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ABSTRACT

EVALUATING THE COMMUNICATIONS CAPABILITIES OF THE
GENERALIZED HYPERCUBE INTERCONNECTION NETWORK

by

Sanjay Krishnamurthy

This thesis presents results of evaluating the communications capabilities of the

generalized hypercube interconnection network. The generalized hypercube has

outstanding topological properties, but it has not been implemented in a large scale

because of its very high wiring complexity. For this reason, this network has not been

studied extensively in the past. However, recent and expected technological

advancements will soon render this network viable for massively parallel systems.

We first present implementations of randomized many-to-all broadcasting and

multicasting on generalized hypercubes, using as the basis the one-to-all broadcast

algorithm presented in [3]. We test the proposed implementations under realistic

communication traffic patterns and message generations, for the all-port model of

communication. Our results show that the size of the intermediate message buffers has a

significant effect on the total communication time, and this effect becomes very dramatic

for large systems with large numbers of dimensions.

We also propose a modification of this multicast algorithm that applies congestion

control to improve its performance. The results illustrate a significant improvement in the

total execution time and a reduction in the number of message contentions, and also

prove that the generalized hypercube is a very versatile interconnection network.
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CHAPTER 1

INTRODUCTION

The ever increasing demand for raw processing power to compute many of the age-old

and new computational problems has taken the industry to limits in the design of single-

processor computers with very high computing power. However, no matter what speed

and/or computing power is obtained by a single-processor computer, a parallel computer

with many processors could carry out computation-intensive jobs more effectively. This

has lead to the development of massively parallel computers with thousands of

processors.

1.1 Parallel Processing

Basically, two primary aspects will dominate the massively parallel processing field.

These two aspects might as well be referred to as the parallel-computing primitives. One

of these primitives is the development of high-level programming languages that could

take into consideration the shared-memory space for DSM (Distributed Shared-Memory)

implementations. The other aspect is the technique used to interconnect many powerful

processors together in a scalable framework.

Many computation-intensive applications, like, among others, weather

forecasting, simulation of physical phenomena, aerodynamics, simulation of neural

networks, seismology, and real-time image processing all come under the purview of

massively-parallel computers. The greater the computing power, the better are the results

obtained (e.g., higher accuracy). The goal of building computers capable of PetaFLOPS

performance (i.e., 10 ¹5 floating-point operations per second) by the year 2007 was



identified recently by numerous federal agencies as being an absolutely essential task.

Problems related to PetaFLOPS activities currently seem to be insurmountable, primarily

because of the difficulties in developing low-complexity, high-bisection bandwidth, and

low-latency interconnection networks capable of connecting thousands of processors

together in the DSM framework [1, 4, 6, 12].

Current, feasible approaches to massively parallel processing use bounded-degree

networks such as meshes with a low degree of connection (e.g., Intel Paragon and Cray

Research MPP). The main obstacles with these approaches are the resulting large

diameter and average inter-processor distance, and the small bisection bandwidth. To

improve the topological properties of bounded-degree networks, switches may be

incorporated in the design [11]. However, such approaches are not appropriate for very

high-performance computing.

The generalized hypercube network [10] is better on all of the above properties

but its very high VLSI (i.e., wiring) complexity is a Herculean task because of heavy

scalability problems. Contrary to the popular direct binary hypercube [5] that contains

only two nodes in each dimension, the generalized hypercube forms a fully connected

subsystem with many nodes in each dimension. It is well known that the former is not

scalable in practice [1, 6, 8], and therefore the latter (i.e., the generalized hypercube) has

even more dramatic scalability problems. However, with an alternative to wiring, such as

using hybrid electronic/optical interconnection technologies or electronic switches, the

generalized hypercube seems to be an ideal interconnection network for the next

generation of massively-parallel systems [9, 12, 13, 15]. An architecture capable of near-

PetaFLOPS performance by the year 2005 was designed and analyzed, in terms of



feasibility and performance, under a New Millenium Computing Point Design grant

awarded jointly to NJIT by NSF, DARPA, and NASA [12, 13]. This architecture

employs free-space optics for the implementation of a 2-D generalized hypercube of 8-

processor cards, and contains a total of 10,368 processors. Other designs implement

generalized hypercubes by substituting small switches [9] or optical fibers [16] for

processor-to-processor wires in each fully connected subsystem.

This thesis investigates the implementation of important communications

primitives, like broadcasting and multicasting, on generalized hypercubes. Broadcasting

is the distribution of a message or a group of messages from one (or multiple) source

processor(s) to all other processors. It can be considered a special case of multicasting,

where a single (or multiple) source processor(s) distributes a message or a group of

messages to a subset of the processors. All-to-all broadcasting is the distribution of a

message or a group of messages from all processors to every other processor. All

algorithms in this thesis assume store-and-forward message (packet) switching (i.e., an

intermediate processor receives the entire message before attempting to forward it) and

the all-port model where a processor is capable of using all of its communications ports

at the same time for the same or different messages (i.e., a processor could communicate

with all of its neighbors at the same time).

1.2 Interconnection Networks for Parallel Architectures

One of the most important criteria that decides on the effectiveness of a parallel computer

is the technique or methodology used to interconnect the thousands of processing

elements or processors into a tightly integrated unit. This is what is referred to as the

interconnection network. Interconnection networks can broadly be divided as either static
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or dynamic interconnection networks. Static networks use direct links that are fixed once

built. Message passing multi-computers usually rely on a static network (such as the

hypercube interconnection network) and shared-memory multi-processor systems opt for

dynamic interconnections, such as those implemented by a bus. Obviously an ideal

interconnection network would interconnect together all pairs of processors in the

system; however, such an interconnection network is neither practical nor feasible. Figure

1.1 shows a fully connected system with 16 processors. The VLSI implementation of

such a large system using current wiring technologies is an impossible task.

Figure 1.1: Fully-connected system with 16 processors

1.2.1 Mesh

A 3 x 3 mesh network is shown in Figure 1.2(a). This is a feasible popular architecture

that has been implemented on computers such as the Good Year MPP, CRAY research

T3D, and Intel Paragon. There exist many variations to the mesh interconnection

network. In general, a symmetric k-dimensional mesh with N n k nodes has an interior

node degree (i.e. number of edges) of 2k and a network diameter of k x (n-1). Figure



5

1.2(b) shows a variation of the mesh allowing wraparound connections. This variation

was implemented on the Illiac IV.

(a)

(b)

Figure 1.2 (a): A 3x3 mesh. (b) A variation of the 3x3 mesh

1.2.2 Torus

The torus is one of the most widely used inter connection networks in commercial

parallel computers. A torus contains communication links that connect the smallest
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numbered node in a dimension directly to the largest numbered node in the same

dimension. This type of connection forms a ring where information can be transferred

unidirectionally from one node through all of the nodes in the same dimension, and back

to the original node. In general, an n x n torus has a node degree of 4 and a diameter of

2x Ln/2˩  Figures 1.3(a) - (b) show a 1-D and 2-D torus interconnection network,

respectively.

(a)

(b)

Figure 1.3 (a): 1-D torus. (b) 2-D torus
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1.2.3 Hypercube

The hypercube is a binary n-cube architecture. An n-cube consists of N=2" nodes

spanning n dimensions, with two nodes per dimension. Two nodes are neighbors in the n-

cube if and only if their n-bit binary addresses differ in a single bit. A 3-cube with 8

nodes is shown in Figure 1.4. The node degree increases linearly with respect to the

number of dimensions, making it difficult to consider the hypercube a scalable

architecture. The main characteristic for an architecture to survive in future systems is

packaging efficiency and scalability to allow modular growth.

Figure 1.4: 3 -cube

1.2.4 The Generalized Hypercube Network

The symmetric k-ary n-dimensional generalized hypercube, denoted by GHn,k , is a graph

with N = k" nodes (processors), each one being represented by an n-digit number in

radix-k arithmetic [10]. In this symmetric network, each processor is connected to nx(k-I)

other processors. Any two directly connected processors are referred to as neighboring

processors and their n-digit addresses differ in only one radix-k digit. Each processor in

the generalized hypercube has a degree (i.e., the number of edges) of n x (k- 1) and a



S

diameter (i.e., the maximum shortest distance between any pair of processors) of it

Figure 1.5 shows the generalized hypercube

Figure 1.5: Generalized Hypercube GH2.7

The generalized hypercube interconnection network has not only outstanding

topological properties (e.g., a very small diameter) but also a very high bisection width

',i.e., the minimum number of interconnections between two equal halves) when

compared to the torus (i.e., the k-ary n-cube, which is the most widely used network in

commercial systems nowadays) or the mesh with an equal number of processors. This

means that the generalized hypercube results in outstanding performance for large
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systems with thousands of processors and heavy inter-processor communication traffic.

Unfortunately, its implementation using only wires is impractical as the number of wires

for data transfers increases exponentially with the number of processors. The system

proposed in [12, 13], which will be capable of near-PetaFLOPS performance by the year

2005, has 10,368 processors. It makes use of hybrid electronic/optical technologies to

implement a generalized hypercube. Table 1.1 compares the numbers of channels in the

k-ary n-cube (i.e., the n-D torus) and the generalized hypercube GHn,k with the same

number of processors (i.e., e). For example, assuming bi-directional channels for full-

duplex communications and 64-bit data channels, systems with 10,648 processors (with

n=3 and k=22) will have the following complexities:

• 4,088,832 wires for the 22-ary 3-cube with a diameter of 33

• 42,932,736 wires for the 3-D GH 3 , 22 with a diameter of 3

Table 1.1: Comparison of interconnection networks, assuming full-duplex bi-directional
data channels

Network Model Number  of Channels Diameter
k-ary n-cube	 2 x n x le 	 n x Lk/2i 

(k — 1) x n x kn

A common approach to designing communications algorithms for inter-processor

communication networks, such as the generalized hypercube, the mesh, and the torus, has

been the embedding of spanning (sub)graphs with special properties into these networks.

In this thesis, we first make use of the spanning graphs for the generalized hypercube

proposed in [3], for the performance assessment of corresponding one-to-all and all-to-all

broadcast algorithms under realistic communication traffic. Relevant work from [3] is

summarized in the next chapter. Further work on multicasting is also presented later.
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1.3 Motivation and Objectives

As previously mentioned, most of the current commercial massively-parallel computers

make use of the torus interconnection network due to the unavailability of an

interconnection network with a greater number of connections that still offers efficient

packaging. The parallel computing community has not yet implemented large generalized

hypercubes because of scalability problems in terms of wiring. With recent advances in

technology and the availability of alternatives to wiring, such as hybrid electronic/optical

interconnection technologies and electronic switches, the generalized hypercube seems to

be a very good interconnection network for scalable parallel computers. A recently

introduced class of architectures employ the generalized hypercube as the basic building

block; these building blocks are highly overlapped in each dimension to produce systems

of reasonable hardware complexity and outstanding topological properties [15]. The latter

architectures can be implemented feasibly even with current electronic technologies.

Current designs have a small node degree (e.g. torus) and hence a lower performance.

The generalized hypercube, on the other hand, has a higher node degree and can result in

a dramatically better performance.

With advances in technology that will make systems using the generalized

hypercube scalable and practical in the immediate future, it is imperative that a detailed

study be made of the communications capabilities of such a system. While most of the

available technical literature concerning hypercubes available tries to do a theoretical

study on the aspects of the system, this thesis is projected to study in detail some of the

capabilities of the system by actually simulating such a system.



CHAPTER 2

COMMUNICATIONS OPERATIONS ON THE GENERALIZED HYPERCUBE

2.1 Widely used Communications Operations

There are some operations that are so commonplace with all parallel computers that it is

sometimes a good idea to hardwire (i.e. implement dedicated hardware circuitry) the

interconnection to handle these operations effectively. On any parallel computer, some of

the widely used communications primitives are broadcast, scatter and reduction

operations. These are briefly summarized in the following subsections.

2.1.1 Broadcast Operation

A communication operation involving the transfer of the same message or group of

messages from a source processor to all other processors in the system is referred to as a

broadcast. This is referred to as one-to-all broadcasting when a single source processor

initiates a message transfer to all other processors. A worst case scenario is when all the

nodes in the system initiate a one-to-all transfer at the same time. This is a special case of

the broadcast operation and is referred to as all-to-all broadcasting.

2.1.2 Scatter Operation

The scatter operation involves the transfer of different messages or groups of messages

from a source processor to all other processors in the system. Similar to the broadcast

operation, one-to-all scattering involves the transfer of different messages from a single

source processor to all other processors in the system and the all-to-all scatter operation

refers to the simultaneous transfer of different messages from all the processors in the

system.



2.1.3 Reduction Operation

The reduction operation is the opposite of the broadcast operation and is the collection

and combining of messages by a single processor from all other processors in the system.

This kind of operation might be required in operations involving some kind of

synchronization where all processors proceed with the next step in the execution cycle

only when all of them have attained a particular value which is collected by the single

processor which initiated the reduction operation.

2.2 Implementation

One technique often used to implement communications operations on any

interconnection network is to embed spanning trees specially designed for each network.

Fragopoulou in [3] presents a novel way of implementing the one-to-all and all-to-all

broadcast communication primitives on the generalized hypercube using such a

technique. The spanning tree is created with the source processor as the root and all other

processors appear in subtrees of the spanning tree. However, taking advantage of the fact

that the generalized hypercube is a symmetric network, the authors create at static time a

spanning tree/subgraph rooted at the (source) processor with address zero, and at run time

they can create another spanning tree rooted at any other processor through address

transformation.

2.2.1 Binary Spanning Tree

Let us summarize the procedure for creating a spanning tree rooted at the (source) node

.s=0n  in the generalized hypercube GHn,k. On denotes a string of n consecutive O's. All

processors appearing at the same minimum distance from the source processor, s, are
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grouped together and then in each group necklaces are created. A necklace is defined as

an ordered group of processors, each one derived from the subsequent one in the same

group cyclically, through rotation. The rotation of a node v, v = v pi_ 1 . . . vi 4- / vivi- 1 - v0 in the

GHn,k produces the node R(v) given by:

R(v) = v n.21, i+ iv iv i_ 1 ... v or (1 ' ,2-1)

where

{	
0	 if vn- 1 = 0

r(vn-1 ) =
v„_, mod(k —1)+1 if v„_, # 0

For example, for the generalized hypercube GH 3 , 5 , if v = 342 and u = 023, then

R(v) = 424 and R(u) = 230. Thus, all processors in a necklace are at the same distance

from the source s. A necklace consists of at most n x (k - 1) processors. A fall necklace

contains nx (k - 1) distinct processors.

The nodes at each given distance i from node On in the GHn,k, where I _<i __ n, are

collections of necklaces. More definitions are pertinent [3]. The binary correspondent of

a node is the binary number derived by substituting a / for each non-zero digit in its

address. The generator node of a necklace is the node in the necklace with the largest

binary correspondent. If more than one such node is found, we choose the one with the

largest address. The displacement, D(v), of a node v is the minimum number of rotations

applied on v that produce the generator node. The period, P(v), of a node v is the number

of node s in its necklace. An unfolded necklace contains n x (k-1) ordered nodes, not

necessarily distinct, where each node is obtained from its subsequent one through

rotation. A full necklace is identical to its unfolded necklace. The unfolded necklace of a
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non-full necklace with P nodes is obtained by repeating the latter necklace n x (k-1)/P

times. Table 2.1 shows the unfolded necklaces in the generalized hypercubes G1-13 .3 and

GH34.

Table 2.1: The necklaces of GH 3,3 and GH3,4

Necklaces of 

GH

3,3 	 Necklaces of

GH3,4

Distance	 Nodes	 Distance T	Nodes

d=0 000 	 d-0 	000 
d=1 	 200, 020, 002, 100, 010, 001	 d=1 	 300, 030, 003, 200, 020, 002, 100, 010, 001
d=2 	 220, 022, 102, 110, 011, 201	 d=2	 330, 033, 203, 2 2 0, 022, 102, 110, 011, 301

210, 021, 202, 120, 012, 101	 310, 031, 303, 230, 023, 202, 120, 012, 101
	  3 2 0, 037, 103, 2 10, 021, 302, 130, 013, 201 

d=3 	 222, 122, 112, 111, 211, 2 2 1	 d=3 	 333, 233, 273, 2 22, 122, 11 2 , 111, 311, 331
212, 121	 332, 133, 713, 271, 37 2 , 137, 113, 211, 321

3 2 3, 2 32, 123, 21 2 , 121, 31 2 , 131, 313, 231

Assume that the source node is s = 0". A shortest path, balanced spanning tree

rooted at s = 0" and denoted by BST0n  is now constructed using the following function.

For processor v with displacement D(v) = i, let p be the position of its first non-zero digit

cyclically to the left of the position (n - I - 1) mod 11. Then,

BST 	 0	 if v =0"
Parent 0 (v) =

v „_,...v p+1 0v 	 0	 if v ≠  0"

The spanning tree rooted at 0 3 of the GH3,3 is shown in Figure 2.1.

2.2.2 Binary Spanning Graph

To derive the spanning subgraph BSG0" rooted at node 0", we replace each non-full

necklace with its corresponding unfolded necklace in the BST0" . Figure 2.2 shows the

BSG03 of the GH3,3. For the generalized hypercube GH3,4 all the necklaces are full and
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hence there is no difference between the necklaces and the unfolded necklaces. Hence the

BST03 and BSG03 for the GH3,4 would be the same.

Table 2.2: The unfolded necklaces of GH3 . 3

Unfolded Necklaces of GH3,3 

Distance	 Nodes
d=0    000 
d=1    200, 020,002,100, 010, 001 
d=2    220,  022,  102, 110,  011,  201

210, 021, 202,120,012,101 
d=3    222,  122,  112, 111, 211, 221

212, 121,  212,  121, 212,  121

Table 2.2 shows the unfolded necklaces of theGH3,3 . Nodes belonging to full necklaces

have a single path to node 0" in the BSG 0n . In contrast, nodes with period P belonging to

non-full necklaces have n x (k-1)/P paths. We use the BST0n  for one-to-all broadcasting

and the BSG

0

n " for all-to-all broadcasting. The multiple paths in the BSG

0

n " make room for

data to be spread across channels, so that the bandwidth requirements of data channels

can be reduced, which, in turn, reduces the total number of communication cycles.

Figure 2.1: The binary spanning free BST0³ of the

GH3 . 3
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For communications operations originating at a processor other than the processor

s = On , the statically created tree/subgraph is translated with respect to the new source

processor. The translation of a processor v with respect to s results in the processor

t=Ts(v), such that t i = (v i + s) mod k, where 0 ≤  i ≤  - 1). Both the rotation and

translation operations preserve the distance between processors. This attribute helps in

avoiding contention in all-to-all broadcasting. More specifically, messages are

interleaved to completely avoid contention.

Whereas these algorithms for one-to-all and all-to-all broadcasting are

asymptotically optimal, they may not perform well under realistic conditions where

messages are generated randomly. Such an investigation is carried out in this thesis. We

also investigate the performance of a technique that uses these spanning trees/subgraphs

for the implementation of multicasting (i.e., one-to-many communication), again under

realistic message generations. By the way, all-to-all broadcasting can be viewed as a

special case of multicasting with a single source, where all processors are destinations.

Figure 2.2: The binary spanning graph BSG0³  of the CH³.³



CHAPTER 3

INVESTIGATION OF COMMUNICATIONS PRIMITIVES

The one-to-all and all-to-all broadcast techniques in [31 do not result in message

contentions if no processor initiates a broadcast till all previous, if any, broadcasts have

been fully completed. This offers a substantial limitation when dealing with practical

systems where a random number of processors may initiate communications operations

in any cycle. Under the latter scenario, there may be considerable numbers of contentions

on the data channels. The same problem persists in the case of multicasting, where a

random number of processors initiate a message transfer, the only difference here being

that only a subset of the total number of processors receive the message.

Since only one message is allowed to traverse a given channel towards its

destination at any time, any held up messages need to wait at the corresponding

intermediate processor. An immediate consequence arising as a result of this

complication is that the intermediate processor now must have buffer space to

accommodate for these messages. The buffer size cannot be infinite in practice, and

hence the time taken by the communications operation to complete now also depends on

the buffer size. The effect of the buffer size on the total communication time is also

studied in this thesis, through simulation. We point out in the rest of this chapter potential

message contention problems for the existing communications algorithms. We also

present algorithms for the implementation of many-to-many multicasting on generalized

hypercubes. Simulation results for all these algorithms are presented in the next chapter.

I7
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3.1 Randomized Many-to-All Broadcast Operation

In the randomized many-to-all broadcast, each processor randomly tries to initiate a one-

to-all broadcast in every cycle using the Poisson distribution. The Poisson distribution is

widely accepted for message generation in simulations of parallel systems. The worst

case would result if all the processors were initiating broadcasts, resulting in all-to-all

broadcasting. Although the all-to-all broadcast algorithm in {3] deals with this worst case

scenario in a way that avoids any message contention by using the spanning subgraphs, it

guarantees this under the assumption that only communication activities related to a

single all-to-all broadcast are present at any time. However, message contentions are

possible if activities related to new and old (i.e., not yet completed) many-to-all and all-

to-all broadcasts are simultaneously present. One of our objectives is to thoroughly study

the cases that result in such message contentions.

In each cycle, every processor calculates randomly the probability of initiating a

message. A threshold value of 2/3 x (Maximum Probability) was set for the Poisson

distribution and all processors having a probability value greater than this threshold

initiate a message transfer. Since there is a high probability that more than one processor

may initiate a message in a given cycle, and there may also be several message initiations

in successive cycles (i.e., processors in the system need not wait till all messages

generated in previous cycles have reached their destinations), there may be considerable

channel contention.

3.2 Many-To-Many Multicast

Multicasting with a single source is the distribution of a message from a single processor

to many, but not necessarily all, processors in the system. Many-to-many multicasting
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(i.e., multicasting with several sources) is several simultaneous multicasts of the former

type, without necessarily the same set of destinations. Special cases of multicasting

include one-to-all broadcasting (i.e., one source processor and all other processors are

destinations) and all-to-all broadcasting (i.e., every processor is a source and broadcasts a

message to all other processors in the system).

The spanning trees/subgraphs created in [3] for broadcasting may be used to

selectively distribute the messages to the destination processors. Identical messages for

several destination processors residing in the same subtree could be clubbed as one

message as long as they follow the same path from the source processor. This could

drastically reduce the network traffic. Such a clubbing algorithm and the main multicast

algorithm are proposed in the following two subsections, respectively.

3.2.1 Brute-Force Clubbing Algorithm

Given a group of destinations for multicasting from a single source, all destinations

having the same displacement (as defined in [3] and Chapter 3) are clubbed together as

they all belong to the same sub-tree. We assume that each transmitted message contains a

header with the source address and a group of destination addresses. Destinations in the

group with the smallest number of common digits in their addresses are determined. The

system is then in a position to know the level closest to the root in the broadcasting tree

where these identified destinations have a common ancestor. Thus, instead of

transmitting multiple copies of the message to individual destinations, the source

processor sends only one message to this ancestor, along with the list of the

corresponding destinations (these destinations are in a subtree rooted at this ancestor). At

this ancestor, say at level i, copies of the message are made, where g;., ¹ is the number
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of its child processors at level /41 being destinations or having descendants that are

destinations. One copy of the message is distributed to each one of these children at level

1+1, along with the corresponding (sub) list of destinations.

When a particular destination processor is reached, its address is removed from

the destination list. The group of remaining processors is again scuttled around to

determine common ancestors closest to the source. Each processor that is in receipt of a

copy of the message now initiates the above steps recursively till all the destination

processors on the list are exhausted. This clubbing technique may drastically reduce the

bandwidth required of data channels. The effect is more drastic for channels closer to the

root of the tree. Figure 3.1 shows the process of clubbing the messages meant for

different processors in the same subtree for the general case of broadcasting; the notation

i/j denotes the transmission of i messages to j destinations. As seen, the network traffic

can be significantly reduced.

Figure 3.1: The process of clubbing messages to reduce the traffic for broadcasting on
the GH 3,4 4
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3.2.2 Multicast Algorithm

Before presenting the basic multicast algorithm, a few definitions are pertinent. Let us

first reiterate that in the generalized hypercube GHn,k the total number of processors is

Al=e and its diameter is n. The depth, D, of a node in a spanning tree is the number of

radix-k digits in the node's address that differ from the source address, and in effect it is

the minimum number of channels (hops) between the source and this node. The

maximum depth corresponds to the leaf processors, which are at depth n (i.e., equal to the

diameter of the generalized hypercube).

Given a node with displacement d in a spanning tree rooted at 0", the leading

zeros, if present, in its address are found by the following procedure. Assuming that the

most significant radix-k digit in the address has index 0, first find the digit with index (d

mod n). The leading zeros, if present, in the address are the maximal group of consecutive

zeros just to the left of the latter digit, assuming a cyclic address. Leading zeros do not

exist for the leaf nodes in the tree rooted at address O" ; each node at any other level of this

tree has children whose addresses differ from its own address in only one of its leading

zero digits. For example, consider the processor with address 1010100 in the generalized

hypercube GH7,2, which has displacement d = 0 and depth D=3 in the tree rooted at 0'.

Starting with the most significant digit, corresponding to index 0, we go cyclically to its

left to identify the two least significant digits in the address as the leading zeros. The

details are shown below:

• The indicated digit position in the processor address 1010100, for the spanning tree

rooted at 0 7 in the generalized hypercube G1 -17,2, corresponds to the displacement of

that processor:

0-th digit

1 01 0 I 00



• The leading zeros of the address are:

2Leading Zeros

10101 	 00

Therefore, the number of child processors, 11/, for any non-leaf processor in the spanning

tree created is given by

M S (k-1) x (number of leading zeros)

Our multicast algorithm operates as follows. First, apply the inverse of the

translation operation to any given destination address to determine the displacement, d, of

the inversely translated destination processor in the spanning tree rooted at the given

source s. This inverse translation of nodes is with respect to the source node s. The

inverse translation of a node v with respect to node s is denoted by t = Ts-¹(v), so that

- s) mod k, for 0	 n-I. The inverse translation is applied because the BST, is

obtained by translating all nodes in the BST0n by s.

Step 1: For the inverse-translated source processor (i.e., processor 0,) modify its address digit

with index (d mod n) from the left to equal the corresponding digit in the inverse-translated

destination. Translate the resulting processor with respect to s to obtain the node P¹. This is the first

processor in the subtree enroute to the destination processor d i at depth 1. The message is then sent to

this intermediate processor P i for this destination.

Step 2: At any intermediate processor Pi, where I	 (1-1), inverse-translate Pi and the

destination address d i with respect to the source address s. We reiterate that the source and

destination addresses are contained in the message header. Identify the field of leading zeros in the

inverse-translated Pi. In the corresponding field of the inverse-translated 61¹, check for the first non-
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zero digit cyclically to the right of position (d mod n). Modify the corresponding digit in the inverse-

translated Pi to match this non-zero digit. Translate the result with respect to s. This is the next

processor in the subtree enroute to the destination,

Step 3: Repeat the above step recursively till the current processor equals d 1 .

Figure 3.2 demonstrates the multicast operation on the generalized

hypercube GH3,4. A label along a channel represents a message travelling from one

processor to its neighboring processor enroute to the destination. The multicasting

operation generates one message for every destination. For optimal performance, the

technique of clubbing can be used (as described earlier). Figure 3.3 shows the same

multicast operation with active clubbing of destination processors.

Figure 3.2: Multicasting on the GH 3,4



Figure 3.3: The process of clubbing messages for multicasting on the GH 3,4
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CHAPTER 4

SIMULATIONS

4.1 Implementation

Simulation of the multicast and broadcast algorithms was carried out on sequential

systems by generating the spanning trees/subgraphs as outlined earlier. The source code

was written in C++. Despite the sequential simulation, the implementation here is

described for a parallel system containing a generalized hypercube. The entire spanning

tree/subgraph rooted at O n is created at static time (i.e., before the actual operations on the

generalized hypercube commence). This has been implemented in the simulation by

dynamically creating objects/array structures corresponding to each processor in the

system. Each processor at static time creates the entire spanning tree and stores it in its

local memory. The record of each node in the tree can be accessed in constant time in the

local memory by using a simple hashing function involving the node's address. The

processor in the generalized hypercube GHn,k with address v=vn-1 … vi+ Iv ivi-1 …v0

corresponds to the index j in the array of node-records, where

J = R + vn-1 x kn-1 + vn-2 x kn-2 + … v1 x k1 + v0 x k0

and R is the index for the source processor O n . For example, if the source processor has

index 0 in the generalized hypercube GH2,4, then processor with address 20 appears at

index j = 0 + 2 x 4 + 0 = 8. Each processor in this allocation has pointers to its child

processors and also pointer(s) to its parent(s), as per the spanning tree/subgraph rooted at

O n , also referred to as BST 0n/BSG0n.Each processor has an input message buffer, namely
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inbox, for data arriving from its parent(s) and n x (k-1) (i.e. the number of its neighboring

processors) output message buffers, namely outboxes, one for each of its children.

In the case of the one-to-all broadcast, when a processor s initiates a message, it

identifies its child processors in the spanning tree BST, by applying the translation

operation with respect to s to the children of the node On in the BST 0n".The initiating

processor then distributes the message to the appropriate inboxes of all its children. The

propagation of messages continues till the leaf processors are reached.

In a variation of the one-to-all broadcast, called herein randomized many-to-all

broadcast, a random number of processors may initiate one-to-all broadcasts in every

cycle. This random number is determined in our simulation by the Poisson distribution

that is often used to represent real-life traffic patterns. Thus, new messages may be

initiated in any cycle of the simulation. In the case of the many-to-all broadcast, the

spanning subgraph BST S is used for a source node s. Some of the processors with

multiple paths to the root receive messages that are split across channels, as described in

Chapter 3.

The multicast operation makes use of the spanning tree BST

S

 for the transmission

of messages originating at node s. As in the case of randomized many-to-all broadcast,

the source processors are determined in each cycle by using the Poisson distribution, and

for each of these source processors random destinations are determined. Arbitrarily, the

number of destinations has been chosen as N/32, N/16, N/8 and N/4, where N is the total

number of processors in the system. A starting destination address, r1  and a stride, r2 , are

chosen each time using random number generators to determine the destination addresses

((rl+i · r 2) mod N), where  0 ≤ r l, r 2  ≤ N-1 . When a message is initiated by a node s,
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copies of the same are made into the outboxes corresponding to the appropriate next level

(in the BSTs) children for the multicast.

Each simulation was carried out 20 times and the results were averaged to give a

clear picture of the communication bottlenecks arising as a result of the increased,

random traffic patterns.

4.2 Simulation Results

The randomized multicast and broadcast operations were simulated using the Poisson

distribution, where in any given cycle a processor may become the initiator of a message

if and only if its probability is above a predetermined threshold value. The Poisson

distribution probability for k successes in the specified time interval is given by

where a is the average number of initiations in the specified time interval of 20 cycles. k

is a random positive integer generated each time by using the system clock. The value of

Pik] is maximum at k = a and k= a- I, if a is a positive integer and a> 1.

k

Figure 4.1: The Poisson distribution curve obtained for a random processor.

Figure 4.1 displays the Poisson distribution curve obtained for the processors

initiating a communications operation in a given cycle, averaged over 20 cycles. The
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value of a has been chosen as 15 to have an increased probability of a processor initiating

a message in any given cycle. All processors having in a given cycle a probability greater

than the threshold value, set as 2/3 x (Maximum Probability), are considered message

initiators. For each processor that happens to be an initiator, a translated spanning

tree/subgraph is created dynamically in a distributed manner; the message is first

distributed to all the source's children in the case of broadcasting and to the appropriate

set of children in the case of multicasting.

Table 4.1: Results of randomized broadcasting

GII,,,k	 No. Execution Time (cycles) • 	 1 Z.,   
Of	 Buffer Size (messages)

	

. Procs. 	 3 	 4 . 	 5 . 	 6	 7 	 8 	 oo 	Mesgs.

GH2,8 	64	 71	 55	 44	 38	 33	 30	 27	 3129

GH2,16 	256	 57	 44	 36	 31	 28	 25	 27 	 8157
GH3,8 	512	 62	 48	 40	 35	 31	 29	 2,3	 18168

GH6,3 	729	 71	 56	 46	 42	 36	 33	 26	 34185

GH4,7 	2401	 78	 60	 50	 43	 38	 35	 24	 99257

GH5 , 5 	3125	 74	 57	 48	 42	 37	 34	 25	 141321

GH4,8 	4096	 69	 53	 45	 38	 35	 32	 24	 164406
CH4 , 10 	10000	 77	 60	 50	 43	 38	 35	 24	 425234
GH 4 , 11 	14641	 95	 72	 60	 51	 45	 41	 24	 827566

GH3.25 	 15625	 96 	73	 60	 51   44	 40	 2.3 	926318 

Simulation results of many-to-all randomized broadcasting are presented in Table

4.1. 'No. Of Mesgs.' in the table represents the total number of one-to-one source-to-

destination messages. The results show that randomized multicasting may result in a

large number of contentions if the basic algorithm from [3] is used repeatedly. Also, the

buffer size has a very significant effect on the total time.

Tables 4.2 through 4.5 present results of randomized multicasting, where the

number of destinations for each multicast is always 1/4-th, 1/8-th, 1/16-th and 1/32-nd,

respectively, of the total number of processors; the destination addresses are chosen
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randomly. The results show that the larger the system, the larger the message buffers we

need to have for better performance. The results also show that the basic algorithm for

broadcasting proposed in [3] may result in large numbers of channel contentions under

realistic conditions. For this reason, we present an adaptive routing algorithm for

multicasting in the next chapter, as well as respective performance results.

Table 4.2: Results of randomized multicasting, with 1/4-th of the processors being
selected randomly as destinations for each transfer

As the size of the generalized hypercube increases, the amount of information

being exchanged among the processors in the system grows alarmingly.

Table 4.3: Results of randomized multicasting, with I/8-th of the processors being
selected randomly as destinations for each transfer
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With a practical limit on the buffer size, it was noticed that generalized hypercube

systems GHn,k with a bigger value for k and a smaller value for n seemed to have a lesser

number of contentions than systems with almost the same number of processors having a

larger value for n and a smaller value for k.

Table 4.4: Results of randomized multicasting, with 1/16-th of the processors being
selected randomly as destinations for each transfer

GII„,k	 No. 	Execution Time (cycles) 	No.
Of	 Buffer Size (messages) 	 Of

	

Pro.cs.	 3	 4	 5	 6	 7	 8	 00	 Mesgs.

GH2.8 	64	 24f 	 73 	 23 	 1 	 22 	 22 	 22 	 22 	 705
GH2.16 	256	 33 	 29 	 27 	 25 	 24 	 22 	 22 	 2406

GH 3 ,8	512	 51 	 40 	 36 	 33 	 31 	 30 	 23 	 5066

GH6,3 	729	 60 	 48 	 41 	 37 	 34 	 33 	 26 	 7764
GH 4 ,7 	2401	 128 	 99 	 82	 71 	 62	 56 	 24 	 29576
GH 5 ,5	3125	 161 	 124 	 102 	 87 	 76 	 69 	 25 	 36172
GH4,8 	4096	 202	 157 	 130 	 112 	 99 	 89 	 24 	 44664

GH4.10 	10000	 437 	 330 	 265 	 223 	 192 	 169 	 24 	 118679
GH4.11 	14641	 648 	 490 	 395 	 331 	 286 	 252 	 24 	 774247

cut,,. 	 15625 SOS 	 1;124 	 90; 	 9;9 	 7n1	 177 	 157 	 23 	 243240

Table 4.5: Results of randomized multicasting, with 1/32-nd of the processors being
selected randomly as destinations for each transfer

GHn,k 	 No.	 Execution Time (cycles)	 No.
Of	 Buffer Size (messages)	 Of

	

Procs.	 3	 4	 5	 6	 7	 8	 oo	 Mesgs.

GH2,8 	 64 	 23 	 22 	 22 	 22 	 22 	 22 	 22	 360

GH2,16 	 256 	 26 	 24 	 23 	 23 	 23 	 23 	 22 	 1234
GH3.8 8 	512	 32 	 29 	 27 	 26 	 25 	 25 	 23 	 2600- 

GH6,3 	 729 	 39 	 33 	 31 	 30 	 30 	 29 	 26 	 3891
GH4.7 	 2401 	 70 	 56 	 47 	 42 	 38 	 35 	 24 	 15232

GH 5 , 5 	3125	 89 	 70 	 59 	 51 	 46 	 42 	 25 	 18555
GH4,8 	 4096 	 112 	 89 	 75 	 66 	 60 	 55 	 24 	 22898
GH 4 , 1 0 	 10000 	 222 	 169 	 137 	 115 	 100 	 89 	 24 	 62061

GH4.11, 	 14641 	 330 	 251 	 204 	 172 	 150 	 133 	 24 	 115614
GH3,25 	 15625 	 203 	 157 	130 	112	 89 	 78 	 23 	127276



:31

To demonstrate the need for a better multicast algorithm, we show in Tables 4.6

through 4.8 results where the same destinations are always chosen for all multicasts.

Table 4.6: Results of randomized multicasting, with 1/8-th of the same processors being
selected as destinations for each transfer

GHn,k 1 No.	 Execution Time (cycles) 	No.
Of	 Buffer Size (messages) 	 Of

	

Procs..	 3	 4 	 5 	 6 . 	 7 	 8 ∞Mesgs
GH2,8 	64	 41 	 38 	 33 	 28 	 24 	 24 	 22 	 1360
GH2,16 	256	 97 	 74 	 60 	 51 	 44 	 39 	 27 	 5024
GH 3 , 8 	512	 154 	 116 	 94 	 79 	 68 	 60 	 23 	 10752

GH6,3 	729	 205 	 155 	 124 	 105 	 91 	 81 	 26 	 18325
GH4,7 	2401	 349 	 265 	 215 	 182 	 158 	 140 	 24 	 63300

GH 5 ,5 	3125	 327 	 249 	 201 	 170 	 148 	 132 	 25- 	 75660
GH4,8 	4096	 562 	 424	 342	 286	 247	 217 	 24	 93184
GH 4 , 10 	10000	 601 	 454 	 366 	 307 	 265 	 233 	 24 	 258750
GH4,11 	14641	 901 	 680 	 547 	 458 	 395 	 348 	 24 	 477630
GH3,25 	 15625 	 1311 	 985 	 789 	 659 	 566 	 496 	 23 	 521451 

Table 4.7: Results of randomized multicasting, with 1/16-th of the same processors being
selected as destinations for each transfer

GHn,k 	No.	 Execution Time (cycles) 	No.
Of	 Buffer Size (messages) 	 Of

	

Procs.	 3	 4 	 5 	 6 	 7 	 8 	 00 	 Mesgs.

GH 2 , 8 	64	 36 	 29 	 25 	 24 	 24 	 24 	 22 	 731

GH2,16 	256	 88 	 67 	 54 	 46 	 40 	 35 	 22 	 2512
GH 3 ,8 	512	 118 	 93 	 73 	 61 	 53 	 47 	 24 5 376

GH6,3 	729	 150 	 114 	 92	 78 	 68 	 60 	 26 	 9485
GH4,7 	2401	 191 	 147 	 120 	 103 	 90 	 81 	 24 	 31650

GH 5 , 5 	3125	 209 	 159 	 130 	 110 	 96 	 85 	 25 	 37830

GH4,8 	4096	 276 	 209 	 170 	 143 	 124 	 110 	 24 	 46592

GH4,10 	10000	 367 	 277 	 27.3 	 188 	 162 	 143 	 24 	 129375

GH4,11 	14641	 564 	 426 	 343 	 288 	 248 	 219	 24 	 238815
Cu- 	 15625 	 659 	 496 	 398 	 333 	 287 	 252	 23 	 260592



Table 4.8: Results of randomized multicasting, with 1/32-nd of the same
processors being selected as destinations for each transfer

GHn,k 	No.	 Execution Time (cycles) 	No.
Of	 Buffer Size (messages)	 Of

	

Procs.	 3	 4	 5	 6	 7	 8	 co 	 Mesgs.
GH2,8 	64	 22 	 22 	 22 	 22 	 22 	 22 	 22 	 390

GH-2,16 	 256 	 32	 31 	 30 	 27 	 25 	 23 	 22 	 1224

GH 3 , 8 	512	 52 	 51 	 50 	 44 	 39 	 35 	 23 	 2688

GH63 	729	 117 	 90 	 73 	 62	 55 	 49 	 26 	 4820

GH4,7 	2401	 159 	 117 	 99 	 84 	 73 	 65 	 24 	 15825

GH5.5 	3125	 172	 132 	 107 	 91 	 79 	 70 	 25 	 18818

GH4.,8 	 4096 	 172 	 133 	 110 	 93 	 81 	 72 	 24 	 23296

GH4,10 	10000	 246 	 186 	 151 	 129 	 114 	 102 	 24	 64584

GH4,11 	 14641 	 321 	 244 	 198 	 167 	 145 	 129 	 24 	 119277

GH3.2 5 157.0--, 	 344 	 	?r,7	 21') 	 179 	 156 	 138 	 23 	 130296



CHAPTER 5

ADAPTIVE ROUTING

We have also simulated an adaptive routing algorithm for randomized multicasting. In

the case of adaptive routing in parallel systems, some messages do not follow the shortest

paths to their destinations, in order to avoid channel contentions 1141. In our adaptive

algorithm, each sending processor compares the numbers of messages in all its outboxes

whenever deterministic routing may result in channel contention (where a message will

have to wait in an outbox for a future transfer). If it finds an empty outbox corresponding

to a neighbor that is itself a neighbor to its intended child for that message, it sends the

message to the former instead of sending it to the latter.

Table 5.1: Results of randomized multicasting, with 1/4-th of the processors being
selected randomly as destinations for each transfer. Adaptive routing.

GHn,k 	 No.	 Execution Time (cycles) 	No.
Of	 Buffer Size (messages) 	 Of

	

Procs.	 3	 4 	 5 	 6 	 7 	 8 	 co 	 Mesgs..
GH2,8 	64	 63 	 48 	 39 	 33 	 29 	 26 	 22 	 2389
GH2,16 	256	 99 	 75 	 60 	 51 	 44 	 39 	 22 	 3036
GH 3 ,8 	512	 137 	 104 	 86 	 74 	 67 	 60 	 24 	 17752
GH6,3 	729	 204 	 156 	 126 	 107 	 93 	 82 	 29 	 26427
GH4,7 	2401	 467 	 354 	 286 	 240 	 208 	 183 	 26 	 100069
GH 5 , 5 	3125	 576 	 436 	 251 	 295 	 25 	 724 	 26 	 125050
GH 4 ,8 	4096	 753 	 568 	 456 	 382 	 329 	 289 	 42 	 155637
GH410 	10000	 1720 	 1292 	 1035 	 864 	 742 	 650 	 39 	 367486
GH4,1 1 	14641	 1744 	 1309 	 1048 	 874 	 750 	 657 	 26 	 726565
GH3,25 	 15625 	 1445 	 1089 	 875 	 733 	 631 	 555 	 24 	 826213 

Table 5.1 shows results of such simulations, where the number of random

destinations for each multicast is 1/4 -th of the total number of processors (as earlier for

deterministic routing). Comparing the results with earlier results for deterministic routing,

33
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we observe that adaptive routing reduces channel contentions and this often results in

reduced execution times.

Table 5.2: Results of randomized multicasting, with 1/8-th of the same processors being
selected as destinations for each transfer. Adaptive routing.

G H n,k 	No. I 	Execution. Time (cycles) 	No.
Of 	 Buffer Size (messages)	 Of

	

Procs.	 3 	 4 	 5 	 6 	 7	 8	 00	 Mesgs.

"2,8 	64	 68	 54	 46	 44	 41	 38	 22	 1360

GH 2 , 16 	256	 88	 68	 54	 46	 41	 37	 72	 5024

CH 3 ,8  	 512	 118	 89	 71	 62	 56	 38	 23-3 	 10752

GH6,3 	729	 173	 133	 105	 89	 76	 67	 26	 18325

GH 4 ,7 	2401	 305	 234	 188	 162	 141	 127	 25	 63300

7 GH5 ,5 	 3125	 324	 244	 194	 161	 140	 124	 27	 75660

GH 4 , 8 	4096	 562	 423	 339	 283	 244	 215	 25	 93184

GH4,10 	10000	 572	 433	 342	 288	 250	 220	 24	 258750

GH4,11 	14641	 850	 642	 510	 428	 370	 326	 24	 477630

GH3 . 25 	 15625	 1311 	  985	 789 	 659	 566	 496	 25	 521451 

To demonstrate even more dramatic improvements due to adaptive routing, we present in

Tables 5.2 through 5.4 results of randomized multicasting where the destinations are

identical for all multicasts; the number of destinations is 1/8-th, 1/16-th and 1/32-nd,

respectively, of the total number of processors.

Table 5.3: Results of randomized multicasting, with 1/16-th of the same processors being
selected as destinations for each transfer. Adaptive routing.

GHn,k	 No.	 Execution Time (cycles) 	No.
Of	 Buffer Size (messages)	 Of

	

Procs.	 3	4	 5 	 6 	 7 	 8 	 00 	 Mesgs.

GH28 	64	 35	 30	 25	 24	 24	 23	 22	 731

GH2,16 	256	 73	 54	 46	 39	 34	 32	 92	 2512

GH 3 ,8 	512	 76	 63	 49	 43	 39	 36	 24	 5376

GH6,3 	729	 85	 70	 56	 49	 45	 40	 26	 9485

GH4,7 	2401	 124	 105	 85	 76	 69	 64	 25	 31650

GH 5 , 5 	3125	 174	 134	 107	 91	 81	 74	 26	 37830

GH4,8 	4096	 274	 209	 168	 142	 123	 109	 24	 46592

G H4,10 	10000	 320	 245	 196	 166	 144	 127	 24	 129375

G H4,11 	14641	 471	 365	 286	 238	 206	 182	 24	 238815

GH3.25 , c 1	 15625	 659	 496	 398 	333	 287 	 252 	 24	 260592
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Table 5.4: Results of randomized multicasting, with 1/32-nd of the same processors
being selected as destinations _for each transfer. Adaptive routing.

	 -
GHn,k j No. 	Execution Time (cycles) 	J No. 1

Of 	 Buffer Size (messages) 	 Of

	

Procs. 	 3	 4 	 5 	 6 	 7	 8 	 co 	 Mesgs.
GH2,8 	64	 27	 25	 24	 1	 23	 1	 23	 23 1	 22	 390

GH 2 , 16 	256	 39	 31	 27	 27	 27	 27 	 22	 1224
GH3.8 	512	 51	 42	 37	 33	 31	 30	 23	 2688
GH6 ,3 	729	 57	 48	 42	 38	 37	 32	 26	 4820

GH4,7 	2401	 90	 71	 61	 54	 49	 46	 24	 15825
GH 5 ,5 	3125	 104	 81	 69	 60	 54	 49	 26	 18818
GH48 	4096	 146	 111	 91	 78	 68	 61	 24	 23296

GH4,10 	10000	 191	 146	 122	 106	 95	 86	 24	 64584

GH4,11 	14641	 238	 184	 153	 132	 116	 104	 24	 119277

Gill3,25 	 15625	 333	 251	 203	 170	 147	 129	 24	 130296



CHAPTER 6

CONCLUSIONS AND FUTURE WORK

We presented here results obtained by evaluating the communications capabilities of the

generalized hypercube interconnection network. Recent and expected advances in

electronic and hybrid wiring technologies will soon make the generalized hypercube a

practical interconnection network for massively-parallel processing. The algorithm

presented in [3] for broadcasting was tested under realistic conditions. The results show

that this algorithm may not often produce good results. For this reason, an adaptive

routing algorithm was proposed and tested. In addition, algorithms for multicasting were

proposed and evaluated. The results prove the versatility of the generalized hypercube

under heavy communications traffic.

More specifically, it was noticed that the execution time and the contentions on

the channels were directly related to the intermediate processor's input buffer size. As the

buffer size increases, the number of cycles required to complete the total task of

communication reduces noticeably.

With adaptive routing, assuming that a message can be routed out of its normal

route only a finite number of times, it was noticed that the effects were encouraging in a

good percentage of the cases. It was seen that adaptive routing worked better than

deterministic routing for systems with a large number of dimensions compared to

equivalent systems with a smaller number of dimensions and more nodes per dimension.

On the GH 5 ,5, which is the system that has been simulated with the highest number of

dimensions, the use of adaptive routing improved the performance by a good margin. In
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smaller systems, like the GH2, 8 and GH3 ,8 , the use of adaptive routing actually had a

small negative effect and the number of execution steps slightly increased.

In the general case (deterministic and adaptive routing), systems with a lower

number of dimensions performed better than comparable systems (with the same number

of processors) with more dimensions. This logically follows from the fact that the

bisection bandwidth (given as k n+1 /4) in the case of the former is greater and hence tends

to result in good communications behavior.

The entire simulation assumes the store-and-forward switching model. An

alternate approach using wormhole routing would definitely produce better results, but in

terms of implementation it would also be equally demanding. Redesigning the algorithm

so as to support wormhole routing would be an interesting and challenging extension to

this research work.

Additional research work should test the communications capabilities of the

generalized hypercube for communication patterns derived from widely used application

benchmarks.

Another improvement would be to assume realistic communication and message

switching times.
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