
Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

DEVELOPMENT OF A FRAMEWORK FOR
INTERNET BASED EDUCATION

Development of a framework for Internet based education has demonstrated the use of

Oracle tools for the use of delivery of education on the World Wide Web. This also has

proved that for an efficient dynamic education scenario, the use of a database-based

system with a proper retrieval system is required.

We have designed the system on an Oracle backend system with Designer/2000.

Developer/2000 helped us with the design and development of the system. Oracle Web

Server 2.1 helped us with the retrieval of the web pages.

The entire design of the system and the reasoning behind the system has been

documented. Appendix A provides a glossary of currently used terminology in the field

of Internet based systems. The Appendix B provides actual screen prints of the

Designer/2000 phases of design, Developer/2000 graphical user interface screens and

the actual code involved in the design and development of the system. The fact that the

entire system is based on the Oracle Repository makes the system very dynamic in

terms of the data and can be used to present the student with a course material rapidly.

DEVELOPMENT OF A FRAMEWORK FOR
INTERNET BASED EDUCATION SYSTEM

by
Srinivas Lanka

A Thesis
Submitted to the Faculty of

New Jersey Institute Of Technology
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Computer and Information Science

Department of Computer and Information Science

May 1998

APPROVAL PAGE

DEVELOPMENT OF A FRAMEWORK FOR
INTERNET BASED EDUCATION SYSTEM

Srinivas Lanka

Dr Murat Tanik, Thesis Adviser	 Date
Associate Professor of Computer and Information Sciences, NJIT

Dr Franz Kurfess, Committee Member 	 Date
Assistant Professor of Computer and information Sciences, NJIT

Dr Ali H. Dogru, Committee Member 	 Date
Visiting Associate Professor of Computer and Information Sciences, NAT

BIOGRAPHICAL SKETCH

Author:	 Srinivas Lanka

Degree:	 Master of Science

Date:	 May 1998

Undergraduate Education:

• Master of Science in Computer and Information Science,
New Jersey Institute of Technology, Newark, NJ, 1998

• Bachelor of Engineering in Electronics and Communications,
Andhra University, Vishakapatnam, India, 1985

Presentations and Publications:

Srinivas Lanka, S.H.Agarwal, D.N. Murmu, N.N. Shitut
"Multitasking in Microprocessor Based systems in Power Plants"
National Symposium of Computer Applications in Power Plants,
Bhabha Atomic Research Center, Bombay, December 1991.

To my beloved family

ACKNOWLEDGEMENT

I would like to express my deepest appreciation to Dr Murat M. Tanik who not only

served as my research supervisor, providing valuable and countless resources, insight,

and intuition, but also constantly gave me support, encouragement, and reassurance.

I would also like to thank Professor Leon Jololian who provided invaluable technical

help and the software resources.

Special thanks are due to Dr Franz Kurfess and Dr. Ali Dogru for actively participating

in my committee.

I also wish to thank Ms. Annette Damian() for her assistance in verifying that my

document format was as per guideline.

vi

TABLE OF CONTENTS

Chapter	 Page

1.0 INTRODUCTION 	

1.0 The Evolution of Web Applications 	 1

1.1 Benefits of the WEB 	 3

1.2 Oracle Tools for Information Publishing 	 4

1.3 Project Introduction 	 6

2.0 VIRTUAL TEACHING & INTERNET 	 7

2.1 Introduction 	 7

2.2 Virtual Teaching Mechanisms 	 8

2.3 Performance Related Issues 	 9

2.3.1 Drawbacks of Live Class Session Delivery Mechanism 	 9

2.3.2 Drawbacks of Virtual Teaching Excluding Web Based Systems 10

	

2.3.3 Advantages of Web Based Education Systems 10

2.4 Internet as a Delivery Mechanism for Education 	 10

2.4.1. Background 	 10

2.4.2. Components of Internet 	 11

2.4.3. Creating the Instruction 	 15

	

2.4.4. Internet Application 19

2.4.5. Internet and Education 	 20

3.0 ORACLE AND INTERNET 	 23

3.0 Introduction 	 23

TABLE OF CONTENTS
(Continued)

Chapter 	 Page

3.1 Designer/2000 	 24

3.1.0. Introduction 	 24

3.1.1. Designer/2000 Product Overview 	 25

3.1.2. Database Design 	 29

3.1.3. Procedural Server-side Logic Design 	 33

3.1.4. Design Recovery 	 37

3.2 Developer/2000 	 39

3.2.1 Introduction to Developer/2000 for the Web 	 39

3.2.2 The Best of the Web and Client-server 	 40

3.2.3 Three-tiered Architecture 	 41

3.2.4 Forms Web Architecture 41

3.2.5 Call and Response: Forms Client and Forms Server 	 44

3.2.6 Security and Encryption 	 46

3.3 Oracle 7 Relational Database System 	 47

3.3.1 Introduction 	 47

3.3.2 Attributes of a Scaleable Development Environment 48

3.3.3 Using Shared SQL and Bind Variables 48

3.3.4 Database Cursors 51

3.3.5 Array Fetch 	 52

3.3.6 PL/SQL 	 54

TABLE OF CONTENTS
(Continued)

Chapter 	 Page

3.3.7 Stored Packages and Procedures 	 57

3.3.8 Transaction Processing 	 59

3.3.9 Conclusion 	 61

3.4 Oracle Web Server ?.1 61

3.4.1 Introduction 61

3.4.2 Overview 62

3.4.3 The Web Listener 	 64

3.4.4 Secure Connection 	 65

3.4.5 The Web Server Manager 74

3.4.6 The CGI Interface 	 75

3.4.7 The Web Request Broker (WRB) 	 76

3.4.8 PL/SQL Agent 	 78

3.4.9 Java 	 80

3.4.10 LiveHTML 	 82

4.0 DESIGN FOR INTERNET BASED EDUCATION FRAMEWORK 	 84

4.1 Introduction 	 84

4.2 Requirement Specification 	 84

4.3 Hardware and Software Requirement 	 85

4.4 Conceptual Model of the Framework 	 86

4.5 Database Design 	 91

TABLE OF CONTENTS
(Continued)

Chapter	 Page

4.6 Forms Design 	 103

4.7 Display of the System on the World Wide Web 	 107

4.8 Coding 	 107

5.0 CONCLUSIONS 	 108

6.0 FUTURE DEVELOPMENTAL SCOPE 	 109

	

APPENDIX A - SCREENS AND DDL CODE 112

REFERENCES 	 153

LIST OF TABLES

Table 	 Page

3.1 Oracle Designer/2000 Object Generation 	 34

3.2 Oracle Designer/2000 Object Re-generation 	 38

3.3 Three Tier Architecture 	 41

4.1 Department 	 93

4.2 Employee 	 93

4.3 Student 	 94

4.4 Courses 	 94

4.5 Course_ employees 	 95

4.6 Edu_units 	 95

4.7 Notes 	 96

4.8 Articles 	 97

4.9 Audios 	 97

4.10 Videos 	 98

4.11 Exams 	 98

4.12 Exercises 	 99

4.13 Projects 	 99

4.14 Exam_questions 	 100

4.15 Exercise_ question 	 100

4.16 Project_question 	 101

4.17 Mails 	 101

8

2.2 Virtual Teaching Mechanisms

Virtual Teaching Mechanisms to deliver courses are as follows:

Instructional Television Fixed Service

Microwave

Cable and Public Television

Satellite

Videotape

CD-ROM

Internet

These techniques may be used to impart education over different geographical

regions like local, statewide, countrywide or including other countries.

For local regions Instructional Television Fixed service could be used. This would mean

connecting different sites like companies and local schools with this system and they

would be fed in the programs from one or many local sources. Cable and Public

television also can be used to server the local region. This could enable students from

homes and wherever a television is available to get the educational program.

For statewide regions, the microwave is one of the options that can be used. This

can enable quality audio and video to reach students across the length and breadth of the

state.

For national and international regions, U. S. satellites or foreign satellites can be

used to uplink educational programs. This could be a big network containing a number of

CHAPTER 1

INTRODUCTION

The powerful delivery mechanism of the World Wide Web (WWW) is prompting many

organizations to carefully consider their application strategies. The Web has immense

potential in making information more accessible, more dynamically customizable and

visually very appealing to the user. As a result, the number of software applications that

are web based is increasing day by day. This introduces challenges on the tools that

would be needed to develop these applications. These tools, should if possible have a

short learning curve, be able to build and deploy applications rapidly, provide a wide

variety of features that are currently available in the market for web development, and

finally should be economical. This section describes the types of web applications that

users are trying to build, reviews the benefits and briefly explains Oracle's tools for the

internet. This section also provides the introduction to the project developed for this

thesis.

1.0 The Evolution of Web Applications

Several types of web-based applications have evolved with user and organizational

demands:

1. Static web pages

These web applications consist of static web pages. These are very popular on the Internet

today and can be easily created by the average user. It is possible to integrate different

kinds of media like text, images, audio and video into these pages. The user can go from

one page to another by what are called as links. Due to the pages being static the pages

need to be modified whenever there is a change of information. Visual appeal of the Web

page and attractive content holds the attention of the user.

2. Dynamic web publishing applications

Since the user needs up to date information, more so in a corporate environment, this type

of applications came into the market. These applications have a database containing all

the information that needs to be displayed and the web pages display the data to the user

on demand. The database is continuously updated and the user always sees the latest

information in the database. Changing data that requires modifications to the Web pages

are avoided here.

3. Transaction-oriented applications

Every organization will have some type of client-server or legacy application. The

transaction-oriented application are developed to coexist with the current application or in

some cases sunset the old application. The functionality of this new application is the

same as the previously existing application, except that now the application is available to

a wider audience at very small or negligible cost.

4. Electronic commerce

The World Wide Web brings about a much closer interaction between organizations,

customers and suppliers. Users can connect to organizations and get the information they

require without any special hardware or software setup. Customers can directly connect to

3

the company without the need of any sales persons. Suppliers can monitor the levels of

the companies they are supplying to and regulate their supply based on the specified

levels.

1.1 Benefits of the Web

Some of the benefits of the Web applications are as follows:

1. Reduction in Administrative Costs

It is generally said that the side affect of client-server systems is increased administrative

costs. Many applications had software installed on the client computer, generally a

personal computer, and these must be compatible with other existing applications. Any

modification in the client computer software meant going to each client computer and

upgrading this computer with the new software. This compounds the condition as more

and more client computers are introduced. Hence the increased administrative cost.

Since Web applications are server based and have a very thin client, a browser,

this greatly reduces the time and expense that would be involved in going to each client

computer to upgrade the client software piece.

2. A Reduction in Resource Requirements

Generally the client-server applications require a sizeable amount of memory to execute.

This would be over and above the memory needed for the execution of the operating

system and the windowing environment. The disk space also becomes a constraint under

these circumstances.

4

Web applications generally have lower resource requirements. The application

actually executes on the application server or the web server and as a result the memory

requirement is less. The application also resides on the application server and hence the

disk space constraint is also addressed.

3. Application Portability

Deploying client-server applications on more than one windowing platform has been a

challenge in most cases. This is primarily due to the peculiarities of the operating

systems, the windowing software, as well as the operating environment. Organizations

have had to modify applications in order to make them available on multiple platforms.

Maintaining these applications is a nightmare.

Web applications execute under the browser and are machine or platform

independent. The browser presents the application to the user and browsers are today

available for nearly every platform. Hypertext Markup Language(HTML) and Java are

also machine independent and hence the user will see the same form of the application

irrespective of what platform he/she is on.

1.2 Oracle Tools for Information Publishing

Oracle offers two development tools for building and deploying publishing applications

on the web: Designer/2000 and Developer/2000. Developer/2000 is a visual development

environment for building database-oriented applications. Designer/2000 is a business

modeling and design tool from which applications can be generated, including

Developer/2000 applications.

Designer/2000

Designer/2000 enables developers to create visual representations of their applications --

database and application module diagrammers are used to define both server-side and

client-side application definitions and logic. These definitions, together with templates

and user-defined standards, form the basis for the generation of complete applications.

Designer/2000 makes use of the Oracle WebServer, an HTTP server tightly integrated

with Oracle7, to create web applications. The Oracle WebServer retrieves data from the

database and formats it into HTML pages using the PL/SQL language, Oracle's standard

extension to SQL.

The process of creating a web application using Designer/2000 is as follows

(assuming a database has already been defined):

A module is created, defining which database objects to use, how to use them, and how

different objects are related to one another. Links are created between multiple modules

to enable navigation through multiple screens (for example, from master to detail

information). The module definitions are used to generate PL/SQL packages that are then

installed in the Oracle WebServer. The PL/SQL packages, are used to generate dynamic

HTML pages which incorporate the database access set up for that module and the layout

and format defined using the templates and standards in Designer/2000. The HTML

pages can be viewed using any web browser.

Web applications can also be generated from previously defined modules in the

Designer/2000 repository, or even from existing Developer/2000 or Oracle Forms

applications that have been reverse engineered into Designer/2000.

5

Developer/2000

Developer/2000 is Oracle's graphical user interface (GUI) tool. This tool can be used to

create forms, reports and graphics. These objects can be viewed from the World Wide

Web when used in conjunction with Oracle Web Server. The slick visual interface along

with the powerful features encompassed into Developer/2000 make it a powerful tool for

development if user interface forms, whether Client-Server type or web type. Once the

database is in place, the user can develop the navigation forms as well as maintenance

forms to achieve the result.

1.3 Project Introduction

The development for this thesis was done at NJIT using IBM compatible PC and Oracle

Tools under the invaluable guidance of Dr M. M. Tanik and Professor L. K. Jololian. The

following topics are covered by this thesis:

1. Education and Internet

2. Oracle Tools And Internet

3. System Documentation of Framework for Delivery of Internet Based Education.

The documentation including code and screen prints are included in Appendix A.

Chapter 4 of this document gives detailed information on the design and development of

this system.

6

CHAPTER 2

VIRTUAL TEACHING AND INTERNET

2.1 Introduction

There are generally two forms of teaching:

I. Teaching with the student actually being present in the class with the professor.

2. Virtual Teaching.

In the first case the student attends the live lectures by the professor at the school.

This could typically be about 15 lecture sessions. The student attends the seminars and

presentations conducted by the professor. The professor gives the student assignments

and it is expected that the student delivers the assignment in the time given by the

professor. The student is also expected to attend the exams set by the professor. The

professor grades the student based on his overall performance.

In the second case, Virtual Teaching, the student does not attend the live

lecture sessions at the school. The delivery mechanism determines how the

student gets the education. There is very little or no direct interaction between the

professor and the student in this case. The student gets the course material goes through it

and does his submissions as stipulated in the course material.

7

2.2 Virtual Teaching Mechanisms

Virtual Teaching Mechanisms to deliver courses are as follows:

Instructional Television Fixed Service

Microwave

Cable and Public Television

Satellite

Videotape

CD-ROM

Internet

These techniques may be used to impart education over different geographical

regions like local, statewide, countrywide or including other countries.

For local regions Instructional Television Fixed service could be used. This would mean

connecting different sites like companies and local schools with this system and they

would be fed in the programs from one or many local sources. Cable and Public

television also can be used to server the local region. This could enable students from

homes and wherever a television is available to get the educational program.

For statewide regions, the microwave is one of the options that can be used. This

can enable quality audio and video to reach students across the length and breadth of the

state.

8

For national and international regions, U. S. satellites or foreign satellites can be

used to uplink educational programs. This could be a big network containing a number of

9

sub systems wherein these programs could be beamed to the satellite from any part or any

place of the world to any part or place that you need to display the program.

Broadcast quality videotapes may be created by the school in a popular format

like VHS and the student may obtain these from the school. These videotapes will

contain lectures, seminars, presentations which comprise the course. The professor along

with the video production department who create these may use overhead projectors,

computer systems, presentation software to make the course rich in content.

Likewise, the audio department can cut Compact Disk Read Only Memory devices

(CD ROMS) which the student can listen to with a CD Player. These will typically

contain the professor's lectures, relevant articles in audio form.

The Internet is a relatively new mechanism for delivery of education. The student

connects to the school via the internet and gets the course material from the web pages

created for the course by the professor/faculty.

2.3 Performance Related Issues

2.3.1 Drawbacks of Live Class Session Delivery Mechanism

1. Heavy Student-Professor interaction.

2. Student has to take the course for the full duration of the course(about 15 class
sessions).

3. If student wishes to complete his course earlier, he cannot do so.

4. Professor has to be available for the full duration of the course at the college,
especially in the class sessions.

10

2.3.2 Drawbacks of Virtual Teaching Excluding Web Based Systems

The drawbacks of virtual Teaching excluding web based systems are as follows:

1. The student no longer has the close interaction with the professor but is restricted to
the course material and the submissions.

2. Since the pressure on the student is reduced, there is a tendency to relax and as a
result this will affect the student's performance.

3. If the cassettes and the course material are not updated regularly, the student may end
up having to read obsolete material.

2.3.3 Advantages of Web Based Education Systems

1. The student can rapidly go through the entire course material.

2. If the professor agrees he/she can submit his exercises, projects and exams earlier
than the he stipulated 15 weeks complete his/her course earlier. This could be one of
the biggest advantages of this system.

3. The professor can keep on adding detail to his course material and know the student
can access this from any part of the world. This is especially useful to students who
work and attend school part time.

4. The student can send email to the professor for any queries or doubts he has and can
get a reply back from the professor.

2.4 Internet as a Delivery Mechanism for Education

2.4.1 Background

The internet was started about twenty-five years ago. It was initially called ARPAnet,

which supported military research for the US Department of Defense. ARPAnet

connected local computer networks, research universities and military bases. Since

most computers those days were IBM mainframes and it would have seemed logical to

have a large mainframe house the internet but since damage to that system would bring

11

down the network, the designers decided to set up a distributed system. Thousands of

computers connected world wide, form the backbone of the Internet. Since most of these

computers were, and still are, Unix based systems, the natural protocol to use for

information exchange was Transport Control Protocol/Internet Protocol (TCP/IP). This

protocol has been adopted as a common standard and this has contributed greatly to the

growth of Internet. Today all operating systems like Windows 95, Windows NT and IBM

OS 390 support TCP/IP.

In 1989, in Europe, a system called the World Wide Web (WWW) was developed.

WWW brings about Graphical User Interface (GUI) to world wide networking.

This allowed the integration of full color graphics text of varying typefaces, animation,

sound and video. For complete access one would need multimedia equipment like

speakers to hear sound and a web browser. Graphics cards are now available to render

high quality graphics at faster rates.

Each website would typically consist on a homepage, which has links to connect to

detailed information.

2.4.2 Components of Internet

Hardware and Software

To develop instruction and deliver it on the World Wide Web one will need certain

hardware and software configurations. The client PCs will also need certain hardware

and software. The provider of instruction who is going to provide the instruction on the

World Wide Web will need a high end computer with connectivity to the internet and

Hyper Text Transfer Protocol (HTTP) server software. The software developer who will

develop the software will need Hyper Text Markup Language (HTML) editors or tools.

The end user or the student in this case will need a computer with a modem, internet

connectivity software and a Web browser.

Following is a list of tools :

Computers and Connections

Today Web software is available on nearly every platform you are likely to come across.

These include PCs, Macintoshes, and Unix workstations, all of which can be used for

designing, providing, and browsing Web Based Education. A PC or a Macintosh can

very easily accomplish the task of designing and browsing. The HTML files that will be

accessible to students on the internet need to be on a very powerful machine which has a

fast internet connection. This is needed to ensure that the large number of students who

will be accessing the system will have a good response.

A fact that one must remember is that while one browses the Web from a

computer that has internet connectivity, Single Line Internet Protocol (SLIP) or Peer to

Peer Protocol (PPP) , is used by the computer to connect and transfer data from the PC to

the host computer. Most SLIP/PPP programs have a dynamic address which means

that every time the student's computer connects to the service provider, it gets a different

address. Though this is true for the client PC, the server must necessarily have unique

Internet Protocol IP address. Generally a service provider will have a block of addresses

to his internet service and the users can use these addresses to connect.

13

Browsers and Servers

• Servers

The World Wide Web has several good lists of available server software. Yahoo HTTP

Server Index and the W3Org Server Index are two of the best.

• Browsers

There is a wide variety of packages that allow a user to browse the World Wide Web.

These are available for nearly every platform and operating system. They differing factor

among these is how they handle multimedia, which version of HTML they read, and

which special extensions they allow. Netscape, Internet Explorer, Mosaic are the most

popular of these. Web Based Education developers need to be familiar with different

browsers, because each of these may have different characteristics which will in turn

affect the content viewed by the student using the browser. There are certain text based

graphics like Lynx which will not recognize any inline graphics that may be in the

instruction. Search engines like Yahoo, Infoseek, Alta Vista, ExCite, America Online

Net Find will give a list of browsers and related software when invoked.

HTML and Editors

® HTML

HTML is the language used to markup a document in such a manner that browsers will

correctly interpret what is in the document and display it properly. This is a simple but a

very powerful tool for creating interactive hypermedia Internet based applications. All it

14

requires is a text editor or a word processor and a developer can create a HTML page

using simple commands. HTML was first developed in 1989 at CERN, the European

Particle Physics Laboratory. Currently there are several versions of HTML which

include 1.0 to 3.0. There are certain browsers which will only read certain version of

HTML while there are certain browsers like Netscape which have added extension to

HTML which are read only by their own browser. The WWW Consortium's History of

HTML on the world wide web can provide more details on the different versions.

Editors

HTML documents have essentially components called tags which differentiate between

the title, heading, body. Editors are software tools which allow the developer to create

web pages without writing the HTML tags. There are three types of HTML editors:

Standalones

Converters

Templates/add-ons.

Applications that work independent of other applications are termed as stand alone

applications. The HTML editor can edit the document in place and add, edit or delete the

tags.

Converters change text from some format to HTML. Such editors which do

conversion to HTML can speed up the development and are very beneficial to HTML

development. Templates and add-ons work from within other programs. Typically word

15

processors are there that allow you to create HTML formatted documents within those

applications.

Viewers and Other Helper Applications

Text and GIF images are the most common form of content on web pages and most

browsers are capable of displaying these. Quite a few of them also support images

with some even going further and displaying audio and video. File types that are not

handled internally by the browser software are handled by external programs. These are

called viewer or helper applications. These can be specified in the individual browser

configuration. These helper application programs include QuickTime, movie

viewers, RealAudio, Telnet and other applications. These applications must preexist on

the system in order to be able to get called by the browser. These applications differ from

platform to platform and quite a few are readily available on the Internet.

2.4.3 Creating the Instruction

HTML provides an easy method of putting information together and creating web pages.

Though this is easy, creating web based instruction has more to this. Instruction is the

deliberate organization and presentation of information with the end goal of promoting

specific learning. The design of Web based instruction must have the instructional

aspects as the top priority. Though the web site may look very glamorous it could be

totally ineffective in achieving the goal of educating the student and this would defeat the

purpose of Web based education.

I6

None of the current design models deal specifically with the design of Web Based

Instruction (WBI), but we can extrapolate from them when creating our instruction. There

are two major schools of theory in instructional design today; the Objectivists, whom we

will represent with Dick and Carry's Instructional Systems Design model[1]; and the

Constructivists, whom we will represent with the Hypermedia Design Model, based on

Spiro's Cognitive Flexibility Theory[6]. WBI can be designed under either paradigm.

The Instructional Systems Design Model (ISD)

Traditional Objectivist Instructional Systems Design models try to provide a series of

steps that will, if followed, lead inexorably to the production of effective instructional

materials. These models take little account of individual learners and the differences in

prior knowledge and motivation that each brings to the instruction, save that they all

meet a preset list of entry behaviors. The final goal is not that the learner will

know "x" or understand "y". Instead the outcomes are all described in terms of behaviors.

The learner will be able to do "z". This makes evaluation relatively simple. Can

the learner exhibit the required behavior? Which may well be appropriate if the

knowledge is procedural and can be exhibited. But if the instruction deals with

declarative knowledge, or more importantly with higher levels of thinking and learning,

theses models and the instruction produced by them can prove ineffective.

The traditional models break down the process of creating instruction into seven

basic steps, to be completed in order. These steps can be paraphrased as:

1. Identify the instructional goal for the module in terms of terminal behaviors, that is
what will the learner be able to do when they have finished the instruction.

17

2. Break that behavior down into a hierarchy of subordinate skills. Which skills the
learner have to have to perform the terminal behavior? What skills are required to
perform those behaviors? And so on into the most basic levels.

3. Examine your hierarchy and determine the minimum level of skills with which you
expect your learners to come to the instruction. If your terminal behavior is to be
able to prove a given geometry theorem, can you reasonable expect your learners to
come to the instruction able to read and perform basic calculations.

4. Performance objectives differ from instructional goals in that performance objectives
are the behaviors the learner will evince at the end of each subsection of the
instruction to show she has mastered the subordinate skills.

5. Create test items based on the performance objectives.

6. Develop the actual instruction. This step includes media selection, strategy
development, and production.

7. Finally the designer has to evaluate the effectiveness of the instruction. Can the
learner actually do what the designer intended for her to do?

In this paradigm, all instructional objectives are set by the designer. It is assumed

that all learners coming to the instruction are either intrinsically or extrinsically

motivated to learn the behavior set in the instructional goal. Individual learner

differences are often either ignored or generalized.

Cognitive Flexibility and the Hypermedia Design Model

Cognitive Flexibility Theory (CFT) deals with "the special requirements for attaining

advanced learning goals, given the impediments associated with ill-structured features of

knowledge domains" [5] and suggests a metaphor "of the criss-crossed landscape with its

suggestion of a nonlinear and multidimensional traversal of a complex subject matter".

This desire for multiple perspectives and knowledge criss-crossing is well supported in

18

the Internet environment, especially using the hypermedia of the World Wide Web in

conjunction with one of the Net's discussion facilities.

"We have referred to the need for rearranged instructional sequences, for multiple

dimensions of knowledge representation, for multiple interconnections across knowledge

components, and so on. Features like these correspond nicely to well known properties of

hypertext systems, which facilitate ... multiple linkages among content elements."

Following Spiro's discussion of the "criss-crossed landscape", the Hypermedia

Design Model (HDM) uses a geography/cartography design metaphor. It is important to

note the difference between design metaphor and instructional or interface metaphor. The

design metaphor deals with how the designers organize the learning domain during the

creation of the learning environment; while interface metaphor deals with how the learner

accesses knowledge within the environment. One of the assumptions behind the model is

that the role of the guide will be taken by the instructional medium rather than by a

teacher in a classroom situation. Another important aspect of this model is that it

differentiates between design goals and learner objectives. Design goals are that

knowledge which the designers hope that the learner will construct from the

environment.

Learner objectives are what the learner actually comes to the environment

wanting to learn. Traditional ISD models deal almost exclusively with design goals,

where as HDM is designed with the idea that learner objectives are paramount, but that

guidance can be provided to help the learners reach those objectives.

19

Define the Learning Domain

One must set the boundaries on what is to be presented to the learner. The larger the

boundaries, the less detail one will be able to include within them. For example there

are very few maps of the whole world that show street level detail of your home town.

The opposite is also true, if the domain is smaller then the level of detail that must be

encompassed must be very high, which implies that detailed instruction needs to be on

this kind of a web page. Domains are rarely complete and unique. Physics, for instance,

overlaps with mathematics, chemistry, history, and any number of other domains. The

same is true for almost every traditionally defined learning domain. In the instruction one

needs to define where the domain that one is going to cover with this

particular environment begins and ends and what is included. An environment for

exploring Newtonian thermodynamics, for instance, might include equations for the

various laws but not contain the algebra skills necessary to solve those equations. CFT,

and therefore this model, deals mostly with the pursuit of intermediate and expert

knowledge in complex and ill-structured learning domains. If the learning domain is

simple or well structured, one might want to consider using a more traditional ISD

model.

2.4.4 Internet Application

The internet became very popular for delivery of electronic mail(email) messages

throughout the world. In a matter of hours an email can be delivered from one place to

another. Since the Internet spans a number of countries, this becomes a very powerful

delivery mechanism.

The use of Internet has changes dramatically in the past couple of years. The

current applications of Internet include:

1. As a medium to market products, receive orders, send invoices, perform help desk
kind of activities.

2. As a medium to send upgrades to users, especially software companies. E.g. Users
can download anti-virus software upgrades from Symantec Corporation using the
Internet.

3. As a worldwide library resource.

4. As a medium for teleconferencing with tools like Microsoft NetMeeting.

2.4.5 Internet and Education

The World Wide Web (WWW) deals with how an instruction is organized and how it is

presented. It encompasses the delivery medium, content provider, and subject matter.

Information on the Web is organized in an ever expanding network of nodes and links

that represent the more traditional domains of knowledge. Teachers and designers can

create navigational paths to guide the students. These navigational paths or web pages are

created using a very simple language called HTML.

The web comprises of text, graphics, video and audio. Reiser and Gagne's media

selection diagram [4] and Merrill and Goodman's strategy and media selection technique

[3] indicate that these properties make the Web most useful when used to explore

intellectual and verbal knowledge, and when exploring affective learning. The web, with

it's versatility and interconnectedness offers one of the most effective ways to work with

learners who are spread over a wide geographical region.

21

If the learners have no access to an Internet connected computer the web is not an

option for delivery of education. Since text is the primary mode of communication on the

Web it is necessary that your learners be literate, or at least be approaching literacy.

Hence the use of web in early childhood learning is not recommended. Also, it not

advisable to use the web if the instruction requires a great deal of audio and video since

this tends to slow down the web page retrieval.

Through helper applications and internal mechanisms the Web can connect a

learner to almost any part of the Internet. Because of this the Web shares the advantages

and disadvantages of the rest of the Internet. McManus' description of the Internet fits the

World Wide Web equally well.

The Internet can deliver video, but not as quickly as videotape, television, or

CD-ROM. It can carry real time personal interaction, but not as well as telephone or

video conferencing. It can display textual information, but not a usefully as a book or

magazine. Why then should the Internet ever be used. The Net has two real advantages

over other media. It combines advantages of other media so that it conveys video and

sound better than a book, is more interactive than a videotape and, unlike a CD-ROM, it

can link people from around the world cheaply. The second advantage, and one that is

often overlooked when discussing the Internet as a delivery system, is that it can also be a

content provider. The Internet is, arguably, the largest and most diverse information

resource in the world today. It is possible to incorporate the wealth of information

available on the Net in your design. For instance if you are designing a module on

renaissance art history, you can include links to the Vatican Library and the Louvre, as

well as to the Art History exhibit of the Australian National University, just to name a

few. This sort of immediate access to information and resources can not be found with

any other medium." [2]

7')

CHAPTER 3

ORACLE AND INTERNET

3.0 Introduction

Oracle Corporation is the market leader in database products. Oracle is also spearheading

its products in the direction of the world wide web. Today it has a range of products

geared develop a web based product from its full life cycle. These products include

1. Oracle Designer 2000

2. Oracle Developer 2000

3. Oracle Web Server.

The Designer 2000 is the tool enables complete design of the project along with

the database and the forms. This product is composed of a set of utilities which

take the project through its various component sub systems. Designer 2000

Version 1.3.2 is used for the development of this project. Section 3.1 deals with

Oracle Designer 2000.

The Developer 2000 is Oracle's graphical user interface design tool. This tool

helps the developer to build forms, reports and graphics using visual tools.

Developer 2000 Release 1.5w is used for the development of this project. Section

3.2 deals with Oracle Developer 2000.

The Oracle Web Server is the server to which the remote user will be connecting

to. This web server in turn will make calls to the Forms Server which will connect

to the database. Oracle Web server 2.1 is used for this project. Section 3.4 deals

with Oracle Web Server.

In addition Oracle 7.3.3 is used as the database engine for this project. This

relational database management system is very widely used in the industry.

Section 3.3 deals with Oracle 7.3.3.

3.1 Designer/2000

3.1.0 Introduction

The building of Oracle 7 based systems involves a number of major considerations

including,

• Performance

• Integration of other application systems

• Documenting the system

• Communicating the design and usage

• Providing a scaleable architecture

• Avoidance of reinventing the wheel

The section will cover in detail the following areas:

1. Designer/2000 Product Overview

2. Database Design

3. Procedural server-side logic design

4. Server Generation and Maintenance

5. Design Recovery

24

25

3.1.1 Designer/2000 Product Overview

Designer/2000 is Oracle Corporation's new generation modeling and generation toolset,

and is rapidly becoming adopted as a valuable aid for development teams that are

building and maintaining applications based on Oracle 7 technology.

One of the key components of the Designer/2000 product is the underlying

repository. The repository is a controllable multi-user environment that provides for the

design and generation of all Oracle 7 functionality. In fact the repository is built as a

standard Oracle 7 database, and utilizes an API written in PL/SQL.

The Designer/2000 product covers the full spectrum of systems development

from business process engineering through to delivery and maintenance of

client/server systems.

Data Diagrammer

The Data Diagrammer provides a graphical environment for developing and managing

databases. Developers represent tables, views, keys etc. The Data Diagrammer creates,

manages and displays logical or physical database designs.

The Data Diagrammer also offers the database designer,:

1. Database Design Wizard that creates normalized database designs directly from entity
relationship models.

2. Facilities to specify client/server partitioning, allowing designers to cause constraints
to be validated on the client-side, the server-side or both.

3. Facilities to specify client/server partitioning, allowing designers to cause constraints
to be validated on the client-side, the server-side or both.

4. The ability to define data security, users, groups of users, roles and access rights.

26

5. Reverse engineering of database definitions and procedural components that were not
created in the Designer/2000 environment.

6. Access to the Server Generator that transforms repository-based schema definitions
into SQL scripts either for Oracle 7 databases or ANSI standard SQL databases.

The Data Diagrammer delivers complete database designs, either from reverse

engineered instance databases, from business models (entity/relationship) or directly

entered designs. The Data Diagrammer can manage multiple diagrams, for example, to

display partitioned database designs, but basing them on a single repository. It can use

color, font and linestyle to customize diagrams, and the user can specify preferences for

the appearance and content of diagrams that are retained for subsequent sessions.

Usage:

The Data Diagrammer has been extensively used in this project. After the creation of the

Entity-Relationship model the mapping was done. Then the mapped entities were

included in the Data Diagrammer to generate the data schema. This was then checked if

the tables and fields were created ok. Then the Data diagrammer was used to generate the

Data Definition Language (DDL) code to create the tables, indexes, keys. This code was

then executed to create physical tables in the Oracle Database. Appendix A lists the Data

Diagrammer figures.

Module Logic Navigator

Using Oracle 7, developers have the option to specify procedural logic to implement

business rules on the server. These can be invoked as a result of pre-defined triggers on

data changes, for example after insertion into the Customer table, or on specific

-17

application events, for example whenever the Customer Account Status is changed. The

Module Logic Navigator is specifically designed to assist developers in creating and

modifying such procedures.

A developer using the Module Logic Navigator can:

I. Create any valid PL/SQL statement by drag and drop from a statement template
library.

2. Reference any valid data definitions in the Repository by drag and drop.

3. Navigate large modules by using an auto-synchronizing outliner.

4. Find incomplete editing from the current or previous sessions.

5. Syntax check PL/SQL.

6. Create cross-reference documentation of which tables and columns a module

accesses.

PL/SQL modules created in this way can then be implemented using the Server

Generator. And, of course, PL/SQL can be reverse engineered. The power of the Module

Logic Navigator and the repository management tools are then available to help database

administrators and designers get existing databases under control.

Repository Object Navigator

The Repository Object Navigator (RON) presents the developer with a Windows 95

explorer style interface to any and every object in the Designer/2000 Repository, arranged

by type. The Repository Object Navigator is not simply a read-only browsing tool. It

provides update of all the objects, and allows the update of sets of objects disjointedly

selected. Update can be either by direct input or from the paste buffer. For example, if a

28

database column definition has been used in ten or twenty screens and reports, and the

database designer changes that definition, it is essential to assess the impact and make

changes.

Using the Repository Object Navigator the project manager navigates to the column

changed, copies the changed property to the paste buffer, she or he then navigates to the

set of modules that use that column, selects the ones which are to inherit the change and

then pastes the new property value or values onto the target set. The change is effected

simply and quickly, but still under user control.

Usage:

The Repository Object Navigator (RON) was extensively used in this project to maintain

entities, relationships, tables, fields, keys, sequences. The entire application maintenance

of this project for the Designer/2000 part was done from the RON.

Server Generator

The Server Generator reads definitions held in the Repository, including the specified

distribution of constraint enforcement across the client/server divide and creates:

1. Database definitions: tables, columns, views.

2. Keys and constraints for data integrity.

3. Indexes and clusters for performance.

4. Oracle 7 role-based security model.

5. Distribution design: nodes and databases.

6. Replication snapshots and automatic synonym generation for data distribution.

7. Server-side PL/SQL logic.

29

The Server Generator creates 100% database implementations directly from the

Oracle Repository.

Usage:

The Server Generator was used on this project to create the data definition language code

to create the tables, primary and foreign keys, and indexes. Appendix A has figures

indicating the usage of the Server Generator.

3.1.2 Database Design

It is very essential that "designing" an Oracle 7 database system be considered. There are

a number of important reasons:

1. Performance - the initial design of a system can have tremendous impact on its
final performance.

2. Integration - without some sort of design specification it becomes very difficult to
for a team of developers working on an application to produce a common
application, this is equally true when the system being build needs to be integrated
into existing systems.

3. Communication - if a design exercise is undertaken, the decisions in that process
need to be communicated to all members of the team.

4. Reuse - it may well be possible to reuse existing successful design solutions.

Some development organizations are familiar with the concept of producing an

information model for the business requirement they are developing as a database

system. Some organizations represent that information model as an entity relationship

model. This section will cover how we can translate the information model into a

physical database using Designer/2000.

30

Using the Database Design Wizard the Entity Relationship Model can be

translated into a database design, there are a number of significant advantages to doing

this which are as follows:

I. Save development time.

2. Achieve consistent results.

3. Avoid a great deal of repetitive work.

4. Maintain the database design.

In practical terms the Database Design Wizard performs the following tasks for a

database designer automatically and without error or misinterpretation.

I. Entities become tables.

2. Attributes become columns.

3. Unique identifiers UIDS become primary and unique key constraints.

4. Relationships become foreign key columns and constraints.

5. If an entity has several uids, the designer can choose the most appropriate for the
primary key constraint, the rest become unique key constraints.

6. Sub type entities are implemented as multiple or single tables under designer control.

7. Many to many relationships are automatically resolved by the creation of intersection
tables.

The Database Design Wizard produces a complete design and the definitions

produced could be used to generate the SQL DDL scripts. Often though, the first cut

database design has been achieved, the data diagrammer is used to refine the database

design and there a number of reasons as to why designers may want to go through this

exercise.

31

For example, convenience database objects to may need to be added to the

database schema, i.e. views may need to be created to hide the complexity of the design,

sequences allowing the generation of certain column values. The application may also

require additional columns for auditing , journalling etc. There is also the whole area of

performance, certain columns in the database will need to be indexed for performance,

and the structure of certain tables may need to be changed to speed up access times.

Using the Data Diagrammer the designer can use the column definition spread table to

specify and modify column definitions, the benefit of doing this is so that we can utilize

other Designer/2000 utilities.

The order in which the columns appear in the table Datatype are, the datatype of

the column, Average Length Estimate, average length Max Len Column, length Dec

Places, Accuracy of number columns, Optional, Whether the column will allow NULL

values, Initial Volume Estimated percentage, Final Volume Estimated percentage,

Default Value.

The Oracle 7 server allows for the definition of data integrity constraints that are

automatically enforced by the server. The types of integrity constraint are :

1. Nulls - i.e. mandatory or optional columns

2. Unique Column Values - all values in a column are unique

3. Primary Key Values - ensures that all rows in a table can be uniquely identified by the
values in a column (or set of columns), the implication being that the column is
mandatory and all of its values are unique.

4. Referential Integrity - a rule defined for a column that allows inserts or updates only
values that exist in another table. Also includes rules that dictate the type of data
manipulation allowed on referenced data and what actions to be performed on
referencing data as a result of such manipulation.

32

5. Complex Integrity Checking - user defined rule for a column that allows or disallows

certain values.

The Data Diagrammer allows you to simply create and utilize the above

constraints .

1. NULLS - simply define a column as mandatory by setting it's "Optional?" property to
false.

2. Primary Keys - The Database Design Wizard automatically creates a primary key
constraint for the source entity primary uid, or using the Data Diagrammer directly
you can edit or create primary key constraints and components in the edit table dialog.

3. Unique Keys - use the Data Diagrammer edit table dialog.

4. Foreign Key - diagrammatically or in edit table dialog.

5. Foreign Key Delete and Update rules :

a. null - no delete/update rule
b. cascades - deletes/updates a row from the table if parent row is deleted/update
c. restricted - prevents deletion/update of parent rows
d. nullifies - updates the foreign key to null if the parent row is deleted/updated
e. defaults - updates the foreign key to a specified value if the parent row is

updated.

Oracle 7 Implemented

ONLY the Delete Cascade, Delete Restricted and the Update Restricted rules are

enforced by the Oracle 7 server. The Forms Generator however, Designer/2000 can

create the application code to support all delete and update rules at the application level.

Check Constraints - are implemented using the Data Diagrammer edit table dialog.

J_7

3.1.3 Procedural Server-side Logic Design

There are two areas of interest in writing server side procedural logic , PL/SQL stored

procedures, packages and functions and database triggers. We will first consider the area

of database triggers.

Database triggers can be used to supplement declarative integrity constraints to

enforce business rules. Because the triggers are written in PL/SQL the rules can be

completely customized. Triggers can be commonly used for:

1. Implement referential integrity rules not supported by declarative constraints.

2. Enforce complex business rules.

3. Automatically generate derived column values.

4. Provide transparent event logging and auditing.

5. Enforce complex security authorizations.

The Module Logic Navigator provides a graphical environment to aid creating

and maintaining both free standing PL/SQL modules and database triggers. The Module

Logic Navigator provides a selection tree and an edit window to define the PL/SQL

trigger module. The Selection Tree provides correct PL/SQL constructs and allowable

data values that can be dragged and dropped to the editor or the outliner.

Server Generation

The server generator is used after the designer has finished the database design, the

generator will produce DDL command files that can be used to build a "live" database.

The files generated are SQL*Plus command files and are therefore portable to any Oracle

34

environment Below is a table that describes all of the database objects that the server

generator will produce scripts for.

Table 3.1 Oracle Designer/2000 Object Generation

Oracle 7 Object Name Generate NUN
Table Y
View Y
Synonym Y
Index Y

Sequence Y
Cluster Y
Integrity Constraints Y
including Primary Key Y
Foreign Key Y

Check Clause Y
Default Value Y
Null Y
Snapshots Y
Rollback Segments Y

Tablespaces Y
Database Y
Database Trigger Y

PL/SQL Package Y
PL/SQL Procedure Y
PL/SQL Function Y
Database Link Y
Role Y
User Y
Grants Y

In the previous sections we have seen how the Data Diagrammer and Module Logic

Navigator can aid database design. The other significant tool that is extremely powerful

is the Repository Object Navigator. This tool supports the designer in allowing him/her to

manipulate repository objects extremely easily. For example, a designer can create a

35

space definition in the repository, this space definition can be applied to multiple

database objects simply by selecting the required objects and changing the space

definition property to the name of your newly created space definition. This means that

whenever those objects are generated they will automatically be generated with the

correct space definition. This reuse capability is available in many parts of the

Designer/2000 product set and significantly aids in the speed and quality of the generated

database structures.

The quality of the outputs of the Designer/2000 product provide an excellent

repository of documentation. The SQL DDL script files are fully commented, thus

allowing subsequent users understand their functionality. Below is sample output from

the Server Generator.

REM This ORACLE7 command file was generated by Oracle Server Generator
REM Version 5.5.7.0.0 on 26-OCT-95
REM For application OBS version 1 database OBS7
REM
REM TABLE REM CUSTOMERS

REM PROMPT PROMPT Creating Table CUSTOMERS

CREATE TABLE customers(cs_reference NUMBER(6,0) NOT NULL,
cs address line 1 VARCHAR2(40) NOT NULL, cs last name YARCHAR2(30) NOT
NULL, cs_first_name VARCHAR2(30) NOT NULL, cs_telephone_number
VARCHAR2(15) NOT NULL, cs_address_line_4 VARCHAR2(40) NULL,
cs address line 2 VARCHAR2(40) NULL, cs_address_line_3 VARCHAR2(40) NULL,
cs lc code VARCHAR2(4) NULL, cs_acc_balance NUMBER(11,2) NULL,
cs od allowed VARCHAR2(1) DEFAULT 'N' NOT NULL CHECK (cs ad allowed IN
('Y' , 'N'))) STORAGE (INITIAL 777 NEXT 11 MINEXTENTS 1 MAXEXTENTS
99) ;

COMMENT ON TABLE customers IS 'Created from Entity CUSTOMER by OBS on
24-AUG-94';

36

COMMENT ON COLUMN customers.cs_reference IS 'A unique system-generated id for

this customer';

COMMENT ON COLUMN customers.cs_address_line_l IS 'First address line';
COMMENT ON COLUMN customers.cs_last_name IS 'Last Name of Customer';
COMMENT ON COLUMN customers.cs_first_name IS 'First name of Customer';
COMMENT ON COLUMN customers.cs_telephone_number IS 'Telephone area code
and number';
COMMENT ON COLUMN customers.cs_address_line_4 IS 'Fourth address line';
COMMENT ON COLUMN customers.cs_address_line_2 IS 'Second address line';
COMMENT ON COLUMN customers.cs address line_ 3 IS 'Third address line';
COMMENT ON COLUMN customers.cs _ lc_ code IS 'A 4 character code to uniquely
identify the Company.';

The SQL DDL script files that are generated are defined by types, i.e. the table

creation is performed initially, and then any constraints that are required are applied by a

separate script file, similarly with index files etc. This gives the Designer and DBA a lot

of flexibility in how they build the final database.

Maintenance

Designer/2000 benefits the maintenance stage of an Oracle 7 based system as well in the

construction of that system. The maintenance stage of an application is typically where a

large amount of effort is expended in the overall life cycle of that application, and that is

why it is important to have a clear understanding of the application and all its

dependencies. The use of the Designer/2000 repository can help dramatically in a number

of ways in understanding dependencies:

I. Objects have relationships and these can be clearly documented and understood by
using the repository.

2. Objects need to be documented for future reference and understanding.

37

3. Typically there will be iterations and new versions of the application over a period of
time, and it is important to be able to move the application forward with those
changes.

3.1.4 Design Recovery

Many existing systems have little or no formal documentation but typically manage

valuable data about a business. These are often described as "legacy systems." They

must be maintained but the information to do so effectively is missing, the maintenance

programmers need to know.

1. Where the data is being stored.

2. What format the data is in and how the data is used by the existing system.

3. How the application system fits in with the current business practice.

Eliciting this information is known as Design Recovery.

The Reverse Engineer Database utility and Table to Entity Retrofit utility

automates this reverse engineering process. Repository object definitions can be derived

form the elements of the existing system if the system was developed on an Oracle 7

database. When reverse engineering operations have been performed, the new application

system definition or definitions can be used as the basis for system development.

Stages Involved in Reverse Engineering

A reverse engineering operation can involve the following stages.

Reverse Engineering - Stage One

This stage covers reverse engineering database objects, creating module data usages of
existing PL/SQL modules.

38

Reverse Engineering - Stage Two

This stage covers further steps required for recreating a business model, rationalizing the

top-down business model with the reverse engineered data and completing the cross-

referencing.

If primary, foreign and unique keys are present in the Oracle Data Dictionary,

they will have been automatically identified. Below is a table that details the database

objects that can be reversed engineered.

Table 3.2 Oracle Designer/2000 Object Re-generation

Oracle 7 Object Name Reverse Engineer Y/N
Table Y
View Y
Synonym Y
Index Y
Sequence Y
Cluster Y
Integrity Constraints Y
including Primary Key Y
Foreign Key Y
Check Clause Y
Default Value Y
Null Y
Snapshots Y
Rollback Segments Y
Tablespaces Y
Database N
Database Trigger Y

PL/SQL Package Y
PL/SQL Procedure Y
PL/SQL Function Y
Database Link N

Role N

User N

Grants Y

39

The Repository can now be used to define and implement changes and

enhancements to the existing database. If definitions of new tables or other objects are

created in the Repository they can be implemented in the existing Oracle Data Dictionary

using the Generate DDL utility. If changes to existing repository objects (e.g., adding a

new column to a table, add a new foreign key) are defined in the Repository they can be

implemented in the Oracle Data Dictionary using the Alter Database Command

Generator utility. If the Repository and Oracle Data Dictionary are out of step during

maintenance, the Cross Reference utility can be used to indicate the differences, allowing

the appropriate steps to be identified and enacted.

3.2 Developer/2000

3.2.1 Introduction to Developer/2000 for the Web

Developer/2000 for the Web is a new generation of Oracle development tools that

enable you to deploy new and existing applications on the World Wide Web, either

on an internal company intranet, or on the Internet. Developer/2000 for the Web

takes advantage of the ease and accessibility of the Web, and elevates it from a

static information-publishing mechanism to an environment capable of supporting

complex, dynamic applications. Oracle Developer/2000 empowers organizations with the

ability to rapidly and productively build sophisticated systems which can scale from

workgroups to the enterprise. With support for RAD, user interface portability, and open

interoperability, as well as unique capabilities including unified client/server

development, objects by example, full object component (e.g. OLE2 and VBX3) support,

40

and drag-and-drop application partitioning, Developer/2000 is the leading choice for

second generation client/server development.

Developer/2000 includes forms, reports, graphics, client/server development, and

translation management components. Developers can build systems using any

combination of these features, as well as complementary functionality provided by third-

parties, specifically tested and guaranteed to work well together.

While today's enterprises have many options available for developing

applications, only Oracle Developer/2000 supports second generation client/server

development, with the productivity, reliability, and scalability to satisfy existing

mainframe and desktop users.

3.2.2 The Best of the Web and Client-server

Developer/2000 for the Web provides solutions that enable you to leverage the

benefits of the Web, while maintaining the strengths of client-server computing.

The Web greatly reduces the costs of administering and maintaining applications,

while allowing for a thin, low-cost client. At the same time, it allows you to

leverage your existing client-server applications, which may be mission-critical

applications that support—and often drive—your business practices. These

applications must be scalable to large numbers of users and open to all of your

environments.

41

3.2.3 Three-Tiered Architecture

In most client-server implementations today, running applications is a highly client-

intensive process. Though data is extracted from a remote database server,

applications run on client machines, which often have limited processing power

and memory capacity.

Developer/2000 for the Web supports a three-tiered architecture that delivers the

benefits of both client-server and the Web in a single application. In a Web

implementation, application logic and processing are focused on a middle tier of

application servers instead of on desktop client machines. These include the following as

indicated in the Table 3.3.

Table 3.3 Three Tier Architecture
TIER Remarks

Front-end Any number of client desktop machines
Middle One or more application servers
Back-end One or more database servers 	 1

3.2.4 Forms Web Architecture

To run new or existing Forms applications on the Web, you should install and

operate Developer/2000 for the Web on the middle tier of a distributed three-tiered

architecture.

3.2.4.1 About the Forms Client and Farms Server: The Forms component of

Developer/2000 for the Web consists of two components:

the Forms Client and the Forms Server.

Forms Client

The Forms Client is a Java applet—downloaded at runtime from an application

server to an end user's Web browser—that displays the form's user interface and

manages interaction between end users and the Forms Server. The Forms Client

receives "bundles" of interface commands from the Forms Server and translates

them (in sets) into interface objects for the end user. Some interface events handled

by the Forms Runtime Engine in a client-server implementation (such as typing

characters in a text field, or moving around a dialog) occur only on the Forms

Client in the Web implementation, with no interaction with the Forms Server

Runtime Engine.

The Forms Client is:

1. Generic: You are not required to deploy a separate Java apples for each
application you wish to deploy on the Web.

2. Dynamic: The Forms Client dynamically reacts to the current form at runtime,
requesting and displaying only the information and user interface elements
necessary to represent the current state of the application at any given time.

3. Feature -rich: The Forms Client supports all user interface widgets and tools
available in a client-server implementation. Due to Java object
standards, the look and feel of some Forms widgets may vary slightly
when deployed on the Web.

4. Thin: At startup, only those class files necessary to render the initial state of an
application are downloaded to the end user's machine. Additional class files
are downloaded dynamically (as needed) to support additional user interface
functionality.

42

43

3.2.4.2 Forms Server: The Forms Server consists of two components:

1. Listener: The Forms Server Listener initiates the Forms runtime session and
establishes a connection between the Forms Client and the Forms Server
Runtime Engine.

2. Runtime Engine: The Forms Server Runtime Engine is a modified version of the
Forms 4.5 Runtime Engine, with user interface functionality redirected to the
Forms Client. It handles all form functionality except UI interaction, including
trigger and commit processing, record management, and general database
interaction.

Forms Web Architecture

There is a significant difference between deploying a Forms applications in client-server

mode and deploying the same application on the Web:

I. Client-server: The Forms Runtime Engine (and all application logic) are installed
on end users' desktop machines. Although your application can include
database-server-side triggers and logic, typically all user interface and trigger
processing occurs on client machines.

2. Web: The Forms Server Runtime Engine (and all application logic) are installed
on application servers, not on client machines. All trigger processing occurs on
database and application servers, while user interface processing occurs on the
Forms Client.

Developer/2000 for the Web

44

Figure 3.1 Web Architecture

3.2.5. Call and Response: Forms Client and Forms Server

Once a direct network connection is established between the Forms Client and

Forms Server, the two components communicate through a series of requests and

responses—via compressed messages passed over a network.

Requests from the Forms Client are events (such as "click button" or "display

LOV"). Responses from the Forms Server are a series of changes to the user interface

(such as value changes, and adding and removing components), all of which the Forms

Client converts to display objects.

45

For example, the Fauns Client might receive a response from the Forms Server

similar to "create four green text items on canvas CAN 12." The Forms Client translates

the response into actual interface objects, in this case, the verdant text items.

The Forms Client contacts the Forms Server when users perform:

1. High-level operations (such as accepting or canceling a dialog).

2. Operations (such as checking a checkbox or navigating between fields) that
involve validation processing and cause default and user-defined triggers to fire.

Figure 3.2 Developer/2000 Web Application

To start and run a Forms application on the Web, end users use a Java-enabled Web

browser to access a URL. The following sequence occurs automatically:

1. The URL corresponds either to a static (non-cartridge) HTML page, or to an
application cartridge, residing on the application server.

2. An HTML page, and then the Forms Client applet, are downloaded from the
application server to the user's browser.

3. The Forms Client sends a request to the Forms Server Listener (which resides
on a specific port of the machine from which the Forms Client was
downloaded).

4. The Listener contacts the Forms Server Runtime Engine and connects to a
Forms runtime process (either by starting a new process, or by connecting to an
existing process). If included in the HTML page, Forms command-line
parameters (such as form name, user ID and password, database SID, menu
name, and so on) and any user-defined Forms parameters are passed to the
process by the Listener.

5. The Listener establishes a direct socket connection with the Runtime Engine,
and sends the socket information to the Forms Client. The Forms Client then
establishes a direct socket connection with the Runtime Engine. The Forms
Client and Runtime Engine then communicate directly, freeing the Listener to
accept startup requests from other end users. The Forms Client displays the
application's user interface in an applet window outside the main window of
the end user's Web browser.

6. As in a client-server implementation, the Runtime Engine communicates
directly with the database through SQL*Net (or another driver, for non-Oracle
datasources).

3.2.5 Security and Encryption

Data passed between the database, the Forms Server, and the Forms Client is

automatically encrypted before--and decrypted after 	 transmission by the

following protocols:

1. RSA RC4 40-bit encryption (for transmissions between the Forms Client and
the Forms Server).

46

47

2. SQL*Net SNS/ANO (for transmissions between the For ins Server and the

database server) Encryption is enabled by default, but can be disabled. To disable

encryption between:

a. The Forms Client and Forms Server, set the environment variable
FORMS45 MESSAGE ENCRYPTION to FALSE.

b. The Forms Server and the database, is clearly described in Oracle Advanced
Networking Option Administrator's Guide.

3.3 Oracle 7 Relational Database System

3.3.1 Introduction

There are a number of major database packages currently in the market. These include

the following:

1. Oracle

2. Sybase

3. Informix

4. Microsoft SQL Server

Oracle is the market leader in this field. This product has been in the market for a

number years now and with its broad range of products which always aim at the newest

technology in the market, Oracle Corporation has carver a niche for itself The heart of

the company is the Oracle Relational Database Management System. The other products

built around this database. The Oracle Web Developer Suite is among the newest suites

aimed at web developers with a string database engine at the back. This section deals with

48

the scalability of Oracle and the internals of the Oracle relational Database Management

System .

3.3.2 Attributes of a Scalable Development Environment

As mentioned above, ease of use is important, but it should not come at the expense of

functionality and an ability to create and maintain large, complex applications. As the

size of a development team and project grows, so does the importance of an efficient

development environment. The ability to create a team programming environment, to

easily reuse application objects, and to support the entire application life cycle, are key

components in the quest for productivity gains and reduced maintenance costs. Since one

tool cannot do it all, integration with other best-of-breed products such as GUI testing

tools and transaction processing monitors, also contributes to the creation of a scalable

development environment. Further, tools that enable the modeling of business rules and

processes through defined methodologies and support rapid application development, are

also more likely to produce consistent applications that ensure data integrity and enforce

corporate standards.

3.3.3 Using Shared SQL and Bind Variables

Client/server applications typically contain a number of SQL statements. Every instance

of an application typically sends the same SQL statement to the database. Oracle7 enables

applications to share executed SQL statements by allowing them to be parsed and stored

in memory only once. This leads to lower memory utilization on the server and dramatic

49

improvement in client/server performance. To take advantage of this shared SQL area

feature, the SQL statements used must be identical. Thus the shared SQL area will not be

used.

SELECT * FROM emp WHERE empno = 10

is issued by one application, and:

SELECT * FROM emp WHERE empno = 20

is issued by another.

To make the use of the shared SQL area possible, Oracle provides bind variables that

allow the same statement to be issued regardless of the data being accessed:

SELECT * FROM emp WHERE empno = :empno --> :empno relates to a field in the

client application. Regardless of its usage, the execution of any SELECT statement

involves five basic steps: Parse, Bind, Define, Execute, and Fetch. Each of these five

steps involves an exchange between the client process and the server. In the example, if

the first user supplies '10' for the value of the `:empno' place-holder variable during the

bind phase, and the second user supplies '20', the SELECT statement is identical from

Oracle7's point of view. Hence Oracle7 omits the parse and define steps and saves on

parse and define time for the second and all subsequent users. These steps are similar for

other DML operations like INSERT, UPDATE and DELETE, except that only the

SELECT statement needs to fetch a result set. Bind variables are especially important in

complex SQL statements that are executed many times.

The lack of support for bind variables by a client tools affects the amount of

network traffic, the number of IO's executed and the amount of memory required on the

50

server to support client processes. Research shows that an average application has 50

SQL statements with each SQL statement containing at least 15 columns. Tests were

conducted using a typical SQL statement from a production tracking application. In Test

A, the SQL statement was executed with bind variables enabled in a client tool. In Test B,

the use of bind variables was disabled. Both Test A and Test B were performed with 2

users. There is a definite performance Improvement using Bind Variables.

The effect of using bind variables in Test A is evident in the reduced network load

as the shared SQL area was used when the second user executed the SQL statement.

Although these numbers cannot be extrapolated linearly to 100s or 1000s of users, it is

reasonable to expect that each subsequent user not using bind variables will not only

incur a similar overhead to that described above but also a significant differential in time

elapsed. Note that even though a client tool may allow you to define SQL statements with

bind variables, this doesn't necessarily mean that the statement sent to the server will

include them since the client tool may not be architect to support them. One of the ways

to find out if a client tool uses bind variables is to set parameter SQL_TRACE= true in

Oracle's init.ora file. This will generate a SQL trace file that enables to find out about the

usage of bind variables. Please refer to Appendix C to see where to look for bind

variables in a SQL trace file. Alternatively you can somehow make the query sent by the

client tool fail and use the client debugger to check the SQL statement prepared by the

client to be sent to the server.

5 1

3.3.4 Database Cursors

Oracle7 uses database cursors as a means of accessing and scrolling through data in a

database table. Typically, one cursor per SQL statement is created as a pointer to a row in

a table. It is possible for multiple cursors to be opened and maintained by a single

application at any time. Thus, cursor I may be opened for execution of a query against a

table, cursor 2 may be opened for the update of rows in the table, and so on. Cursors may

be automatically created when a SQL statement is issued or in some cases, may be

defined manually using a client tool's scripting language.

Client tools that do not provide support for multiple open cursors commonly

suffer from severe performance degradation when the number of rows being retrieved

from the database increases even above a few hundred records. The following example

demonstrates why this is so:

Assume a master-detail application (Departments and Employees). Under optimal

operation, cursor 1 is opened to perform a query on the Departments table and cursor 2 is

opened for the query on the Employees table. The benefits of having these cursors remain

open is twofold: users can scroll freely (up or down) through the records of either table,

and developers have control over how many rows should be retrieved for the user at once

(since cursors remain open, additional rows can be retrieved later with minimal additional

cost).

Using the same scenario but with a client tool that does not support multiple

cursors: cursor 1 is opened for the query on Departments, but then that cursor is closed so

that the cursor for the query on Employees can be established. Since the cursor on the

Departments table is lost, the only way to allow users to scroll through Department

52

records at will, is to query all the Department rows at once. If the table being queried has

only a few rows, the potential impact of this problem is small, but for large databases, the

network performance when retrieving all the rows from the table at once is likely to be

unacceptable. In addition, this style of retrieval will require more memory on the machine

to buffer records retrieved.

Some tools attempt to work around this problem by establishing a new database

connection for each query being issued. In this way, a single cursor architecture can be

maintained in the tool since only a single cursor will be maintained in any particular

database connection. However, this approach has other ramifications in terms of the

database connection time and the ability to provide read consistent transactions across all

the connections and cannot be considered a viable solution.

3.3.5 Array Fetch

Oracle7 supports arrays which are a collection of related data items associated with a

single variable name. Arrays can ease programming effort and offer improved

performance. They let you manipulate an entire collection of data items with a single

SQL statement. The size of an array determines the number of rows that are returned to a

calling client application by the server in a single network operation. In most cases it is

the client tool that determines whether arrays are used or not.

53

The following example demonstrates the benefit of arrays in a client/server

environment. Suppose you want to query for 10,000 employees into the EMP table. Your

select statement would look like this:

EXEC SQL BEGIN DECLARE SECTION ;

NUMBER empno ;

VARCHAR ename[30] ;

NUMBER sal ;

NUMBER deptno ;

EXEC SQL

END DECLARE SECTION ;

SELECT empno, ename, sal, deptno FROM emp ;

To select 10,000 rows, the SELECT statement has to be executed 10,000 times. But if

empno, ename, sal, deptno are declared as an array of size 100, the SELECT statement

would look like this:

EXEC SQL BEGIN DECLARE SECTION ;

NUMBER empno[100][30] ;

VARCHAR ename[l 00][30] ;

NUMBER sal[100][30] ;

NUMBER deptno[100][30] ;

EXEC SQL END DECLARE SECTION ;

EXEC SQL SELECT empno, ename, sal, deptno FROM emp;

54

In the above example, Oracle selects all 10,000 rows into the EMI' table in 100 trips.

Tests were conducted to evaluate the performance of the above statements with and

without using an array. In Test A, a SQL statement was used to select 10,000 rows with

array size 100. In Test B no array size was specified. The use of arrays in Test A has a

great impact on performance. When array processing is used, Oracle7 is instructed to

transmit data in bigger, efficient batches to the client. The performance gains from the use

of arrays enables client tools to support applications that scale to support larger number of

rows.

A simple way to find out if a client tool supports array fetching is to make sure

that it has the ability to explicitly specify an array size, either through parameters or

programmatically. Note that different queries may be more efficient with different array

sizes. Regardless of the ability to support arrays, it is critical that a tool can control at

least screen-at-a-time fetches instead of bringing back all the rows from the server at

once, causing unacceptable delays while all the rows are being retrieved. Tools that don't

support array fetch often force developers to restructure applications and rewrite SQL just

to get acceptable performance.

3.3.6 PL/SQL

Independent SQL statements normally result in at least 2 calls to the Oracle database.

PL/SQL (Oracle's procedural extension to the SQL language) allows developers to

package multiple SQL statements so that they can be sent to the server as a single

network packet. Oracle7 processes SQL statements sequentially and returns the resultant

rows once the complete PL/SQL block is finished, greatly reducing network traffic. The

55

second advantage of PL/SQL is, when a client tool supports a local PL/SQL engine, the

client tool can process PL/SQL blocks by passing them to it's local PL/SQL engine. The

engine executes all procedural statements on the client, and sends only SQL statements to

the server. This gives a client the ability to process application-related logic such as

numerical or data calculations and non-database validations on the client platform,

reducing requests to the server. With a local client PL/SQL engine, the client tool does

not have to consume time and resources to understand and then interpret Oracle7's

PL/SQL.

For example, if a client tool has no PL/SQL engine then to get employee name in

uppercase into a ename column, the following statement has to be issued:

SELECT UPPER(ename) INTO :ename FROM EMP;

This will generate at least two network round trips. However if the client tool has a local

PL/SQL engine then to get an employee name in uppercase into a ename column, the

following statement can be issued:

BEGIN

:ename := UPPER(:ename) ;

END;

In the above example, when the client tool has a local PL/SQL engine, no network traffic

is generated as no request is sent to the server for validation.

PL/SQL in a client/server environment

SQL Statement

56

SQL Statement SQL Statement

SQL Statement SQL Statement

SQL Statement SQL Statement

SQL Statement Network

PL/SQL Procedure Client Server

In the following example of a PL/SQL block , we want to find the first employee who has

a salary over $4000 and employee number higher than employee 7902 in the chain of

command. These series of commands, embedded into a single PL/SQL procedure are sent

over a network as one network packet:

DECLARE

salary emp.sal%TYPE;

mgr_num emp.mgr%TYPE;

last_ name emp.ename%TYPE;

starting_empno CONSTANT NUMBER(4) := 7902;

BEGIN

SELECT sal,mgr INTO salary, mrg_num FROM emp WHERE empno = starting_empno;

/* Find employees whose salary is greater than $4000 */ WHILE salary > 4000 LOOP

SELECT sal, mgr, ename INTO salary, mgr_num, last_name FROM emp WHERE

empno = mgr_num;

END LOOP;

INSERT INTO emp_tbl VALUES (NULL, salary, last_name);

COMMIT;

57

END;

In the above example when these series of commands are embedded into a single PL/SQL

procedure, then the procedure is sent over the network and executed in one network

round-trip. However if these SQL commands were to be executed individually it would

generate at least six network round-trips (provided only 1 employee has a salary greater

than 4000) and many more as the number of employees whose salary is greater than 4000

increases.

3.3.7 Stored Packages and Procedures

If a client tool is tightly integrated with Oracle7 then it can take better advantage of stored

procedures and database triggers to perform multiple lookup/validation operations on the

server. The benefits of doing this are that memory usage on the server can be reduced as

every user executing a given stored procedure shares the same in-memory copy of the

procedure, and network traffic will decline as single remote calls are sent to the server.

Multiple users issuing the same stored procedure automatically uses the shared PL/SQL

area, eliminating runtime parsing and enabling the creation of more scalable applications.

Tests were conducted using a procedure extracted from a call tracking system. The

procedure simply validates an appropriate product in the database. In test A an

anonymous block of PL/SQL was executed from a client tool. In test B the same PL/SQL

block was executed as a stored procedure in the server. The results of the tests showed

that although with this particular procedure the difference in number of network packages

is not substantial (mainly due to the simple stored procedure used in the test), the

performance improvement in terms of the number of bytes sent over the network is

58

overwhelming. The procedure in test A created 6 times more network traffic than the

stored procedure in test B. In production applications, procedures will likely be much

larger and more complex, and defining them as stored procedure will improve modularity

and performance. Thus, stored procedures and functions offer better application

performance and reduced server resource usage and network traffic, but only if a client

tool can exploit them without limitations.

Support for Application Partitioning

With the advent of database stored procedures, and given the performance and resource

benefits of creating logic in the server, it no longer makes sense for the majority of

application logic to be defined in client applications. It is therefore important to have the

ability to easily migrate this application logic to the server to take full advantage of a

client/server environment.

This requirement is not restricted just to existing applications. One of the key

decisions a client/server developer has to make, is where to locate the logic for an

application: in the client or in the server. Given the newness of client/server, many wrong

decision are made due to lack of experience. So once again, the ease with which logic can

be moved from client to server is an important factor in correcting a poor design decision.

The ability to move code between client and server is known as application partitioning.

In order to perform application partitioning, it is mandatory that the same language be

able to execute both on the client and the server. In the case of an Oracle application, this

may be a client tool which supports the PL/SQL language and has the ability to move

59

code between client and server. The potential gains from doing this are shown in the

example above.

One of the ways to determine that the client tool supports application partitioning

is to make sure that from within the development environment of the client tool you can

move the application logic to either a client or a server side, compile the logic and run the

application. If the application at this point runs as before unaware as to where the logic is

stored then the client tool supports application partitioning.

3.3.8 Transaction Processing

One of the goals of GUI client/server tools is to make applications easy to use. To meet

this objective, it is important to give immediate feedback to users as soon as they enter

invalid data. Some client tools defer all referential integrity and cross-table validation

checks to the server when data is committed. The effect of this is that users making

multiple updates at once may have to go back and reenter values that violated validation

rules long after they actually entered them. As a result, applications become less user-

friendly and are less productive. It is thus important that database integrity constraints be

enforced in client applications as well. This is especially true in transaction intensive

applications with larger volumes of data and more complex processing logic. A scalable

client tool should be able to read the constraints from the database and automatically

apply them to the client application. Most tools should allow the definition of the rules

manually, however this is duplicate effort and leads to consistency errors and higher

maintenance costs.

60

Oracle 7 supports both the pessimistic and optimistic locking models. This allows

client application behavior to be customized to best suit the environment. As Oracle 7

supports reduces resource contention through row-level locking, a pessimistic model is

optimal for OLTP (on line transaction processing) applications. Client applications can

ensure the use of row-level locking by issuing a "SELECT FOR UPDATE..." statement

when an update to a field is attempted.

For example, if user A is updating a row in table EMP and user B tries to update

the same row, a scalable client tool should be able to inform user B immediately that the

row is locked by another user. User B should not have to wait for the transaction to be

sent to the server before finding out it cannot be updated. A tool can enforce this behavior

by taking advantage of SELECT FOR UPDATE, thus ensuring that contention for

resources is reduced and that updates by users are consistent. In some client tools

SELECT FOR UPDATE is issued automatically (the preferred case), in others it has to be

programmed an synchronized with the UPDATE statement for the row. A SQL trace file

will show whether SELECT FOR UPDATE is being used or not.

Oracle7 supports the concept of SAVEPOINTs. A SAVEPOINT is a placeholder within a

transaction to which a SQL statement may be rolled back. If a client tool automatically

issues SAVEPOINTS when a transaction is being processed, it is possible to rollback the

transaction to the point of failure, and then successfully commit the entire transaction

when the data is corrected by the user. If no SAVEPOINTs are issued, then the user has

to reenter all the updates after a ROLLBACK occurs. This leads to end user productivity

61

loss and also increases the potential for inconsistent data to be committed to the database

in multi-step transactions.

A SQL trace file will show whether SAVEPOINTs are being used or not.

Oracle7 supports the concept of ROWID. A ROWID is the logical address of a row, and

it is unique within the database. ROWID is the fastest means of accessing a row from a

database. Client tool which does not use ROWID in a DML statement as a means of

accessing an Oracle database will hamper the performance and affect scalability.

A SQL trace file will show whether a ROWID is being used or not.

3.3.9 Conclusion

Oracle 7 is an excellent repository for all database applications and considering its

scaleable nature, it all the more imperative that Oracle 7 be used for robust and scaleable

projects.

3.4 Oracle Web Server 2.1

3.4.1 Introduction

This section offers a conceptual overview of the Oracle WebServer. It is intended to give

context for the more specific task-oriented information that follows. The subsequent

sections are specifically targeted at those who manage Oracle WebServer sites

(WebServer Administrators) and those who write application programs for them

(application developers). This section covers:

. Overview.

2. The Web Listener. This is the portion of the WebServer that interfaces to the local
network or the World Wide Web.

3. The Secure Sockets Layer. Introduction to SSL public key encryption.

4. The Web Server Manager. The set of Web pages you can use to perform most
WebServer administration.

5. The CGI Interface. The standard Web mechanism for executing applications on a
Web server.

6. The Web Request Broker (WRB). The core of the WebServer. An asynchronous
request broker with an open API that Oracle WebServer uses to execute applications
on the server.

7. The PL/SQL Agent. The program the Oracle WebServer uses to execute procedures
written in PL/SQL, Oracle's application development language, on the Oracle?
Server.

8. Java. A new language for developing distributed network applications. Oracle
WebServer enables you to execute Java on the WebServer itself.

9. LiveHTML. A way to embed dynamic content in Web pages. This content can be
either other Web pages or the output of scripts run by the Operating System.

LiveHTML is an Oracle extension of the NCSA standard Server Side Includes
functionality.

3.4.2 Overview

The Oracle WebServer is a Hyper Text Transfer Protocol (HTTP) Internet Server with

unprecedented database integration and a powerful development environment. When the

WebServer receives a Uniform Resource Locator (URL) from a browser located either on

63

the World Wide Web or on a local network using the Web's protocol (HTTP), it draws on

information from the database and the operating system's (OS) file system as necessary

or for CGI scripts that do not access the database, and the database is used for Web pages

that are generated at runtime using "live" data. Although you can run the Oracle

WebServer without Oracle7, one of the great advantages of the product is its tight

integration with the Oracle7 Server, the leading database product in the world.

The Web Listener is the component that receives a URL from a Web browser and

sends back the appropriate output. When the Web Listener receives a URL, it determines

whether the request requires the use of a Service to be accessed through the Web Request

Broker (WRB), a program to be accessed through the CGI interface, or whether access to

the file system of the machine on which the Listener resides is sufficient. If WRB access

is required, the Listener passes the request to WRB Dispatcher for processing; then it

returns to the task of listening for more incoming HTTP requests.

The WRB Dispatcher handles requests with the aid of a pool of processes called

WRB Executable Engines (WRBXs). Each WRBX interfaces to a back-end application

using the WRB API. These applications are called WRB cartridges. The WRB API is

designed so third parties can add their own cartridges. The combination of a cartridge and

the WRB API is known as a WRB Service. Currently, Oracle WebServer support three

kinds of WRB Services:

I. PL/SQL cartridges. These execute stored PL/SQL procedures to generate HTML
dynamically using Oracle data.

2. Java™ cartridges. These execute Java code on the Server.

3. LiveHTML. These embed Web pages within one another, and store in Web pages the
output of scripts executed by the Operating System.

64

3.4.3. The Web Listener

The Oracle Web Listener is a HTTP engine that responds to requests for hypermedia

documents from web browsers (clients). This section summarizes the Web Listener's

capabilities.

Network Communication

Every Oracle Web Listener process accepts connections from web browsers (clients) on

one or more IP address/port combinations using HTTP to encode requests for hypertext

documents, and the Transmission Control Protocol/ Internet Protocol (TCP/IP) as the

underlying connection protocol. Several Web Listener processes may run on single host

computer at the same time (see the Oracle Web Listener Administration Form for more

information).

Ports

A port is a number that TCP uses to identify a communication channel associated with a

specific program. For example, the login program usually accepts login requests on port

49, and the Domain Name Service (DNS) usually accepts name lookup requests on port

53. HTTP engines, such as the Oracle Web Listener, usually accept ordinary connections

on port 80 and secure connections on port 443.

Programs must execute with root permissions to access port numbers I through 1023,

whereas any program can access port numbers 1024 through 65535.

65

IP Addresses

An Internet Protocol (IP) address is a unique number that identifies exactly one computer

on the Internet, although each computer can be represented on the Internet by several

addresses. A computer can use different addresses for different Internet functions. For

example, a single computer might have one IP address on which it acts as an email

routing server, and another address on which it acts as a DNS server.

DNS Host and Domain Names

A fully qualified host name is a unique character string that identifies exactly one

computer on the Internet, although each computer can be represented on the Internet by

several host names. The Domain Name Service (DNS) maintains a distributed database

that maps host names to IP addresses. DNS servers provide Internet computers with

lookup services for this database. hal.us.oracle.com

is an example of a fully qualified host name.

A domain is a named DNS host name space, such as us.oracle.com . All host

names within a domain must be unique. For example, there must be only one host named

hal in the us.oracle.com domain.

3.4.4. Secure Connections

The Oracle Web Listener can accept secure connections using the Secure Sockets Layer

(SSL), an emerging standard for secure data transmission. (The combination of IP address

66

and port number is called a socket.) See The Secure Sockets Layer for more information

on the Oracle WebServer's implementation of SSL.

Clients use a secure version of HTTP called HTTPS to establish secure

connections with SSL. To establish a secure connection with a Web Listener process, a

request URL must use "https" instead of "http" must specify a port on which the Web

Listener has enabled SSL, for example:

https://www.blob.com:443/

Proxies

You can configure an Oracle Web Listener process to act as a proxy server, an HTTP

engine running on a firewall machine that allows clients inside the firewall to access web

sites outside the firewall. The Oracle Web Listener implements the proxy behavior

defined by Luotonen and Altis in World-Wide Web Proxies

(http://www.w3.org:80/hypertext/WWW/Proxies/) under the auspices of the World-Wide

Web Consortium (W3C).

File Handling

The Oracle Web Listener uses a virtual file system to keep track of the files it makes

available to clients. The virtual file system maps the pathnames used in request URLs

(Uniform Resource Locators) to the file system maintained by the host machine's File.

67

Memory Mapping

The Web Listener uses the host operating system's memory mapping capability when

opening a file requested by a client so that the Web Listener's virtual address space refers

directly to the file's contents. This speeds access, and makes it possible for several clients

to share the same copy of the file, which conserves the Web Listener's memory

resources.

File Caching

Ordinarily, when the Web Listener opens a requested file, the file remains open and

mapped into memory until all clients using the tile are finished with it, at which point the

Web Listener closes the file and frees the memory mapping associated with it. The Web

Listener allows you to specify files to be cached. Cached files are opened when a client

requests them, and remain open for the life of the Web Listener process. This optimizes

access times for files, such as your home page, that are requested often.

File Protection

The Oracle Web Listener allows you to make secure specific virtual files or directories by

assigning authentication and/or restriction schemes to protect them.

Authentication Schemes

When a file or directory is protected by an authentication scheme, a client requesting

access to it must provide a user name and password. Authentication schemes allow you to

define named groups of user name/password combinations, and named realms that are

68

groups of these groups. You can then assign user, group, and realm names to virtual files

and directories, requiring, any client requesting access to input one of the specified user

name/password combinations.

The Web Listener supports two authentication schemes: basic authentication and

digest authentication. Both schemes are identical, except that digest authentication

transmits passwords from client to server in an encrypted form called a digest, whereas

basic authentication sends unencrypted passwords, making it considerably less secure.

Some older web browsers don't support digest authentication, but for files or directories

that require authentication, you should use digest authentication whenever possible.

Restriction Schemes

When a file or directory is protected by a restriction scheme, only a client accessing the

Web Listener from a trusted group of host machines may access it. The two restriction

schemes that the Web Listener supports are IP-based restriction and Domain-based

restriction. IP-based restriction allows you to define groups of trusted hosts identified by

IP address, whereas Domain-based restriction allows you to define groups of trusted hosts

identified by DNS host or domain name.

File Format Negotiation

The Oracle Web Listener can maintain several versions of a document in different

formats, and provide it to clients in the formats they prefer.

69

Language Formats

For example, if a client requests a document in French, the Web Listener checks to see if

it has a French version of the document, and if so, returns that version to the client.

Otherwise, the Web Listener returns the version of the document in its own default

language (usually English).

MIME Formats

Similarly, a client can request a document of a particular Multipurpose Internet Mail

Extensions (MIME) type. If the Web Listener can find a version of the requested file in

the requested MIME format, it returns that version to the client. Otherwise, it returns the

version of the file that has the smallest size.

Encodings

The Web Listener can also maintain versions of a document that have been encoded by

programs such as a compression utilities. For example, if a client can uncompress a

document that has been compressed by the gzip program, the Web Listener can return to

the client the compressed version of document instead of the uncompressed document,

saving transfer time.

Filename Extensions

The Web Listener uses filename extensions to identify a file's format, which can

represent language, MIME type, or encoding. For ease of maintenance, it's best to

advertise a file to clients only by its base name, allowing clients and server to negotiate

formats transparently.

Dynamic Document Generation

Using the Oracle Web Listener, your web site can respond to client requests by

generating HTML documents dynamically. This allows you to customize your

WebServer's responses.

Like most HTTP engines, the Oracle Web Listener allows clients to use the

Common Gateway Interface (CGI) to run programs on the server machine to perform

special processing and return data to the client.

The Web Request Broker

Unlike other HTTP engines, the Oracle Web Listener provides an interface called the

Oracle Web Request Broker (WRB), which allows clients to run programs on the server

machine and return data much more efficiently than CGI allows. To do this, the Web

Listener passes requests intended for these programs to the WRB Dispatcher, which

maintains a pool of processes to which it can assign the requests. See The Web Request

Broker (WRB) for more information.

The Secure Sockets Layer

The Secure Sockets Layer (SSL) is an emerging standard for secure data transmission

over the Internet. One problem with communicating sensitive information over the

Internet is that almost every connection between two computers over a network involves

70

7 1

many intermediate steps—a chain of computers that successively receive and forward the

information until it reaches its destination. This process, called routing, is fundamental to

all Internet communication, and any computer in the routing chain has complete access to

all the data it receives.

This makes it easy for the unscrupulous to intercept your private conversations,

steal your credit card numbers, or illegally obtain confidential or proprietary information.

The Oracle WebServer's implementation of SSL addresses this problem by scrambling

data sent from the server to clients (web browser programs) in such a way that the clients

can unscramble the information when they receive it. This way, any intermediate

computers involved in routing the information see only gibberish that they can't decipher.

This kind of security has three aspects:

I. Encryption—a mechanism for scrambling and unscrambling data.

2. Authentication—a mechanism by which the one party proves its identity to another
party.

3. Data integrity—a mechanism for verifying that all of the data transmitted, and only
the data transmitted, is received correctly.

Encryption

A traditional encryption system, called a secret-key system, uses a single large number

called a key both to scramble (encrypt) and unscramble (decrypt) messages. Secret-key

encryption systems are very fast, but they rely on one party communicating the secret key

to another party, often by way of a third party such as a courier, before the two parties can

exchange encrypted messages. This makes keys vulnerable to theft or tampering while in

transit.

Public-Key Encryption

To avoid this problem, SSL uses a form of encryption called public-key encryption to

encrypt and decrypt transmitted data. Unlike secret-key encryption systems, a public-key

system uses pairs of keys (key pairs). One key, called the public key, is used to encrypt

messages, while the other, called the private key, is used to decrypt messages. The two

keys are large numbers that are related mathematically in such a way that it takes a very

long time to calculate the private key from the public key.

If you want to receive encrypted messages using public-key encryption, you must

first run a program that generates a key pair. You must then publish the public key in a

public database or directory, and store the private key in a secure location on your

computer. This is critical. The effectiveness of public-key encryption depends entirely on

the secrecy of the private key.

Anyone who wants to send you an encrypted message must look up your public

key in a directory, use it encrypt the message, and send you the encrypted message. Only

your private key can decrypt the message, so if you have kept your private key secret, no

one else can read this encrypted message.

Because public key encryption is much slower than secret-key encryption, SSL

uses it only when the client first connects to the WebServer to exchange a secret key

called a session key, which both client and server use to encrypt and decrypt transmitted

data.

73

Authentication

Another application of encryption is authentication. Authentication using public-key

encryption involves using a digital signature, an electronic proof of identity analogous to

a handwritten signature.

If you want to "sign" an electronic document in a verifiable and legally binding

way, you must first possess a key pair. You must then run a program that generates a

digital signature using the private key and the document itself. You can then attach the

digital signature to the document and send it. Anyone who receives this document,

together with its digital signature, can then use the your public key to verify your identity,

and to verify that the document has not been tampered with.

Certificates and Certifying Authorities

When clients connect to your web site for a transactions that require them to transmit

sensitive information, they must be assured that they haven't connected to an impostor

pretending to be you. Clients therefore require your WebServer to authenticate itself

before such transactions can proceed.

To authenticate itself, your WebServer must present the client with the proper

credentials, called a certificate. When you set up a secure WebServer, you must obtain a

certificate from a trusted third-party company called a certifying authority (CA).

When you contact a certifying authority to request a certificate, you must provide them

with certain legal information about your organization, which they can use to certify that.

your organization is legitimate and should be certified.

74

3.4.5. The Web Server Manager

To help you manage your Web site, the Oracle WebServer provides a set of Web pages

that you can use to perform most common administration tasks. These pages are simply

an easy way to edit the configuration files that the WebServer uses, so you can always

use another tool to edit those files directly, although Oracle discourages this.

The WebServer Manager can be used from any Web browser. It has the following

sections:

1. The Listener Pages

2. The WRB Pages

3. The PL/SQL Agent Pages

4. The Oracle? Server Pages

The Listener Pages

The largest group of pages deal with administering the Web Listener. For the most part,

however, these pages are just forms where you fill in the values for various configuration

parameters. The exception is the security pages, where you specify which sorts of security

schemes will be used, including the following:

I. If you select Restriction, the 1P addresses or domain names that are granted various
levels of access.

2. If you select Authentication, the user names and passwords that are granted various
levels of access.

75

The WRB Pages

These pages let you specify the actual and virtual directories for WRB cartridges, as well

as the number of WRBX's s to assign to each.

The PL/SOL Agent Pages

Administering the PL/SQL Agent means administering the Database Connection

Descriptors (DCDs) that it uses to establish its identity when communicating with the

database.

The Oracle7 Server Pages

The Oracle7 Server is an extremely sophisticated product, and it is properly administered

using Oracle Server Manager or directly through the SQL language. The pages provided

here enable you to do a few basic things, such as start up and shut down database

instances, and browse database contents.

3.4.6. The CGI Interface

The Common Gateway Interface (CGI) is the standard technique used by an HTTP server

to execute a program that generates HTML output. Using CGI, you can run PL/SQL, and

thus interface to the Oracle7 Server, from Internet servers that do not support the WRB.

This technique provides dynamic content rather than static content from files on disk.

Oracle WebServer is fully compliant with CG1 version 1.1.

When the Web Listener recognizes an incoming URL as a request to execute a

CGI application, it spawns a separate process to perform the operation (The Web Request

76

Broker (WRB) circumvents this need to spawn a new process for each request, thereby

improving performance). The Web Listener passes the URL to this process and also

maintains communication with it through standard input and output. Therefore, the CGI

process can get the input it needs from the URL itself and/or the standard input. It sends

its output back to the Listener through the standard output, and the Listener transmits it in

turn to the client's Web browser.

The fact that CGI applications spawn a new process each time they are used is costly in

terms of performance. For this among other reasons, Oracle recommends that you use the

WRB instead.

3.4.7. The Web Request Broker (WRB)

The WRB (Web Request Broker) is an asynchronous request handler with an API

(Application Program Interface) that enables it to interface dynamically and seamlessly to

various back-end technologies called "WRB Services". It consists of a WRB Dispatcher

that allocates Service requests among several running processes known as the WRBX's.

The result is that the Listener is free to receive and validate URLs coming in, while each

request is handed off to a process that executes it in the background. The WRB API is

designed so that third parties can write their own cartridges to extend the WebServer.

Whenever it receives a URL that calls for the WRB, the Web Listener passes

execution of the request to the WRB Dispatcher or simply Dispatcher. The Dispatcher

maintains communication with a pool of processes called WRB Executable Engines

77

(WRBX's). Each WRBX interfaces, through the WRB API, to a WRB cartridge, which

can be of the following types:

1. The PL/SQL Agent. This cartridge executes PL/SQL commands stored in the
database. It is better optimized for database access than the Java cartridge, but doesn't
have all of Java's functionality.

2. The Java™ Interpreter. This cartridge lets you execute Java on the server to generate
dynamic Web pages. You can also execute PL/SQL from within Java using this
cartridge.

3. The LiveHTML Interpreter. This cartridge is Oracle's implementation and extension
of the industry-standard Server Side Includes functionality. LiveHTML enables you
to include in your Web pages the output of any program that your Operating System
can execute.

The combination of a cartridge and its WRB API constitute a WRB Service.

WRBX's are instances of WRB Services, so that there are three WRB Services

corresponding to the three WRB cartridges, while the WRBX's are created and destroyed

as needed to handle the workload.

The Dispatcher creates and maintains the WRBX's. The data passed to a WRBX

consists of:

1. The URL triggering the request.

2. The desired language of the result.

3. The desired character set of the result (how the language is encoded, for example, ISO
or Unicode)

4. CGI environment variables, which allow WRB cartridges to be run by applications
written for CGI.

5. If the request involves the use of the PL/SQL Agent, which of the Database
Connection Descriptors (DCDs) to use.

The Dispatcher continually adjusts the load by controlling how many WRBX's

are running at a given time, subject to certain parameters. These parameters are set by the

78

WebServer Administrator, who decides the maximum and minimum number of WRBX's

running. The Dispatcher creates new WRBX's as needed and connects them to the

appropriate WRB Services. The Dispatcher keeps track of which WRBX's are executing

requests and which are free, and periodically checks the WRBX's to see how long they

have been idle. If a WRBX's idle time is beyond the maximum set by the WebServer

Administrator, that WRBX is killed. The WRBX's assigned to a given WRB Service

always have requests assigned in the same order, so that traffic will be concentrated in a

small number of them, and most of them will not be idle. The WRBX's are single-

threaded processes that communicate with the WRB Dispatcher using the datafiow

mechanism appropriate to the Operating System (such as a pipe in Unix).

3.4.8 PL/SQL Agent

WRBX's interfaced to the PL/SQL Agent connect to the database when they start up, so

that the execution of requests can proceed more quickly. The WRBX's connect to the

database schemas specified in their configuration files.

Specifying the Use of PL/SQL Agents

If the URL for a given request contains the string "owa", properly placed, the Listener

fulfils the request using the PL/SQL Agent. Whether this is done through the WRB or

through CGI depends on how the WebServer Administrator has configured the directory

mappings. The PL/SQL Agent executes application code written in PL/SQL and returns

the output in HTML form for the Web Listener to output as a Web page.

79

When a URL is received for the PL/SQL Agent, it contains a DCD (Database

Connection Descriptor). The DCD determines both the database access privileges the

PL/SQL Agent has when executing this request and the schema (portion of the database)

that it accesses.

PL/SQL procedures are stored in the database. The PL/SQL Agent invokes these

by issuing commands to the database, which then performs the actual execution and sends

the output and status messages back to the PL/SQL Agent.

Oracle WebServer also provides you with Java classes that can invoke PL/SQL.

The PL/SQL Developer's Toolkit

To make it easier for you to develop Web applications using Oracle data, Oracle

WebServer provides you a group of PL/SQL packages that you can use to easily generate

Web pages from data stored in an Oracle database. These packages are called the PL/SQL

Developer's Toolkit. The intent is for you to create PL/SQL procedures that access and

process the Oracle data you wish to place on the Web. From within these procedures, you

call the PL/SQL Developer's Toolkit procedures you need to create the HTML you want.

You store the procedures you write in the database, just as other PL/SQL packages,

including the tookit, are stored. You also design your Web pages, including the

dynamically-generated ones, to produce URLs that call the PL/SQL procedures you want

in response to specified user actions. Having your code executed within the database

brings many performance, security, and portability benefits.

so

3.4.9 Java

Java is an object-oriented language for creating distributed applications on the Internet or

other networks. Modules of Java code known as "applets" can be downloaded from the

Internet or a local network in real time and locally executed. Java applets themselves can

call and execute other applets, so that a Java application as executed on the user's

machine can be constructed "on the fly" from a repertoire of standard parts that reside on

the net. You might call this the "building block" approach to programming. Among the

important features of Java are the following:

1. It is extremely portable. Java code is compiled to a form known as "bytecode". This
is a sort of generalized computer code that is not executable by any particular
machine, but is recognized by the "Java Virtual Machine". It is as bytecode that Java
applets transverse the net. The Java Virtual Machine (VM) resides on the computer
where the applet is to be executed and converts the bytecode to the native code for that
machine. Currently, Java VMs exist or are planned for all current versions of
Windows, Solaris, MacOS, OS/2, Linux, Amiga, and other platforms.

2. It is fully object-oriented. Languages like C++ that add object-oriented features to
non-object-oriented languages. Java applets do not allow violation of object.-oriented
principles such as "encapsulation".

3. It uses a C-like syntax. This makes the language easier for C programmers to learn.

4. It is multi-threaded, in effect executing several chains of control flow concurrently.
The Java language itself provides tools for managing the threads, rather than relying
exclusively on the OS.

5. It prohibits direct memory manipulation. In Java, there are no pointers and no direct
memory allocation. This eliminates a rich source of C's functionality, and an even
richer source of its bugs.

6. You can embed calls to Java applets in Web pages, and the applet will be executed by
the browser, provided it is .Java-enabled. Most major browsers plan to support Java.

Oracle WebServer supports Java because of its rich features and wide acceptance.

8 I

Client vs. Server Side Java

Oracle WebServer supports the use of Java either on the client, which is to say any Java-

enabled Web browser, or on the server. Code to be executed on the client is for the most

part extracted and manipulated like other data. The best way to handle such code is to

store it in the OS file system and extract it in real time.

You can also execute Java as a WRB cartridge on the WebServer itself. You

might want to do this, for example, to perform graphical manipulation for which PL/ SQL

is ill-suited. For example, you can combine several graphics from the database into a

single image. Each region of the image would be a separate button that the user can click,

and each button clicked would produce a different effect. In HTML, this is called an

"image map". Using Java on the server, you could generate such image maps

dynamically, with the components of the image being based on the results of a database

query.

To execute Java on the server, you use the WRB API to interface directly to the

Java Interpreter residing in the WebServer. This interpreter finds and executes the Java

code and returns the results, through the WRB interface, to the Web Listener.

Using PL/SQL Within Java

Since PL/SQL code is actually part of the database, you can call it from within Java,

which enables you to create applications that combine the strengths of both languages.

Because PL/SQL execution takes places in the database, doing this does not hinder the

portability of the application. A PL/SQL application can execute without modification on

82

any platform where the Oracle? Server runs, just as a Java applet can execute without

modification on any platform that has a Java Virtual Machine (VM).

3.4.10 LiveHTML

LiveHTML is Oracle's implementation and extension of the standard Server Side Include

functionality defined by the NCSA. The LiveHTML Interpreter enables you to include

dynamic content in otherwise static Web pages. At the point in your Web page where you

want to interject dynamic content, you place a tag that points to one of the following:

I. A static Web page.

2. Another LiveHTML Web page.

3. A script that is executed on the server and outputs HTML. This script may but need
not conform to the CGI standard.

4. A system variable, for example: FMODDATE.

You can use a variable to determine at runtime the Web page, variable, or script to

which the tag points. This enables you to have a Web page that selects dynamically from

among any number of static Web pages or scripts, based, for example, on values a user

provides in an HTML form. The result is a dynamic Web page built of static Web page

components, variables, and HTML output from scripts.

A Web page that is to use LiveHTML must be parsed by the WebServer. For this

reason, it differs slightly from ordinary Web pages written in HTML, which the

WebServer simply delivers to the browser. To have the LiveHTML tags executed on the

server, you must use the WebServer Manager to specify that a given Web Listener is to

83

parse files for LiveHTML You have the option of having the Listener parse all files or

just those with certain extensions.

Enabling users to execute scripts on the server can create security and other risks.

For this reason, you can specify that a specific Listener allows only "crippled" includes.

This means that LiveHTML parsed by that Listener will be able only to call static HTML,

environment variables, or other server parsable files, not executable scripts.

You frequently use LiveHTML when you have standard components, such as menus, that

you want on many pages. if desired, you can use LiveHTML to run the PL/SQL Agent

under CGI and thereby incorporate dynamic Oracle data in hardcoded Web pages.

CHAPTER 4

DESIGN FOR INTENET BASED EDUCATION FRAMEWORK

4.1 Introduction

This chapter deals with the life cycle of the development involved in this project. The

initial requirements were gathered with meetings held with Dr Tanik and Prof. Jololian.

Though the scope of the work is immense, I have attempted to complete as much

functionality as possible. The remaining part can be scoped out for future development.

We considered the Oracle Web Developer suite as the set of tools in this project. This

suite can help us in every set of the development as well as the actual presentation of the

forms to the user. The database is an essential component of this system in order to

provide dynamic functionality to the system. The data in the database could be

manipulated without affecting the forms that the user would see. Also since reliability

and robustness of the database is a very important factor the Oracle database engine is an

optimum choice for this project

4.2 Requirement Specification

The requirements of this project are as follows:

1. Student should be able to select department and the course.

2. Student can see the information on any course selected.

3. To enter a particular course, Student should login.

4. Student be able to login from the web.

5. Student should be validated.

84

85

6. Student should then be able to see content and the submissions.

7. In content student should be able to see Notes, Articles, Audio, Video.

8. In submissions, student should be able to see Exams, Exercises, Projects.

9. Professor should be able to see what the student sees.

4.3 Hardware and Software Requirement

The hardware and software requirements for the system on the server is as follows:

Hardware:

Pentium I66 MHz PC with

64MB RAM, 2 GB of available hard disk

TCP/IP connectivity and access to the internet

Software

Windows NT Operation System

Oracle 7.3.3 Database

Oracle Web Server 2.I

Oracle Developer 2000 Version 1.5W

Oracle Designer 2000

The hardware for the client or student PC could be a

486 PC or a Pentium PC with about I6MB of Memory

Internet Connectivity should be present which includes modem, telephone connection and

connectivity to the world wide web possibly through an internet solution provider(ISP)

86

Software Required would be an Internet browser like Netscape Navigator or Microsoft

Internet Explorer.

4.4 Conceptual Model of the Framework

Figure 4.I indicates the student model of the system. The student will connect to the

Internet using his PC and Modem. Then he can put in the address of the education system

web server. Once connected the system will permit the user to see information on the

selected course. If the user needs to proceed further, He must be registered in the course.

The system will now prompt the user to enter the userid and password. If the user is a

valid student for the selected course, the system will allow the user to proceed further or

he will be returned to the main course selection form.

On the other hand, if the user is a valid student then the student will now get the
options:

(1) View content

(2) View submission

When the student selects View Content, the student will be made to select the

educational unit. Once this is done, the student will get all the content associated

with that educational unit for that particular course. The student can select

whichever content he wants and view it. Upon completion of the viewing the

student is can navigate back to the previous screen to select either mode content

associated with this educational unit or he can select another educational unit for

viewing and view the contents associated with that educational unit.

Student's Model for the Framework for
Internet Based Education

87

Figure 4.1 Student's Model

When the student selects View Submission, the student will get options to select

exams, exercises or projects. Once he/she selects one of these, the system will

display a list of the available submissions in this category. The student can select

one of these and he will see the questions pertaining to that particular submission.

The email address of the concerned professor will be provided as an option. The

student can then email his submission to the specified address. The student will

receive and email from the professor after the professor has viewed his

submission.

88

Professor's Model for the Framework for
Internet Based Education

89

Figure 4.2 Professor's Model

90

Figure 4.2 Indicates the professor's model of the system. just as in the student's

case the professor follows the path as indicated herein. The professor will connect

to the Internet using his PC and Modem. Then he can put in the address of the

education system web server. Once connected the system will permit the professor

to see information on the selected course. If the professor needs to proceed

further, he must login into the course. The system will now prompt the professor

to enter the userid and password. If the professor is a has a valid account for the

selected course, the system will allow him/her to proceed further or he/she will be

returned to the main course selection form.

On the other hand, if the professor has a valid account then the student will now

get the options:

(1) View content

(2) View submission

(3) Maintain Content

(4) Maintain Submission

(5) Maintain Grade

When the professor selects View Content, he/she will be made to select the

educational unit. Once this is done, he/she will get all the content associated with

that educational unit for that particular course. The professor can select whichever

content he/she wants and view it. Upon completion of the viewing the professor

can navigate back to the previous screen to select either mode content associated

91

with this educational unit or he/she can select another educational unit for viewing

and view the contents associated with that educational unit.

When the professor selects View Submission, he/she will get options to select

exams, exercises or projects. Once he/she selects one of these, the system will

display a list of the available submissions in this category. The professor can

select one of these and he will see the questions pertaining to that particular

submission.

The Maintain Content option will help the professor to maintain content associated with

this course.

The Maintain Submission option will help the professor to maintain submissions

associated with this course. This will be exams, exercises and projects and their

associated questions

The Maintain Grade option will help the professor to maintain marks associated

with the submissions in this course.

4.5 Database Design

In performing the database design care has been taken to follow the Third Normal form

for database modeling. The three normal forms for database design are follows:

1. Ensure that each field represents the smallest indivisible element.

2. Keep all fields related to the primary key together in the table

3. Take away all fields that do not depend only on the primary key.

The Oracle Designer 2000, a very powerful tool, was used for the database

analysis and design. The entity relationship(ER) model was first designed. The

following were considered as entities to form the tables.

I. DEPARTMENTS

2. EMPLOYEES

3. STUDENTS

4. COURSES

5. COURSES EMPLOYEES

6. EDU UNITS

7. NOTES

8. ARTICLES

9. AUDIOS

10. VIDEOS

11. EXAMS

12. EXERCISES

13. PROJECTS

14. EXAM QUESTION

15. EXERCISE QUESTION

16. PROJECT QUESTION

17. MAILS

92

93

Table 4.1 Department

Field Name Data Type Size Key Not Null Referencing
ID Varchar2 10 PRIMARY Not Null

NAME Varchar2 25 Not Null

Reasoning: The department has and ID and a NAME. For example CIS is the department
ID and Computer and Information Sciences is the Name.

Table 4.2 Employee

Field Name Data Type Size Key Not Null Referencingt,
Id Varchar2 9 PRIMARY Not Null

Name Varchar2 25 Not Null
Address Varchar2 40
Email_
address

Varchar2 20

Designation Varchar2 25
Password Varchar2 10
Depa_id Varchar2 10 Department
Userid 10

Reasoning: Each employee has an ID. This is the primary key. Associated with the Id we

have the name, address, email address, designation, password and userid. All these are

particulars of the employee. The employee belongs to a department. Hence the

Department ID is included as a foreign key.

94

Table 4.3 Student

Field Name Data Type Size Key Not Null Referencin g
Id Varchar2 9 PRIMARY Not Null

Name Varchar2 25 Not Null

Address Varchar2 40

Email_
address

Varchar2 20

Class Varchar2 3

Grade Varchar2 2

Gpa Number 4,2

Password Varchar2 10
Depa_id Varchar2 10 Department

Userid 10

Reasoning: Each student has an ID. This is the primary key. Associated with the Id we

have the name, address, email address, password and userid. All these are particulars of

the student. The student belongs to a department. Hence the Department ID is included as

a foreign key. Also included are the class, grade and GPA of the student.

Table 4.4 Courses

Field Name Data Type Size Key Not Null Referencing

Id Varchar2 10 PRIMARY Not Null
Description Varchar2 25 Not Null

Semester Varchar2 15 Not Null
Class Varchar2 3 Not Null

Depa_id Varchar2 10 Not Null
Information Long

95

Reasoning:

Each course has an ID. This is the primary key. There is a description to this course. Each

course is associated with a department, semester. Information field is included which can

contain important information that needs to be displayed as the bulletin. For example

CIS601001 Object Oriented Programming Spring 1998 MS CIS information.

Table 4.5 Courses employees

Field Name Data Type Size Key Not Null Referencingt,
Course id Varchar2 I0 Not Null
Empl_id Varchar2 9 Not Null

Reasoning:

This table consists of all professors or employees associated with a course.

Table 4.6 Edu units

Field Name Data Type Size Key Not Null Referencingb,
Id Number I0 PRIMARY Not Null

Edu unit Varchar2 I0 Not Null
Description Varchar2 200 Not Null

Notes Varchar2 I
Articles Varchar2 I
Video Varchar2 1
Audio Varchar2 1

Course id Varchar2 I0 Course

96

Reasoning:

The EDU_UNIT is like a chapter in a course. Each EDU_UNIT has an ID and

Description. Associated with each EDU_UNIT is notes, articles, audio and video.

Since the EDU_UNIT belongs to a course, the COURSE_ID is included as a foreign key

in Table 4.6.

Table 4.7 Notes

Field Name Data Type Size Key Not Null Referencing
Id Number I0 PRIMARY Not Null

Description Varchar2 200 Not Null
Notes Long

Display_
date

Date

Hide_date Date
Edu unit Varchar2 I0 Not Null

Reasoning:

Notes is one of the content which the user views. This will have an id and a description

along with the actual note. Display date and hide date are included in order to enable

display of notes based on the dates. Since the Note itself belongs to an EDU_UNIT the

associated EDU UNIT is included in this design as a foreign key.

97

Table 4.8 Articles

Field Nam e Data Type Size Key Not Null Referencingt,
Id Number 10 PRIMARY Not Null

Description Varchar2 200 Not Null
Articles Long

Display
date

Date

Hide date Date
Edu unit Varchar2 10 Not Null

Reasoning:

Articles is one of the content which the user views. This will have an id and a description

along with the actual article. Display date and hide date are included in order to enable

display of articles based on the dates. Since the article itself belongs to an EDU UNIT

the associated EDU UNIT is included in this design as a foreign key.

Table 4.9 Audios

Field Name Data Type Size Key Not Null Referencing
Id Number 10 PRIMARY Not Null

Description Varchar2 200 Not Null
Audio Long

Display
date

Date

Hide date Date
Edu unit Varchar2 10 Not Null

Reasoning:

Audio is one of the content which the user views. This will have an id and a description

along with the actual audio. Display date and hide date are included in order to enable

98

display of audio based on the dates. Since the audio file itself belongs to an EDU UNIT

the associated EDU_UNIT is included in this design as a foreign key.

Table 4.10 Videos

Field Name Data Type Size Key Not Null Referencing
t,

Id Number 10 PRIMARY Not Null
Description Varchar2 200 Not Null

Video Long
Display

date
Date

Hide date Date
Edu unit Varchar2 10 Not Null

Reasoning:

Video is one of the content which the user views. This will have an id and a description

along with the actual video. Display date and hide date are included in order to enable

display of video based on the dates. Since the video file itself belongs to an EDU_UNIT

the associated EDU UNIT is included in this design as a foreign key.

Table 4.11 Exams

Field Name Data Type Size Key Not Null Referencing
Id Number 10 PRIMARY Not Null

Description Varchar2 2000 Not Null
Semester Varchar2 I5 Not Null
Display_

date
Date

Hide_ date Date
Course id Varchar2 I0 Course

99

Reasoning:

Exams is one of the types of submission. Each exam will have an ID, description and

semester. Display Date and Hide Date are included to enable display of the exam based

on date. Since this exam belongs to a course, the course id is included as a foreign key.

Table 4.12 Exercises

Field Name Data Type Size Key Not Null Referencing
Id Number I0 PRIMARY Not Null

Description Varchar2 2000 Not Null
Semester Varchar2 I5 Not Null
Display

date
Date

Hide_date Date
Course id Varchar2 10 Course

Reasoning:

Exercises is one of the types of submission. Each exercise will have an ID, description

and semester. Display Date and Hide Date are included to enable display of the exercise

based on date. Since this exercise belongs to a course, the course id is included as a

foreign key.

Table 4.13 Projects

Field Name Data Type Size Key Not Null Referencing
Id Number 10 PRIMARY Not Null

Description Varchar2 2000 Not Null
Semester Varchar2 I5 Not Null
Display_

date
Date

Hide date Date
Course_id Varchar2 I0 Course

100

Reasoning:

Projects is one of the types of submission. Each project will have an ID, description and

semester. Display Date and Hide Date are included to enable display of the project based

on date. Since this project belongs to a course, the course id is included as a foreign key.

Table 4.14 Exam_ questions

Field Name Data Type Size Key Not Null Referencingb
Id Number 10 PRIMARY Not Null

Question Long Not Null
Exam id Number I0 Not Null

Reasoning:

This table contains the questions associated with the exam. This table is the detail table

associated with the master table which is the EXAMS table. Hence Exam ID is included

as a foreign key in Table 4.14.

Table 4.15 Exercise_ question

Field Name Data Type Size Key Not Null Referencingt,
Id Number I0 PRIMARY Not Null

Question Long Not Null
Exercise id Number I0 Not Null

Reasoning:

Table 4.I5 contains the questions associated with the exercise. This table is the detail

table associated with the master table which is the EXERCISES table. Hence EXERCISE

ID is included as a foreign key in Table 4.15.

101

Table 4.16 Project_question

Field Name Data Type Size Key Not Null Referencing
Id Number I0 PRIMARY Not Null

Question Long Not Null
Project id Number 10 Not Null

Reasoning:

Table 4.16 contains the questions associated with the project. This table is the detail table

associated with the master table which is the PROJECTS table. Hence PROJECT ID is

included as a foreign key in this table.

Table 4.17 Mails

Field Name Data Type Size Key Not Null Referencing
Id Number 10 PRIMARY Not Null

Mail from Varchar2 9 Not Null
Mail to Varchar2 9 Not Null
Subject Varchar2 2000 Not Null

Message Long Not Null
Empl id Varchar2 9 Employee
Empl_id
Receives

Varchar2 9 Employee

Student id Varchar2 9 Student
Student
receives

Varchar2 9 Student

Reasoning:

Table 4.I7 is included in the design in order to provide a repository of the email messages

that would be going from the student to the professor and vice versa.

102

Entity Relationship Model in Designer 2000

Keeping the mentioned reasoning in mind, the entity relationship model was designed

using the Designer 2000. This Entity Relationship Diagrammer permits of drag and drop

style entities and their relationships. It also allows assigning datatypes to the fields,

setting of primary keys, setting up of hints, minimum and maximum values for the field,

setting up indexes. In terms of relationships it allows creation of one to many, many to

one, many to many and one to one relationship along with the criteria of optional ity

whether must have, or may have and so on. Appendix A lists the actual screen prints of

the entity relationship model that was designed for this education system project.

The Entity Relationship Mapper performs the task of mapping the entity - relation

diagram to logical objects.

The Data Diagrammer takes these mapped objects and creates a database schema

with the mapped entities and the relationships. The Data Diagrammer schema includes

the actual tables, the fields and the relationships in terms of primary and foreign keys.

The representation is a diagram which indicates all these database items. It is possible to

make changes to this diagram and reverse engineer the changes back to the Entity

Relationship Diagrammer. This diagrammer enables the creation of SQL code to

actually create the tables, indexes, clusters, primary and foreign keys. You can view the

code once this is created and this can be saved to a file. This code can be executed from

the diagrammer or can be done offline through Oracle SQLPLUS. Appendix A has

screen prints for the Data Diagrammer with the tables and the relationships. The code

generation, after code generation screen is also included in the appendix. The SQL code

103

to create the tables is included in the Appendix A. Though I have experimented with all

the other modules the Designer 2000, in this project I have used only these 3 modules.

Physical Database

The SQL code which is also the DDL or data definition language code which was created

by Oracle Designer 2000 was taken and this was executed from Oracle SQL *PLUS. This

code created the actual tables in Oracle along with the primary and foreign keys. Dummy

data was then entered into the tables. All the data pertaining to the project is stored in this

Oracle repository. Queries executed from SQL*PLUS show various aspects of the data

and the database structure. Again, as mentioned before, care was taken to adhere to 3 rd

Normal Form of Database Modeling. The tables were created in the name of a Oracle

user. Then synonyms were created to provide access to other users.

4.6 Forms Design

Oracle Developer 2000 I.5W was used to create forms. This tool has Forms Designer

which is extensively used to create the forms. The form is the graphical user interface to

the data. Though this form will be in windows client/server mode on design, Oracle

Developer permits the display of these forms on the World Wide Web via the Oracle

Web Server. This tool is a very versatile tool and is very widely used in the industry

104

Forms Logic

The following section describes the logic that was used in the design of the graphical

user interface forms.

In the Opening form the user will see a list of buttons on the left side . These will be

1. Information

2. Login

3. Exit.

On the right hand side he will see a list box showing the various departments.

The user , in this case could be a student or the professor. Let us assume that a student

the system. The system prompts the user to select the department and click on the

retrieve course button to retrieve courses for that department. The student selects the

department, clicks on the retrieve button. Automatically the system will retrieve all

courses in the system pertaining to that department. The student is now prompted to

select the course and then click on the login button. When the student clicks on the

LOGIN button the system displays a form to validate the user. The user has to enter his

name and password. The system checks if the user is already present in the system and

if he is not the system will not allow him to proceed further in the system

Validation

The validation is performed as follows:

The system first checks if any records in the student table match the entered userid and

password. If yes, then it checks if the student is registered for this course by checking the

STUDENT DETAIL table where there exists a record for this student for this semester

105

with the commence date. If the student is found there also then the student is considered

valid and permitted to proceed further. If the student is not found, then the system checks

if the userid and password match a professor by checking if there exists a record in the

employee. table with this userid and password. If yes, then a check is performed against

the COURSE EMPLOYEE table and checked if the professor for this course is the

specified professor. If yes then the system recognizes that a professor has logged in and

Oyes the professor the respective screens.

Navigation

For a valid user, after the logon, the Course Details button becomes active. On clicking

this he can proceed further into the system. This screen displays 3 buttons for the student

on the left side. On the right side the student gets the information bulletin. The professor

can put any information in the information field of the course tablewhich appears on this

screen which the student will definitely read when he comes to this screen.

The three options are as follows:

(i) View Content

(ii) View Submissions

(iii) Back

View Content will take the user to another form where he gets a list of the

educational units associated with this course. The student is prompted to select an

educational unit and click on the Retrieve Content button. Upon doing this the user will

get buttons that represent the form of the content. For example if notes is present for this

106

educational unit, then the notes button will become active. If the articles is present for this

educational unit then the articles button will become active, and so on. When the user

clicks on the notes button he/she will get a list of all the notes existing in the system for

this particular educational unit. The user can then click and select the concerned unit and

click retrieve content. This will then take the user to another form with buttons to go

back or to the previous screen. This display of the note is in a scrollable edit box.

This is the same with the articles.

View Submissions will take the user to another form where on the left side he will

see buttons associated with the submission types. If projects are available for this course,

then the List Projects button becomes active. Similarly, if exams are present then the List

Exams button becomes active. Same is the case with Exercises. When the user clicks on

one of these, say the exams, the user gets a list of all the exams associated with this

course. The user clicks and selects one of these and then clicks on Retrieve Submission

button. This will display another form containing the actual submission questions along

with buttons to navigate between the questions. Note that this system will only display

the questions. It is expected that the student email the answers to the professor separately.

The email address is provided as an option button on the previous screen. The

objective behind this reasoning was to permit the student to use free form means of

creating his answer sheet and this be delinked from the database as the size of the files

could be very big and would unnecessarily slow down the system with these large objects

in the database.

107

In the case of the professor, he/she will see all these that the student sees. In

addition on the bulletin screen, the professor gets three options. These are

1. Maintain Content

2. Maintain Submission

3. Maintain Grade

4.7 Display of the System on the World Wide Web

Developer 2000 provides for these forms to be able to viewable form the world wide

web. An initial starting HTML is required which will start this application. This

application is the start template provided by Oracle Corporation. Once this hyper text

markup language(HTML) page is executed from the browser, the educational system will

start showing up. Thereafter it is just following the navigation as described in the

previous discussion. These form could be viewed by Netscape Navigator or by Microsoft

Internet Explorer browser.

4.8 Coding

All coding for this project has been done Oracle Procedural Language/Structured Query

Language (PL/SQL). Triggers, procedures perform the desired functionality. The forms

were designed in Oracle Forms Designer which provides a Visual Interface to design the

forms. The code developed for this project is attached in the Appendix A.

CHAPTER 5

CONCLUSIONS

Education on the web is a reality. Every school and college must have a program to

present educative material via the internet. The reach of this system is enormous and has

immense potential. A lot of schools like Arizona State University have some web pages

with courses on them. The strength of the system will be in the user friendliness of the

system or the ease of use to the system to the student and the professor, and the ability to

store large amounts of different data in the system.

The development of the software was done using the Oracle database 7.3.3 and

Oracle tools Designer/2000 version 1.3.2, Developer/2000 version 1.5w and Web Server

version2.I. There is a very steep learning curve for Oracle Designer/2000. Once this was

overcome the database related aspects of the tool were thoroughly utilized.

Developer/2000 was utilized to create all the graphical user interface screens and was

excellent in creating the forms. The Web Server was utilized to connect the student to the

system. The system we developed was user friendly and has a lot of capacity to save large

amounts of data.

108

CHAPTER 6

FUTURE DEVELOPMENTAL SCOPE

Future development in the region can be scoped out as follows:

. Maintenance screens For Content for the Professor

2. Maintenance screens for submission for the professor

3. Maintenance screen for grades

6.1 Maintenance Screen for Content

The conceptual design would be as follows:

When the professor selects the option, the system will prompt him with educational unit

maintenance or content maintenance. If he selects educational unit maintenance, the

system will display the list of educational units and the professor can select any one of

them to edit. Alternatively the professor may choose to add a new one or delete an

existing one. The system should be smart enough to prevent accidental deletion of the

educational unit which already has content associated with it. An override may be

provided if the professor is sure that he wants to delete the educational unit and all

contents associated with it.

If the professor selects content maintenance then the system prompts him/her to

select the educational unit. When he selects this, the system will display the types of

contents in the form of buttons. These could be notes, articles, video and audio. When the

professor selects any one of them, the system will display all the contents for that

109

110

particular type. The professor now, may edit the existing content, add a new content, or

delete existing content or he might just exit out of content maintenance.

Actual maintenance screens would be required for each of the contents and the

educational unit maintenance.

6.2 Maintenance Screen for Submission

The conceptual design would be as follows:

When the professor selects the option, the system will prompt him with the submission

type. The professor can select one of them. Then the professor gets the options of NEW,

EDIT, DELETE, CANCEL. When he selects NEW, then the system will prompt the

professor to enter the description for that submission and will give the professor fields to

enter the questions. The system will now prompt the professor the options of COMMIT

or CANCEL. When he/she commits, the system will commit the data and it will be

available when the student next time comes into the system. When the professor selects

EDIT, the system will display the currently available set of papers for this submission

type. Then he/she can select one of these and the system will display the questions

pertaining to this. The professor may add, edit, delete any question or he may just exit.

When the professor selects DELETE the system will display the currently available list of

papers for this submission type and he/she can select any one of this list and perform the

delete. If the professor selects CANCEL, he/she is taken out of this submission

maintenance option. This would be the case for exams, exercises or projects. Actual

maintenance screens would be required for the questions of each submission type,

submission type itself and navigation screens.

Ill

6.3 Maintenance Screen for Grade

When the professor selects this, the system will prompt him/her to select the submission

type. Then the student is selected and the system will prompt the professor to enter marks

for each question in that particular submission type.

There will be an option to submit the final grades, when the student is done with the

course. This will trigger the record pertaining to this student, this course to get updated

with the correct grade. Maintenance screens for the grade will be required along with the

proper navigation and trigger events.

APPENDIX A

Screens And DDL Code

112

Figure APP1. Designer/2000 Login Screen

Figure APP2. Designer 2000 Screen after Login

Figure APP3. Complete Entity Relationship Model in Designer/2000

Figure APP4. Snapshot of Entity Relation Diagram - Part l

Figure APP5. Snapshot of Entity Relation Diagram - Part 2

Figure APP6. Snapshot of Entity Relation Diagram - Part 3

Figure APP7. Database Mapping in Database Design Wizard
`,C>

Figure APP8. Data Diagrammer Snapshot 1 - Overview

Figure APPS. Data Diagrammer Snapshot - Part 1

Figure APP10. Data Diagrammer Snapshot - Part 2

Figure APP11. Data Diagrammer Snapshot - Part 3

Figure APP12. Data Diagrammer Snapshot - Part 4 - Generate SQL DDL Selection

Figure APP13. Data Diagrammer Snapshot - Selection For Generate

Figure APP14. Data Diagrammer Snapshot - Generation Completed

Figure APP15. Data Diagrammer Snapshot - List of Generated Files

REM

REM This ORACLE7 command file was generated by Oracle Server Generator
REM Version 5.5.9.0.0 on 23-JAN-98
REM
REM For application EDUSYSSV 1 version 1 database EDUSYSDB
REM
SET SCAN OFF

SPOOL EDUSYSDB.Ist

REM TABLE CREATION
start EDUSYSDB.tab

REM CONSTRAINT CREATION
start EDUSYSDB.con

REM INDEX CREATION
start EDUSYSDB.ind

REM
REM End of command file
REM
SPOOL OFF

128

REM
REM This ORACLE7 command file was generated by Oracle Server Generator
REM Version 5.5.9.0.0 on 23-JAN-98
REM
REM For application EDUSYSSV_I version 1 database EDUSYSDB
REM
REM TABLE
REM ARTICLESES
REM AUDIOS
REM COURSES
REM COURSES EMPLOYEES
REM DEPARTMENTS
REM EDU UNITS
REM EMPLOYEES
REM EXAMS
REM EXERCISES
REM EXERCISE_ REPLIES
REM MAILS
REM NOTESES
REM PROJECTS
REM PROJECT REPLIES
REM REPLIES
REM STUDENTS
REM STUDENT DETAILS
REM VIDEOS

REM
PROMPT
PROMPT Creating Table ARTICLESES
CREATE TABLE articleses(
id	 NUMBER(10,0)	 NOT NULL,
description	 VARCHAR2(200)	 NOT NULL,
articles	 LONG	 NOT NULL,
display date	 DATE	 NULL,
hide_date	 DATE	 NULL,
edu_unit id	 NUMBER(1 0,0)	 NULL

COMMENT ON COLUMN articleses.id
IS 'ID';

COMMENT ON COLUMN articleses.description
IS 'DESCRIPTION',

129

COMMENT ON COLUMN articleses.articles
IS 'ACTUAL TEXT';

COMMENT ON COLUMN articleses.display_date
IS 'DISPLAY DATE';

COMMENT ON COLUMN articleses.hide_date
IS 'HIDE DATE';

COMMENT ON COLUMN articleses.edu_unit id
IS 'id';

REM
PROMPT
PROMPT Creating Table AUDIOS
CREATE TABLE audios(
id	 NUMBER(10,0)	 NOT NULL,
description	 VARCHAR2(200)	 NOT NULL,
audio	 LONG RAW	 NOT NULL,
semester	 VARCHAR2(1 5) 	 NOT NULL,
display_date	 DATE	 NULL,
hide date	 DATE	 NULL,
edu unit id	 NUMBER(10,0)	 NULL

COMMENT ON COLUMN audios.id
IS 'ID';

COMMENT ON COLUMN audios.description
IS DESCRIPTION';

COMMENT ON COLUMN audios.audio
IS 'ACTUAL AUDIO';

COMMENT ON COLUMN audios.semester
IS 'SEMESTER - SPRING 1997';

COMMENT ON COLUMN audios.display date
IS 'DISPLAY DATE';

COMMENT ON COLUMN audios.hide_date
IS 'HIDE DATE';

COMMENT ON COLUMN audios.edu unit id

130

IS 'id';

REM
PROMPT
PROMPT Creating Table COURSES
CREATE TABLE courses(
id	 VARCHAR2(10)	 NOT NULL,
description	 VARCHAR2(25)	 NOT NULL,
semester	 VARCHAR2(15)	 NOT NULL,
class	 VARCHAR2(3)	 NOT NULL,
depa_id	 VARCHAR2(10)	 NULL,
stud deta stud deta id	 NUMBER(10,0)	 NOT NULL

COMMENT ON COLUMN courses.id
IS 'Course id';

COMMENT ON COLUMN courses.description
IS 'Course Name';

COMMENT ON COLUMN courses.semester
IS 'This semester date';

COMMENT ON COLUMN courses.depa id
IS 'Department id';

REM
PROMPT
PROMPT Creating Table COURSES EMPLOYEES
CREATE TABLE courses_ employees(
course id	 VARCHAR2(10)	 NOT NULL,
empli_d	 VARCHAR2(9)	 NOT NULL

COMMENT ON COLUMN courses employees.course id
IS 'Course id';

COMMENT ON COLUMN courses_employees.empl id
IS 'Employee Id';

REM
PROMPT
PROMPT Creating Table DEPARTMENTS

131

CREATE TABLE departments(
id	 VARCHAR2(1 0)	 NOT NULL,
name	 VARCHAR2(25)	 NOT NULL

COMMENT ON COLUMN departments.id
IS 'Department id';

COMMENT ON COLUMN departments.name
IS 'Department Name';

REM
PROMPT
PROMPT Creating Table EDU_UNITS
CREATE TABLE edu units(
id	 NUMBER(1 0,0)	 NOT NULL,
edu unit	 NUMBER(1 0,0)	 NOT NULL,
description	 VARCHAR2(200)	 NOT NULL,
notes	 VARCHAR2(1)	 NULL,
articles	 VARCHAR2(1)	 NULL,
video	 VARCHAR2(1)	 NULL,
audio	 VARCHAR2(1)	 NULL,
course id	 VARCHAR2(1 0)	 NULL

COMMENT ON COLUMN edu units.id
IS 'id';

COMMENT ON COLUMN edu units.edu unit
IS 'Edu unit';

COMMENT ON COLUMN edu units.description
IS 'Description';

COMMENT ON COLUMN edu units.notes
IS 'Y/N';

COMMENT ON COLUMN edu units.articles
IS 'Y/N';

COMMENT ON COLUMN edu units.video
IS 'Y/N';

1r

COMMENT ON COLUMN edu_units.audio
IS 'Y/N';

COMMENT ON COLUMN edu units.course id
IS 'Course id';

REM
PROMPT
PROMPT Creating Table EMPLOYEES
CREATE TABLE employees(
id	 VARCHAR2(9)	 NOT NULL,
name	 VARCHAR2(25)	 NOT NULL,
address	 VARCHAR2(40)	 NULL,
email_address	 VARCHAR2(20)	 NULL,
designation	 VARCHAR2(25)	 NULL,
password	 VARCHAR2(10)	 NULL,
depa id	 VARCHAR2(10)	 NULL

COMMENT ON COLUMN employees.id
IS 'Employee Id';

COMMENT ON COLUMN employees.name
IS 'Name';

COMMENT ON COLUMN employees.address
IS 'Address';

COMMENT ON COLUMN employees.email_address
IS 'Email Address';

COMMENT ON COLUMN employees.designation
IS 'Designation';

COMMENT ON COLUMN employees.password
IS 'Password';

COMMENT ON COLUMN employees.depa id
IS 'Department id';

REM
PROMPT
PROMPT Creating Table EXAMS
CREATE TABLE exams(

133

134

id	 NUMBER(10,0)	 NOT NULL,
description	 LONG	 NOT NULL,
semester	 VARCHAR2(15)	 NOT NULL,
question]	 LONG	 NOT NULL,
display_date	 DATE	 NULL,
hide date	 DATE	 NULL,
question2	 LONG	 NULL,
question3	 LONG	 NULL,
question4	 LONG	 NULL,
question5	 LONG	 NULL,
question6	 LONG	 NULL,
question?	 LONG	 NULL,
question8 	 LONG	 NULL,
question9	 LONG	 NULL,
question10	 LONG	 NULL,
course id	 VARCHAR2(10)	 NULL

COMMENT ON COLUMN exams.id
IS 'id';

COMMENT ON COLUMN exams.description
IS 'Short description';

COMMENT ON COLUMN exams.semester
IS 'Semester - SPRING 1997';

COMMENT ON COLUMN exams.display date
IS 'Display Date';

COMMENT ON COLUMN exams.hide date
IS 'Hide Date';

COMMENT ON COLUMN exams.course_id
IS 'Course id';

REM
PROMPT
PROMPT Creating Table EXERCISES
CREATE TABLE exercises(
id	 NUMBER(1 0,0)	 NOT NULL,
description	 VARCHAR2(200)	 NOT NULL,
question]	 LONG	 NOT NULL,
semester	 VARCHAR2(15)	 NOT N ULL,

135

question2	 LONG	 NULL,
question3	 LONG	 NULL,
question4	 LONG	 NULL,
question5	 LONG	 NULL,
question6	 LONG	 NULL,
question?	 LONG	 NULL,
question8	 LONG	 NULL,
question9	 LONG	 NULL,
question 10	 LONG	 NULL,
display date	 DATE	 NULL,

hide_date 	 DATE	 NULL,
course_id	 VARCHAR2(1 0) 	 NULL

COMMENT ON COLUMN exercises.id
IS 'id';

COMMENT ON COLUMN exercises.description
IS 'Exercise description';

COMMENT ON COLUMN exercises.semester
IS 'Semseter';

COMMENT ON COLUMN exercises.display date
IS 'Display Date';

COMMENT ON COLUMN exercises.hide date
IS 'Hide Date';

COMMENT ON COLUMN exercises.course
IS 'Course id';

REM
PROMPT
PROMPT Creating Table EXERCISE_REPLIES
CREATE TABLE exercise_ replies(
replyq8	 LONG	 NULL,
id	 NUMBER(' 0,0)	 NOT NULL,

semester	 VARCHAR2(15)	 NOT NULL,

replyq 1	 LONG	 NULL,
replyq2	 LONG	 NULL,

replyq3	 LONG	 NULL,

replyq4	 LONG	 NULL,

replyq5	 LONG	 NULL,

136

replyq6	 LONG	 NULL,
replyq7	 LONG	 NULL,
replyq9	 LONG	 NULL,
replyq 10	 LONG	 NULL.
corrected	 VARCHAR2(1)	 NULL,
corrected_by	 VARCHAR2(9)	 NULL,
marks	 NUMBER(5,2)	 NULL,
received date	 DATE	 NULL.
exercise_id	 NUMBER(1 0,0)	 NULL.
stud deta stud deta id	 NUMBER(10,0)	 NULL.

COMMENT ON COLUMN exercise replies.id
IS 'ID';

COMMENT ON COLUMN exercise_replies.corrected
IS 'Y/1\1';

COMMENT ON COLUMN exercise_replies.exercise_id
IS 'id';

REM
PROMPT
PROMPT Creating Table MAILS
CREATE TABLE mails(
id	 NUMBER(10,0)	 NOT NULL,
mail_from	 VARCHAR2(9)	 NULL,
mail_ to	 VARCHAR2(9)	 NULL,
subject	 VARCHAR2(200)	 NULL,
message	 LONG	 NULL,
empl id	 VARCHAR2(9)	 NULL,
empl_id receives	 VARCHAR2(9)	 NULL,
student_id	 VARCHAR2(9)	 NULL,
student id writes	 VARCHAR2(9)	 NULL

COMMENT ON COLUMN mails.id
IS 'Mail ID';

COMMENT ON COLUMN mails.mail from
IS 'From ID';

COMMENT ON COLUMN mails.mail to

IS 'To`;

COMMENT ON COLUMN mails.subject
IS 'Subject';

COMMENT ON COLUMN mails.empl_id
IS 'Employee Id';

COMMENT ON COLUMN mails.empl_id_receives
IS 'Employee Id':

COMMENT ON COLUMN mails.student id
IS 'Student id';

COMMENT ON COLUMN mails.student id writes
IS 'Student id';

REM
PROMPT
PROMPT Creating Table NOTESES
CREATE TABLE noteses(
id	 NUMBER_(1 0,0) 	 NOT NULL,
description	 VARCHAR2(200)	 NOT NULL,
notes	 LONG	 NOT NULL,
display_date	 DATE	 NULL,
hide date	 DATE	 NULL,
edu unit id	 NUMBER(1 0,0)	 NULL

COMMENT ON COLUMN noteses.id
IS 'ID';

COMMENT ON COLUMN noteses.description
IS 'DESCRIPTION';

COMMENT ON COLUMN noteses.notes
IS 'ACTUAL NOTES';

COMMENT ON COLUMN noteses.display_date
IS 'DISPLAY DATE';

COMMENT ON COLUMN noteses.hide date
IS 'HIDE DATE';

137

COMMENT ON COLUMN noteses.edu unit id_ _
IS 'id';

REM
PROMPT
PROMPT Creating Table PROJECTS
CREATE TABLE projects(
id	 NUMBER(I 0,0)	 NOT NULL,
description	 VARCHAR2(200)	 NOT NULL,
question I	 LONG	 NOT NULL,
semester	 VARCHAR2(15)	 NOT NULL,
question2	 LONG	 NULL,
question3	 LONG	 NULL,
question4	 LONG	 NULL,
question5	 LONG	 NULL,
display date	 DATE	 NULL,
hide_ date	 DATE	 NULL,
course id	 VARCHAR2(10 0)	 NULL

COMMENT ON COLUMN projects.description
IS 'Short Project Description';

COMMENT ON COLUMN projects.questionl
IS 'Actual project';

COMMENT ON COLUMN projects.semester
IS 'This semester';

COMMENT ON COLUMN projects.display date
IS 'Display date';

COMMENT ON COLUMN projects.hide_date
IS 'Hide date';

COMMENT ON COLUMN projects.course_id
IS 'Course id';

REM
PROMPT
PROMPT Creating Table PROJECT_REPLIES
CREATE TABLE project replies(
id	 NUMBER(l 0,0)	 NOT NULL,
replyq I	 LONG	 NULL,

138

l39

replyq2	 LONG	 NULL,
replyq3	 LONG	 NULL,
replyq4	 LONG	 NULL,
replvq5	 LONG	 NULL.
replyq6	 LONG	 NULL,
replyq7	 LONG	 NULL,
replyq8	 LONG	 NULL,
replyq9	 LONG	 NULL.
replyq 1 0	 LONG	 NULL,
corrected	 VARCHAR2(1)	 NULL,
corrected_by	 VARCHAR2(9)	 NULL,
marks	 NUMBER(5,2)	 NULL,
semester	 VARCHAR2(15)	 NULL,
received_ date	 DATE	 NULL,
project_id	 NUMBER(' 0,0) 	 NULL,
stud deta stud deta id	 NU MBER(1 0,0)	 NULL

COMMENT ON COLUMN project_replies.id
IS 'ID';

COMMENT ON COLUMN project replies.corrected
IS 'Y/N';

REM
PROMPT
PROMPT Creating Table REPLIES
CREATE TABLE replies(
id	 NUMBER(10,0)	 NOT NULL,
semester	 VARCHAR2(15)	 NOT NULL,

replyq1 	 LONG	 NULL,
replyq2	 LONG	 NULL,
replyq3	 LONG	 NULL,
replyq4	 LONG	 NULL,
replyq5	 LONG	 NULL,
replyq6	 LONG	 NULL,
replyq7	 LONG	 NULL,
replyq8	 LONG	 NULL,
replyq9	 LONG	 NULL,
replyq 1 0	 LONG	 NULL,
corrected	 VARCHAR2(1)	 NULL,
corrected_by	 VARCHAR2(9)	 NULL,
marks	 NUMBER(5,2)	 NULL,
received date	 DATE	 NULL,

140

exam_ id	 NUMBER(10,0)	 NULL,
stud deta stud deta id	 NUMBER(10,0)	 NULL

COMMENT ON COLUMN replies.id
IS '1D';

COMMENT ON COLUMN replies.corrected
IS 'Y/N';

COMMENT ON COLUMN replies.marks
IS '100.00';

COMMENT ON COLUMN replies.exam_id
IS 'id';

REM
PROMPT
PROMPT Creating Table STUDENTS
CREATE TABLE students(
id	 VARCHAR2(9)	 NOT NULL,
name	 VARCHAR2(25)	 NOT NULL,
address	 VARCHAR2(40)	 NULL,
email address	 VARCHAR2(20)	 NULL,
class	 VARCHAR2(3)	 NULL,
grade	 VARCHAR2(2)	 NULL,
gpa	 NUMBER(4,2)	 NULL,
password	 VARCHAR2(10)	 NULL,
depa id	 VARCHAR2(10) 	 NULL

COMMENT ON COLUMN students.id
IS 'Student id';

COMMENT ON COLUMN students.name
IS 'Student Name';

COMMENT ON COLUMN students.address
IS 'Student Address';

COMMENT ON COLUMN students.email_address
IS 'Email Addess';

COMMENT ON COLUMN students.class
IS 'Class to which student belongs';

COMMENT ON COLUMN students.grade
IS 'Student Grade';

COMMENT ON COLUMN students.gpa
IS 'Student Tota1 GPA';

COMMENT ON COLUMN students.password
IS 'Password';

COMMENT ON COLUMN students.depa_id
IS 'Department id';

REM
PROMPT
PROMPT Creating Table STUDENT_DETAILS
CREATE TABLE student_ details(
stud _ deta _id	 NUMBER(I 0,0)	 NOT NULL,
grade	 VARCHAR2(2)	 NOT NULL,
semester	 VARCHAR2(15)	 NOT NULL,
date_entered	 DATE	 NOT NULL,
date completed	 DATE	 NOT NULL,
empl_id	 VARCHAR2(9)	 NULL,
student_id	 VARCHAR2(9)	 NULL

COMMENT ON COLUMN student_details.grade
IS 'Grade';

COMMENT ON COLUMN student details.semester
IS 'This semester date';

COMMENT ON COLUMN student details.date_completed
IS 'DATE OF COMPLETION';

COMMENT ON COLUMN student_details.empl_id
IS 'Employee]d';

COMMENT ON COLUMN student details.student id
IS 'Student id';

141

REM

PROMPT
PROMPT Creating Table VIDEOS
CREATE TABLE videos(
id	 NUMBER(10,0)	 NOT NULL,
description	 VARCHAR2(200)	 NOT NULL,
video	 LONG RAW	 NOT NULL,
display_date	 DATE	 NULL,
hide_date	 DATE	 NULL,
semester	 VARCHAR2(15)	 NULL,
edu unit id	 NUMBER(1 0,0)	 NULL

COMMENT ON COLUMN videos.id
IS 'ID';

COMMENT ON COLUMN videos.description
IS 'DESCRIPTION';

COMMENT ON COLUMN videos.video
IS 'ACTUAL VIDEO';

COMMENT ON COLUMN videos.display_date
IS 'DISPLAY DATE';

COMMENT ON COLUMN videos.hide date
IS 'HIDE DATE';

COMMENT ON COLUMN videos.semester
IS 'SEMESTER - SPRING 1997';

COMMENT ON COLUMN videos.edu unit_id
IS 'id';

142

REM

REM This ORACLE7 command file was generated by Oracle Server Generator
REM Version 5.5.9.0.0 on 23-JAN-98
REM
REM For application EDUSYSSV_1 version 1 database EDUSYSDB
REM
REM CONSTRAINT

PROMPT Adding PRIMARY Constraint To ARTICLESES Table

ALTER TABLE ARTICLESES ADD (
CONSTRAINT ARTICLES_PK
PRIMARY KEY (ID)

USING INDEX
PCTFREE 10

PROMPT Adding PRIMARY Constraint To AUDIOS Table

ALTER TABLE AUDIOS ADD (
CONSTRAINT AUDIO PK
PRIMARY KEY (ID)

USING INDEX
PCTFREE 10

PROMPT Adding PRIMARY Constraint To COURSES Table

ALTER TABLE COURSES ADD (
CONSTRAINT COURSE PK
PRIMARY KEY (ID)

USING INDEX
PCTFREE 10

PROMPT Adding PRIMARY Constraint To COURSES_ EMPLOYEES Table

ALTER TABLE COURSES EMPLOYEES ADD (
CONSTRAINT COURSE_EMP_PK
PRIMARY KEY (COURSE _ID,

EMPL ID)
USING INDEX

143

PCTFREE 10
)

PROMPT Adding PRIMARY Constraint To DEPARTMENTS Table

ALTER TABLE DEPARTMENTS ADD (
CONSTRAINT DEPA_PK
PRIMARY KEY (ID)

USING INDEX
PCTFREE 10
)

PROMPT Adding PRIMARY Constraint To EDU UNITS Table

ALTER TABLE EDU_UNITS ADD (
CONSTRAINT EDU UNIT PK
PRIMARY KEY (ID)

USING INDEX
PCTFREE 10
)

PROMPT Adding PRIMARY Constraint To EMPLOYEES Table

ALTER TABLE EMPLOYEES ADD (
CONSTRAINT EMPL PK
PRIMARY KEY (ID)

USING INDEX
PCTFREE 10
)

PROMPT Adding PRIMARY Constraint To EXAMS Table

ALTER TABLE EXAMS ADD (
CONSTRAINT EXAM PK
PRIMARY KEY (ID)

USING INDEX
PCTFREE 10
)

144

PROMPT Adding PRIMARY Constraint To EXERCISES Table

ALTER TABLE EXERCISES ADD (
CONSTRAINT EXERCISE PK
PRIMARY KEY (ID)

USING INDEX
PCTFREE 10

PROMPT Adding PRIMARY Constraint To EXERCISE_REPLIES Table

ALTER TABLE EXERCISE_REPLIES ADD (
CONSTRAINT EXER_REPL_PK
PRIMARY KEY (REPLYQ8)

USING INDEX
PCTFREE 10

PROMPT Adding PRIMARY Constraint To MAILS Table

ALTER TABLE MAILS ADD (
CONSTRAINT MAIL PK
PRIMARY KEY (ID)

USING INDEX
PCTFREE 10

PROMPT Adding PRIMARY Constraint To NOTESES Table

ALTER TABLE NOTESES ADD (
CONSTRAINT NOTES PK
PRIMARY KEY (ID)

USING INDEX
PCTFREE 10

/

PROMPT Adding PRIMARY Constraint To PROJECTS Table

ALTER TABLE PROJECTS ADD (
CONSTRAINT PROJECT PK
PRIMARY KEY (ID)

USING INDEX

145

PCTFREE 10
)

PROMPT Adding PRIMARY Constraint To PROJECT REPLIES Table

ALTER TABLE PROJECT_ REPLIES ADD (
CONSTRAINT PROJ_ REPL_ PK
PRIMARY KEY (ID)

USING INDEX
PCTFREE 10
)

PROMPT Adding PRIMARY Constraint To REPLIES Table

ALTER TABLE REPLIES ADD (
CONSTRAINT EXAM REPLY PK
PRIMARY KEY (ID)

USING INDEX
PCTFREE 10
)

PROMPT Adding PRIMARY Constraint To STUDENTS Table

ALTER TABLE STUDENTS ADD (
CONSTRAINT STUDENT PK
PRIMARY KEY (ID)

USING INDEX
PCTFREE 10
)

PROMPT Adding PRIMARY Constraint To STUDENT_ DETAILS Table

ALTER TABLE STUDENT DETAILS ADD (
CONSTRAINT STUD DETA PK
PRIMARY KEY (STUD DETA ID)

USING INDEX
PCTFREE 10
)

146

PROMPT Adding PRIMARY Constraint To VIDEOS Table

ALTER TABLE VIDEOS ADD (
CONSTRAINT VIDEO PK
PRIMARY KEY (ID)

USING INDEX
PCTFREE 10

PROMPT Adding FOREIGN Constraint To ARTICLESES Table

ALTER TABLE ARTICLESES ADD (
CONSTRAINT ARTICLES_EDU_UNIT_FK
FOREIGN KEY (EDU_UNIT_ID)
REFERENCES EDU UNITS (

ID)

PROMPT Adding FOREIGN Constraint To AUDIOS Table

ALTER TABLE AUDIOS ADD (
CONSTRAINT AUDIO_EDU UNIT FK
FOREIGN KEY (EDU UNITJD)
REFERENCES EDU UNITS (

ID)

)

PROMPT Adding FOREIGN Constraint To COURSES Table

ALTER TABLE COURSES ADD (
CONSTRAINT COURSE_DEPA_FK
FOREIGN KEY (DEPA ID)
REFERENCES DEPARTMENTS (

ID)

PROMPT Adding FOREIGN Constraint To COURSES Table

ALTER TABLE COURSES ADD (
CONSTRAINT COURSE STUD DETA
FOREIGN KEY (STUD DETA STUD DETA ID)
REFERENCES STUDENT DETAILS (

l47

STUD DETA ID)
)

PROMPT Adding FOREIGN Constraint To COURSES EMPLOYEES Table

ALTER TABLE COURSES_ EMPLOYEES ADD (
CONSTRAINT COURSE EMP COURSE FK
FOREIGN KEY (COURSE_ID)
REFERENCES COURSES (

ID)
)

PROMPT Adding FOREIGN Constraint To COURSES EMPLOYEES Table

ALTER TABLE COURSES EMPLOYEES ADD (
CONSTRAINT COURSE EMP_EMPL FK
FOREIGN KEY (EMPL
REFERENCES EMPLOYEES (

ID)
)

PROMPT Adding FOREIGN Constraint To EDU_UNITS Table

ALTER TABLE EDU_UNITS ADD (
CONSTRAINT EDU UNIT COURSE FK
FOREIGN KEY (COURSE_ID)
REFERENCES COURSES (

ID)
)

PROMPT Adding FOREIGN Constraint To EMPLOYEES Table

ALTER TABLE EMPLOYEES ADD (
CONSTRAINT EMPL DEPA FK
FOREIGN KEY (DEPA_ID)
REFERENCES DEPARTMENTS (

ID)

)

148

PROMPT Adding FOREIGN Constraint To EXAMS Table

ALTER TABLE EXAMS ADD (
CONSTRAINT EXAM COURSE FK
FOREIGN KEY (COURSE ID)
REFERENCES COURSES—(

ID)

PROMPT Adding FOREIGN Constraint To EXERCISES Table

ALTER TABLE EXERCISES ADD (
CONSTRAINT EXERCISE COURSE FK
FOREIGN KEY (COURSE ID)
REFERENCES COURSES (

ID)

PROMPT Adding FOREIGN Constraint To EXERCISE_REPLIES Table

ALTER TABLE EXERCISE REPLIES ADD (
CONSTRAINT EXER REPL EXERCISE FK
FOREIGN KEY (EXERCISE _ID)
REFERENCES EXERCISES (

ID)

PROMPT Adding FOREIGN Constraint To EXERCISE_REPLIES Table

ALTER TABLE EXERCISE_ REPLIES ADD (
CONSTRAINT EXER REPL_STUD_DETA_FK
FOREIGN KEY (STUD DETA_STUD_DETA ID)
REFERENCES STUDENT_ DETAILS (

STUD DETA ID)

PROMPT Adding FOREIGN Constraint To MAILS Table

ALTER TABLE MAILS ADD (
CONSTRAINT MAIL_EMPL FK
FOREIGN KEY (EMPL ID)
REFERENCES EMPLOYEES (

149

ID)
)

PROMPT Adding FOREIGN Constraint To MAILS Table

ALTER TABLE MAILS ADD (
CONSTRAINT MAIL EMPL_RECEIVES_FK
FOREIGN KEY (EMPL_ID_RECEIVES)
REFERENCES EMPLOYEES (

ID)
)

PROMPT Adding FOREIGN Constraint To MAILS Table

ALTER TABLE MAILS ADD (
CONSTRAINT MAIL STUDENT FK
FOREIGN KEY (STUDENT_ID)
REFERENCES STUDENTS (

ID)

)

PROMPT Adding FOREIGN Constraint To MAILS Table

ALTER TABLE MAILS ADD (
CONSTRAINT MAIL STUDENT WRITES 1 -2 1(
FOREIGN KEY (STUDENT_ID_WRITES)
REFERENCES STUDENTS (

ID)
)

PROMPT Adding FOREIGN Constraint To NOTESES Table

ALTER TABLE NOTESES ADD (
CONSTRAINT NOTES EDU_UNIT FK
FOREIGN KEY (EDU_UNIT_ID)
REFERENCES EDU UNITS (

ID)
)

150

PROMPT Adding FOREIGN Constraint To PROJECTS 'Fable

ALTER TABLE PROJECTS ADD (
CONSTRAINT PROJECT_COURSE_FK
FOREIGN KEY (COURSE _ID)
REFERENCES COURSES (

ID)

PROMPT Adding FOREIGN Constraint To PROJECT REPLIES Table

ALTER TABLE PROJECT_REPLIES ADD (
CONSTRAINT PROD REPL PROJECT_FK
FOREIGN KEY (PROJECT ID)
REFERENCES PROJECTS (

ID)

PROMPT Adding FOREIGN Constraint To PROJECT REPLIES Table

ALTER TABLE PROJECT REPLIES ADD (
CONSTRAINT PROJ_REPL_STUD DETA_FK
FOREIGN KEY (STUD_DETA_STUD DETA_ID)
REFERENCES STUDENT _ DETAILS (

STUD DETA ID)

)

PROMPT Adding FOREIGN Constraint To REPLIES Table

ALTER TABLE REPLIES ADD (
CONSTRAINT EXAM REPLY EXAM FK
FOREIGN KEY (EXAM _JD)
REFERENCES EXAMS (

ID)

PROMPT Adding FOREIGN Constraint To REPLIES Table

ALTER TABLE REPLIES ADD (
CONSTRAINT EXAM_REPLY_STUD DETA_FK
FOREIGN KEY (STUD DETA_STUD DETA _ID)
REFERENCES STUDENT_ DETAILS (

151

STUD DETA ID)
)

PROMPT Adding FOREIGN Constraint To STUDENTS Table

ALTER TABLE STUDENTS ADD (
CONSTRAINT STUDENT DEPA_FK
FOREIGN KEY (DEPA ID)
REFERENCES DEPARTMENTS (

ID)

)

PROMPT Adding FOREIGN Constraint To STUDENT DETAILS Table

ALTER TABLE STUDENT DETAILS ADD (
CONSTRAINT STUD DETA_EMPL_FK
FOREIGN KEY (EMPL_ID)
REFERENCES EMPLOYEES (

ID)
)

PROMPT Adding FOREIGN Constraint To STUDENT_ DETAILS Table

ALTER TABLE STUDENT DETAILS ADD (
CONSTRAINT STUD DETA STUDENT FK
FOREIGN KEY (STUDENT ID)
REFERENCES STUDENTS (

ID)

)

PROMPT Adding FOREIGN Constraint To VIDEOS Table

ALTER TABLE VIDEOS ADD (
CONSTRAINT VIDEO EDU UNIT FK
FOREIGN KEY (EDU UNIT ID)
REFERENCES EDU UNITS (

ID)

)

152

REFERENCES

[1] W. Dick, L. Carry, The Systematic Design of Instruction. Harper Collins Publishers,
1990.

[2] T. McManus, Special Considerations for designing Internet based education.
Technology and Teacher Education Annual, Willis, D., Robin, B., Willis, J.
(Eds); Charlottesville, VA: Association for Advancement of Computing in

Education, 1995.

[3] M. D. Merrill, R. I. Goodman, "Selecting Instructional Strategies and
Media," National Special Media Institutes, Washington D.C, 1972.

[4] R. A. Reiser, R. M. Gagne, Selecting Media for Instruction. Educational
Technologies Publications, 1983.

[5] R. J. Spiro, P. J Feltovich, M. J. Jacobson, R. L. Coulson, Cognitive
Flexibility, Constructivism, and Hypertext: Random Access Instruction for
Advanced Knowledge Acquisition in Ill-Structured Domains. In T. Duffy & D.
Jonassen (Eds), Constructivism and the Technology of Instruction. Erlbaum Assoc.
Publishers 1991.

[6] R. J. Spiro, J. C. Jehng, Cognitive Flexibility and Hypertext: Theory
and Technology for the Nonlinear and Multidimensional Traversal of Complex
Subject Matter. In D. Nix & R. J. Spiro , Cognition, Education, and
Multimedia: Exploring Ideas in High Technology. Erlbaum Assoc.
Publishers 1990.

[7] Armand Seguin, Cynthia Seguin, Window to the World. Vocational Education
Journal. http://www.emporia.edu/idt/it744/Windows.htm (1995)

[8] T.F. McManus, "Delivering Instruction on the World Wide Web."
http://ccwf.cc.utexas.edu/~mcmanus/wbi.html (4/1998)

[9] Oracle Corporation's Documentation For Designer/2000, Developer/2000, Oracle
RDBMS, Web Server 2.1.

153

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Dedication Page
	Acknowledgement
	Table of Contents (1 of 4)
	Table of Contents (2 of 4)
	Table of Contents (3 of 4)
	Table of Contents (4 of 4)
	Chapter 1: Introduction
	Chapter 2: Virtual Teaching and Internet
	Chapter 3: Oracle and Internet
	Chapter 4: Design for Internet Based Education Framework
	Chapter 5: Conclusions
	References

	List of Tables
	List of Figures

