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ABSTRACT

A DESIGN-FOR-RETIREMENT RATING MODEL FOR
ENVIRONMENTALLY CONSCIOUS PRODUCTS

by
Xin He

Design-For-Retirement is a concept that allows one to design a product such that

its retirement time and post-life treatment are optimized to lead to the minimum

environmental impact and maximum financial gain. Retired product parts or

subassemblies face three primary multi-lifecycle engineering treatments. The first one is

to recondition them for reuse in the next lifecycle. The second one is to convert their post

life parts into a material form for recycling back into new parts. The last is to dump or

landfill them. Each option has a significantly different environmental cost-benefit ratio.

Another important concern is the dismantling process of a product, which disassembles a

product into subassemblies (clumps) and/or individual parts. It is not simply the inverse

of an assembly process. The decision of a disassembly plan depends on which treatment

results in the least environmental cost of each subassembly or part and maximum

financial gain. The disassembly paths and termination goal may vary. This thesis focuses

on building a combined optimization method of disassembly path generation and

retirement planning regarding to the different recycle choices of parts or clumps. A

matrix based representation method of product assembly information is presented. A

method to rate a design in respect of its environmental effects in its post life recycle is

also developed. They are demonstrated through several examples including two personal

computer designs: conventional one and Compaq's design based on the Design-For-

Retirement concept.
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CHAPTER 1 

INTRODUCTION 

1.1 Product Design Concerns with DEF 

Global environmental problems have clearly become a major issue in the recent years as 

industry moves into the 21 5t century. The need to diminish the environmental loads 

caused by human activities seems obvious to us. Today, both environmental concerns and 

rising product disposal costs are demanding for more environmentally friendly products. 

As a result of these economic restrictions, a firm's future competitiveness in markets 

depends upon making environmental issues a central concern. 

Raw I I 
MaterialS., Parts 1_I'_ar .. tsOO«.,iI>f Assembler or Products 

Manufacturers ~_e~a_Ie_r_---.J 
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Fig 1.1 Product Life without Environmental Concern 
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The consideration of the environmental issues of the products requires designers to pay 

more attention to the design-for-environment (DFE) engineering aspect. Hence, designers 

have to take into account environmental impact along with many other product 

requirements from the design stage, the very beginning of a product life cycle. Figures 

1.1 and 1.2 show two paradigms with and \vithout taking the DFE concern into design. 

The paradigms in Figure 1.2 shows that the whole amount of wastes produced during the 

manufacturing, assembly and consumer usage of a certain product could be filtered 

before being dumped to environment. As the product recycling goes within a pre-



designed manner, raw materiel, energy and labor cost can be saved for the next life cycle, 

bringing further advantages to productivity and serviceability as the usable recycled parts 

join new products. 
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Fig 1.2 Product Life Cycle with Recycling Concern 

However, before any environmentally sound product can be developed, designers must 

have the understanding of the relationship between the environment and industrial 

products. To make any DFE concern practical to industry, designers need to make the 

usage of recycled materials and recyclable products economically profitable or at least 

tolerable. This will also increase the chances of a product being reused/recycled by taking 

DFE and recycle cost concern into the initial design. Because major part (about 70%) of 

all the cost of a product life-cycle is decided at the design stage, early-stage integration of 

the environmental consideration for future recycle-compatibility into design is a 

reasonable solution. 
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In the design stage of a product with specifically desired functions, a designer is

responsible to incorporate various product life-cycle costs together. This thesis addresses

the entire life-cycle usability of a product, including the aspects like primary functions,

manufacturing and assembly cost, and serviceability. The focus is on the cost for reusing

or recycling of a product.

1.2 Design for Retirement

Design engineers have control over many aspects of a product. One thing every design

engineer must face is what will be the intended treatment for a product after it completes

a life cycle. Whether designers intend to have the product discarded for landfill, or plan

to reuse or remanufacture parts or all of the product will make significant difference in

the environmental impact, cost for post life-cycle recovery, and even the industrial

manufacturing pattern. In fact, some kinds of products from technologically advance

industries like computer and communication industries have the trend to be out-of-date

faster even though they still function well, and thus to be quickly discarded into a

recycling organization. Design For Retirement (DFR) is especially important in these

areas to keep the future environmental and industrial recycling burden low and

consumers satisfied with relatively new technologies. To achieve all these goals we need

to considerate many design aspects of a product, like Design for Function (DFF),

Serviceability (DFS), Assembly (DFA), etc. In this thesis work, we focus our concern on

the post life-cycle treatment of a product.

All of these aspects will take effect within a certain area of the whole life cycle of a

product. And some of them have close relationships to one or more other aspects. To
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achieve a good post life retirement plan, we must take Design For Disassembly (DFD),

Design For Environment (DFE) and Design For Serviceability (DFS) engineering aspects

together into concern (Fig 1.3).

4

DFA: Design for Assembly 	 DFD: Design for Disassembly

DFF: Design for Functionality	 DFS: Design for Serviceability

DFR: Design for Retirement	 DFE: Design for Environment

Fig 1.3 The Effective Ranges of Different Design Aspects

Retirement is not just recycling. It takes a combined consideration of manufacturing

labor, market pattern for specified products and environmental impact. A product with

Designed-for-Retirement should satisfy, when retired:

1. It could be easily inspected and taken into large "clumps", a group of parts

forming certain functionality, which is related to DFS and DFD;

2. Reusable parts could be easily taken off the assembly and reconditioned with

the minimum cost, which is related to DFD and DFE, and;

3. Valuable rare materials could be isolated and recycled. Environmental

damaging materials could also be kept within control.



Finding a method to reconcile these concerns and give a rating index for a specified

design from the post retirement treatment aspect is the central work of this thesis. To

achieve this goal, we need to have a disassembly analysis tool, and optimal disassembly

sequence generator for clumps/parts with regard to disassembly cost of the clumps or part

assembled. Then we can build a rating model based on the above two utilities.

1.3 Product Life Cycle Costs

In today's industry a product life cycle is viewed as the whole circle starting from

manufacturing of raw materials and back to this point, including manufacturing, transport

and dealership, consumer usage, recycle processing, remanufacture or landfill or

incineration. Each of these stages brings considerable cost, and the whole process forms a

closed loop with the environment providing material and energy as input and receiving

industrial wastes as output support.

After a post life-cycle product being taken off duty, all the "clumps"/parts will be chosen

for different fates regarding their original design intention for the post life recycle, their

serviceability condition for reuse, and the market and environmental impact penalty at the

time. To make the question simple, in this thesis we assume that all the "background"

costs like market cost varying of parts and landfill penalty will remain the same within

the product life cycles under consideration.

Many products are put into recycle far younger than their normal functional age because

customers usually look for the latest and best features in their categories. They have a

pattern of fast life cycles. Therefore some valuable parts in a product should be designed

to put in use for several lifetimes until the cost to remanufacture them exceeds the cost of
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new parts. The algorithms [Zhang & Yu, 1997] have been developed to help decide the

selection of material type and how many life cycles for a part to hold on in use to obtain

the optimized cost-environmental result from information of landfill cost, new part cost,

remanufacture cost and material value.

1.4 Retirement Optimization

Retirement optimization is to achieve a combined best result of environmental

friendliness, recycle compatibility and industrial economic without compromising a

product's quality or its commercial viability. The main elements we should take into

consideration are:

® Which clumps or parts within a product have the best market recycling value,

and what's the designed recycling intention for each clump/part (are they

designed with intention to be reused, remanufactured, and recycled as raw

materials, landfill or incinerated)?

e Which parts or clumps must be taken special attention due to environmental

damage effect they might cause?

O How the clumps are assembled, and what is the disassembly sequence with

minimum expense? All the clumps/parts need special attention must be taken

out, and clumps/parts intended to be discard or reused should be taken suitable

care;

6



We also need to balance weighting between disassembly difficulties/costs and

material/market value to make the cost as low as possible.

With the retirement plan being optimized, the product future after its functional life will

be known. Intended-for-reusing clump or parts may go much shorter loops and back into

a product life cycle until the remanufacture expense exceeds the benefit of reusing them.

The recycle burden could be distributed among dealer/assembler, manufacturer and

recycling organization. The recycling model could be changed to the one in Fig 1.4.

7
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CHAPTER 2

ELEMENTS OF ENVIRONMENTALLY CONSCIOUS DESIGN

2.1 Material Usage with Environmental Concern

Choosing raw materials for certain component or components within a product is the first

step that affects the product's lifecycle cost and environmental impact analysis. A product

may have many different input and output cost patterns depending on the analysis

viewpoints and which environmental, engineering or market aspects are emphasized in

the analysis. We may have input information about raw material cost, engineering and

manufacturing cost, assembly cost, market circulation cost, lifetime maintenance cost,

and post-life recycle cost. The outputs may include financial benefits, waste cost during

manufacturing, waste cost during assembly/disassembly, and whole lifecycle benefit gain.

In the product life cycle environmental concern model shown in Chapter 1, raw material

factor is the only input we take into consideration throughout the whole lifecycle.

When a whole product is considered, many aspects need to be considered. An example is

the material complexity problem introduced by the whole product environmental effects

during assembly/disassembly in choosing the material of components. Choosing different

material for parts also changes the overall product environmental effect and the time for

product retirement. Generally, the material recycle of a product component can be

considered within two groups:

Closed-loop recycle, in which components, subassemblies and material go

back into a new product in the same class;
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Open-loop recycle, in which material goes into lower level of recycle for

degraded class of products or landfill.

Closed-loop recycle is the process of reintroducing recycled material into the process of

manufacturing of new products in form of either remanufactured product parts or

recycled material. In this group, the material will be put in use in more than one product

lifecycles in some form. This is a form called "material mortgage". The material falling

into this group is generally of high value, since the recycle process will bring back the

"mortgaged" high value material for reuse in several lifetimes, thus the overall product

cost or price will be kept within a reasonable range. This process will need the

components made of the specified material to be designed to bring minimum cost in a

recycling and reprocessing procedure.

Open-loop recycle is the process of discarding the material out of the industry when the

lifecycle is completed. Here "discarding" means the material of post lifecycle product

will not be reused either as remanufactured components or direct material for

manufacturing of the components of this product. The material will be put into a lower

level of recycling circle than the product under consideration or put into landfill. In this

process if the material is designed to be discard, it should be of minimum possible value

and result in the lowest landfill or other environmental effects.

Another influence of material choices upon the overall product environmental effect is

the material complexity problem. Material complexity is also decided at the design stage,

and has an important role in determining the recycle decision plan and total recycle cost

of a product. Here material complexity is mainly affected by the number of kinds of
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materials used in the components and/or subassemblies of a certain product. It, however,

may depend upon the recycling technology that reflects the ability to process some or all

materials of a product. In detail, material complexity is a function of the following

factors:

• Number of material types used, which strongly influences the recycle cost of a

product;

• Number of material types requiring special care. Most "mortgaged" material

requires special care and handling to make its remanufacture cost the

minimum;

• Material compatibility, which requires incompatible materials used by product

parts to be processed separately with the minimum cost. This is partially

determined based on the current recycling technology.

2.2 Engineering Environmental Concern

The next major environmental concern of a product is its engineering process. It includes:

• Manufacture from material into components;

• Assembly of parts into a product;

• Disassembly process if the product needs to be disassembled into parts for

recycle after one product lifetime;

• Material processing which processes the used parts containing reusable

material into the recycled material for the next life cycle.

10



• Reconditioning used parts such that they are directly useable for the nest

lifecycle.

These engineering processes can be illustrated in a circular form in Figure 2.1 with raw

material as the input from environment and various discarding options as outputs to the

environment.

11

Figure 2.1 Engineering Process Circle

To consider the engineering environmental effect, the following information should be

obtained:

• Assembly and recycling technologies used;

• When should the product be put into retirement;

• The intended post lifetime fate of functional clumps decided during the design

stage and the disassemblability of each clump depending on its fate.



More detailed analysis methods like the one in [Lee and Ishii, 1997] use the concept of

Sort Complexity to sort the recycle treatment of products, into several levels with

different processing technology. The Sort Complexity concept captures more detailed

characteristics of a recycling process and can assist the recycling organization in planning

Design For Environment (DFE) product in relation with the recycling technology and

components reuse policy. The sort complexity is thus a function of disassembly and

clump processing.

2.3 Total Product Life-cycle Environmental Effect

From Sections 2.1 and 2.2, we can see that the concern ranges of material usage and

engineering processes have overlapped each other in some extend. In practice, these

concerns do not take effect separately. The total environmental effect of a dynamic

lifecycle of a product is the combined result of all the concerns.

In the Design-For-Retirement consideration, the disassembly cost should be kept

minimum, and the components or clumps made of closed-loop recycle material should be

easy to disassemble from the rest of an assembly. The usage of higher value closed-loop

material will give higher recycle ratio thus save the energy used and the landfill penalty,

but requires high initial material expense and may cost more in reprocessing and

reconditioning. While the usage of more open-loop material will reduce initial material

cost and the recycling cost but may cause a higher price for the landfill environmental

effect. In order to derive the maximum benefit gain, we should optimally select the usage

of closed-loop and open-loop materials for a particular product.

12



In the engineering aspect, component parts made of closed-loop kind material generally

should be designed to provide easy access to them and with lower disassembly cost. The

trade-off should be sought for a product in terms of less engineering complexity, less

recycling Sort Complexity, and lower disassembly cost.



CHAPTER 3

DISASSEMBLY SEQUENCE PLANNING

3.1 Assembly Sequence Planning

Assembly sequence planning is the opposite of disassembly sequence planning. It is a

high-level plan for constructing a product from component parts. It specifies which sets

of components form subassemblies/clumps, the order in which components and clumps

are to be assembled into the product. The main objective of assembly planning analysis is

to determine the sequence of assembling a product with respect to its geometric and

resource constraints. Assembly and disassembly sequence planning shares many common

characters and similar engineering goals. Similar models and methods are often used to

derive these plans. While this thesis work focuses upon the disassembly and retirement

plan optimization of a product, it is important to study the assembly planning analysis.

In all the assembly/disassembly planning analysis, we make the following major

assumptions of the components and assembly/disassembly process:

• All components have solid connection points, and will not change shape

during assembly or disassembly unless intended to be broken;

• The components or clumps are assembled to their final positions in the

product assembly or removed from this assembly in one translation;

• In assembly, once a component or clump is placed, it will not be moved;

• Once clumps are formed, they are assumed to be stable as a whole unit during

an assembly or disassembly process;

14



• There are no internal forces in the assembly to hold the components/clumps in

places except the connection point between each other.

The engineering goals of assembly/disassembly sequence planning analysis are both to

make minimum engineering process cost for the whole life cycle of a product. They

become an essential part of the engineering design exploration process.

15

Figure 3.1 Assembly and Disassembly Analysis Coverage of the Engineering Circle

In the viewpoint of Design-For-Retirement practice, assembly sequence planning is a part

of Design-For-Assembly, which is the process and set of design guidelines for improving

product designs for easier and lower cost assembly. Its goal is to deliver a cost-effective

assembly plan. Disassembly sequence analysis, in the mean time, has more relationship

with the material complexity and disassembly treatment complexity problems. The



assembly and disassembly analysis coverage of the engineering process circle is

illustrated in Figure 3.1.

3.2 Disassembly Sequence Planning

3.2.1 Problems of Disassembly Planning

This section discusses several major problems of generating and representing disassembly

plan in detail. To generate optimized disassembly plans, there are definitional and

computational problems. The first problem of choosing the best plan arises from the

range and complexity of the issue that must be considered: the complexity of fixtures, the

degree of parallelism permitted, the number of subassemblies and the difficulty or

technology required in the disassembly operations.

The second problem that faces disassembly sequence planers is the computational

workload. For a given product or a subassembly, after sorting out the disassembly levels

and paths, the number of possible plans for even some simple exemplary assemblies may

be fairly large [Wolter, 1991]. It is often difficult to give a good disassembly level and

path searching result for a much more complex and realistic product. The running time of

optimization algorithms typically grows in exponential time. [Chakarbarty and Wolter,

1997] gives a new approach with significant advances in the ability to specify complex,

realistic criteria and to find good plans rapidly according to those criteria. This approach

is based on viewing an assembly as the hierarchical collection of standard structures. The

procedure of generating an optimized disassembly plan is described in the following

paragraphs.
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First, the geometric information is captured in symbolic constraint languages that

represented assembly information in a mathematical form. As the parts are being

disassembled, a valid disassembly plan must ensure that no intersections occur between

them. That means the parts should be disassembled in a linear or parallel manner. Two

major forms of constraints languages are used:

Insertion constraint languages, describing constraints on which parts block

removal trajectories of other parts, and;

• Mating constraint languages, describing constraints of the order in which pairs of

parts can depart.

In this thesis, a combined matrix form assembly information representation method is

developed as described later in Chapters 5 and 6.

Next, the structure of an assembly under consideration is analyzed. Existing structure

library containing information about preferred ways to disassemble common assemblies

is used to make complicated product structure analysis easier and faster. Some structures

may contain other substructures. Thus the assembly structures may be arranged into a

hierarchy with the large, high-level assembly containing smaller subassemblies. Such

assembly hierarchies may not be unique. Different ways of dividing and disassembling an

assembly may be motivated by different views of the product assembly. It is important to

make note that the structure hierarchy does not give a geometric description of the

assembly, and is not intended as a substitute for a geometric model. It only describes a

symbolic structure of the assembly, grouping together elements that have some

significant relationships to the function or manufacture of the assembly.

17



To produce correct plans, additional geometric information is required in the form of

knowledge about which part motions intersect with other parts. Assembly structures can

be classified by type. Because many structures appear repeatedly in a wide variety of

assemblies, descriptions of such common structures and description of its substructures

can be stored in some sort of library. With the use of a well-stocked structure library,

although the complete structure hierarchy for a given assembly may be very large, to

generate this hierarchy will not be so burdensome because subassembly information can

be derived from the library.

A disassembly planner should not make decisions in any fixed temporal sequence, but

plans top-down in the structure hierarchy. First, plans are generated for the highest-level

assembly structures, and then disassembly plans for subassembly/clump can be built

regarding to the requirements of further disassembly of substructures. It seems a more

natural order to work on only those subassemblies that have been decided for further

disassembly by a higher-level disassembly plan. This can lead to new plans that can be

viewed as simultaneous or sequential executions of the sub-plans to form an overall

product disassembly plan.

Finally, after the disassembly plans are generated for a product, the problem is the

representation of plans. The plans can be given at different levels of abstraction. The

greater the details provided, the less abstractive the plan is. Disassembly plan

representation generally provides only a partial description of the assembly task and thus

many possible disassembly processes can be considered valid executions of that plan. It is

then critical to decide what detail should be included in the plan and which process

should be used at disassembly planning and execution stages. If too little details are

18



included in the plans, they become difficult to evaluate. If too much details are included

in the plans, then the planning process may become slow because many plans that are

essentially equivalent may be treated as different ones by the planner. Therefore, it is

important to try to define plans at an abstraction level which is detailed enough so that the

quality of the plans can be kept with respect to a certain set of criteria, but not so detailed

as to avoid a slow planning procedure. An example of the structured approach to the

assembly sequence planning is given in [Chakarbarty and Wolter, 1997].

3.2.2 A Graph-Based Disassembly Representation Model

Disassembly Petri nets are proposed by Zussman and Zhou (1997) to model and

adaptively plan disassembly processes. Detailed alogrithms are presented and applied to

an AT&T telephone.

The disassembly model in general needs to accommodate both geometric and

nongeometric information. In this subsection, we give a brief review of a graph-based

disassembly representation model based on the work by [Swaminathan and Barber,

1996]. They discuss an example of the geometrical information of an assembly that can

be graphically contained in three graphs. We use floor lamp assembly shown in Figure

3.2 to illustrate the model in the work of [Swaminathan and Barber, 1996]. Its three

corresponding geometrical information graphs are shown in Figure 3.3.

1) The connections graph in Figure 3.3 (A). This is a graph that identifies all the

connections between parts. It is an undirected graph with labeled edges

indicating the type of connection made by that edge.
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Figure 3.2 Floor Lamp Example for the Graph-Based Model

2) The mating directions graph in Figure 3.3 (B). This graph identifies the

directions that are available for each part to connect with its mating parts.

Each directed arc is labeled with the direction in which the source node can

mate with the destination node. The arcs emerging from a node indicate all its

mating directions. All the arcs ending in a node show the directions in which

other parts can connect to it.
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3) The obstacle facts graph in Figure 3.3 (C). This graph represents the list of

blocking parts that prevent the mating of other parts along certain mating

directions if the blocking part is placed earlier in the sequence than the other

part. This is also a directed graph. The source node denotes the blocking part

and each of the arcs ends in the part that is blocked. The direction which is

blocked is indicated as a label on the arc.
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Figure 3.3 Graphs of Example in Figure 3.2

3.3 Design-for-Disassembly and Design-for-Retirement



In the previous sections of this chapter we have reviewed the problems and procedures

toward generating a disassembly plan. These disassemblability analyses play an

important role in the Design For Disassembly engineering aspect. In this thesis, we

mainly focus on the environmental effects caused during the whole product life cycle,

which includes the concerns from material usage to engineering cost. Design For

Retirement, which is the central topic in this work, combines the analysis of engineering

process effects and the engineering-environment treatment. Generally speaking, Design-

For-Disassembly concerns about the sequence and cost of disassembling parts from

product assembly. While Design-For-Retirement is concerning more with the

environmental and marketing effects of products, trying to find solutions in engineering

design for the optimized cost-benefit effect with regard to all the engineering elements

that take effects. In the next chapter, we will give a review of the product part lifetime

cost analysis.



CHAPTER 4

PRODUCT PART LIFECYCLE COST

Before the retirement optimization is discussed, the lifecycle costs of individual

component unit (part or subassembly) of a product need to be discussed in detail. This

chapter, a review of different part lifecycle costs and their relationships, and analysis the

optimization method to choose the appropriate parts according to their lifecycle costs.

4.1 Various Parts Lifecycle Costs

Many aspects of a part affect its lifetime and environmental features during its lifecycle.

As discussed in Chapter 1, a part's lifetime may expand one or several product lifetimes

regarding to the recycling model of this part. A recycled part reenters the new product life

circle in various forms like remanufactured part, high-level recycled material or low-level

recycled material (Chapter 2). Retirement optimization means obtaining the highest

benefit value by making right decisions about whether to recycle a part, when and how to

recycle it after each lifecycle. To choose a part's retirement plan optimally, we consider

several characters of its lifecycle. Each lifecycle changes the engineering character, reuse

value and recycling cost of a part to some degree. This shows that retirement optimization

is a dynamic problem. It should be performed after each lifecycle to calculate the result of

benefit and penalty to see in which method a part should be recycled or whether it should

be recycled at all, according to its characteristic values. Parts selection is also an

important aspect of Design-For-Retirement concern. [Zhou, et al., 1996] has defined a set

of cost criteria to help the analysis of part selection optimization. This set of criteria also

aids the retirement decision making process.

2 3



The goal of our analysis is to minimize the overall net environmental impact brought by a

product life cycle. For every recycled individual unit (part or subassembly) there are three

primary treatments: reconditioning and reuse in a functional form, material reuse, and

landfill. Each treatment has its corresponding environmental impact represented as cost.

Following paragraphs discuss the cost related with these treatments in detail.

The first major concern when dealing with a recycle unit for reuse is its engineering

condition. This is judged by the unit's possibility being good and failing after one

lifecycle, P good and Pfailure, with relative remanufacture cost of Cgood and Cfailure to recover

the part for reuse in the next lifecycle. We can safely assume that Cgood is much lower

than Cfailure. For products with a high out-of-date rate, the whole remanufacture cost

should also reflect the loss caused by aging, Cout-of-date. Thus the entire expense to

remanufacture and reuse a retired unit is then:

The probability of failure of a post life unit can be expressed by exponential factor:

Pgood = e , here A. represents the degradation rate of the part, and t represents the time

in service. And the cost to take a recycle unit from the assembly should also be added,

thus the final cost of unit remanufacture and reuse individual unit can be expressed as:

The other two kinds of treatments bring material processing cost Cmaterial process and

landfill cost Cdisposal. These costs are relatively simple compared with the remanufacture

cost, and usually have fixed value. The final cost of each treatment is a relationship

equation of these above costs. The material recycle cost of a clump or part is the total of
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disassembly cost and material processing cost. The landfill cost is the total of Cdisposal and

disassembly cost. The cost, benefit and final gain of each treatment are discussed in

chapter 6.

The three treatments may result in different disassembly costs. The analysis of

disassembly cost and disassembly sequence planning is the central topic of the next

chapter.

4.2 DFR Optimization within a Product

The optimization of part retirement planning is a problem that should be considered

within the whole assembly process. A product's assembly layout can be represented by an

upside-down tree structure similar to the work of [Zhou, et al, 1997]. The whole product

is the root of the tree, and subassemblies and parts form the lower levels of the tree, as

illustrated in Figure 4.1. Each node represents either product assembly, subassembly or

individual part.
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Each one of the nodes in the product structure tree has four major retirement choices. The

first three ones are reusing, material recycle and landfill as we discussed in Section 4.1,

the last one is to disassembled the node into the next level of subassemblies or parts

(nodes). For every node, the treatment with the minimum cost hence brings the least

environmental impact should be chosen. The costs of each treatment are:

• Re m anu facture, Cost C disassembly + C remanufacture

• Material recycle, Cost =C disassembly 	 C material process

• Landfill, Cost =C disassembly + C disposal

• Further disassembly, Cost = C disassemby + ΣCosts of lower levels, where costs

of lower levels are the costs to treat further lower-level nodes disassembled

from the current node, each of which also has the above retirement choices.

The retirement optimization begins from the root (whole product). With the assistance of

generated disassembly sequence (discussed in chapter 5), the retirement costs of every

node in a product tree structure can be calculated and the further treatment can be chosen.

If the first three treatments cause lower costs than the last option, the node is then called a

stopping node which doesn't need to be disassembled and should be recycled as a whole

clump. This analysis can also be performed by employing the concept of Gain, which

equals the benefit minus the cost. This analysis requires product structure representation,

disassembly sequence generation, cost/benefit calculation. Chapter 6 discusses this

problem in more details.
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CHAPTER 5

DISASSEMBLY OPTIMIZATION

5.1 A Design-for-Disassembly Framework

Disassembly sequence is defined as an order in which components in a product are

disassembled. We define de-manufacturing as a process of disassembling a product into

subassemblies and components and reusing, recycling or refurbishing them.

Disassemblability refers to the degree of ease to remove a selected component from an

assembly. Key elements affecting the disassembly work planning include:

• Whether to break a product into large functional-recycle groups (clumps) or

break into individual parts;

• How the components in a product are assembled: welded, glued, riveted,

screwed, clasped, etc.;

• Whether to take selective disassembles to extract functional clumps for

remanufacture, which requires only a portion of an assembly to be

disassembled, or to take a complete disassembly to get the valuable parts;

• The environmental impact caused during the disassembly, which requires us

to take a disassembly plan that produces the least amount of waste.

We also need to note that the most economical assembly sequence needs not be the most

economical disassembly sequence. Moreover, the differences between assembly and

disassembly analysis make a separate study of product disassemblability essential.

Several methods like [Dundee, 1994], [Srinivasan et al., 1997] and [Ishii et al., 1996]

have already been developed to determine the disassemblability of a product's geometry

and to generate its disassembly sequence.
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As to [Srinivasan et al., 1997] there requires several steps to build the product

disassembly tool: a) product analysis, b) disassemblability analysis and, c) disassemble

sequence and direction optimization. Finally we can derive a design rating.

A Design-for-Retirement Geometric Framework is given in Fig 5.1.

Fig 5.1 DFR Framework



In detail, these steps involve:

1. Performing product analysis and selecting the components to be disassembled and

an appropriate de-manufacturing plan;

2. Determining the disassemblability of components and analyzing the possible

disassembly methods, and selecting an appropriate disassembly path that fits user

requirements best;

3. Generating an optimal disassembly sequence and directions (if applicable) for the

components/clumps to be disassembled;

4. Evaluating the design for parameters such as cost and time in disassembling the

components/clumps, which allow designers to establish how well a product is

designed regarding its post life cycle recycling performance.

The following discussions will focuses on the steps 2 and 3, disassemble sequence

generation.

5.2 Disassemblability Analysis

Disassemblability analysis analyzes a retirement plan. A part/clump is disassemblable if

it can be removed from the rest of the assembly. The geometrical information of a

product's assembly such as mounting points and direction, is very important in this

analysis.
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Fig 5.2 (A) An assembly Example and (B) The Connectivity Diagram

Fig 5.2 shows an assembly example [Srinivasan, et al., 1997] consisting of three

components P1 , P2 , and P3 . They have four mounting surfaces S 1 , S2 , S3 , and S4 . To make

the analysis simple, we consider only 2-D direction disassembly map as shown in Fig 5.2.

For a single component, find out all of its mounting surfaces. For example, part 2 in Fig

5.2 has mounting surfaces S 1 , S2 , S3 , and S4 contacting with P1 , P3 , P3 , and P3

correspondingly. Now consider only surface Si. It allows part 2 to be disassembled from

any direction in the lower half sphere. Next for S2 , we see that part 2 can be removed

from the left side sphere. Continue this process with all the surfaces part 2 has, we obtain

the allowed disassemble direction for each mounting surface in Fig 5.3, The final

resultant disassembly direction for part 2 will then be the intersection of all the separate

directions we obtain from the mounting surfaces. It is NULL in the case of part two.
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Fig 5.3 Disassemblability Analysis of Part 2 in Fig 5.2(A) [Srinivasan, et al., 1997]

If we find that the resultant intersection is NULL, the component is not disassemblable at

this stage of disassembly. We should look for other components that can be disassembled

at present. In any stage, there must be at least one component that can be removed. Go to

the disassembly direction searching process for several stages and we will find out all the,

possible disassembly sequence of a product. By making similar analysis for part 3, we

obtain Fig 5.4 and find out that part 3 is disassemblable from direction —Y, part I from

± X,+Y . The disassembly path for this example is [partl,±X ,d-Y;part3,—Y][part2]
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5.3 Disassembly Information Representation

We have shown the disassembly information of a product in a form of the connection

graph of nodes in Fig 5.2B as an example. Each node represents a part in Fig 5.2A. In

most cases, in order to be more efficient, we do not need to disassemble the whole

product into individual parts. A product is usually taken into functional clumps. For

example, in most garages or junked yard, one takes a whole engine or transmission as a

part for reuse. Individual parts seldom count in these instances. We emphasize the

treatment of clumps instead of separate parts in them. Therefore, before a disassembly

sequence analysis, we should mark the points needing attention within certain clumps

like rare raw materials used which must be taken back in recycling, and poisonous

containing which should be recycled with proper care. Only these clumps need to be

taken for further disassembly since the overall recycling cost may be high if they are

treated as a whole. Thus the nodes of a disassembly information graph should represent

only the functional clumps at the first level, then the clumps having further interest

should be broken into the second or deeper level of disassembly. This will save analysis

time to reduce the burden. The cost optimization for disassembly will be discussed in

detail in the next chapter.

To ease retrieving data for building a disassembly analysis tool, it is necessary to

translate the nodes connection graph into a mathematical representation. We use a Node

Information Matrix (NIM) to describe the information of both nodes and their

connections.
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Here N i (i = 1...n) represents the information structure of the ith node, Eij (i=1 ...n,

i=j) represents the connection relationship information structure between the ith

and jth node.

Ai; and Nj are connected

Otherwise

However, to make the detailed analysis of disassembly, we need to construct a structure

containing more information. Here the node information structure contains:

• Node ID	 //the index number of the node

• Node Name	 //name of node

• Material value	 //rare, rare material coated, valuable, common, discardable

• New part cost	 //cost to buy a new part/clump for replacement

• Remanufacture cost //cost to recondition used clumps/parts to usable state

• Material Recycle cost //cost to recycle clumps/parts to raw material

• Disposal cost	 //cost to landfill or incinerate the component

• Out-of-date rate a	 //reuse value = Original Value * Cal

• Part age	 //the age of part is important for recycling of high out-

//of-date rate products that are often technologically

// advance

• Degradation rate A	 //reconditioning cost = e 2 '
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The connection information structure contains:

• Link state	 //
1 linked

0 unlinked

• Interference mode	 //the connection information for the node in directions

//±X,-X,+Y,-Y,+Z, and -Z

• Points of connection //the number and type of point connection in X,Y, and

//Z directions

5.4 Disassembly Sequence Generation

Once we decide the nodes (clumps in the 1' level and individual parts in the 2" level),

and build the Node Information Matrix, we can analyze the disassembly sequence

planning in detail.
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Fig 5.5 Disassembly Sequence Analysis Example

Consider the simple assembly in Fig 5.5, We can build the following Disassembly

Direction Matrix (DDM):



Where:

N, represents the //h. node, / 4 represents the interference mode between the WI and ph

node. Starting from N i , and going along the column down, 	 show the directions in

which N 1 is connected to other nodes, going along the row to the left, and I shows the

directions in which other nodes are connected to N 1 oppositely. To obtain the allowed

disassembly directions for N, , we denote D as the set of all directions, which is

X,±Y} for the 2-dimension case and {± X,±Y ,±Z for the 3-dimension case. Given

ADDM, the disassemble direction of N, can then be derived by the following formula:

Given the example assembly in Fig 5.5 and its ADDM  matrix, we could find the

disassembly directions for each part:

N 1 : Disassembly Direction: ± 	 ;

N,: Disassembly Direction: NULL;

N 3 : Disassembly Direction: -Y

We see in step 1 that only N 1 and N3 can be removed. N2 can be removed in step 2 after

N1 and N3 have been removed. The disassembly sequence can then be built as follows:
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Where Sp represents the directions in which N i can be disassembled in step j, 1.1C i 3 ,

and 1 j 2 . To explain the usefulness of a Disassembly Direction Matrix, let us

consider a more complex example in Fig 5.6A.
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Fig 5.6 An Assembly Example

We choose each individual part as a node. The example assembly can only be

disassembled into individual parts which are the terminal nodes in this example.

Complicated products made of many functional clumps will need several levels of similar

analysis. First consider all the clumps as nodes, and then individual parts within certain

clumps as nodes when necessary until the optimized retirement cost has been achieved.

Once the nodes have been decided, the assembly can be represented by connectivity

diagram in Fig 5.6B, where we consider individual components as the nodes.



11, linked
Consider only the 2-D direction disassembly, and use equation	 = 	 to

0, unlinked

represent the component connection status. The Node Information Matrix (NIN4) of this

assembly could be built. Further analysis combining the cost optimization of disassembly

and environmental impact could also retrieve their data from this matrix.
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Then we can build the Disassembly Direction Matrix (DDM) with regard to the

interference direction blocking of the components to each other. Note that every checked

element (the "I" s) in matrix	 has the corresponding entry in A DDM  :



In Am„, , each 1 , element in the same column with node N 1 means that the ith node

connects to the ph node in that direction, thus its disassembly path is blocked in that

direction in the present stage. Each I element in the same row with node N i means that

the ith node is connected to the jih node from that direction, and its disassembly path is -

blocked in the opposite direction. For example, node 3 connecting node 4 in ± X,—)/

directions, and being connected by node 1 from ± X,±Y directions, by node 2 from

— X,±Y directions. Therefore, in current disassembly stage node 3's disassembly paths

are blocked in ± X,—Y ; -( ± X,±Y )= - X,±Y ; -(— X,±Y )= + X,±Y directions

correspondingly. Scanning all the nodes in matrix ADDM , we can get the disassembly

paths for each node in step 1. In this step only nodes 5, 6, 7, and 8 have non-NULL

disassembly path result and thus can be removed from the assembly. By removing node

N, from the assembly, all the 1 entries in the same column and row of /loom matrix are

also cleared, releasing the disassembly paths to other nodes they were once blocked.

Rescanning the existing nodes in the matrix, we can remove some of other components.
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Repeat the process until all the nodes are removed, and the disassembly sequence is

finally obtained. For the example coupling assembly:

Therefore the disassembly sequence is:

Note that the nodes in steps 1, 2 and 4 can be removed in a parallel mood respectively.

During disassembly the exact sequence of parts to be removed may be different. After

some nodes in step i are removed, the modes in step	 + 1) may be removable

before all the ones in step i are removed, thus leading to different actual disassemble

paths or even levels. If no node in step i is removed, then no nodes in step .). 	i + )

can be removed. To simplify the analysis, we assume that every node in each step should

be removed completely before the nodes of the succeeding step can be removed.

In this example individual parts have been chosen as nodes for analysis, and the steps in

the sequence have been determined as discussed before. In more complicated products

with many clumps, to achieve different retirement goal, the decision of the 1s t level nodes

of clumps and further levels of nodes may vary, and thus bring different disassembly

terminal nodes. The disassembly level of sequences may be different for various

retirement purposes.
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The complete disassembly sequence diagram can now be drawn out in Fig 5.7 for the

assembly in Fig 5.6. Such a diagram is termed as reverse fishbone diagram [Lee and Ishii,

1996]
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Fig 5.7 Complete Reverse Fishbone Disassembly Diagram of Assembly in Fig 5.6



CHAPTER 6

DESIGN FOR RETIRMENT OPTIMIZATION

In this chapter, we analyze the three elements important in the retirement optimization of

a product: disassemblability and disassembly cost, the design of clumps and its effect on

retirement optimization, the selection of parts concerning the life cycle environmental

costs. All of these elements bring costs to the environment and affect a retirement plan in

the environmental aspect. Because of the close relationships among them, designers must

give a specified product a balance weighting of these engineering concerns to achieve the

desired optimized result. This chapter gives a relative rating method for the

Design-for Retirement aspect.

6.1 Disassembly Rating index

Continuing from the disassembly sequence optimization of the previous chapter, we can

give the rating index of a disassembly. We will consider the rating in disassembly cost

aspect with the general rules of making minimum disassembly cost, and unbrokenly

taking out valuable components. The major disassembly concerns of clumps or

component are:

• Accessibility, the disassembly level of a clump or component;

o Number of connection points to other clump or components on each mounting

surface;
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• Methods of connection, which decide the costs of disassembly of each

connection point. We can define the major connection methods with their

disassembly cost levels in an increasing order of cost as follows:

■ Type I : Inserted, clipped, no treatment needed, cost level: 1

■ Type 2: Screwed, fasteners used, treatment needed, cost level: 2

■ Type 3: Welded or glued, special treatment needed, cost level: 3

■ Type 4: Permanent connection, e.g. being riveted, is broken during

disassembly, cost level: 4

• Some directions are not available for clumps/components to be disassembled

because of the clamping of heavy components.

Once the major points needing attention have been decided, we can proceed to the

following disassembly and cost calculation procedure:

1. Decide the clumps formation of the product;

2. Mark the components or clumps which must be recycled or need special care

due to their recycle value or damage effect to the environment;

3. Build the Is' level Node Information Matrix (NIM) with clumps as nodes;

4. Build the Disassembly Direction Matrix (DDM) for 1" level NIM, with

consideration of the forbidden direction due to product clamping, and generate

the disassembly sequence, mark each node with its corresponding disassembly

sequence. This will be useful when the cost of must-be-taken components or

clumps is calculated;
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5. Repeat the process for clumps need to take apart unti1 the disassembly

intention has been achieved or disassembly optimization limits have been

reached;

6. Find out the connection points on each mounting surface and build the

Mounting Points Matrix (MPM):

Where Ni is the information data structure of the ith node, and

Pi' is the data structure holding the information on mounting

points between nodes I and j, e.g., the number of mounting

points (sliding connections or other connections with no

fasteners used counts as one point), mounting methods of

points, mounting and dismounting directions, and dismounting

cost;

7. After the MPM is built, calculate the disassembly costs. Following the already

built disassembly sequence, take off the first clump/component and calculate

its disassembly cost regarding to the number and connection methods of

mounting points to other clumps/components, and add the result to its node

information data structure N . If it has more than one Type I connection to

other clumps/components, count them as one;
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8. Repeat the process for each node until all the nodes have been taken off, add

all the disassembly costs in the N 1 data structure and then we can calculate

out the overall disassembly cost.

To make our points more clear, we finish this section with an example that compares

two assemblies as shown in Fig 6.1. The assembly in Fig 6.1(A) is similar to a test

assembly in [Srinivasan et al., 1997].

44

Figure 6.1 Two Assemblies Example (A) (B), and their Connectivity Diagram (C)

In Assembly A of Fig 6.1, parts 1 and 2 are welded together and hold parts 3 and 4 in

place. Parts 3 and 4 hold to each other with a convex of part 3. In Assembly B, parts I



M(A)= and M(B)=

and 2 are screwed together instead, giving the same outside shape and volume. For the

convince of disassembly, part 1 which is the heaviest is clamped. Assume that the

disassembly costs are 1 to 4 for connection type 1 to type 4. Then we can build the

Mounting Points Matrices M(A) and M(B) of the two assemblies as follows:
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Assembly A	 Assembly B

Where in entry [P 1 , P,], P 1 represents the number of connection points to the other

component specified in the matrix, and P, represents the total disassembly cost to take -

apart these two components. We assume that every connection point using the same

method has the same cost. From the discussion of Chapter 5, the disassembly sequences

of these two assemblies are the same: {(N, )1—) (N 3 , N 4 )1— (N 1 ) . At the end of the

sequence we can obtain all the disassembly costs for Fig 6.1 in Table 6.1 in next page:



Table 6.1 Disassembly Costs of Two Assemblies in Fig 6.1

Assembly A Assembly B

Remove N, from connection

to N, and N,, N, subassembly:
6+1=7

Remove N, from connection to

N, and N,, N, subassembly:

1*2+1=4

Remove N, and N, : 1 Remove N, and N,:

Take N, and N, apart: 1 Take N, and N4 apart :

Overall disassembly cost: 9 Overall disassembly cost: 6

There is a trick when removing other clumps/components off and leaving only one clump

/component in the assembly, we can view this as taking the last clump/component from

the assembly. In step 2 we remove clumps (N3 N4), as equivalently, we can view this as

taking AT/ from the assembly. We can find that the disassembly cost of assembly B is

lower than that of Assembly A. We conclude that design B is better for disassembly than

design A. Because that the connection between components 1 and 2 in assembly B is

easier for disassembly than used in Assembly A.

6.2 Clump Choice Optimization

Clump is the base of our analysis of Design-for-Retirement. In most cases of post life

recycle, clump is a major functional portion of a product, which is a collection of

components and subassemblies forming a certain function and share the same post life
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treatment based upon the design intent. In our concern of environmental impact, a clump

falls into three major categories regarding their design intent for post life recycle:

• For re-use, which requires minimum disassembly cost. This category's clump

should have high recycle value to balance the reprocessing cost;

• For re-cycle, this requires material value and the fastening method be

compatible with recycle technology used in it, which means the balance of

recycle cost and recycle value-gain;

• For disposal. In this case, the only concerns are to make minimum its

disassembly cost and environmental impact.

Products also vary in their formation of clump size and complexity. Large and complex

clumps like transmission and engine in an automobile power train (which actually are

subassemblies) are easy to be disassembled but will require more cost when reprocessing

them for reuse. Small but complex clumps like the electrical components in a cellular

phone set may demand high cost to be disassembled intact and even more cost to

recondition for reuse. With a high out-of-date rate, disposal may be the most economical

choice for these kinds of products.
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Fig 6.2 Recycling Costs Model

Following the Simplified Recycling Model [Ishii et al., 1994], as shown in Fig 6_3,

neither Large-and-Complex nor Small-and-Complex clump choices are economically

profitable given the market resale value and environmental cost. Clumps should be

designed to make their overall recycle costs below the resale value.

6.3 Retirement Optimization

The optimized retirement plan of clumps with specified design intention for post life

recycle can also be treated within three major categories: to be reused, to be recycled as

material, and to be disposed as waste. In each category recycling planers deal with the

relationships of clump/component reference values with various considerations. The

values include:
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C out-of-date lose = Vorginal *(1— e'), where a is the out-of-date rate of clump/part

Cremanufacture = Voriginal * C A ' , where	 is the degradation rate of clump/part

Using these values, we can decide which treatment should be used on a retired

clump/component by calculating the Gain of each treatment and choose the one with

maximum Gain, which is Gain = Benefit - Cost.

For clump/component to be reused:

Cost = C disassembly	 C remanufacture	 C out-of-date lose

Benefit = V resale

Gain = Benefit — Cost

= Vresale - C disassembly - C remain facture C out-of-date lose

For clump/component to be recycled as material:

Cost = C disassembly	 C material process

Benefit = V material

Gain = V material - C disassembly - C material process

For clump/component to be disposed:

Cost = C disassemble	 C disposal

Gain = -Cost	 - C disassembly C disposal

Once the functions have been defined, we can calculate and compare all the Gain values

to make decision of which treatment to use on the clump/component under consideration.

If Gain values from Reuse and Material Recycle give lower values than the values from

Disposal, it means the total cost of reprocessing and disassembly have not only overrun
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the benefit and also exceed the disposal cost, in such case, disposal will be the best

retirement plan.

6.4 Examples

In this section two designs of a Personal Computer (PC) will be discussed. We choose PC

as an example because PC products are highly modularized, have a rapid lifecycle, and

bring great recycling needs of PC components. Most PC products are outdated for

retirement rather than worn out for retirement.

 Cover Case

Metal Frame

 Power Supply

Board

Function Cards
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Fig 6.3(A) Conventional Low Cost PC Mini-Tower (Design 1)



Fig 6.3 (B) Improved Mini-Tower Design by Compaq Computer (Design 2)

Fig 6.4 shows the examples of two different PC architectures, where (A) represents some

kind of conventional low cost designs, and (B) is an architecture used by Compaq mini-

tower computers.

The detailed disassembly costs for the two designs are assumed as follows in Table 6.5 in

the next page (here, "PC Cards" represents "Function Cards"). To compare the two

designs in disassemblability aspect, we follow these steps:

• Build the Disassembly Direction Matrix (DDM) of these two assemblies.

• Derive the disassembly sequence of these two assemblies from the DDMs.

• Build the Mounting Point Matrix (MPM) of them and calculated the detailed

disassembly costs.
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Table 6.2 Detailed Disassembly Costs of PC Design 1 and 2

ID
Component Name Connection Method

Cost per

operation
Subtotal

C1

Cover Case (design 1) 6 screws 0.5 3

C2 Upper Cover (design 2) 2 screws 0.5 1

C3 Side Covers (design 2) 2 screws 0,5 1

C4 Data cables (design 1 and 2) 2 plugs 0.5 1C5

Drivers (design 1 and 2) 4 screws 0.5 2

C6

PC Cards (design 1 and 2) 1 screw, 1 plug 0.5 1

C7  Main Board (design 1) 4 screws 0.5 2

C8

CPU board (design 2) 1 screw, 1 plug 0.5 1

C9

Connection Board (design 2) 4 screws 0.5 2

C 10 CPU (design 1 and 2) 1 special plug 2 2

C11

SIMM RAM (design 1 and 2) 4 Special plugs 1 4

C12

Power Supply (design 1 and 2) 4 screws 0.5 2

C13

Metal case frame (design 0 \ \

C14

Upper case frame (design 2) \ \

C15

Lower case frame (design 2) \ \

C16

Upper/Lower	 Case	 Connection

(design 2)
4 screws 0.5 2



First we build the DDM of design 1 and design 2 from Fig 6.4:

The DDM of Design 1 is:

53

The disassembly steps of Design I are:

The DDM of Design 2 is:



The disassembly steps of Design 2 are:

From these results we can build the complete disassembly tree of these two designs. Fig

6.4 shows the complete disassembly tree structures of designs 1 and 2. Each PC is

assumed to use three Drivers (HDD, FDD, and CD-ROM driver) and three Function

Cards (PC cards).
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Fig 6.4 Disassembly Tree of PC (A) Design 1 and (B) Design 2



Following the procedure presented in Section 6.1, and walk through every step

disassembly sequences. the complete disassembly costs of these two designs can be

calculated by employing the 1\413 N/1 matrices as follows:

The MPM of Design 1 is:
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The complete disassembly cost can then be calculated by equation:

Cost = Cstepi , where n represents number of steps and

Cstepi = ΣCoperation , where in represents number of operations in each step
J=1

Thus the disassembly cost of Design 1 is:

The disassembly cost of Design 2 is:

As shown above, to reach a complete disassembly, design 2 costs more to disassemble

than design I, as suggested by Design 2's more complex disassembly tree. But in most



cases, a PC to be demanufactured does not need a complete disassembly. Usually only

parts to be replaced are removed from the assembly. In other words, selective

disassembly is a common situation in the PC demanufacturing. In the following, we

compare several major activities in PC recycle and explore the retirement treatment

benefits of design 2.•

These activities include:

• Replacing the CPU and RAM chips;

• Replacing function cards like the video adapter card and modem card;

• PC update, which replaces CPU, RAM, function cards, and electrical board

with newer ones. (Note that an electrical board carries the main data bus,

BIOS, CPU and RAM slots).

Figures 6.5 through 6.7 show the tree structures of major selective disassemblies.
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Fig 6.5 Replacement of CPU and RAM in (A) Design 1 and (B) Design 2



Fig 6.6 Replacement of PC Function Cards in (A) Design I and (B) Design 2
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Fig 6.7 PC Update in (A) Design I and (B) Design 2



The disassembly costs for each of these selective disassembles can be calculated as

shown in Table 6.3. We can see that Design 2 is more cost-effective over design 1 in

these cases. In Table 6.10, the Costs are calculated with the equations in page 15.

Table 6.3 Disassembly Costs of Selective Disassemblies

CPU, RAM

Replacement
Cost Desig,, 1 =3+1*3+2+(2+4)=1 4 Cost Design 2 '1 * 2+(2+4) = 8

PC Cards Replacement Cost D es i gn 1=3+1 *3=6 Cost 0„ ; „„ 2 =	 *3=4

PC Update Cost Des,,,, 1 =3+1*3+(2+1 *3)=1 I Cost 1)„,,„ 2=1 *2+(l+ I *3)=6

Next we explore retirement optimization and the corresponding overall costs of these two

designs. We assume the reference values of the two designs as in Table 6.4 on next page..

And the PCs are going to retire after two years of usage with one year as the standard

calculation period.
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Table 6.4 Detailed Reference Values of Components in Design I and 2

CPU

Chip

RAM

Chips

Video

Card

Modem

Card

Main

Board

(design 1)

CPU

Board

(design 2)

new part 250 300 150 120 400 200

material

V resale 125 250 100 75 150 150

C disassembly

(design1/2)
14/8 14/8 6 / 4 6 / 4 11 6

A

(degradation rate)
0.0693 0.0693 0.139 0.139 0.0693 0.0693

Cremanufacture 32 39 36 29 51.2 25.6

a

(out-of-date rate)
0.693 0.173 0.139 0.277 0.277 0.139

out-of-date lose 187.5 87.7 36 51 97.1 48.5

C disposal 2 2 4 4 6 6

Using the components values in Table 6.4 and the functions in Section 6.3, we can obtain

the retirement Gain values of these two designs as shown in Table 6.5:
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Table 6.5 Retirement Gain of Designs 1 (Dl) and 2 (D2)

Components
Reuse Gain Material Recycle Gain Disposal Gain

DI D2 Dl D2 D1 D2

CPU

Replacement
-108.5 -102.5 -44 -38 -16 -10

RAM

Replacement
109.3 115.3 -51 -45 -16 -10

Video Card

Replacement
22 24 -39 -37 -10 -8

Modem Card

Replacement
-11 -9 -32 -30 -10 -8

CPU/Main

Board
-9.3 69.9 -58.2 -27.6 -17 -12

From the calculated Gains shown in Table 6.5, we can make decisions of optimized

retirement plans for each component after their two years of usage:

1. CPU chip should be disposed, with Gain —16 for design 1 and —10 for design 2;

2. RAM chips should be reused with Gain 109.3 for design 1 and 115.3 for design 2;

3. Video card should be remanufactured and reused with Gains 22 and 24 for design

1 and 2 respectively;

4. Modem card should be disposed, with Gain —10 and —8 for designs 1 and 2

respectively;
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5. CPU or Main Board will be reused with Gain —9.3 for design 1 and 69.9 for

design 2. Note that the better architecture of design 2 has made the reuse of CPU

board economically beneficial after a life cycle of two years, while the reuse of

Main Board in design 1 leads to the minimum cost.

From the above analysis, we can conclude that Design 2 gives higher Gains in each

retirement choice we considered in Table 6.5. This is because of the consideration of post

life retirement and the employment of modular components in the design.
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CHAPTER 7

CONCLUSION

7.1 Contributions

This thesis deals with the disassembly sequence generation and cost analysis in the

Design-For-Retirement engineering aspect, and develops a method to rate different

designs by considering both cost and environmental impact.

The contributions of this thesis are summarized as follows:

I. Several basic concepts about the product environmental concerns are

introduced: Design-For-Disassembly, Design-For-Environment,

Design-For-Retirement, and Retirement Optimization. The whole process covering the

material, manufacturing, customer usage, disassembling, and recycling stages

of a product lifecycle is overviewed. It also analyzed the cost-environmental

relationship between the material choice and engineering complexity issues.

2. The assembly and disassembly sequence planning analysis process is

discussed. The major representational problems of a product assembly

geometric structure, disassembly paths and retirement plans are indicated.

This thesis also reviews the costs related to the choice of individual parts and.

previews work over a parts selection optimization algorithm.

3. The problems of disassembly cost optimization and product rating in the

environmental aspect are discussed. A matrix based representation model of

product disassembly information (Node Information Matrix) is proposed and a

method is developed to generate disassembly sequence of a product

represented by such a matrix.
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4. It develops a set of equations describing the relationships among various costs

of a product recycle. process. These equations work with the product

information representation model to rate a product design in the

environmental aspect.

5. The proposed concepts and methods are demonstrated by rating two different

PC designs. One is a conventional PC design and the other is a retirement-

optimized design by Compaq Computer. The comparison of retirement costs

of these two designs answers why the Compaq design is better from the

environmental impact/cost view point.

7.2 Future Work

The discussion of the Design-For-Retirement aspect could expand to a vast range from

product market value variation to material and parts manufacturing technologies used.

Due to the limited time, this thesis is confined to the disassembly sequence generation

and disassembly plan optimization with respect to its benefit gain and penalty. The Node

Information Matrix proposed in this thesis has a data structure N1 that can hold various

information of product components. Further development could utilize these data

structures to integrate parts lifecycle cost analysis with the disassembly planning in a

computer algorithm form, and build a computerized representation of the models

developed in this thesis.

In this thesis, disassemble directions considered are only ± X , ± Y , and ± Z directions.

In most cases of consumer electronics which is the main analysis target of this thesis,

parts disassemble directions are either along ± X , ± y , ± Z or not of vital importance to
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disassembly analysis in such examples as cable connections. But in some complicated

products such as automobile engine, parts disassemble directions are of vital importance

and many not be simplified as the ± X , ± Y , ± Z directions only. Further analysis

method should be developed to take these kind of cases into consideration when needed.

Another interesting area that needs further discussion is the clump design and its effect on

the product retirement planning. As discussed in this thesis, clumps are considered as the

basic recycling units that are recycled as used functional parts. The number of clumps,

clump assembly complexity, material/technology used in clumps and the designed

recycle intention of clumps all make different retirement plans. Clumps can also be

treated as a tree structure, and can contain substructures consisting of parts as nodes.

Another

The final goal of the Design-For-Retirement analysis is to give a designer a complete

computer aided tools set to estimate the retirement timing and cost of their designs. These

tools should be built on the PC or other operating platforms. The input methods can adopt

the methods of an input-form, spreadsheet-based inputs, and/or visually graphic inputs.

The output should contain the suggested retirement time, retirement plan of clumps/parts,

and overall gain or rating of the designs under investigation.
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