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ABSTRACT

MATHEMATICAL MODEL OF HUMAN SIT-TO-STAND
AND STAND-TO-SIT MOTION ANALYSIS

by
Jayeshkumar Gandhi

In designing a device for an amputee, it is important to find those underlying principles

which determine the normal human sit-to-stand task. For this purpose we have developed

a mathematical model of human sit-to-stand movement, in which it is possible to predict

the minimum mechanical energy consumption to move from the sit-to-stand position.

To the best of 	 author's knowledge, this thesis represents the first time that the

periodic motion of stand-to-sit and sit-to-stand movements have been mathematically

modeled by a simple mechanical system. A complex model, such as the one used by

Seireg and Arvikar (1973 All that contained 31 muscles per leg, is certainly impressive

from a mathematical point of view alone. However, biomechanists should always reduce

as much as possible the complexity in their models. The discussions of what the

appropriate level of complexity to model, this biomechanical process will probably never

end.

Our purpose, for this thesis, is to develop a simple mathematical model of sit-to-

stand motion, which can be used to understand the effects of parameter changes, and to

predict the human motion that minimizes energy expenditure. This knowledge can be

used to design a mechanical device for this purpose. There are very few papers which

explain mechanical and muscular dynamics of rising from a seated position, but

unfortunately, no one has successfully constructed a model to solve the motion by

forward dynamics.
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CHAPTER I

BACKGROUND AND RESEARCH OBJECTIVES

In order to appreciate fully the contribution of a muscle or muscle groups to a movement

of interest, that movement must be fully evaluated and studied. Usually, several moving

segments are involved in each human motion. One segment moves on an adjacent

segment, which moves on another. This is similar to engineering links that involve

overlapping segments held together by pins ( joints ) that serve as an axes of rotation. In

general, overlapping segments do not occur in the human body except in a few places

such as the ankle and the C-l-Odentoid articulation.

For our purpose, a link is assumed to be a straight line (e.g. a rigid rod) of

constant length. Such a system of links can serve as a geometric model to analyze

motion. If power is to be transmitted, the links of a machine must form a closed system

in which each link has a particular relation to every other link in the system. The closed

system is such that no movement of one segment can be made that does not affect the

other links (segments) in a predictable manner. This guarantees that forces are

transmitted in predictable manner.

Examples of early twentieth century interest in muscles mechanics can be found

in the works of Lombard (1903), Fischer (1906), and Lombard and Abbott (1907 ) [2].

Lombard and Abbott were concerned with the contribution al' lower extremity muscles to

hip and knee joint movement in the frog. Lombard (1903) argued that those muscles

which cross both hip and knee joints have better leverage as extensors than as flexors,

Sit-to-stand movements involve concurrent extensions of hip and knee joints that are



produced by the hamstrings (prevailing across the back of the knee joint) and the rectus

femoris (across the front of the knee joint). The phenomenon of complex co-contractions

involving both extensors and flexors has been recognized for some time as being a

normal function under certain conditions. Although, there has been scant interest since

the early twentieth century in studying the sit-to-stand movement, interest in co-

contraction and the mechanics of two-joint muscles has prevailed up to the present time.

Landsmear (1961), Molbech (1965), Carlsoo and Molbech (1966), and Carlsoo, Fohhin,

and Skoglund (1973)[2].

D.L.Kelley, A. Dainis, and D. K. Wood (1975)[2] studied the mechanics and

muscular dynamics of rising from a seated position, as performed by male and female

subjects of different body sizes. In particular they were interested in the functions of

selected one- and two-joints muscles crossing the hip and knee joints. They concluded

that there were many more similarities than differences in the EMG and motion patterns

of these muscles. Once the body left the seat, co-contractions of the quadriceps and

hamstrings were observed throughout the movement in all but one subject, and with one

other exception, the gluteus maximus was also active throughout the entire period of hip

extension. The major observable movement pattern differences occurred in the first part

of the movement. These being the variation among subjects in hip and shoulder flexion

before loss of seat support. In the six subjects investigated, no size or sex related

variation was detected.

There are many documents that have been studied to explain human walking. A

very recent human walking model has been developed by Lacker, et al.[ Personal



Communication } In this thesis we will try a model similar to Lacker, et al., to predict

human sit-to-stand motion. A complete sit-to-stand and stand-to-sit motion, we call a

"cyclic squat." We will develop an inverted pendulum system as a first attempt to model

a cyclic squat.

A model of human cyclic squat is applicable to rehabilitation medicine. There are

many complaints from patients relating to the difficulties in transferring themselves from

a sitting to standing position. If we can design a device to facilitate patient rising from a

sitting position, those complaints may be reduced. Therefore, to design such a device for

amputees, we believe it is important to find those underlying principles which determine

the normal human motion.



CHAPTER 2

MATHEMATICAL POINT OF VIFW

An individual is considered to be a collection of joined body segments, and segment

movement involves displacement, velocity, acceleration, external forces, and forces of

interaction between segments. In application to biomechanics, the mutual interaction

between segments are the most troublesome. For example, in the analysis of human

locomotion, we must know the forces in all involved muscles of the legs. But the human

musculoskelatel system is highly redundant ( more muscles than the available degrees of

freedom of motion) and determination of the forces in the muscle is one of the most

difficult problems in biomechanics. Hence there is a need for a method that can reduce

such detailed information. The method of Joseph Louis Lagrange (1736-1813), offers

such an alternative in terms of work and energy. If the kinetic and potential energies of

the system are known as a function of the generalized coordinates and their derivatives

with respect to time, and if the work done by external forces can be computed when a

generalized coordinate changes, then the equations of motion can be written.

The Lagrangian method is characterized by simplicity and is applicable in any

suitable coordinate system. In Lagrangian dynamics equations of constraint arise to limit

the dynamics variables; but unlike the Newtonian approach, the forces required to

maintain the constraints do not have to be explicitly considered in the formulation of the

equations of motion. These constraint forces are already implicit in the geometric

equations of constraint. Instead of the explicit use of force terms to derive the equations

of motion, the Lagrangian method expresses work and energy in terms of the generalized

4



coordinates to obtain a set of second-order dynamic differential equations in those

coordinates [5].

We model a standing human as an inverted pendulum system. The simplest model

consists of three body segments, representing the shank, thigh, and trunk respectively.

( fig. 2 ). The segments lengths are represented by ( L ). The location of the segment

centers of mass are represented by ( z ). (All measured from the distal end), and the

segments masses by ( m).

With the heel considered to be fixed on the ground, the system has three

dynamics ( 01, 02, 03 ) variables, that are defined as the angles made by the lower end of

each joint segment with respect to the horizontal (counter-clockwise is defined positive ).

These angles are referred to as segments angles. Therefore three differential equations

are expected. Note that the individual joints angles can be easily expressed in terms of

the segments angles. For example (Fig.1), the knee joint angle is similar the difference

between the thigh and shank angles.

Figure 1 : Example of calculating knee joint angle



Therefore,

&nee = 01 4- a

a = 7T - 8202

θknee=01 - 02T7T )

As previously explained the Lagrangian approach does not require explicit

formulation of reactions forces at the joints. They are already implicitly taken into

account in the chosen coordinate system.

We assume that dissipation joint force terms like joint frictional force (viscosity)

are not significant.

6

Figure : 2 Three-segment model of the standing human includes shank, thigh, and trunk
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Figure:3 Link-segment model



Where,

Li = Length of shank

L2 	 Length of thigh

= Length of trunk

zi	 = Distance to center of mass of shank

z2	 = Distance to center of mass of thigh

z.3	 = Distance to center of mass of trunk

m = mass of shank

m2 = mass of thigh

m3 = mass of trunk

G	 = Gravity

01 = Angle of shank horizontal axis

02 	 Angle of thigh with horizontal axis

63 	 Angle of trunk with horizontal axis

0 	 = Velocity of shank

2' = Velocity of thigh

3' = Velocity of trunk

8



2.1 Explicit Formulation of the Equations of
Motion the Cyclic Squat Model

( Refer to Fig. 3 )

2.1.1 Displacements:

At point 1

= 0

yl = 0

At point : 2

X2 = ZI COS 01

y2 = zl sin 01

At point : 3

X3 = L1 cos 01

y3 = L1 sin el

At point : 4

X4 = L1 cos 01 + Z2 cos 02

y4 = L1 sin 01 + z2 sin 02

At point : 5

X5 = L1 cos 01 + L2 COS 02

y5 = L1 sin 01 + L2 sin 02

At point : 6

X6 = L1 cos θ1 + L2 cos 02 + Z3 COS 03

y6 = L1 sin 01 + L2 sin 02 + z3 sin 03

9



2.1.2 Velocity Vectors:

At point: 1

= 0

yir — 0

At point: 2

X2' = — Zi 01' sin 01

y2' = z1 θ1' cos 01

At point: 3

X3'

•	

— L101' sin 01

y3' = L1 01' cos 01

At point: 4

X41 —

•

 — L1 01 1 sin 01 —z2 02 sin 02

y4' = Li 01' cos 01 + z2 02' cos 02

At point: 5

X5' =

•

 — L 01' sin 01 — L2 02' sin 02

y5' =

•

 L1 01' cos 01 + L2 02 ' cos 02

At point: 6

X6' = —L1 01' sin 01 — L2 02 ' sin 02 — z3 03' sin 03

y6' = Li 01' cos 01 + L2 02 ' cos 02 + Z3 03 ' COS 03

10



2.1.3 Potential Energy:

PE	 = g ( M2 Y2 + M4 y4 + 11-16 y6 )

= g [ m2 ( z1 sin 01 ) + m4 ( L1 sin 01 + z2 Sin 02 )

+ MG ( L1 sin 01+ L2 sin 02 + z3 sin 03 )

= g [ ( M2 Z1 + M4 L1 ) sin 01 + ( m4 z2 + m6 L2 ) sin 02

MG Z1 sin 03

Therefore,

3

PE = g	 ai sin 0;

where,

at = ( m2 z1 + m4 L1 )

a2 = ( n14 Z2 + m6 L2)

a3 	 ( 1716 Z1 )

2.1.4 Kinetic Energy:

Segment KE = 1/2 m ( X '2 + )1 2 )

KE2 =1/2 M2 [ X2 .2 + Y2 .2

= 1/2 m2[(-Z1 el" sin 01 )2 + (Z1 01' cos 01)2
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= 1/2 m2 [z1² 	sin² θ1 + z1² 01' ² cos² 01]

= 1/2 m2 [zi 2 0: ² ]

KE4 = 1/2 m4 [ X4 '² + y4' ² ]

= 1/2 M4 [ (- L1 01 ' sin 01 - Z2 02 ' sin 02) ²

+ ( Li θ1' cos 01 + z2 02' COS 02 ) ² ]

=	 M4 [ (L²θ1 '² sin² 01 + Z2 2 02' ² sin ² 02 + 2 L1 01' sin 01 z202 sin 02)

+ (L1² 01' ² COS ² el + Z2² 62'² COS² 02 + 2 L1 01" 62 ' Z2 COS 01 cos 62 ) 1

= V² M4 [L1 ² 01 '² + Z2 ² 02 '² + 2 L1 DI' 02 ' Z2 (sin 01 sin 02+

COS 01 COSθ2)]

;USING FORMULA: COS ( 01 - 02 = sin 01 sin 82 + cos 81 cos 821

= V2 m4 [LI ² 01 '2 + Z2 ² 02 '² + 2 L1 Z2 01 02 cos ( 01 - 02 )]

KE6	 I/² M6 [ X6 '² + y6 .² ]

= 1/2 M6 [(- L101' sin 01 - L2 02 ' sin 62 - Z303 ' sin 03 ) ²

+ (L1 01 ' cos 61 + L2 02 ' cos 02+ Z3 03 ' COS 03 ) ²

= 1A m6 [L1 ² 01' ² sin² 01 + L2² 02 '2 sin² 02 + Z3 ² 03' ² sin ² 03

+ 2 L1 L2 01 ' 02 ' sin 01 sin 02 + 2 L1 z.3 01' 03' sin 01 sin 03

+ 2 L2 Z3 02 ' 63 ' sin 02 sin 03



+ L1² 01 '² COS 01 + L2 ² 02 '² cos²² 02 + Z3² 03 '² COS - 03

+ 2 L4 01 ' L2 02 ' COS θ1 COS 02 + 2 L2 Z_3 02 ' 03 ' COS 02 COS 83

+ 2 L1 Z3 01 ' 83 ' cos 01 cos 03

1/2 m6 [L1² θ1² 01' 2 + L2 2 02' 2 + z3 ² 03' 2

+ 2 L1 L2 01 ' 02 ' ( sin 0) sin 02 + cos 01 cos 02 )

+ 2 L2 Z3 02 ' 03 ' ( sin 02 sin 03 + COS 2 COS 03 )

+ 2 L1 z301' 03' ( sin 01 sin 03 + cos 01 cos 03) I

= 1/² m6 [L1 ² 01 '2 + L2 ² 02 2 + Z3 ² 03 '²-

+ 2 L1 L2 01 ' 02 ' cos ( 01 - 02 )

+ 2 L2 Z3 02 ' 03 ' COS ( 02 - 03 )

+ 2 L1 z3 01' 03 ' cos ( 01 - 03 )1

Therefore,
TOTAL KE = KE2 + KE4 + KE6

TOTAL KE = 1/-2 m2 [ z ² 0: ² ]

+ m4 [L1 ² 01 '² + Z2 ² 02 '² + 2 L1 Z2 01 ' 02 ' cos (0, - 02 )

+ 1/2 m6 [L1 ² 01 '² + L2 ² 02 '2 + Z3 ² 03 '²

+ 2 L1 L2 01 ' 02 ' cos ( 01 - 02 )

+ 2 L2 Z3 02 ' 03 ' COS ( 02 - 03 )

+ 2 L1 z3 01' 03 ' COS ( 01 - 03 )

13



Arrange together,

1KE = 1/2 [ zi ² m2 + L1 2 m4 + L1 2 m6 ) 0 '²

+ ( Z2² 14 + L2 2 M6 ) 02 '² ( Z3 ² I6) 03 '2

▪ ( M4 Z2 L1 + M6 L1 L2 ) 01 ' 02 ' COS ( 01 - 02 )

• ( m6 Z3 L2) 02 ' 03 ' 	 (02- 03)

▪ ( M6 Z3 L1 ) 01 03 ' cos ( 01 - 03 )

Therefore,

KE = 1/2. 0: Mij θi "

3

PE = g > ai sin θi

Now in vector matrix notation,

t
KE = 1/2 0 i	 Mij θi'

where Mij = Co cos ( 0i - θj )

C1 I 	 C12 	 Cu

C21 	 C22	 C23

C31	 C32	 C33

14
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where

C11 = z1² m2 + L1² m4 L1² M6

C22 = Z2 ² m4 + L2 ² m6

33 = Z3² M6

C12 = C21 =m4 L1 Z2 + M6 L1 L2

C31 = C13 = L1 M6 Z3

C23 = C32 = L2 m6 Z3

Therefore the Lagrangian ,

L = KE - PE

3 	 3

LY²	 M θ' 	 - g a sin θi
i.j= I	 i =1

Now the equation of motion of each segment angle 0 is,

	at_	 - aL = o
dt	 aθ' 	 aθ'

'5

Now take partial derivatives with respect to another variable k,



for part

3 	 3

aL 	 1/² 	 Mik θi' 	Y Mkj θj' Mkk θk

aθk' 	 i	 =1

but Mik Mkj

aL	 =	 Mik θi 'aθk'

now
Mk = Cik COS ( θi - θk )

because
Mij =C cos ( θi - 13j )

3 	 3

d 	 8L	 = E d (Mk) θi' 	 E
dt 	 aθk' 	 dt 	 -

now
Mik 	 Cik cos θi - θk )

 -

d Mik = - Cik sin ( θi θk )

dt

3

d  aL 	 =-	 Cik sin ( θi - θk ) θ ' i θ ' k ) θ ' i

dt aθ'k 	 i' -1

3

Cik COS ( θi - θk ) θi ••

i =1

1 6



For part ©

3

aL	 = - E Cik 	 θi - θk ) θi' - θk ' ) θi '

	dt	 a θk' 	= 1

3

+ E Cik cos ( θi - 	 ) 0θi'..

i =1

3

	Now	 aL	 = - V²	 Gj sin ( θi - 0j ) 	 0j" d	 ( 0i - )
aθk 	 i.j =	 dθk

3

1/2 	 Cik sin ( 0; - θk ) 	 θk' - 1/2 Ckj sin ( θk - θj ) θk ' θj '

i.,j =1

3

- g E ak cos θh

but Cik Ckj

Cik - Cki

3

= E Cik sin ( 0- θk ) 	 θk'
i =1

3

- gEak cos θk
i - 1

Now,

d 	aL 	- aL  = 0

dt	 aθk' 	 aθk

17



[8

Therefore'
3

- 	 Cik sin ( θi - θk ) θi - Ok ' )θ '

0

3

Cik COS ( θi - θk ) θi ..

1= I

3
Cik sin ( θi - θk θi ' θk '

-

3

±- g ak cos θk
i

Therefore'

3

Cz	 ik COS ( θi - θk )

3
Cik sin ( θi - θk ) θi '²

I

3

± 	 g ak cos θk
-

Therefore,

0 =	 cOs (	 - θ1 ) 	 + C12 COS ( 01 02 ) 	 CI3 COS ( 01 - 03 ) 03 -

C1 I sin ( 01 - θa ) 01' ² - C12 sin ( 01 - 02 ) 02' ² - C13 sin ( 01 - 03 ) 03' ²

g a1 cos 01	 (Eq. 1)
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0 C21 COS ( 02 - 01 ) 01 - + C22 COS ( 02 - 02 ) 02 - + C23 COS ( 02 - 03 ) 03 -

- C21 sin ( 02 - 01 ) 0: ² - C22 sin ( 02 - 02 ) 02 '2 - C23 sin ( 02 - 03 ) 03 '2

+ g a2 cos 02 	 (Eq 2)

0 = C31 COS ( 03 - 01 ) 01 - + C32 COS ( 03 - 02 ) 02 - + C33 COS ( 03 - 03 ) 03 -

- C31 sin ( 03 - 01 ) 01 '² - C32 sin ( 03 - 02 ) 02 '² - C33 	 /A3 -A3 ) 03 '²

+ g a3 cos 03 	 (Eq 3)

We refer to the derived equations ( 1, 2, 3 ) as " ballistic equations," since these

equations of motion do not explicitly contain sources or sinks of mechanical energy that

arise from muscle forces acting on the segments. These muscle forces arise from model

output as described below.

We propose to find cyclic squat trajectories by breaking the movement into

discrete connected phases. Each phase is solved as a two point boundary value problem.

Each two point boundary value problem consists of an initial and final configuration and

a specified time for moving from the designated initial to final configuration.



CHAPTER 3

NUMERICAL SOLUTION OF TWO POINT BOUNDARY VALUE PROBLEM
BY

SHOOTING MATHOD

The motion for each model considered in this thesis is obtained by solving one or several

linked two points boundary value problem. Each boundary value problem consists of an

initial and final target configuration and a specified duration for moving from the initial

to target configuration .

The shooting method is used to solve the two point boundary value problem. The

shooting method is an iteration method. Each iteration is a solution of an initial value

problem in which the initial configuration and tentative guess for the initial velocity are

given. If we assume the initial angles of the shank, the thigh, and the trunk position at the

sitting configuration and guess the initial velocities of the segments, our program solves

for the final angles of the shank, the thigh, and the trunk at the standing configuration at

a specific duration of the time, which is also given. If discrepancies occur between the

calculated final angles and chosen standing configuration, our program guesses new

initial velocities and recalculates the final angles. This process continues until the

program finds the correct initial velocities, with which it can produce the final angles at

standing configuration which agree with the desired final angles. If the program finds the

correct initial velocities, it can produce the trajectory of the segments, and know the

position and velocities at any instant during the squat.

A 4th order Runga-Kutta initial value solver is used with adaptive time step to

insure that the local truncation error is less than a specified value. In each of the

20



2 1

numerical methods for solving the initial value problem, the points in the solution are in

general,  only approximation to the true value. The errors associated with each

computation will come principally from truncation of formulas and from round off of

numbers in the computation. The value of the error in the computation for any one point

in the solution can be controlled by the choice of the method, by the choice of spacing,

and by the number of significant digits used in the calculation. The method and the

spacing can be chosen so that the error in any computation is very small, but it generally

cannot be reduced to zero. The stability behavior of the predictor-corrector methods is

dependent upon the value of the product of the spacing (h) and the partial derivative of

the function f(x, y) with respect to y. The product is designated h

h =h 	f(x, y)
0 y

Ordinarily the user will have no control over the function f(x, y). So that only h

can be varied to alter 11. The most effective way of avoiding instability is to select a

method that is stable for all expected values of h. The 4th order Runga-Kutta method has

been proved stable for small value of h. Experience of many users indicates that it is

stable even for rather large value of h.

The initial value problem is solved up to the specified duration for the boundary

value problem. The configuration of the model at this time is compared to the target final

configuration and the difference between is used to find the next new guess for the initial

velocity using a multidimensional root-finding algorithm. We use a multidimensional

Newton's method. The iteration process continues until the error vector defined as the

difference between the target configuration of the boundary value problem and the final



configuration of the initial value problem is less than a pre-selected magnitude.

When the separate phases that comprise each boundary value solution are pieced

together, a complete continuous cyclic squat solution obtained. It is continuous because

the end-configuration of each phase is the start-configuration of the next phase. However,

in general, the solution has discontinuous velocities at each of the boundary point

configurations, separating phases. More precisely, the terminal velocity that solves one

phase is not in general, the starting velocity that solves the next phase. This means that

impulsive forces must be acting at each time that the solution is at a boundary

configuration. At each of these times, mechanical energy must be supplied to or removed

from the segments. We interpret these sources and sinks of mechanical energy to arise

from the action of muscles. We assume that an insignificant amount of mechanical

energy is stored in elastic tissues in this cyclic human squat motion. Because there are

relatively small losses of energy from joint dissipation forces, we have in this model also

ignored the small amount of energy dissipated into heat as a result of joint friction and

viscosity in the connective tissues. Mechanical energy is continuously flowing into and

out of muscles and from segment to segment, but in our model muscle activity is

restricted to the discrete interface times between phases. In the model the number of such

times of muscle activity and the configuration at which muscle activity occurs is

arbitrary. During each phase no external energy source is supplied and therefore each

phase is a ballistic solution. In the next section, we will focus on three examples of cyclic

squats with the same overall motion pattern. Each of these three examples, however, will

consists of a different number of distinct phases and interface boundary configurations

where muscle activity can occur.
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STANDING
CONFIGURATION

SITTING
CONFIGURATION

CHAPTER 4

THREE CYCLIC SQUAT MODELS

We will consider three distinct cyclic squat models. Each model has three degrees of

freedom and involves three segments ( trunk, thigh, and shank) and no model involves

raising the heel off the ground during the squat. ( This would add an additional segment

and degree of freedom to the model ). Each model has a different number of phases and

boundary points, where muscle activity can occur.

The I' model is shown in fig.4and 5. In this model there is only one phase, and

only one boundary configuration ( sitting configuration ). Muscle activity only occurs in

this sitting configuration and the energy supplied by this activity is sufficient to carry the

body through the entire cycle.

Configuration I : sitting

Phase I

START

END

Figure 4: One configuration block diagram
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START END

STANDING
CONFIGURATION

SITTING
CONFIGURATION

START

Phase 1

TOTAL TIME T

Hip

Knee

Ankle

STANDING	 i	  SITTING

	

CONFIGURATION	 CONFIGURATION

Figure 5: One configuration model

T total = T	 Where, T total is total time period for the squat

The 2n d model is shown in fig.6 and 7. In this model there are two phases and two

boundary configurations. Muscle activity can occur at initial standing and final sitting

configuration and the energy supplied by these activities is sufficient to carry the body

for each phase through entire cycle.

Configuration 1 : standing

Configuration 2: sitting
PHASE I	 TIME TI
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START
END

PHASE 2 TIME T2

Figure 6: Two configuration block diagram



Phase 1 Time T down

Phase 2 Time T up

HIP

KNEE

ANKLE

STANDING CONFIGURATION	 SITTING CONFIGURATION

Figure 7: Two configuration model

T total = T down + T up

If T total is symmetric, then

T down = T up

where, T total = the squat period

T up = time from the sitting configuration to the standing configuration

T down = time from the standing configuration to the sitting configuration

We considered a 3rd model, in which we implement a 3r d intermediate

configuration. At least fifteen major muscles are responsible for the sagital plane

movements of the ankle, knee, and hip joints. During a squat, all of the three segments

( trunk, thigh, and shank ) involve multi-joint muscles that control the knee angles. Thus

there is considerable indeterminacy when relating knee angle changes to any single

movement pattern or to any unique combination of muscle activities .
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For example, at the knee, there are nine muscles whose forces create the net

movement The line of action of each of these muscles is different and continuously

changes with time Therefore, it would seems reasonably to consider a model of the cycle

which allows muscle activity to occur between the sitting and standing positions

Introducing muscle activity at an intermediate configuration during the

cyclic squat, may have an effect on

(I) The impact forces that must be absorbed by the knee in the sitting configuration

(2) The ability to control cyclic squat without falling over

(3) The distribution of mechanical energy and overall mechanical energy cost of the

cycle

It is our goal to measure and compare the three models proposed in this thesis

with respect to

(I) Joint impact and ground reaction forces

(2) Dynamic stability and

(3) Mechanical energy cost.

In addition, these models will be compared to data collected from a normal

subject performing cyclic squat. ( see chapter 5 Experimental data )

The 3' model is shown in fig.8 and 9. In this model there are four phases and

three boundary configurations. Muscle activity can occur at the standing configuration,

the intermediate configuration, and the sitting configuration during the cyclic squat and

the energy supplied by these activities are sufficient to carry the body for each phases

through entire cycle.



START 2

INTERMEDIATE CONFIGUARTION

START 4

START 1

STANDING
CONFIGURATION

END 4

END 1

END 3

END

SITTING
CONFIGURATION

START 3

ANKLE
ANKL

Configuration 1 standing

Configuration 2 intermediate

Configuration 3: sitting

PHASE I TIME TI	 PHASE 2 TIME T2
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PHASE 4 TIME T4	 PHASE 3 TIME T3

Figure 8: Three configuration block diagram

Phase 1 Time T up 2	 Phase 2 Time T up I

Phase 4 Time T down 1	 Phase 3 Time T down 2

HIP

KNEEHIP

KNEE

STANDING CONFIGURATION	 I INTERMEDIATE CONFIGURATION I 'SITTING CONFIGURATION

Figure 9: Three configuration model

T total = T up 1 + T up 2 + T down 1 + T down 2
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Where,

T upl	 = time from the sitting configuration to the intermediate configuration

T up2 25 time from the intermediate configuration to the standing configuration

Tdownl 25 time from the standing configuration to the intermediate configuration

Tdown2 25 time from the intermediate configuration to the sitting configuration

We start by considering a symmetric case where,

T down I = T up 2

T down 2 25 T up 1

Therefore, 2( T down 1) 25 2( T down 2) 25 T total

If the structural parameters ( mass, length, and center of mass ) are given then, 3

standing configuration segment angles, 3 intermediate configuration segment angles, 3

sitting configuration segment angles ( total 9 angles ) and the times T down 1 and T

down 2 ( 2 time variable ) need to specified ( a total 11 parameters ) to solve the

equations of motion for this model. The solution is obtained numerically using the

shooting method ( see chapter 3 ) ( Press, 1992)[6]



CHAPTER 5

EXPERIMENTAL DATA

The experimental data were taken in the Motion Analysis Laboratory of the Kessler

Institute for Rehabilitation in West Orange, NJ using the VICON 370 Movement

Analysis System. The VICON system generates the three dimensional coordinates of

markers attached to critical points on the standing subject. The system output are the x-,

y-, and z- coordinates of each of the markers which are attached to the subject. The

markers are attached to the Anterior Iliac Spine(ASIS), hip, thigh, knee, tibia, ankle, heel

and toe on left and right sides and an additional marker is attached to the sacrum. They

are shown in figure 10.

Figure 10 Positions of the marker to get raw data
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For this model only ASIS, thigh, Knee, tibia and ankle of the right side of the

subject are recorded. The circular squat model is a two dimensional model. Therefore, it

is necessary to project the data collected from a three dimensional coordinate system

onto the two dimensional sagital plane. The laboratory frame coordinate system is such

that the x-direction is parallel to the floor and passing through the anterior-posterior axes

of the subject (anterior is positive), the y-direction is parallel to the floor and

perpendicular to the anterior-posterior plane of the subject, and the z-direction is

orthogonal to the floor plane and up.

Since there is relatively little motion recorded in the x-direction, the required

sagital plane projection described above is obtained by deleting the x-coordinate and

utilizing only the raw data of the y- and the z-coordinate. For normal individual, the

experimental values of the three segments angles describe in the model are shown as a

function of time for cyclic squat in figure. 1 1. ( Refer to figure 10 )

Time(sec)

Figure 11: Experimental data



CHAPTER 6

RESULTS AND CONCLUSION

In this section, we will compare model results with experimental data collected from the

VICON 370 motion analysis system. Our studies indicate that the period of the cyclic

squat can be adjusted theoretically by varying the number of separate ballistic phases

that comprise the cycle. At each interface time, separating two consecutive ballistic

phases, there will be a discontinuity in the momentum that corresponds to a time of

muscle action. Therefore, a cyclic squat with more phases corresponds to a squat where

there are more instants of muscle activity. Our studies shows that, the period of time

during the cyclic squat was different for all three models and for the experimental squat

of a normal individual. For example, we found that the cyclic squat for the one phase and

one configuration model is 0.60 seconds, the two phase and two configuration model is

0.48 seconds, the four phase and three configuration model is 0.83 seconds, while the

normal individual experimental data is 2.2 seconds ( Figures: 12,13,14,15,16,17 ). The

cycle time against the number of phases shown in Fig.28. The squat maneuver would

have to be fractionated into 28 phases in order for the cycle duration to be equal to the

observed 2.2 seconds.
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Shank (deg)
Thigh (deg)
Trunk (deal

0 	 0.1 	 0.2 	 0.3 	 0.4 	 0.5
Time (sec)

Figure:12 Angle: One phase circular squat
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Shank Vel. (deg./s)

Thigh Vel.(deg./s.)

Trunk Ve I 25 (deg ./s.)

Time (sec)

Figure: 13 Velocity: One phase circular squat



Shank(deg.)

25Thigh(deg)

Trunk(deg)

Time (sec)

Figure: 14 Angle: Two phase circular squat

Shank Vel (deg/sec)
Thigh Vel (deg/sec)

Trunk Vel (deg/sec)

Time (sec)

Figure: 15 Velocity: Two phase circular squat
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Shank (deg)

Thigh (deg)

Trunk (deg)

Time (sec)

Figure : 16 Angle: Four phase circular squat

Shank Vel.(deg./s.)

Thigh Vel (deg /s.)

Trunk Vel.(deg./s.)
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Time (sec)

Figure: 17 Velocity: Four phase circular squat



_Shank (deg)

25Thigh (deg)

 Trunk (deg)

25 	 25

Ti me (sec)

Figure: 18 Angle: Six phase circular squat

Shank Vel.(deg./s.)

Thigh Vel.(deg./s.)

Trunk Vel.(deg./s.)

Ti me (sec)

Figure: 19 Velocity: Six phase circular squat
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Shank (deg)

Thigh (deg)

Trunk (deg)

0 	 0.2 	 0.4 	 0.6 	 0.8 	 1 	 1.2
Time (sec)

Figure: 20 Angle: Eight phase circular squat

Shank Vel.(deg./s.)

Thigh Vel.(deg./s.)

Trunk Vel.(deg./s.)
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Time (sec)

Figure: 21 Velocity: Eight phase circular squat
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	  Trunk (deg)
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Figure: 22 Angle: Ten phase circular squat

400
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Vel -200

-300

-400

—Shank VeI.(deg./s.)
25 Thigh Vel.(deg /s.)

---- Trunk VeI.(deg./s.)
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Figure: 23 Velocity: Ten phase circular squat



25Shank (deg)
Thigh (deg)

25Trunk (deg)

Time (sec)

Figure: 24 Angle : Twelve phase circular squat

Shank Vel (deg /s.)

Thigh Vel. (deg /s.)

Trunk Vel. (deg /s )

Time (sec)

Figure :25 Velocity: Twelve phase circular squat
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Shank ( deg) Thigh(deg)

Trunk (deg)

Figure : 26 Angle: Fourteen phase circular squat

Shank VeI.(deg./s.)

Thigh VeI.(deg./s.)

Trunk VeI.(deg./s.)

Ti me (sec)

Figure: 27 Velocity: Fourteen phase circular squat
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These results show that increasing the number of phases in the cyclic squat can

change the time period. In the simplest case of a symmetric one phase cyclic squat, the

three segments ( the trunk, the thigh, and the shank ) free-fall from a nearly vertical

position ( standing position ). It is of interest that the three segment model without any

muscle activity at all, will free-fall from a vertical position ( standing position ) in such a

way as to produce a physiologically plausible squat motion. We believe that this is the

result of the way the weight and length of the segments are naturally distributed in the

human structure. The structural parameters ( the length, the masses, and the center of

masses ) used in the model were obtained from data published by Dempster (Veau

1977)[10]. We used parameter values based on the sex, height, and weight corresponding

to the experimental subject. We also found that the experimental angles do not

correspond perfectly to model segment angles, because markers on a normal individual

can not always be attached at ideal positions. In the future, we plan to study model free-

fall squats with varying structural parameters and number of segments to observe how

sensitive the physiological free-fall motion is to these quantities.

The period of the continuous one phase cyclic squat in figures: 12 and 13 is 0.60

seconds. This is considerably shorter than the experimental squat, whose angles are

illustrated in figure: 11. Both theoretical and experimental curves are symmetric in time

about the vertical line that represents the time at the end of the half squat ( see figure: 11,

approximately 1.1 second ). We will call this midway configuration the sitting

configuration as the thigh segment angle is horizontal with respect to the ground at this

time. The symmetry in the theoretical curve is obtained by reversing the segment

velocities at the sitting configuration ( joint viscosity are assumed to be zero ). Figure: 13
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shows that the reversing segment velocities at the sitting position, results in achieving

nearly zero segment velocity in the standing position. More precisely, no additional

muscle activity is required in the standing position to initiate the next cyclic squat.

Muscle activity is required only at the sitting configuration.

More precisely, when the model falls to the sitting configuration, the muscles

must exert a" breaking " action to stop the fall. Thus, kinetic energy is removed from the

system ( body ) at this time. In addition the muscles must now give a propulsive impulse

to the system to bring the segment velocities to equal but opposite values to the previous

falling velocities at the sitting position so that the symmetric rising phase can be

achieved. Therefore, kinetic energy must be added by the muscles at this time.

In the model, these two effects of breaking and propulsion occur instantaneously

and result in impulse forces on all joints and in particular figure: 13 shows that the

instantaneous changes in velocity, are greatest in the segments angle representing the

25knee joint.

In figures: 14 and 15, the model has two phase, and the cyclic squat takes 0.48

seconds. Since the segment velocities are not zero in the standing position of the two

phase squat, the breaking and propulsive muscle activities that were described in the

sitting position for the one phase squat now must also occur in the standing position of

the two phase squat.

Therefore, one may consider the one phase model as a limiting instance of the

two phase model, where the muscle activity in the standing configuration has been

reduced to zero. This one phase squat represents the minimum mechanical energy cost of
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all possible two phase squats. The one phase squat has the smallest momentum reversal

in the sitting position ( least knee impact ) of all two phase squats and in addition, as we

have already mentioned, the one phase squat has no mechanical energy cost in the

standing position. Thus, the one phase solution represent the minimum power needed to

complete a two phase squat, since it maximize the time and minimize the mechanical

work.

Figures: 16 through 26 shows four phase squat, six phase squat, eight phase squat,

ten phase squat, twelve phase squat, and fourteen phase squat, respectively. These

periodic squat solutions were obtained in the following manner. At the beginning of the

each falling phase, the initial velocity of all segments are set to zero. Each phase is

solved as a ballistic motion. That is, there are assumed to be no external forces acting on

the system, except gravitational forces. Symmetry of the solution is enforced by

reversing the falling velocities at the end of each falling phase to obtain the

corresponding solutions of the rising phase. This allows the model body to rise in a

symmetric fashion. Therefore, in this squat solution, a zero velocity is achieved at the

end of each rising phase.

Our model shows that the period of the squat, depends on the number of phases of

the cyclic squat. As we add more phases in this manner, the period of the squat increases,

the number of sudden changes in momentum increases but the momentum change of the

each phase decreases and therefore impact on each joint is reduced. The maximum

impact on the joints can be reduced by adding more phases to the model. Also, the curve

of the shank segment angle as a function of time during each phase of the squat is

concave up; however as more phases are added, the overall shape of the curve becomes
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Figure: 28 Number of phases vs . Cycle time 

In summary, these results suggest that, the free-fall squat minimizes the 
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mechanical energy cost for all squats; however, adding additional phases can reduce the 

impact force on the joints and allow for better control of the motion through the 

intervention of muscular activity . The free-fall technique appears to be used by 

professionall y trained athletes and in particular in those athletes, who train fo r weight 

lifting [11]. 
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