Copyright Warning \& Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use" that user may be liable for copyright infringement,

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select "Pages from: first page \# to: last page \#" on the print dialog screen

The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.

ABSTRACT

DETERMINATION OF ELECTRON DONORS IN THE REDUCTIVE DECHLORINATON OF TETRACHLOROETHENE

by
Samantha L. Marasigan Bernal

Several substrates, namely fatty acids and alcohols, were used to enhance the reductive microbial dechlorination of PCE to ethene. All of the microcosms amended with the volatile fatty acids (butyrate, succinate, lactate, formate, butyrate/formate mixture and butyrate/succinate mixture) demonstrated complete reductive dechlorination of PCE to ethane. The cultures amended with the butyrate/succinate mixture was the quickest to completely dechlorinate PCE to ethene (49 days). Those amended with butyrate, succinate, formate and the butyrate/formate mixture exhibited complete reductive dechorination at 77 days. Microcosms amended with lactate exhibited complete reductive dechlorination at 160 days.

The microcosms amended with the alcohols (ethanol, propanol, propanol/ethanol mixture, ethylene glycol and ethylene glycol/butanol mixture) demonstrated less activity than those amended with the volatile fatty acids. Those amended whit propanol demonstrated complete reductive dechlorination of PCE io ethene. Those amended with ethanal, ethylene glycol, butanol/propanol mixtire and propanol/ethanal mixture produced incomplete PCE degradation, resulting in the accumulation of cis- PCE and VC . Those amended with ethylene glycol/butanol mixture showed no activity.

DETERMINATION OF ELECTRON DONORS IN THE REDUCTIVE dechlorination of tetrachloroethene

by
Samantha L. Marasigan Bernal

A Thesis
Submitted to the Fachity af New Jorsey Institute of Technology
Department of Chemical Engineering, Chemistry, and Environmental Science

APPROVAL PAGE

DETERMINATION OF ELECTRON DONORS IN THE REDUCTIVE DECHLORINATION OF TETRACHLOROETHENE

Samantha L. Marasigan Bernal

Dr. Piero Armenante, Thesis Advisor
Date

Professor of Chemical Engineering, NulT

Dr. David Kafkewitz, Thesis Advisor Date
Professor of Microbiology, Rutgers Universily

Dr. Gordon A. Lewandowski, Commitiee Member Date
Distinguished Professor and Chairpejern
Department of Chemical Engineering, Climisiry and
Environmental Science, NJIT

BIOGRAPHICAL SKETCH

Author:	Samantha L. Marasigan Bernal
Degree:	Master of Science
Date:	August 1998

Undergraduate and Graduate Education:

- Master of Science in Environmental Science, New Jersey Institute of Technology, Newark, NJ, 1998
- Bachelor of Science in Biology

College of St. Elizabeth, Convent Station, NJ, 1996
Major: Environmental Science

To my beloved husband and parents

ACKNOWLEDGMENT

I would like to express my gratitude to Dr. Piero Armenante and Dr. David Kafkewitz for serving as my thesis advisors and for guiding me throughout the course of the experiment. I would also like to thank Dr. Gordon A. Lewandowski for participating in my committee.

I would like to extend my appreciation to Clint Brockway and Gwendolyn San Agustin for their analytical assistance with the methods, specifically the design of the alcohol analysis using the GC; Andrea Giorgioni for his assistance with the Purge and Trap and the gas analysis; Sheng-Yih-Lee for his previous knowledge and support; and Dr. Monica Togna for her assistance with the sediment collection; and Paziflor Bontigao for all her help.

Finally, I would like to extend my deepest gratitude to Anthony Siccardi, who helped me throughout the whole experiment. Thank you for your patience and the experience.

TABLE OF CONTENTS

Chapter Page
1 INTRODUCTION 1
1.1 Objective 1
1.2 Background Information 1
2 LITERATURE SURVEY 4
2.1 Methanogens 4
2.2 Methane Formation from CO_{2} and H_{2} 5
2.3 Methane Formation form Acetic acid 6
2.4 Role of Methanogens in Reductive Dechlorination 7
3 MATERIALS AND METHODS 9
3.1 Chemicals 9
3.2 Media Preparation 10
3.3 Sediment Slurry Preparation 11
3.4 Reagent Preparation 11
3.5 Microcosm Preparation 12
3.6 Headspace Gas Analysis 14
3.7 Alcohol Analysis 15
3.8 Fatty Acid Analysis 16
3.9 Chloroethene Analysis 17

TABLE OF CONTENTS

(Continued)

Chapter Page
3.10 Mass Balance Analysis 18
4 RESULTS AND DISCUSSION 21
4.1 Effects of Volatile Fatty Acids 21
4.2 Effects of Alcohol 25
5 CONCLUSION 30
APPENDIX A ACID AND ALCOHOL GRAPHS 32
APPENDIX B TABLES FOR MICROCOSMS AND NEGATIVE CONTROLS 41
APPENDIX C NEGATIVE CONTROL GRAPHS 52
APPENDIX D RAW DATA EOR MICROCOSMS 59

LIST OF TABLES

Table Page
3.1 Amount of electron donor added per 250 mL of autoclaved DI $\mathrm{H}_{2} \mathrm{O}$ 12
3.2 Acid and alcohol microcosms 13
3.3 Negative controls. 14
3.4 Measured values of Henry's constant vs. temperature 20
B-1 Microcosms amended with Lactic acid 42
B-2 Negative controls amended with Lactic acid 42
B-3 Microcosms amended with Butyric acid 43
B-4 Negative controls amended with Butyric acid 43
B-5 Microcosms amended with Succinic acid 44
B-6 Negative controls amended with Succinic acid 44
B-7 Microcosms amended with Butyric acid/Succinic acid mixture 45
B-8 Microcosms amended with Butyric acid/Formic acid mixture 45
B-9 Microcosms amended with Formic acid 46
B-10 Microcosms amended with Propanol 47
B-11 Negative controls amended with Propanol 47
B-12 Microcosms amended with Ethanol 48
B-13 Negative controls amended with Ethanol 48

LIST OF TABLES

(Continued)

Table Page
B-14 Microcosms amended with Ethylene glycol/Butanol mixture 49
B-15 Negative controls amended with Butanol 49
B-16 Microcosms amended with Butanol/Propanol 50
B-17 Microcosms amended with Propanol/Ethanol 50
B-18 Microcosms amended with Ethylene glycol 51
D-1 Data for microcosms amended with Lactic acid (moles) 60
D-2 Data for microcosms amended with Butyric Acid (moles) 61
D-3 Data for microcosms amended with Succinic Acid (moles) 62
D-4 Data for microcosms amended with Butyric Acid/Succinic Acid mixture (moles) 63
D-5 Data for microcosms amended with Butyric Acid/Formic Acid mixture (moles) 64
D-6 Data for microcosms amended with Formic Acid (moles) 65
D-7 Data for microcosms amended with Propanol (moles) 66
D-8 Data for microcosms amended with Ethanol (moles) 67
D-9 Data for microcosms amended with Ethylene Glycol/Butanol mixture (moles) 68
D-10 Data for microcosms amended with Butanol/Propanol mixture (moles) 69
D-11 Data for microcosms amended with Propanol/Ethanol mixture (moles) 70
D-12 Data for microcosms amended with Ethylene Glycol (moles) 71

LIST OF FIGURES

Figures

Page

1.1 Sequential reductive dechlorination of PCE to ethene 2
2.1 Methanogenesis when metabolizing (a) CO_{2} and H_{2}, (b) formic acid, (c) methanol and (d) acetic acid 4
2.2 The anaerobic food chain 5
4.1 Mass in moles of (a) chlorinated ethene and (b) acid byproducts as a function of time for microcosms amended with lactic acid 22
4.2 Mass in moles of (a) chlorinated ethene and (b) acid byproducts as a function of time for microcosms amended with butyric acid 24
4.3 Mass in moles of (a) chlorinated ethene and (b) acid byproducts as a function of time for microcosms amended with propanol 26
4.4 Mass in moles of (a) chlorinated ethene and (b) acid byproducts as a function of time for microcosms amended with ethanol 28
A-1 Mass in moles of (a) chlorinated ethene and (b) acid byproducts as a function of time for microcosms amended with succinic acid 33
A-2 Mass in moles of (a) chlorinated ethene and (b) acid byproducts as a function of time for microcosms amended with butyric acid/succinic acid mixture 34
A-3 Mass in moles of (a) chlorinated ethene and (b) acid byproducts as a function of time for microcosms amended with butyric acid/formic acid mixture 35
A-4 Mass in moles of (a) chlorinated ethene and (b) acid byproducts as a function of time for microcosms amended with formic acid mixture 36
A-5 Mass in moles of (a) chlorinated ethene and (b) acid byproducts as a function of time for microcosms amended with ethylene glycol/butanol mixture 37
A-6 Mass in moles of (a) chlorinated ethene and (b) acid byproducts as a function of time for microcosms amended with butanol/propanol mixture 38

LIST OF FIGURES

(Continued)

Figure
Page

$$
\begin{aligned}
& \text { A-7 Mass in moles of (a) chlorinated ethene and (b) acid byproducts as a function of } \\
& \text { time for microcosms amended with propanol/ethanol mixture. } 39
\end{aligned}
$$

A- 8 Mass in moles of (a) chlorinated ethene and (b) acid byproducts as a function of time for microcosms amended with ethylene glycol 40
C-1 Mass in moles of (a) chlorinated ethene and (b) acid byproducts as a function of time for negative controls amended with lactic acid 53
C-2 Mass in moles of (a) chlorinated ethene and (b) acid byproducts as a function of time for negative controls amended with butyric acid 54
C-3 Mass in moles of (a) chlorinated ethene and (b) acid byproducts as a function of time for negative controls amended with succinic acid 55
C-4 Mass in moles of (a) chlorinated ethene and (b) acid byproducts as a function of time for negative controls amended with propanol. 56
C-5 Mass in moles of (a) chlorinated ethene and (b) acid byproducts as a function of time for negative controls amended with ethanol. 57
C-6 Mass in moles of (a) chlorinated ethene and (b) acid byproducts as a function of time for negative controls amended with butanol 58

CHAPTER 1
 INTRODUCTION

1.1 Objective

The objective of this work is to determine the effect of substrates or mixtures of substrates on the reductive dechlorination of tetrachloroethene (PCE) to ethene using soil microcosms that simulate conditions normally found in nature.

1.2 Background Information

Tetrachloroethene (perchlorogthene, PCE) is a synthetio chlorinated solvent commonly used in dry-cleaning, degreasing and fimigating operations (I). It is a contaminant frequently found in groundwater (2). PCE is one of the 14 volatile organic compounds regulated under the Safe Drinking Water Act Amendments of 1986 (2)

PCE is a pollutant of major concem. In addition to being a suspected carcinogen, it is also resistant to degradation under a \quad orobio conditions $(3,4,5)$. Studies have shown, however, that PCE, under amarobic conditions, are biodegraded by microorganisms through a process known as redinchive dechomination ($6,7,8,9,10,11,12$) (Figure 1.1). PCE has been reported to be soqiomially biomansformed to trichioroethene (TCE) (13. 14), dichloroethene (DCE) (14,15) and vinyl ohtoride (VC) (6, 16). Furthemore, several researchers have reported a complete dehalogenation of PCE to ethene as the final product.

1. $\mathrm{Cl}_{2} \mathrm{C}=\mathrm{CCl}_{2}+\mathrm{H}_{2} \ldots-\cdots-\cdots \mathrm{ClCH}=\mathrm{CCl}_{2}+\mathrm{H}^{+}+\mathrm{Cl}^{-}$
2. $\mathrm{ClCH}=\mathrm{CCl}_{2}+\mathrm{H}_{2}-\cdots-\cdots-\cdots \mathrm{ClCH}=\mathrm{CHCl}+\mathrm{H}^{+}+\mathrm{Cl}^{-}$
3. $\mathrm{CHCl}=\mathrm{CHCl}+\mathrm{H}_{2} \cdots-\cdots-\cdots \mathrm{CH}_{2}=\mathrm{CHCl}+\mathrm{H}^{+}+\mathrm{Cl}^{-}$
4. $\mathrm{CH}_{2}=\mathrm{CHCl}+\mathrm{H}_{2} \cdots-\cdots-\cdots \mathrm{CH}_{2}=\mathrm{CH}_{2}+\mathrm{H}^{+}+\mathrm{Cl}^{-}$

Figure 1.1 Sequential reductive dechlorination of PCE to ethene

High concentrations of PCE were reduced to ethene using an methanol-fed anaerobic enrichment culture (7, 17). A complete reductive dehlogenation was also reported using a mixed PCE-methanol methanogenic enrichment culture ($8,18,19$) More importantly, PCE has been reductively transformed to ethane $(20,21)$ Consequently, focus on PCE freatment has shifted away from physical and chemical processes, such as air-stripping and activated-carbon adsorption, and into the biological processes (19).

Biological treatment processes seem more favorable than chemical and physical treatment technologies. One advantage is the transformation of toxic chemicals into nonhazardous compounds rather than merely transferring the pollutant from one medium to another. Another advantage may be a more cost effective and less time consuming process (17)

Further sudies, howevar, noed to be conducted in order to better understand the microorganisme responsible for the hiotransformation of PCE to ethene and the environmental conditions necesanary for complate dahalogenation (17). In addition, conflicting results on which electron donors work best need to be further examined. Despite several demonstrations on the stimulating effect of electron donor addition on
reductive dehalogenation, conflicting reports still remain on which electron donors work best in aiding the dechlorination of PCE to ethene $(8,10,15,22,23)$.

CHAPTER 2

LITERATURE REVIEW

2.1 Methanogens

Methanogens are strict anaerobes that belong to the kingdom archaebacteria (24). They are the largest and most diverse group within the kingdom. They derive energy by metabolizing acetic acid to carbon dioxide $\left(\mathrm{CO}_{2}\right)$ and methane $\left(\mathrm{CH}_{4}\right)$, or by reducing CO_{2} to $\mathrm{CH}_{4}(25,29)$. Carbon monoxide, methanol and formic acid are also metabolized by methanogens (25) (see Figure 2-2). In sediments, about 40\% of methane produced comes from H_{2} and CO_{2} and about 60% comes from acetic acid (26)
(a) $4 \mathrm{H}_{2}+\mathrm{CO}_{2} \rightarrow \cdots \rightarrow \mathrm{CH}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
(b) $4 \mathrm{H}^{+}+\mathrm{HCOO}^{-} \cdots \cdots \rightarrow \mathrm{CH}_{4}+2 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{CO}_{2}$
(c) $\mathrm{CH}_{3} \mathrm{OH}+\mathrm{H}_{2} \cdots \cdots \cdots \mathrm{CH}_{4}+\mathrm{H}_{2} \mathrm{O}$
(d) $\mathrm{CH}_{3} \mathrm{COOH}+4 \mathrm{H}_{2} \cdots \cdots \cdots \rightarrow 2 \mathrm{CH}_{1}+2 \mathrm{H}_{2} \mathrm{O}$

Figure 2.1 Methanogenesis when metabolizing (a) CO_{2} and H_{3}, (b) formic acid, (c) methanol and (d) acctic acid.

Habitats of methanogens are found throughout nature. They include the following rice paddies, landfills, marshes, sediments, inndra, sewage shige digesters, temite hindgut, wetwood of trees, mmens of naminant nnimais, human large intestine, cecum, protozoa, hydrohermal vent, sadimens of fobinatar lakes and rivas and anabrobic oceans (11,26,29). The combined global production of methane annually is estimated to be 10^{9} metric tons (9).

Methanogens play a vital role in the anaerobic food chain, an important part of the carbon cycle. In the methanogenic decomposition of organic matter, methanogens is one of at least three anaerobic groups that are required to interact. The fermentative bacteria degrade polymers, such as amino acids, carbohydrates and pyrimidines to organic acids, alcohols, H_{2} gas and carbon dioxide. The acetogenic bacteria oxidize the fermentation end products to carbon dioxide, H_{2} and acetic acid. Then, the methanogenic bacteria utilize acetic acid, H_{2} and formic acid to produce methane and carbon dioxide $(29,30)$ (see

Figure 2.2).
carbohydrates, amino acids, purines, pyrimidines, etc.

Figure 2.2 The anaerobic food chain.

2.2 Methane Formation from CO_{2} and H_{2}

The CO_{2} reduction pathway begins with the reduction of CO_{2} to a formyl group. The formyl group is transferred to a methanofuran (MFR) to form HCO-MFR. Ferredoxin, an
iron-sulfur protein, is the most probable electron donor. Tetrahydromethanopterin (H 4 MPT) is the next Cl carrier. A series of enzyme-catalyzed reactions precedes the final step in the reduction of CO_{2} to CH_{4}. The formyl group is transferred from $\mathrm{HCO}-\mathrm{MFR}$ to HCO-H4MPT by a formyl-transferase enzyme. The next enzyme cyclohydrolase then forms a methenyl-H4MPT. Methylene-H4MPT dehydrogenase aids the electron carrier $\mathrm{F}_{420} \mathrm{H}_{2}$ to form a methylene-H4MPT, followed by a further reduction of the methylene reductase and the electron carrier $\mathrm{F}_{420} \mathrm{H}_{2}$ to form methyl-H4MPT $(26,29,30)$. The methyl group is transferred from methyl-H4MPT to $\mathrm{CoMSH}\left(\mathrm{HS}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SO}_{3}{ }^{-}\right)$to form methyl-coenzyme $\mathrm{M}(\mathrm{SCOM})$. This is then further reduced by the methyl reductase system, which has two components. One component is a methylreductase that reduces CH3-SCoM to methane and CoM-S-S-CoB. HS-CoB, formerly known as HS-HTP, serves as the electron donor for the methylreductase. A tetrapyrrole (F_{430}) containing a nickel serves as the electron carrier. The other component is a heterodisulfide reductase containing FAD that reduces $\mathrm{CoM}-\mathrm{S}-\mathrm{S}-\mathrm{CoB}$ to CoMSH and HS-CoB (29).

2.3 Methane Formation from Acetic acid

The electron derived from the oxidation of the carboxyl group of the acetic acid drives the reduction of the methyl group to methane (26). Acetic acid is first converted to acetyl-CoA, the substrate for carbon monoxide dehydrogenase (CODH), by the actions of acetic acid kinase (reaction 1) and phosphotransacetylase (reaction 2) (29, 30).

Acetic acid kinase:

Acetic acid + ATP $\cdots----\rightarrow$ acetyl-phosphate + ADP
Phosphotransacetylase:
Acetyl-phosphate + CoA $\cdots-\cdots \rightarrow$ actyl-CoA + inorganic phosphate (2)
The methyl group binds to the nickel atom in the Ni-FeS cluster of the acetyl-CoA synthase site, whereas the carboxyl portion binds to the iron atom in the Fe-S cluster. The carbon-carbon bond is then cleaved. The methyl group moves to the cobalt atom in the corrinoid-iron-sulfur protein. It is then transferred to tetrahydromethanopterin (H4MPT), and finally to CoMSH, where it is reduced to methane using the electron derived from the oxidation of the carboxyl group (29). The carboxyl group is transferred to the iron atom in the CODH iron-sulfur cluster, where it is oxidized to $\mathrm{CO}_{2}(26,29)$

Methanogenesis from acetic acid:
(1) $\left.\mathrm{CH}_{3} \mathrm{CO}-\mathrm{CoA} \cdots-\cdots \rightarrow \mathrm{CH}_{3}\right]+[\mathrm{CO}]+\mathrm{CoA}$
(2) $[\mathrm{CO}]+\mathrm{H}_{2} \mathrm{O} \rightarrow-\cdots \mathrm{CO}_{2}+2[\mathrm{H}]{ }^{+}$
(3) $\left[\mathrm{CH}_{3}\right]+2[\mathrm{H}]+\mathrm{ADP}+\mathrm{Pi}-\cdots-\cdots \rightarrow \mathrm{CH}_{4}+\mathrm{ATP}$

2.4 Role of Methanogens in Reductive DechIorination

Several researchers have shown that H_{2} serves as a direct electron donor in the reductive dechlorination of PCE. DiStefano et al. demonstrated that H_{2} was able to serve as the direct electron donor in the reductive dechlorination of PCE to VC and ethene using a methanol-fed enrichment culture (7,13). Maymo-Gatell et al. also demonstrated results consistent with those of DiStefano et al. using a $\mathrm{H}_{2}-\mathrm{PCE}$ culture produced from a 10^{-6}
dilution of a methanol-PCE culture (19). H_{2} has also been shown to serve as the direct electron donor for the growth of strain PER-K23 $(20,27)$ and Dehalobacter multivorans (28).

Because methanogens metabolize H_{2} along with CO_{2} to derive energy during the production of CH_{4}, dechlorinators must compete with the methanogens for any available H_{2}. Smatlak et al. (17) reported inhibitory effects of high levels of PCE on methanogens. However, in the presence of noninhibitory levels of PCE (110 uM), dechlorination activity slowed down as competition for electron donor became greater. The methanol-using acetogens and methanogens competed for methanol, while the hydrogenotrophic methanogens and H_{2}-using dechlorinators competed for the little H_{2} availble (17, 19). Fennell and Gossett also reported the activity of both dechlorinators and methanogens at high levels of H_{2}. However, at low H_{2} levels, dechlorination continued at a slower pace while methanogenesis stopped completely (22).

This suggests the importance of selectively adding substrates (electron donors) that would degrade slowly, and therefore, provide a slow and steady release of low levels of H_{2} in order to provide a more advantageous environment to the dechlorinators (22).

CHAPTER III

MATERIALS AND METHODS

3.1 Chemicals

The following were used for the preparation of analytical standards: TCE (99\%, anhydrous, Aldrich Chemical Co.), cis-1,2 DCE (97\%, Aldrich Chemical Co.), trans-1,2 DCE (1000 mg Neat, Supelco), VC ($200 \mathrm{ug} / \mathrm{ml}$ in methanol, Supelco), isobutyric acid (99%, Sigma Chemical Co.), propionic acid (sodium salt, Sigma Chemical Co.), methane (1050 ppm balance of Helium, Scotty I Analyzed Gases), ethene (1000 ppm balance of Helium, Scotty I Analyzed Gases) and ethane (102 ppm balance of Helium, Scotty I Analyzed Gases). The following were used for the preparation of analytical standards and as culture amendments: formic acid (sodium salt, Sigma Chemical Co.), succinic acid (ACS Reagent Grade, Sigma Chemical Co.), n-butyric acid (Sigma Chemical Co.), L(+) lactic acid (98%, sodium salt, Sigma Chemical Co.), acetic acid (2.0N, Sigma Chemical Co.), methanol (HPLC Grade, Fisher Scientific Co.), ethylene glycol ($99+\%$

Spectrophotometric Grade, Aldrich Chemical Co.), ethanol (Dehydrated 200 proof, Pharmco), 1-propanol ($99+\%$ Spectrophotometric Grade, Aldrich Chemical Co.), 1butanol (HPLC Grade, Fisher Scientific Co.) and PCE ($99+\%$ anhydrous, Aldrich Chemical Co.). $\mathrm{Na}_{2} \mathrm{~S}(3 \% \mathrm{APHA}$, Lab Chem Inc.) and 0.10% Resazurin (Fisher Scientific Co.) were used for the preparation of media. The water used in the experiment was $18-$ megaohm Milli-Q water.

3.2 Media Preparation

The medium used to make the soil microcosm was prepared from the following stock solutions: solution A , solution B , trace element solution and vitamin solution. Solution A (non-sterile) consisted of the following (in g / L): $1.0 \mathrm{KH}_{2} \mathrm{PO}_{4}, 1.0 \mathrm{~K}_{2} \mathrm{HPO}_{4}, 2.0 \mathrm{NaCl}$ and $1.0 \mathrm{NH}_{4} \mathrm{Cl}$. Solution B (non-sterile) consisted of the following in $(\mathrm{g} / \mathrm{L}): 0.10 \mathrm{MgSO}_{4}$ and $0.10 \mathrm{CaCl}_{2}$. The trace element solution consisted of the following in (g / L): 2.0 disodium nitriloacetate, $0.8 \mathrm{Fe}\left(\mathrm{NH}_{4}\right)_{2}\left(\mathrm{SO}_{4}\right)_{2} .6 \mathrm{H}_{2} \mathrm{O}, 1.0 \mathrm{MnSO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}, 0.2 \mathrm{CoCl}_{2} .6 \mathrm{H}_{2} \mathrm{O}, 0.2$ $\mathrm{ZnSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}, 0.02 \mathrm{CuCl}_{2} .2 \mathrm{H}_{2} \mathrm{O}, 0.02 \mathrm{Na}_{2} \mathrm{MoO}_{4} .2 \mathrm{H}_{2} \mathrm{O}, 0.02 \mathrm{NiCl}_{2} .6 \mathrm{H}_{2} \mathrm{O}, 0.02 \mathrm{Na}_{2} \mathrm{WO}_{4}$ and $0.02 \mathrm{Na}_{2} \mathrm{SeO}_{3}$. The vitamin solution contained the following in (mg / L): 10.0 pyridoxine. $\mathrm{HCl}, 5.0$ riboflavin, 5.0 thiamine. $\mathrm{HCl}, 2.0$ biotin, 5.0 vitamine $\mathrm{B}_{12}, 10.0$ mercaptoethanesulfonic acid and 2.0 folic acid.

In a 2-L flask, 100 mL of solution A were added to 800 mL of autoclaved deionized water, which was autoclaved at $120^{\circ} \mathrm{C}$ and 15 psi for 20 minutes. It was then purged at 5 psig with $\mathrm{N}_{2}: \mathrm{CO}_{2}$ mixed gas $(80: 20)$ which had been passed through a column of hot reduced copper fillings. While being purged, the solution was heated and maintained at $80^{\circ} \mathrm{C}$ for one hour. Once the solution cooled down to room temperature, 100 ml of solution B were added. The solution was then purged for an additional 30 minutes, followed by the addition of the following reagents: $0.60 \mathrm{~g} \mathrm{NaHCO}_{3}, 10 \mathrm{ml}$ of 3% $\mathrm{Na}_{2} \mathrm{~S}, 0.10 \mathrm{ml}$ of 0.10% resazurin, 1.0 ml of trace element solution and 1.0 ml of vitamin solution. The volume was then adjusted to 1.0 liter. The flask was promptly sealed with a butyl rubber stopper and transferred to the anaerobic chamber $\left(70 \mathrm{~N}_{2}: 30 \mathrm{H}_{2}\right)$.

3.3 Sediment Sluwy Preparation

Sediment was collected from the Arthur Kill with a hollow, metal cylindrical device attached to a reel on the boat that was dropped into the water. With the sediment paoked inside the metal cylinder, it was then retrieved and immediately captured by plastio cylinders placed under the metal cylinder to eatch the falling sediment. The sediment from the plastic cylinders was transferred into a wide mouth Ball ${ }^{7 \mathrm{M}} 2$ "quart mason jar. It was then stored af $4^{9} \mathrm{C}$ in a BBL Gas Pack ${ }^{\mathrm{TM}}$ jar containing a BBL Gas Generator Envelope ${ }^{\mathrm{TM}}$, which generates CO_{2} and H_{2}, to maintain anaerobic conditions.

In an anaerobic chamber $\left(70: 30 ; \mathrm{N}_{2}: \mathrm{H}_{2}\right), 100 \mathrm{~g}$ of the sediment was dispensed into a 1-L flask and diluted to the 500 mL mark with the media. The soil slurry was gitimed and incubated for 24 hours. Prior to sample analysis, the soil was screened for any chlormated ethens with the purge and trap. No measurable amounts of chlorinated sthene were deracted.

3.4 Reagent Preparation

A 712. 5 HM PCE solution was prepared in the anaerobic glove box. In a 160 mi serm batile, 11 uL of PCE was disponsed into 150 ml of prepurged [$\mathrm{Na}_{2}: \mathrm{CO}_{2}$ mixed gef (80:20)] ahroclaved deionized watof. A teflon-caated magnetio stir bar was added ta endure proper miving. The battie war immediately sealed with a tefloneconted rubber stapper and an aluminum crimp seal. The solution was stirred on a magnetic hot plate at room temperature for 24 hours. All preparations were performed inside the anaerobic chamber.

57 mM electron donor solutions were prepared by dispensing a suitable amount of the appropriate electron donor into 200 mL of prepurged $\left[\mathrm{N}_{2}: \mathrm{CO}_{2}\right.$ mixed gas (80:20)] autoclaved deionized water in a 250 mL flask (see Table 3.1). The pH was adjusted with NaOH solution to about 7.5 with a Fisher Scientific Accumet ${ }^{\mathrm{TM}}$ digital $\mathrm{pH} / \mathrm{mV}$ meter. The flask was diluted quantitatively to mark. The solutions were transferred into a 160 mL bottle and sealed with a teflon-coated rubber stopper and an aluminum crimp seal.

Table 3.1 Amount of electron donor added per 250 mL of autoclaced DI $\mathrm{H}_{2} \mathrm{O}$

Electron donor	Mass added in grams	Volume added in mL
Lactic Acid	1.5974	----------
Succinic Acid	3.8489	---------
Formic Acid	0.9691	---------
Butyric Acid	---------	1.3024
Ethanol	0.8360	---------
Propanol	1.0650	---------
Ethylene Glycol	0.7950	-
Butanol	1.3040	-------

3.5 Microcosm Preparation

Microcosms were prepared in a $38-\mathrm{ml}$ serum bottle inside the anaerobic glove box. Two variations of microcosms were prepared: one was made with the addition of one electron donor, and another with the addition of two electron donors. The first variation was prepared by adding the following: 20 ml of media, 1.0 ml of $712.5 \mathrm{uMPCE}, 2.5 \mathrm{ml}$ of the 57 mM electron donor and 5.0 ml of soil slurry. There was a total volume of 28.5 mL and a 9.5 mL headspace. The second variation was prepared by adding the following: 17.5 ml of media, 1.0 ml of 712.5 uM PCE, 2.5 ml of each 57 mM electron donor, and 5.0 ml of
soil slurry. There was a total volume of 28.5 mL and a headspace of 9.8 mL . The serum bottles were immediately sealed with a teflon-coated rubber stopper and an aluminum crimp seal after all additions were made. Nineteen bottles were prepared for each electron donor for a total of six sampling periods (see Table 3.2). Triplicates were sacrificed every sampling period. They were incubated in the dark at $25^{\circ} \mathrm{C}$ until point of analysis.

Table 3.2 Acid and alcohol microcosms
Lactic Acid
Formic Acid
Succinic Acid
n-Butyric Acid
n-Butyric Acid/Succinic Acid
n-Butyric Acid/Formic Acid
Ethanol
1-Propanol
Ethylene Glycol
1-Propanol/Ethanol
1-Butanol/1-Propanol
Ethylene Glycol/ - Butanol

Negative controls were set up in the anaerobic glove box. 5 mL of the soil slurry, 2.5 mL of the 57 mM electron donor solution and 20 mL of the media were dispensed into a 38 mL serum botile. The serum bottles were sealed with a teflon-coated rubber siopper and an aluminum crimp eeal. After autoclaving the battles for one hour at $120^{\circ} \mathrm{C}$ and 15 psi, the batiles were cooled to room temperature. It was brought back inside the anaerobic glave box, where 1 mL of 712.5 uM PCE was added. The bofiles were resealed with a teflon-coated rubber stopper and aluminum crimp seal. Six negative controls were prepared for each electron donor for a total of six sampling periods (see Table 3.3). The negative controls were incubated in the dark at $25^{\circ} \mathrm{C}$ until point of analysis.

Table 3.3 Negative controls
n-Butyric Acid
Succinic Acid
Lactic Acid
Methanol
Ethanol
1-Propanol
1-Butanol

3.6 Headspace Gas Analysis

Ethene, ethane and methane were analyzed by performing a headspace gas analysis on a Varian 3600 TM Gas Chromatograph (GC) equipped with a flame ionization detector (FID). Air was used as the carrier gas at a flow rate of $300 \mathrm{~mL} / \mathrm{min}$ and a pressure of 36 psi at $50^{\circ} \mathrm{C}$. The H_{2} rate was set at $30 \mathrm{~mL} / \mathrm{min}$ to keep the flame lit. A stainless steel column (Hayesep D, $10^{\prime} \times 1 / 8^{\prime \prime}$ i.d. x $0.085^{\prime \prime}$ df, mesh $80 / 100$, Alltech Co.) was used. The column temperature was set at $50^{\circ} \mathrm{C}$; the injector temperature was set at $100^{\circ} \mathrm{C}$; the detector was set at $200^{\circ} \mathrm{C}$. The GC was programmed to have an attenuation of 8 and a range of 12 . The GC was hooked up to a computer, which used a Hewlett Packard Minichrom Chromatography Data System ${ }^{\mathrm{TM}}$ version 1.62 software to process the data. The duration of the sampling time was 9 minutes per sample.

The analysis was performed by injecting a Pressure Lok ${ }^{\text {TM }}$ gas-tight glass syringe into the serum bottle. The vaive on the syringe was opened and ther: 1 mL of the gas from the headspace was withdrawn. After 15 seconds, the valve was closed. Precautions were taken to ensure no liquid was withdrawn with the gas. The syringe was then removed from the bottle, and then injected into the GC

3.7 Alcohol Analysis

Short-chained alcohols were analyzed using a Hewlett Packard Series II $5890^{\mathrm{TM}} \mathrm{GC}$ equipped with an FID and a Hewlett Packard GC System Auto Injector ${ }^{\text {TM }}$, which injects 1 uL into the GC. Air was the primary component of the carrier gas at a pressure of 50 psi and a flow rate of $426 \mathrm{~mL} / \mathrm{min}$. Helium was used as the auxiliary gas and was set at a flow rate of $15.5 \mathrm{~mL} / \mathrm{min}$. H_{2} was used to keep the flame lit in the FID and was set at a flow rate of $29.5 \mathrm{~mL} / \mathrm{min}$. A guard column (deactivated phenyl-methyl, $5 \mathrm{~m} \times 0.32 \mathrm{~mm}$ i.d.) and a Restek RTX-200 ${ }^{\text {TM }}$ column ($30 \mathrm{~m} \times 0.32^{\prime \prime}$ i.d. $\times 1.0 \mathrm{df}$) were used to separate the alcohols. The GC oven temperature was set at $55^{\circ} \mathrm{C}$ for ten minutes and then raised to a final temperature of $150^{\circ} \mathrm{C}$ for ten minutes at a rate of $25^{\circ} \mathrm{C} / \mathrm{min}$. The injector temperature was set at $200^{\circ} \mathrm{C}$; the detector temperature was set at $250^{\circ} \mathrm{C}$, and the column flow was set at $31.8 \mathrm{~mL} / \mathrm{sec}$ with the column feature enabled. A split injection ratio of 9.4:1 was set to prevent the FID flame from extinguishing due to the water in the samples. The duration of the sampling time was 23.80 minutes per sample. The GC was hooked up to a computer, which used a Hewlett Packard Minichrom Chromatography Data System ${ }^{\text {TM }}$ version 1.62 software to process the data.

With a 3.0 ml Becton Dickinson ${ }^{\mathrm{TM}}$ syringe fitted with a 21 -gauge needle, 2 mL of the liquid sample was withdrawn and filtered with a non-sterile 0.22 um nylon syringe filter (Micron Separations Inc.) into a Target DP ${ }^{\mathrm{TM}}$ vial (National Scientific Company) fitted with a cap that contained a teflon/silicone septum. The vials were then loaded into the autosampler.

3.8 Fatty Acid Analysis

Fatty acids were analyzed with a Waters High Performance Liquid Chromatography (HPLC) equipped with a Waters 484^{TM} Tunable Absorbance Detector set at a wavelength of 210 nm , a Waters $600 \mathrm{E}^{\mathrm{TM}}$ System Controller and a Waters 715^{TM} Ultra Wisp Sample Processor. The eluent used for the HPLC was a $0.1 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ set at an isocratic flow rate of $0.50 \mathrm{~mL} / \mathrm{min}$ with a somewhat stable pressure on the column of 522 psi . Prior to addition to the reservoir bottle, the $0.1 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ solution was sonicated for 30 minutes. To further ensure the absence of air bubbles, the solution was continuously sparged with He at a flow rate of $20 \mathrm{~mL} / \mathrm{min}$. A guard column (Supelcogel C610H $5.0 \mathrm{~cm} \times 4.6 \mathrm{~mm}$ i.d.) was installed to catch material that woud otherwise bind permanently to the column. The Supelcogel C-610HTM carbohydrate column with a polystyrene divinylbenzene support ($30 \mathrm{~cm} \times 7.8 \mathrm{~mm}$ i.d.) was used to separate the acids. It was maintained at $30^{\circ} \mathrm{C}$ by a Waters Temperature Control Module. The duration of the sampling time was 60 minutes. The GC was hooked up to a computer, which used a Hewlett Packard Minichrom Chromatography Data System ${ }^{\mathrm{TM}}$ version 1.62 software to process the data.

With a 3.0 mL Becton Dickinson syringe fitted with a 21 -gauge needle, 2.0 mL of the liquid sample was withdrawn from the 38.0 mL serum bottle and filtered through a non-sterile 0.22 um nylon syringe filter (Micron Separations Inc.). 0.70 mL of the filtrate was dispensed into a 0.75 mL HPLC vial (Kimble Glass Inc.), acidified by adding 10 uL of $85.0 \% \mathrm{H}_{3} \mathrm{PO}_{4}$., and then capped. The samples were loaded into the autosampler, which was set to inject a volume of 200 uL .

3.9 Chloroethene Analysis

Chloroethenes were analyzed by a Tekmar LCS 2000 ${ }^{\text {TM }}$ Purge and Trap controller equipped with an ALS 2016^{TM} autosampler. The purge and trap was programmed to purge the sample with He with a flow rate of $40 \mathrm{~mL} / \mathrm{min}$ at 20 psi for 12 minutes and then desorb the chloroethenes from the Tenax K adsorbent by heating the adsorbent to $250^{\circ} \mathrm{C}$ for 6 minutes. With a heated transfer line, the desorbed chloroethenes were transported and injected into the GC.

The GC was a Varian 3400^{TM} equipped with an electrolytic conductivity detector (ELCD, model 4430, OI Corporation). Helium was the carrier and makeup gas set at a flow rate of $20 \mathrm{~mL} / \mathrm{min}$. The column flow rate for Helium was set at $10 \mathrm{~mL} / \mathrm{min}$ with a pressure of 20 psi at $22^{\circ} \mathrm{C}$. N -propanol was the solvent used for the ELCD. The reaction chamber was set at $850^{\circ} \mathrm{C}$. To separate the chlorinated ethene, a Restek Rtx-624 ${ }^{\mathrm{TM}}$ capillary column ($105 \mathrm{~m} \times 0.53 \mathrm{~mm}$ ID $\times 3.0 \mathrm{um} \mathrm{df}$) was used. The GC was programmed to maintain the oven temperature at $35^{\circ} \mathrm{C}$ for 10 minutes before raising it to a final temperature of $200^{\circ} \mathrm{C}$ for 1.5 minutes at a rate of $7.0^{\circ} \mathrm{C} / \mathrm{min}$. The injector temperature was set at $150^{\circ} \mathrm{C}$, and the detector was set at $200^{\circ} \mathrm{C}$. The duration of the sampling time was 35.07 minutes. The Purge and Trap GC was hooked up to a computer, which used a Hewlett Packard Minichrom Chromatography Data System ${ }^{\mathrm{TM}}$ version 1.62 software to process the data.

The samples were vigorously shaken before 1.0 mL of sample was withdrawn from a 38.0 mL serum bottle using a $1-\mathrm{mL}$ Gastight ${ }^{\mathrm{TM}}$ Syringe (model 1001 Hamilton Co.) fitted with a 22 -gauge needle $(8.0 \mathrm{~cm})$. The samples were then dispensed into purge
and trap test tubes containing 4.0 mL of DI water preloaded into the Purge and Trap autosampler.

3.10 Mass Balance Analysis

In order to determine the mass balance of the microcosms, several preliminary calculations had to be performed:
(1) To determine the total number of moles in a 25 uM PCE solution:

Concentration of PCE $(\mathrm{mol} / \mathrm{L}) *$ volume of liquid $(\mathrm{L})=\#$ of moles of PCE $2.5 \times 10^{-5} \mathrm{~mol} / \mathrm{L} * 0.0285 \mathrm{~L}=7.125 \times 10^{-7} \mathrm{~mol} \mathrm{PCE}$
(2) To determine the number of moles of chlorinated ethene in the liquid phase:

Concentration of chlorinated ethene (moles $/ \mathrm{L}$) * volume of liquid $(\mathrm{L})=\#$ of moles
$1.558 \times 10^{-5} \mathrm{~mol} / \mathrm{L} * 0.0285 \mathrm{~L}=4.441 \times 10^{-7} \mathrm{~mol} \mathrm{PCE}$
(3) To determine the number of moles of chlorinated ethene in the gas phase:

Concentration of chlorinated ethene (moles/L) * Henry's constant (31) (Table 3.4) = concentration (moles/L) of chlorinated ethene in gas phase
$1.558 \times 10^{-5} \mathrm{~mol} / \mathrm{L} * 0.723=1.126 \times 10^{-5} \mathrm{~mol} / \mathrm{L} \mathrm{PCE}$
then, value from above * volume of headspace $(\mathrm{L})=\#$ of moles in gas phase
$1.126 \times 10^{-5} \mathrm{~mol} / \mathrm{L} * 0.0095 \mathrm{~L}=1.070 \times 10^{-7} \mathrm{~mol} P C E$
(4) To determine the total number of moles of chlorinated ethene in the sample:

Moles in liquid phase + moles in gas phase $=$ total $\#$ of moles
$4.441 \times 10^{-7} \mathrm{~mol}+1.070 \times 10^{-7} \mathrm{~mol}=5.480 \times 10^{-7} \mathrm{~mol} \mathrm{PCE}$
$2.5 \times 10^{-5} \mathrm{~mol} / \mathrm{L} * 0.0285 \mathrm{~L}=7.125 \times 10^{-7} \mathrm{~mol} \mathrm{PCE}$
(5) To determine the number of moles of gas in a 1 mL sample at 1 atm:
$P V=n R T$
Therefore, $\mathrm{n}=\mathrm{PV} / \mathrm{RT}$
$1 \mathrm{~atm} * 10^{-3} \mathrm{~L} / 0.0821 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} * 298 \mathrm{~K}=4.2 \times 10^{-5} \mathrm{~mol}$
(6) To determine the number of moles of gas in a 1000 ppm 1 mL sample:
$1000 \mathrm{ppm}=10^{-3} \mathrm{~mol} /$ total mol
which can be represented as, $\mathrm{n}_{\mathrm{gas}}=10^{-3} *$ total mol in 1 mL
$10^{-3} * 4.2 \times 10^{-5} \mathrm{~mol}=4.2 \times 10^{-8} \mathrm{~mol}$ in a 1000 ppm 1 mL sample
(7) To determine the number of moles of ethene or ethane gas in the headspace:

Moles in $1000 \mathrm{ppm} / 1000$ arbitrary units = number of moles $/$ arbitrary units
Number of moles in $1 \mathrm{~mL}=4.2 \times 10^{-11} *$ arbitrary units
Then, number of moles in 1 mL * volume of headspace (L)
Number of moles in $0.001 \mathrm{~L} * 0.0105 \mathrm{~L}=$ number of moles of gas in headspace
(8) To determine the total number of moles present in the sample:

Total number of moles of chlorinated ethene + total number of moles of gas in the headspace $=$ total number of moles in the sample
(9) To determine the mass balance of a sample:
(Total number of moles in the sample / total number of moles of PCE in a 25 uM solution) * $100=$ mass balance
$\left(5.463 \times 10^{-7} \mathrm{~mol} / 7.125 \times 10^{-7} \mathrm{~mol}\right) * 100=76.7 \%$

Theoretically, a 25 uM PCE solution should yield a total of 7.125×10^{-7} moles of PCE
per bottle. However, experimentally when analyzed with a Purge and Trap, the 25 uM PCE standard solution prepared with a plastic pipette yielded only a total of 3.380×10^{-7} moles of PCE per bottle. Therefore, under these circumstances, the mass balance was calculated based on the initial $(t=0)$ calculated number of moles of PCE rather than the theoretical value of 7.125×10^{-7} moles of PCE.

Table 3.4 Values of Henry's Constant vs. Temperature (31)

compound	temp $\left({ }^{\circ} \mathrm{C}\right)$	$\underline{\mathrm{Hc}}$
tetrachloroethene	9.6	0.294
	17.5	0.492
	24.8	0.723
	34.6	1.116
trichloroethene		
	9.6	0.163
	17.5	0.265
	24.8	0.392
	34.6	0.591
cis-1,2 dichloroethene	10.3	0.111
	17.5	0.167
	24.8	0.216
	34.6	0.181
		0.277
trans-1,2 dichloroethene	10.0	0.384
	17.5	0.545
	24.8	
	346	0.631
		0.811
vinyl chloride	10.3	1.137
	17.5	1.420

CHAPTER 4

RESULTS AND DISCUSSION

4.1 Effects of Volatile Fatty Acids

All of the microcosms exhibited a complete reductive dechlorination of PCE to ethene; however, the rate at which dehalogenation occurred varied significantly among the different microcosms (Figures 4.1, 4.2, A-1 - A-4 and Tables B-1 - B-9). Each point in these figures and tables is the average of three measurements taken from the three bottles sacrificed at each sampling point.

The average starting PCE level for these microcosms was 0.502 ± 0.54
umol/bottle, a value equivalent to 70% of the theoretical PCE level of 0.7125 umol/bottle.
Due to the inability to quantitatively measure the gases, ethene and ethane, the mass balance reported for the chlorinated ethenes are only partially accurate. For the initial sampling period, the calculated mass balance for the chlorinated ethenes fell between 63 and 82% when compared against the theoretical PCE level of $0.7125 \mathrm{~mol} /$ bottle. Two probable conclusions could be drawn from these values: (1) PCE immediately binds to the sediment in the microcosms (2 hours passed before the microcosms were ananlyzed), or (2) the starting PCE levels are those measured at $t=0$. The latter seems more reasonable since a PCE standard solution prepared with plastic pipette yielded a total of 0.338 $\mathrm{mol} / \mathrm{bottle}$ rather than the expected $0.7125 \mathrm{~mol} /$ bottle, which would explain the low initial PCE level for the microcosms.

The average starting PCE level for the negative controls was 0.460 ± 0.17
(a)

Figure 4.1 Mass in moles of (a) chlorinated ethene and (b) acid byproducts as a function of time for microcosms amended with lactic acid.
umol/bottle (Figures $\mathrm{C}-1-\mathrm{C}-3$). For the final sampling period, the calculated mass balance for the chlorinated ethenes fell between 33.7 and 63.6% when compared against the initial calculated value of PCE. A loss of almost 50% of the initial PCE level and the absence of dechlorination products may be due to any of the three possible explanations: (1) PCE was absorbed by the sediment in the microcosms over the course of the experiment; (2) PCE escaped from underneath the teflon stopper; or (3) a systematic sampling error occurred throughout the course of the experiment. The second explanation is not likely the cause of the loss of PCE over time since those bottles which showed activity produced and exerted greater pressure than those that showed less activity. The final explanation is also not likely since prior applications of the method have demonstrated consistent mass balance calculations.

All of the microcosms except for those amended with butyric acid, demonstrated dehalogenation activity within 14 days. Butyric acid, which is more difficult to degrade under anaerobic conditions (28), had a longer lag period (21 days). All cultures exhibited further dehalogenation activity. Accumulation of c-DCE up until 28 days was consistent throughout all six conditions. Then, VC became the predominant species.

Of all the conditions, those amended with the butyric acid/succinic acid mixture supported the fastest reductive dechlorination of PCE to ethene. No traces of any kind of chlorinated ethene were detected at 49 days. Those amended with succinic acid, butyric acid, formic acid and the butyric acid/formic acid mixture took 77 days to exhibit complete reductive dechlorination, while those amended with lactic acid took 160 days. Only ethene and ethane were detected at 160 days.
(a)

(b)

Figure 4.2 Mass in moles of (a) chlorinated ethene and (b) acid byproducts as a function of time for microcosms amended with butyric acid.

4.2 Effects of Alcohols

Five out of six alcohols used as electron donors resulted in dehalogenation activity. However, the rate at which dechlorination occurred varied significantly among the different microcosms (Figures 4.3, 4.4, A-5-A-8 and Tables B-10-B-18). Each point in these figures and tables is the average of three measurements taken from the three bottles sacrificed at each sampling point.

The average starting PCE level for these microcosms was $0.422 \pm 1.41 \mathrm{~mol} / \mathrm{bottle}$, a value equivalent to 59% of the theoretical PCE level of $0.7125 \mathrm{~mol} / \mathrm{bottle}$. For the final sampling period, the calculated mass balance fell between 3.7 and 78% when compared against the theoretical PCE level of $0.7125 \mathrm{~mol} /$ bottle. Two probable conclusions could be drawn from these values: (1) PCE immediately binds to the sediment in the microcosms (2 hours passed before the microcosms were ananlyzed), or (2) the starting PCE levels are those measured at $t=0$. The latter seems more reasonable since a PCE standard solution prepared with plastic pipette yielded a total of $0.338 \mathrm{~mol} /$ bottle rather than the expected $0.7125 \mathrm{~mol} / \mathrm{bottle}$, which would explain the low initial PCE level for the microcosms, but not the mass balance for the chlorinated ethene which fell between 4.83 and 62.0%

The average starting PCE level for the negative controls was 0.261 ± 0.07 umol/bottle (Figures $\mathrm{C}-4-\mathrm{C}-6$). For the final sampling period, the calculated mass balance for the chlorinated ethenes fell between 36.0 and 67.9% when compared against the initial calculated value of PCE. A loss of almost 50% of the initial PCE level and the absence of dechlorination products may be due to any of the three possible explanations:
(1) PCE was absorbed by the sediment in the microcosms over the course of the

Figure 4.3 Mass in moles of (a) chlorinated ethene and (b) acid byproducts as a function of time for microcosms amended with propanol
experiment; (2) PCE escaped from underneath the teflon stopper; or (3) a systematic sampling error occurred throughout the course of the experiment. The second explanation is not likely the cause of the loss of PCE over time since those bottles which showed activity produced and exerted greater pressure than those that showed less activity. The final explanation is also not likely since prior applications of the method have demonstrated consistent mass balance calculations.

Of the six conditions studied, only the microcosms amended with the ethylene glycol/butanol mixture demonstrated no dehalogenation activity. PCE was consistently detected throughout all six sampling times. Those amended with the butanol/propanol mixture showed dehalogenation activity at 13 days. Those amended with propanol, ethylene glycol and the propanol/ethanol mixture showed signs of dehalogenation activity at 27 days, while those amended with ethanol took 41 days to show any sign of activity.

The late onset of dehalogenation activity in the microcosms amended with ethanol may be due to its ability to be rapidly degraded under anaerobic conditions, and therefore, result in the production of higher levels of H_{2}. Because excess H_{2} are made easily available to both methanogens and dechlorinators, competition between the two may have persisted until lower levels of H_{2} were left over. Low levels of H_{2} are less available to methanogens, and consequently, would result in the predominance of dechlorinators (17).

Despite the longer lag period of ethanol, the microcosms amended with ethanol demonstrated greater dehalogenation activity than every other microcosms amended with alcohol except for those amended with propanol. Other than those amended with propanol, none exhibited a complete reductive dechlorination of PCE to ethene. No traces

Figure 4.4 Mass in moles of (a) chlorinated ethene and (b) acid byproducts as a function of time for microcosms amended with ethanol.
of any kind of chlorinated ethenes were detected at 69 days. Only ethene and some traces of ethane were detected. The rest continually exhibited significant quantities of $\mathrm{PCE}, \mathrm{c}-$ DCE and VC throughout the entire course of the experiment.

CHAPTER 5

CONCLUSION

The experiments carried out in this work demonstrated that a complete biotransformation of PCE to ethene can be observed when the cultures are supplemented with one of the following electron donors: succinic acid, lactic acid, butyric acid, formic acid, propanol, butyric acid/succinic acid mixture and butyric acid/formic acid mixture. Although the microcosms amended with butyric acid and succinic acid by themselves were able to reductively dechlorinate PCE to ethene, the combination of the two seems to have a positive effect on the rate of dechlorination. However, only 32% of the initial PCE level could be accounted for as ethene or ethane. The remainder was either lost or absorbed by the sediment in the microcosm.

On the contrary, the microcosms amended with the butyric acid/formic acid and propanol/ethanol mixtures seem to demonstrate slower dehalogenation activity than their individually amended counterparts. Microcosms amended with butyric acid and formic acid by themselves demonstrated complete reductive dehalogenation at 77 days. Those amended with the butyric acid/formic acid mixture stili showed levels of VC at 77 days. Similarly, those amended with propanol completely biotransformed PCE to ethene. Those amended with ethanol stopped dehalogenation activity at VC at 69 days. While those microcosms amended with the propanol/ethanol mixture continually demonstrated levels of PCE, c-DCE and VC for the most part of the experiment.

Although no evident explanation can be given as to which electron donor works
the best, it appears that the volatile fatty acids, specifically the butyric acid/succinic acid mixture, work better than the alcohols chosen in this experiment. More research needs to be done on various electron donors as well as their optimal concentrations necessary to provide the maximum results in the initiation and enhancement of reductive dechlorination

APPENDIX A

ACID AND ALCOHOL GRAPHS

Figure A-1 Mass in moles of (a) chlorinated ethene and (b) acid byproducts as a function of time for microcosms amended with succinic acid.
(a)

(b)

Figure A-2 Mass in moles of (a) chlorinated ethene and (b) acid byproducts as a function of time for microcosms amended with butyric acid/succinic acid mixture.
(a)

(b)

Figure A-3 Mass in moles of (a) chlorinated ethene and (b) acid byproducts as a function of time for microcosms amended with butyric acid/formic acid mixture

FigureA-4 Mass in moles of (a) chlorinated ethene and (b) acid byproducts as a function of time for microcosms amended with formic acid.
(a)

Figure A-5 Mass in moles of (a) chlorinated ethene and (b) acid byproducts as a function of time for microcosms amended with ethylene glycol/butanol mixture.
(a)

(b)

Figure A-6 Mass in moles of (a) chlorinated ethene and (b) acid byproducts as a function of time for microcosms amended with butanol/proopanol mixture
(a)

(b)

Figure A-7 Mass in moles of (a) chlorinated ethene and (b) acid byproducts as a function of time for microcosms amended with propanol/ethanol mixture

Figure A-8 Mass in moles of (a) chlorinated ethene and (b) acid byproducts as a function of time for microcosms amended with ethylene glycol.

APPENDIXB

TABLES FOR MICROCOSMS AND NEGATIVE CONTROLS

Table B-1 Microcosms amended with Lactic aci

DAY :P	PCE	TCE	c-DCE	t-DCE:	VC	ETHENE	ETHANE	MOLES	MB	BUTYRIC	FORMIC	SUCCINIC:	LACTIC	ACEIIC	PROPONIC	ISOBUTYRI
0	5.51E-07 N	ND	ND	NO	ND	ND	ND	$5.51 \mathrm{E}-07$	100	ND	1.43E-06	ND	1.27E-04	$4.25 \mathrm{E}-04$	ND	ND
7	4.53E-07 N	ND	ND	ND	ND	ND	ND	4.53E-07	82.2	ND	$5.04 \mathrm{E}-07 \mathrm{~N}$	ND	$5.51 \mathrm{E}-07$	$9.40 \mathrm{E}-04$	4.77E-05	ND
14	4.33E-07 N	ND	2.89E-09	ND	ND	ND	ND	$4.36 \mathrm{E}-07$	79.1	1.25E-06	ND	ND	$4.85 \mathrm{E}-07$	$1.02 \mathrm{E}-03$	$534 \mathrm{E}-05$	ND
21	4.03E-07	NO	$1.83 \mathrm{E}-07$	ND	ND	ND	ND	$5886 \mathrm{E}-07$	106	$2.62 \mathrm{E}-05$	ND	ND	ND	$1.07 \mathrm{E}-03$	ND	ND
28:	ND	ND	$834 \mathrm{E}-08$	ND	$3.90 \mathrm{E}-07$	ND	ND	$4.73 \mathrm{E}-07$	85.9	1.06E-06	$5.05 \mathrm{E}-07 \mathrm{D}$	ND	208E-06	$1.02 \mathrm{E}-04$	$6.81 \mathrm{E}-05$	ND
49	ND	ND	ND	ND	$9.35 \mathrm{E}-08$	ND	ND	$9.35 \mathrm{E}-08$	17.0	1.64E-06	4.76E-07	ND	$160 \mathrm{E}-06$	$289 \mathrm{E}-04$	$1.78 \mathrm{E}-06$	ND
77	ND	ND	ND	ND	$8.22 \mathrm{E}-08$	ND	ND	$822 \mathrm{E}-08$	14.9	ND	ND	ND	1.18E-06	ND	ND	ND
160	ND	ND	ND	ND	0	$2.11 \mathrm{E}-08$	$325 \mathrm{E}-08$	$5.36 \mathrm{E}-08$		ND						
Tabl	le B-2 N	Negati	tive contros	ols am	nended wi	with Lactic	acid									
DAY	PCE	TCE	C-DCE	t-DCE	Vc	ETHENE	ETHANE	MOLES	MB	BUTYRIC	FORMIC	SUCCINIC	LACTIC	ACETIC	PROPONIC	ISOBUTYRI
0	4.28E-07		ND	ND	ND	ND	$1.64 \mathrm{E}-09$	$4.30 \mathrm{E}-07$	99.9	ND	$1.37 \mathrm{E}-06$	ND	$167 \mathrm{E}-04$	$1.65 \mathrm{E}-05$	ND	ND
13	3 368E-07	7 ND	ND	NO	ND	ND	$1.58 \mathrm{E}-09$	$3.70 \mathrm{E}-07$	85.9	ND	$1.45 \mathrm{E}-06$	ND	$1.66 \mathrm{E}-04$	1.12E-05	ND	ND
28	3 301E-07		ND	ND	ND	ND	1.59E-09	$3.03 \mathrm{E}-07$	70.4	ND	1.45E-06	ND	$1.66 \mathrm{E}-04$	$282 \mathrm{E}-03$	NO	ND
41	$12868 \mathrm{E}-07$		ND	ND	ND	NO	ND	$286 \mathrm{E}-07$	66.5	ND	ND	ND	$1.68 \mathrm{E}-04$	ND	ND	NO
55	$5159 E-07$		ND	ND	ND	ND	$1.49 \mathrm{E}-0 \mathrm{~S}$	$1.60 \mathrm{E}-07$	37.3	ND	ND	ND	$1.68 \mathrm{E}-04$	1.72E-05	ND	ND
69	- 1.45E-07	7 NO	ND	ND	ND	ND	ND	1.45E-07	337	ND	$3.34 \mathrm{E}-06$		1.73E-04	2.03E-05	ND	ND

Table B-3 Microcosms amended with Butyric acid

DAY	PCE	TCE	C-DCE	$t-\infty$		ETHENE	ETHANE	MOLES	MB	BUTYRIC	FORMIC	SUCCINIC	LACTIC	ACETIC	PROPTONIC:	ISOBUTYRIC
0	4.59E-07	ND	ND	ND	ND	ND	ND	$4.59 E-07$	100	1.85E-04	ND	ND	137E-06	$1.00 \mathrm{E}-05$	ND	ND
7	$3.56 \mathrm{E}-07$	ND	ND	ND	ND	ND	ND	356E-07	77.6	1.89E-04	1.01E-06	ND	1.08E-06	$1.28 \mathrm{E}-04$	NO	ND
14	$327 \mathrm{E}-07$	ND	$9.78 \mathrm{E}-08$:	ND	ND	ND	ND	$4.25 E-07$	92.5	$1.37 \mathrm{E}-04$	1.45E-06	ND	5.70E-07	$894 \mathrm{E}-04$	ND	ND
21	244E-07	ND	3.59E-08:	ND	ND	ND	NO	280E-07	61.0	8.08E-05	ND	ND	ND	$1.53 \mathrm{E}-03$	ND	ND
28	162E-08	ND	$521 \mathrm{E}-08$	ND	282E-07	NO	ND	$3.50 \mathrm{E}-07$	76.3	$7.70 \mathrm{E}-06$	$4.85 \mathrm{E}-07$	ND	1.17E-06	3.39E-03	ND	ND
49	ND	ND	ND	ND	$8.63 \mathrm{E}-08$	ND	ND	$8.63 \mathrm{E}-08$	188	$7.22 \mathrm{E}-07$	1.10E-06	ND	$1.74 \mathrm{E}-06$	1.95E-03:	ND	NO
77	ND	OOOE 000	0.0	ND	ND	ND	$1.57 \mathrm{E}-06$	4.94E-04	ND	ND						
160	ND	NO	ND	ND	ND	$2.47 \mathrm{E}-08$	6.07E-08	$8.54 \mathrm{E}-08$	18.6	ND	561E-07	ND	ND	4.17E-06	ND	ND
Table	B-4 N	egati	ve contro	S	mended w	with Buty	ic acid									
DAY	PCE	TCE	C-DCE	$t-\infty$	VC	ETHENE	ETHANE	MOLES	MB	BUTYRIC	FORMIC	SUCCINIC	LACTIC	ACETK	PROPTONIC	ISOBUTYRIC
0	4.23E-07	ND	ND	ND	ND	ND	1.63E-09	$425 \mathrm{E}-07$	99.9	1.72E-04	154E-06	ND	$1.45 \mathrm{E}-06$	1.93E-05:	ND	ND
13.	3.14E-07	ND	ND	ND	ND	ND	1.59E-09	3.16E-07	74.3	1.80E-04	$1.45 \mathrm{E}-06$	ND	ND	$1.37 \mathrm{E}-05$	ND	ND
28	$2.74 \mathrm{E}-07$	ND	ND	ND	ND	ND	$1.62 \mathrm{E}-09$	$276 E-07$	64.9	$1.90 \mathrm{E}-04$	ND	ND	1.91E-06	269E-04	ND	ND
55.	3.10E-07	ND	ND	ND	ND	ND	$7.25 \mathrm{E}-10$	3.11E-07	73.1	$182 \mathrm{E}-04$	1.74E-06	ND	ND	180E-05	ND	ND
69	2.63E-07	ND	ND	ND	ND	ND	138E-09	$2.64 \mathrm{E}-07$	622	1.91E-04	$1.85 \mathrm{E}-06$	ND	1.37E-06	1.85E-05	ND	ND

Table B-5 Microcosms amended with Succinic acid

DAY PCE	TCE	C-DCE	t-DCE	VC	ETHENE	ETHANE	MOLES	MB	BUTYRIC	FORMIC	SUCCINIC	LACTIC	ACETIC	PROPIONIC	ISOBUTYRIC
$04.47 \mathrm{E}-07$	ND	ND	ND	ND	ND	ND	$4.47 \mathrm{E}-07$	100	ND	1.45E-06	5.27E-05:	ND	ND	ND	ND
$73.56 \mathrm{E}-07$	ND	ND	ND	ND	ND	ND	3.56E-07	79.6	ND	$4.85 \mathrm{E}-07$	ND	1.11E-06	4.47E-04	3.8751 .10	ND
$143.27 \mathrm{E}-07$	ND	$9.78 \mathrm{E}-08$	ND	ND	ND	ND	4.25E-07	95.0	ND	9.69E-07	3.52E-07	4.75E-07	$4.71 \mathrm{E}-04$	1.03E-04	ND
21 2.44E-07	ND	3.59E-08	ND	ND	ND	ND	2.80E-07	62.6	ND	9.88E-07	ND	ND	$4.32 \mathrm{E}-04$	$9.46 \mathrm{E}-05$	ND
28 1.62E-07	ND	5.21E-08	ND	2.82E-07	ND	ND	$4.96 \mathrm{E}-07$	111	$6.08 \mathrm{E}-07$	ND	ND	1.80E-06	3.92E-04	1.10E-04	ND
49 ND	ND	NO	ND	$8.63 \mathrm{E}-08$	ND	ND	8.63E-08	19.3	563E-06	1.24E-06	ND	1.10E-06	4.86E-04	4.99E-06	ND
77 ND	NO	ND	ND	ND	ND	ND	ND	0.0	ND	ND	ND	ND	1.90E-06:	ND	ND
160 ND	0.0	ND	ND	ND	ND	7.11E-06	ND	ND							
Table B-6 N	egat	ive contro	ols am	mended w	with Succ	cinic acid									
DAY PCE	TCE	C-DCE	t-DCE	VC	ETHENE	ETHANE	MOLES	MB	BUTYRIC	FORMIC	SUCCINIC	LACTIC	ACETIC	PROPIONIC	ISOBUTYRIC
$03.97 \mathrm{E}-07$		ND	ND	ND	ND	1.61E-09	$3.99 \mathrm{E}-07$	99.9	ND	1.34E-06	$1.49 \mathrm{E}-04$	ND	$1.45 \mathrm{E}-05$	ND	ND
$133.79 \mathrm{E}-07$	ND	ND	ND	ND	ND	1.59E-09	3.81E-07	95.4	ND	ND	1.54E-04	ND	$1.07 \mathrm{E}-05$	ND	ND
$28.354 \mathrm{E}-07$	ND	ND	ND	ND	ND	1.59E-09	$3.56 \mathrm{E}-07$	89.1	ND	ND	$1.51 \mathrm{E}-04$	ND	ND	ND	ND
$413.50 \mathrm{E}-07$	ND	ND	ND	ND	ND	$1.53 \mathrm{E}-09$	3.52E-07	88.1	ND	ND	$1.51 \mathrm{E}-04$	ND	$2.15 \mathrm{E}-05$	ND	ND
$552.51 \mathrm{E}-07$		ND	ND	ND	ND	1.51E-09	$2.53 \mathrm{E}-07$	63.3	3 ND	NO	$1.53 \mathrm{E}-04$	ND	$1.72 \mathrm{E}-05$	ND	ND
$692.53 \mathrm{E}-07$		ND	ND	ND	ND	1.05E-09	254E-07	63.7	ND	ND	1.52E-04	ND	196E-05	ND	ND

Table B-7 Microcosms amended with Butyric acid/Succinic acid mixture

DAY	PCE	TCE	C-DCE	t-DCE	VC	ETHENE	ETHANE	MOLES	MB	BUTYRIC	FORMIC	SUCCINIC	LACTIC	ACEITC	PROPRONI	ISOBUTYRI
0	$5.81 \mathrm{E}-07 \mathrm{~N}$	ND	ND	ND	ND	ND	ND	581 E 07	100	$200 \mathrm{E}-04$	1.45E-06	$5.36 \mathrm{E}-05$	ND	3.19E-06:	ND	ND
7	3.96E-07 N	ND	ND	ND	ND	ND	ND	3.96 E 07	68.2	1.82E-04	9.88E-07	ND	$2.62 \mathrm{E}-06$	4.11E-04	1.10E-04	ND
14	3.92E07 N	ND	1.68E08	ND	ND	ND	ND	4.09E-07	70.4	1.53E-04	$9.79 \mathrm{E}-07$	ND	ND	$1.12 \mathrm{E}-03$	$1.01 \mathrm{E}-04$	ND
21	ND	ND	2.04 E 07	ND	283E-07	ND	ND	$487 \mathrm{E}-07$	83.8	4.75E-05	ND	ND	ND	$2.87 \mathrm{E}-03$	$988 \mathrm{E}-05$	ND
28	ND	ND	ND	ND	379E-07:	ND	ND	3.79E-07	65.2	$7.03 E-07$	ND	ND	$1.16 \mathrm{E}-06$	$3.00 \mathrm{E}-03$	1.19E-04	ND
49	ND	0.0	ND	$1.06 E-06$	ND	$165 \mathrm{E}-06$	1.14E-04	$7.22 \mathrm{E}-05$	ND							
77	ND	0.0	ND	ND	ND	$1.71 \mathrm{E}-06$	ND	ND	ND							
160	ND	ND	ND	ND	ND	$1.87 \mathrm{E}-07$	2.08E-09	$1.89 \mathrm{E}-07$	32.6	ND	1.06E-06	ND	$950 \mathrm{E}-07$	ND	ND	ND
Table	e B-8 Mic	croco	osms ame	ended	with But	yric acid/	/Formic a	acid mixtu								
DAY	PCE	TCE	c-DCE	t-DCE	VC	ETHENE	ETHANE	MOLES	MB	BUTYRIC	FORMIC	SUCCINIC	LACTIC	ACEIC	PROPION	ISOBUTYRI
0	5.04E-07	ND	ND	ND	ND	ND	ND	504E-07	100	$1.96 \mathrm{E}-04$	$7.27 \mathrm{E}-05$	ND	$4.75 \mathrm{E}-07$	7.65E-05	ND	ND
7	3.97E-07	ND	ND	ND	ND	ND	ND	3.97E-07	78.8	1.913-4	$1.06 \mathrm{E}-06$	ND	188806	$379 \mathrm{E}-04$	ND	ND
14	4 3.76E-07	ND	$1.37 \mathrm{E}-08$	ND	ND	ND	ND	$3.90 \mathrm{E}-07$	77.3	1.76E-04	202E-06	ND	ND	$7.37 \mathrm{E}-04$	ND	ND
21	$2.46 \mathrm{E}-07$	ND	$6.73 \mathrm{E}-08$	ND	ND	ND	ND	3.13E-07	622	6.67E-05	$9.69 \mathrm{E}-07$	ND	ND	2.45 E 03		ND
28	81 इ4E- 0 ?	:ND	$1.53 \mathrm{E}-07$	ND	ND	NE	NO	$\triangle 57 \sim 07$	510	$5.67 \mathrm{E}-05$	NC	ND	\% $79 \mathrm{E}-0$	2.99503	ND	ND
49	9 ND	ND	ND	ND	$8.61 \mathrm{E}-08$	ND	ND	$861 \mathrm{E}-08$	17.1	$5.32 \mathrm{E}-07$	$4.85 \mathrm{E}-07$	ND	1.60E-06	186 E 03	ND	ND

Table B-9 Microcosms amended with Formic acid

DAY	PCE	TCE	C-DCE	t-DCE	VC	ETHENE	ETHANE	MOLES	MB	BU	FORMIC		LACTIC	ACETIC		ISOBUTYRIC
0	4.71E-07	ND	ND	ND	ND	ND	ND	4.71E-07	100	ND	$1.56 \mathrm{E}-04$	ND	ND	5.56E-06	ND	ND
7	3.40E-07	ND	ND	ND	ND	ND	ND	$3.40 \mathrm{E}-07$	72.2	ND	$9.69 \mathrm{E}-07$	ND	$251 \mathrm{E}-06$	4.29E-04	ND	ND
14	$2.64 \mathrm{E}-07$	ND	$1.00 \mathrm{E}-07$	ND	ND	ND	ND	3.64E-07	77.3	ND	$485 \mathrm{E}-07$	ND	$4.56 \mathrm{E}-07$	$2.84 \mathrm{E}-04$	ND	ND
21	401E-07	ND	ND	ND	ND	ND	ND	4.01E-07	85.1	ND	485E-07	ND	ND	3.14E-04	ND	ND
28	1.85E-07	ND	ND	ND	ND	ND	ND	1.85E-07	393	ND	ND	ND	1.71E-06	$2.02 \mathrm{E}-04$	ND	ND
49	$1.21 \mathrm{E}-07$	ND	7.60E-08	ND	$1.65 \mathrm{E}-07$	ND	ND	$362 \mathrm{E}-07$	769	ND	ND	ND	1.54E-06	$2.41 \mathrm{E}-05$	ND	ND
77	ND	0.0	ND	ND	ND	$5.51 \mathrm{E}-07$	ND	ND	ND							
160	ND	ND	ND	ND	ND	$1.77 \mathrm{E}-07$	$1.11 \mathrm{E}-07$	$2888-07$	61.1	ND	ND	ND	9.98E-07	$3.72 \mathrm{E}-06$	ND	ND
													*			
				\%												

DAYS:	PCE	TCE	c-DCE	t-DCE	VC	ETHENE	ETHANE	MOLES	MB	BUTYRIC:	FORMC	SUCCINC	LACTIC	ACEIIC	PROPIONC	ISOBUTYR
0	5.44E-07	ND	ND	ND	ND	ND	2.08E-09	5.46E-07:	100	ND	1.19E-06	ND	1.54E-06:	1.56E-05	NO	ND
13	$4.41 \mathrm{E}-07$	ND	ND	ND	ND	ND	1.99 E 09	4.43E-07:	81.1	$1.88 E 06$	ND	ND	ND	$1.19 \mathrm{E}-03$	$1.41 \mathrm{E}-05$	ND
28.	3.02E-07	ND	NO	ND	ND	ND	1.52 E 09	$3.04 \mathrm{E}-07$	55.6	ND	ND	ND	157E06	$1.52 \mathrm{E}-03$	1.59E-05	NO
41	ND	ND	8.18E-08	ND	ND	7.59E-08	$2.12 \mathrm{E}-09$	1.60E-07	29.3	1.82E-06	ND	ND	9.69E-07:	$7.75 \mathrm{E}-04$	2.73E-05	ND
55.	ND	ND	NO	ND	290E-07	$1.01 \mathrm{E}-07$	221E-09	$3.93 \mathrm{E}-07$	72.0	6.84E-07	ND	ND	1.10E-06	$3.41 \mathrm{E}-04$	252E-05	ND
69	ND	ND	$2.10 \mathrm{E}-09$	AD	306E-07	282E-08	2.19E-09	3.38E-07	62.0	ND	ND	ND	ND	6.25E-05	$222 \mathrm{E}-05$	ND
Table	B-13	Negat	ive contro	ols am	ended w	H Ethan										
DAYS	PCE	TCE	c-DCE	t-DCe	VC	ETHENE	ETHANE	MOLES	MB	BUTYRIC	FORMC	SUCCINC	LACTIC	ACEETC	PROPIONIC	ISOBUTYRI
0	2.53E-07	NO	ND	ND	ND	ND	1.85E-09	2.55E-07	99.9	ND	$1.43 E 06$	ND	1.74E-06:	$1.45 \mathrm{E}-05$	ND	NO
13.	$2.26 \mathrm{E}-07$	ND	ND	ND	ND	ND	1.82E-09	$2.288-07$	893	ND	ND	ND	ND	2.74E-04	ND	ND
28.	1.83E-07	ND	ND	ND	ND	ND	$1.93 \mathrm{E}-09$	$1.85 \mathrm{E}-07$	72.4	ND	1.97E06	ND	1.68E-06	191 E 05	ND	NO
41	1.70E07	ND	ND	ND	ND	ND	ND	1.70E-07:	66.8	ND	2.02E-06	NO	NO	1.78E-05	NO	NO
55	7.12E-08	ND	ND	ND	ND	ND	1.85E-09	$7.31 \mathrm{E}-08$	28.7	ND	1.82E-06	ND	1.48E-06	3.16E-04	ND	NO
69	1.71 E 07	ND	ND	ND	ND	ND	$1.79 \mathrm{E}-09$	1.73E-07	67.9	ND	2.11E-06	ND	$1.43 \mathrm{E}-06$	1.79E-05	ND	MO

Table B-14 Microcosms amended with Ethylene glycol/Butanol mixture

DAY	PCE	TCE	c-DCE	t-DCE	VC	ETHENE	ETHANE	MOLES	MB	BUTYRIC:	FORMIC	suc	LACTIC	ACEIC	PROPIONIC	ISOBUTYRIC
0	3.06E-07	ND	ND	ND	ND	ND	1.17E-09	3.07E-07	100	ND	1.94E-06	ND	ND	4.01 E 05	ND	ND
13.	$2.80 \mathrm{E}-07$	ND	ND	ND	ND	ND	$1.04 \mathrm{E}-09$	$2.81 \mathrm{E}-07$	91.5	165 E 05	$4.85 \mathrm{E}-07$	ND	$4.94 \mathrm{E}-07$	$3.14 \mathrm{E}-04$	$200 \mathrm{E}-07$	ND
28	$1.51 \mathrm{E}-07$	ND	5.15E-08:	ND	ND	ND	1.06 E 09	$2.04 \mathrm{E}-07$	66.3	$9.33 \mathrm{E}-05$	ND	ND	$1.06 \mathrm{E}-05$	1.52E-03	$3.12 \mathrm{E}-05$	1.43E-07
41	1.63E-07	ND	ND	ND	ND	ND	1.61 E09	$1.65 \mathrm{E}-07$	53.6	$1.00 E-04$	ND	ND	ND	$1.69 \mathrm{E}-03$	282 E 05	$1.26 E 06$
55	5.54E-08	ND	1.06E-08:	ND	$1.14 \mathrm{E}-07$	3.14 E 09	3.14 E 09	1.86E-07:	60.7	ND	ND	ND	ND	ND	$3.65 E-05$	1.88E-06
69	ND	ND	4.54E-08	ND	3.57E-08	$4.04 \mathrm{E}-08$	288E-09	1.24E-07	40.5	7.09E-05	ND	ND	$4.75 \mathrm{E}-07$	1.13E-03	ND	ND
Table	e B-15	Vega	ive contro	Is am	mended wi	ith Butan										
DAY	PCE	TCE	C-DCE	t-DCE	VC	ETHENE	ETHANE	MOLES	MB	BUTYRIC	FORMIC	sue	LACTIC	ACEIIC	PROPONIC,	ISOBUTYRIC:
0	$2.62 \mathrm{E}-07$	ND	ND	ND	ND	ND	1.86 E 09	2.64E-07	99.9	NO	$1.60 \mathrm{E}-06$	ND	$1.43 E-06$	1.15E-05	ND	ND
13	2.32 E 07	ND	ND	ND	ND	ND	$1.88 \mathrm{E}-09$	$2.34 \mathrm{E}-07$	88.5	ND	$1.45 \mathrm{E}-06$	ND	ND	$1.45 \mathrm{E}-05$	ND	ND
28	$2.57 \mathrm{E}-07$	ND	ND	ND	ND	ND	1.91 E 09	$2.59 \mathrm{E}-07$	98.0	ND	2.91E-06	ND	ND	1.97E-05	ND	ND
41	$1.32 \mathrm{E}-07$	ND	ND	ND	ND	ND	8887 E 09	$1.41 \mathrm{E}-07$	53.5	ND	$1.45 \mathrm{E}-06$	ND	1.60 E 06	$978 \mathrm{E}-06$	ND	ND
55	1.29E-07	ND	ND	ND	ND	ND	1.76E09:	$131 \mathrm{E}-07$	49.7	ND	$2.05 \mathrm{E}-06$	ND	ND	$185 \mathrm{E}-05$		ND
?	1-0EかT	0	ND	ND	ND	ND	1×2	i.785-07	673	ND	2.00E-06	ND	NC	1.93E-05		ND

DAY:	PCE	TCE	C-DCE	t-DC	VC	ETHENE	ETHANE	MOLES	MB	BUTYRIC	FORMIC	SUCCINIC	LACTIC	ACETIC	PROPIONI	OBUTYRI
0	3.50E-07	ND	ND	ND	ND	ND	2.04E-09	$3.52 \mathrm{E}-07$	100	ND	1.57E-06	ND	1.80E-06	1.08E-05		ND
13	$2.32 \mathrm{E}-07$	ND	9.68E-08	ND	ND	ND	$2.02 \mathrm{E}-09$	$3.31 \mathrm{E}-07$	94.0	$1.36 \mathrm{E}-04$	ND	ND	$5.80 \mathrm{E}-07$	1.26E-03	9.61E-05	ND
28	1.93E-07	ND	948E-08	ND	ND	ND	2.02E-09	$2.90 \mathrm{E}-07$	82.3	$1.29 \mathrm{E}-04$	$5.04 \mathrm{E}-07$	ND	$8.47 \mathrm{E}-07$	1.33E-03	9.46E-05	ND
41	1.98E-07	ND	8.78E-08	ND	ND	ND	2.00E-09	$2.88 \mathrm{E}-07$	81.8	$9.42 \mathrm{E}-05$	ND	ND	ND	$6.08 \mathrm{E}-04$	$9.46 \mathrm{E}-05$	1.24E-04
55	2.20E-07	ND	ND	ND	ND	ND	6.86E-09	$2.27 \mathrm{E}-07$	64.4	1.50E-06	$4.56 \mathrm{E}-07$	ND	ND	$106 \mathrm{E}-04$	1.08E-04	1.97E-06
69	9.32E-08		ND	ND	$4.51 \mathrm{E}-08$	$2.46 \mathrm{E}-08$	$1.30 \mathrm{E}-08$	$1.76 \mathrm{E}-07$	50.0	$1.19 \mathrm{E}-00$	1.04E-06	ND	4.94E-07	9.73E-05	ND	ND
Tabl	le B-17	Micr	cosms	ame	ded with	Propano	Ethanol	1 mixture								
DAY	PCE	TCE	C-DCE	t-OC	Vc	ETMENE	ETHANE	MOLES	MB	BUTYRIC	FORMIC	SUCCINIC	LACTIC	ACETIC	PROPOONIC	ISOBUTYRI
0	$5.57 \mathrm{E}-07$	ND	ND	ND	ND	ND	$2.07 \mathrm{E}-09$	5.59E-07	100	ND	1.49E-06	3.52E-07	$4.66 \mathrm{E}-07$	1.42E-05	ND	ND
13	4.79E-07	ND	ND	ND	ND	ND	$1.91 \mathrm{E}-09$	$4.81 \mathrm{E}-07$	86.0	1.61E-05	ND	ND	$9.60 \mathrm{E}-07$	2.09E-03	1.09E-04	ND
28	$3.87 \mathrm{E}-07$	ND	1.33E-07	ND	ND	ND	1.31E-09	$5.21 \mathrm{E}-07$	93.3	1.97E-05	ND	ND	1.45E-06	2.00E-03	$1.12 \mathrm{E}-04$	ND
41	1.17E-07	ND	$1.96 \mathrm{E}-07$	ND	ND	ND	2.01E-09	$3.10 \mathrm{E}-07$	55.5	6.13E-06	ND	ND	ND	1.97E-04	$1.07 \mathrm{E}-04$	ND
55	260E-07	ND	$1.30 \mathrm{E}-07$	ND	9.43E-09	ND	$277 \mathrm{E}-09$	$4.02 \mathrm{E}-07$	71.9	ND	ND	ND	1.54E-06	1.94E-05	1.27E-04	ND
69	6.33E-08	ND	2.06E-07	ND	2.83E-07	ND	2.99E-09	5.55E-07	99.3	2.48E-06	ND	ND	5.23E-07	1.05E-07		ND

DAY	PCE	TCE	c-DCE	t-DC	VC	ETHENE	ETHANE	MOLES	MB	BUTYRIC	FORMIC	SUCCIN	LACTIC	ACETIC	PROPIONIC	ISOBUTYRIC
0	3.06E-07	ND	ND	ND	ND	ND	1.17E-09	3.07E-07	100	ND	1.21E+06	ND	ND	4.07E-05	ND	ND
13	$2.80 \mathrm{E}-07$	ND	ND	ND	ND	ND	$1.04 \mathrm{E}-09$	$2.81 \mathrm{E}-07$	91.5	ND	6.75E-07:	ND	ND	1.56E-03	3.78E-06	ND
28	1.51E-07	ND	5.15E-08	ND	ND	ND	$1.06 \mathrm{E}-09$	$2.04 \mathrm{E}-07$	66.3	4.99E-06	ND	ND	ND	2.14E-06	$1.62 \mathrm{E}-05$	ND
41	1.63E-07	ND	ND	ND	ND	ND	$1.61 \mathrm{E}-09$	$1.65 \mathrm{E}-07$	53.6	$1.24 \mathrm{E}-07$	ND	ND	ND	2.23E-03	$1.18 \mathrm{E}-05$	ND
55	$5.54 \mathrm{E}-08$	ND	$1.06 \mathrm{E}-08$	ND	$1.14 \mathrm{E}-07$	3.14E-09	$3.14 \mathrm{E}-09$	$1.86 \mathrm{E}-07$	60.7	ND	ND	ND	ND	ND	3.12E-05	ND
69	ND	ND	$4.54 \mathrm{E}-08$	ND	3.57E-08	4.04E-08	$2.88 \mathrm{E}-09$	$1.24 \mathrm{E}-07$	40.5	1.17E-06	$1.01 \mathrm{E}-06$	ND	ND	6.13E-04	ND	ND
			-													

APPENDIX C

NEGATIVE CONTROL GRAPHS

Figure C-1 Mass in moles of (a) chlorinated ethene and (b) acid byproducts as a function of time for negative controls amended with lactic acid.

Figure C-2 Mass in moles of (a) chlorinated ethene and (b) acid byproducts as a function of time for negative controls amended with butyric acid.

Figure C-3 Mass in moles of (a) chlorinated ethene and (b) acid byproducts as a function of time for negative controls amended with succinic acid.
(a)

(b)

Figure C-4 Mass in moles of (a) chlorinated ethene and (b) acid byproducts as a function of time for negative controls amended with propanol.

Figure C-5 Mass in moles of (a) chlorinated ethene and (b) acid byproducts as a function of time for negative controls amended with ethanol.

Figure C-6 Mass in moles of (a) chlorinated ethene and (b) acid byproducts as a function of time for negative controls amended with butanol.

APPENDIXD

RAW DATA FOR MICROCOSMS

Table D-1 Data for microcosms amended with Lactic Acid (moles)

	$\mathrm{T}=0$	$\mathrm{T}=0$	$T=0$	MEAN	SD
PCE	4.57E-07	4.60E-07	4.16E-07	4.44E-07	0.863
cis-DCE	ND	ND	ND	ND	ND
VC	ND	ND	ND	ND	ND
Ethene	ND	ND	ND	ND	ND
Ethane	ND	ND	ND	ND	ND
	$\mathrm{T}=7$	$\mathrm{T}=7$	$\mathrm{T}=7$	MEAN	SD
PCE	3.35E-07	3.84E-07	3.77E-07	3.65E-07	0.94
cis-DCE	ND	ND	ND	ND	ND
VC	ND	ND	ND	ND	ND
Ethene	ND	ND	ND	ND	ND
Ethane	ND	ND	ND	ND	ND
	T=14	$\mathrm{T}=14$	$\mathrm{T}=14$	MEAN	SD
PCE	3.23E-07	3.27E-07	3.96E-07	$3.49 \mathrm{E}-07$	1.43
cis-DCE	ND	8.24E-09	ND	2.74E-09	0.167
VC	ND	ND	ND	ND	ND
Ethene	ND	ND	ND	ND	ND
Ethane	ND	ND	ND	ND	ND
	$T=21$	$\mathrm{T}=21$	$\mathrm{T}=21$	MEAN	SD
PCE	ND	ND	9.74E-08	3.25E-08	1.97
cis-DCE	1.92E-07	225E-71.	1.01E-07	1.73E-07	2.25
VC	ND	ND	ND	ND	ND
Ethene	ND	ND	ND	ND	ND
Ethane	ND	ND	ND	ND	ND

Table D-2 Data for microcosms amended with Butyric Acid (moles)

$\mathrm{T}=28$	$\mathrm{T}=28$	$\mathrm{T}=28$	MEAN	SD
ND	ND	ND	ND	ND
$2.06 \mathrm{E}-07$	ND	ND	6.88E-08	4.18
ND	$3.72 \mathrm{E}-07$	1.84E-07	$1.85 \mathrm{E}-07$	6.52
ND	ND	ND	ND	ND
ND	ND	ND	ND	ND
$\mathrm{T}=49$	$\mathrm{T}=49$	$\mathrm{T}=49$	MEAN	SD
ND	ND	ND	ND	ND
ND	ND	ND	ND	ND
ND	1.62E-07	ND	5.41E-08	3.29
ND	ND	ND	ND	ND
ND	ND	ND	ND	ND
$\mathrm{T}=77$	$\mathrm{T}=77$	$T=77$	MEAN	SD
ND	ND	ND	ND	ND
ND	ND	ND	ND	ND
ND	ND	ND	ND	ND
ND	ND	ND	ND	ND
ND	ND	ND	ND	ND
$\mathrm{T}=160$	$T=160$	$\mathrm{T}=160$	MEAN	SD
ND	ND	ND	ND	ND
ND	ND	ND	ND	ND
ND	ND	1.20E-07	4.01E-08	2.44
ND	4.59E-08	3.19E-08	$2.47 \mathrm{E}-08$	53.4
ND	$1.90 \mathrm{E}-07$	1.01E-09	6.07E-08	248

PCE
cis-DCE
VC
Ethene
Ethane
PCE
cis-DCE
VC
Ethene
Ethane

	की	¢	号号吴号号号
	$\frac{\circ}{I \prime}$	슨은 은	

Table D－3 Microcosms amended with Succinic acid（moles）

Table D-5 Microcosms amended with Butyric acid/Formic acid mixture (moles)

	$\mathrm{T}=0$	$\mathrm{T}=0$	$\mathrm{T}=0$	MEAN	SD		$T=28$	$T=28$	$T=28$	MEAN	SD
PCE	3.82E-07	$3.95 \mathrm{E}-07$	4.15E-07	3.97E-07	0.59	PCE	ND	2.47E-07	ND	8.23E-08	5
CIS-DCE	ND	ND	ND	ND	ND	cis-DCE	$2.74 \mathrm{E}-07$	3.53E-09	1.53E-07	1.44E-07	4.75
VC	ND	ND	ND	ND	ND	VC	ND	ND	ND	ND	ND
Ethene	ND	ND	ND	ND	ND	Ethene	ND	ND	ND	ND	ND
Ethane	ND	ND	ND	ND	ND	Ethane	ND	ND	ND	ND	ND
	$\mathrm{T}=7$	$T=7$	$T=7$	MEAN	SD		$T=49$	$T=49$	$T=49$	MEAN	SD
PCE	3.14E-07	3.33E-07	2.93E-07	3.13E-07	0.7	PCE	ND	ND	ND	ND	ND
cis-DCE	ND	ND	ND	ND	ND	cIS-DCE	ND	ND	ND	ND	ND
VC	ND	ND	ND	ND	ND	VC	1.82E-07	ND	ND	6.06E-08	3.69
Ethene	ND	ND	ND	ND	ND	Ethene	ND	ND	ND	ND	ND
Ethane	ND	ND	ND	ND	ND	Ethane	ND	ND	NO	ND	ND
	$T=14$	$T=14$	$T=14$	MEAN	SD		$T=77$	$T=77$	$T=77$	MEAN	SD
PCE	3.06E-07	2.91E-07	2.94E-07	2.97E-07	0.27	PCE	ND	ND	ND	ND	ND
cis-DCE	4.70E-09	2.47E-08	9.41E-09	1.29E-08	0.37	cis-DCE	ND	ND	ND	ND	ND
VC	ND	ND	ND	ND	ND	VC	ND	1.77E-07	ND	5.90E-08	3.58
Ethene	ND	ND	ND	ND	ND	Ethene	ND	ND	ND	ND	ND
Ethane	ND	ND	ND	ND	ND	Ethane	ND	ND	ND	ND	ND
	$T=21$	$\mathrm{T}=21$	$T=21$	MEAN	SD		$T=160$	$T=160$	$T=160$	MEAN	SD
PCE	2.67E-07	3.11E-09	3.11E-07	1.94E-07	5.85	PCE	ND	ND	ND	ND	ND
cis-DCE	ND	1.90E-07	ND	6.34E-08	3.85	CIS-DCE	ND	ND	ND	ND	ND
VC	ND	ND	ND	ND	ND	VC	ND	ND	ND	ND	ND
Ethene	ND	ND	ND	ND	ND	Ethene	ND	ND	1.36E-07	4.32E-08	0.79
Ethane	ND	ND	ND	ND	ND	Ethane	ND	ND	1.82E-07	6.09E-08	1.05

Table D-6 Microcosms amended with Formic acid (moles)

	$\mathrm{T}=0$	$T=0$	$\mathrm{T}=0$	MEAN	SD
PCE	3.60E-07	3.60E-07	4.20E-07	3.80E-07	1.22
cis-DCE	ND	ND	ND	ND	ND
VC	ND	ND	ND	ND	ND
Ethene	ND	ND	ND	ND	ND
Ethane	ND	ND	ND	ND	ND
	$T=7$	$\mathrm{T}=7$	$\mathrm{T}=7$	MEAN	SD
PCE	2.84E-07	2.26E-07	3.12E-07	$2.74 \mathrm{E}-07$	1.53
cis-DCE	ND	ND	ND	ND	ND
VC	ND	ND	ND	ND	ND
Ethene	ND	ND	ND	ND	ND
Ethane	ND	ND	ND	ND	ND
	$T=14$	$T=14$	$T=14$	MEAN	SD
PCE	$3.17 \mathrm{E}-07$	ND	3.21E-07	2.13E-07	6.47
cis-DCE	ND	2.84E-07	ND	9.47E-08	5.75
VC	ND	ND	ND	ND	ND
Ethene	ND	ND	ND	ND	ND
Ethane	ND	ND	ND	ND	ND
	$\mathrm{T}=21$	$\mathrm{T}=21$	$T=21$	MEAN	SD
PCE	2.90E-07	3.14E-07	3.65E-07	3.25E-07	1.11
ris-DCE	ND	ND	ND	ND	ND
VC	ND	ND	ND	ND	ND
Ethene	ND	ND	ND	ND	ND
Ethane	ND	ND	ND	ND	ND

	$\mathrm{T}=41$	$\mathrm{T}=41$	$\mathrm{T}=41$	MEAN	SD
PCE	ND	ND	ND	ND	ND
cis-DCE	ND	ND	ND	ND	ND
VC	1.60E-07	ND	1.44E-07	4.33E-08	3.09
Ethene	$7.48 \mathrm{E}-09$	$2.68 \mathrm{E}-08$	$1.44 \mathrm{E}-08$	$1.62 \mathrm{E}-08$	22.2
Ethane	$2.44 \mathrm{E}-09$	$2.55 \mathrm{E}-09$	$2.44 \mathrm{E}-09$	$2.48 \mathrm{E}-09$	0.13
	$\mathrm{T}=55$	$\mathrm{T}=55$	$T=55$	MEAN	SD
PCE	ND	ND	ND	ND	ND
cis-DCE	ND	ND	1.88E-08	6.27E-09	0.38
VC	ND	ND	$3.21 \mathrm{E}-07$	$1.07 \mathrm{E}-07$	6.5
Ethene	2.56E-08	$2.89 \mathrm{E}-08$	ND	$1.82 \mathrm{E}-08$	35.9
Ethane	2.53E-09	$2.51 \mathrm{E}-09$	2.33E-09	$2.46 \mathrm{E}-09$	0.25
	$\mathrm{T}=69$	$\mathrm{T}=69$	$\mathrm{T}=69$	MEAN	SD
PCE	ND	ND	ND	ND	ND
cis-DCE	ND	ND	ND	ND	ND
VC	ND	ND	ND	ND	ND
Ethene	2.88E-08	1.75E-08	$3.04 \mathrm{E}-08$	$2.55 \mathrm{E}-08$	16
Ethane	2.83E-09	ND	$2.86 \mathrm{E}-09$	1.90E-09	3.73

Table D-7 Data for microcosms amended with Propanol (moles)

PCE
cis-DCE
VC
Ethene
Ethane

Table D-8 Data for microcosms amended with Ethanol (moles)

	$T=41$	$\mathrm{T}=41$	$\mathrm{T}=41$	MEAN	SD
PCE	ND	ND	ND	ND	ND
cis-DCE	1.03E-08	4.35E-08	9.82E-08	5.07E-08	1.56
VC	ND	ND	ND	ND	ND
Ethene		ND	ND	6.41E-09	24.9
Ethane	2.23E-09	2.17E-09	2.27E-09	$2.26 \mathrm{E}-09$	0.25
	$\mathrm{T}=55$	$\mathrm{T}=55$	$\mathrm{T}=55$	MEAN	SD
PCE	ND	ND	ND	ND	ND
cis-DCE	ND	ND	ND	ND	ND
VC	ND	2.91E-07	3.21E-07	2.04E-07	6.23
Ethene		ND	ND	8.93E-09	35.1
Ethane	2.32E-09	2.40E-09	2.23E-09	2.32E-09	0.19
	$\mathrm{T}=69$	$\mathrm{T}=69$	$\mathrm{T}=69$	MEAN	So
PCE	ND	ND	ND	ND	ND
cis-DCE	ND	9.12E-09	ND	3.05E-09	0.19
VC	1.81E-07	$2.65 \mathrm{E}-07$	2.01E-07	$2.15 \mathrm{E}-07$	1.53
Ethene		ND	ND	6.35E-10	2.5
Ethane	2.69E-09	2.18E-09	2.02E-09	2.30E-09	0.79

Table D-9 Microcosms amended with_Ethylene glycol/Butanol mixture (moles)

	$\mathrm{T}=41$	$\mathrm{T}=41$	$\mathrm{T}=41$	MEAN	SD
PCE	1.51E-07	1.54E-07	1.75E-07	1.60E-07	0.45
cis-DCE	ND	ND	ND	ND	ND
VC	ND	ND	ND	ND	ND
Ethene	ND	ND	ND	ND	ND
Ethane	1.47E-09	1.44E-09	1.43E-09	1.44E-09	0.05
	$\mathrm{T}=55$	$\mathrm{T}=55$	$\mathrm{T}=55$	MEAN	SD
PCE	$1.21 \mathrm{E}-07$	1.28E-07	1.28E-07	1.25E-07	0.14
cis-DCE	ND	ND	ND	ND	ND
VC	ND	ND	ND	ND	ND
Ethene	ND	ND	ND	ND	ND
Ethane	1.06E-09	7.45E-10	1.11E-09	9.70E-10	0.45
	$\mathrm{T}=69$	$\mathrm{T}=69$	$\mathrm{T}=69$	MEAN	SD
PCE	4.39E-08	5.81E-08	1.06E-07	6.93E-08	0.14
cis-DCE	ND	ND	ND	ND	ND
VC	ND	ND	ND	ND	ND
Ethene	ND	ND	ND	ND	ND
Ethane	2.06E-09	5.49E-09	7.27E-09	4.94E-09	6

PCE
cis-DCE
VC
Ethene
Ethane

Ehane

PCE
cis-DCE
VC
Ethene
Ethane
$\begin{array}{lllll} & & & & \\ T=28 & T=28 & T=28 & \text { MEAN } & \text { SD } \\ 1.73 \mathrm{E}-07 & 1.88 \mathrm{E}-07 & 1.56 \mathrm{E}-07 & 1.72 \mathrm{E}-07 & 0.56 \\ \mathrm{ND} & \mathrm{ND} & \mathrm{ND} & \text { ND } & \text { ND } \\ \text { ND } & \text { ND } \\ \text { ND } & \text { ND } \\ 3.41 \mathrm{E}-09 & 3.02 \mathrm{E}-08 & 1.70 \mathrm{E}-08 & 1.69 \mathrm{E}-08 & 30.4\end{array}$

Table D-10 Microcosms amended with Butanol/Propanol mixture (moles)

$\mathrm{T}=41$	$T=41$	$\mathrm{T}=41$	MEAN	SD
$2.58 \mathrm{E}-07$	ND	$2.20 \mathrm{E}-07$	$1.59 \mathrm{E}-07$	1.39
ND	2.50E-07	ND	8.32E-08	44
ND ND	ND	ND	ND	ND
ND ND	ND	ND	ND	ND
2.07E-09	2.17E-09	2.07E-09	2.10E-09	0.1
55	$T=55$	$T=55$	MEA	SD
.84E-07	1.85E-07	$1.63 \mathrm{E}-07$	1.78E-07	0. 12
ND	ND	ND	ND	ND
ND	ND	ND	ND	ND
ND	ND	ND	ND	ND
1.49E-08	$3.88 \mathrm{E}-09$	$2.81 \mathrm{E}-09$	7.20E-09	15.
$\mathrm{T}=69$	$T=69$	T=69	MEAN	SD
1.11E-07	ND	1.15E-07	7.51E-08	0.65
ND	ND	ND	ND	ND
$9.81 \mathrm{E}-08$		ND	$3.27 \mathrm{E}-08$	5.66
ND	$4.10 \mathrm{E}-11$	ND	1.37E-11	0.05
ND	$2.39 \mathrm{E}-$	$1.72 \mathrm{E}-08$	1.37E-08	28

$T=0 \quad T=0 \quad T=0 \quad$ MEAN $S D$
PCE
cis-DCE
VC
Ethene
Ethane

Table D-11 Microcosms amended with Propanol/Ethanol mixture (moles)

$\mathrm{T}=41$	$\mathrm{T}=41$	$\mathrm{T}=41$	MEAN	SD
ND	ND	2.71E-07	$9.01 \mathrm{E}-08$	5.73
2.78E-07	$2.78 \mathrm{E}-07$	ND	$1.85 \mathrm{E}-07$	5.63
ND	ND	ND	ND	ND
ND	ND	ND	ND	ND
2.17E-09	$2.24 \mathrm{E}-09$	1.93E-09	2.12E-09	0.36
$\mathrm{T}=55$	$\mathrm{T}=55$	$T=55$	MEAN	SD
2.01E-07	$2.18 \mathrm{E}-07$	2.09E-07	2.09E-07	0.3
$2.08 \mathrm{E}-08$	3.48E-07	ND	1.23E-07	6.86
ND	2.05E-08	ND	6.84E-09	0.42
ND	ND	ND	ND	ND
2.63E-09	3.63E-09	2.60E-09	2.91E-09	1.43
$\mathrm{T}=69$	$\mathrm{T}=69$	$T=69$	MEAN	SD
1.53E-07	ND	ND	5.10E-08	3.1
2.97E-08	ND	5.99E-10	1.01E-08	0.58
ND	3.36E-07	2.80E-07	2.05E-07	6.32
ND	ND	ND	ND	ND
2.54E-09	$3.24 \mathrm{E}-09$	3.64E-09	$3.14 \mathrm{E}-09$	1.27

	$\mathrm{T}=0$	$\mathrm{T}=0$	$\mathrm{T}=0$	MEAN	SD	
PCE	4.59E-07	4.57E-07	4.28E-07	4.48E-07	0.608	PCE
cis-DCE	ND	ND	ND	ND	ND	cis-DCE
VC	ND	ND	ND	ND	ND	VC
Ethene	ND	ND	ND	ND	ND	Ethene
Ethane	2.17E-09	2.10E-09	2.25E-09	2.18E-09	0.173	Ethane
	$\mathrm{T}=13$	$\mathrm{T}=13$	$\mathrm{T}=13$	MEAN	SD	
PCE	3.78E-07	$4.00 \mathrm{E}-07$	3.79E-07	3.86E-07	0.446	PCE
cis-DCE	ND	ND	ND	ND	ND	cis-DCE
VC	ND	ND	ND	ND	ND	VC
Ethene	ND	ND	ND	ND	ND	Ethene
Ethane	2.15E-09	1.97E-09	1.89E-09	2.00E-09	0.293	Ethane
	$\mathrm{T}=28$	$\mathrm{T}=28$	$\mathrm{T}=28$	MEAN	SD	
PCE	3.32E-07	3.35E-07	ND	2.22E-07	6.76	PCE
cis-DCE	ND	ND	$3.77 \mathrm{E}-07$	1.26E-07	7.63	cis-DCE
VC	ND	ND	ND	ND	ND	VC
Ethene	ND	ND	ND	ND	ND	Ethene
Ethane	2.12E-09	2.01E-09	ND	$1.38 \mathrm{E}-09$	2.7	Ethane

$\mathrm{T}=41$	$\mathrm{T}=41$	$\mathrm{T}=41$	MEAN	SD
$1.31 \mathrm{E}-07$	1.20E-07	1.36E-07	1.29E-07	0.29
ND	ND	ND	ND	ND
ND	ND	ND	ND	ND
$2.78 \mathrm{E}-08$	ND	ND	9.26E-09	36.4
1.62E-09	1.69E-09	1.76E-09	1.69E-09	0.15
$\mathrm{T}=55$	$T=55$	$T=55$	MEAN	SD
1.31E-07	ND	ND	4.38E-08	2.66
ND	2.79E-08	1.95E-09	9.95E-09	0.55
ND	$1.06 \mathrm{E}-07$	1.35E-07	8.02E-08	2.49
ND	ND	ND	ND	ND
6.70E-10	1.16E-09	8.07E-09	3.30E-09	9.38
$\mathrm{T}=69$	$\mathrm{T}=69$	$\mathrm{T}=69$	MEAN	SD
ND	ND	ND	ND	ND
ND	ND	ND	ND	ND
ND	7.55E-08	ND	2.52E-08	1.53
7.79E-09	ND	ND	2.60E-09	10.2
7.90E-09	$1.18 \mathrm{E}-09$	ND	3.03E-09	9.67

Table D-12 Microcosms amended with Ethylene glycol (moles)

REFERENCES

1. B. Z. Fathepure and S. A. Boyd, "Dependence of tetrachloroethylene dechlorination on methanogenic substrate consumption by Methanosarcina sp. strain DCM," Applied and Environmental Microbiology, vol. 54, pp. 2976-2980, 1988.
2. Federal Register, vol. 54, pp. 22062-22160, 1989.
3. C. Holliger, "The anaerobic microbiology and biotreatment of chlorinated ethenes," Environmental Biotechnology, vol. 6, pp. 347-351, 1995.
4. M. M. Fogel, A. R. Taddeo and S. Fogel, "Biodegradation of chlorinated ethenes by a methane-utillizing mixed culture," Environmental Microbiology, vol. 51, pp. 720-724, 1986.
5. T. M. Vogel and P. L. McCarty, "Transformations of halogenated aliphatic compounds," Environmental Science and Technology, vol. 21, pp. 722-736, 1987.
6. T. M. Vogel and P. L. McCarty, "Biotransformations of tetrachloroethylene to trichloroethylene, dichloroethylene, vinyl chloride, and carbon dioxide under methanogenic conditions," Applied Environmental Microbiology, vol. 49, pp. 10801083, 1984.
7. T. D. Distefano, J. M. Gossett and S. H. Zinder, "Reductive dechlorination of high concentrations of tetrachloroethene to ethene by and anaerobic enrichment culture in the absence of methanogenesis," Applied Emvironmental Microbiology, vol. 57, pp. 2287-2292, 1991.
8. D. L. Freedman and J. M. Gossett, "Biological reductive dechlorination of tetrachloroethylene and trichloroethylene to ethylene under methanogenic conditions," Applied and Environmental Microbiology, vol. 55, pp. 2144-2151, 1989.
9. E. J. Bouwer and P. L. McCarty, "Transformations of 1- and 2- carbon halogenated aliphatic organic compounds under methanogenic conditions," Applied and Environmental Microbiology, vol. 45, pp. 1286-1294, 1983.
10. S. A. Gibson and G. W. Sewell, "Stimulation of reductive dechlorination of tetrachloroethene in anaerobic aquifer microcosms by addition of short-chain organic acids or alcohols," Applied Environmental Microbiology, vol. 58, pp. 1392-1393, 1992.
11. B. Z. Fathepure and S. A. Boyd, "Reductive dechlorination of perchloroethylene and the role of methanogens," FEMS Microbiology Letters, vo. 49, pp. 149-156, 1988.
12. B. Z. Fathepure, J. P. Nengu and S. A. Boyd, "Anaerobic bacteria that dechlorinate perchloroethene," Applied Environmental Microbiology, vol. 53, pp. 2671-2674, 1987.
13. T. D. Distefano, J. M. Gossett and S. H. Zinder, "Hydrogen as an electron donor for dechlorination of tetrachloroethene by an anaerobic mixed culture," Applied Environmental Microbiology, vol.. 58, pp. 3622-3629, 1992.
14. D. M. Bagley and J. M. Gossett, "Tetrachloroethene transformation to trichloroethene and cis-1,2 DCE by sulfate-reducing enrichment cultures," Applied Environmental Microbiology, vol. 56, pp. 2511-2516, 1990.
15. G. W. Sewell and S. A. Gibson, "Stimulation of reductive dechlorination of tetrachloroethene in anaerobic aquifer microcosms by the addition of toluene," Environmental Science and Technology, vol. 25, pp. 982-984, 1991.
16. G. Barrio-Lage, F. Z. Parsons, R. S. Nassar and P. A. Lorenzo, "Sequential dehalogenation of chlorinated ethenes," Environmental Science and Technology, vol. 20, pp. 96-99, 1986.
17. C. R. Smatlak and J. M. Gossett, "Comparative kinetics of H_{2}-utilization for reductive dechlorination of tetrachloroethene and methanogenesis in an anaerobic enrichment culture," Environmental Science and Technology, vol. 30, pp. 28502858, 1996.
18. J. K. Magnuson, R. V. Stern, J. M. Gossett, S. H. Zinder and D. R. Burris, "Reductive dechlorination of tetrachloroethene to ethene by a 2-component enzyme pathway," Applied and Environmental Microbiology, vol. 64, pp. 12701275, 1998.
19. X. Maymo-Gatel, V. Tandoi, J. Gossett and S. Zinder, " Characterization of an $\mathrm{H}_{2}-$ utilizing enrichment culture that reductively dechlorinates tetrachloroethene to vinyl chloride and ethene in the absence of methanogenesis and acetogenesis," Applied and Environmental Microbiology, vol. 61, pp. 3928-3933, 1995.
20. C. Holliger, G. Schraa, A. J. M. Stams and A. J. B. Zehnder, "A highly purified enrichment culture couples the reductive dechlorination of tetrachloroethene to growth," Applied Environmental Microbiology, vol. 59, pp. 2991-2997, 1993.
21. W. P. deBruin, M. J. J. Kotterman, M. A. Posthmus, G. Schraa and A. J. B. Zehnder, "Complete biological reductive transformation of tetrachloroethene to ethane," Applied and Environmental Microbiology, vol. 58, p. 1996-2000, 1992.
22. D. E. Fennell and J. M. Gossett, "Comparison of butyric acid, ethanol. lactic acid, and propionic acid as H_{2} donors for reductive dechlorination of tetrachloroethene," Environmental Science and Technology, vol. 31, pp. 918-926. 1997.
23. C. Holliger and W. Schumacher, "Reductive dehalogenation as a respitatory process," Antonie van Leenwenhoek, vol. 63, pp. 239-246, 1994.
24. G. J. Tortora, B. R. Funke and C. L. Case, Microbiology: An Intrduction, The Benjamin/Cummings Publishing Co., California, USA, 1992.
25. J. G. Zeikus, R. Kerby and J. A. Krzycki, "Single-carbon chemistry of acetogenic and methanogenic bacteria," Science, vol. 227, pp. 1167-1173, 1985.
26. R. S. Wolfe, "1776-1996: Alessandro Volta's combustible air," ASM News, vol. 62, pp. 529-534, 1996.
27. W. Schumacher and C. Holliger, "The proton/electron ratio of the menaquinonedependent electron transport from dihydrogen to tetrachloroethene in 'Dehalobacter restrictus'," Journal of Bacteriology, vol. 178, pp. 2328-2333, 1996.
28. A. Neumann, H. Scholz-Muramatsu and G. Diekert, "Tetrachioroethene metabolism of Dehalospirillum multivorans," Arch. Microbiology, vol. 16?, pp. 295-301, 1994.
29. D. White, The Physiology and Bacteriology of Prokaryotes, Cxford University Press Inc., NY, USA, 1995.
30. J. G. Ferry, "Methane from acetate," Journal of Bacteriology, vol. 174, pp. 54895495, 1992.
31. J. M. Gossett, "Measurement of Henry's law constants for C_{1} and C_{2} chlorinated Hydrocarbons," Environmental Science and Technology, vol 21, pp. 202-208, 1987.
