
Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

KNOWLEDGE-BASED DOCUMENT FILING FOR TEXPROS

by
X en Fan

This dissertation presents a knowledge-based document filing system for

TEXPROS. The requirements of a. personal document processing system are inves-

tigated. In order for the system to be used in various application domains, a flexible,

dynamic modeling approach is employed by getting the user involved in document

modeling. The office documents are described using a dual-model which consists of

a document type hierarchy and a folder organization. The document type hierarchy

is used to capture the layout, logical and conceptual structures of documents. The

folder organization, which is defined by the user, emulates the real world structure

for organizing and storing documents iii an office environment.

The document filing and retrieval are predicate-driven. The user can specify

filling criteria and queries in terms of predicates. The predicate specification and

folder organization specification are described. It is shown that the new specifications

can prevent false drops which happen in the previous approach.

The dual models are incorporated by a three-level storage architecture. This

storage architecture supports efficient document and information retrieval by limiting

the I iiiLli to those frame instances of a document type within those folders which

appear to be the most similar to the corresponding queries, Specifically, a. three-level

retrieval strategy is used in document and information retrieval. Firstly, a knowledge-

based query preprocess is applied for efficiently reducing the search space to a small

set of frame instances, using the information in the query formula. Secondly, the

knowledge and content-based retrieval on the small set of frame instances is applied.

Finally, the third level storage provides a platform for adopting potential content-

based multimedia document retrieval techniques.

A knowledge-based predicate evaluation engine is described for automating

document filing. The dissertation presents a knowledge representation model. The

knowledge base is dynamicly created by a learning agent, which demonstrates that

the notion of flexible and dynamic modeling is applicable.

The folder organization is implemented using an agent-based architecture. Each

folder is monitored by a filing agent. The basic operations for constructing and

reorganizing a folder organization are defined. The dissertation also discusses the

cooperation among the filing agents, which is needed for implementing the folder

organization.

KNOWLEDGE-BASED DOCUMENT FILING FOR TEXPROS

by
Xien Fan

A Dissertation
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

Department of Computer and Information Science

May 1998

Copyright © 1998 by Xien Fan

ALL RIGHTS RESERVED

APPROVAL PAGE

Knowledge-Based Document Filing for TEXPROS

Xien Fan

Dr. ter A. Ng, Dissertation Advisor 	 Date
Professor of Computer nd Information Science, NJIT

Dr. Murat M. Tank Committee Member 	 Date
Associate Professor of Computer and Information Science, ma'

Dr. D.C. Douglas Hung, Committee Member 	 Date
Associate Professor of Computer and Information Science, NJIT

Dr. Ronald S. Curtis, Committee Member 	 Date
Assistant Professor of Computer Science, William Paterson University

Dr. Tina Taiming Chu, Committee Member 	 Date
Assistant Professor of Mechanical Engineering, NJIT

BIOGRAPHICAL SKETCH

Author: Xien Fan

Degree: Doctor of Philosophy

Date: May 1998

Date of Birth:

Place of Birth:

Undergraduate and Graduate Education:

• Doctor of Philosophy in Computer Science,
New Jersey Institute of Technology, Newark, New Jersey, 1998

• Master of Computer Science and Engineering,
Tsinghua University, Beijing, China, 1989

• Bachelor of Computer Science and Engineering,
Tsinghua University, Beijing, China, 1986

Major: Computer Science

Publications:

Xien Fan, Peter A. Ng, "Personal Document Management and Retrieval: A
Knowledge-Based Approach", To appear in Journal of Systems Integration,
vol. 8, no. 3, 1998.

Xien Fan, Peter A. Ng, "A Dual Model Approach For Modeling Office Documents",
To appear in Proceedings of the Third World Conference on Integrated Design
8 Process Technology, 1998.

Xien Fan, Simon Doong, Peter A. Ng, Ching-Song Don Wei, "A Process for
Constructing a Personal Folder Organization", To appear in Processings of the
IEEE International Workshop on Multi-Media Database Management System,
1998.

Xien Fan, Qianhong Liu, Peter A. Ng, "A Multimedia Document Filing System", In
Proceedings of the IEEE International Conference on Multimedia Computing
and Systems, pp.492-499, June, 1997.

Xien Fan, Qianhong Liu, Peter A. Ng, "Knowledge-based Document Filing:
TEXPROS Approach", In Proceedings of the 13th International Conference on
Advanced Science and Technology in conjunction with the 2nd International
Conference on Multimedia Information Systems, pp.58-67, Apr. 1997.

iv

X. Li, J. Hu, X. Fan, C.Y. wang and P. A. Ng, "Automated Document Filing
and Retrieval", To appear in Proceedings of the Third World Conference on
Integrated Design Process Technology, 1998.

S. Doong, C. Wei, X. Fan, D.0 Hung, P. A. Ng, "A Folder Organization Model
in the Office Environment", To appear in Processings of the th International
Conference on Information Systems Analysis and Synthesis, 1998.

This dissertation is dedicated to
my son

David J. Fan
and

my wife
Fang Sheng

vi

ACKNOWLEDGMENT

I would like to express my sincere gratitude to my advisor, Professor Peter

A. Ng, for his guidance, support, and constant encouragement through this work.

Special thanks are given to Dr. Murat M. Tanik, Dr. D.C. Douglas Hung, Dr. Ronald

S. Curtis and Dr. Tina Taiming Chu for actively participating in my committee.

I wish to express my appreciation to Dr. Ronald S. Curtis for his helpful

comments and crucial feedbacks to this dissertation.

vii

TABLE OF CONTENTS

Chapter	 Page

1 INTRODUCTION 	 1

1.1 Related Work on Document Processing 	

1.2 Document Organization and Modeling 	 3

1.3 Requirements of Personal Document Processing System 	 6

1.4 TEXPROS Approach 	 8

2 THE DUAL MODELS 	 11

2.1 The Document Type Hierarchy 	 11

2.2 The Folder Organization 	 11

3 PREVIOUS WORK 	 15

3.1 Problems and Limitation 	 16

3.2 Analysis: Level of Abstraction 	 19

3.3 Analysis: Value Integrity 	 20

4 PREDICATE-BASED REPRESENTATION OF DOCUMENTS 	 22

4.1 Predicate Specification 	 22

4.2 Justification of the Predicate Specification 	 26

5 FOLDER ORGANIZATION 	 30

5.1 Definition of Folder Organization 	 31

5.2 Justification of the New Folder Organization Specification 	 34

5.3 Falsedrop 	 36

5.3.1	 Falsedrops Caused by Incorrect Evaluation 	 39

5.3.2	 Technical Falsedrops 	 39

6 DOCUMENT REPOSITORY 	 41

6.1 Multilevel Repository Architecture 	 41

6.2 The Bookcase Organization 	 43

viii

Chapter	 Page

6.3	 Multilevel Retrieval Strategy 	 45

6.3.1	 Knowledge-Based Query Preprocessing 	 46

6.3.2	 Frame Instance Search 	 49

6.3.3	 Content-Based Retrieval on Original Documents 	 51

7 KNOWLEDGE-BASED PREDICATE EVALUATION 	 53

7.1 The Predicate Evaluation Engine 	 53

7.1.1	 Evaluation Module I 	 54

7.1.2	 Evaluation Module II 	 55

7.2 Knowledge Base 	 57

7.2.1	 Rules for using the Knowledge Base 	 59

7.2.2	 Justification of the Knowledge Base 	 61

7.3 Knowledge Acquisition 	 63

7.3.1	 Obtaining Domain Knowledge 	 63

7.3.2	 Building Object Base 	 65

7.4 Performance Analysis of the Predicate Evaluation Engine 	 68

8 AGENT-BASED IMPLEMENTATION OF FOLDER ORGANIZATION . 70

8.1 Approaches to Filing Frame Instances 	 70

8.2 Filing Agent 	 72

8.3 Implementation of Filing Agents 	 74

8.4 Folder Reorganization 	 76

8.5 Cooperation Between Filing Agents 	 77

8.5.1	 Filing Process 	 78

8.5.2	 Manipulating Links 	 78

8.5.3	 Deleting Frame Instances 	 81

8.5.4	 Modifying Filing Criteria 	 81

8.5.5	 Sending Frame Instances 	 81

8.6 Performance Analysis of the Filing Process 	 82

ix

Chapter	 Page

9 IMPLEMENTATION AND FUTURE WORK 	 84

9.1 System Architecture and Implementation 	 84

9.2 Future Work 	 85

10 CONCLUDING REMARKS 	 88

REFERENCES 	 94

LIST OF FIGURES

Figure	 Page

2.1 (a) An original slide (b) The frame template for the slide type (c) The
frame instance of the slide in (a) 	 12

3.1 An old folder organization 	 18

5.1 A folder organization 	 34

5.2 An alternative folder organization of Figure 5.1 	 35

5.3 Folder organization with labeled links 	 37

5.4 A folder organization for NJIT 	 38

6.1 The system storage architecture 	 42

6.2 A sample bookcase organization 	 44

7.1 The architecture of the evaluation engine 	 54

7.2 Am sample object page 	 56

7.3 The domain knowledge of NJIT affiliation 	 59

8.1 The architecture of the filing agent 	 72

9.1 The system architecture 	 86

xi

CHAPTER 1

INTRODUCTION

Large quantity of documents, either in hard-copy or electronic format, is being

processed in today's office environment. The objective of TEXPROS (TEXt

PROcessing System) is to provide a computerized environment for users to mani-

pulate their personal documents. TEXPROS provides functional capabilities of

classifying, filing, storing, retrieving, and reproducing documents, as well as

extracting, browsing, retrieving and synthesizing information from a variety of

documents. As more and more multimedia documents are being produced in the

office environment, the efficiency and effectiveness of document and information

retrieval is becoming more critical. Many efforts have been made to narrow down

the search space based on user provided information about the retrieved documents.

Document organization plays an important role in doing so by trying to group the

documents in such a way that the retrieval can be carried out based on a small

amount of documents.

1.1 Related Work on Document Processing

A considerable amount of research has focused on document filing and retrieval

[3, 4, 5, 6, 8, 12, 19, 40, 45, 46, 47, 48, 52, 54, 57]. Many document processing

systems have been developed in the past. Basically, they fall into four categories.

1. The first group deals with multimedia information including text, image

and voice data. Diamond [58], for example, allows users to create, edit,

and transmit multimedia documents. However, it does not explore in

depth the retrieval methods. MULTOS [57], on the other hand, supports

a well-defined query language and many query processing techniques.

MINOS [7] provides integrated facilities for creating complex document

1

2

objects, and for extracting and formulating new information fromexisting

documents.

2. The second group deals with text-based or bibliographic information

retrieval. A recent work is Kabiria's [5] distributed client/server archi-

tecture which supports the classification, filing, and retrieval of documents

and the maintenance of system knowledge. The retrieval systems RUBRIC

[38], Intelligent Interface for Information Retrieval (PR) [11] and Grant

[9] use knowledge-based techniques to support query processing, natural

language understanding, text understanding, and classification. RUBRIC

aims to provide more automated access to unformatted textual databases.

PR uses diverse kinds of knowledge to provide intelligent assistance to

help users find information in a textual database. Grant addresses the set

of documents needed to submit a grant request for supporting scientific

research, by assuming that a specific application domain can be precisely

defined using a rule-based knowledge system.

3. The third group is concerned with message exchanging and filtering. The

goal of such systems is to help users filter, sort and prioritize messages that

are already addressed to them, and also help them find useful messages

they would not otherwise have received. Relevant work includes INFOR-

MATION LENS system [36], MAFIA [35], and many others. Because of

the versatility of the electronic recording media, automatic information-

handling applications, such as the automatic teleconferencing systems

[2, 55], electronic mail and messages [43, 49, 63], electronic information

services [37, 62], electronic publications and the electronic library [61,

74], and many others, are available and utilized. While electronic infor-

mation processing methods have many attractions, the long-predicted

demise of conventional paper-handling systems has not yet occurred [52].

3

Many interesting questions are raised in the literature about paperless

information systems for achieving the eventual abandonment of paper

documents [13, 51, 61, 73].

4. With the advent of the World-Wide Web (WWW), networked information

systems with advanced methods for browsing, searching and accessing

the document collection in repositories become one of the central issues

that needs to be resolved. Emerging from the explosive growth in

networked connectivity and rapid advances in computer technology, the

notion of standalone information utilities are replaced with intercon-

nected digital libraries, which require effective means for the amplifi-

cation of information-intensive work [50]. Libraries exist in many forms

and types, such as image libraries, audio libraries, and digital video, as

well as distributed text-based information systems [10]. Effective infor-

mation access involves rich interactions between users and information

residing in digital libraries at diverse locations. These lead to a new

perspective towards information retrieval, the notion of documents, and

publishing in general [25]. A selection of supporting technologies for

digital libraries includes electronic publishing, hypermedia, data and

information management, and education [18].

1.2 Document Organization and Modeling

Text-based documents can be described and stored by sets of keywords. Indexing

techniques are used to reduce the search space to a collection of documents which

contains the given keywords [45, 46]. However, there are two major limitations of

these models. Firstly, it is difficult to verify whether a document is related to a

given keyword which does not appear in it. Secondly, keywords may not be the only

information that can be used to retrieve documents. For example, a user is trying

4

to find a letter from a professor. The user will get a set of non-relevant documents if

he/she issues the query using "letter" and "professor" as keyterms. This is because

the terms "letter" and "professor" are conceptual information, not the content of the

letter.

Another approach is using structured or conceptual models to describe

documents [3, 4, 5, 6, 8, 19, 40, 45, 46, 47, 48, 57, 60]. However, the systems

using this approach are designed for special purpose since their models are domain

dependent. Kabiria, for example, is a knowledge-based filing and retrieval system

[4, 5, 12, 481 designed using the notion of documents as objects embedded in a rich

procedural and domain context. The context describes a document's semantics by

taking into account the activities in which it is used and the domain rules that

justify its existence in the office environment. The Kabiria document model consists

of a conceptual model for describing and classifying documents, and a retrieval

model for retrieving documents. Documents are partitioned into different classes.

Documents of the same class have the same structure, meaning and roles in the

office. Document classes are organized as an is-a hierarchy using generalization

and specialization mechanisms. During filing, documents are organized based on

their classes. Original documents are stored in a document base, while classes and

conceptual structures (instances of the document classes) are stored in the model

base as nodes of the model's semantic network. The document retrieval model uses

referencing and linking to describe the relationships among documents and their

roles in the office. The reference mechanism describes logical relationships between

two conceptual structures of specific documents, whereas documents as a whole are

related to each other via document links. Document retrieval is based on content,

conceptual structure, role and domain dependencies, while users are allowed to

browse through the semantic network at either the class or instance level. The

semantic network is composed of two layers: the class layer shows the relationships

5

between different types of documents, and the instance layer describes, for each

instance, the real environment where real documents are embedded. To maintain

model consistency, two instances can be connected by an instance of a link only if the

corresponding classes are connected by the corresponding link type. Constructing

the instance layer and maintaining model consistency become cumbersome.

The MULTOS (MULTimedia Office Server) [19, 57, 60], aims to support

multimedia document filing and retrieval according to various search parameters.

Besides logical and layout structures, defined according to the Office Document

Architecture (ODA) standard [24], it introduces a conceptual structure to capture

the semantics of document contents. Documents with similar conceptual structures

are grouped into classes and are referred to as conceptual types, which are arranged

in an is-a hierarchy. Based on retrieval requirements and hardware capabilities,

the MULTOS (MULTimedia Office Server) divides document filing systems into

three categories: dynamic document filing systems, current document filing systems

and archive document filing systems. The dynamic document filing systems are

used essentially as buffers where a small number of documents are stored to be

accessed and manipulated by a single user. Retrieval of the documents can be done

simply by file names or superimposed codes assigned by the user. The current

document filing systems are used for storing documents that are of current interest

to the office, and that are frequently accessed. They may be shared and updated.

Retrieval of the documents can be done by content, set of documents and document

identifiers. The archive document filing systems are used for storing documents that

have reached a stable state in which modification is infrequent. Document retrieval

is again by content, set of documents and document identifiers. The three filing

system categories are related to the document life-cycle. Documents would migrate

over time from a dynamic filing system towards an archive filing system through a

current filing system. From the viewpoints of storage capacities, the archive filing

systems have the greatest capacity, followed by the current filing systems, then the

dynamic filing systems. However, the dynamic filing systems give the best response

in comparison with the other two filing systems. One would expect a longer response

time from the archive filing system because of its large size.

1.3 Requirements of Personal Document Processing System

As mentioned before, various document models are under investigation [3, 5, 6, 8,

40, 45, 46, 47, 48]. Full text systems store and retrieve textual documents based

on subject content. Keyword-based systems store and retrieve documents based on

manually or automatically created document records. To retrieve documents and

information from these systems, users are required to express what the documents

contain. This limits the efficiency and effectiveness of document and information

retrieval because the systems do not take into account what users know about the

documents. Structured models can capture the layout and logical structures of

documents. Users are allowed to specify queries in terms of what the documents

are like. Conceptual models can capture the conceptual structure and other domain

knowledge such as how the documents are used, what organizational activities are

related to the documents. These models, which are domain dependent, allow users

to express the request in terms of what the documents are about.

However, personal information systems have not drained enough attention. The

current document processing systems have limitations when they are used as personal

document systems. We identified three basic requirements for personal document

processing systems from document filing point of view. The first one is the need

for a flexible and dynamic document model. It is impractical to build a personal

document processing system for a single user. In other words, a personal document

system will be used by different users. Different users understand and organize their

documents in different ways. For better retrieval efficiency and effectiveness, the

7

system should be able to use all the knowledge each user has about the documents

to be retrieved. But it is impossible for a single model to capture all the information

that can be derived from the documents. Therefore, documents should be stored

based on the user's knowledge about them. This allows the system to match the

user's knowledge about the documents to be retrieved against the descriptions (from

the user's point of view) of the documents in the document base. This matching will

become more difficult if the models are predefined, like most of the systems have. As

a result, it will be difficult for the user to specify queries because he/she understands

documents in a different way. This causes a lot of vague queries to be issued, and in

turn reduces the efficiency and effectiveness of document and information retrieval.

A predefined document model will also cause the system to be domain-dependent.

It is hard for the system to be used by different users.

The second requirement is the need for a document filing model. Document

organization plays an important role in reducing the search space based on user-

provided information about the retrieved documents, rather than searching through

the whole document space. Obviously, higher efficiency and effectiveness of document

search can be achieved when the user knows how the documents are organized.

Therefore, a document filing model is useful in capturing the user's domain knowledge

of document organization. If we allow the user to define the document filing model,

the system can organize the documents the same way that the user would in the

real world. As a result, the user is familiar with the document organization, and can

provide helpful information for reducing the search space.

The third requirement is the capability of supporting various information

retrieval techniques. Today's office documents have various media types. And

the automatic semantic interpretation of some media types such as image and

video is far from applicable given the state-of-the-art of computer intelligence. A

personal document processing system should provide a platform for various IR,

8

techniques. Meanwhile the possibility of using various text-based IR techniques for

providing semantic content-based retrieval of multimedia documents should also be

investigated.

1.4 TEXPROS Approach

TEXPROS (TEXt PROcessing System) [32, 69] is an automatic document filing

and retrieval system. The system provides functional capabilities for classifying

:20, 21, 22, 23, 70, 71, 721, categorizing [14, 15, 41, 42, 76, 77], storing [14, 15, 32,

68, 76], retrieving [30, 31, 32, 33, 34] and reproducing [68, 69] documents, as well

as extracting[20, 22], browsing [31, 65], retrieving [30], and synthesizing [30, 68, 69 .-

information from a variety of documents.

The intent of our research is to develop a personal document processing system

based on existing technologies. There are two major contributions of this work. The

first one is that it uses a flexible dual-model approach to modeling office documents.

The dual-model consists of a document type hierarchy and a folder organization,

both of which can be defined by the user. The document type hierarchy describes

the conceptual structure of the documents. And the folder organization, used as the

filing model, emulates the real world structure for organizing and storing documents

in an office environment. The dual-model provides a flexible and dynamic modeling

method since it is defined by the user. This gives the system the capability to be used

in various application domains. Secondly, the system can support precise queries.

Different users understand the documents from different point of view. Since the

dual-model is flexible and dynamic, the documents can be described and stored as

the user expects. Therefore, the user is allowed and able to specify queries based on

whatever he/she knows such as the content (keywords), layout and logical structure,

conceptual structure, and domain knowledge of the retrieved documents.

9

Using generalization and inheritance, the powerful abstractions for sharing

similarities among document classes while preserving their differences, the document

classes are organized as the document type hierarchy. Each document is divided into

textual and nontextual parts. (The latter includes essay, logos, drawings, graphics,

.pictures, and images.) The system permits the user to capture the meaning and

synopsis of both parts and organize them into a semistructured form (which is

called a frame instance). A folder organization is used as the repositories for the

frame instances based on whether they meet the criteria of the folders. When

retrieval occurs, the system often returns the frame instances, rather than the original

documents, to the user. (In most cases, the user should be contented with the infor-

mation in the frame instances.) Information search and retrieval can be speeded

up by focusing on frame instances of a particular type (frame template) within a

particular folder by combining the document type hierarchy and the folder organi-

zation. The document classification process is to find the best fitting type for a

given document and then to instantiate a frame instance of its type (represented

by a frame template) by filling significant information of the document pertinent

to the user into the underlying frame template. This reduces the document size

considerably without any severe loss of content. Storage space and processing time

are saved in many applications by using frame instances instead of full documents.

By doing so, it speeds up the information retrieval considerably. In addition, the

system exploits many AI techniques (e.g., organizing the knowledge base as a three

dimensional semantic network) to support intelligent retrieval, which is absent in the

previous multimedia document systems.

This dissertation is focused on document filing. We first introduce the

document model in Chapter 2, and then introduce the previous work on document

filing in Chapter 3. Chapter 4 describes the predicate-based representation of

documents. Predicates are used by the user to specify filing criteria and queries.

10

In Chapter 5, we extend the folder organization by introducing a new link between

folders for simplifying local predicates. In Chapter 6, a system repository archi-

tecture is described which takes into account the dual document models. By

incorporating the document type hierarchy and folder organization into the storage

system, it facilitates the document search and retrieval. A knowledge-based query

preprocessing algorithm is given for reducing the search space using the information

contained in the query formula. It is shown that this architecture can also support

various text-based information retrieval techniques and content-based multimedia IT(

techniques. In Chapter 7, an evaluation mechanism is proposed, which can evaluate

predicates using the knowledge base. The knowledge base consists of an object

base and a domain knowledge base. A knowledge representation model is given

to maintain the knowledge. Chapter 7 also presents a learning agent for acquiring

domain knowledge needed by the predicate evaluation engine. An agent-based archi-

tecture for implementing the folder organization is proposed in Chapter 8. Chapter

9 describes the overall architecture and the implementation of the filing system.

Future work is also discussed.

CHAPTER 2

THE DUAL MODELS

TEXPROS employs a dual modeling approach for describing, classifying, catego-

rizing, filing and retrieving documents. This document model consists of two

hierarchies: a document type hierarchy which depicts the structural organization

of the documents, and a folder organization which describes the user's real-world

document organization structure.

2.1 The Document Type Hierarchy

In a user's office environment, by identifying common properties for each document

class, documents are partitioned into different classes. Each document class is repre-

sented by a frame template which describes the common properties in terms of

attributes [44: of the class and is referred to as the document type (or simply type).

As a powerful abstraction for sharing similarities among document classes while

preserving their differences, the frame templates are related by specialization and

generalization and are organized as a document type hierarchy whose members are

related by an is-a relationship. This is-a relationship and the mechanism of inher-

itance help to reduce the complexity of models and redundancy in specifications

[56]. After its classification [20, 21, 23, 70, 71, 72], a particular office document,

summarized from the viewpoint of its frame templates, yields a synopsis of the

document which is called a frame instance. Figure 2.1 shows the frame template

and frame instance of a viewgraph of slide.

2.2 The Folder Organization

The frame instances of different types are deposited into folders over time. Folders

are heterogeneous repositories of frame instances and are organized to form a folder

11

John Smith

Temporal Synchronization	 Tom Johnson

I. Toolkit facilities

II. Temporal Coordination

Temporal coordination is a special case of synchronization

Definition: A temporal coordinated interface is one in which
several time-based interaction or presentation
areas must be synchronized to achive some
simultaneous effects

(a)

Type	 Type	 Slide

Title	 Title	 Temporal Synchronization

Author	 Author John Smith, Tom Johnson

Date	 Date	 June 26, 97

[Description]	 Topic	 Topic name Toolkit facilities

Topic Name	 Topic Name Temporal Coordination

[Description]	 Description

<Topic>	 <Topic>	 Topic	 Temporal
CoordinatedConcept

Concept	 Definition	 Interface
<Definition>

Description 	 Description 	

(b)	 (c)

Figure 2.1 (a) An original slide (b) The frame template for the slide type (c) The
frame instance of the slide in (a)

12

13

organization [16], which is one of the common ways of organizing and storing

documents for their retrieval in an office environment. The folder organization is

defined by a user corresponding to the user's view of the document organization,

which is obtained by repeatedly dividing documents for particular areas of discourse

 into groups until the user believes the groups are descriptive. Each folder has a user

defined criterion for governing the automatic document filing. A predicate based

representation of documents is used to specify criteria for the folder organization.

One of the disadvantages of text retrieval using inverted index files is that the

information pertaining to a document is scattered among many different inverted

term lists. Information relating to different documents with similar term assignments

is not in close proximity within the file system. The inverted file strategy always

remains faster than cluster searches, but it does not provide easy access to the

complete frame instances in the folders, nor does it have a browsing capability.

Browsing is to be permitted in document collection when data about related items are

close together [52]. In a cluster file organization [27, 64], records that have similar

frequency distributions for attribute values are grouped together, without taking

into account the degree of closeness between two specific records. This clustered

structure can, in fact, be used for both search and browsing, since similar documents

are collected in a common group in a clustered file. Clustered file searches can

be effective in retrieving the wanted items when similarity associations between

documents convey information about the joint relevance of documents to the queries.

In this organization, once clusters are formed, it would be possible to determine in

which cluster a new document would fall, and to find which cluster of records a query

best fits [39]. However, many documents, which may have little in common with the

query, must be compared with the query formulation [52]. Furthermore, the use of

clustering strategies in information retrieval has been limited in practice, because of

the expense of generating the cluster structures for large collections of documents

14

[53:. Analogous to a cluster file organization, the folder organization provides efficient

frame instance access by limiting the searches to those frame instances of a specific

document type in a folder (analogous to document clusters) which appear to be

most relevant to queries in a collection. This search strategy filters out first any

frame instances of irrelevant document types and then compares the contents of

a small collection of frame instances of an identified document type against query

formulations, this is quite analogous to the global-local text similarity comparison

[53], and should produce a high degree of retrieval precision. In addition, it is

convenient to distinguish the folder-generation process from folder-search strategies.

In normal circumstances, the DAG structured folder organization is generated only

once, and its maintenance including folder reorganization can be carried out at

relatively infrequent intervals. Document search operations [14, 15, 30, 3], 32, 33,

34, 65], on the other hand, may have to be performed continually and efficiently.

CHAPTER 3

PREVIOUS WORK

An agent-based filing architecture was first proposed to implement TEXPROS's

document filing subsystem [32, 68, 69, 76, 77] for automating document filing (i.e.,

placing an incoming frame instance in appropriate folders) and for coping with folder

reorganization. There are two types of agents in the system: filing agent and storage

agent. Each agent has its own private data structures and operations for manip-

ulating these data structures. The agents communicate with each other through

message passing. As it is monitored by a filing agent, each folder is associated

with a criterion. All frame instances in the folder and its descendants must satisfy

the criterion of that folder. An agent receives copies of the frame instances from

its parent and distributes them to its children if their contents satisfy the criteria

of the children. Each agent stores frame instances in two places: repository and

output_buffer. However, a storage agent is a special type of filing agents without

output_buffer, for it does not send frame instances to any other agents. All the

frame instances in the storage agent will be kept in the repository, and may be

collected and redistributed by the parents of a storage agent.

In [32, 76, 77], a DAG (Directed Acyclic Graph) structured folder organization

is presented, in which each node represents a folder and each edge 12) denotes

that the folder 12 is a child folder of / 1 (or 11 is a parent folder of 12). As its criterion,

each folder has a user-defined predicate, called the local predicate, which governs the

filing of frame instances into it. To be filed in the folder 1 2 from a folder 1 1 , a frame

instance must satisfy the local predicate of the folder f, , and, in turn, it must satisfy

the local predicate of the folder 1 2 . A filing path from the root folder f 0 to folder f t

in the folder organization is a path from f0 to fl in the DAG; and therefore, to be

filed in the folder f l from the root folder A through the filing path, a frame instance

must satisfy every local predicate on the filing path by evaluating these predicates

15

16

against the contents of the frame instance. The global predicate for a folder f 1 in a

folder organization is the ORing of the predicates of all the possible filing paths from

f0 to f1 ; and the global predicate of each filing path from f 0 to fl is an ANDing of

the local predicates of all the folders on the path. Thus, a folder groups together

those frame instances, regardless of their document types, which satisfy its global

predicate.

3.1 Problems and Limitation

However, there are four major limitations of the previous work. The first one is

that the predicate specification is ambiguous. Previous work uses a simple form for

specifying predicates, such as, in terms of attribute-value pairs. This ambiguous

predicate specification causes the user and the system to misunderstand each other.

Therefore, the filing system cannot guarantee that a frame instance is filed in appro-

priate folders. Consider an example: a folder organization shown in Figure 3.1; each

of the folders is associated with its local predicate as stated beside the folder. Take

the slide in Figure 2.1 as a sample document. Suppose John Smith is a Ph.D. student

in the CIS department, and also a faculty member of the EE department, while Tom

Johnson is a staff member in the CIS department. According to [32, 76, 77], the slide

will be deposited into the folder NJIT because both authors are affiliated to NJIT.

Then the slide will be stored in the CIS and EE folders because John Smith is in

the EE department and Tom Johnson is in the CIS department. And then it will

be deposited into the CISStudent, CISPHD, EEEMP and EESFAC folders because

John Smith is a Ph.D. student in the CIS department and a faculty member in the

EE department. However, the folder CISFAC also receives a copy of the slide because

John Smith is a faculty member, although not in the CIS department. The slide will

also be deposited into the folder EEStudent because John Smith is a Ph.D. student,

although not in the EE department. And the folder EESTAFF has a copy of the

17

slide because Tom Johnson is a staff member, but not in the EE department. The

filings of the slide into the folders CISFAC, EEStudent and EESTAFF are examples

of falsedrops; that is, a frame instance is deposited in a folder where it should not

be. These falsedrops are caused by inconsistent interpretation the folders' predicates.

One solution is evaluating predicates of the folders on a filing path against the same

attribute-value pair, but this limits the process of creating folders' predicates at a

user's disposal. And the problem can only be partially solved: only the falsedrop of

filing the slide into the folder EESTAFF can be prevented. Another solution is adding

a restriction that the attributes used in specifying predicates of the folders must be

the same as the attributes used in frame templates, but then the predicate specifi-

cation cannot be used for specifying high level information and domain knowledge

about documents. The next two sections will discuss how the previous predicate

specification causes falsedrops. Based on the analyses, a new predicate specification

will be proposed in the next chapter that allows users to specify precise predicates,

and in turn, to prevent falsedrops.

The second limitation is that the domain knowledge, used by the filing system

for determining whether a frame instance satisfies a predicate, is predefined. As a

personal document processing system, TEXPROS allows the user to get involved

in document modeling for meeting different users' needs. A predefined domain

knowledge base cannot support such a flexible and dynamic modeling approach.

The system must have self-learning capability for enriching the domain knowledge

base.

The third limitation is the lack of a system storage architecture which can

incorporate the folder organization and the document type hierarchy. TEXPROS

employs a dual modeling approach. The dual models can support efficient and

effective document search and retrieval. However, a system storage architecture

CIS Department=CIS Department=EE

Class=student Position=employee

CISStudent EEEmpCISFAC

Position=faculty

EEStudent

Class=student

root

NJIT

TRUE

Affiliation=NJIT

18

CISMS EFFAC FFSTAFFCISPHD

Program=PHD Program=MS Position=faculty Position=staff

Figure 3.1 An old folder organization

is needed to combine the dual models together for speeding up the document and

information retrieval.

Finally, the folder organization is implemented using an agent-based archi-

tecture in [32, 68, 69]. Each folder is monitored by a filing agent. A set of filing

agents is needed for monitoring a folder organization. However, the cooperation

among these filing agents is not defined. The previous work employs a filing approach

that only one copy of each frame instance exists in the folder organization. As we

will see in Chapter 8, this approach requires an agent to collect frame instances

from its descendant agents during document filing and folder reorganization, which

is time consuming since the collection has to go through the whole branch of the

folder organization.

19

3.2 Analysis: Level of Abstraction

The users' knowledge about a document can be specified in terms of a low level

abstraction, such as keywords, or expressed in terms of a high level conceptual infor-

mation, such as "the author of an article is a student": The information carried

by a predicate can be considered as part of the abstraction of a document. The

abstraction can be expressed at different levels. For example, attributes of a frame

template, such as sender and receiver of letters, subject and authors of articles are

among the abstractions of the first level. Very often, a user may specify a predicate

which characterizes the properties of an object. For example, consider a predicate

specification that the author of an article is a faculty member. In this case, author is

an attribute of the article and faculty is considered to be the property of the author of

the article which cannot be obtained directly from the frame instance. The property,

which specifies the semantic and behavioral information of an object, can be derived

from a deeper content analysis, looking it up in the thesaurus tailored to a particular

subject area, or a preconstructured knowledge base for a particular area of discourse

which describes specific relationships between entities in terms of synonym relations,

whole-part relations, cause-effect relations, and so on. The properties of attributes

are among the abstractions of the second level.

However, the previous predicate specification does not take the level of

abstraction into account. Predicates are statements of objects. The previous

predicate specification omits the objects in predicates by assuming that the object

in a predicate is the frame instance and the filing system files only one frame instance

each time. Since the abstractions of a frame instance can be at different levels, the

objects in predicates are not always the frame instances. Take the folder EESTAFF

and its filing path (from root to the folder EESTAFF) in Figure 3.1 as an example, the

filing of the slide into this folder is considered as a falsedrop under the assumption

that the meanings of the local predicates of folders along the filing path of the

20

folder EESTAFF, "Affiliation=NJIT", "Department=EE", "Position=employee",

"Position=staff", are one of the authors is Affiliated to NJIT, one of the authors is

in the EE department, one of the authors is an employee, one of the authors is a

staff member, respectively. And the global predicate of the folder EESTAFF, which

is "Affiliation=NJIT Department=EE Position=employee Position=staff",

means that one of the authors is a staff member in the EE department at MIT. So

these predicates are statements about the authors of the slide, not the slide itself.

Obviously, the slide does not satisfy the global predicate of the folder EESTAFF

although it satisfies all the local predicates of folders along the filing path of the

folder EESTAFF. In other words, 3x .A(x) A Ex.B(x) Ex, A(x) A B(x).

3.3 Analysis: Value Integrity

Another factor that may cause falsedrop is the imprecise meanings of values (or

symbols) in a predicate specification. Some values are ambiguous without giving

the domain. Consider the term "Ph.D. Student". It is ambiguous to say someone

is a "Ph.D. Student" because it is not clear in which department at which school.

Ambiguous values in predicates may cause falsedrops. As an example, the filing

of the slide into the folder EEStudent in the previous example is due to the fact

that John Smith is affiliated to the EE department of NJIT (a staff member of

the EE department) , and a Ph.D. student (although not in the EE department).

Note that the global predicate of the folder EEStudent, Affiliation=NJIT A

Department=EE A Program=student, has ambiguous meanings. One is that

John Smith is affiliated to NJIT, is in the EE department, and is a student. Another

is that John Smith is a student in the EE department at NJIT. If the user takes the

later one, then the global predicate of the folder EEStudent is not true, although all

the local predicates of folders along the filing path of the folder EEStudent are true.

To the user's understanding, the filing of the slide into the folder EEStudent is a

21

falsedrop. In order to understand and interpret clearly and precisely (and therefore

to prevent the falsedrop of frame instances), it is necessary to disambiguate and

formalize the values in a predicate specification by specifying the domain in which

a value is defined. We use path-notation [751 to reference values of particular

components of the aggregate hierarchy. For this case, in order to refer a Ph.D.

Student of CIS department at NJIT, where "CIS" is the domain where "Ph.D.

Student" (denoted as PHD) is defined, and "NJIT" is the domain where "CIS"

is defined, the path-notation is "PhD.CIS.NJIT". Interchangeably, we also write

PHD.(Department=CIS).(University=NJIT).

CHAPTER 4

PREDICATE-BASED REPRESENTATION OF DOCUMENTS

The major objective of this dissertation is to automatically organize the documents

in the same way that the user expects, for supporting efficient and effective document

search and retrieval. Specifically, the system provides the user with an intelligent

GUI (Graphical User Interface) for specifying the document filing model, which is the

folder organization. Through the interaction with the user, the system understands

the folder organization and stores the corresponding knowledge into the knowledge

base. The knowledge base is then used for supporting the document filing and

retrieval. This makes the folder organization a flexible and dynamic document filing

model. In order to support this filing model, a language is needed for supporting

the interaction between the user and the system. The language is used for specifying

knowledge about documents. The user can use it to specify criteria for governing the

document filing, or to specify queries for retrieval. The language has the following

properties:

o Expressive power: Users can easily use the language for specifying their filing

criteria. Users can easily use the language to specify what they know about

the documents being retrieved.

• Understandability: Users can understand how the documents are organized and

what information is important for document search and retrieval by browsing

the filing criteria. This will help users to specify precise queries.

4.1 Predicate Specification

In last chapter, we have discussed why the previous predicate specification causes

falsedrops. Based on that discussion, in this section, we shall formalize the new

predicate specification. Predicates are specified based on frame instances, which

22

23

contains conceptual information of the original documents. Attributes are used as

identifiers in accessing information from frame instances. Since frame instances have

different underlying structures (frame templates), sometimes it would be helpful in

simplifying predicate specification to give a common name to a set of attributes of

different frame templates. For example, Author is an attribute of the article type,

Sender and Receiver are attributes of the letter type, From and To are attributes of

the memo type. These attributes are the same type and all specify the persons who

creates or received the documents. However, each of these attributes can only be

used for one document type. In order to simplify the predicate specification, we can

define a common name (say Owner) to represent all of them. This common name is

called an abstract attribute. Abstract attribute is an attribute which represents a set

of attributes of the similar type, that appear in some frame templates. For notion

simplicity, abstract attributes are still called attributes.

Predicates are statements about objects. We allow two kinds of objects to

appear in predicates. One is the frame instances. The other is objects which

are related to the frame instances, i.e appearing in the frame instances as values

of some attributes. This limitation is made based on the fact that we only use

predicates to represent information of frame instances. Objects are represented by

object identifiers. For attributes that are multi-valued, objects can be given in form

of a :?i, where a is a multi-valued attribute, ? is the first letter of a and i is to denote

the ith value of attribute a. For example, suppose Author is a multi-valued attribute

of the article type, then Author:Al and Author:Ai denote the first author and one of

the authors, respectively. An object can also be represented simply by the attribute,

which means the object appears in the values of the attribute. For example, suppose

Sender is an attribute of the letter type, then "Sender" represents any of the senders

of the letter if it is used as an object identifier.

24

Definition 4.1 (Pattern) A pattern defines a filter which can be used to convert a

string to another. It may contain the special symbols ?, *, # and -, where ? stands

for one character; * stands for any number of characters, # stands for one character

that will be ignored, and - stands for any number of characters that will be ignored.

Definition 4.2 (First Level Predicate Clause) A first level predicate clause has the

form g (ω , b[, r] where

1. g is the name of the predicate clause, and can be an attribute of the frame

instance w;

2. w is a frame instance;

3. b is either a value or a variable; and

4. if b is a variable, r can be given as a pattern.

Definition 4.3 (Second Level Predicate Clause) A second level predicate clause has

the form g(a, r]) where

1. g is the name of the predicate clause, and can be a property name of the object

a;

2. a is an object;

3. b is either a value or a variable; and

4. if b is a variable, r can be given as a pattern.

Intuitively, both the first level predicate clause and the second level predicate

clause have the same syntax. The difference is that the first level predicate clauses are

used to specify characteristics of frame instances, whereas the second level predicate

clauses are used to specify the properties of objects which are related to the frame

instances. For example, Date(ω, 4/25/96) denotes that the attribute Date of the

25

frame instance w has value 4/25/96. Position(Sender, Employee.CIS.NJIT) denotes

that one of the senders of the frame instance is an Employee of the CIS department

at NJIT.

A predicate clause, either first level predicate clause or second level predicate

clause, is called a goal predicate clause if its second parameter is a value. An

assignment predicate clause is the one whose second parameter is a variable. A.

goal predicate clause is a statement whose evaluation is either true or false. An

assignment predicate clause is to assign a value, which makes the predicate clause

true, to its second parameter. For example, Program(Sender, PhD.CIS) represents

that one of the senders is a Ph.D. student of the CIS department. Age(Sender,

will assign the age of the Sender to the variable x. It should be noted that a variable

can be multivalued.

In some cases, users may not be interested in the whole value of an attribute.

A pattern can be used to access part of a value. The pattern given in an assignment

predicate clause will be matched with the value of the attribute. The characters that

are represented by the special symbols # and - will be ignored. The rest of the value

will be assigned to the variable. For example, the predicate clause ContractlD(ω,

x, ??--) will assign the first two digits of the value of the attribute ContractlD to

the variable x by using a pattern ??- as the third parameter of g. As an another

example, the predicate clause ContractlD(ω, x, ##?? -) will assigned the third and

the fourth digits of the value of the attribute ContractlD to the variable x.

Definition 4.4 (Predicate Constraint) A predicate constraint is a relation among

variables and values using the operators in 1" = "," 	 "," E "," 3 " , " < " , " >
71 < , "≥" >I

Definition 4.5 (Atomic predicate) An atomic predicate is either a goal predicate

clause or a n-tuple (P1, P2, • • • , Pa), where Pi , 1 < i < η, is either an assignment

predicate clause or a predicate constraint.

26

Example 4.1 (Age(Sender, x), Age(Receiver, y), x > y) is an atomic predicate

which specifies that the Sender is older than the Receiver. The first two components

are the second level assignment predicate clauses, and the third component is a

predicate constraint. (ContractlD(ω, x > 50) specifies that a number

consisting of the first two digits of ContractlD is greater than 50.

Definition 4.6 (Predicate)

1. A truth value (TRUE or FALSE) is a predicate.

2. An atomic predicate is a predicate.

3. If P is a predicate, then -P is a predicate.

4. If P and Q are predicates, then (P V Q) and (P A Q) are also predicates.

Definition 4.7 (Variable declarant) Attached to a. link (f1 , f2) in the folder organi-

zation, a variable declarant is used to define a variable for representing an attribute

or an object appearing in the predicate of the folder f 1 , which can be used to specify

the local predicate of the folder f2 . The format of a declarant is var-name = string,

where var-name is the variable and string is an attribute or an object.

The variable declarants are provided for sophisticated users to specify advanced

folder organization. An example is given in the next chapter.

4.2 Justification of the Predicate Specification

The purpose of the predicate specification is to provide the user with a language

for directing the document filing or retrieving documents. In either case, the user

specifies criteria in terms of predicates. The proposed predicate specification is a

modified FOPL (First Order Predicate Logic). Five major modifications have been

made to create an appropriate language for specifying knowledge about documents

in TEXPROS.

27

Firstly, FOPL can be used for describing facts about any object in the universe

of discourse. The evaluation of predicates requires predefined knowledge about the

involved objects. As a personal document processing system, TEXPROS employs

a flexible and dynamic modeling approach for meeting different users' needs. Since

the application domain is not predefined, it is not reasonable to expect a predefined

knowledge base. Therefore, the system must have learning capability for acquiring

the needed knowledge. The successful acquiring of knowledge depends on the avail-

ability of the information. The availability means the existence of the resources,

known to the user, from which the needed knowledge can be acquired. Objects that

are irrelevant to the documents are unimportant to document filing and retrieval. So

there is less chance that the end user can help in acquiring the knowledge about these

objects. In other words, the availability of information will be little. In the proposed

predicate specification, only two kinds objects are valid: frame instances and the

objects that are related to documents (i.e., appear in frame instances as values of

attributes). To prevent misinterpretation of predicates and therefore falsedrops, we

introduced the concepts of first level predicate clause and second level predicate

clause for expressing facts about frame instances and related objects, respectively.

Using two different concepts enhance the restriction about the objects.

Secondly, FOPL allows multiple objects to appear in a single atomic sentence

for expressing their relationship. Predicates with multiple objects are sometimes

ambiguous. For example, the predicate father(x, y) can be interpretated as "x is

the father of y" or "x's father is y". The order that the objects x and y appear

in the parameters is important for interpretation. It is difficult to formalize the

convention such that the user and the system interpretate the predicate in the same

way when the predicate has multiple objects. In the proposed predicate specifi-

cation, each predicate clause has only one object. The relationships among frame

instances and objects that are related to the frame instances are expressed using the

28

assignment predicate clauses and predicate constraints. The relationship between

a frame instance and an object that is related to the frame instance is inexplicitly

expressed using the object identifier such as Author: Al which represents the first

author of the document.

Thirdly, the proposed predicate specification has precise syntax including

restrictions on which symbols can be used in specifying predicates. For instance,

attributes of templates can be used as the name of the first level predicate clauses.

The precise syntax guarantees that only the facts that are relevant to document

filing and retrieval can be expressed, and therefore the predicate can be understood

within the application domain.

Fourthly, we introduced the concepts of attribute and value in predicates speci-

fication. A predicate clause specifies one property, in terms of attribute-value pair,

of an object. And a path-notation can be used to represents a precise value, such as

FACULTY.CIS.NJIT which means Ph.D. student in the CIS department at NJIT. As

an example, the predicate Position(x, FACULTY.CIS.NJIT) states that x is a faculty

member of the CIS department at NJIT. Here, the attribute-value pair (Position,

FACULTY.CIS.NJIT) represent a property of the object x. The same predicate can

be specified as faculty(x, cis, njit) in FOPL, where x, cis and njit are objects. With

the concepts of attribute and value, predicate clauses (atomic sentences in FOPL)

can have fixed number of parameters (the goal predicate clauses have two parameters,

and the assignment predicate clauses have two or three parameters). This simplifies

the predicate evaluation, and therefore reduce the chance of misinterpretation.

Finally, there is no quantifier in the proposed predicate specification. An

existential quantifier is needed for interpretating some of the object identifiers such

as Author:Ai or Author. Variables in the proposed predicate specification are defined

by assignment predicate clauses or variable declarants, not the quantifier. In rare

cases, the universal quantifier will be needed, and its interpretation is much more

29

complicated and time consuming. So it is not supported in the proposed predicate

specification. Therefore, there is no need to specify the existential quantifier

explicitly. Another reason is that the local predicates in a folder organization are

not independent each other. A filing process goes through filing paths. So the local

predicates of the folders along each filing path should have the same scope. The

implicit existential quantifier, if needed, should sit outside the predicate of the filing

path (i.e., the ANDing of all the local predicates on the filing path).

CHAPTER 5

FOLDER ORGANIZATION

The folder organization is used to capture the users' knowledge about document,

organization. Defined by the user, the folder organization provides a flexible and

dynamic document filing model [16]. Folders are heterogeneous repositories of

frame instances and are organized to form a folder organization, which is one of

the common ways of organizing and storing documents for their retrieval in an

office environment. The folder organization is defined by a user corresponding to

his/her view of the document organization, which is obtained by repeatedly dividing

documents for particular areas of discourse into groups until the user believes the

groups are descriptive. Each folder has a user defined criterion for governing the

automatic document filing. The folder organization is an underlying structure of an

agent-based filing architecture which will be described in Chapter 8. Each folder

is associated with a filing agent containing a criterion. The criteria used to govern

the document filing are defined in terms of predicates. Agents, depending on how

they are connected, communicate and cooperate each other to implement the folder

organization. It is shown that this filing system provides a flexible search and

retrieval facility that allows browsing through collections of frame instances and

retrieval of frame instances according to different criteria, using the information

related to document types and the frame instances in close proximity within a folder

in the folder organization. Automatic filing of frame instances into proper folders of

a folder organization based on folders' criteria becomes a central issue. This is made

possible by the predicate evaluation engine which is presented in Chapter 7. In this

chapter, we shall describe the folder organization and its properties.

30

31

5.1 Definition of Folder Organization

In this section, we extend the notion of a rooted DAG structured folder organization

with multiple typed links (sometimes, with attachment of variable declarant). A

a new link type between folders, AND link, is introduced. It is shown that the

predicates as the criteria for filing frame instances into folders can be simplified

and, in turn, can be easily evaluated. Finally, we shall prove that the new folder

organization and predicate specification can prevent falsedrops that happen in the

previous work.

Definition 5.1 (Folder Organization) A folder organization is a two tuple, FO(G,

A) = G(V,E), A}, where

1. G(V, E) (also denoted as G(FO)) is a rooted directed acyclic graph, and

• each vertex in V(G) corresponds to a folder;

• each edge (fi , 	 defines a link from fi to h, which can be an OR-link or

an AND-link; and

• some of the edges are labeled with variable declarants.

2. A = 	 f E V(G)} is a set of predicates, where 61 is the local predicate of a

folder f.

For the sake of clarity, we shall refer to the local predicate of a folder f as the

predicate of the folder f, which is distinguished from the notion of a global predicate

defined later.

Let ω denote any frame instance, C2 be the entire frame instance base, and 8 f (ω)

denote that the frame instance ω satisfies the predicate δf of the folder f based on

the knowledge and facts in the system.

Definition 5.2 (OR-link) A link (f 1 , f2) is called an OR-link if (Vω E Q)6 .6(ω) A

(ω G f1) 	 ω E 12-

32

Definition 5.3 (AND-link) A link (fi , f) (1 < i < n) is called AND-link if it has

the following properties:

1. (Vω E Ω)δʄ(ω) A (u) E f1) A (a) E /2) A 	 A (co G f„) 	 E

2. (f' , 1), (f2 , 1), - •, (f„., f) (a> 2) are the only incoming AND-links of f

Intuitively, if a parent folder f which is OR-linked to the folder f, has a copy

of a frame instance w, and the frame instance w satisfies the local predicate (5 f of the

folder f, then the frame instance (.4) can be filed into the folder f. If all the parent

folders L < i, < a), which are AND-linked to the folder f, have a copy of a frame

instance w, and if the frame instance w satisfies the local predicate δʄ of the folder

f, then the frame instance w can be filed into the folder f. The OR-links and AND-

links in a folder organization define the semantics of the folder organization, and

determine the document filing process. More specificly, the filing process is carried

on from the root folder down to the leaf folders. The root folder contains all the

frame instances that satisfy its local predicate. In order for a frame instance (4.) to

be deposited into a non-root folder f, it must satisfies two conditions. Firstly, the

frame instance w must appear in one of the OR-lined parent folders of the folder f,

or it must appear in all of the AND-linked parent folders of folder f. Secondly, the

frame instance w must satisfies the local predicate of the folder f.

From users point of view, there should be a criterion for each folder that governs

the content of the folder. This criterion is called the global predicate of the folder.

Theoretically, any frame instance w is deposited in the folder f if and only if it satisfies

the global predicate of the folder f. However, as mentioned before, for efficiency, the

filing process is done by examing the local predicates along the filing paths rather

than the global predicates of the folders. According to the definition 5.2 and 5.3, the

global predicates of the folders in the folder organization can be generated recursively.

33

Definition 5.4 (Global Predicate) The global predicate of a folder is the predicate

that governs the content of the folder. Let Pf denote the global predicate of any

folder f. Using the definition 5.2 and 5.3, global predicates are given as follows:

1.. The global predicate of the root folder is its local predicate.

2. Let fl , h, • • fn , fii, j•;, •	 f'm be all the parent folders of a. folder f

where (fi , f) (1 < i < n) is OR-link and (fl, f) (1 < i < in) is AND-link.

Then
m

P	 61 A (EPfi V II Pf'j.)
i=1

Theorem 5.1 A frame instance (2) is filed into folder a f if and only if w satisfies

the global predicate of the folder f .

Proof: By induction.

1. Clearly, all of the frame instances in the root folder must satisfy its local

predicate. Since the local predicate of the root folder is also its global

predicate, the theorem holds for the root folder.

2. Suppose that the theorem holds for all parent folders of a folder f. Let

w be any frame instance. Let f1, f2,2	 fn 	 , • • A, be all the

parent folders of f where (L, f) (1 < i < n) is an OR-link and (f:: , f)

(1 < i < in) is an AND-link. By the definition 5.2 and 5.3, w is filed into

f if and only if

(δʄ(ω)^(ωϵf1))V (δf (w) (b) E f2)) v • • v (δʄ(ω) (w E in))

V(δf (W) A (w E f 1 I	 i < in))

<=> (61 (w) A (Pf1(ω) V P f2(ω) V • • V Pfn (W) V (P Pf'1(ω) I (1 	 i	 M))))

.4=> w satisfies δf A (E Pfi fl Pf'j). So the theorem holds for folder f.

34

Figure 5.1 A folder organization

3. Since a folder organization is a rooted, directed acyclic graph, by

induction, the theorem holds for any folder in the folder organization.

Example 5.1 Figure 5.1 depicts a folder organization, in which each folder f 2 , 1 <
i < 9, has an associated local predicate δ fi and the local predicate 8f, for the root

folder f 1 is TRUE. In the organization, the links (f4 , m and (f5 , M (in dashed lines)

are of AND-link type, and the rest of the links (in solid lines) are of OR-link type.

The global predicate of each folder is as follows: Pf1 = TRUE; Ph = δʄj A Pf1

(δʄj A TRUE =	 2 < j < 5; Pf7 = f7 A Pf2 	 δʄ7 A 8.1.2; P18 	 δf8 A (Ph V P13)

818 A (8/2 V 8f3); P19 	8f, A (P13 V (P14 A P15)). 8 .1-9 A (δf3 V (δf4 A 6f5)).

5.2 Justification of the New Folder Organization Specification

In [77], a filing path from folder L to folder fj in a folder organization is just a path

from L to h. Each filing path q of a folder f has an associated predicate equal to

J 8,. The global predicate P1 for each folder f can be represented as:
v EV (q)

35

f7 	 is 	 f9

Figure 5.2 An alternative folder organization of Figure 5.1

where paths(f) is a set of filing paths from the root folder to f, and S, is the local

predicate of the folder v. Without AND-links, the user sometimes has to specify a

complicated local predicate for a folder in order to describe the relationships between

the folder and its parents. An example is given later.

Definition 5.5 (Content Equivalent) Two folder organizations F0 1 and .T0 2 are

said to be content equivalent if and only if there exist a one-to-one mapping g from

the set of folders in .7191 to the set of folders in .T02 such that for any folder f in

FO1 , f and the folder g(f) have the same global predicate.

Example 5.2 Figure 5.2 is a folder organization without AND-link, which is

content-equivalent to the folder organization in Figure 5.1. However, the local

predicate of the folder h is 8f9 A (8f3 V (δf4, A δA)).

The variable declarants (see definition 4.7) attached to links are provided for

sophisticated users for specifying advanced folder organizations. Figure 5.3 shows two

content equivalent folder organizations. The folder ROOT contains all the articles.

The folder CIS contains all the articles authored by persons in the CIS department.

The folder Fac contains the articles written by faculty members of CIS department.

36

The folder Student contains all the articles by students. And the folder Coauthored

contains the articles co-authored by at least one faculty member and at least one

student. Variable declarants are used in Figure 5.3(a). They simplify the local

predicate of the folder Coauthored.

We conclude this section by giving a folder organization for NJIT in Figure 5.4.

The folder organization is rooted with the folder ROOT which contains all the frame

instances. Folder NJIT stores frame instances whose owners (owner is an abstract

attribute which represents the attribute author of article type, the attribute sender

or receiver of letter and memo types, etc.) are affiliated to NJIT. It is divided into

subfolders based on different groups of owners of documents. For example, the folder

CISFac holds the frame instances whose owners are faculty members of the CIS

department at NJIT. The folder CISStudent contains the frame instances which are

owned by CIS students. The folder CISRA holds the frame instances whose owners

are CIS RAs (Research Assistant). The folder CISPhD contains the frame instances

whose owners are CIS Ph.D. students. The frame instances which are owned by CIS

master students are stored in folder the CISMS. The folder PUBLICATION contains

all the articles authored by either a faculty member of the CIS department or a CIS

Ph.D. student who is also a research assistant in the CIS department.

5.3 Falsedrop

A falsedrop is a filing of a frame instance into a folder to which it should not belong.

Since the folder organization is defined by the user, whether a filing is a falsedrop

depends on what the user thinks. So falsedrop is a relative concept. In other words,

as long as the result of a fling is exactly what the user thinks it should be, it is fine.

Otherwise, it is a falsedrop. From the users' point of view, the content of a folder

is determined by its global predicate. So a filing of a frame instance into a folder is

RO
O

T
T

yp
e(

ω
 A

R
T

IC
L

E
)

RO
O

T
T

yp
e(

ω
 A

R
T

IC
L

E
)

CI
S

D
ep

ar
tm

en
t(A

ut
ho

r:A
i,

C
IS

)
CI

S
D

ep
ar

tm
en

t(A
ut

ho
r:A

i,
CI

S)

q=
A

ut
ho

r:A
i

Co
au

th
or

ed
P

 =
q

Co
au

th
or

ed

C
la

ss
(A

ut
ho

r:A
j,

ST
U

D
E

N
T.

C
IS

) A
(N

am
e(

A
ut

ho
r:A

i,
x)

, N
am

e(
A

ut
ho

rA
j,

y)
, x

=
y)

(a
)

(b
)A

nd
-li

nk

O
r-

lin
k

I

Fa
c

Po
sit

io
n(

A
ut

ho
r:A

i,
FA

C
U

LT
Y

.C
IS

)

p=Author:Ai

St
ud

en
t

C
la

ss
(A

ut
ho

r.A
i,

ST
U

D
E

N
T.

C
IS

)
Fa

c
Po

sit
io

n(
A

ut
ho

r:A
i,

FA
C

U
LT

Y
.C

IS
)

St
ud

en
t

C
la

ss
(A

ut
ho

r:A
i,

ST
U

D
E

N
T.

CI
S)

F
ig

u
re

 5
.3

 F
ol

de
r

or
ga

ni
za

tio
n

w
ith

 la
be

le
d

lin
ks

CA
)

R
O

O
T

T
R

U
E

A
nd

-l
in

k

O
r-

lin
k

C
IS

D
ep

ar
tm

en
t(

O
w

ne
r:

O
i,

C
IS

.N
JI

T
)

E
E

D
ep

ar
tm

en
t(

O
w

ne
r:

O
i,

E
E

.N
JI

T
)

C
IS

R
A

Po
si

tio
n(

O
w

ne
r:

O
i,

R
A

.C
IS

.M
IT

)

C
IS

Ph
D

P
ro

gr
am

(O
w

ne
r:

O
i,

 I

N
JI

T

A
ff

il
ia

ti
on

(O
w

ne
r:

O
i,

W
IT

)

C
IS

 F
ac

P
os

it
io

n(
O

w
ne

r:
O

i,
F

A
C

U
L

T
Y

.C
IS

.N
JI

T
)

PU
B

L
IC

A
T

IO
N

T
yp

e(
03

 ,A
R

T
IC

L
E

)

CI
S

S
tu

de
nt

C
la

ss
(O

w
ne

r:
O

i,
S

T
U

D
E

N
T

C
IS

.N
JI

T
)

EE
S

tu
 d

en
t

C
la

ss
(O

w
ne

r:
O

i,
S

T
U

D
E

N
T

.E
E

.N
JI

T
)

EE
S

ta
ff

P
os

it
io

n(
O

w
ne

r:
O

i,S
T

A
F

F
.E

E
.N

JI
T

)

E
E

E
m

p
P

os
it

io
n(

O
w

ne
r:

O
i,

E
M

P
L

O
Y

E
E

.E
E

.N
JI

T
)

E
E

Fa
c

P
os

it
io

n(
O

w
ne

r:
O

i,
F

A
C

U
L

T
Y

.E
E

.N
JI

T
)

E
E

Pr
of

P
os

it
io

n(
O

w
ne

r:
O

i,
P

R
O

F
E

S
S

O
R

.E
E

.N
JI

T
)

C
IS

M
S

P
ro

gr
am

(O
w

ne
r:

O
i,

M
S.

CI
S.

NJ
IT

)

F
ig

u
re

 5
.4

 A
 f

ol
de

r
or

ga
ni

za
ti

on
 f

or
 M

IT
00

39

a falsedrop if and only if the frame instance does not satisfy the global predicate of

that folder. There are two types of falsedrops.

5.3.1 Falsedrops Caused by Incorrect Evaluation

Falsedrops will happen if predicates are not correctly evaluated. For example,

suppose John Smith is staff member in the EE department at NJIT according to the

knowledge base, then the slide in Figure 2.1 will be deposited in to the folder EEStaff

in Figure 5.4. However, from the user's point of view, this filing is a falsedrop because

the user knows that John Smith is not a staff member in the EE department at NJIT.

There are two possible reasons that may cause incorrect predicate evaluation. The

first one is that the evaluation engine is not correct. This is solved by showing the

inference rules are correct. The second one is due to the incorrect knowledge as in

the above example. In order to solve this problem, whenever this kind of falsedrops

happen, the system will update the knowledge base accordingly.

5.3.2 Technical Falsedrops

From the users' point of view, the content of a folder is determined by its global

predicate. However, for efficiency, the filing system does the filing by examing each

local predicate along the filing paths rather than examing the global predicate.

So even if the predicate evaluation is correct, it is still possible that a frame

instance may not satisfy the global predicate of a folder although it satisfies all

local predicates along the filing path of that folder. This kind of falsedrops is called

technical falsedrops. Examples can be found in Chapter 3, where the ambiguous

predicate specification and folder specification caused the filing system and user to

have different understanding on the folder organization.

40

Corollary 5.1 The proposed folder organization and predicate specification prevent

technical falsedrops.

Proof: Given any filing of a frame instance w into a folder f, then the global

predicate of f is true from the system's point of view according to Theorem 5.1.

Suppose the predicate evaluation engine is correct, then the frame instance w satisfies

the global predicate of f . Therefore, the filing cannot. be a technical falsedrop.

CHAPTER 6

DOCUMENT REPOSITORY

Repositories can be characterized as storing and managing both data and metadata

(i.e., the information about the structure of the data). Repositories must maintain

an evolving set of representations of information, and support evolving structure of

information and its metadata cleanly, e.g., without recompiling when new properties

of data or new relationships are added. In this chapter, we shall present a multilevel

repository, architecture and describe the search and retrieval strategies which are

applicable to large collections of frame instances of various document types, by taking

into account the repository architecture.

6.1 Multilevel Repository Architecture

As shown in Figure 6.1, we employ a three level architecture of a document repository

to store documents. At the first level, the storage contains original documents. A

physical storage containing frame instances is at the second level. Analogous to the

inverted indexing, each frame instance has a pointer to its corresponding original

document, besides which, it contains the most relevant information of the document,

in a precise and succinct manner, pertinent to the user. The third level is the folder

organization. Each folder is a virtual repository for a set of frame instances, which is

also called the logical storage for the frame instances. It is called a virtual repository

because it only stores pointers to the frame instances at the second level.

We adopt this multilevel access structure as the system repository architecture

to support direct access to documents which requires retrieving their corresponding

frame instances through the use of specific information, such as attributes and

document type, from the document type hierarchy, and the folders containing these

frame instances.

41

Level 3: Folder Organization

Level 2: Bookcase Organization

Level 1: Original Documents

Figure 6.1 The system storage architecture

Folder organization sometimes allows rapid frame instance search and retrieval.

Since all the related frame instances, which are collected in common groups (called

folders) based on the user-predefined criteria for the folders, appear to be closely

together, so that browsing in a collection of frame instances can be conducted effec-

tively. In [65], an effective browsing technique is implemented for moving a given

query toward the relevant items, such as frame instance type, frame instances of a

document type, folders containing relevant frame instances of a document type, and

so forth, using the well-known relevance-feedback process [26, 28]. Then document

search can be further narrowed by examining all the frame instances that satisfy the

predicates of folders and query formulation. The improvements in retrieval effec-

tiveness are dependent on the effective use of the specific or related information in

the system catalog and thesaurus.

42

43

From an implementation view point, we adopt the notion of encapsulation

(which is most often achieved through information hiding) for designing the system

repository: the implementation of the folder organization at the third level is

independent from the physical storage of the frame instances at the second level,

whose implementation is, in turn, independent from the physical storage of the

original documents at the first level. Thus this leads to a clear separation of

concerns. The folder organization does not add any requirements to the physical

storage for frame instances at the second level. In other words, we benefit from the

folder organization without losing any flexibility for organizing the storage at the

second level.

6.2 The Bookcase Organization

On the second level, a bookcase organization is employed as the physical storage

for frame instances. Frame instances are grouped into boxes. A box is a set of

frame instances which are of the same document type. Each frame template (i.e., a

document type) can have a bookcase which consists of several boxes. Frame instances

of the type are stored in different boxes. For example, as shown in Figure 6.2, letters

and memorandums are stored in boxes based on the attribute Date. Journal articles

(say, ACM Transactions on Information Systems (TOIS)) can be organized based

on a pair of attributes, volume and number of the issue where the articles appear.

The pointer of a frame instance ω has the form BoxName:Offset, where BoxName is

the name of the box, in which ω is located, and Offset is the offset of ω in the box

BoxName. The box and bookcase are formally defined as follows.

Definition 6.1 (Box) Box is a set of four-tuple, 13X	 (K,B,P,S)), where:

1. 1C is an attribute which has an ordering defined.

QEMemo90 QEMemo91

Letter Bookcase

Letter0195 Letter0295

ACM TOIS Article Bookcase

Q.E. Memo Bookcase

44

QEMemo96

Letter0396

1 box/year

box/month

1 box/volume

ACM-TOIS01 ACM-TOIS02 ACM-TOIS14

Figure 6.2 A sample bookcase organization

2. B = 	 B2), where B1 < B2, is the range of the values of the attribute K in

all of the frame instances in the box.

3. P stores the common features of all of the frame instances in the box, specified

as a predicate.

4. S is a set of frame instances.

Given a box EX, K(BX) and B(BX) determines which frame instances should

be stored in 13X. P(BX) is used to store the common features of all of the frame

instances in BX, and can be initialized as (K(BX)(ω, x), B1(BX) <x<B2(BX))).

For example, let Lecture97 be a box in bookcase Lecture storing all lectures which

are produced in 1997. Then it can be defined as Lecture97 = (Date, (01/01/97,

12/31/97), P, 5), where P is initialized as (Date(ω, x), x>01/01/96, x<12/31/97).

45

Definition 6.2 (Bookcase) Bookcase is a set of three-tuple, BC = CT ,P , C), where

1. All of the frame instances in the same bookcase have the same document type

T.

2. P is the common features of all frame instances in the bookcase, specified as a

predicate.

3. C is a set of boxes.

Given a bookcase BC, T(BC) defines the document type assigned to this

bookcase. It determines the content of the bookcase. P(BC) is used to specify

the common features of all of the frame instances in B X , and can be initialized as

Type(ω, T(BC)). For example, if a bookcase is used to store documents of Lecture

type, then it can be defined as Lecture = (Lecture, P, C), where P is initialized

as Type(ω, Lecture). It should be noted that our future work will show how both

P(Lecture97) and P(Lecture) can be enriched by the knowledge discovery and data

mining. These common features are very userful in narrowing down the search space

without accessing the contents of the documents.

6.3 Multilevel Retrieval Strategy

In this section, we shall discuss the document and information search and retrieval

strategies using the multi-level repository architecture. Document and information

retrieval is predicate-driven (i.e., queries are given in terms of predicates). The

multilevel system storage architecture supports a multilevel retrieval strategy. Specif-

ically, a knowledge-based query preprocessing is applied first to reduce the search

space to a small subset of frame instances. Then the documents or information

are found from the reduced search base. This retrieval process can be conceptual

and content-based, or knowledge-based. The knowledge-based query preprocessing

46

requires the support of the folder organization at the third level, the bookcase organi-

zation at the second level, and the knowledge base which will be introduced in next

chapter. The bookcase organization at the second level storage supports most of

the text-based IR techniques for conducting content-based retrieval on multimedia

documents. The first level storage will support various real content-based information

retrieval on multimedia documents.

6.3.1 Knowledge-Based Query Preprocessing

The query preprocessing is knowledge-based and predicate driven. The goal of this

preprocessing is to reduce the search space using the information contained in the

query. Since all of the related frame instances, which are collected in groups (called

folders) based on the user-predefined criteria for the folders, appear to be closely

together, browsing in a collection of frame instances can be conducted effectively. The

frame instance collection search strategy uses information obtained from the folder

organization and the document type hierarchy. Using the folder organization and the

document type hierarchy, the search space can be reduced to a particular folder f

and frame instances of a particular type (i.e., a frame template T), respectively. The

former case can be done by identifying folders whose criteria can be derived from the

query formulation. For example, in Figure 5.4, to search for a memo which is written

to Jennifer Wallace by John Smith regarding the result of her qualifying examination,

only Folders JOHN, CISPhD, SpecialDoc and PhDQ.E.Memo will be the targets to

be searched first. For the latter case, the document type of the frame instances will

be identified using specific information contained in the system catalog [31, 32, 33].

This search can also be accomplished effectively and efficiently using a browsing

mechanism [31, 65]. Normally, selective access is desired to particular frame instances

of a document type on demand, and frame instance access may be considerably

simplified when browsing capabilities allowing a flexible traversal of the document

47

type hierarchy, the folder organization and the text structure of frame instances

are made available. Traditionally, textual database allows any search through their

contents (words, phrases, etc.) or their structures (e.g., by navigating through a

table of contents), but not both at the same time. By mixing the contents and

structures in queries, TEXPROS allows us to pose very powerful queries, being much

more expressive than each mechanism by itself. The system storage architecture

can incorporate the dual models which means that the search space can be further

reduced to Tnf, focusing on frame instances of a particular type within a particular

folder.

However, the usefulness of narrowing searching space from f to f n T depends

on the efficient way for generating f n T. In other words, once the folder f is

identified, we could do the search on f. The complexity would be O(n*m), where n

is the number of frame instances in the folder f and in is the average size of the frame

instances in the folder f. If we cannot generate the set f n T faster than OW m), it

would not be worthy to reduce the searching space from f to f in T.

Using this three-level repository architecture, it is possible that the folder

organization and the document type hierarchy can cooperate with each other in

order to further speed up query processing by narrowing the searching space to

T n f, assuming that a document type T and a folder f have been located. At the

level of the logical storage for frame instances, each folder in a folder organization

contains pointers to the frame instances. The pointer tells in which bookcase and

box the frame instance can be found at the second level storage. So there is no

need to examine each frame instance in the folder f and check whether it is of the

document type T. Instead, the information about which frame instance in the folder

f is of a particular document type T can be obtained simply by looking at its pointer.

Furthermore, the pointer can also lead to the fact whether the frame instance has

some properties using the common property of the box (bookcase) P(8X) (P(BC)).

48

So a box B, which contains the relevant documents, can be identified by examining if

P(8) can be derived from the query formulation. Than the searching space would be

reduced to f n B instead of f n T. For this repository architecture, the n operation,

such as T n f, can be done in 0(n), where n is the number of frame instances in f.

Since we are examining the pointers of frame instances, not their contents, and the

size of a pointer of a frame instance is much less than its content, the complexity of n

operation (such as T n f) is much smaller than the one of searching frame instances

in f which is 0(n*m).

Let e be a query formula. The following query preprocessing algorithm,

preProcess(e), generates a subset of frame instances. The content-based search will

be done based on this subset.

1. Identify the document type T and then the bookcase BC 	 {T,P,C} for

the document type T.

2. Transform the query e, which is a predicate, into disjunctive normal form.

3. For each conjunctive element e i , do the following:

(a) Call findFolder(e i) to find the smallest folder f whose global

predicate can be derived from the conjunctive formula

(b) Generate Bi = {8X G C : 	 P(BX)}.

(c) Generate a set of frame instance

f 	 u x). xeBi

4. Generate a set of frame instances S = U

The algorithm findFolder(ei) is given as follows:

1. Place the root of the folder organization into a stack called OPEN.

2. While OPEN is not empty, do the following:

49

(a) Pop out a folder f from OPEN and visit it.

(b) Push all the child folders of f whose local predicates can be

derived from ei into OPEN.

(c) Record the smallest folder (the one contains the smallest number

of frame instances) ever visited as F.

3. Return F.

6.3.1.1 Performance Analysis: The complexity of findFolder() depends on the

number of folders that are visited by the program. In most cases, a leaf folder and

the folders along one of the filing path will be visited. In the worst case, all folders

may have to be visited. Let k be the number of folders in the folder organization.

To determine if the local predicate of a folder can be derived from e i in step 2(b),

the predicate evaluation engine will be invoked. Let d be the average time needed

by the predicate evaluation engine for evaluating a predicate. The complexity of

findFolder() is 0(d x log k) on average and 0(d x k) in the worst case. The complexity

of step 3(b) is 0(d x t) where t is the number of boxes in the bookcase BC. As we

have discussed early, the step 3(c) needs 0(n) time, where n is the number of frame

instances in the folder f. The step 3 has s iterations, where s is the number of

conjunction elements in the query formula e. So the complexity of preProcess() is

0(sx(d x logk + d x t + n)) on average and 0(sx(dxk+dxt+n)) in the worst

case. As we will see in the next chapter, d can be considered as a constant number.

Assume that s and t are insignificant, then the complexity of preProcess() will be

0(log k + n) on average and 0(k + n) in the worst case.

6.3.2 Frame Instance Search

The document and information retrieval is applied on the frame instances in the

search base which is generated by the query preprocessor preProcess(). The

50

retrieval can be content-based or knowledge-based. Since the frame instances

contain conceptual information of their original documents, the content-based frame

instance retrieval can also be considered as conceptual-based retrieval of the original

documents.

Due to the large volume of multimedia documents and lack of semantic content

based access for some media type such as image and video, the usefulness and

efficiency of a multimedia document processing system can often be improved greatly

by transforming the original document into a formal structure of the document type,

which can be stored and manipulated easily. For our case, frame instances are the

formal structures of their corresponding documents. They reduce the size consid-

erably, and therefore the storage space and processing time are saved in using short

texts. Text retrieval operations on the frame instances, which are stored at the

storage at the second level, depend directly on the content representations, such

as content identifiers, which are used to describe the stored document contents. A

substantial effort [20, 21, 32] was devoted to analyzing the content of the stored

documents, dealing with the generation of the content identifiers, and comparing

query formulations and the content representations, including document descriptors.

The retrieval of frame instances depends partially on an exact match between the

values of the content identifiers (i.e., the structured part of frame instances) and

the attribute values used in the query formulations. Often, information retrieval

decisions may depend on the contents of the unstructured part of frame instances.

However, the text size of the contents of the unstructured part of frame instances are

considerably smaller in comparison with the contents of the corresponding original

documents. For this case, various classical text retrieval methods, such as inverted

indexing, KMP string matching [1, 29], clustering searching, etc. are applicable.

And the document search and retrieval can be done in an incremental way by

examining a small set of frame instances of a particular type within a folder. For

51

example, suppose Professor John Smith in CIS department wants to retrieve his

memo to Jennifer Wallace regarding the result of her qualifying examination taken

recently. And suppose there is a. folder called PhDQ.E.Memo which contains all the

memos regarding CIS Ph.D. student qualifying examination. He may first search the

PhDQ.E.Memo folder because it is the most likely folder where the memo can be

found. And since Professor John Smith knows that the memo was sent by him, he

might look in CISFac next. And since Jennifer Wallace is a Ph.D. student in the CIS

department, then CISPhd folder might be the next one to be searched. If we fail to

identify the frame instance of the corresponding memo after searching through the

folders PhDQ.E.Memo, CISFac and CISPhd, then we can conclude that possibly the

memo is not in the system.

Frame instances are synopsis of original documents and are plain text. The

second level storage not only provides a platform for various text-based information

retrieval techniques, but also makes it possible to use text-based IR techniques for

providing content based multimedia information retrieval. This is important because

today's office documents are multimedia documents, and the automatic semantic

interpration of some media types such as image and video is far from applicable

given the state-of-the-art of computer intelligence.

The knowledge base, used for evaluating whether a frame instance satisfies

a predicate, supports knowledge-based document retrieval. The user is allowed to

specify a query containing second level predicate clauses. With the support of the

knowledge base which will be introduced in the next chapter, the evaluation engine

can determine which frame instances in the search base satisfy the query.

6.3.3 Content-Based Retrieval on Original Documents

It is possible that the document retrieval may have to go through the contents of

original documents although this is what we are trying to avoid. This could happen

52

because a frame instance contains only the synopsis of its corresponding original

document. Although the real content based retrieval on multimedia documents is

still far from applicable, much research has been focusing on this area. The system

has the capability to support various potential content-based multimedia information

retrieval techniques.

CHAPTER 7

KNOWLEDGE-BASED PREDICATE EVALUATION

In chapter 4, we formalized predicates for specifying folder criteria and queries. In

this chapter, we shall introduce an evaluation engine which is used to determine

whether a frame instance satisfies a predicate. The predicate evaluation is knowledge-

based [17]. This chapter will define the structure for representing knowledge. For

supporting dynamic and flexible modeling, we shall present a learning agent for

acquiring the needed knowledge based on the user-defined folder organization.

7.1 The Predicate Evaluation Engine

As shown in Figure 7.1, an evaluation engine consists of a control module, two

evaluation modules, an object base, a domain knowledge base and an inference

engine. The control module parses and divides the inputed predicate into predicate

clauses and constraints. It controls the other modules of the evaluation engine and

makes the final conclusion based on the outputs of them. Since only variables,

values and a set of operators are used to specify predicate constraints, the process

of evaluating predicate constraints is straightforward. The process of evaluating the

predicate clauses has three phases. In the first phase, it involves the evaluation

module I to evaluate the first level predicate clauses, which specify some character-

istics of frame instances. In the second phase, the evaluation module II evaluates

the second level predicate clauses. The system catalog, which contains the document

type hierarchy and the thesaurus, is needed by both of the evaluation modules for

interpreting the frame instance. Any second level predicate clauses which cannot

be successfully evaluated by the evaluation module II goes to the third phase, in

which the inference engine makes further evaluation using the knowledge base. In

53

Evaluation Module II Inference Engine

Output

Predicate

54

Control Module

Frame Instance

System Catalog

ObjectBase

Evaluation Module I

Domain
Knowledge

Base

Figure 7.1 The architecture of the evaluation engine

the remainder of this chapter, we shall discuss the components of the evaluation

engine.

7.1.1 Evaluation Module I

The evaluation module I evaluates the first level predicate clauses g(ω, b[, r]) by

determining whether the attribute g has a value b in the frame instance ω, or by

assigning the value of the attribute g appearing in the frame instance ω to the

variable b, based on the pattern r. For example, Date(ω, 4/25/96) can be evaluated

to be true by matching this predicate clause against the attribute-value pair (Date,

4/25/96) appearing in the frame instance ω. For the other case, ContractlD(ω,

x, ??-), the module I will assign the first two characters of the value of attribute

ContractlD in the frame instance w to the variable x.

55

7.1.2 Evaluation Module II

Evaluation engine II evaluates second level predicate clauses which specify high

level conceptual information of documents. Basically, there are two kinds of

predicate clauses sent to this module for evaluation. Both goal predicate clauses

and assignment predicate clauses specify the properties of the objects, which

are the first parameters of the predicate clauses. For example, Program(Sender,

PhDStudent.CIS) is a goal predicate stating that the sender is a PhD student of the

CIS department. An assignment predicate Age(Sender, x) will assign the age of the

Sender to the variable x. The process of evaluating these predicate clauses requires

additional knowledge about the involved objects. This knowledge is not contained

in the documents. An object base for the involved objects is maintained to store the

knowledge about these objects.

7.1.2.1 Object Base: The object base is used to maintain the knowledge or

facts about the objects which are involved in specifying second level predicates of

the folder organization. It consists of a set of object pages. Each object page is

associated with one object. The object base is domain dependent, which means

that the object base contains different knowledge in different domains. It would be

impossible to encapsulate all the knowledge about one object without giving a specific

domain. Given an application domain, the object base only maintains the needed

knowledge of objects within the domain. Knowledge or facts about one particular

object is encapsulated into one object page in the terms of (attribute, values) pairs.

Attributes in an object page are called property names. They can be multiple valued.

Each property name, together with one of its value, defines a property of the object.

Figure 7.2 shows an object page for John Smith, which is self-explanatory.

56

Name 	 "John Smith"

Affiliation 	 NJIT

Position 	 FACULTY.CIS.NJIT

Program 	 PhD.EE.NJIT

Department

Class 	 STUDENT.EE.N.JIT

Figure 7.2 Am sample object page

7.1.2.2 Evaluation of Second Level Predicates: Given a goal predicate

clause g(a, b), if (g, b) has an exact match with a property in the object page for the

object a, then we can conclude that the goal predicate clause is true. For example,

the predicate clause Position(John Smith, FACULTY.CIS.NJIT) is true because it

has an exact match with the property (Position, FACULTY.CIS.NJIT) in the object

page of John Smith. For an assignment predicate clause, g(a, b[, r]), the module

will assign the value of attribute g, which is a property name of the object page

for the object a, to the variable b. For example, the assignment predicate clause

Affiliation(John Smith, x) yields x = NJIT, which is dependent upon the availability

of the (attribute:Affiliation, value:NJIT) pair in the object page of John Smith and

the exact match between the name of the predicate clause and an attribute from the

object page.

If no property is matched, the predicate clause will be sent to the inference

engine for further evaluation assisted by other mechanisms. For example, the module

fails to evaluate the predicate clause Position(John Smith, EMPLOYEE.CIS),

57

because there is no EMPLOYEE.CIS associated with the property Position in the

object page for John Smith.

7.2 Knowledge Base

The knowledge base consists of the object base and the domain knowledge base.

The domain knowledge base contains the knowledge of the application domain. We

also identified some rules which tell how the knowledge in domain knowledge base

and object base can be used for evaluating predicates. A domain (say, MIT Affil-

iation) may consist of subdomains (such as, College and School), and each of the

subdomains may have, in turn, subdomains (such as, College has subdoma.ins

Department and Office, and School has a subdomain Division). Each of the

subdomains has various properties of interest for describing objects. For example, the

subdomain Department of NJIT may have properties (Class, STUDENT), (Position,

EMPLOYEE), (Program, PHD), (Program, MSStudent), (Position, FACULTY),

and (Position, STAFF). A property is called unique if it appears only in one

subdomain. The knowledge about the subdomains that an application domain has

and their relationships is stored in domain organization. The property relation is

used to store the knowledge about what properties of interest each subdomain has

and what are their relationships.

Definition 7.1 (Domain Organization) Given an application domain D o , the

domain organization of Do, DO(D0) = D0(V, E), is a directed tree where:

I. Each vertex in V(D0) (also denoted as V(DO)) corresponds to a domain.

2. Each edge (Di , Di) in E(D 0) denotes that Di is a subdomain of D 0 .

Definition 7.2 (Property Relation) Given a domain D i, in a domain organization

DO(D0), the property relation of D 0 , PR.DO(D0) = Di(N,L), is a directed tree

where:

58

1. Di is the root of the tree.

2. Each non-root vertex in N corresponds to a property.

3. Each directed solid edge (Pm , Pn) in L, connecting two properties, denotes that

the property Pn implies the property Pm .

4. Each directed, dashed edge (Di , pj) in L connects the root D i and a property

P1 whose in-degree of the solid edges is zero.

Some of the subdomains, say Dk, of the domain organization of D 0 may not

have the property relation; then PRDO(D0)(Dk) is empty.

Definition 7.3 (Domain Knowledge) Given an application domain D 0 , the Domain

knowledge of D 0 is a two-tuple, D/C(D 0) = {DO(D0), PR}, where DO(D0) is the

domain organization of D 0 , and PR = {PRDO(D0)(D) (D E V(DO))} is a set, of

property relations defined for the domains in the domain organization DO(D0).

Thus, a domain knowledge base is composed of a collection of domain

knowledge.

Example 7.1 For the sake of simplicity, Figure 7.3 depicts a simple domain

knowledge of the domain Affiliation. Figure 7.3(a) shows the domain organi-

zation of the Affiliation (of which NJIT is an example). The domain Affiliation

has a subdomain Department. Figure 7.3(b) shows the property relations of the

domain Department. The domain Department has (Class, STUDENT), (Program,

PHD), (Program, MS), (Position, EMPLOYEE), (Position, FACULTY), (Position,

STAFF), (Position, PROFESSOR), and (Position, RA) (RA stands for Research

Assistant) as its properties of interest. The property relation tells that all PHD

and MS students are STUDENTs; PROFESSORs are FACULTY members; and

FACULTY and STAFF are EMPLOYEEs of the Department (says, Department of

CIS) at NJIT.

59

DepartmentAffiliation

Department

Class 	 Position 	 Position
STUDENT EMPLOYEE RA

Program Program Position Position
PHD 	 MS FACULTY STAFF

Position
PROFESSOR

(a) Organization of Affiliation (NJIT) domain 	 (b) Property relationships of domain Department

Figure 7.3 The domain knowledge of NJIT affiliation

Let D i E V(DO) (0 < i < n), be a domain in the domain organization DO(D0).

D, -	 - D0 is called the full name of the domain D,„ if and only if (D0, D1),

(D 1 , D2),	 (Dn-1, D„) are the directed edges in DO(D0) which means that D 0

is the subdomain of D i+1 , for 0 < i < n — 1. Values of a domain are called domain

instances. For example, CIS is a domain instance of the domain Department. Let

D„ Dn-1 • ... • D0 be the full name of the domain D n, and an , 	 • • a0 be the

domain instances of D„, D„_ 1 , • -, Do , respectively. Then dn a11 _. 1 	a0 is called

the full name of domain instance a n . The full name of a domain (or domain instance)

is the precise description of the domain (or domain instance).

7.2.1 Rules for using the Knowledge Base

Let DK(DO(D0),PR) be the domain knowledge. Let D 0 , D 1 , • 	 D„ be the

domains, and d0 , d 1 , - dn be domain instances of D0 , D1, .1),, respectively.

There are four rules for guilding the inference engine to evaluate predicates using the

knowledge base:

60

• Rule 1: If (Pt , t) E PR(Dn) is a, unique property, then Pt (x, t • d„	 ... • d0)

Pt (x, t di • . . • do)

• Rule 2: D i (x, dn - ... • di • ... • d0)	 Di (x,	 . - d0)

• Rule 3: Pt (x, t - d„ · .	 • di •. . d0)	 Di (x,	 . · d0)

• Rule 4: For any properties (P„, a) and (Pb , b) in property relation PR(Dn„), if

there is a path from (P,, a) to (Pb , b), then Pb(x, b • dn • 	 • ... • a0) 	 Pa(x,

a • d„ • dn-1 - . • • • d0)

The first rule claims that if an object x has a property (Pt , t) in the domain

instances an • ... • di • ... a 0 , it also has the property (Pt , t) in a. super domain

instance a i • . . . • d 0 provided that (Pt , t) is a unique property. For example, if

John Smith is a FACULTY member of the CIS department at NJIT, Position(John

Smith, FACULTY.CIS.NJIT), then John Smith is also a FACULTY member of NJIT,

Position(John Smith, FACULTY.NJIT).

The second rule states that if an object belongs to the domain instances d„

.. • a i • . . . · d0 , it also belongs to a super domain instances di • ... • d0 . For example,

if John Smith works for the CIS department, Department(John Smith, CIS.NJIT),

then he is considered to be a member of NJIT. Affiliation(John Smith, NJIT).

The third rule states that if an object x has a property t in the domain instance

... • ai • ... • d0 , then it belongs to a super domain instances a i • ... • d0 . For

example, if John Smith is a FACULTY member of the CIS department at NJIT,

Position(John Smith, FACULTY.CIS.NJIT), then he is considered to be a member

of NJIT Affiliation, Affiliation(John Smith, NJIT).

The fourth rule states that if an object x has a property (Pb , b) in the domain

instance dn • (1n _ 1 • ... • a0 and if there is a path from (Pa, a) (non-root node) to

(Pb , b) in PR(Dn), then the object x also has the property (Pa , a) in the domain

instances d„ • dn-1· . . . • d0 . For example, if John Smith is a FACULTY member of the

61

CIS department, Position(John Si ith , FACULTY.CIS), and since there is a path

from (Position, EMPLOYEE) to (Position, FACULTY) in PR(Department), then

John Smith is also an EMPLOYEE of the CIS Department, Position(John Smith,

EMPLOYEE.CIS).

Theorem 7.1 (Correctness of The Rule Base) Rules 1-4 are valid.

Proof: Since the domain of D i+1 is a subdomain of D i , 0 < i. < n — 1, the domain

D i 	D0 is a subdomain of D i · 	 · D0 . Therefore, Rule 2 is valid.

Suppose an object x has property (Pt , t) in the domain instance d n · • • • d0.

If the property (Pt , t) is unique, then it is not a property of interest in the property

relation PR(Di) , for 0 < i. < n — 1. So it will not cause misunderstanding to say

that the object x has the property (Pt , t) in the super domain instance di • • · d0 .

For Rule 3, the left side of the rule claims that object x has property (Pt, t)

in the domain instance dn • dn- 1 • ... 	 d0. So x belongs to domain instance

· dn-1 • • d0 . By Rule 2, D i (x, 	 d0) is true.

For Rule 4, the left side of the rule claims that object x has property (Pb, b) in

the domain instance dn • 	 d0. Assume that the path from (Pa , a) to (Pb , b) in

PR(Dn) is (Pa , a), (P1 , k 1), (P2 , k 2), 	 , (Pm , km), (Pb , b). By Definition 7.2, object x

also has property (Pm, km) in the domain instance dn • dn-1• 	 do. Therefore, Pm (x ,

km · 	 d71 .4 • . . . • d 0) is true. Similarly, Pm-1(x, km-1 • (In • dn-1 • ... • d 0) is true. By

induction, Pa (x, a · dn • 	 d0) is true.

7.2.2 Justification of the Knowledge Base

The proposed knowledge base is used for evaluating whether a frame instance satisfies

a predicate. The predicate specification has been modified from FOPL for describing

facts about either frame instances or objects that are related to frame instances. The

knowledge representation structure is designed based on the needs of the predicate

specification. The object base is used for storing facts about objects. Each object

62

is described by one object page. With the object base, the evaluation of the second

level predicate clauses can be done by matching properties in the object page. In

order for the system to understand the object base, the domain in which the object

base is defined is described with the domain knowledge base. It consists of a domain

organization and a set of property relations. The domain organization specifies the

hierarchy of the domain. Each subdomain has a set of properties of interest for

describing objects. The domain knowledge base actually determines the structure of

object pages. Traditional knowledge base system has a rule base to support inference

[59]. However, the problem of efficiently picking up a rule to fire from a large rule

base has not been solved yet. In this dissertation, the rule base has been simplified

and embedded in the property relations which are tree structured. We identified four

general rules for guiding the use of the knowledge base. The simplification is made

based on the following considerations:

1. The negation operator is rarely involved in reasoning in document filing and

retrieval. The knowledge base in this dissertation is used for support document

filing and retrieval based on the properties of objects. A negative fact that

an object does not have a particular property can be used as criterion for

document filing and retrieval. But it is not appropriate to be used for reasoning

because not knowing that an object has a particular property does not mean

the corresponding predicate is false. It is better not to use it for deriving new

facts. Therefore, negative fact is not used for reasoning in this dissertation. In

other words, rules like 	 B are not supported.

2. Rules like A 	 B V C and A A B 	 C are not supported. The removal of

these kinds of rules simplifies the inference process significantly. The cost of

doing so is to embed them in the knowledge acquisition process. For instance,

63

without the rule A A B 	 C, the learning agent has to learn whether C is true

even though it knows that A and B are true.

After the above simplification, the rule base can be expressed by tree structures.

Each node represents a property (or fact). Each edge represents a single rule. With

the rule base represented by such tree structures, the inference process becomes

finding a path from the goal to a known fact, which can be done very efficiently.

7.3 Knowledge Acquisition

The knowledge base is used for evaluating the second level predicate clauses. This

section discusses how to acquire the needed knowledge if there are folders in the

folder organization, whose criteria are specified in terms of the second level predicate

clauses. A learning agent is developed, which is responsible for building the object

base and acquiring the domain knowledge. This agent is a learning process over

the lifetime of the system. And knowledge acquired in one application cycle can

be reused in another cycle as long as the two cycles have the similar application

domains.

7.3.1 Obtaining Domain Knowledge

As we discussed early, frame instances are organized as a user-defined folder organi-

zation. Different folder organization contains different domain knowledge. The

domain knowledge base can be extracted from the folder organization since the it

reflects users' knowledge of an application domain. The knowledge base contains

only the knowledge about the involved objects, so the folders with first level

predicate clauses as criteria will be filtered out from the folder organization during

the knowledge acquisition.

Let DO be the domain organization being created. Let D E DO denote that

D is a domain, d < D denote that d is an instance of the domain D, D, D D2 denote

64

that the domain a is a subdomain of D. Let (a, v)	 D) denote that (a, v) is a

property in the domain D, and (a, v)	 (p, u) denote that the property (a, v) implies

the property (p,u). Let p(o, u) 	 a(o,v) denote that p(o , u) and a(o , v), which are

second level predicate clauses, are local predicates of folder f and g, respectively,

where f is the only parent of g. The following learning rules are used by the learning

agent to acquire the domain knowledge.

1. If D(o, d) -4 p(o, u.d), then D G PR and d D .

2. If D 1 (o, d 1) 	 No, d2·d 1)) and D2 E DO, then d2 di < D2 and D1 D2.

3. If p(o, u • d) 	 a(o , v d)) and d < D, then (a, v), (p, u) c PR(D) and

(a, v)	 (p, u).

4. If p(o, u.d) is the local predicate of a leaf folder and d < D, then (p, 	 E

PR(D).

5. If (a, v), (p, u) E PR(D) and u is narrow term of v, then (p, u) 	 (a, v).

Example 7.2 The snapshot of the domain knowledge base in Figure 7.3 is extracted

from the folder organization in Figure 5.4. The first rule is applied on the NJIT folder

and the CIS folder, which implies that Affiliation is a domain and NJIT is domain

instance. When the same rule is applied on the CIS folder and the CISFac folder,

the learning agent knows that Department is domain and CIS is a domain instance.

Then the second rule can be applied which establishs the fact that the domain

Department is a sub-domain of the domain Affiliation. The folder CISStudent and

the folder CISMS fires the third rule which suggests that (Class, STUDENT) and

(Program, MS) are properties of interest in the domain Department and the property

(Program, MS) implies the property (Class, STUDENT). Similarly, (Program, PHD)

is also a property of interest in the domain Department which implies the property

(Class, STUDENT). The repeated firing of the third rule and the forth rule will

finally generate the property relation of the domain Department.

65

7.3.2 Building Object Base'

As we have discussed in the previous section, the domain knowledge can be extracted

from the folder organization. But the knowledge about the objects that are involved

in specifying predicates cannot be acquired directly from the folder organization. For

collecting facts about these objects, the agent must know what, how and where to

learn. We define topic as the basic concept of learning. It should be noted that the

concept object used in this section is referred to the real object that appears in frame

instances. It is not the object identifier used in the filing criteria for identifying the

real objects in the frame instances.

Definition 7.4 (Topic) A topic is a four-tuple (o, a, v, d), where o is an object, (a, v)

is a property, d is a domain instance.

A topic (o, a, v, d) is a fact if the predicate a(o, v.d) is true.

7.3.2.1 Generating Learning Topic: 	 A learning topic is a question which

inquires any part of a topic. For example, (?o, a, v, d) states who has property (a, v)

in the domain instance d. ?(o, a, v, d) states if (o, a, v, d) is a fact. There are three

rules for generating learning topics.

I. If a(o, v.d) is a predicate, then ?(o, a, v, d) is a learning topic (also called

YN learning topic).

2. If d < D and (a, v) E PR(D), then (?o, a, v, d) is a learning topic (also

called WH learning topic) for each domain instance d of the domain D.

3. A learning topic (?o, a, v, d) has higher priority than (?o, p, u, d) if d < D,

and ((p, u), (a, v)) is a link from (p, u) to (a, v) in PR(D).

4. A learning topic (?o, a, v, d) has higher priority than ?(o, a, v, d).

66

7.3.2.2 Learning Rules: The learning agent uses the learning rules to collect

facts, which are properties of objects in the object pages. The "yes" answer of a YN

learning topic ?(o, a, v, d) generates the fact (o, a, v, d). There are three ways that

the learning agent can get the answer of a YN learning topic ?(o, a, v, d). The first

one is to translate the learning topic ?(o, a, v, d) to a predicate a(o, v · d) and launch

the inference engine for examining whether the predicate is true. If the existing

knowledge implies the fact (o, a, v, d), the learning agent will store it in the object

base. Storing duplicate knowledge in the object base increases the efficiency of the

predicate evaluation engine, because most of the second level predicate clauses can be

evaluated by the evaluation module II without launching the inference engine. The

second way is catching the events which imply that the predicate a(o, v d) is true.

For example, a filing of a frame instance into a folder is forced by the user, which

implies that the local predicates of the folder along the filing path of that folder are

all true. The third way is to translate the learning topic into natural language and

ask the user directly. For example, the learning topic ?(o, a, v, d) can be translated

into "Does the object o have the property (a, v) in the domain instance d?" .

The WH learning topics are translated into natural language and raised to

the users in descending order of their priorities. For example, a WH learning topic

(?o, a, v, d) can be translated into "Who has the property (a, v) in the domain instance

dr . The user can answer a WH learning topic by either provide a list of objects or

specifying where the answer can be found. When a folder organization has the second

level predicate clauses as filing criteria, the document can be organized based on the

knowledge of the objects, which are, to a certain extent, related to the documents.

This implies that the user has some knowledge about these objects. Otherwise, the

user would not be able to specify such a folder organization. So, it is very likely that

this knowledge is maintained somewhere. We have identified two sources that the

user can provide in answering a WH learning topic. The first source is documents,

67

from which the information is derived. Some documents contain facts about the

evolving objects. For instance, if a Q.E. Memo (qualifying examination memo) is

sent to a person from a department, then it implies that the receiver is a Ph.D.

student of that department. The second source for acquiring information is the

database. It is possible that the information about objects is stored in database. For

example, a human resource database contains information about people of a specific

organization. The user is allowed to write a query in response to a learning topic.

Depending on different sources of the learning process, we defined three kinds of

learning rules, which are as follows:

1. If a(o, v.d) is true, then (o, a, v, d) is a fact.

2. If Type(ω, T) A A(ω, o) A P, then (o, a, v, d) is a fact.

3. If o is in the result of query Q, then (o, a, v, d) is a fact.

The user can always answer the learning topics directly. But the learning

process would then be tedious. The above learning rules can simplify the learning

process by allowing the user specifying instructions for acquiring the needed

knowledge instead of answering the learning topics directly. The first rule instructs

the learning agent to add into the object base the fact that is implied by the a

predicate's being true. Many events can imply that a predicate clause, say a(o, v.d),

is true. For example, a filing of a frame instance into a folder is forced by -the user

which implies that the local predicates along the filing path are true, or a predicate

clause is evaluated to be true by the inference engine. When the system is idle, the

learning agent will invoke the inference engine to derive new knowledge about the

objects which are related to the YN learning topics.

The second rule directs the learning agent to ask the user how to acquire the

knowledge about objects from documents. More specificly, given a WH learning topic

(?o, a, v, d), the second rule directs the learning agent to ask the user three questions.

68

The first one is "Which type of documents contains the needed information?". The

second question is "Where in the documents the objects appear?". The third question

is "Any other restrictions?". The answers of these three questions generate a. rule

which can be used by the learning agent to automaticly extract knowledge from the

documents of the given type. For example, given a learning topic (?o, Program,

PHD, CIS), the interaction between the user and the learning agent generates a rule

Type(w, "Q.E.MEMO")A Receiver(&, x)A Department(Sender, CIS) which tells the

learning agent that whoever receives a Q.E.MEMO from the CIS department is a

Ph.D. student of the CIS department and a fact (x, Program, PHD, CIS) can be

stored into the object page of x.

The third rule instructs the agent to ask the user to provide a query which can

be used to collect information about objects from database. For example, if there

is a table called CISFACULTY that contains all the faculty members of the CIS

department, then the user is allowed to specify a query like "SELECT: FNAME,

LNAME; FROM: CISFACULTY" in response to the learning topic (?o, Position,

FACULTY, CIS) which tells the learning agent that the result of the query is a list

of CIS faculty members.

7.4 Performance Analysis of the Predicate Evaluation Engine

Let p be the number of predicate clauses in the predicate being evaluated, m be

the average size of a frame instance. Let d 1 be the complexity of the evaluation

module I for evaluating a single first level predicate clause, d2 be the complexity of

the evaluation module II for evaluating a single second level predicate clause, and

d3 be the complexity of the inference engine for evaluating a second level predicate

clause. Then d l will be 0(m) if sequential search is used. Note that m can be

considered as a constant number. For frame instance with a large m, binary search

or hash table can be used, and d 1 can be reduced to 0(log m) or constant respectively.

69

Therefore, d i = 0(1). For the same reason, d2 0(1). For the inference engine, by

indexing the properties in the property relations, the inference engine can determine

whether a property implies another in constant time. However, the inference engine

has to examine each of the properties in the object page to determine whether it

can be used to fire a rule. There are only four rules. So d 3 is 0(k), where k is

the number of properties in the object page. Assume that, among the p atomic

predicate clauses in the input predicate, there are A first level predicate clauses,

p2 second level predicate clauses, and p 3 second level predicate clauses that are

evaluated by the inference engine. So p = + p2• Let d be the time needed

for evaluating a predicate. Then d x 0(1) + p2 x 0(1) + p3 x 0(k). As

we have discussed in section 7.3, the learning agent will keep enriching the object

base by invoking the inference engine. So it is reasonable to assume that p3 is

insignificant because the inference process is done when the system is idle. Therefore,

d= pi x 0(1) p2 x 0(1) = (p i + /32) x 0(1) = 0(p).

CHAPTER 8

AGENT-BASED IMPLEMENTATION OF FOLDER ORGANIZATION

An agent-based filing architecture is employeed for implementing folder organization,

which can automate the document filing (i.e., deposit an incoming frame instance

into appropriate folders) and cope with the subtleties of the folder reorganization.

Each folder is associated with a filing agent containing a criterion. The criteria used

to categorize documents are defined in terms of predicates. Agents, depend on how

they are connected, communicate and cooperate with each other to implement the

folder organization.

8.1 Approaches to Filing Frame Instances

Generally speaking, there are two approaches to filing frame instances into a folder

organization.

1.. Deposit a frame instance into a folder if the frame instance belongs to the

folder.

2. Deposit a frame instance into a folder if and only if the frame instance

belongs to the folder but does not belong to any of the descendants of the

folder.

The second approach was used in the previous work. In this dissertation, we

adopt the first approach based on the following considerations:

• As we have discussed in Section 6.3, the query preprocessing is conducted by

comparing the query first against the predicates of folders at highest level.

For each folder at the higher-level that is sufficiently similar to the query, a

query-predicate comparison is then carried out with the lower level folders.

The comparison is repeated until some folders at the lowest level are identified.

70

71

The frame instances are eventually identified from these folders at the lowest

level. Identifying the actual frame instances can be done by comparing the

query against the contents and structures of all possible candidates contained

in the selected folders at the lowest level. These candidates are a. consid-

erably small number of frame instances of a particular document type. That

is, the document (represented by a frame instance) search and retrieval can

be narrowed to a search space focusing on the frame instances of a particular

type within a particular folder. This can also be accomplished using frame

instance search and browsing mechanisms [32, 33, 66]. For using the first

filing approach, during the frame instance search and browsing, all the frame

instances that belong to a folder could be accessed without collecting them

from its descendant folders, on the contrary, the second filing approach requires

collecting them.

• During folder reorganization, for the second filing approach, removing a folder

from the folder organization requires the return of every frame instance of the

folder to its parent folders. At the expense of storing pointers in each folder

which point to its belongings (i.e., frame instances), the first filing approach

does not require the return of any frame instance of a folder, which is to be

removed from the folder organization, to its parent folders.

• During folder reorganization, adding a new folder to the folder organization

requires the distribution of frame instances from its parent folders to the new

folder. In contrast to the second filing approach, the first filing approach does

not require these parent folders to collect all the frame instances from their

existing descendant folders.

In comparing these two filing approaches, the first filing approach enhances the

performance of frame instance retrieval and folder reorganization at the expense of

Others Criteria Repository

Buffer

72

Operation

Data Structures

Figure 8.1 The architecture of the filing agent

more storage space for storing frame instance in each folder. But the folder organi-

zation is a logical storage of frame instances; each folder contains the pointers to its

belongings, which are the frame instances of corresponding documents. Compared

with the space required for storing the actual frame instances, the storage space for

the folder organization is much smaller. Assuming that each non-leaf folder has two

or more descendant folders on average, it is not difficult to prove that the storage

space required for the first filing approach is slightly less than twice as much as

needed by the second filing approach. It would be far less than twice as much as

needed by the second approach, if folders have a larger number of fan-outs.

8.2 Filing Agent

A filing agent is an intelligent object which monitors its associated folder in a folder

organization. Each agent has its data structures(called attributes) and operations

(or methods; strictly speaking, a method is the implementation of an operation for

a class) for manipulating the data structures. The agents communicate with each

other through message passing. Figure 8.1 depicts an architecture of a filing agent.

73

An agent A is said to be a child of agent B (or B is a parent of A) if A's folder

is a child of B's. A is a descendant of B (or B is an ancestor of A) if A's folder

is a descendant of B's. The terms child(parent) and descendant(ancestor) are used

interchangeably.

Each folder is associated with a criterion. All the frame instances in the folder,

along with its descendants, must satisfy the criterion of that folder. An agent receives

frame instances from its parents and sends the frame instances to its children. There

are two ways for sending the frame instances:

1. For any incoming frame instance ω, the parent agent A broadcasts one copy

ω to all of A's descendants. A child agent B discards its copy if ω does not

satisfy B's criteria.

2. By examining the criteria of the child agents by the parent agent A, A only

sends the incoming frame instance to the qualified child agent(s).

TEXPROS employs the first strategy to enhance information hiding and

preventing an agent from destroying other agents' criteria. In general, document

filing starts from the root agent. For each agent A, when a new frame instance ω

arrives at its buffer, A's filing method is invoked to examine if the frame instance

belongs to the current folder. If it does, the frame instance will be deposited in A's

repository, and it will be sent to all of A's descendants. The frame instance will

be discarded from the buffer if it does not belong to A's folder. This will end the

filing process on the current branch of the folder organization. The filing process

continues until leaf agents or those agents that the frame instance does not belong

to their folders are reached.

When a new folder is first added to the folder organization, its filing agent is

created automatically by the system. The user needs to define its criterion. A filing

agent can be registered as a child of one or more existing agents designated by the

74

user. After a filing agent is registered, its parent agent will distributes their frame

instances to it. The frame instances, which were not in the folder f before it was

registered, are placed in it if they belong to it.

When a subfolder x is removed from its parent y, x's agent is withdrawn and

it is no longer a child of y's agent. x's descendants will also be unattached from the

folder organization. Users can either discard them or attach them to other parts of

the folder organization.

8.3 Implementation of Filing Agents

We implement an agent as an object based on the object-oriented paradigm [56]. A

filing agent class, which represents a. group of filing agents with common attributes,

operations and semantics, is defined as follows:

class Filing_agent

attributes

SetOf frame_instances buffer;

SetOf frame_instances repository;

SetOf Filing_agents child_agents;

SetOf Filing_agents parent_agents;

Link_type AND_link or ()Blink;

INTEGER threshold;

StringOf Characters FolderName;

CRITERIA criteria;

operations

Public Operations

construct(INTEGER);

destruct();

link(Filing_agent, Link_type, Link_mode);

75

unlink(Filing_agent);

rename(StringOf Characters);

disconnect(Filing_agent);

modify_criteria();

filing(frame_instance);

delete(frame_instance);

distribute(Filing_agent);

Private Operations

discard(frame_instance);

clear();

The buffer of an agent of folder f contains frame instances being processed.

The repository contains frame instances that satisfy the agent's criteria. The criteria

is a set of conditions for governing the filing and distribution of the frame instances.

The threshold specifies the capacity of a filing agent. When the number of frame

instances in a filing agent exceeds its threshold, the system will send a warning to

the user.

The operations specified in the class definition can be used to manipulate the

private data structures. The semantics of the operations are given below:

• A.construct(INTEGER i). This operation initializes the data structures (i.e.,

attributes) specified in the class definition. The values of i will be assigned to

the threshold attribute.

• A.destruct(). This operation enables the system to reclaim A's storage.

• A.link(Filing_agent B, Link_type L, Link_mode M). This operation creates an

L type (i.e., AND or OR) link between B and A. Link_mode M can be IN or

OUT. if 1\4 is IN, A will be linked as a descendant of B. If M is OUT, A will

76

be linked as a parent of B. The operation does not cause any frame instance

flow between the two agents.

• A.unlink(Filing_agent B). This operation disconnects the link between the

agents A and B.

• A.rename(StringOf Characters NewName). This operation changes the name

of the folder of the agent A to NewName.

• A.disconnect(). This operation disconnects all incoming links of A.

• A.modify_criteria(). This operation modifies A's criteria.

• A.filing(frameinstance w). This operation examines the incoming frame

instance ω contained in the buffer of the agent A. If the frame instance belongs

to the current folder A, it will be deposited in A's repository and broadcasted

to A's descendants.

• A.delete(frame_instance ω). Remove the frame instance w from A's repository

if it is there.

• A.distribute(Filing_agent F). This operation sends all the frame instances in

A's repository to the buffer of the agent F, where F must be the descendant of

A.

• A.discard(frame_instance w). This operation discards the frame_instance w

from the buffer of the agent A.

• A.clear(). Empty the repository.

8.4 Folder Reorganization

We have identified seven basic operations that can change the logical folder organi-

zation. 	 They include Create_folder, Destroy_folder, Link_folder, Unlink_folder,

77

Register older, Disconnect older, and Rename_folder. All these operations are

implemented by invoking the operations defined for the folder agent. For notational

simplicity, we use the same identifier to represent both the folder and its agent.

• Create_folder(f)-This operation creates a folder f.

• Link_folder(f1, f2 , L)-This operation makes a folder 12 to be the descendant

of f1 by creating a L type link (i.e., either an AND-link or OR-link) between

them. It is implemented by invoking f1.link(f2, L, "OUT") and f2 .link(f1 , L,

"IN").

• Unlink_folder(f1, f2)-This operation removes the link between f2 and its

ancestor f1 by invoking f i .unlink(f2) and f2.unlink(f1).

• Register_folder(f)-This operation registers folder f into the folder organization.

When a new folder f is created and connected with links to the folder organi-

zation, it is inactive because its repository is still empty. It becomes active

when all the frame instances which should belong to it are deposited into its

repository. Registering means to make the folder f active. This is done by

distributing frame instances from all of f's parents to f.

• Rename_folder(f, NewName)-This operation changes the name of the folder f

to another name NewName, by invoking f.rename(NewName).

• Disconnect_folder(f)-This operation disconnects folder f and all its descen-

dants from the folder organization.

• Destroy_folder(f)-This operation destroys folder f.

8.5 Cooperation Between Filing Agents

In previous section, we gave the data structure and operations of the filing agents.

However, in order to implement the folder organization, the filing agents must

78

cooperate with each other. Here we shall discuss the cooperation based on different

events.

8.5.1 Filing Process

During the filing process, whenever an agent gets a frame instance (i.e. an incoming

frame instance is determined to belong to the current folder), it should broadcast

the frame instance to all its children (i.e., immediate descendant agents) so the

filing process can go further. To be deposited into a folder B, the incoming frame

instance must satisfy the local predicate of the folder and the semantics of the folder

organization. It is much easier or simpler to check whether a frame instance satisfies

the semantics of the folder organization, in comparison with the process of evaluating

whether a frame instance satisfies the local predicate. So the filing operation of the

agent will do semantics check before examine whether the frame instance satisfies

the local predicate. The predicate evaluation is done by the evaluation engine, which

was described in Chapter 7. According to the definition of OR-link and AND-link,

an incoming frame instance passes the semantics check if:

1. The frame instance comes through an OR-link (i.e. sent by a parent that is

connected with an OR-link), or

2. The frame instance comes through all the AND-links (i.e. each of the parents

that are connected by AND-links sent a copy of it), or

3. The frame instance comes through some of the AND-links, and it also belongs

to the parents that are connected with the other AND-links.

8.5.2 Manipulating Links

If an agent A is told to add an link to (or from) an agent B (i.e. the link() operation

is invoked), A should inform B to add a link from (or to) A. Similarly, if an agent

A is told to remove an link to (or from) an agent B (i.e. the unlink() operation is

79

invoked), A should inform B to remove the link from (or to) A. A folder should be

removed from the folder organization, which is a rooted DAG, if the removal of an

incoming link causes the folder to be disconnected(i.e., no incoming link exists). All

its outgoing links will also be removed. The process will be propagated down to the

leaves.

Adding a link between two folders A and B (say, A is the parent of B) will

change the semantics of the folder organization. It requires to update the contents

of some folders (the child folder B and its descendants): remove the frame instances

that no longer belong to these folders, and deposit the ones that should belong to

these folders. For efficiency purpose, the link() operation of a. filing agent does not

cause any frame instance flow between the two folders. Because a folder is allowed

to have multiple incoming links, it would be more efficient to update the content of

the folder after the completion of re-organizing the folder organization. The update

is done according to the follow rules:

I. If links to a newly created folder A have been added, the corresponding agent

of the folder A will ask its parent agents to distribute their frame instances to

it (invoking the distribute() operation). According to the definition of OR.-link

and AND-link, any frame instance that belongs to a child folder must belong

to at least one of the parent folders. So there is no need to examine all the

frame instances in the frame instance base.

2. If new OR-links to a existing folder A have been added, the agent A will ask all

of its parent folders that are connected with these new OR-links to distribute

their frame instances to it.

3. If new AND-links to a existing folder A have been added and no other incoming

AND-link exists, the agent A will ask its all parent folder that are connected

with these new AND-links to distribute their frame instances to it.

80

4. If new AND-links to a existing folder A have been added and there are existing

incoming AND-links, the agent A will remove any frame instance in the folder

A if the frame instance does not belong to:

(a) all the parent folders which are connected with AND-links (including the

newly added AND-links), and

(b) any parent folder which is connected with an OR-link.

The addition of the new AND-links to folder B strengthens the condition of the

existing incoming AND-links. So some frame instances will have to be removed

from the folder.

When a link from folder A to folder B is removed (invoking unlink() operation),

the child agent B and B's descendant agents will update their repositories. The

update is done according to the follow rules:

1. If it is an OR-link, remove any frame instance in the B's repository, if the frame

instance:

(a) belongs to the parent folder that is connected with the removed OR-link;

and

(b) does not belong to any remaining parent folder that is connected with an

OR-link; and

(c) does not belong to all the parent folders that are connected with AND-

links.

2. If it is an AND-link, the agent A will ask its parent agents that are connected

with the remaining AND-links to distribute all its frame instances. The

removing of an AND-link weakens the condition of the incoming AND-links.

Some frame instances that were rejected before may now belong to the current

folder.

81

8.5.3 Deleting Frame Instances

When an agent is told to delete a frame instance, it will remove the frame instance

from the repository if it satisfies the following conditions:

1. It is in the repository,

2. It does not belong to any parent folder that is connected with an OR-link, and

3. It does not belong to all the parent folders that are connected with AND-links.

If the frame instance is removed, the agent will also ask all of its children to delete it.

The above restrictions guarantee that a frame instance cannot be removed directly

from a non-root folder because the removal violates the semantics of the folder organi-

zation. To remove a frame instance from the folder organization, one has to remove

it from the root folder.

8.5.4 Modifying Filing Criteria

When the criterion (i.e., local predicate) of a folder A is modified, the agent A clears

its repository first. Then it will ask all of its children to delete the frame instances

that were previously in its repository. Simply clearing the repository will violate the

semantics of the folder organization. So the clearing process will make the folder and

its descendants to be inactive, just like new created folders. After the modification

is completed, the agent will ask all of its parents to distribute their frame instances

to it.

8.5.5 Sending Frame Instances

When sending a frame instance ω from an agent A to an agent B (this happens when

A broadcasts a frame instance to its children during filing process, or A distributes

its frame instances to its children), the agent A will tag ω with the name of the

folder A. The reason for doing so is that a filing agent may receive the same frame

82

instance from its multiple parent agents. : technique helps the, child agents

to keep track of the sources of the frame instances and to process them correctly.

The tagging is also needed by the agents for doing semantics check during the filing

process.

8.6 Performance Analysis of the Filing Process

This agent-based architecture simplifies the document filing significantly. Firstly, a

filing process (i.e. the process that files a frame instance into the folder organization)

starts from the root agent (by simply invoking the filing() operation of the root agent)

and then propagates to its descendants. There is no need to traverse the folder

organization in the program. The propagation is accomplished by the cooperation

between filing agents.

Secondly, this agent-based architecture can easily be implemented in concurrent

and multithread mode. This is because there is no communication between any two

invoked filing operations of different agents. The filing process needs not be in

topological numbered order. For example, the filing operation of an agent can be

invoked when the agent receives a frame instance from a parent which is connected

with an OR-link. So an agent could start its filing process without waiting all

its parents to finish. In other words, an agent could finish its own filing process

earlier than some of its parents. This increases the concurrency on a multi-processor

machine.

Assuming the time needed for each agent to finish its filing process is d. As we

have discussed caner, the filing process of each agent involves the predicate evaluation

and the semantics check(i.e., if the frame instance comes from an OR-linked parent,

or comes from all AND-linked parents). Compared with the predicate evaluation,

the time for semantics check is insignificant. According to chapter 7, the complexity

of a predicate evaluation process is 0(p), where p is the number of predicate clauses

83

in the predicate. It is reasonable to assume that p is not significallt. So d is 0(1). Let

k be the number of folders in the folder organization, l be the number of processors.

When 1 «. k, the complexity of the a filing process is d x (kll), or O(k). VVhen l ~ k,

the complexity will be d x log k, or O(log k).

HAPTER 9

IMPLEMENTATION AND FUTURE WORK

In this chapter, we shall present the overall architecture of the document filing system

and report the progress in implementation. The future work will be discussed in

section 9.2.

9.1 System Architecture and Implementation

The proposed filing system is implemented using the Java language. Figure 9.1 shows

the overall architecture of the system. The user specifies the folder organization

through the GUI. The folder reorganization operations defined in section 8.4 are

carried out by the filing agents. The bookcase organization and original document

storage are transparent to the user. From the user's point of view, frame instances are

stored in the folder organization. But actually the folder organization is only a logical

storage. Upon the arriving of a new document, the original document filing module

stores the original document into the system storage at the original document level.

The bookcase agent then deposits the frame instance into the bookcase organization.

The pointer of the frame instance is sent to the filing agents, where it will be filed

into the folder organization. The filing of the frame instance involves the process

of predicate evaluation which determines if a frame instance satisfies a predicate.

This is done by calling the control module of the predicate evaluation engine. The

control module parses and divides the inputed predicate into predicate clauses and

constraints. It controls the other modules of the evaluation engine and makes the

final conclusion based on the outputs of them. The evaluation process has three

phases. In the first phase, it involves the evaluation module I to evaluate the first

level predicate clauses, which specify some characteristics of frame instances. In the

second phase, the evaluation module II evaluates the second level predicate clauses.

84

85

Any second level predicate clauses which cannot be successfully evaluated go to the

third phase, where the inference engine makes further evaluation using the knowledge

base. The knowledge base consists of an object base and a domain knowledge base.

It is dynamicly created by the learning agent based on the needs for supporting the

current •folder organization. So the folder organization as a flexible document filing

model is made possible by the learning agent.

9.2 Future Work

The major objective of this dissertation is to provide a flexible document filing model

which is the folder organization. In order to get the user involved in specifying the

folder organization, the dissertation defined a predicate-based language for specifying

filing criteria. The folder organization was extended for simplying the local predicates

of the folders. It is shown that the folder organization helps a lot in document

retrieval. As future work, we need to investigate what are the requirements of a good

folder organization, and how to refine an existing folder organization. To support

sophisticated users, we need to investigate how to extend both the predicate specifi-

cation and the folder organization without increasing the requirements of the average

users.

To support such a flexible document filing model, the dissertation presents a

learning agent for acquiring the knowledge which is needed in document filing and

retrieval. The learning agent gives the system the capability of being used in different

application domains. There are two issues regarding the knowledge base that should

be covered in our future work. The first one is the aging of the knowledge base. While

new knowledge keeps coming, some knowledge becomes infrequently used or useless.

To keep the size of the knowledge base small, the old knowledge should be moved out

of the knowledge base. Some requirements are needed for determining which piece

of knowledge is old enough for moving out. The second issue is to investigate how

86

User GUI

Predicate Evaluation
Control Module

Learning Agent

Evaluation Module II Inference Engine

Folder Organization

Filing Agents

Bookcase Agent

Bookcase Organization

Original Documents

System Storage

Orginal Document

Filing
System Catalog

Evaluation Module I Object Base Domain Knowledge

Figure 9.1 The system architecture

87

the knowledge base can be used for helping a naive user to specify a better folder

organization. This is another direction of the learning process. When the system get

experienced, it should be able to train the user so that the system can be used more

efficiently.

CHAPTER 10

CONCLUDING REMARKS

This dissertation presents a knowledge-based, predicate-driven document filing

system using the notion of folder organization, which supports the information

representation and manipulation, and conveys meanings from stored information

within office documents. Analogous to a cluster file organization, in this organi-

zation, folders are used as repositories of collections of frame instances (the synopses

of the original documents), regardless of their document types, which satisfy the

criteria (specified in terms of predicates) of the folders. It would be possible to

determine in which folder a new document would fall, and to find which folder of

frame instances a query best fits.

By integrating the document type hierarchy and the folder organization, the

dual modeling approach provides a flexible search and retrieval facility that allows

browsing through collections of frame instances and retrieval of frame instances

according to different criteria, using information related to document types and

the frame instances in close proximity within a folder in the folder organization.

It provides efficient frame instance access by limiting the searches to those frame

instances of a specific document type within those folders which appear to be most

relevant to the queries. This search strategy filters out first any frame instance that is

of irrelevant document type or in irrelevant folder, and then compares the contents of

a small collection of frame instances of an identified document type against the query

formulations. This is quite analogous to the global-local text similarity comparison,

and should produce a high degree of retrieval precision. Furthermore, the browsing

technique[67] can be conducted effectively by moving a given query toward the

relevant items, such as frame instance type, frame instances of a document type,

folders containing relevant frame instances of a document type, and so forth, using

the well-known relevance-feedback process[26, 28].

88

89

For supporting the interaction between the user and the system, we formalized

the new predicate specification for specifying folder criteria or queries. The user can

use predicates to specify characteristics of frame instances and/or the properties of

objects which are related to the documents(i.e., those appear as values of attributes

of frame templates for describing the document types). For clear understanding

and precise interpretation (and therefore, preventing frame instances' falsedrop),

we introduced the concepts of the first level predicate clauses and the second level

predicate clauses, which are used to specify characteristics of frame instances and

the properties of objects which are related to the documents, respectively. We also

disambiguated and formalized the values in predicates by specifying the domains in

which the values are defined. We extended the notion of a DAG structured folder

organization to a DAG structured folder organization with multiple typed links. By

introducing a new AND-link between folders, the predicates as the criteria for filing

frame instances into folders can be simplified and, in turn, can be easily evaluated.

The system storage employs a three-level architecture for incorporating the dual

models. The original documents are stored at the first level. The frame instances

are stored at the second level and the third level. The physical storage at the second

level is organized based on the document type hierarchy. The logical storage at

the third level is organized based on the folder organization. By using this archi-

tecture, the folder organization and the document type hierarchy cooperate with

each other in order to speed up the search and the retrieval of documents. We

apply the notion of encapsulation (which is most often achieved through information

hiding) for designing the system repository: the implementation of the folder organi-

zation at the third level is independent from the physical storage for the frame

instances at the second level, whose implementation is, in turn, independent from

the physical storage for the original documents at the first level. Thus this leads

to a clear separation of concerns. This multilevel access structure supports direct

90

access to documents which requires retrieving their corresponding frame instances

through the use of specific information, such as attributes and document type, from

the document type hierarchy and the folders containing these frame instances. This

system storage supports a three-level retrieval strategy. Firstly, a knowledge-based

query preprocess is applied for efficiently reducing the search space to a small set

of frame instances, using the information in the query formula. Secondly, the frame

instance search is applied on the small set of frame instances. The documents are

identified by examing which frame instances in the search base satisfy the query

formula. This frame instance search can be knowledge-based and/or content-based

depending on whether the query formula contains second level predicate clauses

and/or first level predicate clauses. Since the frame instances are synopses of their

original documents, the content-based frame instance search is also a conceptual-

based search of the original documents. The second level storage provides a platform

for applying various text-based IR techniques. It makes possible to use text-based

IR techniques for content-based multimedia document retrieval. The knowledge

base, used for evaluating predicates, supports knowledge-based document retrieval.

Finally, the third level storage provides a platform for adopting potential content-

based multimedia document retrieval techniques.

We extended an agent-based filing architecture to implement the extended

notion of folder organization. Each folder is monitored by a filing agent. A set

of filing agents is needed for implementing a folder organization. The filing agents

communicate and cooperate with each other for providing functionalities of the folder

organization. The dissertation defined the cooperation among the filing agents. A

filing process starts from the root agent. To be deposited into a folder, a frame

instance must pass the semantics check and satisfy the local predicate of the folder.

Upon storing a frame instance w into a folder, the agent then distributes a copy of

the frame instance ω to its immediate descendants. The agent will discard the frame

91

instance if it does not belong to the folder. The filing process is propagated down

to the leaf agents. We adopted the approach that a frame can appear in multiple

folders if it belongs to them, instead of only one copy of a frame instance can exist in

the folder organization which is employed in our previous work. This new approach

frees the agents from collecting the frame instances from their descendants during

the folder reorganization and document browsing and retrieval.

To automate document filing and folder reorganization, we established the fact

that any frame instance ω deposited in a folder f must satisfy the global predicate

of f, which is composed of the local predicates of the folders of the filing paths

of f from the rooted folder f0 . We presented a predicate evaluating system for

determining automatically whether a frame instance satisfies a predicate. The input

predicate is parsed and divided into predicate clauses and constraints. The first

level predicate clauses are evaluated based of the information contained in the frame

instance. The second level predicate clause specify the properties of objects, such

as Position(Sender, FACULTY.CIS.NJIT) and DateOfBirth(John Smith, x). The

process of evaluating these predicate clauses is no longer straightforward and simple,

and it requires additional knowledge about the objects, which is not in the original

documents. To facilitate the evaluation process, we presented a knowledge base,

which consists of an object base and a domain domain knowledge base.

An object page for an object contains a number of (attribute, value) pairs which

characterize the properties of the object. Depending on the object type, attributes in

an object page are domain-dependent. The information contained in the object page

of an object can be used for evaluating predicates. Given a goal predicate clause, such

as Position(John Smith, FACULTY.CIS.NJIT), if (Position, FACULTY.CIS.NJIT)

has an exact match with the property in the object page created for the object John

Smith, then the goal predicate clause is true. Likewise, given an assignment predicate

clause, such as Affiliation(John Smith, x), x will have the value NJIT, depending

92

upon the availability of the (attribute:Affiliation, value:NJIT) pair in the object page

of John Smith.

We presented a domain knowledge which consists of two components, domain

organization and property relations. The domain organization specifies the domains

and their relationships using is-a-domain-of or is-a subdomain-of. For example, the

domain Affiliation is composed of two subdomains, Department and Office, and

the domain Department has a subdomain Lab. The property relations specify the

properties for all entities in the domain organization. This provides an expressive

power for describing the properties of interest and their relationships within the

domain. Each relation between two properties defines a rule that one property

implies another, for instance, (Position, PROFESSOR) implies (Position FACULTY)

within a department domain (i.e., all professors are faculty members in a academic

department of a university. We introduced four rules for using the domain knowledge.

With the domain knowledge base, more knowledge about an object can derived based

on the object page of the object. For instance, based on the object page in Figure 7.2,

we are able to state that John Smith is an employee of the CIS department at NJIT.

For supporting the dynamic and flexible modeling, the dissertation presented

a learning agent for acquiring the knowledge which is needed by the predicate

evaluation engine. Once a folder organization is specified by the user, the domain

knowledge is automaticly extracted from the folder organization. The learning

rules were given for guiding the extraction. The attributes in each object page

are determined based on the property relations in the domain knowledge base. With

the help of the domain knowledge base, the agent knows what knowledge about

the objects is needed for supporting the document filing. The acquisition of the

knowledge in the object base is done in two ways. The first one is learning from

the filing agents or the inference engine. The second one is learning from the user.

The knowledge obtained by the learning agent in one application cycle can be used

93

in another application cycle, provided that the two application domains are similar.

So the system can get experienced. The system will get trained when it is used by

a. sophisticated user. When get experienced, the system can help an naive user to

specify a better folder organization.

REFERENCES

1. A. Aho and M. Corasick, "Efficient String Matching: An Aid to Bibliographic
Search," Communications of the ACM, vol. 18, no. 6, pp. 333-340, June
1975.

2. D. Anastassiou, M. K. Brown, H. C. Jones, J. L. Mitchell, W. Pennebaker,
and K. Penningtonlll, "Series 1 Based Videoconferencing System," IBM
Systems Journal, vol. 22, no. 1/2, pp. 97-110, 1983.

3. N. Bianchi, P. Mussio, M. Padula, and G. R. Rinaldi, "Multimedia. Document
Management: An Anthropocentric Approach," Information Processing
Management, vol. 32, no. 3, pp. 287-303, 1996.

4. A. Celentano, M. Fugini, and S. Pozzi, "Querying Office Systems about
Document Roles," in Proceedings of the 14th Annual hit. ACM/SIGIR
Conference on Research and Development in Information Retrieval,
Chicago, Illinois, pp. 183-189, October 1991.

5. A. Celentano, M. Fugini, and S. Pozzi, "Knowledge-Based Document Retrieval
in Office Environments: The Kabiria System," ACM Transactions on
Office Information Systems, vol. 13, no. 3, pp. 237-268, July 1995.

6. S. Chen, Document Preprocessing and Fuzzy Unsupervised Character Classi-
fication, PhD dissertation, Department of Computer and Information
Science, New Jersey Institute of Technology, Newark, New Jersey, May
1995.

7. S. Christodoulakis, M. Theodoridou, M. P. F. Ho, and A. Pathria, "Multimedia
Document Presentation, Information Extraction, and Document Forma-
tion in MINOS: A Model and System," ACM Transactions on Office
Information Systems, vol. 4, no. 4, pp. 345-383, 1986.

8. S. Cisco and J. Wertzberger, "Indexing Digital Documents," Inform, vol. 11,
no. 2, pp. 12-20, February 1997.

9. P. Cohen and R. Kjeldsen, "Information Retrieval by Constrained Spread-
ing Activation in Semantic Networks," Information Processing and
Management, vol. 23, no. 4, pp. 255-268, 1987.

10. W. Croft, "NSF Center for Intelligent Information Retrieval," Communications
of the ACM, vol. 38, no. 4, pp. 42-43, April 1995.

11. W. Croft and R. Krovetz, "Interactive Retrieval of Office Documents," in
Proceedings ACM- IEEE Conference on Office Information Systems, New
York, pp. 228-235.

94

95

12. P. Dadam and V. Linnemann, "Advanced Information Management (AIM):
Advanced Database Technology for Integrated Applications," IBM Sys-
tems Journal, vol. 28, no. 4, pp. 661-681,1989.

13. P. J. Denning, "Electronic Junk," Communications of the ACM, vol. 25, no. 3,
pp. 163-165, March 1982.

14. X. ,Fan, Q. Liu, and P. A. Ng, "A Multimedia Document Filing System,"
in Proceedings of the IEEE International Conference on Multimedia
Computing and Systems, Ottawa, Ontario, Canada, pp. 492-499, June
1997.

15. X. Fan, Q. Liu, and P. A. Ng, "Knowledge-Based Document Filing: TEXPROS
Approach," in Proceedings of the 13th International Conference on
Advanced Science and Technology in conjunction with the 2nd Inter-
national Conference on Multimedia Information Systems, Schaumburg,
Illinois, USA, pp. 58-67, April 1997.

16. X. Fan and P. A. Ng, "A Dual Model Approach For Modeling Office
Documents," To appear in Proceedings of the Third World Conference
on Integrated Design i 4 Process Technology, 1998.

17. X. Fan and P. A. Ng, "Personal Document Management and Retrieval:
A Knowledge-Based Approach," To appear in Journal of Systems
Integration, 1998.

18. E. A. Fox, R. Akscyn, R. Furuta, and J. Leggett, "Digital Libraries - Intro-
duction," Communications of the ACM, vol. 18, no. 4, pp. 22-29, April
1995.

19. S. Gibbs and D. Tsichritzis, "A Data Modeling Approach for Office Information
Systems," ACM Transactions on Office Information Systems, vol. 1, no. 4,
pp. 299-319, October 1983.

20. X. Hao, Automatic Office Document Classification and Information Extraction,
PhD dissertation, Department of Computer and Information Science, New
Jersey Institute of Technology, Newark, New Jersey, August 1995.

21. X. Hao, J. Wang, M. Bieber, and P. Ng, "Heuristic Classification of Office
Documents," International Journal of Artificial Intelligence Tools, vol. 3,
no. 2, pp. 233-265,1994.

22. X. Hao, J. Wang, and P. A. Ng, "Information Extraction from the Structured
Part of Office Documents," Information Sciences, vol. 91, no. 3/4,
pp. 245-274,1996.

96

23. X. Hao, J. Wang, and P. Ng, "Nested Segmentation: An Approach for Layout
Analysis in Document Classification," in Proceedings of the Second Inter-
national Conference on Document Analysis and Recognition, Tsukuba
Science City, Japan, pp. 319-322, October 1993.

24. R. Hunter, P. Kaijser, and F. Nielsen, "ODA: A Document Architecture for
Open Systems," Computer Communication, vol. 12, no. 2, pp. 69-79,
April 1989.

25. C. Huser, K. Reichenberger, L. Rostek, and N. Streitz, "Knowledge-Based
Editing and Visualization for Hypermedia Encyclopedias," Communi-
cations of the ACM, vol. 18, no. 4, pp. 49-51, April 1995.

26. E. Ide and G. Salton, "Interactive Search Strategies and Dynamic File Organi-
zation in Information Retrieval," in The Smart Retrieval System - Exper-
iments in Automatic Document Processing (G. Salton, ed.), pp. 373-393,
1971.

27. N. Jardine and C. van Rijsbergen, "The Use of Hierarchic Clustering in Infor-
mation Retrieval," Information Storage and Retrieval, vol. 7, no. 5,
pp. 217-240, December 1971.

28. J. J.J. Rocchio, "Relevance Feedback in Information Retrieval," in The
Smart Retrieval System - Experiments in Automatic Document Processing
(G. Salton, ed.), pp. 313-323, 1971.

29. D. Knuth, J. Morris, and V. Pratt, "Fast Pattern Matching in Strings," SIAM
Journal of Computing, vol. 6, no. 2, pp. 323-350, June 1977.

30. Q. Liu, An Office Document System With the Capability of Processing Incomp-
lete and Vague Queries, PhD dissertation, Department of Computer and
Information Science, New Jersey Institute of Technology, Newark, New
Jersey, August 1994.

31. Q. Liu and P. Ng, "A Browser of Supporting Vageu Query Processing in an
Office Document System," Journal of Systems Integration, vol. 5, no. 1,
pp. 61-82, 1995.

32. Q. Liu and P. Ng, Document Processing and Retrieval: Text Processing, Kluwer
Academic Publishers, Norwell, Massachusetts, 1996.

33. Q. Liu and P. Ng, "A Query Generalizer for Providing Cooperative Responses
in an Office Document System (revised version)," to appear in Data and
Knowledge Engineering, 1998.

34. Q. Liu, J. Wang, and P. Ng, "An Office Document Retrieval System with the
Capability of Processing Incomplete and Vague Queries," in Proceedings
of the Fifth International Conference on Software Engineering and
Knowledge, San Francisco, California, pp. 11-17, June 1993.

97

35. E. Lutz, H. Kleist-Retzow, and K.Hoernig, "MAFIA - An Active Mial-Filter-
Agent for an Intelligent Document Processing Support," Multi-User
Interfaces and Applications, pp. 16-32, 1990.

36. T. Malone, K. Grant, K. Lai, R. Rao, and D. Rosenblitt, "Semistructured
Messages are Surprisingly Useful for Computer-Supported Coordination,"
ACM Transactions on Office Information Systems, vol. 5, no. 2, pp. 115-

 1987.

37. J. Martin, The Wired Society: A Challenge for Tomorrow, Prentice-Hall,
Englewood Cliffs, New Jersey, 1978.

38. B. McCune and et al., "RUBRIC: A System for Rule-Based Information
Retrieval," IEEE Transactions on Software Engineering, vol. SE-11, no. 9,
pp. 939-945, September 1985.

39. C. Meadow, Text Information Retrieval Systems, Academic Press, San Diego,
California, 1992.

40. C. Meghini, R. Fausto, and C. Thanos, "Conceptual Modeling of Multimedia
Document," Computer, vol. 24, no. 10, pp. 23-29, 1991.

41. F. Mhlanga, D_Model and D_Algebra: A Data Model and Algebra for Office
Documents, PhD dissertation, Department of Computer and Information
Science, New Jersey Institute of Technology, Newark, New Jersey, May
1993.

42. F. Mhlanga, Z. Zhu, J. Wang, and P. Ng, "A New Approach to Modeling
Personal Office Documents," Data and Knowledge Engineering, vol. 17,
no. 2, pp. 127-158, November 1995.

43. N. Naffah and A. Karmouch, "AGORA - An Experiment in Multimedia Message
Systems," Computer, vol. 19, no. 5, pp. 56-66, May 1986.

44. E. Nodtvedt, "Information Retrieval in the Business Environment," Technical
Report, Department of Computer Science, Cornell University, TR 80-447,
Ithaca, New York, December 1980.

45. B. Nubila, "Concept-Based Indexing and Retrieval of Multimedia Documents,"
Information Sciences, vol. 20, no. 3, pp. 185-196, 1994.

46. E. Ozkarahan, "Multimedia Document Retrieval," Information Processing o
Management, vol. 31, no. 1, pp. 113-131, 1995.

47. S. Pierre and H. Safa, "Models for Storing and Presenting Multimedia Docu-
ments," Telematics and Informatics, vol. 13, no. 4, pp. 233-250, 1996.

48. S. Pozzi and A. Celentano, "Knowledge-Based Document Filing," IEEE Expert,
pp. 34-45, October 1993.

98

49. J. S. Quarterman and J. C. Hoskins, "Notable Computer Networks," Commu-
nications of the ACM, vol. 29, no. 10, pp. 932-970, October 1986.

50. R. Rao, J. Pedersen, M. Hearst, J. Mackinlay, S. Card, L. Masinter, P.-K.
Halvorsen, and G. Robertson, "Rich Interaction in the Digital Library,"
Communications of the ACM, vol. 18, no. 4, pp. 25-39, April 1995.

51. S. Sakata and T. Ueda, "A Distributed Office Mail System," Computer, vol. 18,
no. 10, pp. 106-116, October 1985.

52. G. Salton, Automatic Text Processing: the Transformation, Analysis, and Re-
trieval of Information by Computer, Addison Wesley, Massachusetts,
1988.

53. G. Salton, J. Allan, and C. Buckley, "Automatic Structuring and Retrieval of
Large Text Files," Communications of the ACM, vol. 3, no. 2, pp. 97-108,
February 1994.

54. G. Salton and M. J. McGill, Introduction to Modern Information Retrieval,
McGraw Hill, New York, 1983.

55. S. Saxin, "Computer-Based Real-time Conferencing System," Computer, vol. 17,
no. 10, pp. 33-35, October 1985.

56. M. Snoeck and G. Dedene, "Generalization/Specification and Role in Object
Oriented Conceptual Modeling," Data and Knowledge Engineering,
vol. 19, no. 2, pp. 171-195, June 1996.

57. C. Thanos, Multimedia Office Filing: The MULTOS Approach, Elsevier Science
Publishing Co., Inc., New York, 1990.

58. R. Thomas, H. Forsdick, T. Crowley, R. Schaaf, R,. Thomlinson, V.M.Travers,
and G. Robertson, "Diamond: A Multimedia Message System Build on
a Distributed Architecture," IEEE Computer, vol. 18, no. 12, pp. 65-78,
December 1985.

59. K. Tracy and P. Bouthoorn, Object-Oriented Artificial Intelligence Using C++,
Computer Science Press, New York, 1996.

60. D. Tsichritzis, "Form Management," Communications of the ACM, vol. 25,
no. 7, pp. 453-478, July 1982.

61. M. Turoff and S. R. Hiltz, "The Electronic Journal: A Progress Report," Journal

of the ASIS, vol. 33, no. 4, pp. 195-202, July 1982.

62. J. Tydeman, H. Lipinski, R. Adler, M. Nyhan, and L. Zwimpfer, Teletext
and Videotex in the United States - Market Potential, Technology, Public
Policy Issues, McGraw-Hill, New York, 1982.

99

63. W. Ulrich, "Introduction to 'Electronic Mail and Implementation Consider-
ations in Electronic Mail," in AFIPS Conference Proceedings, Arlington,
Virginia, pp. 485-492,1980.

64. E. Voorhees, "The Cluster Hypothesis Revisited," in Proceedings of the Eighth
Annual International ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval, New York, pp. 188-196, June 1985.

65. C. Wang, An Intelligent Browser for TEXPROS, PhD dissertation, Department
of Computer and Information Science, New Jersey Institute of Technology,
Newark, New Jersey, May 1998.

66. C. Wang, Q. Liu, and P. Ng, "Browsing in an Information R.epository," in
Proceedings of 2nd World Conference on Integrated Design and Process
Technology, Austin, Texas, pp. 48-56, December 1996.

67. C. Wang, Q. Liu, and P. Ng, "Intelligent Browser for TEXPROS," in Proceeding
of International Conference on Intelligent Information Systems Techno-
logy, Grand Bahamas Island, The Bahamas, pp. 389-398, December 1.997.

68. J. Wang, F. Mhlanga, Q. Liu, W. Shang, and P. Ng, "An Intelligent Documen-
tation Support Environment," in Proceedings of the Fifth International
Conference on Software Engineering and Knowledge Engineering, San
Francisco, California, pp. 429-436, June 1993.

69. J. Wang and P. Ng, "TEXPROS: An Intelligent Document Processing Sys-
tem," International Journal of Software Engineering and Knowledge
Engineering, vol. 15, no. 4, pp. 171-196, April 1992.

70. C. Wei, Knowledge Discovering for Document Classification Using Tree Mat-
ching in TEXPROS, PhD dissertation, Department of Computer and
Information Science, New Jersey Institute of Technology, Newark, New
Jersey, May 1996.

71. C. Wei, Q. Liu, J. Wang, and P. Ng, "Knowledge Discovering for Document
Classification Using Tree Matching in TEXPROS (revised version),"
Information Sciences, vol. 100, no. 1-4, pp. 255-310, August 1997.

72. C. Wei, J. Wang, X. Hao, and P. Ng, "In Inductive Learning And Knowledge
Representation for Document Classification: The TEXPROS Approach,"
in Proceedings of 3rd International Conference on Systems Integration,
Sao Paulo, SP, Brazil, pp. 1166-1175, August 1994.

73. M. Williams, "Electronic Databases," Science, pp. 445-446, April 1985.

74. C. Winkler, "Desktop Publishing," Datamation, vol. 32, no. 23, pp. 92-96,
December 1986.

100

75. R. Wirfs-Brock and R. Johnson, "Surveying Current Research in Object-
Oriented Design," Communications of the ACM, vol. 33, no. 9, pp. 104-
124, September 1990.

76. Z. Zhu, Q. Liu, J. McHugh, and P. Ng, "A Predicate Driven Document Filing
System," Journal of Systems Integration, vol. 6, no. 3, pp. 373-403,
September 1996.

77. Z. Zhu, J. McHugh, J. Wang, and P. Ng, "A Formal Approach to Modeling
Office Information Systems," Journal of Systems Integration, vol. 4, no. 4,
pp. 373-403, December 1994.

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract (1 of 2)
	Abstract (2 of 2)

	Title Page
	Copyright Page
	Approval Page
	Biographical Sketch (1 of 2)
	Biographical Sketch (2 of 2)

	Dedication
	Acknowledgment
	Table of Contents (1 of 3)
	Table of Contents (2 of 3)
	Table of Contents (3 of 3)
	Chapter 1: Introduction
	Chapter 2: The Dual Models
	Chapter 3: Previous Work
	Chapter 4: Predicate-Based Representation of Documents
	Chapter 5: Folder Organization
	Chapter 6: Document Repository
	Chapter 7: Knowledge-Based Predicate Evaluation
	Chapter 8: Agent-Based Implementation of Folder Organization
	Chapter 9: Implementation and Future Work
	Chapter 10: Concluding Remarks
	References

	List of Figures

