickling filters (BTFs). A detailed general model was developed for 

describing the process under steady-state conditions. The model accounts for mass 

transfer between phases (air, liquid, biofilm) and biodegradation of pollutants in the 

biofilm. It also accounts for potential kinetic interactions among pollutants as well as 

potential process limitations by oxygen availability. 

The general model was experimentally validated using mono-chlorobenzene (m-

CB) and ortho-dichlorobenzene (o-DCB) as model compounds either alone or in mixture 

with each other. Before BTF experiments were undertaken, a systematic kinetic study 

was performed with suspended cultures. Two microbial consortia, called m-CB and 

o-DCB consortium, were used. The o-DCB consortium could use both m-CB and o-DCB 

as sole carbon and energy sources whereas the m-CB consortium could not utilize 

o-DCB. In all cases it was found that self-inhibition (Andrews kinetics) takes place. 

When the two compounds are present in a mixture they are simultaneously used but are 



involved in a competitive cross-inhibition which is stronger from m-CB presence on o-

DCB removal than vice versa. Studies on the effect of pH showed that a value of 6.8 is 

optimal. Some kinetic studies were repeated after the biomass had been used in a BTF for 

about 8 months and showed that the kinetics, i.e., the values of the kinetic constants 

remained unaltered. 

Experiments in a BTF with the m-CB consortium and m-CB as model compound 

were performed with air residence times between 3.0 and 8.8 min, liquid flow rates 

between 0.7 and 5.7 Lh-1  , and inlet m-CB concentrations between 0.4 and 4.4 gm-3. The 

percent m-CB removal observed ranged from 79 to 96% and the maximum removal rate 

was 60 gm-3-packing h-1. Removal of o-DCB vapor was found to be more difficult. In 

fact, using a BTF with the o-DCB consortium percent o-DCB removal ranged from 57 to 

76% and the removal rate never exceed 30 gm-3-packing h-1. In these experiments, the air 

residence time, liquid flow rate, and inlet o-DCB concentration were in the range of 3.0-

6.5 min, 1.2-5.2 Lh-I , and 0.25-3.5 gm-3, respectively. In all cases, a very good agreement 

between data and model predictions was found. Regarding removal rates, the proposed 

model predicted the data with less than 10% error in most cases. Most experiments were 

performed in counter-current flow of liquid and air, but some were performed in co-

current mode. Co-current operation was found to be slightly superior to the counter-

current mode; this is also predicted by the model. The great majority of BTF experiments 

was performed at pH 6.8. Some experiments at lower pH values showed considerable 

VOC removal somewhat unexpected based on the suspended culture studies. 



Experiments in a B I F with the o-DCB consortium and airstreams laden by both 

m-CB and o-DCB validated the proposed model for the case of mixtures. These 

experiments were performed in counter-current flow of air and liquid. The liquid flow 

rate was 6 Lh-1  whereas air residence time, and m-CB and o-DCB concentrations varied 

in the range of 3.2-5.9 min, 0.17-3.1 gm-3, and 0.1-0.8 gm-3, respectively. The agreement 

between model predictions and data was very satisfactory but not as good as in the case 

with single VOCs. 

For removal of m-CB/o-DCB mixtures it has been shown that kinetic interference 

can be neglected because the expected VOC concentrations are low. Regarding oxygen, it 

was found that an oxygen-controlled zone exists in the BTF (close to the inlet of the 

polluted air) when the total VOC concentration is relatively high. For the hydrophobic 

compounds used in this study oxygen availability does not seem to play a crucial role. 

Model sensitivity studies have shown that at least two kinetic constants are important 

and thus, zero or first-order kinetic approximations cannot and should not be made. 

The model developed in this study along with the computer code generated for 

solving the equations can be used in (at least preliminary) scale-up calculations for the 

design of BTFs. 
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CHAPTER 1 

INTRODUCTION 

The concerns of the public regarding the impacts of industrial pollution on the 

environment have resulted in a number of regulations and policies at the local, national 

and international level. These policies have, on one hand, bolstered research in pollution 

mitigation from the perspective of almost all physical and social sciences. On the other 

hand, the same policies have imposed enormous challenges to scientists and 

technologists who seek efficient, economic and publicly acceptable means to abate 

pollution and protect the environment. As a result, in the past two decades and in the 

present environmental research is actively pursued in both academic and industrial 

settings. 

Among the many environmental problems, air pollution is one of the top issues 

being addressed by industrialized nations. It is also fast becoming a priority among 

developing countries. One of the most serious aspects of air pollution is the problem of 

volatile organic compound (VOC) emissions. Some of these compounds may have 

severe implications for human health as they are suspected carcinogens and for this 

reason, they are classified as hazardous air pollutants (HAPs). In general however, VOCs 

-whether HAPs or not- create problems related to either smog formation in the 

troposphere or ozone depletion in the stratosphere (Mukhopadhyay and Moretti, 1993). 
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Several industrial plants, such as the pharmaceutical industry, wastewater and 

sewage treatment works, and a few categories of the food industry, constitute a 

continuous source of emission of large volumes of waste gases containing volatile 

organic compounds (VOCs). Over the years, regulations regarding VOCs have become 

increasingly stringent both at national and international levels. Regulations are currently 

affecting industrial operations. The 1990 Clean Air Act Amendments (CAAA) require 

90% reduction in specific hazardous air pollutants (HAPs) released from major emission 

sources by the year 2000. Under the CAAA, thousands of currently unregulated sources 

will be required to reduce or eliminate VOC emissions. In addition, sources that are 

currently regulated may seek to evaluate alternative VOC control strategies to meet 

stricter regulatory requirements such as the maximum achievable control technology 

(MACT) requirements of the CAAA. 

In order to address the problem of VOC emissions, a number of different 

technologies employing physical, chemical and biological methods for treating 

contaminated air streams, have been developed. Among them, biological waste gas 

treatment has some specific advantages. It occurs at low (ambient) temperature and 

pressure, leads to pollutant destruction without requiring expensive catalysts and -if the 

microorganisms are properly selected- does not lead to formation of toxic by-products. In 

general, biological treatment is an environmentally friendly technology which is expected 

to be competitive due to relatively low capital and operation cost. 

A biodegradation-based process for air pollution control which has attracted a lot 

of attention in the recent years is biofiltration. It is based on the biological destruction of 
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VOC vapors by microorganisms immobilized on a porous solid support material. These 

solids are placed in open or closed structures known as biofilters. When a contaminated 

airstream is passed through such a conventional or classical biofilter, the VOCs are 

transferred to the biofilms formed on the surface of the solids where they undergo 

biological oxidation. Thus, the airstream exiting a biofilter contains amounts of VOCs 

less than the stream entering the unit. Clearly, the ultimate objective is to design biofilters 

in ways which ensure that the exiting airstreams are pollutant-free. 

However, biofiltration is not as simple as it appears, and design of biofilters 

should successfully meet certain requirements, otherwise biofiltration can end up being a 

very expensive and poorly performing process. These design considerations are 

extensively discussed by Leson and Winer (1991), and Bohn (1993). Basically, what 

should be considered in the biofilter design is the need to provide the microorganisms 

with a hospitable environment, and the optimum conditions for the oxidation of the 

carbon source. The packed bed configuration should fulfill certain requirements, the most 

important of which are proper temperature and pH levels, presence of needed oxygen and 

nutrients, low pressure drop, high surface area, and maintenance of adequate moisture 

levels. 

Classical or conventional biofilters, although simple in operation, usually require 

large volumes of packing and they are efficient under low VOC concentrations and high 

volumetric flow rates of air (Mukhopadhyay and Moretti, 1993). In addition, their design 

is not easy due to the ill-defined nature of the packing and biomass. To overcome these 

problems, biotrickling filters have been investigated in the recent years. Biotrickling 
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filters use a well-specified non-porous inorganic packing material and involve a liquid 

phase which trickles through the bed. This liquid phase provides additional nutrients 

(non-carbon sources) to the biomass and allows for pH control. Control of pH is 

particularly important for the removal of chlorinated compounds from airstreams. 

Biotrickling filters are much more complex than classical biofilters. On the other hand, 

they are much better defined systems and thus their engineering design and optimization 

may be easier through control of various parameters. For this reason, biotrickling filters 

appear to be a very attractive alternative to conventional biofilters. 

Although a lot of feasibility studies on biotrickling filters exist (see Chapter 2) 

the process is not yet fully understood. A fundamental process understanding is needed 

so that is translated to appropriate mathematical models which can help with a rational 

and optimal design of industrial units. 

The present study was undertaken with the intent to derive, numerically solve, and 

experimentally validate detailed engineering models of VOC removal in biotrickling 

filters. An emphasis was placed on the kinetics of biodegradation as was earlier done by 

Shareefdeen et al. (1993), Shareefdeen and Baltzis (1994), Shareefdeen (1994) with 

conventional biofilters. For the first time, the present study considered the effect of 

oxygen and that of kinetic interactions among pollutants for the case of biotrickling 

filters. In addition, the present study is the first to introduce detailed models allowing for 

prediction of VOC and oxygen profiles in the three phases (air, liquid, biofilm) 

encountered in biotrickling filters. Model validation was based on experiments with 

mono-chlorobenzene (m-CB) and ortho-dichlorobenzene (o-DCB). Experiments were 
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performed with biotrickling filters treating airstreams contaminated with m-CB alone, 

o-DCB alone, and m-CB/o-DCB mixtures. Selection of chlorinated compounds was 

guided by the fact that biotrickling filters appear to be particularly suited for hard to 

degrade, halogenated pollutants. The model compounds used here have never been used 

in the past in any engineering study on biotrickling filters. The effects of various 

parameters such as co-current versus counter-current flow of air and liquid, liquid and air 

flow rate, pH, frequency of medium replenishment, and inlet VOC concentration were 

studied experimentally and from the modeling point of view. 



CHAPTER 2 

LITERATURE REVIEW 

2.1 Conventional and Trickling Biofilters 

Among the biological exhaust gas purification methods, biofiltration has attracted a 

growing interest during the recent years. It occurs in biological reactors known as 

biofilters. These reactors involve packed bed of solids on the surface of which biofilms 

of microbial consortia are formed. The airstreams are passed through the reactor and are 

eventually transferred into the biofilms where they undergo biodegradation. With proper 

selection of biomass and operating conditions VOCs are completely mineralized as they 

are converted into carbon dioxide, water, biomass, and inorganic salts. Depending on the 

type of solid support for the biomass and the presence or absence of a continuous liquid 

phase in the reactor, biofilters can be classified into two distinct categories: conventional 

(or classical) biofilters and biotrickling filters. 

Conventional biofilters consist of open or closed structures containing porous 

solids of an organic base (e.g., peatmoss, compost, etc.) along with a bulking agent (e.g., 

perlite). They do not involve a continuous liquid phase although water is retained within 

the pores of the solids. Conventional biofilters often depend on the microflora which is 

indigenous in the packing although specially selected and separately grown microbial 

populations are also used for inoculating the filter bed. Moisture is controlled via 

prehumidification of the polluted airstream and occasional spraying of the filter bed with 
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water. Additional nutrients for the biomass are usually not supplied and, as a result, no 

excess biomass formation is observed in conventional biofilters. Where needed, the pH is 

attempted to be controlled via amending the solids packing with substances such as 

calcium carbonate. A very large number of experimental studies with conventional 

biofilters have been published in the literature. Fewer are the systematic studies which 

also involve process modeling. Modeling varies in complexity and conditions, e.g., single 

or mixed VOCs, steady-state or transient conditions, (Baltzis et al., 1997; Deshusses et 

al., 1995a,b; Hodge and Devinny, 1995; Ottengraf and van den Oever, 1983; Shareefdeen 

et al., 1993; Shareefdeen and Baltzis, 1994). 

Conventional biofilters have been found to be economically competitive under 

low VOC concentrations and high volumetric air flow rates (Mukhopadhyay and Moretti, 

1993). Although simple in concept and operation conventional biofilters have a number 

of drawbacks. They usually achieve low pollutant removal rates and thus, require large 

volumes to treat a given load, they cannot easily handle compounds which are tough to 

biodegrade, and they do not allow for pH-control when it is necessary (as in the case of 

chlorinated VOCs). 

Biofiltration in conventional units is anything but a simple process. The 

complexity of the issues which have not yet been resolved (microbiology, moisture 

content, biofilm coverage of packing, etc.), but also the intrinsic limitations of biofilters 

(e.g., pH-control for cases of chlorinated solvent emissions) have led to the initiation of 

efforts for modifying the process. The most important modification which has already led 

to applications is that of biotrickling filters or trickling biofilters. 
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Biotrickling filters (Figure 2.1) involve the use of a bed packed with inorganic 

non-porous solids (such as plastic or even ceramic monoliths) on the surface of which 

microorganisms are immobilized. A liquid stream is recirculated through the column 

Figure 2.1 Schematic layout of a biotrickling filter 

co-currently or counter-currently to the flow of contaminated air. The presence of a 

flowing liquid phase allows for supply of non-carbon nutrients to the microbes and for 

pH-control which is crucial for maintaining optimal performance. 

Instrumentation and operating costs for biotrickling filters are higher than those 

for classical biofilters. However, because these systems are better defined their 

engineering and design is relatively easier to implement. Removal rates obtained with 

biotrickling filters are usually substantially higher than those obtained with conventional 

biofilters probably due to nutrients addition, pH control, and a larger air/liquid interfacial 
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area. These higher rates, which imply potentially substantially lower sizes and thus 

capital expenditure for industrial applications, have caused a shift in interest from 

conventional to trickling biofilters in the recent past. 

Perhaps the most important problem with biotrickling filters is the production and 

accumulation of biomass due to nutrients supply. Occasional removal of biomaterial is 

required to avoid clogging and severe pressure drops. Biomass control strategies have 

been discussed in the literature (Smith et al., 1996). This problem is of higher concern 

when easily biodegradable compounds having high yield coefficients are treated in 

biotrickling filters. Classical biofilters once installed, require minimal supervision while 

biotrickling filters require frequent and specialized (engineering) attendance. Thus, 

applications of biotrickling filters are expected to be primarily within industrial settings 

and not at small business (bakeries, dry cleaners, etc.). 

Biotrickling filters are particularly suitable for removal of chlorinated compounds 

which is the topic of the study reported here. Biodegradation of chlorinated compounds 

is not easy and leads to release of chloride ions with a concomitant change in the pH of 

the reaction environment. Consequently, proper selection of biomass is required, 

maintenance of biological activity via nutrient addition can be essential, and pH-control 

is certainly necessary. Furthermore, the usually low biomass yield on these compounds 

alleviates biomass accumulation problems. For all the foregoing reasons biotrickling 

filters appear to be ideal for chlorinated VOC removal. 

2.2 Feasibility Studies on VOC Removal in Biotrickling Filters 

As with conventional biofilters, the use of biotrickling filters for odor control purposes 
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was reported as early as 60 years ago (Mukhopadhyay and Moretti, 1993). However, 

biotrickling filters for removal of industrial VOCs and hazardous air pollutants (HAPs) 

started being investigated in the late 80's. Experimental results with biotrickling filters 

have been reported by various investigators, and a summary review is given in Table 2.1 

and Table 2.2. These tables give information on the VOCs treated, the operating 

conditions used, the type of the packing employed, and the process performance 

achieved. Process performance is given in terms of percent VOC conversion and removal 

rate. In cases where the latter was not explicitly reported, it was calculated based on other 

reported experimental results. 

2.3 Studies on Modeling of Biotrickling Filters 

Biofiltration is a very complex process as it involves mass transfer and reaction of various 

substances as well as flow (hydrodynamic) characteristics. For this reason, modeling 

biofiltration is not an easy undertaking. On the other hand, mathematical models for 

biofiltration are essential both for optimal process design and for diagnostic purposes 

during process operation. Regarding biotrickling filters, modeling efforts have started but 

need further studying in conjunction with systematic experimental investigations. 

The first model for biotrickling filters was proposed by Diks and Ottengraf (1991 

a, b) who assumed a zero-order kinetic expression and negligible resistance for the 

transfer of the VOC from the gas (air) to the liquid phase. The model proved successful 

in describing their experimental results. This model was subsequently modified by 



Table 2.1. VOC Removal in Biotrickling Filters as Reported in the Literature 

Pollutant 	aCGji 	 aT 	cQL 	Reactor Size 	Packing Material 	dX 	eReexp 	pH 	Reference 

	

(gm
-3

) 	(min) 	(Lb-1) 	(d x L, cm x cm) 	 (A) 	(gm-3  h-1) 

	

Toluene 	2.5-5.0 	0.67-2 	0.83 	14.6 x 112 	fPEM 	78-99 	g68-112 	7.7 	A 

	

Toluene 	0.2-1.6 	0.5-2.6 	21-30 	10 x 70 	Steel Pall Rings 	- 	25-45 	- 	B 

	

Styrene 	1.5 	1-1.5 	- 	 - 	 - 	90 	g54-81 	 C 

Isopentane 	2.0 	1-3 	14 	10 x 61 	 ceramic 	60-93 	g37-72 	 D 

	

p-xylene 	1.0-10.0 	4 	0.5 	10 x 57 	 ceramic 	46-98 	g14.7-69 	6.5 	E 

	

m-xylene 	3.0-8.0 	4 	0.5 	10 x 57 	ceramic 	94-96 	g42- I 12 	6.5 	E 

hMM 	- 	17.3 	- 	7.6x 76.2 	 iPB 	 6.6-11 	 F 

ainlet VOC concentration, bresidence time based on empty reactor, cliquid flow rate, 
d
percent removal, eexperimentally determined 

removal rate, fpeletized earth media, gcalculated based on reported values, hmixture of methanes, 'polypropylene rings, ASorial et al. 
(1995), 8Arcangeli and Arvin (1992), cTogna and Singh (1994a), DTogna and Singh (1994b), EBaltzis and de la Cruz (1996) ), FApel et al. 
(1990). 

1
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Table 2.2. VOC Removal in Biotrickling Filters as Reported in the Literature 

Pollutant 	aCGji 	bτ 	 cQL 	Reactor Size 	Packing Material 	dX 	eRexp 	pH 	Reference 

	

(gm-3) 	(min) 	(Lh-1) 	(d x L, cm x cm) 	 (%) 	(gm-3  h-1 ) 

jTCM/TCE/T 	- 	2 	0.6 	2.5 x 60 	activated carbon 	25-80 	- 	 G 

km-CB 	1.2 	1 	0.04 	5 x 20 	 perlite 	- 	5.1 	6.9 	H 

1o-DCM 	0.7 	1.2 	0.04 	5 x20 	perlite 	- 	2.2 	6.9 

jTCM 	2.0 	- 	- - 	 oyster shells 	92.1 	- 	6.9 	G 

mDCM 	- 	0.4 	- 	29 x 100 	polypropylene 	80-95 	 - 

mDCM 	0.5-10.0 	0.5-1 	450 	40 x 270 	ceramic 	- 	157 	- 

'inlet VOC concentration, bresidence time based on empty reactor, 'liquid flow rate, dpercent removal, eexperimentally determined 
removal rate, jtrichloromethane, trichloroethylene,and toluene mixture, kmono-chlorobenzene, lortho-dichlorobenzene, mdichloromethane, 
GUtgikar et al. (1991), 

HOh and Bartha (1994), 'Hartmans and Tramper (1991), jDiks and Ottengraf (1991a,b) 

12  
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Ockeloen et al. (1992) who used Monod-type kinetics for the biodegradation of the 

VOC and performed numerical studies without experimental verification. They showed 

that VOC removal decreases as the solubility of the VOC in water decreases. They also 

showed that with less soluble compounds removal rates are higher under co-current rather 

than counter-current flow of the air and liquid streams. Diks and Ottengraf (1991 a, b) 

had concluded that differences in process performance due to co- or counter-current flow 

are insignificant. 

Studying toluene removal in a biotrickling filter, Smith et al. (1995) have 

developed a more detailed model which assumes Monod kinetics and accounts for the 

effect of microbial growth on the hydrodynamics of the flow of process streams. These 

investigators also developed a relationship between the VOC flux into the biofilm and the 

biofilm thickness. This model involves more details of the process than earlier ones 

(Diks and Ottengraf, 1991 a, b; Ockeloen et al., 1992). 

Hartmans and Tramper (1991) used a simplified approach to biotrickling filter 

modeling by simulating the filter bed with a series of perfectly stirred interconnected 

reactors, and they developed some relations based on macroscopic process characteristics 

(velocities, organic load, etc.). This is a model involving a much lesser degree of process 

details compared to the models discussed earlier. 

Alonso et al. (1997) have proposed and validated a mathematical model that 

describes the biotreatment of toluene in a trickle-bed reactor. A new approach describing 

the variation in the biofilter specific surface area with microbial growth has been 

included. The most important conclusion is that the performance of the biofilter depends 
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not only on the amount of biomass but also on the amount of biomass that can be readily 

accessed by the diffusing contaminant. 

None of the existing biotrickling filter models accounts for either inhibitory 

biodegradation kinetics with respect to the availability (concentration) of VOC or for 

potential kinetic limitations from the availability of oxygen in the biofilm. Kinetic self-

inhibition and oxygen effects have been reported to be important for conventional 

biofilters (Baltzis et al., 1997; Shareefdeen et al., 1993; Shareefdeen and Baltzis, 1994). 

The same factors were accounted for in the present study and proved to be important as 

discussed in the following chapters. 



CHAPTER 3 

OBJECTIVES 

This study was undertaken with the intent to gain a fundamental understanding of the 

removal of volatile organic compound (VOC) vapors in biotrickling filters. Issues 

regarding kinetics of VOC biodegradation, the effects of pH and oxygen, and mode of 

filter operation (co-current or counter-current flow of air and liquid) were to be 

addressed. The ultimate objective was to derive, numerically solve, and experimentally 

validate a general mathematical model describing removal of VOCs from airstreams in 

biotrickling filters. In order to meet this objective a number of sub-objectives were set. 

First, it was decided to base the study on actual kinetic expressions concerning 

biodegradation of the model compounds rather than assuming simple zero- or first-order 

kinetics. Once mono-chlorobenzene (m-CB) and ortho-dichlorobenzene (o-DCB) were 

selected as model compounds a detailed kinetic investigation was undertaken. 

Experiments were performed with suspended cultures in closed serum bottles under 

conditions of oxygen abundance. This kinetic study, the results of which are presented 

in Chapter 5, involved experiments with each one of the two compounds alone and 

mixtures of the two compounds. It was found that both compounds, m-CB and o-DCB, 

follow Andrews (1968) self-inhibitory kinetics. In the case of biodegradation of 

mixtures it was found that in addition to self-inhibition, the two pollutants are involved in 

a cross-inhibitory kinetic interaction. In order to determine the optimal pH for the 
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process, a kinetic study under different pH-values was also undertaken and its results 

were also modeled (Chapter 5). In modeling VOC removal in biotrickling filters, it was 

assumed that the inherent biodegradation kinetics of a VOC are the same with a given 

biomass regardless of whether the biomass is suspended or immobilized in the form of 

biofilms. To test this assumption, kinetic experiments with m-CB were performed not 

only with the original consortium but also with biomass obtained from a biotrickling 

filter which was in continuous operation for 8 months. All the results regarding the sub-

objectives concerning kinetics are presented in Chapter 5. 

Second, and before the general case of mixtures was addressed, it was decided to 

undertake a systematic investigation with airstreams laden with a single VOC. Two 

experimental units were set-up. They were glass columns 80 cm in height and 15 cm in 

diameter. Their differences were in the type of packing material and the biomass used. 

The first unit operated with m-CB as model compound. It was packed with 3/4" non-

porous Intalox ceramic saddles. The biomass used was capable of completely 

mineralizing m-CB using it as sole carbon and energy source. This consortium could not 

handle o-DCB. The second unit employed a consortium capable of mineralizing both 

o-DCB and m-CB. It operated with o-DCB only and was packed with 1/2" non-porous 

Intalox ceramic saddles. Detailed experiments with the two units helped meeting the 

following sub-objectives: 

Evaluation of process performance under a variety of operating conditions 

concerning inlet pollutant concentration, flowrate (equivalently residence time) of the 
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airstream in the biotrickling filter, and flowrate of the liquid trickling through the 

filter bed. 

2. Investigation of the effect of pH and frequency of liquid replenishment on the 

process. 

3. Comparison of the two possible modes of operation of a biotrickling filter unit; 

namely, co-current and counter-current flow of the liquid and gas phases. 

Simultaneously with the experimental work, a steady-state model describing removal of 

a single VOC under constant pH was developed. It considers three phases (air, liquid, and 

biofilm) and is based on principles of mass transfer and biodegradation kinetics. The 

model was numerically solved using the methods of orthogonal collocation and 4th-order 

Runge-Kutta integrator and calibrated with some experimental data sets. Subsequently 

the predictive capabilities of the model were tested against data sets not used in the 

fitting approach. The model, once validated, helped selection of conditions for further 

experiments and was also subjected to numerical sensitivity studies. The latter have 

revealed the key parameters one needs to know relatively accurately in order to design a 

biotrickling filter unit with confidence. The results of the study with airstreams carrying 

one VOC only are presented in Chapter 6. 

Once a good understanding of the process was obtained based on single VOC 

removal (Chapter 6) the ultimate objective of this thesis was addressed. A general model 

was written as an extension of the single VOC model introduced in Chapter 6. The only 

new feature is that the model is general enough to accommodate potential kinetic 

interactions among pollutants. This general model was then tested against experiments 
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with airstreams carrying two VOCs, namely m-CB and o-DCB. Experiments were 

performed with the culture which was used earlier in o-DCB removal only since it had 

the ability to also mineralize m-CB. Intalox ceramic saddles (1/2") were used again as 

packing. Experiments were performed in counter-current flow of air and liquid under a 

variety of conditions concerning residence time and relative VOC concentrations at the 

inlet conditions. In modeling the data, the general model was numerically solved for the 

case of a binary mixture. Kinetic interactions revealed in the kinetic studies (Chapter 5) 

were taken into consideration. Based on the calibration performed in Chapter 6 and 

without any further fitting, the model predicted the experimental results. Model 

sensitivity studies as well as calculations for comparing the performance of conventional 

and trickling biofilters were also performed. The results from the study on mixture 

removal are presented in Chapter 7. 



CHAPTER 4 

EXPERIMENTAL DESIGN AND PROCEDURES 

4.1 Microbial Cultures 

The biomass used in the experiments consisted of two microbial consortia which are 

called here the m-CB and o-DCB consortium. The m-CB consortium was capable of 

completely mineralizing mono-chlorobenzene (m-CB) by using it as its sole carbon and 

energy source. This consortium was incapable of using ortho-dichlorobenzene (o-DCB) 

as a substrate. The o-DCB consortium was capable of completely mineralizing both 

m-CB and o-DCB. Either substrate could serve as sole carbon and energy source for the 

o-DCB consortium. Inocula of the two consortia (in serum bottles ) were provided by 

Professor R. Bartha (Microbiology Dept., Rutgers University, New Brunswick, NJ). The 

m-CB consortium was used in studies with m-CB while the o-DCB consortium was used 

in studies with both m-CB and o-DCB individually and in mixtures. 

Inocula of the consortia were grown in 1 L flasks sealed with Teflon septa (Fisher 

Scientific Co., Springfield, NJ), on a nutrient medium consisting of a mixture of two 

solutions, A and B, at a B:A ratio of 1:99 by volume. Solution A contained the following 

chemicals, per liter of deionized water: 4.0 g Na2HPO4  (S374-500 Fisher Scientific Co., 

Springfield, NJ), 1.5 g KH2PO4  (P285-500 Fisher Scientific Co., Springfield, NJ), 1.0 g 

NH4NO3  (S441-500 Fisher Scientific Co., Springfield, NJ), and 0.2 g MgSO47H2O  

(M63-500 Fisher Scientific Co., Springfield, NJ). Solution B contained 0.5 g FeNH4 - 
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citrate (172-500 Fisher Scientific Co., Springfield, NJ) and 0.2 g CaCl2, (C77-500 Fisher 

Scientific Co., Springfield, NJ) per liter of deionized water. The nutrient medium was a 

buffer of pH 7.0. Initially, an amount of 50 mL medium was placed in the flasks, 

inoculated with the consortium of interest, and provided with 5 µL liquid m-CB and/or 

0.2 µL liquid o-DCB. After some initial serial transfers, part of the biomass was used in 

kinetic experiments and another part was used as inoculum for starting up the biotrickling 

filter experiments. 

For the kinetic experiments serum bottles of 160 mL were used. All bottles 

received the same amount of medium (15 mL) and approximately the same amount of 

biomass (25 g m-3). Each bottle was then sealed with aluminum crimp caps placed upon 

butyl Teflon-faced 20 mm-stoppers (Wheaton Manufactures, Millville, NJ). Each bottle 

was provided with a different amount of m-CB and/or o-DCB and was placed in an 

incubator shaker (200 rpm, 25°C). Experiments were monitored via GC analysis of air 

samples obtained through the septa via a 500 µL gas-tight syringe (Hamilton, Reno, NV). 

Air samples were obtained at a frequency of 30-60 min starting 2-3 h after the initiation 

of each experiment. This initial period of 2-3 h was found (from blank experiments 

involving the same amounts of medium and m-CB or o-DCB but no biomass) to be 

enough to ensure thermodynamic equilibrium distribution of m-CB or o-DCB between 

the medium and headspace of the closed bottle. The biomass concentration was 

measured only in the beginning and end of each kinetic run for determining the yield 

coefficient. In order to determine the optimal pH for culture growth, some experiments 
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were performed with the same medium to which amounts of either NaOH or HCl 

solutions were added to adjust its pH to a value other than 7.0. 

Following the same methodology, kinetic experiments were also performed with 

inocula of the m-CB consortium obtained from the biotrickling filter treating m-CB after 

the filter bed had been in continuous operation for 8 months. This was done in order to 

check if the kinetic characteristics of the biomass change with time. 

4.2 Biotrickling Filters 

A schematic of the experimental biotrickling filter unit used in the study reported in this 

thesis is shown in Figure 4.1. The biotrickling filter itself was a custom-made glass 

column (ACE Glass, Vineland, NJ) of 15.2 cm diameter and 80 cm height, provided with 

sampling ports at its entrance, exit, and middle point. The column had a headtop and 

headbottom (ACE Glass, Vineland, NJ) made of glass and having various ports for liquid 

and air supply. For removal of m-CB vapor, the biotrickling filter was packed with 3/4" 

Intalox ceramic saddles (Norton Chemical Process Product Corp., Akron, OH) to a height 

of 74 cm. The void fraction of the bed was 0.64. For the removal of o-DCB and 

m-CB/o-DCB mixtures the columns were packed with 1/2" Intalox ceramic saddles 

(Norton Chemical Process Product Corp., Akron, OH). The bed height was 69 cm and 79 

cm for o-DCB and mixture removal, respectively. In both cases the void fraction of the 

bed was 0.68. Operation of the filter bed involved downward flow of a liquid stream 

made of the same culture medium described in the preceding section, and an airstream 

laden with m-CB and/or o-DCB vapor. The airstream entering the bottom (counter- 
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current flow) or the top (co-current flow) of the filter bed was prepared by mixing two 

different airstreams. The main one consisted of pure air which was first completely 

humidified in a tower (column) packed with Intalox ceramic particles. This stream was 

Figure 4.1: Schematic of the experimental biotrickling filter unit: (1) air pump, (2) 
rotameter assembly, (3) humidification tower, (4) solvent tank, (5) sampling port, (6) 
biotrickling filter, (7) tank for recirculating liquid, (8) peristaltic pump, (9) recirculating 
liquid line, (10) air flow meter, (1 1 ) exhaust,(12) pH-electrode, (13) NaOH solution 
tank, (14) pH-controller. 

then mixed (see Figure 4.1) with a low flowrate airstream carrying the m-CB and/or o-

DCB vapor obtained via bubbling through pure liquid solvents present in closed vessels. 
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Proper adjustment of the flowrates of the two airstreams allowed for variation, as 

desired, of the pollutant(s) concentration in the air supplied to the biofilter and the 

residence time of the air in the filter bed. A rotameter assembly (75-350, Gow-Mac 

Instrument Co., Bound Brook, NJ), was used to vary inlet solvent vapor concentrations 

independently, by directing a greater or smaller part of the airstream through the solvent 

vessels. 

The liquid stream which trickled through the bed was recirculated after its pH was 

adjusted at the exit of the filter bed through automated NaOH solution addition using a 

pH-controller (Chemcadet model, Cole-Parmer Instrument Co., Niles, IL). The liquid, 

which also carried detached biomass, was discarded on a daily basis and replenished with 

an equal volume (4 L) of fresh medium. Some experiments, performed in order to 

determine the effect of the frequency of medium replenishment on the process, involved 

medium change at varying time intervals. 

In order to ensure good liquid distribution in trickling filters it has been reported 

that the ratio of the bed diameter (d r ) to the particle diameter (d p) should be at least 

equal to eight and the liquid should be supplied through at least 100 distributions points 

per m2 of bed cross sectional area (Eckert, 1961, 1975). The d c /d p  ratio for the m-CB 

unit used in this study was almost 8 (7.98 to be exact) and for the o-DCB and 

m-CB/o-DCB mixture units was 9. Six liquid distribution points were used. The 

aforementioned criterion suggested at least two distribution points. 

Biomass produced during operation was practically removed during medium 

replenishment. In addition, at sparse intervals (15 days apart) an amount of 20 L of 
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medium was flushed through the column over a period of 10 min to ensure excess 

biomass removal. No difference in process performance was observed before and after 

the column was flushed with medium. The column operated without any detectable 

pressure drop. 

Experiments were performed at room temperature (about 25°C) and each run 

under a given set of operating conditions (inlet pollutant concentration, liquid and air 

flow rate, etc.) lasted for a minimum of 24 h. Significant temperature variations in the 

laboratory were rare and when they occurred data were not collected. 

Process start-up involved development of the filter bed as follows. Originally, the 

column contained no solid particles and was charged with 3 L of medium having the 

composition given earlier. The medium was inoculated with some biomass pregrown in 

closed flasks as described in the preceding section. The inoculated medium was bubbled 

with air containing solvent(s) vapor at a concentration of 2 g m-3  for about 2 days. By 

then, a noticeable change in optical density of the liquid had occurred , indicating growth 

of the culture. The column was then packed with ceramic saddles to a certain height and 

additional fresh culture medium was added so that the solids were entirely submerged. 

Air, carrying pollutant(s) at 2 gm-3, was bubbled through the submerged filter. The 

column was drained every 2-3 days, aerated with pure air for about I h, and filled again 

with fresh medium before pollutant-laden air supply resumed. The procedure was 

repeated for about one month and led to development of biofilms on the surface of the 

solids. At that point, the liquid was drained off the column and the unit started being 

operated in the trickling mode. 
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4.3 Analytical Methods 

The m-CB and o-DCB concentrations were monitored by subjecting air samples to gas 

chromatographic (GC) analysis. The GC unit used was a Hewlett-Packard model 5890 

Series II (Hewlett-Packard, Paramus, NJ) equipped with a 6' x 1/8" stainless steel column 

packed with 80/100 Carbopack C/0.1% SP-1000 (Supelco Inc., Bellefonte, PA), and a 

flame ionization detector (FID). Nitrogen at 21 mL/min and 21 psig was used as carrier 

gas, while hydrogen at 26.3 mL/min and 14 psig was used for the detector. The injection 

port, oven, and detector of the GC unit were operated at 200°C. The retention time was 

3.83 min for m-CB and 8.76 min for o-DCB. The area of the peaks in the chromatograms 

was determined by an HP3396A integrator (Hewlett-Packard, Paramus, NJ) to which the 

GC unit was connected. The GC calibration was repeated on a weekly basis. 

Biomass concentration during kinetic runs was measured spectrophotometrically 

following procedures and calibrations described by Dikshitulu et al. (1993) and Wang et 

al. (1995). 



CHAPTER 5 

BIODEGRADATION KINETIC STUDIES 

5.1 General Approach 

The key-process in biofiltration is oxidation of pollutants by microorganisms. The 

microorganisms act as catalysts for the process and in many instances biomass is also a 

product of the reaction. Consequently, biofiltration is affected by reaction kinetics and 

type of catalyst (biomass). Once microorganisms capable of completely mineralizing the 

target VOCs have been isolated/developed, one needs to know the rate at which they are 

capable of destroying these VOCs. These reaction rates (kinetics) depend on the level of 

VOC presence, oxygen, other nutrients, pH, and temperature (Baltzis, 1998). 

In this chapter the results of a detailed kinetic study of biodegradation of 

chlorinated VOCs namely, mono-chlorobenzene (m-CB) and ortho-dichlorobenzene 

(o-DCB) and their mixtures are presented. The study involved experiments with 

suspended cultures in closed serum bottles. The kinetic expressions revealed based on 

these experiments were subsequently used in describing removal of m-CB and o-DCB 

vapors in biotrickling filters. This was done based on the commonly made assumption, 

discussed by Karel et al (1985), that the inherent biodegradation kinetics are the same 

regardless of whether the microbial cells are suspended in nutrient medium or 

immobilized on a solid support as in the case of biotrickling filters.  

26  



27 

The general experimental protocol was as follows. The first group of experiments 

involved two series of runs under a constant temperature of 30 °C and a pH of 7.0±0.1. 

In the first series, biodegradation experiments involving m-CB were performed by using 

a m-CB utilizing consortium. The second series involved experiments with m-CB at 

various concentrations using (again in suspension) biomass obtained from a biotrickling 

filter which had been used for removal of m-CB vapor over a period of 8 months. The 

filter bed was originally inoculated with the m-CB utilizing consortium used in the first 

series of kinetic experiments mentioned above. The second series of experiments was 

performed as a means of indirectly finding out whether the biomass undergoes changes 

over time when used in a filter bed and in order to, also indirectly, determining whether 

intrinsic kinetics are the same in suspensions and biofilms. 

The first group of experiments was performed with a consortium which could not 

utilize o-DCB. A second consortium capable of completely mineralizing both m-CB and 

o-DCB was used in the second group of kinetic experiments. For distinction with the 

first consortium the second one will be referred to as the o-DCB utilizing consortium. As 

with the first group, the second group of experiments also involved two series of runs 

under a constant temperature and a pH of 7.0±0.1. The first series involved experiments 

with m-CB at various concentrations. In the second, biodegradation experiments 

involving o-DCB at various concentrations were performed. 

The third group of experiments was performed with the o-DCB consortium and 

media containing both m-CB and o-DCB at different relative concentrations. The major 
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objective of the study with mixtures was to determine whether there is a kinetic 

interference from o-DCB on m-CB and vice versa. 

Finally, a fourth group of experiments involved investigation of the effect of pH. 

There were two series of runs. The first involved media containing m-CB only and the 

catalyst was a m-CB utilizing consortium, and the second was with media containing 

o-DCB only and the experiments were performed with the o-DCB consortium. 

5.2. Modeling of Kinetics of Individual VOCs Under Constant pH 

Determination of the specific growth rate µ, of a population on a particular substrate 

from well shaken serum bottle experiments is based on the assumption that µ remains 

constant during the run when biomass maintenance requirements can be neglected. 

From the equation: 

(5.1) 

one can get upon integration 

(5.2) 

Equation (5.2) implies that when biomass data are plotted versus time on a 

semilogarithmic scale, they should be on a straight line of slope 

uj(CLj

). This slope is 

taken as the specific growth rate of the population at the substrate concentration value in 

the beginning of the run. From experiments at different initial substrate concentrations 

one can generate µj(CLj) values at various CLj. Each µj(CLj) value requires a 

semilogarithmic plot as discussed above. For the biodegradation of volatile compounds, 
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collection of a large number of biomass data during a run is problematic. This is due to 

the fact that the flask needs to be sealed and the liquid volume small relative to the 

airspace so that oxygen limitation is avoided. Frequent sampling is much simpler in the 

gas phase. Air samples generate concentration values, CGj, of the volatile substrate in the 

gas phase and these data can be equivalently used for determination of specific growth 

rates as follows. Let Mj  be the total mass of the volatile substrate in the flask, both in the 

Gas and liquid phase. One can write the following mass balances 

(5.3) 

(5.4) 

Furthermore, assuming that the volatile substrate is distributed between the two phases as 

dictated by thermodynamic equilibrium (Henry's law), one has 

CGj = m jC

Lj 

 

When, as was done in the present study, the liquid phase is sampled only in the beginning 

and end of the run, VL  and VG  can be taken as constant and then combination of equations 

(5.3)-(5.5) leads to 

(5.6) 

Combining equations (5.1) and (5.6) one gets 

(5.7) 

which upon integration yields 

(5.5) 
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(5.8) 

Combining equations (5.4) and (5.5) one gets 

(5.9) 

which when evaluated at t = 0 yields 

(5.10) 

Combining equations (5.8) and (5.10) one gets 

(5.11) 

which can be also written as 

(5.12) 

Equation (5.12) can be used for converting gas phase VOC concentration 

measurements (CO to biomass values provided that the yield coefficient is known. 

Equation (5.11) allows for Yj  determination from two data points on biomass 

concentration. If an experiment is allowed to run over a long period of time so that the 

entire amount of the pollutant has been used (5.11) becomes 

(5.13) 
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Equation (5.13) was used for determining the yield coefficient in this study. The 

mass of solvent used in each run ( M 0 ) was determined from the liquid volume ( Vsj) 

injected in the serum bottle and the liquid density of the pollutant (psj ) as follows. 

Mj,0 = ρSjVSj 	(5.14) 

During each experimental run involving a single compound, the headspace of the 

serum bottle was frequently sampled. After GC analysis of each sample the CGj value 

was determined and from it via equation (5.12) the corresponding value of b. The 

logarithm of b values was then taken and the resulting values, as a function of time, were 

regressed to a straight line using a least squares method for error minimization. The slope 

of the regressed line determines, according to equation (5.2), the value of µj(CLj) at the 

liquid phase substrate concentration of the particular experimental run (where the 

regression starts). Both in the m-CB and o-DCB case, when the µj(CLj) versus CLj data 

were plotted, it was clear that µj(CLj

) 

drops at high CLj  values. For this reason, the data 

were regressed to the Andrews (1968) expression 

(5.15) 

by using a non-linear regression routine for error minimization. 

Expression (5.15) involves three kinetic constants which do not really have a physical 

significance; Kj  and Klj, have units of concentration-same as CLj- and µ*j has units of 

inverse time; constant Klj  is known as the inhibition constant. In many instances, 	is 
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referred to in the literature as the maximum specific growth rate; this is not correct. In 

fact, expression (5.15) predicts a maximum specific growth rate given by 

(5.16) 

Expression (5.15) implies that high substrate concentrations inhibit growth, and 

according to Shuler and Kargi (1992), it could imply a noncompetitive substrate 

inhibition pattern when K1 >>Kj.  

5.3. Modeling of Kinetics of VOC Mixtures Under Constant pH 

When modeling mixtures, the first task is to experimentally determine whether there is 

kinetic interference between the two substrates. For this reason, and using the 

methodology of Wang et al. (1996), the data were first used in determining an average 

value for the specific (i.e. per unit amount of biomass) removal rate of substrate 1 (R1 ) 

and 2 (R2). The values of 	1,2 were calculated using the equation 

(5.17) 

Quantities Rj  were only used in order to qualitatively determine the type of interaction 

between the two substrates. Once it was determined that the two substrates were involved 

in cross-inhibition, the time concentration profiles were used in revealing the type of 

cross-inhibition and the values of the corresponding interaction constants. 
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For the case of two volatile compounds, each one of which can serve as primary 

carbon and/or energy source for the culture employed, the following mass balances can 

be written when the process occurs in a closed vessel: 

(5.18) 

Equation (5.18) is a version of equation (5.6) for the case of mixtures of two VOCs 

involved in kinetic interactions. Expressions µj  (CLj, CLp) represent the specific growth 

rate of the biomass on substrate j and are functions of the availability (concentration) of 

both resources. As has been shown by Oh et al. (1994), gas phase substrate concentration 

data can be converted to biomass concentration through the following expression 

(5.19) 

The functional form of µj (CLj

, CLp) 

 used in this study is 

(5.20) 

Expression (5.20) expresses competitive inhibition between two substrates. Constants K2j, 

are dimensionless and can be called cross-inhibition constants; their magnitude indicates 

the intensity of the kinetic interaction between the two substrates. As discussed by Wang 

et al. (1996); if one of the K2j  values is equal to zero we have competitive partial 

inhibition. If both of K2j  are equal to zero, expressions (5.20) reduce to the Andrews 

model. 
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Determination of the K2ji ; j = 1,2 values was done as follows. It was first 

assumed that the values of all parameters (except K2ji ) in expressions (5.20) are those 

obtained from the kinetic studies with each one of the two compounds individually. 

With this assumption; gas phase time concentration profiles of the two compounds 

obtained from GC analysis of headspace samples were fitted to the solution of equations 

(5.18)-(5.20) using a 4th-order Runge-Kutta algorithm and attempting to minimize the 

square of the errors via a trial and error approach. 

5.4 pH Effects 

During the course of this study experiments were performed at different pH values in 

order to reveal and quantify the dependence of the specific growth rate on pH. The data 

from runs at a given value of substrate concentration were modeled by drawing an 

analogy between enzyme kinetics and kinetics of microbial growth as had been done 

earlier by Antoniou et al. (1990) and Wang et al. (1995). The expression used is the 

following: 

(5.21) 

Using the expression above, one can show that it becomes maximum when 

(5.22) 

Expression (5.22) implies that 

(5.23) 
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5.5 Results and Discussion 

Following are the results from the kinetic studies and their modeling based on the 

equations discussed in Sections 5.2-5.4. 

5.5.1 Biodegradation Kinetics of Individual Chlorinated VOCs at constant pH 

A number of runs were performed with each compound (m-CB and o-DCB) and with 

initial liquid phase concentrations of up to 70 gm-3. In all experiments the initial biomass 

concentration was kept bellow 40 gm-3. In analyzing the data, the values used for the 

distribution coefficients (Henry's constants) were 0.167 for m-CB, and 0.119 for o-DCB. 

The biomass concentration data from each experimental run were plotted 

semilogarithmically versus time as shown in Figure 5.1 [(a): m-CB substrate, m-CB 

consortium,; (b): o-DCB substrate, o-DCB consortium]. The initial points (after 

equilibrium was attained in the bottle) in the lnb versus t plane were regressed to a 

straight line by using the method of least squares. The slope of the line was taken as the 

specific growth rate µj  at the initial m-CB or o-DCB liquid phase concentration of the 

run. The values for the specific growth rate were plotted versus the corresponding 

substrate concentration values as shown in Figures 5.2-5.4. Both consortia exhibited a 

qualitatively similar behavior toward each one of the two substrates. As can be seen 

from the figures, after an initial increase, the specific growth rate drops at high substrate 

concentrations, i.e. the data suggested substrate inhibition kinetics. The data were 

then regressed to the Andrews expression (5.15). Regression was performed by using a 

numerical routine based on the Gauss and Marquardt methods and performs optimal 
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Figure 5.1 Biomass concentration versus time on a semilogarithmic scale. The slope of 
the straight line is taken as the specific growth rate of the popuhation at the substrate 
concentration in the beginning of the run. Used consortium, substrate, and initial biomass 
concentration are (a): m-CB, m-CB, and 27.9 gm-3  and (b): o-DCB, o-DCB, and 26.5 
gm -3. 
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Figure 5.2 Specific growth rate of (a) original biomass (m-CB consortium) and (b) 
column culture as a function of mono-chlorobenzene concentration in the liquid medium. 
Data (symbols) from suspended culture experiments at pH = 7.0 have been fitted to the 
Andrews model (curves). 
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Figure 5.3 Specific growth rate of original biomass (o-DCB consortium) as a function of 
mono-chlorobenzene concentration in the liquid medium. Data (symbols) from suspended 
culture experiments at pH = 7.0 have been fitted to the Andrews model (curve). 

parameter search in a VAX/VMS platform. The values obtained for the three constants 

appearing in expression (5.15) are shown in Table 5.1 for m-CB and in Table 5.2 

for o-DCB substrate, respectively. Based on these constants, the curves representing the 

specific growth rate have been generated and are plotted in Figures 5.2-5.4. As can be 

seen from these graphs there is very good agreement between fitted curves and data. It 

should be mentioned that convergence to the reported values was obtained regardless of 

the values used as initial guesses. The maximum specific growth rates on m-CB 

(Table 5.1) and o-DCB (Table 5.2) were calculated using equation (5.16). The values 

of the yield coefficients reported in Tables 5.1 and 5.2 were obtained via equations (5.13) 
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Figure 5.4 Specific growth rate of original biomass (o-DCB consortium) as a function of 
ortho-dichlorobenzene concentration in the hiquid medium. Data (symbols) from 
suspended culture experiments at p1-I = 7.0 have been fitted to the Andrews model 
(curves). 

Table 5.1. Growth characteristics and parameters of the mono-chlorobenzene and ortho-
dichlorobenzene consortium on mono-chlorobenzene. 

Mono-chlorobenzene (Andrews Kinetics) 

m-CB consortium suspension from o-DCB consortium 
BTF 

Kinetic Parameters 
µ'c -
.c  (h 1) 0.352 0.320 0.154 

Kc  (gm-3) 7.437 7.782 5.140 

Kic (gm-3) 44.419 40.076 21.883 

Maximum specific 
growth rate (h-1) 

0.194 0.171 0.078 

Yield Coefficient 
(gg-i) 

0.579 0.579 0.553 
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Table 5.2. Growth characteristics and parameters of the ortho-dichlorobenzene 
consortium on ortho-dichlorobenzene. 

Ortho-dichlorobenzene (Andrews Kinetics) 

Kinetic parameters 

u* D (h-1) 0.146 
KD  (gm-3) 13.389 

KID  (gm-3) 19.657 

Maximum specific growth rate (h

-1

) 0.055 

Yield Coefficient (gg-1) 0.398 

and (5.14). Once the kinetic constants were determined, equation (5.6) was numerically 

integrated while simultaneously using equations (5.12) and (5.15). A fourth-order Runge-

Kutta routine was used for the integration. The numerically obtained time concentration 

profiles agreed nicely with the experimental data. Examples are given in Figures 5.5-5.8. 

Based on the results obtained from the kinetic studies the following conclusions 

can be reached. 

1. 	The maximum specific growth rate of the m-CB consortium on m-CB is 

considerably (almost 2.5 times) higher than that of the o-DCB consortium on m-CB. 

Taking into account (Table 5.1) the fact that the yield coefficients of both consortia on 

m-CB are almost equal one can easily conclude that at the same initial biomass and 

substrate concentration, the biodegradation rate of m-CB when the m-CB consortium is 

used is much higher than that obtained with o-DCB consortium. With simple calculations 

one can also see that the ratio of the specific growth rates of the m-CB consortium to 
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Figure 5.5 Comparison between experimental data (symbols) and model predicted 
concentration profiles for m-CB when the m-CB consortium is used. Initial liquid phase 
m-CB and biomass concentrations are (a): 16.4 and 23.3 gm-3  and (b): 57.8 and 28.6 

gm
-3

, respectively. 
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Figure 5.6 Comparison between experimental data (symbols) and model predicted 
concentration profiles for m-CB when the column culture is used. Initial liquid phase 
m-CB and biomass concentrations are (a): 12.9 and 34.2 gm-3  and (b): 35.4 and 19.2 
gm-3, respectively. 
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Figure 5.7 Comparison between experimental data (symbols) and model predicted 
concentration profiles for m-CB when the o-DCB consortium is used. Initial liquid phase 
m-CB and biomass concentrations are (a): 10.1  and 39.2 gm-3  and (b): 18.3 and 30.5 
gm-3, respectively. 
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Figure 5.8 Comparison between experimental data (symbols) and model predicted 
concentration profiles for o-DCB when the o-DCB consortium is used. Initial liquid 
phase o-DCB and biomass concentrations are (a): 15.7 and 18.6 gm-3  and (b): 9.3 and 
26.5 gm-3, respectively. 
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that of the o-DCB consortium increases with the m-CB concentration. This ratio for 

example, is 2.2 at an m-CB concentration of 10 gm-3  and becomes 3.3 at 50 gm-3. This 

implies that the o-DCB consortium is inhibited more than the m-CB consortium at 

elevated m-CB concentrations. 

2. Regarding the o-DCB consortium, its maximum specific growth rate on o-DCB is 

much lower when compared to the maximum specific growth rate of the same consortium 

on m-CB (0.055 versus 0.078 h-1). On the other hand, the same consortium is a more 

Yj 

 (gg

-1

) 

V (4) 

Figure 5.9 Experimentally measured yield coefficients as a function of liquid VOC 
volume injected in the serum bottles. Mono-chlorobenzene data with the m-CB 
consortium are shown as 0, mono-chlorobenzene data with the o-DCB consortium are 
shown as A and ortho-dichlorobenzene data with the o-DCB consortium are shown as V. 



46 

efficient user of o-DCB as refllected by the higher yield coefficient. Using the kinetic 

constants and the yield coefficient values one can easily calculate biodegradation rates at 

various substrate concentration values. For comparisons, one can calculate m-CB and 

o-DCB degradation rates using the same biomass and substrate concentration values. 

Such calculations show that the o-DCB degradation is slightly faster than that of m-CB. 

The ratio of such rates is 1.05 at a substrate concentration of 10 gm-3  and increases to 

1.28 when the concentration reaches 50 gm-3. 

It was assumed, as stated in Section 5.2, that biomass maintenance requirements 

are negligible. The implication of this assumption is that the yield coefficient is constant 

and not a function of substrate concentration. This assumption is well justified by the 

data, as shown in Figure 5.9. Yield coefficients were calculated via equations (5.13) and 

(5.14), and less than a 5% variation around an average value was observed in all cases. 

5.5.2 Biodegradation Kinetics of Chlorinated VOC Mixtures 

As mentioned earlier, kinetic experiments with mixtures of the two substrates (m-CB 

and o-DCB) were performed by using the o-DCB consortium which is capable of 

utilizing both m-CB and o-DCB as sole carbon and energy sources. The first important 

finding from these experiments was that the two substrates were simultaneously used by 

the biomass. In order to determine whether the two substrates are involved in kinetic 

interactions a number of experimental runs were designed and carried out. These runs 

were performed with the same volume of liquid medium and can be classified into two 
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categories. In the first category (see Table 5.3) the initial m-CB concentration 

(equivalently, the initial volume of liquid m-CB injected into the serum bottles) was kept 

Table 5.3. Average specific rate of m-CB removal (R1 ) by the o-DCB consortium in the 
presence of o-DCB. 

Experiment 	V Sm-CB 	VSo-DCB 	 R1  (g-m-CB 
(µL) 	(µL) 	h-1g-1-biomass) 

1 	 1.0 	 1.0 	 0.0333 
2 	 1.0 	 0.6 	 0.0353 
3 	 1.0 	 0.2 	 0.0445 
4 	 1.0 	 0.0 	 0.0536 

5 	 0.6 	 1.0 	 0.0395 
6 	 0.6 	 0.6 	 0.0460 
7 	 0.6 	 0.2 	 0.0544 
8 	 0.6 	 0.0 	 0.0630 

9 	 0.2 	 1.0 	 0.0239 
10 	 0.2 	 0.6 	 0.0247 
11 	 0.2 	 0.2 	 0.0278 
12 	 0.2 	 0.0 	 0.0393 

constant whereas the initial o-DCB concentration was varied. In the second category (see 

Table 5.4) the opposite happened. For each run the values of average specific rates of 

substrate removal (Rj) were calculated using equation (5.17) in conjunction with 

equation (5.19). Values of R1  and R2  are shown in Tables 5.3 and 5.4. From Table 5.3, it 

is obvious that when the initial m-CB concentration remains constant and that of o-DCB 

decreases the specific rate of m-CB removal increases. Hence, o-DCB exerts inhibition 

on m-CB removal. Similarly, from Table 5.4 one can see that for a given initial o-DCB 

concentration the specific rate of o-DCB removal increases as the m-CB presence 
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decreases. Hence, one can conclude that the two substrates interact at the kinetic level via 

a cross-inhibitory pattern. 

Due to the structural similarity of the two substrates, it was assumed that their 

Table 5.4. Average specific rate of o-DCB removal (R2) by the o-DCB consortium in the 
presence of m-CB. 

Experiment VSm-DCB  

(µL)  

VSm-DCB  

(µL)  

R2  (g-o-DCB 
  h-1g-1-biomass) 

 
1 1.0 1.0 0.0315 
5 1.0 0.6 0.0385 
9 1.0 0.2 0.0488 

13 1.0 0.0 0.0586 

2 0.6 1.0 0.0305 
6 0.6 0.6 0.0372 
10 0.6 0.2 0.0463 
14 0.6 0.0 0.0564 

3 0.2 1.0 0.0190 
7 0.2 0.6 _ 0.0196 

11 0.2 0.2 0.0240 
15 0.2 0.0 0.0411 

cross-inhibitory interaction is of the competitive type and thus, specific growth rates can 

be described by expression (5.20). The m-CB and o-DCB data from experiments 2, 5, 7, 

and 11 (Tables 5.3 and 5.4) were used for determining the values of the interaction 

constants 

K2 j

, j = 1,2. This was done by fitting the data to the solution of equations 

(5.18)-(5.20). A 4th-order Runge-Kutta algorithm was used. With all parameters except 

K2 j  known from the single substrate experiments (Section 5.5.1), values for K2j  were 

assumed, the equations were integrated and the computer generated concentration profiles 

were compared to the experimental data. The values of 0.75 and 1.32 for K21 and K22- , 
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Figure 5.10 Comparison of fitted concentration profiles and experimental data from 
experiments with m-CB/o-DCB mixtures. Figures (a) and (b) are for experiments 5 and 
11, respectively. For conditions see Table 5.3. Curves 1 and 2 are for m-CB (data shown 
as ❑) and o-DCB (data shown as ∆), respectively. 
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respectively, gave the best fit. Two examples are shown in Figure 5.10. The 

aforementioned values for K

21  

 were subsequently used in predicting (without any further 

fitting) the data of 12 kinetic experiments. In all cases the agreement between model 

predicted concentration profiles and data was very good as shown in the two examples of 

Figure 5.11. 

The importance of kinetic interference can be seen from Figure 5.11(b) where 

predictions (curves) have been prepared by taking into consideration the interaction 

(dotted curves) and neglecting it (solid curves). It is clear that the data cannot be 

described when cross-inhibition is neglected. 

Constant K

2

1 expresses and quantifies the inhibition exerted on m-CB removal by 

the presence of o-DCB. Similarly, K

22  

 indicates the inhibition exerted on o-DCB 

removal by the presence of m-CB. The K 22 value is 1.7 times the K 21 value and this 

suggests that the presence of m-CB has a stronger effect on o-DCB removal than the 

presence of o-DCB on the removal of m-CB. 

Cross-inhibition can be either competitive as discussed above or non-competitive. 

Non-competitive cross-inhibition can be described by a modification of expression (5.20) 

as discussed by Wang et al. (1996) who studied glucose/phenol mixtures. The data from 

the experiments performed in the present study could not be described when non-

competitive cross-inhibition was assumed. This is not surprising since m-CB and o-DCB 

are structurally similar whereas glucose and phenol are structurally dissimilar 

compounds. Oh et al. (1994) have also shown that benzene and toluene, which are 
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Figure 5.11 Comparison of model predictions and experimental data from two 
biodegradation experiments with m-CB/o-DCB mixtures. In (a) the conditions are those 
of experiment 1  (Table 5.3). In (b) 0.8 µL of m-CB and 0.6 µL of o-DCB were added to 
the serum bottle. Curves 1 and 2 are for m-CB (data shown as 0) and o-DCB (data 
shown as A), respectively. Solid curves in (b) represent model predictions assuming no 
kinetic interactions. 
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structurally similar, are also involved in a competitive cross-interaction during their 

biodegradation. 

5.5.3  pH Effects 

The study on the effect of pH on the biodegradation kinetics of m-CB and o-DCB 

involved three groups of experiments. The first group involved the m-CB consortium 

and two series of experiments were performed one at initial m-CB concentration of 16.6 

gm
-3 and one at initial m-CB concentration of 22.6 gm-3. The second group involved 

experiments with the o-DCB consortium at an initial m-CB concentration of 14.2 gm-3. 

The third group involved the o-DCB consortium and o-DCB as the substrate. Two series 

of experiments were performed one at 6.5 gm-3  and one at 24.5 gm-3  of initial o-DCB 

concentration. 

With each initial substrate concentration a number of experiments were 

performed at various pH values. From each experiment, the data were analyzed as 

discussed in Section 5.2 and the value of the specific growth rate was determined. The 

data from each series of experiments were fitted to equation (5.21) using the non-linear 

curve fitting approach discussed by Wang et al. (1995). The constants obtained are 

reported in Tables 5.5 and 5.6 for m-CB and o-DCB, respectively. The optimum pH 

values, determined via equation (5.23) are also reported in the tables. 

Data on specific growth rate values as function of pH along with the fitted curves 

are presented in Figures 5.12 through 5.14. As can be seen, a nice fitting was obtained in 

all cases. 
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Table 5.5. Parameter Values for expression (5.21) describing the pH-dependence of the 
specific growth rates of m-CB and o-DCB consortium on m-CB. 

δm-CB 	KH1 m--CB 	KH2 m--CB 	pHopt  

(h-1) 	 (mol/L) 	 (mol/L) 

m-CB consortium, CLAVE  = 16.58 gm 

	

0.188 	 1.75 X 10-5 	1.8X 10-5 	 6.75 
m-CB consortium, CL,AVE  = 22.58 gm -3  

	

0.199 	 1.75 X 10-5 	1.8X 10-5 	 6.75 
o-DCB consortium, CL,AVE = 14.21 gm-3  

	

0.090 	 2.9X 10-6 	 1.5X 10-9 	 7.18 

pH  

Figure 5.12 Dependence of the specific growth rate of the o-DCB consortium on pH 
when the m-CB concentration in the medium is 14.2 gm-3. Data from suspended culture 
experiments are shown as symbols. Curves represent fitting of data to expression (5.21). 



µc 

 (h-

1

)  

54  

µC(h-1) 

 

pH  

Figure 5.13 Dependence of the specific growth rate of the m-CB consortium on pH 
when the m-CB concentration in the medium is (a) 16.6 gm-3  and (b) 22.6 gm-3. Data 
from suspended culture experiments are shown as symbols. Curves represent fitting of 
data to expression (5.21). 
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Figure 5.14 Dependence of the specific growth rate of the o-DCB consortium on pH 
when the o-DCB concentration in the medium is (a) 24.5 gm-3  and (b) 6.5 gm-3 . Data 
from suspended culture experiments are shown as symbols. Curves represent fitting of 
data to expression (5.21). 
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Table 5.6. Parameter values for expression (5.21) describing the pH-dependence of the 
specific growth rates of o-DCB consortium on o-DCB. 

δo-DCB 	 KH1 o-DCB 	 KH2 o-DCB 	 pHopt  

(h-1) 	 (mol/L) 	 (mol/L) 

CL,AVE = 6.48 gm' 

	

0.040 	 5.1 X 10-6 	 5.8 X 10-9 	 6.76 
CL,AVE = 24.52 gm-3  

	

0.072 	 5.1X 10-5 	 5.8X 10-9 	 6.76 

For m-CB biodegradation when the o-DCB consortium is used, the optimum pH 

value is slightly higher than that when the m-CB consortium is employed as can be seen 

from Table 5.5. In all cases, however, it was found that the optimal pH is very close to the 

neutral value of 7. Knowing the optimal pH values from this study, a Value of 6.8 ± 0.2 

was used in the great majority of experiments with biotrickling filters described in 

Chapters 6 and 7 of this thesis. 

It should be mentioned here that the same consortia had been earlier used by Oh 

and Bartha (1994) in experiments, without modeling, for determination of the optimal 

pH. Their data agree nicely with the results obtained here. 



CHAPTER 6 

STEADY-STATE REMOVAL OF SINGLE VOCs 
IN BIOTRICKLING FILTERS 

In this chapter, the results from the studies on single VOC removal are reported. These 

studies involved the development of a detailed mathematical model, its numerical 

solution and validation with data obtained from the experimental unit described in 

Chapter 4. Airstreams laden with either m-CB or o-DCB were used in the experiments 

discussed in the present chapter. 

The model describes VOC vapor removal under steady state conditions and 

conceptually is shown in Figure 6.1. Liquid and air are flowing either counter-currently 

(as shown in Figure 6.1) or co-currently around the solids of the packing material. The 

surface of the packing is either completely covered by biofilm or partially covered by 

biofilm patches. The VOC and oxygen are transferred first from the gas to the liquid 

phase wetting the biofilm and subsequently to the biofilm itself where the actual 

biodegradation process takes place. 

6.1 Mathematical Description of the Process 

In deriving the model equations, for the removal of a VOC j, the following assumptions 

have been made. 

1. The concentration of VOC j and oxygen are the only variables affecting the reaction 

rate. 

57 
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2. The reaction rate is directly related to the specific growth rate of biomass which is 

described via an interactive model in the sense of Bader (1982). 

Figure 6.1 Schematic representation of the model concept at a cross-section of the 
biotrickling filter column. VOC j and oxygen are transferred from the air (gas) to the 
liquid and then to the biofilm where reaction occurs. 

3. The specific growth rate of biomass immobilized on the surface of the packing is the 

same with that of the same culture when it is suspended in growth medium. 
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4. When the surface of the solid packing is not completely covered with biofilm, the 

extent (surface) of the biofilm patch is much larger than its depth. Consequently, 

VOC and oxygen transfer into the biofilm through the side surfaces of the patch 

can be neglected, and diffusion/reaction in the biofilm can be described by using only 

the direction which is perpendicular to the main surface of the patch. 

5. Reaction occurs only in a fraction of the biofilm called effective biofilm (or biolayer). 

The thickness of the effective biofilm can vary with the position in the filter bed and is 

determined by the depletion of either the VOC or oxygen. 

6. If the effective biofilm thickness is determined via depletion of oxygen, anaerobic 

degradation of the VOC in the remaining part of the biofilm does not take place. 

7. The thickness of the effective biolayer is very small relative to the main curvature of 

the solid particles and thus, planar geometry can be used. 

8. There are no radial gradients of either concentration or velocity in the airstream 

passing through the filter bed (plug flow). 

9. There is no boundary layer close to the air/liquid interface and there is thermodynamic 

equilibrium for both VOC and oxygen at that interface. The concentrations of VOC 

and oxygen in the two phases of the air/liquid interface are related via Henry's law. 

10. At every cross-section of the filter bed there are neither velocity nor concentration 

gradients in the liquid phase. Constant VOC and oxygen concentrations in the liquid 

imply no biodegradation in the liquid phase and negligible resistance to mass transfer 

from the bulk liquid to the liquid/biofilm interface. 
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11. The concentrations of VOC and oxygen in the biofilm at the liquid/biofilm interface 

are equal to those in liquid phase. 

12. Diffusivities of VOC and oxygen in the biofilm are equal to those in water multiplied 

by a correction factor determined via the correlation of Fan et al. (1987,1990). 

13. The density of the biofilm ( X, ) is constant throughout the biotrickling filter at all 

times. 

14. The void fraction of the filter bed is constant implying that the amount of biomass 

produced is sloughed off into the liquid and then discarded from the system during 

medium replenishment. Thus, a biomass balance is not needed for a complete system 

description. 

15. The liquid trickling through the bed is recirculated in the unit. 

Under the assumptions above, removal of VOC j in a biotrickling filter can be 

described by six mass balances, three on VOC j and three on oxygen, as follows. 

1. Mass balances in the biofilm, at a position h along the column, 

(6.1) 

(6.2) 

with corresponding boundary conditions 

(6.3) 

(6.4) 
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(6.5) 

(6.6) 

II. Mass balances in the liquid phase along the column, 

(6.7) 

(6.8) 

with corresponding boundary conditions 

(6.9) 

(6.10) 

Note that conditions (6.9) and (6.10) reflect assumptions 10 and 15, i.e., that the liquid is 

recirculated through the biotrickling filter bed as well as the assumption that no reaction 

occurs in the liquid phase. 

III. Mass balances in the gas phase (airstream) along the biofilter column, 

(6.11) 

(6.12) 

Equations (6.11) and (6.12) taken with the plus (+) sign describe counter-current flow of 

the airstream and the liquid stream, whereas when taken with the minus (-) sign describe 

co-current flow of the two phases. Depending on the mode of operation, the 

corresponding boundary conditions for equations (6.11) and (6.12) are as follows. 



(6.13) 

(6.14) 

(6.15) 

(6.16) 

IIIa. Under counter-current conditions 
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C G

j 

 = C

Gji 	at h = H 

CGO  = C

GOi 	at h = H 

IIIb. Under co-current conditions 

C Gj  = CGji 	at 	h = 0 CGO 

 = 

C

GOi   at h=0 

The product of functions µ j  (Sj) and f(SO) appearing in equations (6.1) and (6.2) 

represents the specific growth rate of the biomass and reflects assumptions 1 and 2 

introduced earlier. The explicit forms of these functions are given by 

(6.17) 

(6.18) 

When K1  is very large, expressions (6.17) and (6.18) imply that the specific growth rate 

and, consequently, the rates of VOC degradation and oxygen consumption have a Monod 

(1942) type dependence on the availability of VOC j and oxygen. On the other hand, if 

KIj  is finite and relatively small, the specific growth rate has an Andrews (1968) type 

dependence on the concentration of VOC j and a Monod type dependence on oxygen. 

When the following dimensionless quantities are introduced, 
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equations (6.1)-(6.16), when expressions (6.17) and (6.18) are also used, can be written in 

dimensionless form as follows. 

(6.19) 

(6.20) 

(6.21) 

(6.22) 

(6.23) 

(6.24) 

(6.25) 

(6.26) 



(6.30) 

(6.31) 

or 

So = λ(Si 	- αj CLO) + αj CLj  (6.32) 
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(6.27) 

(6.28) 

(6.29) 

CGj  = CGO  = 1 	at   z = I (for counter-current flow) 

CGj  = CGO  = 1 	at  z = 0 (for co-current flow) 

Equations (6.19) and (6.20) along with boundary conditions (6.21)-(6.23) yield 

(6.33) 

Because of relations (6.32) and (6.33), instead of solving the original set of 

equations (6.19)-(6.31) one can equivalently solve either one of the following sets of 

equations. Set 1: Equations (6.19), (6.22), (6.24)-(6.31) and from (6.21) only the 

condition concerning Sj. In this case, relation (6.32) needs to be substituted for So in 

equation (6.19). Set 2: Equations (6.20), (6.23), (6.24)-(6.31) and from (6.21) only the 

condition concerning S

O 

 . In this case, relation (6.33) needs to be substituted for 	in 

equation (6.20). Each one of the aforementioned sets of equations constitutes a non-

linear and coupled boundary value problem in two directions, x and z. Solving this 

problem requires a trial and error approach because of boundary conditions (6.26) and 

(6.27). 
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6.2 Numerical Methodology 

A computer code has been developed for solving the model equations (see Appendix A) 

and [based on equations of Set 1  discussed in Section 6.1] works as follows. An initial 

guess is made for the values of the VOC and oxygen concentrations in the liquid phase 

at z = 0. Equation (6.19) is solved at z = 0 with an assumed value of δ (which 

determines ф2). The value of δ  is adjusted until boundary condition (6.21) is satisfied 

and, additionally, either Sj  (θ  = 1) = 0 or So (θ  = 1) = 0 in order to satisfy assumption 5 of 

the model. For every value of 8, the orthogonal collocation method (Finlayson, 1980; 

Villadsen and Michelsen, 1978) with 10 points is employed. When the right value of δ  is 

determined, concentration slopes at 0 = 0 are calculated and the 4th-order Runge-Kutta 

method is used for determining VOC and oxygen concentrations in the liquid and 

airstream at a position Az away from z = 0. At this position, equation (6.19) is solved 

again and repeatedly till the right value of δ  is determined. Slopes are determined at 

0 = 0 and the procedure is repeated in ∆z increments till z becomes equal to 1. The value 

of ∆z used is 1/600 implying that the procedure is repeated 600 times and each time 

equation (6.19) is solved a number of times till 6 is properly determined. This 

methodology leads to determination of liquid and gas phase concentrations of VOC and 

oxygen along the biofilter bed. If the liquid phase concentrations at z = 1 match the ones 

assumed at the very beginning of the procedure, conditions (6.26) and (6.27) are satisfied 

and the solution has been found. If conditions (6.26) and (6.27) are not satisfied, a new 

initial guess is made and the whole procedure is repeated again. 
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In cases where the VOC is consumed in the biofilm faster than oxygen the 

equations of Set 1 (Section 6.1) need to be solved. If oxygen is depleted before the VOC 

in the biofilm, then equations of Set 2 (Section 6.1) need to be solved. This introduces a 

further complication as it is not known a priori which substance is depleted first in the 

biolayer. Consequently, the same code is written twice (for Set 1 and Set 2) and which 

version is used is determined as the program runs. In fact, as discussed later in the results, 

there are operating conditions under which concentration profiles are determined via 

solving Set 1 only and others where both Set 1 and Set 2 are needed. In the latter case, 

zones of oxygen control and VOC control are formed in the biotrickling filter bed. 

6.3 Parameter Determination 

6.3.1 Kinetic Constants 

The values of the kinetic constants appearing in expression (6.17) were determined from 

suspended culture, closed shake serum bottle experiments as discussed in Chapter 5. 

Using these constants in describing VOC vapor removal reflects assumption 3 of the 

model (see Section 6.1). 

For the constant appearing in expression (6.18) the value used in other studies 

with conventional biofilters (Baltzis et al., 1997; Shareefdeen et al., 1993; Shareefdeen 

and Baltzis, 1994) was used here as well due to lack of a better estimate. However, 

model sensitivity studies (as discussed later in this chapter) show that the results remain 

unchanged even when the value of Ko  changes by one order of magnitude. The value of 

Ko  is reported in Table 6.1. 
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6.3.2 Yield Coefficients 

For the yield coefficients of the biomass on the carbon source, the values used were those 

determined from the kinetic runs discussed in Chapter 5. The values of the yield 

coefficient of the biomass on oxygen were calculated via reaction stoichiometry 

following the method also discussed by Shareefdeen et al. (1993). The stoichiometries for 

m-CB and o-DCB when biomass composition is taken as CHI 8005NO2  (Shuler and 

Kargi, 1992) and NH4NO3  serves as nitrogen source (see Chapter 5) are as follows. 

For mono-chlorobenzene (m-CB) degradation, 

C6H5Cl + 3.69 02  + 0.265 NH4NO3 	 

2.65 CH1.8O0.5N0.2  + 0.15 H20 + 3.35 CO2  + HC1 

Similarly for ortho-dichlorobenzene (o-DCB) degradation, 

C6H4Cl2  + 4.20 O2  + 0.237 NH4NO3 	 

2.37 CH1.8O0.5N0.2  + 0.66 H20 + 3.63 CO2  + 2HCI 

(6.34) 

(6.35) 

Based on equations (6.34) and (6.35) the values of the yield coefficients on oxygen were 

calculated and are reported in Table 6.1. 

6.3.3 Wetted Area and Mass Transfer Coefficients 

The specific wetted surface area of the biofilm was determined via the following 

equation, 

(6.36) 
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and the overall mass transfer coefficients KLq  (q = 0 for oxygen, q = C for m-CB, q = D 

for o-DCB) from the equation, 

(6.37) 

The values of the gas and liquid phase mass transfer coefficients ( KGq , kLq ) 

appearing in equation (6.37) were determined from the following correlations, 

(6.38) 

(6.39) 

With the exception of the volumetric flowrates of air (QG  ) and liquid medium 

(Q L  ) which varied among experiments, the values of all parameters appearing in 

expressions (6.36)-(6.39) are given in Tables 6.1, 6.2 and 6.3. 

When ξj = ξ1q = ξ2q = 1, expressions (6.36), (6.38) and (6.39) are the well 

known Onda correlations (Djebbar and Narbaitz, 1995; Kavanaugh and Trussell, 1980; 

Lamarche and Droste, 1989; Onda et al., 1968). The numerical coefficients in the right 

hand side of expressions (6.38) and (6.39) reflect the physical characteristics of the 

packing material used in this study (Bolles and Fair, 1982; Eckert, 1961, 1975). 

Coefficients ξj = ξ1q and ξ2q were determined during the course of this study 

through fitting of some data sets from biotrickling filter experiments to the solution of 

the model equations. The values of ξ1q  and ξ2q    determined and used here lead to values 
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for the overall mass transfer coefficient of m-CB and o-DCB which are close to those 

experimentally determined for toluene in a biotrickling filter operating under flow 

conditions similar to those used in the present study (Pedersen and Arvin, 1995). These 

values are also similar to those found by Turek and Lange (1981) who studied mass 

transfer in non-biological trickle-bed reactors operating at low Reynolds numbers as is 

also the case in the present study. For oxygen, the value of mo  is very large implying, 

from equation (6.37), that the contribution of gas phase mass transfer resistance to the 

overall mass transfer coefficient for oxygen is negligible. For this reason, the value of 

ξj  was taken as zero. 

A correction factor ξj in= correlation (6.36) has been also used by other 

investigators who worked with biotrickling filters. A value of ξj = 2 has been reported by Diks 

and Ottengraf (1991 a, b) and a value of ξj = 6 can be inferred from the results 

of Pedersen and Arvin (1995) who speculated that the enlarged contact area between the 

air and the biofilm may be due to the irregular (rough) surface of the biofilm. The value ξj  

of determined in the present study is 4.5 for m-CB and 2.4 for o-DCB. 

6.3.4 Effective Biolayer Thickness 

As also done earlier by Shareefdeen et al. (1993), the value of the effective biofilm 

thickness in this study is determined by the computer code. At each position in the 

biotrickling filter a trial and error approach is incorporated in the code to determine 8 as 

the thickness which leads to 99% reduction in the concentration of either oxygen or the 

pollutant (whichever happens first) present at the liquid/biolayer interface. 
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Table 6.1. Model parameter values common for m-CB  and o-DCB biofiltration. 

Model 
Parameter 

Numerical Value 	Unit 	 Reference 

X f(Xv) 

Biofilm 

75 	 kgm-3 
	

Present study 

0.253 	 - 	 Fan et al. (1987, 1990) 

Physical Parameters for Oxygen 

mo 

Dow  

DOG  CGOi 

 

34.4 	 - 	 Shareefdeen et al. (1993) 

2.39 x 10-9 	m2s-1 Perry and Green (1984) 

2.03 x 10-5 	m2s-1 Perry and Green (1984) 

275 	 gm-3 	Shareefdeen et al. (1993) 

Kinetic Parameters for Oxygen 

Ko 

YOC  

YOD  

	

0.26 	 gm  -3 
Shareefdeen et al. (1993) 

	

0.551 	 gg-1  
Present study 

 
	0.363 	 gg-1 

	
Present  study 

Physical Parameters for Air 

µG  ρG 

 

0.018 x 10-3 	kgm  -1s-1 
	

Perry and Green (1984) 

1.193 	 kgm-3 
	

Perry and Green (1984) 

Physical Parameters for Water 

µL  

ρL  

σL  

0.982 x 10-3 kgm-1 s-1 
	

Perry and Green (1984) 

997.85 	 kgm-3  

72 x 10-3 	 Nm-1 	 Heggen (1983) 
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Table 6.2. Model parameter values for m-CB biofiltrationa. 

Model 	Numerical Value 	Unit 	 Reference 
Parameter 

Physical Parameters for m-CB 

mC 	0.167 	- 	Yurteri et al. (1987) 

DCW 	0.81 x 10-9 	m2s-1 Perry and Green (1984) 

DCG 	0.78 x 10-5 	m2s-1 Fuller et al. (1966) 

Column Dimensions 

S 	 1.82 x 10-2 	 m2 	 Present study 

VPC 	1.32 x 10-3 	m3 	Present study 

Packing Characteristics 

ATC 	 334.65 	 m-1 	Eckert (1961, 1975) 

dPC 	0.019 	m 	Eckert (1961, 1975) 

σp 	61 x 10-3 	Nm-1 	Bolles and Fair (1982) 

Other Parameters 

ξC  	4.50       	Present study 

	ξ1C 	4.40 	Present study 

	

4.40 	 - 	 Present study ξ2C  

	ξ10 	0 	- 	Present study 

	ξ20 	35 	- 	Present study 

'Kinetic parameter values are those in the second column of Table 5.1 
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Table 6.3. Model parameter values for o-DCB biofiltrationa. 

Model 	Numerical Value 	Unit 	 Reference 
Parameter 

Physical Parameters for o-DCB 

mD 	 0.119 	 - 	Yurteri et al. (1987) 

D

DW 

	 0.78x 10-9 	

m2

s-1  Perry and Green (1984) 

D

DG 

	 0.69 x 10

-5 

	 m2
6

-1 Fuller et al. (1966) 

Column Dimensions 

S 	 1.82 x 10-2 	 m2 	 Present study 

VPD 	1.26 x 10-3 	m3 	Present study 

Packing Characteristics 

ATD 	623.36 	m-1 	Eckert (1961, 1975) 

dPD 	0.0127                    m 	Eckert (1961, 1975) 

σP 	61 x 10-3 	Nm-1 	Bolles and Fair (1982) 

Other Parameters 

	ξD 	 2.36 	 - 	 Present study 

	ξID 	2.55 	- 	Present study  

	ξ2D 	2.55 	- 	Present study 

	ξ10 	0 	- 	Present study 

	

7.12 	 - 	 Present study ξ20 
 

aKinetic parameter values are given in Table 5.2 
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6.3.5 Other Parameters 

The values of all other model parameters that have not been discussed earlier have been 

taken from the literature and are given in Tables 6.1, 6.2, and 6.3. 

The values of the distribution coefficients of m-CB and o-DCB between air and 

water (mc  and mD) were taken from the literature but were also confirmed from 

experiments with close serum bottles in which uninoculated liquid medium was placed 

and then spiked with various amounts of m-CB or o-DCB. 

The value of the biofilm density ( Xv  ) used in this study is lower than the value 

used in conventional biofilters because in biotrickling filters thick biofilms are formed. 

Ranges of reported Xv  values and the relation between Xv  and biofilm thickness have 

been reviewed and discussed by Shareefdeen et al. (1993). 

6.4 Biofiltration of Mono-chlorobenzene (m-CB) 

A large number of experiments were performed with the biotrickling filter unit shown in 

Figure 4.1. Among experiments, the volumetric flow rate of the air supplied to the 

biofilter (QG  ) and thus the air residence time τ  = VP / Q G  , the m-CB vapor concentration 

in the air supplied to the biotrickling filter (CGci  ), and the flow rate of the liquid (Q L  ) 

were varied. All data sets were analyzed with the model presented in Section 6.1. With 

the exception of four experiments the data of which were used in determining 

parameters ξC , ξ1q and ξ2q all experiments were described with the model without 

fitting the data and thus the predictive capabilities of the model were examined. 
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The first detailed series of runs involved experiments at a constant value of the 

air residence time (τ) and counter-current flow of air and liquid. The results are reported 

in Tables 6.4 and 6.5. These tables show not only the usual results of percent removal 

and removal rate but also the experimental and model-predicted m-CB concentrations in 

the air, as well as their comparison, at the exit and one point (about the middle) along the 

filter bed. Looking at the experimental data in Tables 6.4 and 6.5 one can conclude that 

for constant τ  and CGCi  values the percent removal and, consequently, the removal rate 

increase as the value of Q L  increases. This is probably due to an increased value of ASC  

obtained at higher Q L  values. One can also observe that the positive effect of increased 

Q L  is more pronounced at higher CGCi  values. For example, when Q L  changes from 1.7 

to 5.7 Lh-1, an extra 11% removal is observed at CGCi  = 0.46 gm-3  whereas at CGCi  of 1.7 

and 2.7 gm-3  the extra removal is 13.5 and 21.5%, respectively. Similar conclusions can 

be reached from the data at CGCi  of 1.2 and 3.1 gm-3  for a change in Q L  from 2.7 to 5.7 

Lh-1. 

The experimental removal rate values are very substantial and can reach levels of 

about 60 gm-3-reactor h-1 . These values are very interesting when one compares them to 

conventional biofilter performance. With the latter, a maximum removal rate of about 20 

gm-3

-reactor h-1 . 

 has been reported for toluene, a compound which is much more easily 

biodegraded than m-CB. Although performance of biofilters is usually judged based on 

removal rate (also called removal efficiency) an equally, if not more, important factor is 

the percent removal. Values exceeding 70% removal have been obtained in almost all 

cases reported in Tables 6.4 and 6.5 and in some instances values above 90% were 



Table 6.4. Experimental data and model predictions for biofiltration of mono-chlorobenzene (m-CB) at constant air residence time 

= 18 ± 0.2 min) and pH = 6.8 ± 0.2. Air and liquid in counter-current flow. 

a  QL 

(Lh-1) 

bCGCm,1 
 

(gm-3) 

cCGCm,2  

(gm-3) 

dE1  

(%) 

eCGCe,1  

(gm-3) 

fCGCe,2  

(gm-3) 

gE2 	hX 

(%) 	(%) 

iRexp  

(gm-3-reactor h-1)  

iRpred 
 

(gm-3-reactor h

-1

)  

kE3 
 

(%) 

1.7 

5.7 

2.2 

3.9 

2.7 

5.7 

0.22 

0.14 

0.44 

0.32 

0.52 

0.43 

0.23 

0.15 

0.41 

0.35 

0.53 

0.41 

+4.55 

+7.14 

-6.82 

+9.38 

+1.92 

-4.65 

0.08 

0.03 

0.14 

0.06 

0.18 

0.09 

0.12 

0.07 

0.21 

0.16 

0.26 

0.18 

1CGCi  = 0.46 gm-3 

+50.00 	82.61 

+133.33 	93.48 

1C

GCi 

 

= 0.90 gm-3  

+50.00 	84.44 

+166.66 	93.33 

1C

GCi 

 

= 1.20 gm-3 

+44.44 	85.00 

+100.00 	92.50 

5.56 

6.68 

11.11 

12.72 

14.91 

17.24 

4.97 

6.06 

10.09 

11.21 

13.74 

15.84 

-10.61 

-9.28 

-9.18 

-11.87 

-8.52 

-8.12 

"liquid flow rate,"experimental m-CB concentration in air at z = 0.48, 'model-predicted m-CB concentration in air at z = 0.48, 
d
percent error in predicted m-CB concentration at z = 0.48 defined as 100 x (CGcm.2  - CGcm.1 )/CGcm.1 , eexperimental m-CB 

concentration in the air exiting the, biofilter bed, rmodel-predicted m-CB concentration in the air exiting the biofilter bed, percent 

error in predicted exit m-CB concentration defined as 100 x (CGCe.2  - CGCe.1 )/CGCe.1 , hpercent m-CB vapor removal based on 

experimental values and defined as 100 x (

CG

Ce,2 - 

CG

Ce,1 )/C

G

Ce,1,  experimentally obtained m-CB vapor, removal rate defined as 

(

CG

Ci  - 

CG

Ce,1 )/τ, 'model-predicted m-CB vapor removal rate defined as (CGCi  - CGCe,2 )/τ, kpercent error in predicted m-CB removal 

rate defined as 100 x (Rpred - R exp

)

/R exp, 1m-CB vapor concentration in the air entering the biofilter 

75 



Table 6.5. Experimental data and model predictions for biofiltration of mono-chlorobenzene (m-CB) at constant air residence time 
= 3.8 ±  0.2 min) and pH = 6.8 ±  0.2. Air and liquid in counter-current flowa. 

QL 	CGCm,1 	CGCm,2 	E1 	CGCe,1 	CGCe,2 	E2 	X 	Rexp 	 Rpred 	 E-3  

(Lh

-1

) 	(gm-3) 	(gm-3) 	(%) 	(gm-3) 	(gm-3) 	(%) 	(%) 	(gm-3-reactor h-1) 	(gm-3-reactor h-1) 	(%) 

CGCi  = 1.70 gm-3  

	

1.7 	0.85 	0.88 	+3.53 	0.37 	0.48 	+29.73 	78.23 	19.45 	 17.84 	-8.28 

	

5.7 	0.58 	0.59 	+1.72 	0.14 	0.28 	+100.00 	91.70 	24.23 	 22.05 	-9.00 

CGCi  = 2.70 gm-3  

	

1.7 	1.41 	1.46 	+3.42 	0.87 	0.82 	-5.74 	67.77 	26.76 	 27.49 	+2.73 

	

3.0 	1.32 	1.39 	+5.30 	0.57 	0.77 	+35.09 	78.89 	34.69 	 31.10 	-10.35 

	

5.7 	1.00 	0.97 	-3.00 	0.31 	0.47 	+51.61 	89.14 	38.02 	 35.48 	-6.68 

CGCi  = 3.10 gm-3  

	

2.7 	1.65 	1.62 	+1.82 	0.76 	0.87 	+14.47 	75.48 	35.99 	 34.29 	-4.72 

	

5.7 	1.48 	1.24 	-16.22 	0.47 	0.61 	+29.78 	85.10 	44.83 	 41.42 	-7.59 

CGCi  = 3.60 gm-3  

	

3.9 	1.94 	1.81 	+6.70 	0.87 	0.97 	+11.49 	73.05 	46.53 	 44.83 	-3.65 

	

5.7 	1.69 	1.53 	+9.47 	0.72 	0.79 	+9.72 	80.01 	49.09 	 47.89 	-2.44 

CGCi  = 4.40 gm-3  

	

3.0 	2.65 	2.44 	+7.92 	1.38 	1.45 	+5.07 	68.63 	49.18 	 47.95 	-2.50 

	

5.7 	2.18 	1.88 	+13.76 	1.12 	1.00 	-10.71 	74.54 	55.91 	 57.95 	+3.65 

aAll symbols as defined in Table 6.4 
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observed. These values are very good when one considers the relatively high inlet m-CB 

concentration values used in this study and the reasonable residence time under which the 

experiments of Tables 6.4 and 6.5 were performed. 

The agreement between experimental and model-predicted values for the removal 

rate is extremely good (less than 10% in the majority of cases) as can be seen from 

Tables 6.4 and 6.5. The agreement is also very good between experimental and model-

predicted m-CB concentration values at about the middle ( z = 0.48) of the filter bed. The 

agreement is much less satisfactory, and often poor, between experimental and model-

predicted values for the m-CB concentration at the exit of the unit. It should be 

mentioned, however, that the poor agreement is on a percent basis and is observed at very 

low concentration values. On an absolute basis, the model predicts the exit concentration 

within no more than 0.1 gm-3  in almost all cases. 

Some experimental results from runs under constant CGCi  and Q L  but varying 

values of τ  are shown in Table 6.6. As expected, the percent removal increases as the 

Table 6.6. Experimental data and model predictions for biofiltration of mono-
chlorobenzene at pH = 6.8± 0.2 as a function of air residence time (τ)a. 

τ 	 X 	 Rexp 	 Rpred 	 E 
(min) 	 (%) 	(gm-3-reactor h-1) 	(gm-3-reactor h4) 	(%) 

CGCi = 1.0 gm-3, Q L  = 2.2 Lh-1  

	

4.1 	 84.4 	 12.34 	 11.28 	-8.59 

	

5.6 	 96.2 	 10.28 	 8.99 	-12.55 

CGCi  = 3.0 gm-3, Q L  = 3.9 Lh-1  

	

2.8 	 66.6 	 42.81 	 44.38 	-13.99 

	

3.9 	 81.5 	 37.62 	 37.11 	-1.36 

aAll symbols as defined in Table 6.4; counter-current flow of air and liquid 
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value of τ increases. However, the removal rate decreases which implies that, overall, 

the process does not behave as a zero-order one. 

The effect that Q L  and T have on the process, when all other operating conditions 

are constant, is the same with regard to percent conversion. More specifically, as can be 

seen from Tables 6.4 through 6.6 the conversion of m-CB increases when either Q L  or 

T increases. Consequently, a desired conversion can be achieved with various pairs of 

QL  and T values, provided that one decreases when the other increases. This can be 

Table 6.7. Experimental data and model predictions for biofiltration of mono-
chlorobenzene at pH = 6.8+0.2 as a function of liquid flowrate (QL) and air residence 
time (τ). Counter-current flow of air and liquida. 

QL 

	 T 	 X 	 Rexp 	 Rpred 
	

E 
	  (Lh-1) 	(min) 	(%) 	(gm-3-reactor h-1) 	(gm-3- reactor h-1) 	(%) 

CGci  = 1.0 gm-3  

2.2 	5.6 	96.2 	10.28 	 8.99 	-12.55 
3.9 	3.9 	93.3 	14.35 	 12.32 	-14.14 

 CGci = 1.6 gm

-3 

 

0.7 	8.8 	96.3 	10.51 	 9.03 	-14.08 
3.9 	3.9 	91.5 	22.52 	 19.54 	-13.23 

CGci = 1.9 gm-3  

0.7 	8.8 	90.1 	11.67 	 10.68 	-8.48 
3.9 	3.9 	91.5 	26.74 	 23.11 	-13.58 

CGci = 2.6 gm-3  

0.7 	8.8 	92.9 	16.47 	 14.32 	-13.05 
3.9 	3.9 	85.6 	34.24 	 31.33 	-8.50 

CGci = 3.1 gm-3  

	

2.2 	5.4 	79.3 	27.31 	 27.76 	-1.65 

	

5.7 	3.6 	86.2 	44.53 	 41.42 	-7.59 
CGci = 3.6 gm-3  

	

0.7 	8.8 	83.5 	20.50 	 19.36 	-5.56 

	

5.7 	3.6 	80.0 	49.09 	 47.89 	-2.44 

aAll symbols as defined in Table 6.4 
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observed from the data shown in Table 6.7. From a process design point of view, the 

implication is that when a specified (e.g., by environmental regulations) pollutant 

conversion is desired it can be achieved with a smaller unit operating at a higher Q L  

As in the data sets reported in Tables 6.4 and 6.5, the agreement between 

experimentally obtained and model-predicted values for the removal rate is also very 

good for the data sets reported in Tables 6.6 and 6.7. 

Figure 6.2 shows model-predicted m-CB concentration profiles in the air along 

the biofilter bed and experimental data from the three ports on the column. In all cases the 

Figure 6.2 Model-predicted mono-chlorobenzene concentration profiles (curves) in the 
air along the biotrickling filter. Experimental concentration values are given by symbols. 
Values of CGCi (gm-3), QL  (Lh-1) and T (min), respectively, are (a) 1.0, 2.2, and 5.5; (b) 
2.6, 1.7, and 4.0; (c) 1.5, 5.7, and 3.7; (d) 4.4, 3.0, and 3.9. Dotted curves imply oxygen 
control ending at point (S). Air and liquid in counter-current flow. 
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agreement is very good. The diagram of Figure 6.2(c) is particularly interesting because 

it shows data from three runs under the same operating conditions, performed months 

apart one from the other. Clearly, there is an excellent reproducibility of data which has 

been also observed in all cases in which experiments were repeated. For the cases shown 

in graphs (a)-(c) of Figure 6.2 the model predicts that m-CB is depleted before oxygen 

in the biofilm throughout the biotrickling filter. For the case shown in Figure 6.2(d) there 

are two zones separated at point (S). In the zone which is close to the entrance of the 

airstream and exit of the liquid stream (z = 1) oxygen is depleted before m-CB in the 

biolayer and the reverse occurs in the zone away from z = 1 . 

The importance of oxygen for the process can be better seen from the diagrams of 

Figures 6.3 and 6.4. Figure 6.3 shows concentration profiles of m-CB and oxygen, both 

in air and the liquid along the biotrickling filter, for two sets of operating conditions as 

predicted by the model. The measured values of m-CB concentration in the air are also 

shown for comparison purposes. Observe again the excellent reproducibility of data. The 

oxygen concentration in the air (curve 3) is always very close to the saturation value. 

However, the oxygen concentration in the liquid (curve 4) can be very high (above 90%) 

throughout the column as shown in Figure 6.3(b1) or can vary considerably along the 

column reaching below 50% of the saturation level in segments of the column, as shown 

in Figure 6.3(b2). For the case shown in graphs (a1) and (b2) m-CB is depleted before 

oxygen throughout the column and one could argue that the process could had been 

described equally well with a model which neglects the effect of oxygen. The foregoing 

argument cannot be made for the case shown in graphs (a2) and (b2) of Figure 6.3. In 
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Figure 6.3 Model-predicted concentration profiles of mono-chlorobenzene (curves 1: 
air, curves 2: liquid) and oxygen (curves 3: air, curves 4: liquid) along the biotricklin 
- filter when the values of CGCi (gm-3), QL (Lh-1) and τ (min), respectively, are (a1, b1) 
0.46, 5.7, and 3.9; ( a2, b2) 3.7, 3.9, and 3.9. Point (S) on curves indicates switching from 
oxygen limitation close to z = 1 to VOC limitation toward z = 0. Symbols represent 
experimentally measured mono-chlorobenzene concentrations in the air. Air and liquid in 
counter-current flow. 

this case, as in Figure 6.2(d), there are two zones [separated by point (S)] and the one 

close to z = 1 is essentially oxygen-controlled as oxygen is depleted before m-CB in the 

biofilm which is the reaction environment. 

Oxygen and m-CB concentration profiles in the biofilm, as predicted by the 

model, are shown in Figure 6.4. This is again a case where there are two zones in the 

biotrickling filter bed. At low values of z (close to the exit of the airstream) m-CB is 

depleted before oxygen which stays at very high levels as shown in Figure 6.4(a). As z 
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Figure 6.4 Model-predicted normalized concentration profiles in the active biofilm for 
mono-chlorobenzene (curves 1) and oxygen (curves 2) at four locations along the 
biotrickling filter column when CGCi  = 3.6 gm-3, QL  = 5.7 Lh-1, and T = 3.6 min. The 
effective biofilm thickness (δ) is predicted to vary significantly with z. Air and liquid 
flow counter-currently. 

increases, Figure 6.4(b), m-CB is still depleted first but there is a considerable change in 

the oxygen concentration along the biolayer depth. As z increases further, it reaches a 

critical value [point (S) in Figures 6.2 and 6.3] where the normalized m-CB and oxygen 

concentration profiles are identical as shown in Figure 6.4(c). After the critical value of 

z, and as one moves toward the bottom of the filter bed, oxygen is depleted before m-CB 

in the biofilm as shown in Figure 6.4(d). 

The structure of the model is such that it allows for determination of the effective 

biolayer thickness (δ) at every location along the filter bed. The results indicate that 
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depending on the operating conditions, δ may be essentially constant (curve 2) or vary 

slightly (curve 1) as shown in Figure 6.5(a), but it can also vary substantially along the 

column as shown in Figure 6.5(b). The variations of δ along the biotrickling filter bed 

which have been found during the course of this study are much larger than those found 

in conventional biofilters (Baltzis et al., 1997; Shareefdeen et al., 1993; Shareefdeen and 

Baltzis, 1994). However, calculations show that even in cases with large variations in δ , 

such as the one shown in Figure 6.5(b), using an average value of 6 as constant 

throughout the column does not lead to more than 2% error in the predicted removal rate. 

This seems to justify the assumption of constant 6 made by other investigators who have 

modeled biotrickling filters (Diks and Ottengraf, 1991 a, b; Ockeloen et al., 1992). 

As discussed in Chapter 4, most of the experiments were performed under liquid 

replenishment with fresh medium on a daily basis. This was the case with all data sets 

reported in Tables 6.4 through 6.7 and everywhere else in this thesis unless specified 

otherwise. From experiments performed under less frequent changes of the recirculating 

liquid with fresh medium, it was found that the percent m-CB removal and the removal 

rate drop. This can be seen from the experimental data reported in Table 6.8. From this 

table it can be observed that when the liquid is replenished every two days the percent m-

CB removal, relative to that obtained under daily liquid change, drops by 2.5, 5.8, and 8.7 

percentage points for inlet m-CB concentrations of 2.4, 3.3, and 4.3 gm-3, respectively. 

Similarly, at inlet m-CB concentrations of 1.7 and 4.3 gm-3  there is a drop by 9 and 18.5 

percentage points, respectively, when the liquid is replenished every three days instead 

of daily. These observations suggest that the higher is the inlet m-CB concentration the 
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Figure 6.5 Model-predicted variation of the effective biofilm thickness (8) along the 
biotrickling filter column when QL  = 5.7 Lh-1, τ  = 3.6 min, and CGCi  (gm-3) is (a, curve 1) 
2.1, (a, curve 2) 0.46, (b) 3.6. Air and liquid in counter-current flow. 
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more important is the timely change of the liquid in order to maintain high percent 

removal and removal rate. This could be explained by the fact that the higher is the inlet 

m-CB concentration the more amounts of additional nutrients are required. Another 

possibility is that the drop in removal is related to elevated salt (NaC1) levels as has been 

reported by Diks and Ottengraf (1991 a, b) as well as Oh and Bartha (1994). The NaCl 

presence increases with the inlet m-CB concentration since more chloride ions are 

released and thus, more sodium hydroxide is used for pH adjustment. 

Table 6.8. Experimental data for biofiltration of mono-chlorobenzene at pH = 6.8±0.2 
and τ = 3.9 min as a function of frequency of medium replenishment'. 

Day 	 X 	 Rexp  
(%) 

	(gm-3-reacto

r h
-1

) 

CGCi  = 1.7 gm-3, Q L  = 3.9 Lh

-1 

 

1 	 91.5 	 23.93 
3 	 82.5 	 21.57 

CGCi  = 2.4 gm-3, Q L  = 3.9 Lh-1  

1 	 88.7 	 32.75 
2 	 86.2 	 31.83 

CCGi  = 3.3 gm-3, Q L = 3.9 Lh-1  

1 	 79.3 	 40.26 
2 	 73.5 	 37.31 

CGCi = 4.3 gm-3, Q L  = 3.9 Lh-1  

1 	 71.9 	 47.56 
2 	 63.2 	 41.81 
3 	 53.4 	 35.33 

aAll symbols as defined in Table 6.4; Counter-current flow of air and liquid 

With regard to the present study, the diagram of Figure 6.6 shows that the 

removal rate of m-CB, both at high and low inlet m-CB concentrations, remains constant 

for the first 25-30 h after the liquid is replenished with fresh medium. Thus, the frequency 
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Rexp (gm-3 -reactor h1) 

 

Figure 6.6 Experimentally determined mono-chlorobenzene removal rates as a function 
of time when QL  = 3.7 Lb-land T = 3.9 min. Fresh medium was used at t = 0 and was not 
replenished during the course of the measurements shown; counter-current flow of air and 
liquid. 

of liquid replenishment used here was such that it ensured collection of data under 

steady state conditions which could then be described by a steady state model. 

The data reported in Tables 6.3 through 6.8 as well as the kinetic constants 

reported in Table 5.1 were obtained from experiments performed at pH of about 7. This 

was the optimal pH value as can be seen from the diagrams of Figure 5.13 which show 

experimental specific growth rate values as a function of pH for two m-CB 

concentrations. These are kinetic results obtained from suspended culture experiments in 

closed serum bottles. The graphs show an almost linear change of the specific growth 

rate with pH when the latter is out of the 6-7 range. The drop in H. at pH less than 6 

observed in suspended culture experiments should also imply a decrease in performance 

of biotrickling filters operated at pH less than 6. This does in fact occur as shown by the 
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Table 6.9. Experimental data for biofiltration of mono-chlorobenzene as a function of pH 
under counter-current flow of air and liquids. 

CGCi 	 X 	 Rexp 	 pH 

(gm-3) 	 (%) 	 (gm-3-reactor h-1) 

Q L  = 2.7 Lh-1

, 

τ = 4.1 min 

	

1.6 	 80.6 	 18.9 	 6.3+0.1 

	

1.6 	 70.6 	 16.5 	 5.1+0.2 

	

4.2 	 68.9 	 42.3 	 6.8+0.2 

	

4.2 	 56.7 	 34.8 	 5.1+0.1 

Q L  = 3.9 Lh-1, τ = 3.8 min 

	

2.2 	 87.7 	 30.5 	 6.8+0.3 

	

2.2 	 84.2 	 29.3 	 5.8+0.1 

	

3.7 	 73.2 	 42.8 	 6.6+0.2 

	

3.7 	 60.9 	 35.6 	 4.3+0.2 

aAll symbols as defined in Table 6.4 

data reported in Table 6.9. However, the drop in removal rate observed is no way near the 

drop in µ observed in suspended cultures. Even at very low pH values a very respectable 

removal rate of m-CB vapor is obtained. This seems to suggest that the pH measured 

in the liquid exiting the biotrickling filter is not necessarily that in the reaction 

environment (biofilms). Although this is an issue which needs further and systematic 

study, it should be mentioned here that the data reported in Table 6.9 were not obtained 

under pH control. Data were obtained at various instants of time as the biofilter operated 

without pH adjustment of the recirculating liquid. Hence, it is yet unknown if long term 

operation of the biotrickling filter under low pH will yield removal rates as high as those 

shown in Table 6.9. 
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Experiments on m-CB vapor removal were also performed under co-current flow 

of the air and the liquid, and the results are presented in Table 6.10. For comparison 

purposes, results on m-CB removal under counter-current flow of air and liquid reported 

in earlier tables are also presented in Table 6.10. The first thing to be observed is that the 

Table 6.10. Removal of mono-chlorobenzene vapor in a biotrickling filter under co-
and counter-current flow of air and liquid'. 

CGCi 	QL 	τ 	X 	Rexp 	Rpred 	E 
(gm-3) 	(Lh -1 ) 	(min) 	(%) 	(gm-3-reactor h -1 ) 	(%) 

	

+
b 	

0.60 	2.4 	3.65 	86.44 	8.36 	7.26 	-13.16 

	

C 	0.45 	1.7 	4.00 	82.61 	5.56 	4.97 	-10.61 

	

+ 	0.90 	2.4 	3.65 	88.13 	13.00 	11.95 	-13.46 
- 	0.90 	2.2 	3.80 	84.44 	11.11 	10.09 	-9.18 

	

+ 	2.70 	2.4 	3.65 	83.88 	36.85 	31.64 	-14.14 

	

- 	2.70 	2.9 	3.65 	78.89 	34.69 	31.43 	-9.40 

	

+ 	0.65 	4.8 	3.65 	94.12 	10.18 	8.96 	-11.98 
- 	0.45 	5.6 	3.85 	93.48 	6.68 	6.06 	-9.28 

	

+ 	0.90 	4.8 	3.65 	94.51 	13.95 	12.18 	-12.69 
- 	1.10 	5.6 	3.85 	92.90 	15.92 	14.41 	-9.48 

	

+ 	1.80 	4.8 	3.65 	93.27 	27.83 	24.35 	-12.50 
- 	1.75 	5.6 	3.85 	92.70 	25.28 	22.75 	-10.01 

aAll symbols as defined in Table 6.4;b co-current flow; c counter-current flow 

percent removal of m-CB is always high, often exceeding 90%. For co-current flow, 

under the same values of CGC, and T (e.g., 0.60 gm-3  and 3.65 min, or 0.90 gm-3  and 3.65 

min) the percent removal, as well as the removal rate, increases when the liquid flow rate 

increases (from 2.4 to 4.8 Lh-1). The same observation was made from data under 
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counter-current flow of air and liquid. As also discussed earlier, this is probably due to an 

increased specific wetted biofilm area (ASC) obtained at higher QL  values. The data of 

Table 6.10 also show that co-current flow of air and liquid is better than counter-current 

flow in the sense that for the same CGCi , QL, and τ  the percent removal and removal rate 

of m-CB are higher under co-current flow. This can be seen, for example, at CGCi  = 2.70 

gm-3 and T = 3.65 min where co-current flow leads to better performance although the QL  

is lower than that for counter-current flow. Similarly, at inlet concentration of 1.80 gm-3  

using lower values for both QL  and τ  under co-current conditions one still gets a slightly 

better performance than under counter-current conditions where the higher QL  and τ  

values should help obtaining better results. 

The better performance of the biotrickling filter under co-current flow of air and 

liquid could be explained by the fact that a higher concentration differential exists 

between the two phases especially at the inlet of the airstream. This enhances the mass 

transfer of the pollutant from the air to the liquid and consequently to the biofilm which 

is the actual reaction environment. Enhanced performance under co-current operation 

is also predicted by the model describing the process. Similar predictions are made by 

the model of Diks and Ottengraf (1991a,b) although these investigators did not 

experimentally observe such differences. 

As can be seen from Table 6.10 the model does an equally good job predicting the 

performance under co-current and counter-current flow of air and liquid. A sample of 

model-predicted concentration profiles for m-CB and oxygen for co-current operation is 

given in Figure 6.7. Observe that the m-CB concentration values in the air (curves 1 in 
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Figure 6.7 Model-predicted dimensionless concentration profiles of (a) m-CB and (b) 
oxygen along the biotrickling filter. Curves 1 and 2 are for the gas and liquid phase, 
respectively. Symbols represent data from the gas phase (air). Experimental conditions: 
co-current flow of air and liquid;  CGCi = 0.65 gm-3; QL = 4.8 Lh-1; τ = 3.65 min. 
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Figure 6.7a) is in excellent agreement with data obtained from the middle point of the 

column. At the exit, the model overpredicts the pollutant concentration although it should 

be mentioned that exit concentrations are very low and the likelihood of an error in 

measurement is much higher. From Figure 6.7a it is worth observing the predicted 

concentration differential between air and liquid (curves 1 and 2, respectively) at the 

entrance of the air in the biotrickling filter (z = 0 in Figure 6.7a). Under co-current 

conditions (Figure 6.7a) this difference is much larger and leads to enhanced mass 

transfer as discussed earlier. Regarding oxygen, one can observe from Figure 6.7b that 

the concentration in the air (curve 1) remains, as expected, essentially constant. In the 

liquid phase though (curve 2), there is a variation which is not significant. At inlet m-CB 

concentrations much higher than the one used in Figure 6.7b the model predicts a 

considerable variation in the oxygen concentration in the liquid phase. This is the same 

result as the one discussed earlier regarding counter-current flow of air and liquid. 

6.5 Biofiltration of Ortho-dichlorobenzene (o-DCB) 

Table 6.11 shows results from o-DCB vapor removal under counter-current flow of the 

air and liquid phases. It is clear (especially from the percent removal values) that removal 

of o-DCB is more difficult when compared to m-CB. This is due to the fact that o-DCB 

is a more recalcitrant compound and in fact, as discussed in Chapter 5, o-DCB 

biodegradation kinetics are much slower than m-CB kinetics. Percent removal of o-DCB 

in the 90% range is not impossible, but would require very large reactor volumes and/or 

flows of the liquid. On the other hand, low o-DCB levels are more likely to occur in 
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practical applications and thus, removal complying with environmental regulations could 

be achieved with units of reasonable size. 

From Table 6.11 one can see that the agreement between experimental and model-

predicted removal rates for o-DCB is very good. In fact, the agreement in the o-DCB case 

Table 6.11. Experimental data and model predictions for biofiltration of ortho-
dichlorobenzene (o-DCB) at pH = 6.8+0.2 as a function of air residence time (t) and 
liquid flowrate (QL)a . 

CGDi 	X 	Rexp 	Rpred 	 E 
(gm-3)                   (%) 	(gm-3-reactor h-1) 	(gm-3-reactor h-1) 	(%) 

T = 6.20 min, Q L = 1.2 Lh-1  

	

1.20 	 71.8 	 8.28 	 8.48 	+2.42 

	

2.30 	 64.0 	 14.15 	 15.69 	+10.88 
T = 4.50 min, Q L = 1.9 Lh-1  

	

0.65 	 76.4 	 6.62 	 6.16 	-6.95 

	

3.50 	 60.0 	 27.98 	 30.10 	+7.58 
T = 3.25 min, Q L  = 3.3 Lh-1  

	

0.75 	 63.8 	 9.00 	 9.53 	+5. 89 

	

2.10 	 57.5 	 22.42 	 24.93 	+11.19 
aAll symbols as defined in Table 6.4; Air and liquid in counter-current flow 

is much better than the m-CB case. This is probably due to the fact that exit m-CB 

concentrations are much lower than those of o-DCB. At very low concentrations, as also 

discussed earlier, the model deviates from the experimental values more than usual and 

thus, this apparent better model performance with o-DCB. 

Model-predicted o-DCB concentration profiles along the biofilter are shown in 

Figure 6.8. As can be seen, predictions and data for o-DCB concentrations in the air 

agree very nicely. Regarding oxygen, as was also the case with in-CB, the liquid phase 
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Figure 6.8 Model-predicted ortho-dichlorobenzene concentration profiles (curves) in the 
air along the biotrickling filter. Experimental concentration values are given by symbols. 
Values of 

C

GDi  (gm-3), QL  (Lh-1) and T (min), respectively, are (a) 0.75, 3.3, and 3.25; (b) 
1.17, 5.2, and 3.0; (c) 2.1, 5.2, and 3.0; (d) 3.50, 1.9, and 4.50. Dotted curves imply 
oxygen control ending at point (S). Counter-current flow of air and liquid. 

concentration varies insignificantly and remains close to saturation when the inlet o-DCB 

concentration is low or varies considerably when the inlet o-DCB concentration is high. 

Figure 6.8(d) shows a case of high inlet o-DCB concentration. For this case, the model 

predicts that the oxygen presence in the liquid is between 60 and 75% of saturation 

throughout the biotrickling filter unit. Consequently, there is a segment of the unit close 

to the entrance of the polluted air (z = 1) where the process is oxygen-controlled. Point 

(S) in Figure 6.8(d) indicates the boundary between the oxygen- and o-DCB-controlled 

zones in the bed. This can be better understood by looking at the predicted concentration 
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Figure 6.9 Model-predicted normalized concentration profiles in the active biofilm for 
ortho-dichlorobenzene (curves 1) and oxygen (curves 2) at four locations along the 
biotrickling filter column when 

C

GDi  = 3.5 gm-3, QL  = 1.9 Lh-1, and τ = 4.5 min. The 
effective biofilm thickness (δ) is predicted to vary significantly with z. Counter-current 
flow of liquid and air. 

profiles in the biofilm shown in Figure 6.9. Observe that the relative position of the o-

DCB (curve 1) and oxygen (curve 2) concentration profiles changes along the unit. 

The two profiles become identical (since values are normalized with those at the 

liquid/biofilm interface) at a particular location (Figure 6.9(c)) in the unit. This location is 

point (S) in Figure 6.8(d). Oxygen is depleted faster than o-DCB at values of z larger than 

0.6417 and thus, about 35% of the unit is under oxygen control. At low inlet o-DCB 

concentration values the profiles in the biofilm resemble those of Figure 6.9(a) 

throughout the column. 
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All experiments reported in Table 6.11 were performed at a constant pH of about 

6.8 which was found to be optimal for the o-DCB consortium when in suspension 

(see Figure 5.14). Some biotrickling filter experiments with o-DCB were performed at pH 

values lower than 6.8 and results are shown in Table 6.12. It is clear that, when all other 

conditions are identical, a pH lower than 6.8 leads to lower removal rates. However, this 

drop is far less than what is observed with suspended cultures where a pH of 5.1 or 4.8 

reduces removal by more than 40% compared to the value obtained at pH of 6.8. The 

results shown in Table 6.12 seem to suggest that cells in the biofilm are protected from 

unfavorable pH conditions probably due to mass transfer effects. Similar is the behavior 

of m-CB removal at low pH values of the liquid in a biotrickling filter as discussed in 

Section 6.4 of this thesis. 

Table 6.12. The effect of pH on the removal of ortho-dichlorobenzene (o-DCB) in a 
biotrickling filter.a  

CGDi 	X 	Rexp 	pH 
(gm-3) 	 (%) 	(gm-3-reactor h-1) 

QL 

 = 1.2 Lh-1 ,τ  = 6.20 min 

	

0.85 	 76.5 	 6.30 	 6.8+0.2 

	

0.85 	 64.3 	 5.29 	 5.1+0.2 

	

1.35 	 70.6 	 9.23 	 6.8+0.2 

	

1.35 	 57.5 	 7.51 	 4.8+0.2 
QL  = 1.9 Lh-1 ,τ  = 4.50 min 

	

0.50 	 77.6 	 5.07 	 6.8+0.2 

	

0.50 	 70.6 	 4.61 	 5.5+0.2 

	

1.50 	 62.9 	 12.66 	 6.8+0.2 

	

1.50 	 53.5 	 10.77 	 5.5+0.2 
aAll symbols as defined in Table 6.4; Counter-current flow of liquid and air 
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As has been also the case of the study with mono-chlorobenzene (see Section 6.4), 

experiments with o-DCB vapor have also shown that operation of the unit under co-

current flow of air and liquid is more efficient than operation under counter-current 

conditions. Results from experiments under co-current flow of liquid and o-DCB laden 

air are shown schematically in Figures 6.10 and 6.11 and in tabular form in Table 6.13. 

From the diagrams of Figures 6.10 and 6.11 one can see that, as was also true in all cases 

discussed earlier in this chapter, the model predicts nicely the gas phase concentration 

data with a tendency to overpredict the concentration value at the exit of the gas phase (z 

= 1). This overprediction is more pronounced as the inlet o-DCB concentration decreases. 

For comparison purposes, Table 6.13 shows experimental data from pairs of 

Table 6.13. Removal of ortho-dichlorobenzene vapor in a biotrickling filter under 
co- and counter-current flow of air and liquid'. 

Operation Mode 	X 	 Rexp 	 Rpred 	 E 
(%) 	(gm-3-reactor h-1) 	(gm -3 -reactor h -1 ) 	(%) 

CGDi  = 0.25+0.1       gm-3, T = 3.00 min, Q L  =  5.2 Lh

-1 

 

	+b 
	 80.6 	 4.03 	 3.62 	-10.17 c - 	 71.1 	 3.55 	 3.12 	-12.11 

C

GDi  = 0.55+0.1               gm-3, T = 3.00 min, Q L  = 5.2 Lh-1  

	

+ 	 84.4 	 9.28 	 8.87 	-4.42 

	

- 	 79.6 	 8.92 	 8.11 	-9.09 

C

GDi  = 1.15+0.1 	gm-3, T = 3.00 min, Q L  = 5.2 Lh-1  

	

+ 	 83.1 	 19.11 	 17.16 	-10.20 

	

- 	 78.9 	 18.15 	 16.51 	-9.04 

C

GDi  = 1.65+0.1 	gm

-3

, T = 3.00 min,  Q

L  = 5.2 Lh-1 

 

	

+ 	 78.6 	 25.62 	 23.82 	-7.03 

	

- 	 73.3 	 23.90 	 22.34 	-6.98 
CGDi  = 2.10+0.1 	gm-3, T = 3.00 min,  Q L.  = 5.2 Lh

-1 

 

	

+ 	 72.4 	 30.41 	 29.80 	-2.00 

	

- 	 70.7 	 29.69 	 28.43 	-4.24 
aAll symbols as defined in Table 6.4; bco-current flow; ccounter-current flow 
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Figure 6.10 Model-predicted dimensionless concentration profiles of (a) o-DCB and (b) 
oxygen along the biotrickling filter. Curves 1 and 2 are for the gas and liquid phase, 
respectively. Symbols represent data from the gas phase (air). Experimental conditions: 
co-current flow of air and liquid; CGDi  = 1.65 gm-3 ; QL  = 5.2 Lh-1; τ  = 3.00 min. 
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Figure 6.11 Model-predicted dimensionless o-DCB concentration profiles (curves 1: air, 
curves 2: liquid) along the biotrickling filter. Symbols represent data from the gas phase 
(air). Experimental conditions: (a) co-current flow of air and liquid; CGDi  = 0.56 gm-3; 

Q L  = 5.2 Lh-1 ; τ  = 3.00 min; (b) co-current flow of air and liquid; C
GDi 

= 2.10 gm
-3 

 Q L   

= 5.2 Lh-1; τ = 3.00 min. 
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experiments in which the only difference is the relative direction of air and liquid flow. 

As can be seen from the table, when CGDi, QL  and τ  are kept constant co-current flow 

leads to better results. In fact, the results suggest that in terms of percent o-DCB 

conversion co-current flow is increasingly better than counter-current flow as the inlet 

concentration decreases. 

6.6 Parameter Sensitivity Analysis 

As can be seen from the equations presented in Section 6.1, the model developed during 

the study reported here contains a large number of parameters. In order to determine 

which parameters affect most the model predictions and consequently the model itself, a 

sensitivity study was undertaken and its results are presented here. 

Two sets of numerical studies were performed one using as base values those of 

o-DCB (Tables 6.11 and 6.13) and one using as base values those of m-CB (Tables 6.1 

and 6.2). 

When the o-DCB parameters were used as basis, a particular experiment was used 

as reference point. This experiment was performed under co-current flow of the liquid 

and gas phase, and with CGDi  = 0.56 gm-3, T = 3.0 min, QL  = 5.2 Lh-1 	.       The experimental 

value for the removal rate was 9.28 gm-3-packing h-1. 

The results are given in Figures 6.12 through 6.14. On the x-axis of these graphs 

the relative value of the parameter under investigation is plotted. The relative value of 

a parameter is defined as the ratio of an assumed new value for the parameter divided by 

the base value of that parameter (reported in Tables 6.11 and 6.3). On the y-axis of the 
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graphs, the relative value of the removal rate is indicated. This is defined as the predicted 

removal rate under the assumed new value of a model parameter divided by the 

experimentally observed removal rate for the set of experimental conditions which was 

taken as basis (i.e., divided by 9.28 gm-3-packing h-1). 

Figure 6.12 shows the results of sensitivity studies with the kinetic parameters 

Relative Value of parameters 

Figure 6.12 Sensitivity analysis of the effect of kinetic parameters on the removal rate of 
o-DCB. Experimental conditions: co-current flow of air and liquid; CGDi  = 0.56 gm-3 ; 
Q L  = 5.2 Lh-1; τ  = 3.00 min. The (1,1) point corresponds to an actual removal rate of 
about 9.28 gm-3-packing 

h

-1

. 
 

involved in kinetic expressions (6.17) and (6.18). As can be seen from the graph, two of 

the four kinetic parameters, µ*D and KD, are important something which implies that a 
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zero- or first-order kinetic approximation cannot be made. It is also interesting to 

observe that the model is not sensitive to the value of Ko. This is particularly important 

as this parameter was not measured, but rather was estimated from published data as has 

been explained by Shareefdeen et al. (1993). Hence, when performing kinetic 

experiments for biofiltration purposes, one needs a relative accurate determination of µ*j  

and Kj  while the importance of KIj  and KO  seems to below. 

From Figure 6.13 one can conclude the following: for relative biofilm density 

Relative Value of parameters 

Figure 6.13 Sensitivity analysis of the effect of parameters X, and DDW  on the removal 
rate of o-DCB. Experimental conditions: co-current flow of air and liquid ; CGDi  = 0.56 

 
gm-3; QL  = 5.2 Lh-1  ; τ = 3.00 min. The (1,1) point corresponds to an actual removal rate 

of about 9.28 gm-3-packing h-1
. 
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(X„) values larger than 0.6, or actual values larger than 45 gm-3, the predicted removal 

rate is insensitive to the actual Xv value. If the actual Xv  value is between 7.5 and 45 

gm-3  the error in the predicted value will be more than 20%. The value of pollutant 

diffusivity (DDW) seems to be very important as shown in Figure 6.13. It appears that if 

the real DDW  value is larger than the one estimated (relative value larger than 1), the 

impact on the prediction of the removal rate is less than 10%. On the other hand, if the 

real value is less than the estimated one, the error in predicting removal rates can be very 

substantial. 

Figure 6.14 shows the sensitivity of the removal rate to changes in the values of 

the distribution coefficient (mD), the overall mass transfer coefficient ( KLD), and the yield 

coefficient (YD). Regarding the distribution coefficient, one can say that when the 

substance is very volatile (high mD  value), then it is present in very low concentrations 

inside the biolayer. Consequently, the kinetics are non-inhibitory, and the removal rates 

are high. The less volatile a substance is, the higher the probability of being under 

inhibitory kinetics throughout the column, and this leads to lower removal rates. These 

last observations are interesting in cases where one wants to predict the removal rates for 

a substance having kinetic constants similar to those of o-DCB, but being less or more 

volatile than o-DCB. Also, for o-DCB itself, one can estimate the removal rate when 

there are temperature changes, which result to changes in the values of mD, assuming that 

these temperature variations do not have a serious impact on the kinetics. These 

observations and results are almost identical with those obtained in similar studies with 

conventional biofilters (Shareefdeen et al., 1993; Shareefdeen and Baltzis, 1994). As far 
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as mass transfer coefficients are concerned, it can be observed that the removal rate 

decreases drastically with KLD  but when the KLD  value is larger than the one estimated, 

the removal rate increases only slightly. Finally, regarding the yield coefficient (YD) it 

can be observed that when it is overestimated (relative value larger than 1) the removal 

rate is underestimated (R less than 1) although slightly only. Significant underestimation 

of YD  can lead to relatively considerable overestimation in removal rate. 

Relative Value of parameters 

Figure 6.14 Sensitivity analysis of the effect of parameters mD, KLD, and YD  on the 
removal rate of o-DCB. Experimental conditions: co-current flow of air and liquid; CGDi  

= 0.56 gm-3; QL  = 5.2 Lh-1; T  = 3.00 min. The (1,1) point corresponds to an actual 

removal rate of about 9.28 gm-3-packing h-1. 
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Conclusions almost identical to those reached from Figures 6.12 through 6.14 can 

be reached from Figures 6.15 and 6.16 which show results of sensitivity studies with the 

values of parameters for m-CB serving as basis (Tables 6.1 and 6.2). The experiment 

used as reference point was performed under co-current flow of air and liquid and with 

CGDi = 1.80 gm 3, τ  = 3.65 min, QL  = 4.8 Lh-1. Under these conditions (see also Table 

6.10) the experimental value for the removal rate is 27.83 gm-3-packing h -1 . This value 

was used in determining the relative value of the removal rate (R). 
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Relative Value of parameters 

Figure 6.15 Sensitivity analysis of the effect of kinetic parameters on the removal rate of 
m-CB. Experimental conditions: co-current flow of air and liquid; CGc1  = 1.80 gm-3; 
Q L  = 4.8 Lh-1; τ  = 3.65 min. The (1,1) point corresponds to an actual removal rate of 
about 27.83 gm-3-packing h . 
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Relative Value of parameters 

Figure 6.16 Sensitivity analysis of the effect of parameters mc, KLC, and YC  on the 
removal rate of m-CB. Experimental conditions: co-current flow of air and liquid; CGCi  = 
1.80 gm-3; Q L  = 4.8 Lh-1; T = 3.85 min. The (1,1) point corresponds to an actual removal 
rate of about 27.83 gm-3-packing h-1. 

A number of simulation runs were performed with the model in order to reveal 

the dependence of the removal rate on the oxygen concentration in the airstream. The 

results are presented in Figure 6.17. The relative value of CGOi  (gm-3) varies from 0.1 to 

2.0. A value larger than 1 implies that the airstream is enriched with oxygen. Calculations 

have been performed with o-DCB as model compound and for two inlet concentrations. 

At low inlet o-DCB concentrations (e.g., curve 1 in Figure 6.17), enriching the airstream 
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with oxygen does not lead to an improved removal rate. This is in agreement with the fact 

that at low inlet pollutant concentrations the process is not controlled by availability 

of oxygen in the biofilms. When the inlet o-DCB concentration is high (e.g., curve 2 in 

Figure 6.17), enriching the airstream with oxygen leads to improved removal rates. 

Doubling the oxygen content in the airstream leads to a removal rate which is almost 

20% higher than its original (base) value. This is in agreement with the findings presented 

Relative Value of CGOi 

Figure 6.17 Effect of oxygen on the removal rate of o-DCB. Experimental conditiOns for 
curve 1: counter-current flow of air and liquid; CGOi  = 0.65 gm-3; QL  = 1.9 Lh-3 ;  T = 4.50 

min and for curve 2: co-current flow of air and liquid; CGOi  = 5.00 gm-3 ; QOL =  1.9 Lh-1; 

τ = 4.50 min. 
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earlier; namely, that at high inlet o-DCB concentrations there is an oxygen-controlled 

zone along the reactor. 



CHAPTER 7 

STEADY-STATE REMOVAL OF VOC MIXTURES 
IN BIOTRICKLING FILTERS 

In this chapter the work addressing the ultimate objective of this thesis is presented. As 

discussed in Chapter 3 the ultimate objective was to derive and experimentally validate a 

model describing removal of VOC mixtures in biotrickling filters. The general model 

presented in this chapter is a modification/extension of the model discussed in Chapter 6. 

The detailed work performed with airstreams carrying single VOCs (Chapter 6) served as 

basis for the general and more realistic case of mixtures. When addressing VOC 

mixtures removal, in addition to accounting for mass transfer and the role of oxygen, one 

has to take into consideration interactions among pollutants at the kinetic level. Such 

interactions are common among structurally similar compounds as was demonstrated in 

Chapter 5 for the case of mixtures involving m-CB and o-DCB. This mixture was used 

as the model system in experiments performed for validating the general model proposed 

here. As shown in subsequent sections, the model developed during the course of this 

study successfully describes data of m-CB/o-DCB mixtures removal and thus, the 

ultimate objective of this study was met. 

7.1 General Theory 

In deriving the model equations, the following assumptions have been made. 

1. The biodegradation rate depends on the concentrations of the VOCs and Oxygen, and 
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its functional form can be determined from suspended culture experiments. 

2. When the surface of the solid packing is not completely covered with biofilm, 

the extent (surface) of the biofilm patch is much larger than its depth. 

Consequently, VOC and oxygen transfer into the biofilm through the side 

surfaces of the patch can be neglected, and diffusion/reaction in the biofilm can 

be described by using only the direction which is perpendicular to the main surface 

of the patch. 

3. Reaction does not necessarily occur throughout the biolayer. If oxygen, or the VOCs 

get depleted before the biolayer/solid interface, there is an effective biolayer thickness 

(8), in the sense of Williamson and McCarty (1976). In the biolayer, all compounds 

are transferred through passive diffusion. 

4. Biodegradation of VOCs occurs only aerobically. 

5. The thickness of the effective biolayer is very small relative to the main curvature 

of the solid particles and thus, planar geometry can be used. 

6. The airstream passes through the trickling filter in plug flow. 

7. VOCs and oxygen at the air/liquid interface are always in equilibrium distribution as 

dictated by Henry's law. 

8. Diffusivities of VOCs and oxygen in the biofilm are equal to those in water 

multiplied by a correction factor determined via the correlation of Fan et al. 

(1987,1990). 

9. At every cross-section of the filter bed there are neither velocity nor concentration 

gradients in the liquid phase. Constant VOC and oxygen concentrations in the liquid 
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imply no biodegradation in the liquid phase and negligible resistance to mass transfer 

from the bulk liquid to the liquid/biofilm interface. 

10. The density of the biofilm (Xi,) is constant throughout the biotrickling filter at all 

times. 

11. The concentrations of VOC and oxygen in the biofilm at the liquid/biofilm interface 

are equal to those in the liquid phase. 

12. Supplemental nutrients, such as nitrogen and phosphorous sources are not exerting 

rate limitation on the process. 

13. No metabolites accumulate in the filter bed. 

14. The void fraction of the filter bed is constant implying that the amount of biomass 

produced is sloughed off into the liquid and then discarded from the system 

during medium replenishment. Thus, a biomass balance is not needed for a complete 

system description. 

15. The liquid medium is recirculated through the filter bed. 

Under the assumptions above, removal of n VOCs in a biotrickling filter under 

steady state conditions can be described by the following mass balances. 

I. Mass balances in the biofilm, at a position h along the column, 

(7.1) 

(7.2) 

with corresponding boundary conditions 



II. Mass balances in the liquid phase along the column, 

with corresponding boundary conditions 
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(7.3) 

(7.4) 

(7.5) 

(7.6) 

(7.7) 

(7.8) 

(7.9) 

(7.10) 

Conditions (7.9) and (7.10) reflect that the liquid is recirculated through the biotrickling 

filter bed as well as the assumption that no reaction occurs in the liquid phase. 

III. Mass balances in the gas phase (airstream) along the biofilter column, 

(7.11) 

(7.12) 

Equations (7.11) and (7.12) taken with the plus (+) sign describe counter-current flow of 

the airstream and the liquid stream, whereas when taken with the minus (-) sign they 
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describe co-current flow of the two phases. Depending on the mode of operation, the 

corresponding boundary conditions for equations (7.11) and (7.12) are as follows. 

IIIa. Under counter-current flow conditions 

(7.13) 

(7.14) 

IIIb. Under co-current flow conditions 

(7.15) 

(7.16) 

Equations (7.1), (7.2), (7.7), (7.8), (7.11) and (7.12) constitute a system of 3(n+1) 

coupled differential equations which need to be solved subject to the 3(n+1) boundary 

conditions given by relations (7.3)-(7.6), (7.9), (7.10), (7.13) or (7.15), and (7.14) or 

(7.16). 

Expressions µ j  (S1,........, 	Sj, ....... Sn , S0 ) appearing in equations (7.1) and (7.2) reflect 

assumption 1. The dependence of the specific reaction rates on the availability of the 

carbon sources (VOCs) can be separated from the dependence on oxygen availability 

through the notion of interactive models (Bader, 1982). Hence, one can write: 

(7.17) 

Usually, biodegradation rates have a Monod-type dependence on oxygen and thus, 

(7.18) 

The dependence of the specific biodegradation rate on the availability (i.e., the 
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concentrations) of VOCs, that is     the functional form of µj , (S1, ..........,Sj, .........,Sn), is 

determined by the number of VOCs present in the airstream and by whether these VOCs 

interact at the kinetic level or not. These kinetic expressions need to be known for the 

model equations to be solved. 

7.2 Modeling and Pilot Scale Experimental Verification of Biofiltration 
of a mixture of Two VOCs Involved in a Competitive Kinetic 

Interaction in a Trickling Filter 

In order to validate the general steady-state biofiltration model for VOC mixtures in a 

trickling biofilter, experiments were performed with airstreams laden with mono-

chrorobenzene (m-CB)/ortho-dichlorobenzene (o-DCB) mixtures. As discussed in 

Chapter 5, biodegradation of m-CB and o-DCB mixtures involves cross-inhibitory 

effects. In fact, suspended culture kinetic experiments have shown that simultaneous 

biodegradation of m-CB and o-DCB follows kinetics involving a cross-inhibitory, 

competitive interaction. The work involved adaptation of the general model presented in 

Section 7.1 to the case of binary mixtures and experiments for model validation. The unit 

used in the experiments presented in Section 7.2.3 was in continuous operation for 8 

months. 

7.2.1 Model Development 

Consider an airstream laden with m-CB and o-DCB that is treated in a trickling biofilter. 

This system can be described by the model discussed in Section 7.1 when n = 2. Thus 
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nine mass balances are needed. Three of the equations refer to the biofilm phase, three to 

the liquid phase, whereas the remaining three are for the gas phase (airstream). 

I. Mass balances in the biofilm, 

(7.19) 

(7.20) 

(7.21) 

with corresponding boundary conditions 

(7.22) 

(7.23) 

II. Mass balances in the liquid phase along the column, 

(7.24) 

(7.25) 

(7.26) 

with corresponding boundary conditions 

(7.27) 

(7.28) 



115 

CLO(h = 0) = CLO (h = H) 
 

III. Mass balances in the gas phase (airstream), 

(7.29) 

(7.30) 

(7.31) 

(7.32) 

where the plus (+) sign refers to counter-current flow of the airstream and the liquid 

stream and the minus (-) sign refers to co-current flow of the two phases. 

The corresponding boundary conditions for equations (7.30), (7.31) and (7.32) are 

(7.33) 

under counter-current operation and 

(7.34) 

under co-current operation. 

Functions 	(SO  , SD  , So  ) and µD  (SC  ,S D  , SO) appearing in equations (7.19)-(7.21) 

express the kinetics of biodegradation of the two VOCs and have the following forms 

which reflect assumption 1 of the general model and the kinetic cross-inhibition 

revealed in Chapter 5. 

(7.35) 
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(7.36) 

With the exception of Ko, the values of the kinetic constants appearing in expressions 

(7.35)-(7.36) were obtained from suspended culture experiments as discussed in Chapter 

5, and are listed in Table 7.1. Parameters 

K

CD  and 

K

DC  indicate and quantify cross-

inhibition between m-CB and o-DCB. 

By introducing the following dimensionless quantities, 

equations (7.19)-(7.34), when expressions (7.35) and (7.36) are also used, can be written 



in dimensionless form as follows, 
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(7.37) 

(7.38) 

(7.39) 

(7.40) 

(7.41) 

(7.42) 

(7.43) 

(7.44) 

(7.45) 

(7.46) 

(7.47) 

(7.48) 

(7.49) 
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Or 
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at 	z = 1 (for counter-current flow) 

at 	z = 0 (for co-current flow) 

Equations (7.37) through (7.39) along with boundary conditions (7.40)and (7.41) 

(7.53) 

(7.54) 

Because of relations (7.53) and (7.54), instead of solving the original set of 

equations (7.37)-(7.52) one can equivalently solve either one of the following sets of 

equations. Set 1: Equations (7.37), (7.38), (7.42)-(7.52) and from (7.40) and (7.41) only 

the conditions concerning Sc and SD . In this case, relation (7.53) needs to be substituted 

for So in equations (7.37) and (7.38). Set 2: Equations (7.38), (7.39), (7.42)-(7.52) and 

from (7.40) and (7.41) only the conditions concerning SD and So . In this case, relation 

(7.54) needs to be substituted for Sc in equations (7.38) and (7.39). Each one of the 

aforementioned sets of equations constitutes a non-linear and coupled boundary value 

problem in two directions, 0 and z. Solving this problem requires a trial and error 

approach because of boundary conditions (7.45)-(7.47). Another case, Set 3 which is 

exactly symmetric to Set 2 can be considered. In Set 3 equatiOn (7.54) needs to be solved 

(7.50) 

(7.51) 

(7.52) 
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for SD and then equation (7.38) with its corresponding boundary conditions can be 

eliminated. 

7.2.2 Numerical Methodology 

A computer code was developed for solving the model equations and is given as 

Appendix B of this dissertation. The logic/structure of this code is presented 

schematically in Figure 7.1. 

7.2.3 Results and Discussion 

Experiments were performed with airstreams carrying mono-chlorobenzene (m-CB) 

and ortho-dichlorobenzene (o-DCB) mixtures. The schematic of the experimental unit as 

well as the experimental methodology, have been discussed in Chapter 4 Of this thesis. 

Experimental data on the removal of vapors of m-CB/o-DCB mixtures for various inlet 

m-CB and o-DCB concentrations, air residence times in the biotrickling filter-bed, and 

recirculation flow rates of the medium were collected. The experimental results were 

compared to the theoretical predictions obtained by solving the model equations. The 

values of the model parameters used in solving the equations are reported in Tables 7.1 

and 7.2. Parameter values were either measured as discussed in Chapters 5 and 6, or 

estimated as explained in Chapter 6. In the case of mixtures no fitting approach was used 

for estimating the biolayer wetted surface area. Since the dimensions of the column and 

the size of packing material used for mixtures removal were the same as those used in 

the experiments with o-DCB alone (see Chapter 6), it was decided to use the fitting 



1. Input the values of gas phase concentrations 
at h = 0 (inlet), τ, QL, etc. 

2. Assume values for liquid phase 
concentrations at h = 0 

3. Assume an active biofilm thickness 

4. Solve mass balance equations for biofilm side 
using the orthogonal collocation method 

5. Is one of VOCs or oxygen consumed 
completely in the biofilm? 

6. Get the concentration flux at the 
liquid/biolayer interface 

7. Solve mass balance equations for the gas and 
liquid phase using Runge-Kutta method at 

position h+∆ h 

8. Is h+∆h = H? (Has exit position of air been 
reached)? 

9. Do exit liquid concentrations at H match the 
ones assumed at the inlet? 

STOP 

Figure 7.1 Structure of numerical methodology for solving the model equations 
under co-current operation 
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Table 7.1. Model parameter values for biofiltration of m-CB and o-DCB mixtures 

Parameter Numerical Value Reference 

m-CB 	 o-DCB 

Aτ (m-1

) 

 623.36 Eckert (1961, 1975) 

D jw (m2s-1) 0.81 x 10-9 	0.78 x 10-9  Perry and Green 

(1984) 

DjG  (m2s-1) 0.78 x 10-5 	0.69 x 10-5  Fuller et al. (1966) 

dPj (m) 0.0127 Eckert (1961, 1975) 

Kj  (gm-3) 5.140 	 13.389 Present Study 

KIj (gm-3) 21.883 	 19.657 Present Study 

Kjq  (gm-3)j 1.3 	 0.75 Present Study 

mj  (-) 0.167 	 0.119 Yurteri et al. (1987) 

VPj (m3) 1.43 x 10-3  Present study 

Y j (gg-1

) 

 0.551 	 0.397 Present Study 

YOj (gg -1 ) 0.516 	 0.363 Present Study 

µj* (h-1) 0.154 	 0.146 Present Study 

ξj 2.36 Present study 

ξ1j 2.55 Present study 

ξ2j  2.55 Present study 

ξ20 
 7.12 Present study 
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Table 7.2. Model parameter values for biofiltration of m-CB and o-DCB mixtures 

Parameter Numerical Value Reference 

CGOi (gm-3) 275 Shareefdeen et al. (1993) 

DOW (m 2s-1) 2.39 x 10-9 Perry and Green (1984) DOG (m 2s -1

) 5 2.03 x 10-5  Perry and Green (1984) 

f(XV) (-) 0.253 Fan et al. (1987, 1990) 

g (ms-2) 9.81 Perry and Green (1984) 

KO  (gm-3) 0.26 Shareefdeen et al. (1993) 

mo (-) 34.4 Shareefdeen et al. (1993) 

S (m2) 1.82 x 10-2 Present study 

XV  ( kgm-3) 75 Present study 

µG  (kgm-1s-1) 0.018 x 10-3  Perry and Green (1984) 

µL  (kgm-1s-1) 0.982 x 10-3  Perry and Green (1984) 

ρG (kgm-3) 1.193 Perry and Green (1984) 

ρL (kgm-3) 997.85 Perry and Green (1984) 

σL (Nm-1) 72 x 10-3  Heggen (1983) 

σp (Nm-1) 61 x 10-3  Bolles and Fair (1982) 

ξ10  (-) 0 Present study 
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coefficients from the o-DCB case. These coefficients (ξj , ξ1j , ξ2j , ξ20 ), reported in Table 

7.1, were used in determining the wetted area and the overall mass transfer coefficients 

for the three compounds (m-CB, o-DCB, oxygen). 

Results from experiments with m-CB/o-DCB mixture vapors under counter-

current flow of air and liquid, constant liquid recirculation rate (6 Lh-1) and various 

residence times are shown in Table 7.3. The residence times ('t) reported in the table are 

Table 7.3. Experimental data and model predictions for biofiltration of mono-
chlorobenzene/ortho-dichlorobenzene mixtures at QL  = 6.0 LE-1 and pH = 6.8±0.2 as a 
function of air residence time (τ).a  Counter-current flow of liquid and air streams. 

j 	CGji 	CGje 1 	CGje 2 	E1 	X 	Rexp 	Rpred 	E2  
( gm-3) 	( gm-3) 	( gm-3) 	(%) 	(%) 	(gm-3-reactor h-1) 	(%) 

τ = 5.85 min 
C 	0.97 	0.15 	0.07 	-53.33 	91.8 	8.41 	9.23 	+9.75 

D 	0.30 	0.05 	0.05 	+2.00 	83.3 	2.56 	2.55 	-0.39 

C 	0.76 	0.07 	0.11 	+57.14 	90.8 	7.08 	6.67 	-5.79 

D 	0.10 	0.02 	0.02 	+5.26 	80.0 	0.83 	0.82 	-1.21 

T = 4.50 min 
C 	0.45 	0.06 	0.09 	+50.00 	86.7 	5.20 	4.80 	-7.69 

D 	0.05 	0.01 	0.01 	-23.08 	78.0 	0.53 	0.56 	+5.66 

C 	1.60 	0.21 	0.31 	+47.61 	85.9 	18.53 	17.20 	-7.18 

D 	0.17 	0.04 	0.03 	-25.00 	76.5 	1.73 	1.87 	+8.09 

T = 3.80 min 
C 	2.04 	0.37 	0.44 	+18.92 	81.2 	2227 	21.33 	-4.22 

D 	0.68 	0.21 	0.14 	-33.33 	69.1 	6.27 	7.20 	+14.83 

τ = 3. 20 min 
C 	0.17 	0.045 	0.046 	+22.22 	73.5 	2.34 	2.32 	-0.85 

D 	0.27 	0.099 	0.073 	-26.26 	63.3 	3.21 	3.69 	+14.95 

C 	2.58 	0.80 	0.88 	+10.00 	69.0 	33.38 	31.88 	-4.49 

D 	0.70 	0.25 	0.19 	-24.00 	64.3 	8.44 	9.56 	+13.27 

C 	3.06 	1.06 	0.95 	-10.38 	65.4 	37.50 	39.56 	+5.49 

D 	0.76 	0.29 	0.22 	-24.14 	61.8 	8.81 	10.13 	+14.98 

aC:mono-chlorobenzene, D:ortho-dichlorobenzene, all symbols as defined in Table 6.4 
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based on empty column. The real residence times for the airstreams in the biotrickling 

filter can be easily calculated via multiplying the reported values by 0.65 (i.e. the void 

fraction of the bed). In Table 7.3 the model-predicted exit VOC concentrations and 

removal rates are also reported. For the case of m-CB/o-DCB mixtures the predicted 

values agree well with the experimentally obtained exit concentrations. In all cases exit 

concentrations are predicted within less than 0.1 gm -3  and the (in some cases) large 

percentage differences are misleading because they are based on very low concentration 

values. Given the complexity of the process, the agreement between experimental and 

model-predicted values for the removal rate is very good especially for m-CB, as can be 

seen from the last column of Table 7.3. 

In Figure 7.2 dimensionless model-predicted concentration profiles for m-CB, 

o-DCB and oxygen (curves I for air, curves 2 for liquid) are shown for one of the 

experiments performed. The agreement between experimental and model-predicted 

values is good not only at the exit of the biotrickling filter but at its middle point as well. 

This can also be seen from the diagrams of Figure 7.3 where model-predicted 

concentration profiles (curves) are compared to experimental data points for two more 

cases. Regarding oxygen, it has been found that when the total inlet VOC concentration 

(sum of m-CB and o-DCB) is low, the liquid phase concentration varies insignificantly 

and remains close to the saturation value as shown in Figure 7.2c (curve 2). Considerable 

variation is predicted when the total inlet VOC concentration is high. These results are 

exactly analogous to those obtained with single VOCs (discussed in. Chapter 6). 



125 

Figure 7.2 Model-predicted dimensionless concentration profiles of (a) m-CB, (b) o-
DCB, and (c) oxygen along the biotrickling filter. Curves 1 and 2 are for the gas and 
liquid phase, respectively. Symbols represent data from the gas phase (air). Experimental 
conditions: counter-current flow of air and liquid; CGCi  = 1.60 gm-3; C CGDi  = 0.17 g  gm-3 ; 
QL  = 6.0 Lh-1; τ  = 4.50 min. 
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Figure 7.3 Model-predicted dimensionless concentration profiles of m-CB (curves 1: 
air, curves 2: liquid) and o-DCB (curves 3: air, curves 4: liquid) along the biotrickling 
filter when the values of 

C

GCi (gm-3), 

C

GDi  (gm-3), QL  (Lh-1) and τ  (min), respectively, 
are (al, a2) 3.06, 0.76, 6.0, and 3.2; ( b1, b2) 0.17, 0.27, 6.0, and 3.2. Symbols represent 
data from the gas phase (air). Counter-current flow of air and liquid. 

The minimal importance of oxygen at low inlet m-CB/o-DCB mixture 

concentrations can also be seen from Figure 7.4 where computed VOC and oxygen 

concentration profiles in the biofilm have been plotted. Concentrations and position in 

the biofilm have been normalized with the values of corresponding concentrations at the 

biofilm/liquid interface and the effective biofilm thickness (δ), respectively. Observe that 

the relative position of VOCs (curves 1 and 2) and oxygen (curve 3) concentration 

profiles remain unchanged along the unit. VOCs are predicted to be depleted in the 

biolayer much before oxygen and thus, the process is not limited by oxygen. In the 
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particular example shown in Figure 7.4, m-CB and o-DCB are depleted at almost exactly 

the same location in the biolayer. Higher m-CB and/or o-DCB concentrations in the air 

would result in a reversal of the order in which oxygen and VOCs are depleted in the 

biolayer. It is also interesting to observe that, at least for the example of Figure 7.4, the 

value of δ  does not vary along the column. 

Figure 7.4 Model-predicted normalized concentration profiles in the active biofilm for 
m-CB (curves 1), o-DCB (curves 2) and oxygen (curves 3) at four locations along the 
biotrickling filter column operating under conditions same as those of Figure 7.2. 

Another way to show that at low total inlet VOC concentrations oxygen does not 

limit the process is to perform model sensitivity studies assuming airstreams enriched 

with oxygen. Such a study was undertaken and its results are shown in Figure 7.5. In this 
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figure, a value larger than one on the x-axis implies that the airstream contains oxygen at 

levels higher than the atmospheric air. The diagram indicates that at low inlet mixture 

concentrations, enriching the airstream with oxygen does not lead to an improved 

removal rate; i.e., R (defined in Chapter 6) is equal to 1. The opposite occurs at high inlet 

mixture concentrations. However, high concentrations may be unrealistic especially in 

case of emission of chlorinated aromatic compounds. 

Relative Value of CGOi  

Figure 7.5 Model sensitivity studies on the effect of oxygen on the removal rate. Curves 
1 and 2 are for m-CB and o-DCB, respectively, and indicate the effect of the inlet air 
oxygen concentration CGOi . Conditions are those of Figure 7.3 (al ,a2), and the (1,1) 
points represent removal of 39.56 and 10.13 g-m-3 packing h-1  for m-CB and o-DCB, 
respectively. 
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Related to oxygen and its impact on the process is kinetic constant Ko. Results 

from model sensitivity studies, shown in Figure 7.6, imply that although oxygen does not 

exert rate limitation on the process at low inlet VOC concentrations it does have an 

impact on the process. In fact it is predicted that if the value of Ko  is twenty times 

higher than the one valid for the culture used in the experiments, the removal rate 

may be 11% less than what was obtained during the experiment used as a basis for the 

Relative Value of Ko  

Figure 7.6 Model sensitivity studies on the effect of oxygen on the removal rate. Curves 
1 and 2 are for m-CB and o-DCB, respectively, and indicate the effect of the kinetic 
constant Ko. Conditions are those of Figure 7.3(a1, a2), and the (1,1) points represent 
removal of 39.56 and 10.13 g-m-3-packing h-1  for m-CB and o-DCB, respectively. 
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calculations used in preparing Figure 7.6. This suggests that microbial culture selection 

should not only be based on its ability to remove VOCs, but also on the affinity of the 

culture for oxygen. 

Regarding the kinetic cross-inhibition between m-CB and o-DCB model 

sensitivity studies with constants KCD  and KDC  have shown (Figure 7.7) that it is not 

important. Increasing or decreasing these constants by an order of magnitude does not 

Relative Value of KCD  or KDC  

Figure 7.7 Model sensitivity studies on the effect of the kinetic interactions constant 
KCD  (curve 1) and Kix (curve 2), on the removal of m-CB and o-DCB vapors. Conditions 

are those of Figure 7.3(al,a2), and the (1,1) points represent removal of 39.56 and 10.13 
g-m-3-packing h -1 for m-CB and o-DCB, respectively. 
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alter the value of predicted removal rate as shown in Figure 7.7. One could then 

conclude that kinetic interactions can be neglected for the m-CB/o-DCB mixture when a 

biotrickling filter is sized/modeled. Similar studies with removal of benzene/toluene 

mixtures in conventional biofilters (Shareefdeen, 1994) have reached the opposite 

conclusion. The importance or unimportance of kinetic interactions may be characteristic 

of the particular VOC mixture. On the other hand, calculations have shown that if the 

study of Shareefdeen (1994) had assumed a surface area as high as the one for the 

biotrickling filter considered in the present study, the conclusion would had been that 

kinetic interactions in removal of benzene/toluene vapors is unimportant. Although 

possibly risky, due to lack of enough data, one could postulate that kinetic interactions 

are more important for conventional than for trickling biofilters. 

In order to compare/predict the performance of trickling and conventional 

biofilters, calculations were performed with the model of Shareefdeen (1994) for the 

removal of mixtures under the conditions of the experiments reported in Table 7.3. In 

these calculations, no liquid phase was assumed, the m-CB and o-DCB kinetic constants 

from the present study were used, and the specific biofilm surface area was assumed to be 

the one reported by Shareefdeen (25 m-1). The value of Xv  was 75 Kgm-3. The results 

and comparisons with values from Table 7.3 are shown in Table 7.4. As can be seen from 

the table, the prediction is that biotrickling filters can reach removal rates more than 

two orders of magnitude higher than those obtained with conventional biofilters. 

This difference is mainly due to higher biofilm areas formed in biotrickling filters due to 
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favorable growth conditions obtained via the supply of non-carbon containing nutrients 

for the biomass. 

Table 7.4. Comparison of model predictions for biofiltration of m-CB/o-DCB mixtures 
in conventional and biotrickling filters at pH = 6.8+0.2 as a function of air residence time 

(τ)a
. 

j 

CGii 

 

(gm-3) 

 

RpredCB  Rpred  
(gm-3-reactor h-1) 	(gm-3-reactor h-1) 

G 
(%) 
(%) 	 

C 
D 

0.97 
0.30 

τ  = 5.85 min 

	

4.19 	 9.23 

	

1.41 	 2.55 
+120.29 
+80.85 

C 
D 

C 
D 

0.76 
0.10 

0.45 
0.05 

	

3.53 	 6.67 

	

0.49 	 0.82 
τ  = 4.50 min 

	

2.36 	 4.80 

	

0.27 	 0.56 

+88.95 
+67.35 

+103.39 
+107.41 

C 
D 

C 
D 

1.60 
0.17 

0.17 
0.27 

	

6.91 	 17.20 

	

0.82 	 1.87 
τ  = 3.20 min 

	

0.82 	 2.32  - 

	

1.31 	 3.69 

+148.91 
+128.05 

+182.99  
+181.67 

C 
D 

2.58 
0.70 

	

9.25 	 31.88 

	

3.13 	 9.56 
+244.65 
+205.43 

C 
D 

3.06 
0.76 

	

10.67 	 39.56 

	

3.28 	 10.13 
+270.76 
+208.84 

aC: m-CB; D: o-DCB; CGji  inlet VOC concentration; RpredCB: predicted removal rate in 
a conventional biofilter; Rpred  

B
TF : predicted removal rate in a trickling biofilter; 

percent gain in VOC removal with a BTF 



CHAPTER 8 

CONCLUSIONS AND RECOMMENDATIONS 

The main conclusion from this study is that, despite its complexity, biofiltration of VOC 

vapors in biotrickling filters can be successfully modeled with equations which accurately 

reflect kinetics of biodegradation and mass transfer effects. 

Experimentally, this study has shown that biotrickling filters used in removal of 

chlorinated aromatic VOCs can be successfully operated over long periods of time. 

Biomass generation created no problems as excess amounts of it were removed during 

liquid replenishment with fresh medium. Daily changes of the medium allowed for 

maintenance of steady state conditions regarding effects from the availability of 

additional (non-carbon sources) nutrients for the biomass. 

High removal rates and percent m-CB conversion were obtained under all 

conditions tested. Conversion of m-CB was never below 70% and at low concentrations 

exceeded 90%. A maximum removal rate of about 60 gm-3-reactor h-1  was observed. It 

was also found that removal of o-DCB is more difficult when compared to m-CB 

because of much slower kinetics of o-DCB biodegradation. For this reason, a maximum 

removal rate of about 30 gm-3-reactor 

h

-1  was obtained. Conversion of pollutants was 

found to increase as the values of their inlet concentration and air flow rate decrease. In 

all cases, the flow rate of the liquid as well as its total amount were low, suggesting that 

biotrickling filters do not necessarily require large amounts of liquid (which is an 
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additional operating expense) in order to operate efficiently. However, for a given set of 

operating conditions, removal rates were found to increase with the flow of the liquid. 

This suggests that, for performing a given duty, one has to either use a larger unit with a 

low or moderate flow of liquid or use a smaller reactor with a large liquid flow rate. One 

can then conclude that in designing a biotrickling filter, capital cost (associated with size) 

and operating cost (associated with medium use) run in opposite directions and an 

interesting problem of optimal design has to be considered. 

For single VOCs treated in biotrickling filters, the results obtained in the present 

study under co-current flow of liquid and air were superior to those obtained under 

counter-current conditions. Increased efficiencies under co-current flow operation can be 

attributed to higher driving forces for the transfer of VOC from the polluted air to the 

liquid. This transfer is a necessary step before the pollutant meets the biofilms where 

biodegradation occurs. It should be mentioned, however, that the differences from co- and 

counter-current operation are less pronounced at low inlet VOC concentrations. 

Biotrickling filters appear to lead to biofilm-liquid interfacial areas much higher 

than the biofilm-air interfacial area achieved in classical biofiltrers. This is definitely a 

big plus, although one should keep in mind that in biotrickling filters there is an 

additional mass-transfer resistance (from the gas to the liquid). The actual surface area of 

the liquid-biofilm interface has never been measured. The indication from calculations 

performed during the course of this study is that coverage of particles with biofilm is in 

the range of 25-47% of the total particle area. This seems to be in accord with reports 

from other studies (Diks and Ottengraff, 1992). 
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The removal of pollutant(s) drops as the age of the liquid trickling through the 

bed increases. This is due to depletion of some essential nutrients for the organisms. It 

was found that rates remain relatively constant when the liquid (nutrients) is completely 

replenished daily. 

Regarding modeling, the process was successfully described with a mathematical 

model which considers the stepwise pollutant and oxygen transfer from the air to the 

liquid and then to the reaction environment of the biofilms. Solution of the model 

equations yielded VOC(s) and oxygen concentration profiles in all three phases 

(airstream, liquid, biofilm). Despite the complexity of the model all its parameters were 

either measured or estimated and predictions agreed very nicely with all data that were 

collected. Although it was not measured, the concentration of oxygen in the liquid phase 

was found to be well below saturation when the inlet pollutant concentration is relatively 

high_ As a result, the availability of oxygen in the biofilms can become the controlling 

factor for the process. In such cases, the biotrickling filter is predicted to consist of two 

zones. The zone close to the inlet of the polluted air is oxygen-limited whereas the zone 

close to the exhaust is VOC-limited. 

The pH of the liquid was found to affect the removal of VOCs but not to the 

extent found with suspended cultures of the same microbial consortia. This suggests that 

the pH of the liquid is not a true indicator of the pH in the reaction environment of the 

biofilm. It appears that mass transfer limitations for the chloride ions shield the inner 

layers of the biofilms from unfavorable pH values. The implications can be economically 
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significant as periodic adjustment of pH may suffice and an expensive unit for tight pH-

control may not be needed. This is a point needing further investigation. 

Treatment of airstreams contaminated with mixtures of two chlorinated VOCs in 

biotrickling filters under steady-state conditions of operation was also described with a 

general mathematical model. The model accounts for potential kinetic interactions among 

the pollutants and effects of oxygen availability on biodegradation. Good agreement 

between model predictions and experimental data was found in almost all cases. 

Detailed experiments with suspended cultures have generated a number of results 

during this study. First, it was found that m-CB and o-DCB get utilized by consortia 

following Andrews' inhibitory kinetics. When in mixture, the two compounds are 

involved in a kinetic cross-inhibitory interaction of the competitive type. Second, 

sensitivity studies with the BTF models have shown that in all cases two kinetic constants 

are important. Thus, first- or zero-order kinetic approximations are not justified. 

Additionally, kinetic interactions are not important at low concentrations such as those 

expected in emissions and as a result, they can be neglected when modeling removal of 

m-CB/o-DCB mixtures in BTFs. Another important conclusion is that the microbial 

consortia are stable and do not change composition over time in BTFs. It was in fact 

found that when biomass is taken from BTFs operating for 8 months and used in 

suspended culture kinetic studies, the kinetic constants obtained are essentially identical 

with those obtained when the original consortium is used. One can then conclude that 

BTFs are robust systems and are not subject to biomass contamination, at least when hard 

to biodegrade compounds (such as m-CB and o-DCB) are used. Finally, the kinetic 
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studies have revealed the first quantitative description of the effects of pH on m-CB and 

o-DCB biodegradation. 

The present study has dealt with an engineering analysis of BTFs operating under 

steady state conditions. Future studies should address transient operation which is 

expected to be more common when emissions are treated in BTFs. Modeling of transient 

operation is not expected, however, to alter conceptually the proposed model. In the case 

of conventional biofilters, transient operation introduces a whole new process; namely, 

the physical adsorption of VOCs on the packing material. Such a process cannot happen 

in biotrickling filters due to the different nature of packing material used. 

Future studies with BTFs should consider cases involving removal of relatively 

hydrophilic compounds, mixtures of hydrophobic/hydrophilic compounds and mixtures 

of structurally dissimilar compounds. Such dissimilarities may raise issues of biomass 

diversification and structuring in BTFs. Biomass inhomogeneity in BTFs is expected to 

lead to interesting experimental and modeling problems. 

The present study has contributed significantly toward understanding biotrickling 

filters from the engineering analysis view point. Further studies can increase the potential 

for industrial applications of biotrickling filters based on rational engineering approaches 

rather than trial and error methodologies. 



APPENDIX A 

COMPUTER CODE FOR SOLVING THE STEADY-STATE 
MODEL DESCRIBING REMOVAL OF A SINGLE VOC 

IN A BIOTRICKLING FILTER 
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c***************************************************** 

c This computer code numerically solves the steady state model presented 

c in Chapter 6 (Set 1). This model describes removal of a single VOC in 

c a biotrickling filter. The code is based on the orthogonal collocation 

c method and the 4th-Runge-Kutta method. It uses an iteration procedure for 

c obtaining VOC and oxygen concentration profiles in the biofilm and in the 

c gas and liquid phase along the column. The computer code consists of 

c a main program CODE.FOR and a subroutine SUB.FOR (not included). 

c CASE 1: CO-CURRENT FLOW OF GAS AND LIQUID 

c*************************************************** 

IMPLICIT REAL*8 (A-H2O-Z) 
PARAMETER (N = 10) 
PARAMETER (NG = 600) 
REAL HEIGHT(NG+1),GAS1(NG+1),GAS2(NG+1) 
REAL BQ1 (NG+1),BQ2(NG+1) 
REAL SAV1,SAV2,TAV1,TAV2,DE1,DE2,LAS T I ,LAST2 
REAL ERRORC,ERRORO,CLOI,CLO2 
REAL*8 A(0:N+1,0:N+1),B(0:N+1,0:N+1),V1(N+2),V2(N+2) 
REAL*8 XOLD(N),XINTP(N+2),Y(N+2) 
REAL*8 XDAT(N+1),YC(N+l),YO(N+1) 
REAL*8 ROOT(N+2),DIF1(N+2),DIF2(N+2),DIF3(N+2) 

EXTERNAL FUN1,GUN1 
EXTERNAL FUN2,GUN2 

COMMON /DEL/ DEL 
COMMON /SUR/ SUR 
COMMON /INDEX/ INDX 

COMMON /PRMA/ A 
COMMON /PRMB/ B 

COMMON /PRM1/ PHI 
COMMON /PRM2/ CG1 
COMMON /PRM3/ CG2 
COMMON /PRM4/ CL I 
COMMON /PRM5/ CL2 
COMMON /PRM6/ CLOI 
COMMON /PRM7/ CLO2 



COMMON /PRM8/ AL 
COMMON /PRM9/ W 
COMMON /PRM10/ G 
COMMON /PRM11/ R 
COMMON /PRM12/ El 
COMMON /PRM13/ PSI 
COMMON /PRM14/BT 
COMMON /PRM15/AN 
COMMON /PRM16/AC 
COMMON /PRM 17/A0 

COMMON /LIQUIDC/DERI1 
COMMON /LIQUIDO/DERI2 
COMMON /CG0/ACG0 I ,ACG02 

OPEN(6,FILE='BTFCOLW.OUT',STATUS='NEW') 

c APPLY ORTHOGONAL COLLOCATION METHOD 

ALPHA=0.0 
BETA=0.0 

N0=I 
N1=1 
NT=N+N0+N1 

c CALCULATE THE COLLOCATION POINT 

CALL JCOBI (NT,N,N0,N1,ALPHA,BETA,DIF1,DIF2,DIF3,ROOT) 

c CALCULATE THE DISCRETIXATION MATRICES A & B 

DO 50 I=1,NT 
CALL DFOPR(NT,N,N0,N1,I,1,DIFI,DIF2,DIF3,ROOT,V1) 
CALL DFOPR(NT,N,N0,N1,I,2,DIF1,DIF2,DIF3,ROOT,V2) 
DO 60 J=1,NT 

A(I-1,J-1)=V1(J) 
60 B(I-1,J-1)=V2(J) 
50 CONTINUE 

INDX = 100 
WRITE (6,67) N 

67 FORMAT( ' SOLUTION OF THE MODEL USING ORTHOGONAL 
& COLLOCATION ',/,' WITH[', I3,'] COL. POINTS',/) 
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SUR = 133.3 

DE1=0.05 
DE2=0.05 
SAV1 = 0.0 
SAV2 = 0.0 
TAV1 =0.0 
TAV2 = 0.0 
CL01=0.2222 
CLO2 =0.9133 

c INITIALIZE ITERAT TO ZERO 

ITERAT=0 
700 ITERAT=ITERAT+1 

WRITE (6,990) ITERAT 
990 	FORMAT (////, 'ITERATION NUMBER:', 110) 
5000 WRITE (6,5005) CL01,CL02 
5005 FORMAT (3X,FI4.6,3X,F14.6,3X) 

CG1 = 1.0 
CG2 = 1.0 
CL1 = CL01 
CL2 = CL02 

DELZ = 1./FLOAT(NG) 
Z = 0.0 
HEIGHT(1) = Z 
GAS1(1)= CG1 
GAS2(I) = CG2 
BQ1(1)= CL1 
BQ2(I) = CL2 
DO 100 IGAS = 2,NG+1 
WRITE (6,1000) Z 

1000 FORMAT (3X,'HEIGHT = '5X, F14.7) 
DEL=130 

6 	CALL PRM (PHI,AL,W,G,R,E1,PSI,BT,AN,AC,AO) 
IF (IGAS.EQ.NG) THEN 
INDX=1000 
ELSE 
INDEX=200 
ENDIF 

c INITIAL GUESS FOR Y 
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DO 10 I=1,N 
XOLD(I)=0.1 

10 CONTINUE 

ITMAX = 100 
IPRINT = -1 

EPS1 = 1.E-9 
EPS2 = 1.E-9 

c *** IPRINT=1 ALL ITERATIONS ARE PRINTED*** 
CALL NEWTON(ITMAX,N, IPRINT,EPSI,EPS2,XOLD) 

c INTERPOLATION AT DESIRED VALUES 

CALL INTERP (XOLD,NT,ROOT, DIF1,XDAT,YC) 

SCF = YC(N+1) 
SOF = AL*(SCF-AC*CL1)+AO*CL2 
UPLM1 = AC*CL1*0.01 
UPLM2 = AO*CL2*0.01 
DEL = DEL*1E6 

IF (SOF.GT.0.0.AND.SOF.LE.UPLM2) THEN 
GO TO 5 
ELSEIF ((SCF.GT.0.0.AND.SCF.LE.UPLM1).0R. 
&(SOF.GT.0.0.AND.SOF.LE.UPLM2)) THEN 
GO TO5 
ELSEIF(DEL.LT.300) THEN 
DEL = DEL+5.0 
GO TO 6 
ELSEIF(DEL.GE.300) THEN 
DEL = 300 
GO TO 6 

ELSE 
ENDIF 

	

5 	INDX = 3000 
CALL INTERP (XOLD,NT,ROOT,DIF I ,XDAT,YC) 
CALL DERI (XOLD,DERILDERI2) 

c CALCULATE GAS PHASE AND LIQUID PHASE CONCENTRATION 

CALL RK4S(FUN1,GUN1,Z,CG1,CL1,DELZ) 
1001 WRITE (6,111) CG1 ,CL1 

	

111 	FORMAT (3X,F14.6,3X,F14.6,3X) 
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CALL RK4S (FLTN2,GUN2,Z,CG2,CL2,DELZ) 
1002 WRITE (6,112) CG2,CL2 
112 	FORMATt (3X,F14.6,3X,F14 .6,3X) 

Z = Z-DELZ 
HEIGHT(IGAS) = Z 
GAS1(IGAS) = CG I 
GAS2(IGAS) = CG2 

BQ1(IGAS) = CL1 
BQ2(IGAS) = CL2 

100 CONTINUE 
600 	CALL ERROR1 (CL I ,ERRORC,CL01) 

CALL ERROR2 (CL2,ERRORO,CL02) 

IF (SAV1.GT.0.0.AND.TAV I .GT.0.0) THEN 
IF (SAV2.GT.0.0.AND.TAV2.GT.0.0) THEN 
IF (CL01.EQ.LAST I .AND.CL02.EQ.LAST2) THEN 
GO TO 400 
ELSE 
ENDIF 
ENDIF 
ENDIF 
IF (ERRORC.EQ.0.0.AND.ERRORO.EQ.0.0) THEN 
GO TO 400 
ELSE 
ENDIF 

LAST1=CL01 
LAST2=CL02 

IF (ERRORC.GT.O.0.AND.ERRORO.GT  .0.0) THEN 
SAV I =CL01 
TAV I =CL02 
IF (SAV2.EQ.0.0.AND.TAV2.EQ.0.0) THEN 
CL01=CL0 I -DE1 
CL02=CL02-DE2 
ELSEIF (SAV2.EQ.0.0) THEN 

CL01=CL01-DE1 
CL02=(TAV I +TAV2)/2 
ELSEIF (TAV2.EQ.0.0) THEN 
CL01=(SAV I +SAV2)/2 
CL02=CL02-DE2 
ELSE 

CL01 I =(SAV1+SAV2)/2 
CLO2=(TAV I +TAV2)/2 
ENDIF 
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ENDIF 

IF (ERRORCIT.0.0.AND.ERRORO .LT.0.0) THEN 
SAV2=CL01 
TAV2=CL 02 
IF (SAY 1 .EQ.0.0.AND.TAV 1 .EQ.0.0) THEN 
CL01=CL01 1 +DE1 
CL02=CL02+DE2 
ELSEIF (SAV 1 .EQ.0.0) THEN 
CL01 =CL01+DE1  
CL02=(TAV I +TAV2)/2 
ELSEIF (TAV 1 .EQ.0.0) THEN 
CL0 1 =(SAV 1+SAV2)/2 
CL02=CL02+DE2 
ELSE 
CL01 1=(SAV 1 +SAV2)/2 
CL02=(TAV1+TAV2)/2 
END1F 
ENDIF 

IF (ERRORC.LT.0.O.AND.ERRORO.GT.0.0) THEN 
SAV2=CL01  
TAV 1 =CL02 
IF (SAVLEQ.0.0.AND.TAV2.EQ.0.0) THEN 
CL01 =CL01 1 +DE1 
CL02 = CL02-DE2 
ELSEIF (SAV 1 .EQ0.0) THEN 
CL01 1 = CL01+DE 1 
CL02 = (TAY 1 +TAV2)/2 
ELSEIF (TAV2 .EQ.0.0) THEN 
CL01 1 = (SAV I +SAV2)/2 
CL02 = CL02-DE2 
ELSE 
CL01 = (SAVI+SAV2)/2 
CL02 = (TAV 1+TAV2)/2 
ENDIF 
ENDIF 

IF (ERRORC.GT.0.O.AND.ERRORO.L T.0.0) THEN 
SAV 1 = CL0I 
TAV2 = CL02 
IF (SAV2.EQ.0.0.AND.TAV 1 .EQ.0.0) THEN 
CL01 = CL01 I -DE1 
CL02 = CL02+DE2 
ELSEIF (SAV2.EQ.0.0) THEN 
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CL011 = CL01 -DE1 
CL012 = (TAV1+TAV2)/2 
ELSEIF (TAV1.EQ.0.0) THEN 

CL01 I = (SAV1+SAV2)/2 
CL012 = CL02+DE2 
ELSE 

CL01 = (SAV1+SAV2)/2 
CLO2 = (TAV1+TAV21)/2 
ENDIF 
ENDIF 

GO TO 700 
400 WRITE(6,123) 

WRITE(6,22) 
22 	FORMAT(//,5X,' GAS AND LIQUID PHASE CONCENTRATION 

&PROFILES',//) 
WRITE(6,13) 

13 	FORMAT (",12X, 'HEIGHT',10X,ICG(C)',10X,'CL(C) '/) 
WRITE(6,15) 

15 	FORMAT (' ',12X, 'HEIGHT1,10X,'CG(O)',10X,'CL(O) V) 
DO 44 IGAS = 1,NG+1 
WRI TE(6,33) HEIGHT(IGAS) 

44 CONTINUE 
DO 45 IGAS = 1,NG+1 
WRI TE(6,34) GAS1(IGAS) 

45 CONTINUE 
DO 46 IGAS = I,NG+I 
WRITE (6,33) GAS2(IGAS) 

46 CONTINUE 
DO 47 IGAS = 1,NG+1 
WRITE (6,33) BQ1(IGAS) 

47 CONTINUE 
DO 48 IGAS =1,NG+1 
WRITE (6,34) BQ2(IGAS) 

48 CONTINUE 
33 FORMAT(3X,F14.6) 
34 FORMAT(3X,F14.6) 
123 FORMAT(' 	  

STOP 
END 

c************************************************************ 

c INTERPOLATING THE RESULTS THAT YOU GET FROM 

c NEWTON RAPHSON SUBROUTINE 
c************************************************************ 

SUBROUTINE INTERP (XOLD,NT,ROOT,DIF1,XDAT,YC) 



IMPLICIT REAL*8 (A-H2O-Z) 
PARAMETER(M = 10) 
REAL*8 XOLD(N),XINTP(N+2),Y1(N+2) 
REAL*8 XDAT(N+I), YC(N+1),YO(N+1) 
REAL*8 ROOT(N+2),DIF1(N+2),DIF2(N+2),DIF3(N+2) 
COMMON /PRM8/ AL 
COMMON /PRM16 / AC 
COMMON PRM17 /AO 
COMMON /PRM4/ CL1 
COMMON /PRM5/ CL2 
COMMON /INDEX/ INDX 

IF (INDX.EQ.3000) THEN 

WRITE(6,123) 
WRITE(6,12) 

12 FORMAT (",10X, 'CONCENTRATION PROFILES IN THE BIOFILM ', /) 
WRITE(6,13) 

13 	FORMAT (5X,' X ',18X,'S(C)',18X,'S(O)'//) 
ELSE 
ENDIF 

Y1(1) = AC*CLI I 

DO 15I =1,N 
15 	Y1 (I+1) = XOLD(I) 

Y1(NT) = YI(NT-1) 

DO 20I = 1,N+1 
DIST = FLOAT(I-1)/N 
CALL INTRP(NT,NT,DIST,ROOT, DIF1,XINTP) 
SC = 0.0 
DO 30 J = 1,NT 
SC = SC+XINTP(J)*Y1(J) 
30 CONTINUE 
IF (INDX.EQ.3000) THEN 
SO = (AL)*(SC-AC*CL1)+AO*CL2 
WRITE(6,40) DIST,SC,SO 
ELSE 
ENDIF 

c PLOT 
XDAT(I) = DIST 
YC(I) = SC 

20 CONTINUE 
40 FORMAT(5X.F7.2,5X.E14.6.5X,E14.6) 
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123 FORMAT(' 	  
RETURN 
END 

c************************************************************ 

c CONSTRUCT THE JACOBIAN MATRIX AND ON THE LAST 
c COLUMN VECTOR -f 
************************************************************ 

c SUBROUTINE CALCN FOR EVALUTING THE AUGMENTED 
c JACOBIAN MATRIX 
c JAC*DEL=-F SOLVING DEL 

SUBROUTINE CALCN(DXOLD,DF,N) 
IMPLICIT REAL*8 (A-H2O-Z) 
PARAMETER(M = 10) 
REAL*8 XOLD(M),DXOLD(M),DF(M,M+1),SUM1(M) 
REA1*8 A(0:M+1,0:M+1),B(0: M+1,0:M+1) 
COMMON /PRMA/ A 
COMMON /PRMB/ B 
COMMON TRW/ PHI 
COMMON /PRM4/ CL1 
COMMON /PRM5/ CL2 
COMMON /PRM8/ AL 
COMMON /PRM10/ G 
COMMON /PRM16/ AC 
COMMON /PRM17/ AO 
ORS = AO*CL2-AL*AC*CL1 

DO 1 I = 1,N 
XOLD(I) = DXOLD(I) 
DO 1 J =1,N+1 

1 	DF(I,J) = 0.0 

DO 3 I = 1,N 
3 	SUM1 (I) = 0.0 

DO 10I = 1,N 
DO 20 J = 1,N 
IF (I.EQ.J) THEN 
P1=AL*XOLD(I) 
P2=P 1 +ORS 
P3=1 .+P2 
P4=1 .+XOLD(I)+G*XOLD(I)* *2 
P5=1.-G*XOLD(I)**2 
DF(I,J) = B(I,J)-B(I,N+I)/A(N+ I ,N+1)*A(N+1,J) 
&-PHI*(P2*P3*P5+P1*P4)/((P4**2)*(P3**2)) 
ELSE 
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DF(I,J) = BUM-B(I,N+ I )/A(N+1,N+1)*A(N+I ,J) 
ENDIF 
SUM1 (I) = SUM1(I)+(B(I,J)-B(I,N+1)/A(N+1,N+1)*A(N+1,J))*XOLD(J) 

20 CONTINUE 
DF(I,N+1)=-(SUMI(I)+B(I,0)*AC*CL1-B(I,N+1)* 

&A(N+1,0)*AC*CL1/A(N+1,N+1)- 
&PHI*P2*XOLD(I)/(P3 *P4)) 

10 CONTINUE 
RETURN 
END 

c********************************************************** 

c NEWTON RAPHSON TO SOLVE THE ALGEBRIC EQUATIONS 
c********************************************************** 

SUBROUTINE NEWTON(ITMAX,N, IPRINT,EPS1,EPS2,XOLD) 
IMPLICIT REAL*8 (A-H2O-Z) 
PARAMETER (M=10) 
DIMENSION XOLD(M),XINC(M),A(M,M+1) 

c NEWTON RAPHSON ITERATION 
c WRITE(6,200) ITMAX, IPRINT,N,EPS1,EPS2,N,(XOLD(I), I = 1,N) 

WRITE (6,123) 
DO 9 ITER = 1, ITMAX 

c CALL ON CALCN TO SET UP THE A MATRIX 
CALL CALCN(XOLD,A,M) 

c CALL SIMUL TO COMPUTE JACOBIAN AND CORRECTION IN XINC 
NN = N+1 
INDIC = 1 
DETER = SIMUL (N,A,XINC,EPSI, INDIC,NN) 
IF (DETER.NE.0) GOTO 3 
WRITE(6,201) 
RETURN 

c CHECK FOR CONVERGENCE AND UPDATE XOLD VALUE 
3 	ITCON = 1 

DO 5 I=1,N 
IF (DAB S(XINC(I)).GT.EPS2) ITCON = 0 

5 	XOLD(I) = XOLD(I)+XINC(I) 
IF (IPRINT.EQ.1) WRITE(6,202) ITER,DETER,N,(XOLD(I), I = 1,N) 
IF (ITCON.EQ.0) GOTO 9 

c WRITE(6,203) ITER,N,(XOLD(I),I=1,N) 
WRITE(6,2203) ITER 
RETURN 

9 CONTINUE 
WRITE(6,204) 
RETURN 

c FORMATS FOR INPUT AND OUTPUT STATEMENTS 
200 FORMAT(' ITMAX = I8,/' IPRINT = I8/' N = 18/ 
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& 	' EPS1 	',1PE14.I/ EPS2 = ',1PEI4.1/1 0X,'XOLD(L)...XOLDC, 
& 	12,711(IH ,IP4E16.6)) 
201 FORMAT(38HOMATRIX IS ILL-CONDITIONED OR SINGULAR) 
202 FORMAT(' ITER =', 18/ 10H DETER = ,E18.5/ 

$ 26H 	XOLD(L)...XOLD(,I2,IH) / (1H ,1P4E16.6) ) 
203 FORMAT(' SUCCESSFUL CONVERGENCE'/' ITER =`,i3/10x, 

$'XOLD(L)...XOLD(', I2,')'// (1H ,1P4E16.6) ) 
2203 FORMAT(' SUCCESSFUL CONVERGENCE'/' ITER =',13/) 
204 FORMAT(' NO CONVERGENCE' ) 
123 FORMAT(' 	  

END 

c************************************************************** 

SUBROUTINE SVARI(SUR,DEL,BO,DFF1,DFF2,AKAP1,AKAP2, 
&AMM1, AMM2,AY1,AY2,AKSSI,AMULAKII1,AKOO1, ACG01, 
&ACG02,AUG,AUL,VV) 
IMPLICIT REAL*8 (A-H2O-Z) 
WRITE(6,123) 
WRITE(6,1) 

1 	FORMAT (",//, ' VARIABLES IN THE MODEL',//) 
WRITE(6,2) 

2 	FORMAT (3X,'1 - VOC,/,3X,'2 OXYGEN',/) 
WRITE(6,19) AUG 

19 	FORMAT (' ', 'GAS FLOW RATE (m3/hr) 	E14.3) 
WRITE(6,20) AUL 

20 	FORMAT (' ', 'LIQUID FLOW RATE(m3/hr) 	E14.3) 
WRITE(6,3) VV*1E6 

3 	FORMAT (' ', 'VOLUME OF THE COLUMN(cm3) = FI4.3) 
WRITE(6,4) SUR 

4 	FORMAT (' ', 'BIOLAYER SUR.AREA( m2/m3) = F14.3) 
WRITE(6,44) BO 

44 	FORMAT (' ', 'BIOMASS CONC. (g/m3) 	= E14.3) 
WRITE(6,5) DEL*1E3 

5 	FORMAT (' ', 'FILM THICKNESS (p.m) 	= F14.3) 
WRITE(6,18) ACGO1 

WRITE(6,21) ACGO2 
18 	FORMAT (' ', 'INLET CONC. (g/m3 OF VOC)(1) = ', F14.3) 
21 	FORMAT (' ', 'INLET CONC. (g/m3 OF AIR)(2) ', F14.3) 

WRITE(6,31) AY1 
31 	FORMAT (' ', 'YIELD COEFFICIENT (I) 	= ', FI4.3) 

WRITE(6,32) AY2 
32 	FORMAT (' ', 'YIELD COEFFICIENT (2) 	= FI4.3) 

WRITE(6,51) DFF1*IE9/3600 
WRITE(6,54) DFF2*1E9/3600 
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51 	FORMAT (' DIFF. COEFF.(I)*1E9 (m2/s) = F14.3) 
54 	FORMAT (' ', 'DIFF. COEFF.(2)*1E9 (m2/s) = F14.3) 

WRITE(6,56) AMM1 
56 	FORMAT (' ', 'DIST. COEFF. 	(1) = • E14.3) 

WRITE(6,57) AMM2 
57 	FORMAT (' ', 'DIST. COEFF. 	(2) = • EI4.3) 

WRITE(6,48) AKAP1 
48 	FORMAT (' ', 'MASS TRANSFER COEFF (1) = • E14.3) 

WRITE(6,49) AKAP2 
49 	FORMAT (",'MASS TRANSFER COEFF (2) = • E14.3) 

WRITE(6,123) 
WRITE(6,*) ' 	ANDREWS AND OTHER PARAMETERS' 
WRITE(6,6) AKSS I ,AMU1, AKII1,AKOO1 

6 	FORMAT (' ',/,' KS1 (g/m3) = ',E14.3,3X,'MU1 (1/hr) = ',F14.3,/, 
' KSI1 (g/m3) = ',EI4.3,3X,'KO1 (g/m3)= 'E14.3,/) 

123 FORMAT(' 	  
RETURN 
END 

************************************************************ 

c SUBROUTINE FOR EVALUATING THE DERIVATIVES 
c NECESSARY FOR GAS AND LIQUID PHASE PROFILES 
************************************************************ 

SUBROUTINE DERI (XOLD, DERI1,DERI2) 
IMPLICIT REAL*8 (A-H2O-Z) 
PARAMETER (N=10) 
REAL*8 A(0:N+1,0:N+1),B(0:N+1,0:N+1) 
REAL*8 XOLD(N) 
COMMON /PRM16/ AC 
COMMON /PRM17/AO 
COMMON /PRM8/ AL 
COMMON /PRMA/ A 
COMMON /PRMB/ B 
COMMON /PRM4/ CL1 
COMMON /PRM5/CL2 
SUM1 = 0.0 
DO 10 J= 1,N 
SUM1 = SUM1+(A(0,J)-A(0,N+1)*A(N+1,J)/A(N+1,N+1))*XOLD(J) 

10 CONTINUE 
DERI I = SUM1+(A(0,0)-A(0,N+1)*A(N+1,0)/A(N+1,N+1))*AC*CLI 
DERI2 = AL*DERI1 
WRITE(*,*) DERI I , DERI2 
RETURN 
END 

c********************************************************** 

c FOR GAS AND LIQUID PHASE USING THE FOURTH ORDER 
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c RUNGE KUTTA METHOD 
c********************************************************** 

SUBROUTINE RK4S(F,G,Z,CG,CL,H) 
IMPLICIT REAL*8 (A-H2O-Z) 
H2 = 0.5*H 
START = Z 
B1 = H*F(Z,CG,CL) 
B2 = H*G(Z,CG,CL) 
B3 = H*F(Z+H2,CG+H2*B1,CL+H2*B2) 
B4 = H*G(Z+H2,CG+H2*B1,CL+H2*B2) 
B5 = H*F(Z+H2,CG+H2*B3,CL+H2*B4) 
B6 = H*G(Z+H2,CG+H2*B3,CL+H2*B4) 
B7 = H*F(Z+H,CG+H*B5,CL+H*B6) 
B8 = H*G(Z+H,CG+H*B5,CL+H*B6) 
CG = CG+(B1+2.*B3+2.*B5+B7)/6. 
CL = CL+(B2+2.*B4+2.*B6+B8)/6. 
Z = Z+H 
WRITE (*,*) CG,CL 
RETURN 
END 

c************************************************************ 

c 	PURPOSE : GIVE THE FUNCTION FOR RK METHOD, IN THE 
c GAS PHASE BALANCE ; VOC (BLOCK A) 
c************************************************************ 

FUNCTION FUN1(Z,CG,CL) 
IMPLICIT REAL*8 (A-H2O-Z) 
COMMON / PRM11/ R 
COMMON / PRM2/ CGI 
COMMON / PRM4/ CL1 

FUN1 = R*(CLI-CG1) 
RETURN 
END 

c************************************************************* 

c PURPOSE : GIVE THE FUNCTION FOR RK METHOD, IN THE 
c LIQUID PHASE BALANCE ; VOC 
c************************************************************* 

FUNCTION GUN1(Z,CG,CL) 
IMPLICIT REAL*8 (A-H2O-Z) 
COMMON / PRM13/ PSI 
COMMON /PRM15/AN 
COMMON / LIQUIDC/DERII 
COMMON / PRM2/ CGI 
COMMON / PRM4/ CL1 
GUN1 =-PSI*(CL1-CGI)+AN*DERI1 
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RETURN 
END 

c************************************************************* 

c PURPOSE : GIVE THE FUNCTION FOR RK METHOD, IN THE 
c GAS PHASE BALANCE ; OXYGEN (BLOCK B) 
c************************************************************* 

FUNCTION FUN2(Z,CG,CL) 
IMPLICIT REAL*8 (A-H2O-Z) 
COMMON / PRMII/R 
COMMON /PRM12/E1 
COMMON / PRM3/ CG2 
COMMON / PRM5/ CL2 
FUN2 = R*E1*(CL2-CG2) 
RETURN 
END 

c*********************************************************** 

c PURPOSE : GIVE THE FUNCTION FOR RK METHOD, IN THE 
c LIQUID PHASE BALANCE ; OXYGEN 
*********************************************************** 

FUNCTION GUN2(Z,CG,CL) 
IMPLICIT REAL*8 (A-H2O-Z) 
COMMON / PRM13/ PSI 
COMMON / PRM14/ BT 
COMMON / PRM15/ AN 
COMMON / PRM9/ W 
COMMON / PRM3/ CG2 
COMMON / PRM5 / CL2 
COMMON / LIQUIDO/ DERI2 
GUN2 =-PSI*BT*(CL2-CG2)+AN*W*DERI2 
RETURN 
END 

************************************************************ 

SUBROUTINE ERROR I (CL I ,ERRORC,CL01 I) 
IMPLICIT REAL*8 (A-H2O-Z) 
COMMON / PRM4/ CL1 
COMMON / PRM6/ CLOT 
ERRORC = CL I -CLO1 
RETURN 
END 

c************************************************************ 

SUBROUTINE ERROR2 (CL2,ERRORO,CL02) 
IMPLICIT REAL*8 (A-H2O-Z) 
COMMON /PRM5/ CL2 
COMMON /PRM7/ CL02 
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ERRORO = CL2-CL02 
RETURN 
END 

************************************************************ 

SUBROUTINE PRM (PHI,AL,W,G,R,E1,PSI,BT,AN,AC,AO) 
IMPLICIT REAL*8 (A-H2O-Z) 
COMMON /DEL/ DEL 
COMMON /SUR/ SUR 
COMMON /INDEX/ INDX 
COMMON /CG0 /ACG01,ACG02 

c 1-VOC 
c 2-OXYGEN 

DEL = DEL*1E-6 
WRITE(6,80) DEL*1E6 

B0 = 75E3 
XV = B0/1000 
FD = 1-0.43*XV**0.92/(11.19+0.27*XV**0.99) 

c DIFFUSION COEFFICIENTS 
DFF1 = 0.691E-9 *3600.*FD 
DFF2 = 2.3807E-9 *3600.*FD 

c OVERALL MASS TRANSFER COEFFICIENTS 
AKAP1 = 12.258 
AKAP2 = 28.841 

c DISTRIBUTION COEFFICIENTS 
AMM1 = 0.119 
AMM2 = 34.4 

c YIELD COEFFICIENTS 
AY1 = 0.397 
AY2 = 0.363 

c KINETIC PARAMETERS 
AKSS1= 13.389 
AMU1 = 0.146 
AKII1 = 19.657 
AKOO1 = 0.26 

c INLET GAS CONCENTRATIONS 
ACG01 = 0.9 
ACG02 = 275 
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c GAS FLOW RATE 
AUG = 0.2438 

c LIQUID FLOW RATE 
AUL = 0.0052 

c VOLUME OF THE COLUMN 
VV = 0.0126 

IF (INDX.EQ .100) THEN 
CALL SVARI(SUR,DEL,BO,DFF1,DFF2,AKAP1,AKAP2,AMM1, 
&AMM2,AY1,AY2,AKSS1,AMU1,AKII 1, AKOO1 O1,ACG01, ACG02, 
&AUG,AUL,VV) 
ELSE 
ENDIF 

PHI = (AMU I *(DEL**2)*B0)/(DFF1*AY 1 *AKS S 1) 
AL = (DFF1*AY1*AKSSI)/(AY2*AKOO1*DFF2) 
W = (AKOO1*DFF2*ACGOI*AMM2)/(AKSS1*DFFI*ACGO2*AMM1) 
G =AKSS1/AKII1 
R = (AKAP1 *VV)/(AUG*AMM1) 
E I= (AMM I *AKAP2)/(AMM2*AKAP1) 
PSI =(AKAPI*VV)/AUL 
BT = AKAP2/AKAP1 
AN =(DFF1*SUR*AKSS I *VV*AMM1)/(DEL*AUL*ACG01) 
AC = ACG01/(AKSS1*AMM1) 
AO = ACG02/(AKOO1*AMM2) 

IF (INDX.EQ.1000) THEN 
WRITE(6,123) 
WRITE(6,71) 

71 	FORMAT (' ', ' PARAMETERS USED :', /) 
WRITE(6,72) PHI, G 
WRITE(6,73) E I ,AN 
WRITE (6,74) AC,AO 

72 	FORMAT (3X,'PHI^2 = ',E14.6, 
& 	3X,'GAMA = ',E14.6) 
73 	FORMAT (3X,'EPS1 = ',FI4.6, 
& 	3X,'N = ',E14.6) 

WRITE(6,75) AL 
WRITE(6,76) W 

75 	FORMAT (3X,'LAMDA = ',E14.6) 
76 	FORMAT ( 3X,'OMEGA = ',E14.6) 

WRITE(6,77) R,PSI,BT 
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77 	FORMAT (3X,'RO = ',E14.6, 
& 3X,'PSI = ',E14.6, 
& /,3X,'BETA = ',F14.3,/) 
74 	FORMAT (3X,'STATHC = ',E14.6, 
& 3X'STATHO = ',E14.6) 
80 	FORMAT (3X,'DEL.(um)= ',F14.31) 
123 FORMAT(' 	 ',/) 

ELSE 
ENDIF 
RETURN 
END 

c*******END OF MAIN PROGRAM************************** 

c CASE 2: COUNTER-CURRENT FLOW OF GAS AND LIQUID 
c IN BLOCK A, LINE 6 SHOULD BE: 
c FUN1 = -R*(CL1-CG1) 
c IN BLOCK B, LINE 6 SHOULD BE: 
c FUN2 = -R*E1*(CL2-CG2) 



APPENDIX B 

COMPUTER CODE FOR SOLVING THE STEADY-STATE 
MODEL DESCRIBING REMOVAL OF A MIXTURE OF TWO VOCS 

IN A BIOTRICKLING FILTER 
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C***************************************************** 

c This computer code numerically solves the steady state model presented 

c in Chapter 7. This model describes removal of a mixture of two VOCs in 

c a biotrickling filter. The code is based on the orthogonal collocation 

c method and the 4th-Runge-Kutta method. It uses an iteration procedure for 

c obtaining VOC and oxygen concentration profiles in the biofilm and in the 

c gas and liquid phase along the column. The computer code consists of 

c program CODEMX.FOR and a subroutine SUBMX.FOR (not included). 

c CASE 1: CO-CURRENT FLOW OF GAS AND LIQUID 

c*************************************************** 

IMPLICIT REAL*8 (A-H2O-Z) 
PARAMETER (N = 10) 
PARAMETER (NG = 600) 
REAL HEIGHT(NG+I),GAS1(NG+1),GAS2(NG+1),GAS3(NG+1) 
REAL BQ1(NG+1),BQ2(NG+1),BQ3(NG+1) 
REAL SAV1,SAV2,TAV1,TAV2,GAV1,GAV2 
REAL DE1,DE2,DE3,LAST1,LAST2,LAST3 
REAL ERRORC,ERRORD,ERRORO,CL01,CL02,CL03 
REAL*8 A(0:N+1,0:N+1),B(0:N+1,0:N+1),V1(N+2),V2(N+2) 
REAL* 8 XOLD(N),XINTP(N+2),Y(N+2) 
REAL*8 XDAT(N+1),YC(N+1),YD(N+1),YO(N+1) 
REAL*8 ROOT(N+2),DIF1(N+2),DIF2(N+2),DIF3(N+2) 

EXTERNAL FUN1,GUN1 
EXTERNAL FUN2,GUN2 
EXTERNAL FUN3,GUN3 

COMMON /DEL/ DEL 
COMMON /SUR/ SUR 
COMMON /INDEX/ INDX 

COMMON /PRMA/ A 
COMMON /PRMB/ B 

COMMON /PRM1/ PHI1,PHI2 
COMMON /PRM2/ CG1 
COMMON /PRM3/ CG2 
COMMON /PRM4/ CL1 
COMMON /PRM5/ CL2 



COMMON /PRM6/ CL01 
COMMON /PRM7/ CLO2 
COMMON /PRM8/ AL1,AL2 
COMMON /PRM9/ W1,W2 
COMMON /PRM10/ Gl,G2 
COMMON /PRM11/ R 
COMMON /PRM12/ El ,E2 
COMMON /PRM13/ PSI 
COMMON /PRM14/BT1,BT2 
COMMON /PRM15/AN 
COMMON /PRM16/AC 
COMMON /PRM17/AO 
COMMON /PRM 18/AD 
COMMON /PRM19/CG3 
COMMON /PRM20/CL3 
COMMON /PRM21/CLO3 

COMMON /LIQUIDC/DERI1 
COMMON /LIQUIDD/DERI2 
COMMON /LIQUIDO/DERI3 
COMMON /CG0/ACG01,ACG02,ACG03 

OPEN(6,FILE=BTFCOLWMX.OUT',STATUS='NEW') 

c APPLY ORTHOGONAL COLLOCATION METHOD 

ALPHA=0.0 
BETA=0.0 

N0=1 
NI=1 

NT=N+NO+N1  

c CALCULATE THE COLLOCATION POINT 

CALL JCOBI (NT,N,N0,N1,ALPHA,BETA,DIFI,DIF2,DIF3,ROOT) 

c CALCULATE THE DISCRETIXATION MATRICES A & B 

DO 50 H=l ,NT 
CALL DFOPR(NT,N,NO,N1J,1,DIF1,DIF2,DIF3,ROOT,V1) 
CALL DFOPR(NT,N,NO,N1,I,2,DIF1,DIF2,DIF3,ROOT,V2) 
DO 60 J=1,NT 
A(I-1,J-I)=V1(J) 

60 B(I-1,J-1)=V2(J) 
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50 CONTINUE 

INDX = 100 
WRITE (6,67) N 

67 FORMAT( ' SOLUTION OF THE MODEL USING ORTHOGONAL 
& COLLOCATION ',/,' WIMP, I3,1 COL. POINTS',/) 

SUR = 133.3 

DE1 = 0.05 
DE2 = 0.05 
DE3 = 0.05 
SAV1 = 0.0 
SAV2 = 0.0 
SAV3 = 0.0 
TAV1 =0.0 
TAV2 = 0.0 
TAV3 = 0.0 

CL01 I =0.2222 
CL02 =0.9133 

CL03 = 0.119 
c INITIALIZE ITERAT TO ZERO 

ITERAT=0 
700 ITERAT=ITERAT+1 

WRITE (6,990) ITERAT 
990 	FORMAT (////, 'ITERATION NUMBER:', I10) 
5000 WRITE (6,5005) CL01,CL02,CLO3 
5005 FORMAT (3X,F14.6,3X,F14.6,3X,F14.6,3X) 

CG1 = 1.0 
CG2 = 1.0 
CG3 = 1.0 
CL1 = CL01 
CL2 = CL02 
CL3 = CLO3 

DELZ = 1./FLOAT(NG) 
Z = 0.0 

HEIGHT(1) = Z 
GAS1(1) = CG1 
GAS2(1) = CG2 
GAS3(1) = CG3 

BQ1(1) = CL1 
BQ2(1) = CL2 
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BQ3(1) = CL3 
DO 100 IGAS=2,NG+1 
WRITE (6,1000) Z 

1000 FORMAT (3X,'HEIGHT = 	F14.7) 
DEL=90 

6 	CALL PRM (PHI1,PH12, AL1,AL2,W1,W2,G1,G2,R,E1,E2, 

&PSI,BT1,BT2,AN,AC,AD,AO,S1,S2) 
IF (IGAS.EQ.NG) THEN 
INDX=1000 
ELSE 
INDEX=200 
ENDIF 

c INITIAL GUESS FOR Y 

DO 10I=1, 2*N 
XOLD(I)=0.1 

10 CONTINUE 

ITMAX = 100 
IPRINT = -1 
EPSI = 1.E-9 
EPS2 = 1.E-9 

c *** IPRINT=1 ALL ITERATIONS ARE PRINTED*** 
CALL NEWTON(ITMAX,2*N,IPRINT, EP S 1,EPS2,XOLD) 

c INTERPOLAIION AT DESIRED VALUES 

CALL INTERP (XOLD,NT,ROOT, DIF1,XDAT,YC,YD) 

SCF = YC(N+1) 
SDF = YD(N+1) 
SOF =(ALI)*(SCF-AC*CL1)+(AL2)*(SDF-AD*CL2)+AO*CL3 
UPLM1 = AC*CL1*0.01 
UPLM2 = AD*CL2*0.01 
UPLM3 = AO*CL3*0.01 
DEL = DEL*1E6 

IF (SOF.GT.0.0.AND.SOF.LE.UPLM3) THEN 
GO TO 5 
ELSEIF ((SCF.GT.0.0.AND.SCF.LE.UPLM1).OR. 
&(SDF.GT.0.0.AND.SDF.LE.UPLM2).OR. 

&(SOF.GT.0.0.AND.SOF.LE.UPLM3)) THEN 
TO5 

160 



ELSEIF(DEL.LT.300) THEN 
DEL = DEL+2.0 
GO TO 6 
ELSEIF(DEL.GE.300) THEN 
DEL = 300 
GO TO 6 

ELSE 
ENDIF 

5 	INDX = 3000 
CALL INTERP (XOLD,NT,ROOT,DIF1,XDAT,YC,YD) 
CALL DERI (XOLD,DERILDERI2,DERI3) 

c CALCULATE GAS PHASE AND LIQUID PHASE CONCENTRATION 

CALL RK4S(FUN1,GUN I ,Z,CG1,CL I ,DELZ) 
1001 WRITE (6,111) CG1,CL1 
111 	FORMAT (3X,F14.6,3X,F14.6,3X) 

CALL RK4S (FUN2,GUN2,Z,CG2,CL2,DELZ) 
1002 WRITE (6,112) CG2,CL2 
112 	FORMAT (3X,F14.6,3X,F14.6,3X) 

CALL RK4S(FUN3,GUN3,Z,CG3,CL3,DELZ) 
1003 WRITE (6,113) CG3,CL3 
113 	FORMAT (3X,F14.6,3X,F14.6,3X) 

Z = Z-DELZ 
HEIGHT(IGAS) = Z 
GAS1(IGAS) = CG I 
GAS2(IGAS) = CG2 
GAS3(IGAS) = CG3 

BQ1 (IGAS) = CL I 
BQ2(IGAS) = CL2 
BQ3(IGAS) = CL3 

100 CONTINUE 
600 	CALL ERROR1 (CL I ,ERRORC,CL01) 

CALL ERROR2 (CL2,ERRORD,CL02) 
CALL ERROR3 (CL3,ERRORO,CL03) 

IF ((SAVI.GT.0.0.AND.TAV1.GT.0.0).AND.GAV1.GT.0.0) THEN 
IF ((SAV2.GT.0.0_AND.TAV2.GT.0.0)).AND.GAV2.GT.0.0)) THEN 
IF ((CLOLEQ.LAST1.AND.CL02.EQ.LAST2)).AND.CL03.EQ.LAST3) 
&THEN 
GO TO 400 
ELSE 
ENDIF 
ENDIF 
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ENDIF 
IF ((ERRORC.EQ.0.0.AND.ERRORD.EQ.0.0)).AND.ERRORO.EQ.0.0) 
&THEN 
GO TO 400 
ELSE 
ENDIF 

C 

LAST1 = CL01 
LAST2 = CL02 
LAST3 = CL03 

IF ((ERRORC.GT.O.O.AND.ERRORO.GT.0.0)).AND.ERRORO.GT.0.0) 
&THEN 

SAV1=CL01 
TAV1=CL02 

GAVI=CL03 
IF ((SAV2EQ.0.0.AND.TAV2.EQ.0.0)).AND.GAV2.EQ.0.0) THEN 
CL01=CL01-DE1 
CL 02= CL02-DE2 
CLO3=CL03-DE3 
ELSEIF (SAV2.EQ.0.0) THEN 

CL01=CL01-DE1 
CL02=(TAV1+TAV2)/2 
CL03=(GAV1+GAV2)/2 

ELSEIF (TAV2 .EQ.0.0) THEN 
CLOI=(SAV1+SAV2)/2 

CL02=CL02-DE2 
CL03=(GAV1+GAV2)/2 

ELSEIF (GAV2.EQ.0.0) THEN 
CL01=(SAV I +SAV2)/2 

CL02=(TAV1+TAV2)/2 

CL03=CL03-DE3 
ELSE 

CL01=(SAV1+SAV2)/2 
CL02=(TAV1+TAV2)/2 

CLO3=(GAV1+GAV2)/2 
ENDIF 
ENDIF 

C 

IF ((ERRORC.LT.0.0.AND.ERRORD.LT.0.0).AND.ERRORO.LT.0.0) 
&THEN 
SAV2=CL01 
TAV2=CLO2 
GAV2=CL03 
IF ((SAV1.EQ.0.0.AND.TAV1.EQ.0.0).AND.GAVLEQ.00) THEN 
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CLO01=CL01+DE1 CL02=CL02+DE2 

CL03=CL03+DE3 
ELSEIF (SAV1.EQ.0.0) THEN 
CL01=CL01+DE I 
CL02=(TAV1+TAV2)/2 
CLO3=(GAV1+GAV2)/2 
ELSEIF (TAV1.EQ.0.0) THEN 
CL01 =(SAV1+SAV2)/2 
CL02=CL02+DE2 
CL03=(GAV1+GAV2)/2 
ELSEIF (GAV1.EQ.0.0) THEN 
CLO1=(SAV1+SAV2)/2 
CLO2=(TAV1+TAV2)/2 
CLO3=CL03+DE3 
ELSE 

CL01=(SAV1+SAV2)/2 
CL02=(TAV1+TAV2)/2 CL03=(GAV1+GAV2)/2 

ENDIF 
ENDIF 

IF ((ERRORC.GT.0.0.AND.ERRORD.GT.0.0).AND.ERRORO.LT.00) 
&THEN 
SAV1=CL01 
TAV1=CL02 
GAV2=CL03 
IF ((SAV2.EQ.0.0.AND.TAV2.EQ.0.0).AND.GAV1 .EQ.00) THEN 
CLO1=CL01-DE1 
CL02=CLO2-DE2 
CLO3=CL03+DE3 
ELSEIF (SAV2.EQ.0.0) THEN 
CL01=CL01 -DE1 
CL02=(TAV1+TAV2)/2 
CLO3=(GAV1+GAV2)/2 
ELSEIF (TAV2.EQ.0.0) THEN 
CL01=(SAV1+SAV2)/2 

CL02=CL02-DE2 
CL03=(GAV1+GAV2)/2 
ELSEIF (GAV1 .EQ.0.0) THEN 
CL01=(SAV1+SAV2)/2 
CLO2=(TAV1+TAV2)/2 
CL03=CL03+DE3 
ELSE 
CL01=(SAV1+SAV2)/2 
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CL02=(TAV1+TAV2)/2 
CL03=(GAV 1+GAV2)/2 

ENDIF 
ENDIF 

IF ((ERRORC.GT.O.O.AND .ERRORD.LT.0.0).AND.ERROROI T.00) 
& THEN 
SAY 1=CL01 
TAV2=CLO2 
GAV2=CLO3 
IF ((SAV2.EQ.0.0.AND.TAV I .EQ.0.0).AND.GAV I .EQ.00) THEN 
CL01=CL01-DE1 
CL02=CL02+DE2 
CL03=CL03+DE3 
ELSEIF (SAV2.EQ.0.0) THEN 
CL01 1=CL01-DE1  
CL02=(TAV 1 +TAV2)/2 
CL03=(GAV 1+GAV2)/2 
ELSEIF (TAV 1 .EQ.0.0) THEN 
CL01=(SAV1+SAV2)/2 
CL02=CL02+DE2 
CL03=(GAV1+GAV2)/2 

ELSEIF (GAY 1 .EQ.0.0) THEN 
CL01 I =(SAV1+SAV2)/2 
CL02=(TAV1+TAV2)/2 
CL03=CL03+DE3 
ELSE 
CL01=(SAV 1 +SAV2)/2 
CL02=(TAV 1 +TAV2)/2 
CL03=(GAV1+GAV2)/2 
ENDIF 
ENDIF 

IF ((ERRORC.LT.0.0.AND.ERRORD.LT.0.0).AND.ERRORO.GT.00) 
&THEN 
SAV2=CL01 
TAV2=CL02  
GAV1=CL03 
IF ((SAV1.EQ.0.0.AND.TAV 1 .EQ.0.0).AND.GAV2.EQ.00) THEN 
CL01 1=CL01+DE1 

CL02=CL02+DE2 
CL03=CL03-DE3 
ELSEIF (SAV1.EQ.0.0) THEN 
CL01=CL01+DE1 
CLO2=(TAV1+TAV2)/2 
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CL03=(GAV 1 +GAV2)/2 
ELSEIF (TAV 1 .EQ.0.0) THEN 

CL01=(SAV1 +SAV2)/2 
CL02=CL02+DE2 
CL03=(GAV 1 +GAV2)/2 
ELSEIF (GAV2.EQ.0.0) THEN 
CL01=(SAV1+SAV2)/2 
CL02=(TAV1+TAV2)/2 
CL03=CLO3 -DE3 
ELSE 
CL01=(SAV1+SAV2)/2 
CL02=(TAV 1 +TAV2)/2 
CLO3=(GAV I +GAV2)/2 
ENDIF 
ENDIF 

IF ((ERRORC.LT.O.O.AND.ERRORD.GT.0.0).AND.ERRORO.GT.00) 
&THEN 
SAV2=CL01 
TAV1=CL02 
GAV1=CL03 
IF ((SAV 1 .EQ.0.0.AND.TAV2.EQ. 0.0).AND.GAV2.EQ.00) THEN 

CL01 1=CL01 1 +DE1 
CL02=CL02-DE2 

CL03=CL03 -DE3 
ELSEIF (SAV 1 .EQ.0.0) THEN 
CL01 1=CL01+DE1 

CL02=(TAV1 +TAV2)/2 
CL03=(GAV1+GAV2)/2 
ELSEIF (TAV2.EQ.0.0) THEN 
CL01 =(SAV 1 +SAV2)/2 
CL02=CL02-DE2 
CL03=(GAV1+GAV2)/2 
ELSEIF (GAV2.EQ.0.0) THEN 

CL01=(SAV I +SAV2)/2 
CLO2=(TAV 1 +TAV2)/2 
CL03=CL03-DE3 
ELSE 
CL01=(SAV 1 +SAV2)/2 

CL02=(TAV1 +TAV2)/2 
CL 03=(GAV 1 +GAV2)/2 
ENDIF 
ENDIF 
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IF ((ERRORC.LT.O.O.AND.ERRORD.GT.0.0).AND.ERRORO.LT.00) 
& THEN 
SAV2=CL01 
TAV1=CL02 
GAV2=CL03 
IF ((SAV1.EQ.0.0.AND.TAV2.EQ.0.0). AND.GAV1. EQ.00) THEN 
CL01=CL01+DE1 
CL02=CL02-DE2 
CL03=CL03+DE3 
ELSEIF (SAV1.EQ.0.0) THEN 
CL01=CL01+DE1 
CL02=(TAV1+TAV2)/2 
CL03=(GAV1+GAV2)/2 
ELSEIF (TAV2.EQ.0.0) THEN 
CL01=(SAV1+SAV2)/2 
CL02=CL02-DE2 
CL03=(GAV1+GAV2)/2 
ELSEIF (GAV1.EQ.0.0) THEN 
CL01=(SAV1 +SAV2)/2 

CL02=(TAV1+TAV2)/2 
CL03=CL03+DE3 
ELSE 
CL01=(SAV1+SAV2)/2 
CL02=(TAV1+TAV2)/2 
CL03=(GAV1+GAV2)/2 
ENDIF 
ENDIF 

IF ((ERRORC.GT.0.O.AND.ERRORD.LT.0.0).AND.ERRORO.GT.00) 
&THEN 
SAV1=CL01 
TAV2=CL02 
GAV1=CL03 
IF ((SAV2.EQ.0.0.AND.TAV1.EQ.0.0).AND.GAV2.EQ.00) THEN 
CL01=CL01-DE1 

CLO2=CL02+DE2 
CLO3=CL03-DE3 
ELSEIF (SAV2.EQ.0.0) THEN 
CL01=CL01-DE1 

CL02=(TAV1+TAV2)/2 
CL03=(GAV1+GAV2)/2 
ELSEIF (TAV I .EQ.0.0) THEN 
CL01=(SAV1+SAV2)/2 
CL02=CL02+DE2 
CL03=(GAV I +GAV2)/2 
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ELSEIF (GAV2.EQ.0.0) THEN 
CLO1=(SAV1+SAV2)/2 CL02=(TAV1+TAV2)/2 

CLO3=CL03-DE3 
ELSE 

CL01=(SAV1+SAV2)/2 CL02=(TAV1+TAV2)/2 
CL03=(GAV1+GAV2)/2 

ENDIF 
ENDIF 

GO TO 700 
400 WRITE(6,123) 

WRITE(6,22) 
22 	FORMAT(//,5X,' GAS AND LIQUID PHASE CONCENTRATION 

&PROFILES',//) 
WRITE(6,13) 

13 	FORMAT ',12X, 'HEIGHT',10X,'CG(C)',10X,'CL(C) 
WRITE(6,15) 

15 	FORMAT (",12X, IHEIGHT',10X,'CG(D)',10X,'CL(D) '/) 
WRITE(6,16) 

16 	FORMAT (",12X, 'HEIGHT',10X,'CG(O)',10X,'CL(O) 
DO 44 IGAS = 1,NG+1 
WRI TE(6,33) HEIGHT(IGAS) 

44 CONTINUE 
DO 45 IGAS = 1,NG+1 
WRI TE(6,34) GAS1(IGAS) 

45 CONTINUE 
DO 46 IGAS = 1,NG+1 
WRITE (6,33) GAS2(IGAS) 

46 CONTINUE 
DO 47 IGAS = 1,NG-F1 
WRITE (6,33) GAS3(IGAS) 

47 CONTINUE 
DO 48 IGAS = 1,NG+1 
WRITE (6,33) BQ1(IGAS) 

48 CONTINUE 
DO 49 IGAS =1,NG+1 
WRITE (6,34) BQ2(IGAS) 

49 CONTINUE 
DO 51 IGAS =1,NG+1 
WRITE (6,34) BQ3(IGAS) 

51 CONTINUE 
33 FORMAT(3X,F14.6) 
34 FORMAT(3X,F14.6) 
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123 FORMAT(' 	  
STOP 
END 

************************************************************ 

c INTERPOLATING THE RESULTS THAT YOU GET FROM 
c NEWTON RAPHSON SUBROUTINE 
c************************************************************ 

SUBROUTINE INTERP (XOLD,NT,ROOT,DIF1,XDAT,YC,YD) 
IMPLICIT REAL*8 (A-H2O-Z) 
PARAMETER(M = 10) 
REAL*8 XOLD(2*N),XINTP(N+2),Y1(N+2),Y2(N+2) 
REAL*8 XDAT(N+1),YC(N+1),YD(N+1),YO(N+1) 
REAL* 8 ROOT(N+2),DIF1(N+2),DIF2(N+2),DIF3(N+2) 
COMMON /PRM8/ AL1,AL2 
COMMON /PRM16 / AC 
COMMON PRM17 /AO 
COMMON PRM18 /AD 
COMMON /PRM4/ CL1 
COMMON /PRM5/ CL2 
COMMON /PRM20/ CL3 
COMMON /INDEX/ INDX 

IF (INDX.EQ.3000) THEN 
WRITE(6,123) 
WRITE(6,12) 

12 FORMAT (' ',I OX, 'CONCENTRATION PROFILES IN THE BIOFILM /) 
WRITE(6,13) 

13 	FORMAT (5X,' X ',11X,'S(C)',14X,'S(D)',11X,'S(O)'//) 
ELSE 
ENDIF 

Y1(1) = AC*CL I 
Y2(1) = AD*CL2 

DO 15I =1,N 
15 	Y1(I+1) = XOLD(I) 

Y1(NT) = Y1(NT-1) 
DO 16 I = 1,N 

16 Y2(I+1) = XOLD(I+N) 
Y2(NT) = Y2(NT-1) 

DO 20 1= 1,N+1 
DIST = FLOAT(I-1)/N 
CALL INTRP(NT,NT,DIST,ROOT,DIF1,XINTP) 
SC = 0.0 
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SD = 0.0 
DO 30J = 1,NT 
SC = SC+XINTP(J)*Y1(J) 
SD = SD-FXINTP(J)*Y2(J) 
30 CONTINUE 
IF (INDX.EQ.3000) THEN 
SO = (ALI)*(SC-AC*CL1)+AL2*(SD-AD*CL2)+AO*CL3 
WRITE(6,40) DIST,SC,SD,SO 
ELSE 
ENDIF 

c PLOT 
XDAT(I) = DIST 
YC(I) = SC 
YD(I) = SD 

20 CONTINUE 
40 FORMAT(5X,F7.2,5X,E14.6,5X,EI4.6,5X,E14.6) 
123 FORMAT(' 	 ',/) 

RETURN 
END 

c************************************************************ 

c CONSTRUCT THE JACOBIAN MATRIX AND ON THE LAST 
c COLUMN VECTOR -f 
c************************************************************ 

c SUBROUTINE CALCN FOR EVALUTING THE AUGMENTED 
c JACOBIAN MATRIX 
c JAC*DEL=-F SOLVING DEL 

SUBROUTINE CALCN(DXOLD,DF,N) 
IMPLICIT REAL*8 (A-H2O-Z) 
PARAMETER(M = 10) 
REAL*8 XOLD(2*M),DXOLD(2*M),DF(2*M,2*M+ I) 
REAL*8 SUM1(2*M),SUM2(2*M) 
REA1*8 A(0:M-F1,0:M+1),B(0:M+1,0:M+I) 
COMMON /PRMA/ A 
COMMON /PRMB/ B 
COMMON /PRM1/ PHI1,PHI2 
COMMON /PRM4/ CL1 
COMMON /PRM5/ CL2 
COMMON /PRM20/ CL3 
COMMON /PRM8/ AL1,AL2 
COMMON /PRM10/ G1,G2 
COMMON /PRM16/ AC 
COMMON /PRM17/ AO 
COMMON /PRM18 8/ AD 
ORS = AO*CL3-AL1 *AC*CL I -AL2*AD*CL2 
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DO I I = I,2*N 
XOLD(I) = DXOLD(I) 
DO 1 J =1,(2*N+1) 

1 	DF(I,J) = 0.0 

DO 3 I = 1,2*N 
SUM1 (I) = 0.0 

3 	SUM2 (I) = 0.0 

DO 101 = 1,N 
DO 20 J = 1,N 
IF (I.EQ.J) THEN 
P I= 1+XOLD(I)+GI *(XOLD(I))**2+AS1*XOLD(I+N) 
P2 = 1+AL1*XOLD(I)+AL2*XOLD(I+N)+ORS 
P3 = 2*AL I *XOLD(I)+AL2*XOLD(I+N)+ORS 
P4 = Pi *AL 1+P2*(1+2*GI*XOLD(I)) 

P5 = ALl*XOLD(I)+AL2*XOLD(I+N)+ORS 
DF(I,J) = B(I,J)-B(I,N+1)/A(N+1,N+1)*A(N+1,J) 
&-PHI1*(P1*P2*P3-XOLD(I)*P5*P4)/ ((P I **2)*(P2* *2)) 
ELSE 
DF(I,J) = B(I,J)-B(I,N+1)/A(N+1,N+ I )*A(N+1,J) 
ENDIF 
SUM1(I) = SUM1(I)+(B(I,J)-B(I,N+1)/A(N+1,N+1)*A(N+1,J))*XOLD(J) 

20 CONTINUE 
DF(I,(2*N+1)) =-(SUM I (I)+B(I,0)*AC*CL1-B(I,N+1)* 
&A(N+1,0)*AC*CL1/A(N+1,N+1)- 

&PHIP5*XOLD(I)/(P1*P2)) 
10 CONTINUE 

DO 12I = N+1,2*N 
DO 22 J = N+1,2*N 
IF(I.EQ.J) THEN 
Q1 = 1+XOLD(I)+G2*(XOLD(I))**2+AS2*XOLD(I-N) 
Q2 = I+AL1*XOLD(I-N)+AL2*XOLD(I)+ORS 
Q3 = ALI*XOLD(I-N)+2*AL2*XOLD(I)+ORS 
Q4 = Q1*AL2+Q2*(1+2*G2*XOLD(I)) 
Q5 = AL1*XOLD(I-N)+AL2*XOLD(I)+ORS 
DF(I,J) = B(I-N,J-N)-B(I-N,N+1/A(N+1,N+I)*A(N+1,J-N) 
&-PHI2*(Q1*Q2*Q3-XOLD(I)*Q5*Q4)/ ((Q1**2)*(Q2**2)) 
ELSE 
DF(I,J) = B(I-N,J-N)-B(I-N,N+I)/A(N+1,N+1)*A(N+1,J-N) 
ENDIF 
SUM2(I) = SUM2(I)+(B(I-N,J-N)-B(I-N,N+1/A(N+1N+1) 
&*A(N+1,J-N))*XOLD(J) 
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22 CONTINUE 
DF(I,(2*N+1))=-(SUM2(I)+B(I-N,0)*AD*CL2-B(I-N,N+1)* 
&A(N+1,0)*AD*CL2/A(N+1,N+1)- 
&PHI2* Q5*XOLD(I)/(Q1* Q2)) 
12 CONTINUE 
RETURN 
END 

c********************************************************** 

c NEWTON RAPHSON TO SOLVE THE ALGEBRIC EQUATIONS 
c********************************************************** 

SUBROUTINE NEWTON(ITMAX,N, IPRINT,EPS1,EPS2,XOLD) 
IMPLICIT REAL*8 (A-H2O-Z) 
PARAMETER (M=10) 
DIMENSION XOLD(2*M),XINC(2*M),A(2*M,2*M+1) 

c NEWTON RAPHSON ITERATION 
c WRITE(6,200) ITMAX; IPRINT,2*N,EPS1,EPS2,2*N,(XOLD(I), I = 1,2*N) 

WRITE (6,123) 
DO 9 ITER = I, ITMAX 

c CALL ON CALCN TO SET UP THE A MATRIX 
CALL CALCN(XOLD,A,M) 

c CALL SIMUL TO COMPUTE JACOBIAN AND CORRECTION IN XINC 
NN = N+1 
INDIC = 1 
DETER = SIMUL (N,A,XINC,EPS1, INDIC,NN) 
IF (DETER.NE.0) GOTO 3 
WRITE(6,201) 
RETURN 

c CHECK FOR CONVERGENCE AND UPDATE XOLD VALUE 
3 	ITCON = 1 

DO 5 I=1,N 
IF (DABS(XINC(I)).GT.EPS2) ITCON = 0 

5 	XOLD(I) = XOLD(I)+XINC(I) 
IF (IPRINT.EQ.I) WRITE(6,202) ITER,DETER,N,(XOLD(I), I = 1,N) 
IF (ITCON.EQ.0) GOTO 9 

c WRITE(6,203) ITER,N,(XOLD(I),I=1,N) 
WRITE(6,2203) ITER 
RETURN 

9 CONTINUE 
WRITE(6,204) 
RETURN 

c FORMATS FOR INPUT AND OUTPUT STATEMENTS 
200 FORMAT(' ITMAX = 18,1 IPRINT = 181 N = 18/ 
& 	EPS1 = ',1PE14.1/' EPS2 = ',1PE14.1/10X,'XOLD(L)...XOLD(', 
& 	12,T/41H ,1P4EI6.6)) 
201 FORMAT(38HOMATRIX IS ILL-CONDITIONED OR SINGULAR) 
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202 FORMAT(' ITER =', 18/ 10H DETER = ,E18.51 
$ 26H 	XOLD(L)...XOLD(,I2,1H) / (1H ,1P4E16.6) ) 

203 FORMAT(' SUCCESSFUL CONVERGENCE'/' ITER =°,13/10x, 
S'XOLD(L)...XOLD(', I2,')'ll (1H ,1P4E16.6) ) 

2203 FORMAT(' SUCCESSFUL CONVERGENCE'? ITER =', I3/) 
204 FORMAT(' NO CONVERGENCE' ) 
123 FORMAT(' 	 ',/) 

END 

c************************************************************** 

SUBROUTINE SVARI(SUR,DEL,BO,DFF1,DFF2,DFF3,AKAPI, 
&AKAP2,AKAP3,AMM1,AMM2,AMM3,AY1,AY2,AY13,AY23, 
&AKSS 1,AMU1 ,AKII1,AKS S2,AMU2,AKII2,AXOO1,AKS S12, 
&AKSS21,ACGOLACG02,ACG03,AUG,AUL,VV) 
IMPLICIT REAL*8 (A-H2O-Z) 
WRITE(6,123) 
WRITE(6,I) 

1 	FORMAT (",//, ' VARIABLES IN THE MODEL',//) 
WRITE(6,2) 

2 	FORMAT (3X,'1 - VOC,/,3X,'2 -VOC,3X,'2 - OXYGEN',/) 
WRITE(6,19) AUG 

19 	FORMAT (", 'GAS FLOW RATE (m3/hr) 	= E14.3) 
WRITE(6,20) AUL 

20 	FORMAT (' ', 'LIQUID FLOW RATE(m3/hr) 	E14.3) 
WRITE(6,3) VV*1E6 

3 	FORMAT (' ', 'VOLUME OF THE COLUMN(cm3) = F14.3) 
WRITE(6,4) SUR 

4 	FORMAT (' ', 'BIOLAYER SUR.AREA( m2/m3) = F14.3) 
WRITE(6,44) BO 

44 	FORMAT (' ', 'BIOMASS CONC. (g/m3) 	= E14.3) 
WRITE(6,5) DEL*1E3 

5 	FORMAT (' ', 'FILM THICKNESS (µm) 	', F14.3) 
WRITE(6,18) ACG01 
WRITE(6,21) ACG02 
WRITE(6,24) ACG03 

18 	FORMAT (' ', 'INLET CONC. (g/m3 OF VOC 1)(1) = F14.3) 
21 	FORMAT (' ', 'INLET CONC. (g/m3 OF VOC 2)(2) = F14.3) 
24 	FORMAT (' ', 'INLET CONC. (g/m3 OF AIR)(3) = ', F14.3) 

WRITE(6,31) AY I 
31 	FORMAT (' ', 'YIELD COEFFICIENT (1) 	= F14.3) 

WRITE(6,32) AY2 
32 	FORMAT (' ', 'YIELD COEFFICIENT (2) 	= F14.3) 

WRITE(6,33) AY 13 
33 	FORMAT ('','YIELD COEFFICIENT (13) 	= ', F14.3) 



WRITE(6,34) AY23 

	

34 	FORMAT (' ', 'YIELD COEFFICIENT (23) 	= ', F14.3) 
WRITE(6,51) DFF1*1E9/3600 
WRITE(6,54) DFF2*1E9/3600 
WRITE(6,59) DFF3*1E9/3600 

	

51 	FORMAT (' ', 'DIFF. COEFF.(1)*1E9 (m2/s) 	F14.3) 

	

54 	FORMAT (' ', DIFF. COEFF. (2)*1E9 (m2/s) = ', F14.3) 

	

59 	FORMAT (' ', DIFF. COEFF.(3)* 1E9 (m2/s) = ', F14.3) 
WRITE(6,56) AMM1 

	

56 	FORMAT (' ', 'DIST. COEFF. 	(1) = ', E14.3) 
WRITE(6,57) AMM2 

	

57 	FORMAT (' ', 'DIST. COEFF. 	(2) = E14.3) 
WRITE(6,60) AMM3 

	

60 	FORMAT (' ', 'DIST. COEFF. 	(3) = ', E14.3) 
WRITE(6,48) AKAP1 

	

48 	FORMAT (' ', 'MASS TRANSFER COEFF (1) =', E14.3) 
WRITE(6,49) AKAP2 

	

49 	FORMAT (",'MASS TRANSFER COEFF (2) 	', E14.3) 
WRITE(6,61) AKAP3 

	

61 	FORMAT (",'MASS TRANSFER COEFF (3) = E14.3) 
WRITE(6,123) 
WRITE(6,*) ' 	ANDREWS AND OTHER PARAMETERS' 
WRITE(6,6) AKSS1,AMU I AKII1,AKOO1 

	

6 	FORMAT (' ',/,' KS1 (g/m3) = ',E14.3,3X, 'MU1 (1/hr) =',FI4.3,/, 
' KSI1 (g/m3) =',E14.3,3X,'KO1 (g/m3)= 'EI4.3,/) 

WRITE(6,7) AKSS2,AMU2, AKII2,AKOO1 

	

7 	FORMAT (",/,' KS2 (g/m3) = ' ,E14.3,3X,'MU2 (1/hr) =',F14.3,/, 
' KSI2 (g/m3) =',E14.3,3X,'KO1 (g/m3)= 'E14.3,/) 

WRITE(6,8) AKSS12,AKSS21 

	

8 	FORMAT (' ',/,' KSI2 (g/m3) = ',E14.3,3X, KS2 I (g/m3) =',E14.3,/) 
123 FORMAT(' 	  

RETURN 
END 

c************************************************************ 

c SUBROUTINE FOR EVALUATING THE DERIVATIVES 
c NECESSARY FOR GAS AND LIQUID PHASE PROFILES 
c************************************************************ 

SUBROUTINE DERI (XOLD,DERI1,DERI2,DERI3) 
IMPLICIT REAL*8 (A-H2O-Z) 
PARAMETER (N=10) 
REAL*8 A(0:N+1,0:N+1),B(0:N+1,0:N+1) 
REAL*8 XOLD(2*N) 
COMMON /PRM161 AC 
COMMON /PRMI 7/AO 
COMMON /PRM18/AD 
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COMMON /PRM8/ AL1,AL2 
COMMON /PRMA/ A 
COMMON /PRMB/ B 
COMMON /PRM4/ CLI 
COMMON /PRM5/CL2 
COMMON /PRM20/CL3 

SUM1 = 0.0 
SUM2 = 0.0 
DO 103= I,N 
SUM1 = SUM1+(A(0,J)-A(0,N+1)*A(N+ 1 ,J)/A(N+1,N+1))*XOLD(J) 
SUM2 = SUM2+(A(0,J)-A(0,N+1)*A(N+1,J)/A(N+1,N+1))*XOLD(J+N) 

10 CONTINUE 
DERI 1 = SUM1+(A(0,0)-A(0,N+1)*A(N+1,0)/A(N+1 ,N+1 ))*AC*CL 1 
DERI2 = SUM2+(A(0,0)-A(0,N+1)*A(N+1,0)/A(N+1,N+1))*AD*CL2 
DERI3 = (AL1)*DERII+(AL2)*DERI2 
WRITE(*,*) DERI1,DERI2,DERI3 
RETURN 
END 

c********************************************************** 

c FOR GAS AND LIQUID PHASE USING THE FOURTH ORDER 
c RUNGE KUTTA METHOD 
c********************************************************** 

SUBROUTINE RK4S(F,G,Z,CG,CL,H) 
IMPLICIT REAL*8 (A-H2O-Z) 
H2 = 0.5*H 
START = Z 
B1 = H*F(Z,CG,CL) 
B2 = H*G(Z,CG,CL) 
B3 = H*F(Z+H2,CG+H2*B1,CL+H2*B2) 
B4 = H*G(Z+H2,CG+H2*B1,CL+H2*B2) 
B5 = H*F(Z+H2,CG+H2*B3,CL+H2*B4) 
B6 = H*G(Z+H2,CG+H2*B3,CL+H2*B4) 
B7 = H*F(Z+H,CG+H*B5,CL+H*B6) 
B8 = H*G(Z+H,CG+H*B5,CL+H*B6) 
CG = CG+(B1+2.*B3-F2.*B5+B7)/6. 
CL = CL+(B2+2.*B4+2.*B6+B8)/6. 
Z = Z+H 
WRITE (*,*) CG,CL 
RETURN 
END 

c************************************************************ 

c 	PURPOSE : GIVE THE FUNCTION FOR RK METHOD, IN THE 
c GAS PHASE BALANCE ; VOC 1 (BLOCK A) 
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c************************************************************ 

FUNCTION FUN1(Z,CG,CL) 
IMPLICIT REAL*8 (A-H2O-Z) 
COMMON / PRM11/ R 
COMMON / PRM2/ CG1 
COMMON / PRM4/ CL1 
FUN1 = R*(CL1-CGI) 
RETURN 
END 

c************************************************************* 

c PURPOSE : GIVE THE FUNCTION FOR RK METHOD, IN THE 
c LIQUID PHASE BALANCE ; VOC 1 
c************************************************************* 

FUNCTION GUN1(Z,CG,CL) 
IMPLICIT REAL*8 (A-H2O-Z) 
COMMON / PRM13/ PSI 
COMMON /PRM15/AN 
COMMON / LIQUIDC/DERI 1 
COMMON / PRM2/ CG1 
COMMON / PRM4/ CL I 

GUN1 —PSI*(CL1-CG1)+AN*DERI1 
RETURN 
END 

c************************************************************* 

c PURPOSE : GIVE THE FUNCTION FOR RK METHOD, IN THE 
c GAS PHASE BALANCE ; VOC 2 (BLOCK B) 
c*********************************************************** 

FUNCTION FUN2(Z,CG,CL) 
IMPLICIT REAL*8 (A-H2O-Z) 
COMMON / PRA/111/R 
COMMON /PRM12/E1,E2 
COMMON / PRM3/ CG2 
COMMON / PRM5/ CL2 
FUN2 = R*E1*(CL2-CG2) 
RETURN 
END 

*********************************************************** 

c PURPOSE : GIVE THE FUNCTION FOR RK METHOD, IN THE 
c LIQUID PHASE BALANCE ; VOC 2 
c*********************************************************** 

FUNCTION GUN2(Z,CG,CL) 
IMPLICIT REAL*8 (A-H2O-Z) 
COMMON / PRM13/ PSI 
COMMON / PRM14/ BT1,BT2 
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COMMON PRM15/ AN 
COMMON / PRM9/ W1, W2 
COMMON / PRM3/ CG2 
COMMON / PRM5/ CL2 
COMMON / LIQUIDD/ DERI2 
GUN2 =-PSI*BT1*(CL2-CG2)+AN*Wl*DERI2 
RETURN 
END 

c************************************************************* 

c PURPOSE : GIVE THE FUNCTION FOR RK METHOD, IN THE 
c GAS PHASE BALANCE ; OXYGEN (BLOCK C) 
*********************************************************** 

FUNCTION FUN3(Z,CG,CL) 
IMPLICIT REAL*8 (A-H2O-Z) 
COMMON / PRM11/R 
COMMON /PRM12/E1,E2 
COMMON / PRM19/ CG3 
COMMON / PRM20/ CL3 
FUNS = R*E2*(CL3-CG3) 
RETURN 
END 

c*********************************************************** 

c PURPOSE : GIVE THE FUNCTION FOR RK METHOD, IN THE 
c LIQUID PHASE BALANCE ; OXYGEN 
c*********************************************************** 

FUNCTION GUN3(Z,CG,CL) 
IMPLICIT REAL*8 (A-H2O-Z) 
COMMON / PRM13/ PSI 
COMMON / PRM14 4/ BT1,BT2 
COMMON / PRM15/ AN 
COMMON / PRM9/ WI ,W2 
COMMON / PRM19/ CG3 
COMMON / PRM20/ CL3 
COMMON / LIQUIDO/ DERI3 
GUN3 =-PSI*BT2*(CL3-CG3)+AN*W2*DERI3 
RETURN 
END 

c************************************************************ 

SUBROUTINE ERROR I (CLI,ERRORC,CL01) 
IMPLICIT REAL*8 (A-H2O-Z) 
COMMON /PRM4/ CL 1 
COMMON /PRM6/ CL01 
ERRORC = CL1-CL01 
RETURN 
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END 
c************************************************************ 

SUBROUTINE ERROR2 (CL2,ERRORD,CL02) 
IMPLICIT REAL*8 (A-H2O-Z) 
COMMON /PRM5/ CL2 
COMMON / PRM7/ CL02 
ERRORD = CL2-CL02 
RETURN 

c ************************************************************ 

SUBROUTINE ERROR3 (CL3,ERRORO,CL03) 
IMPLICIT REAL*8 (A-H,O-Z) 
COMMON /PRM20/ CL3 
COMMON / PRM21/ CL03 
ERRORO = CL3-CL03 
RETURN 

************************************************************ 

SUBROUTINE PRM (PHI1,PHI2,AL I ,AL2,W1,W2,G I ,G2, 
&R,E1,E2,PSI,BT I ,BT2,AN,AC,AD,AO,AS 1 ,AS2) 
IMPLICIT REAL*8 (A-H,O-Z) 
COMMON /DEL/ DEL 
COMMON /SUR/ SUR 
COMMON /INDEX/ INDX 
COMMON /CGO /ACG01,ACG02,ACG03 

c 1-VOC 
c 2-VOC 
c 3-OXYGEN 

DEL = DEL*1E-6 
WRITE(6,85) DEL* 1E6 

BO = 75E3 
XV = BO/1000 
FD = I-0.43*XV**0.921(11.19+0.27*XV**0.99) 

c DIFFUSION COEFFICIENTS 
DFF1 = 0.781E-9 *3600.*FD 
DFF2 = 0.691E-9 *3600.*FD 
DFF3 = 2.3807E-9 *3600.*FD 

c OVERALL MASS TRANSFER COEFFICIENTS 
AKAP1 = 11.18 
AKAP2 = 10.27 
AKAP3 = 31.57 

c DISTRIBUTION COEFFICIENTS 
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AMM1 = 0.167 
AMM2 = 0.119 
AMM3 = 34.4 

C 

c YIELD COEFFICIENTS 
AY1 =0.551 
AY1 = 0.397 
AY13 = 0.516 
AY22 = 0.363 

C 

C KINETIC PARAMETERS 
AKSS1= 5.14 
AMU1 = 0.154 
AKII1 = 21.883 
AKSS2= 13.389 
AMU2 = 0.146 
AKII2 = 19.657 
AKSS12= 1.3 
AKSS21= 0.75 
AKOO1 = 0.26 

C 

c INLET GAS CONCENTRATIONS 
ACG01 = 0.17 

ACG02 = 0.27 
ACG03 = 275 

c GAS FLOW RATE 
AUG = 0.27 

c LIQUID FLOW RATE 
AUL = 0.006 

C 

c VOLUME OF THE COLUMN 
VV = 0.0143 

C 

IF (INDX.EQ.100) THEN 
CALL SVARI(SUR,DEL,BO,DFF1,DFF2,DFF3,AKAP1,AKAP2,AKAP3, 

&AMM1,AMM2,AMM3,AY1,AY2,AY13,AY23,AKSS1,AMU1, 
&AKII1,AKSS2,AMU2,AKII2,AKOO1,AKS S12,AKSS21,ACG01, 

&ACG02,ACG03,AUG,AUL,VV) 
ELSE 
ENDIF 

PHI] = (AMU1*(DEL* *2)* B0)/(DFF1* AY1*AKS S I) 
PHI2 = (AMU2*(DEL**2)*B0)/(DFF2*AY2*AKSS2) 
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ALI = (DFF1*AY1*AKSS1)/(AY13*AKOO1*DFF3) 
AL2 = (DFF2*AY2*AKSS2)/(AY23*AKOO1*DFF3) 
W1 = (AKSS2*DFF2*ACGOI*AMM2)/(AKSS1*DFF1*ACG02*AMMI) 
W2 = (AKOO1*DFF3*ACGOl*AMM3)/(AKSS1*DFF1*ACG03*AMIvI1) 
G1 =AK S S 1 /AKII1 
G2 =AKSS2/AKII2 
AS1 = (AKSS12*AKSS2)/AKSS1 
AS2 = (AK SS21*AKSS1)/AKSS2 
R = (AKAP I *VV)/(AU G*AMM1) 
E 1 = (AMM1 * AKAP2)/(AMM2 * AKAP 1) 
E2= (AMM 1 *AKAP3)/(AMM3*AKAP 1) 
PSI =(AKAP I *VV)/AUL 
BT 1 = AKAP 2/AKAP 1 
BT2 = AKAP3/AKAP1 
AN =(DFF1* SUR*AKSS1*VV*AMM1 )/(DEL* AUL*ACG01). 
AC = ACG01/(AKS Sl*AMM1) 
AD = ACG02/(AKSS2*AMM2) 
AO = ACG03/(AKOO1*AMM3) 

IF (INDX.EQ.1000) THEN 
WRITE(6,123) 
WRITE(6,71) 

71 	FORMAT ('  ', PARAMETERS USED :', /) 
WRITE(6,72) PHI1,PHI2 
WRITE(6,73) AL 1 , AL2 
WRITE (6,74) W1 ,W2 

72 	FORMAT (3X,'PHI1^ 2 = ',E14.6, 
& 3X,'PHI1 = ',E14.6) 

73 	FORMAT (3X,'LAMDA1 = ',E14.6, 
& 3X,'LAMDA2 = ',E14.6) 

74 	FORMAT (3X,'OMEGA1 = ',E14.6, 
& 	3X,'OMEGA2 = ',E14.6) 
WRITE(6,75) GI ,G2 
WRITE(6,76) E1,E2 
WRITE(6,77) R,AN 

75 	FORMAT (3X,'GAMA1 = ',E14.6, 
& 3X,'GAMA2 = ',E 14.6) 

76 	FORMAT (3X,'EPS1 = ',F14.6, 
& 3X,'EPSI2 = ',F14.6) 

77 	FORMAT (3X,'RO = ',E14.6, 
& 3X,'N = ',E14.6) 
WRITE(6,78) BT1,BT2 
WRITE(6,79) PSI,AC 
WRITE(6,80) AD,AO 

78 	FORMAT (3X,'BETA1 = ',F14.3, 
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& 3X,'BETA2 = ',F14.3) 
79 	FORMAT (3X,'PSI = ',E14.6, 

& 3X,STATHC = ',E14.6) 
80 	FORMAT (3X,'STATHD = ',E14.6, 

& 3X,'STATHO = ',E14.6) 
WRITE(6,81) S1,S2 

81 	FORMAT (3X,'SIGMA1 = ',E14.6, 
& 3X,'SIGMA2 = ',E14.6) 

85 	FORMAT (3X,'DEL.(µm)= ',F14.3,/) 
123 FORMAT(' 	  

ELSE 
ENDIF 
RETURN 
END 

c*******END OF MAIN PROGRAM************************** 

c CASE 2: COUNTER-CURRENT FLOW OF GAS AND LIQUID 
c IN BLOCK A, LINE 6 SHOULD BE: 
c FUN1 = -R*(CL1-CG1) 
c IN BLOCK B, LINE 6 SHOULD BE: 
c FUN2 = -R*E1*(CL2-CG2) 
c IN BLOCK C, LINE 6 SHOULD BE: 
c FUN3 = -R*E2*(CL3-CG3) 
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