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ABSTRACT

OPTIMAL SYNTHESIS OF A PLANAR FOUR-BAR FUNCTION GENERATOR
BASED ON INDIRECT MEASURE OF STRUCTURAL ERROR

by
Robert A, Ellis III

A novel technique for optimal synthesis of a planar four-bar function generator is

presented. An indirect measure of structural error is used to formulate an objective

function which, along with its derivatives, is straightforward to evaluate and results in an

elegant and robust algorithm. Lagrange multipliers are used to incorporate the loop

closure constraint into the objective function.

In this thesis, the formulation of the objective function and the minimization

algorithm are described, examples are presented, and the virtues and shortcomings of the

algorithm are discussed.
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Figure 1.2 Path Generation

Motion generation also requires a point on the coupler to follow a path, hut the

orientation of the coupler is specified along the path (figure 1.3).

Figure 1.3 Motion Generation
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In a function generator, the rotation of the output shaft is a function of the rotation of the

input-shaft (figure 1.4).

Figure 1.4 A Four-Bar Function Generator

The research reported in this thesis is concerned only with function generation.

Each of the links shown in figure 1.1 can be represented as a vector in the x-y

plane. The linkage is defined by specifying the magnitude and orientation of each vector.

This set of values, expressed in vector form as :a t , a,, 	 02,03,04], is known as the

vector of design parameters.

There are, in fact, less than eight independent design parameters. The orientation

of the frame relative to the coordinate system is not a design parameter because it does

not affect the motion of the links relative to the frame. One of the coordinate system axes

is usually placed on the frame link. The requirement that the four links form a closed loop

results in one vector equation, and further reduces the number of independent design

parameters by two, to five.
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The relationship between the input angle and output angle of a mechanism such as

that in figure l.l is determined by the design parameters. If these parameters are properly

chosen, the relationship can approximate a desired function. The desired function is

called the ideal function and the function actually produced by the linkage is called the

generated function. The difference between the ideal function and the generated function

is known as structural error. It is straightforward to calculate the progression of a linkage

through its range of motion, given the design parameters. The inverse problem, synthesis,

is not as simple and is defined as follows: Find a set of design parameters that will result

in a desired relationship between the input and output angles of a four bar linkage.

Techniques have been developed for the synthesis of linkages that match an ideal

function at five or fewer positions. These positions are known as precision points, and the

techniques are referred to as precision synthesis. A linkage synthesized by this method

will deviate from the desired progression at positions other than the precision points. This

deviation is known as the structural error of the linkage.

Another, more recent, synthesis technique is to search for a set of design

parameters that minimizes a special function of the structural error at a large number of

positions, and thus approximates the ideal function. This is referred to as approximate, or

optimal, synthesis. The function of the structural error, which is subject to special

requirements, is known as the objective function. The positions where the ideal function

is to be approximated are called the synthesis points.

Consider the function generator shown in figure l.l. The input and output crank

lengths are a l and a 3 , respectively. The coupler length is a, and the frame length is a,.

The starting input and output-shaft angles are Om and 0,0 , and the rotations of the input-

and-output-shafts from the starting angles are Φ and . The desired progression of this

linkage is ψ g(Ø), and a set of synthesis points {(Φ,, is defined. The

starting angles of the input and output-shafts are specified, as are their ranges of motion.





Figure 1.5 Representation of a Four-Bar Linkage in the Complex Plane

Recognizing that the links must form a closed loop, the complex vector equation

(1.1)

is obtained. Multiplying each side of the equation by its complex conjugate, and some

additional algebra, results in the scalar equation

(1.2)

known as Freudenstein's equation. Because the mechanism is a function generator, the

angles 6, and 64 are specified in pairs. Therefore, the quantities z 2 , z3 , and z4 are the

only unknowns. It is apparent that for each (0 2 , 04 ) pair, a new and independent version

of Freudenstein's equation will be obtained. Since there are only three unknowns, it

follows that a solution is impossible if more than three (θ2,θ4) pairs are specified.

8
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This limitation is a fundamental problem inherent in all precision synthesis

techniques: it is not, in general, possible to synthesize a mechanism using a continuous

path. One can only synthesize a mechanism that matches the path exactly at a small

number of points, and approximates it elsewhere.

It is sometimes preferable to approximate a function closely at a large number of

points than to match it exactly at five points or less. Many different functions can satisfy

the same set of five or fewer points, as shown in figure 1.6.

Figure 1.6 Different functions which pass through the same three precision points;

Using a large number of points for synthesis eliminates this ambiguity. The purpose of

this research is to develop a synthesis technique that allows the use of an arbitrarily large
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number of points over the range of the function to be generated, thus addressing the

biggest deficiency of precision synthesis techniques.



and (2.2)

CHAPTER 2

PREVIOUS WORK

2.1 Precision Techniques

As stated earlier, the function generated by a linkage can, in general, only match the

desired function at five or fewer points. This becomes evident upon examination of

Freudenstein's equation

(2.1)

In a function generator, the input and output-shaft angles 0 2 , 04 and the length of the

frame link z 3 are specified, leaving vectors z3, and z 4 as the three unknowns in the

equation. Since the equation is applied at each precision point, the use of more than three

precision points results in an over constrained set of equations. If the starting input and

output angles 0 20 and 040 are used as design parameters, with

there are five unknowns in the equation, and up to five precision points can be used.

The first analytical synthesis techniques used five or fewer precision points,

located within the prescribed function range, usually spaced according to the Chebyshev

technique. Structural error was analyzed after synthesis, and the spacing of the precision

points would be varied if the magnitude of the error was unacceptable. Freudenstein 4 , in

1959, presented a systematic technique for varying the precision point spacing in order to

minimize structural error.

While the preceding techniques can produce linkages having extremely low

structural error, precision synthesis methods cannot be used with large numbers of

synthesis points. And there are many instances where such capability is desirable, and

1 1
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perhaps necessary. Thus, a major goal of research in mechanism synthesis has been the

development of approximate synthesis techniques. Here the goal is to obtain a mechanism

that generates a motion, path or function that is acceptably close to a desired progression

at an arbitrarily large number of points. An advantage of using a large number of points is

that the deviation of the generated motion, path or function from the desired one is

minimized. The loss of accuracy at the precision points is not critical, as manufacturing

tolerances in a real linkage would introduce some error at those positions anyway.

2.2 Approximate Techniques

Early approximate synthesis techniques attempted to find a set of design parameters

which would minimize the sum of squares of deviations at the synthesis points.

Sarkisyan, Gupta and Roth 5 , in 1973, presented a technique for least square

approximation of path generation, for the special cases of circular or straight paths. The

approximation minimized the deviation of the sum of the square of the circle radius, as

shown in figure 2.1.

ideal circular path

generated path

Figure 2.1 Deviation from an ideal circular path
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Referring to figure 2.1, at each position i, the generated path differs from the ideal path

by an amount

The objective function is defined as

where

(2.5)

In minimizing the objective function, it was assumed that A was small enough

that its square could be neglected. This assumption, that the starting point for an

optimization is a linkage with a small structural error, was a significant limitation.

Algorithms for determining least square circle-point curves, analogous to the circle-point

curves in Burmester theory, were developed.

In 1975, Gupta and Rothe presented an approximate synthesis technique for

circular and straight paths, which used a more general norm of the errors as an objective

function. In this method, the ideal function is f (x) , and it is approximated by a function

F(A,x) where x is the same scalar as in f(x), and A is a vector of parameters. The

error function G(A,x) can then be defined as

The Lp-norm of the error function G(A, x) is then defined as

In these equations, for the case of circular path generation, x would be replaced by the

radius of the circular path. For certain special cases of synthesis, closed form solutions

were obtained by this technique.

(2.3)

(2.4)

(2.6)

(2.7)
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Sandor and others applied techniques of mathematical programming to the

problem of optimal synthesis. A 1975 paper by Alizade, Novruzbekov and Sandor 7 used

the penalty function approach to convert a problem of minimization with equality and

inequality constraints into an unconstrained minimization problem. An objective function

based on the sum of the squares of the errors was employed. Inequality constraints, such

as maximum permissible transmission angles, were incorporated, as was Freudenstein's

equation, an equality constraint. A 1975 paper by Alizade, Rao and Sandor 8 extended

these principles to spatial, and other types of planar, mechanisms. In Selective Precision

Synthesis9 , developed by Kramer and Sandor, an arbitrary accuracy neighborhood is

defined around each synthesis point, and nonlinear programming techniques are used to

find a mechanism whose output passes through each accuracy neighborhood. (figure 2.2)

Ideal Curve
6;

Accuracy
Neighborhood

Actual Curve

Figure 2.2 Varying Accuracy Neighborhoods

This synthesis technique allows the precision to be varied over the travel of the

mechanism. Reducing precision in areas where it is not needed can enable a useful

mechanism to be synthesized where other techniques would be unduly restrictive.
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Pugh¹0, in 1984, applied pareto optimization techniques to the optimization of four-bar

function generators, with the objective function based on the structural error and the

departure of the transmission angle from 90 degrees. In this technique, a systematic

search of the entire solution domain was undertaken, with the objective function

evaluated at ten equally spaced positions of the linkage.

Aviles et. all t, in 1985, proposed a novel technique in which the same objective

function could be applied to path generation, motion generation, and function generation.

In this technique, the mechanism is forced to satisfy the ideal motion, and all of the links

are permitted to deform so as to accommodate this prescribed motion. The objective

function is the sum of the squares of the link deformations. Because all of the links are

able to deform, there are an infinite number of deformed configurations at each synthesis

point, and in is not possible to directly evaluate a unique value of structural error at a

synthesis point. A quasi-Newton optimization method was used.

More recently, kinematic mapping techniques have been employed. Kinematic

mapping involves mapping a two-dimensional motion, which consists of two translational

components and one rotational component, into a curve in four-dimensional image space.

This desired image curve is to be approximated by a curve, which is a function of the

design parameters. A successful algorithm will synthesize a mechanism whose image

curve is acceptably close to the desired image curve. Ravani and Roth ¹² employed this

technique to the synthesis of motion generators, with the generated image curve defined

as the intersection of two surfaces that are functions of the design parameters. Wu and

Fischer¹³ used quaternion algebra to define the intersecting surfaces as constraint

manifolds, which are a function of the design parameters. A difficulty with kinematic

mapping is that calculation of the distance between the desired and generated image

curves is tedious. Also, when evaluating the objective function as part of the iterative

process, the potential for the algorithm to toggle between two valid configurations of the

mechanism can result in a failure to converge.
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It should be noted that, although some of these synthesis techniques were

developed for motion or path generation, they are relevant to function generation as well.

Function generation is simply a special case of path generation with timing. Motion

generation, like path generation with timing, specifies two translational displacements

and one angular displacement at each precision point. Thus, synthesis techniques for

motion and path generation are relevant to function generation.

At present, no approximate synthesis method has emerged as a standard to be

used by design engineers. Precision synthesis techniques are still the only ones that can

be depended on to create a mechanism for a specific task.

The existing approximate synthesis techniques all attempt to minimize some norm

of the structural error, measured directly. The technique here uses a different approach.

An indirect measure of the structural error is used in order to obtain a better mathematical

formulation of the objective function. The structural error of mechanisms synthesized by

this technique will be analyzed in order to verify that the use of an indirect measure of

error results in an acceptable level of accuracy.



CHAPTER 3

ANALYSIS

3.1 Formulation of the Objective Function

3.1.1 Review of Optimal Synthesis

An optimally synthesized function generator is one that gives the best possible

approximation of the ideal function over the specified input range. The number of

synthesis points, or points at which the deviation from the ideal function is measured, is

greater than the maximum number of precision points.

The quality of the approximation of the ideal function is determined by the value

of some function of the deviations from the ideal function at the synthesis points. The

deviation at a synthesis point is known as the structural error. An objective function can

be defined somewhat arbitrarily, but it must increase monotonically with the magnitude

of the structural error.

Consider a four-bar function generator which approximates a function y = 1'01,

x„ 5_ y < x . This function is mapped onto the (0, ψ) plane of input and output-shaft

rotations as ψ = g(0) a 5_ 0 < At the synthesis points, where the input-shaft

rotations are {0 1 , 	 Φk}, the output-shaft rotations generated by the mechanism will

be 	 , if 2 ,- ,ψk } . The difference at each synthesis point between the generated output-

shaft rotation and the ideal output-shaft rotation is

At the ith synthesis point, the structural error is A. In optimization problems it is

common to use the sum of the squares of the structural errors as the objective function.

Thus, when there are k synthesis points, the objective function U would be

(3.2)

17
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There are numerous other permissible objective functions, for example:

(3.3)

The sum of the squares of the structural errors is used most often because some of the

more common optimization routines perform best when the objective function defines a

quadratic surface.

3.1.2 Measurement of the Structural Error

3.1.2.1 Direct Measurement: In the previous section, the structural error was defined as

the difference between actual and ideal output-shaft rotations. Its measurement is

straightforward. For a given input-shaft rotation 0,, the output-shaft rotation 1,11, can be

obtained directly if the configuration of the mechanism is known.

Consider the function generator in figure 3.1. Given the link lengths a l =4,

a2 = 8, a3 = 6 , and a 4 = 10, and a starting input-shaft angle Φ 0 of 60 degrees, the output-

shaft angle ψ0 can be shown to be 93.89 degrees.
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Figure 3.1 A Four-Bar Function Generator

When the input-shaft is rotated through the angle 0, =10", the mechanism has the

configuration shown in figure 3.2, and we have ψ1, = 98.93" —93.89" = 5.04". If the ideal

value of V I had been 15.0 degrees, the structural error at that point would be 10.0

degrees.



B
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Figure 3.2 The mechanism of figure 3.1 with the input-shaft rotated an additional ten
degrees

There is another valid solution for the output-shaft angle, as shown in figure 3.3.

Here, the output-shaft angle is 214.13 degrees, implying a rotation ψl, =120.24'. A

common difficulty with algorithms that compute the structural error of a function

generator is a tendency to toggle between the two valid solutions. Optimal synthesis

algorithms must repeatedly compute the structural error of a function generator, and this

toggling is a common problem in the development of synthesis techniques.



Figure 3.3 Alternate solution for the mechanism of figure 3.2

3.1.2.2 Indirect Measurement: An indirect measurement of the structural error is used

in the technique presented in this thesis. Referring to figure 3.4, for a given input-shaft

angle Φ, the output-shaft angle will be the actual II/. If the output-shaft angle is set to its

ideal angle, the coupler will stretch to a new length (a 2 + b). The amount of stretching, b,

is then an indirect measure of the structural error.

21
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actualψ

Figure 3.4 Indirect measurement of structural error

This concept can be further illustrated by referring to the mechanism in figure 3.5, with

Φl =10 ° and the ideal ψl = 15°. With the input and output links set in their ideal

positions, the deformed length of the coupler will be the distance between points A and

B.
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Figure 3.5 The mechanism of figure 3.2 with prescribed input-shaft and output-shaft
angles. The coupler deforms to accomodate the rotations.

From the dimensions on the figure, the positions of points A and B can be easily

calculated:

xA = 1.368,

yA = 3.759,

x8 = 8.058,

y8 = 5.677.

The distance between points A and B is then 6.959 length units. Since the original

undeformed length of the coupler is 8 length units, the deformation h is -1.041 length

units. This stretching of the coupler at each synthesis point is an indirect measurement of
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the structural error. It is easily computed, and it has a unique value at each synthesis

point.

Derivation of an expression for the coupler deformation is straightforward.

Referring to figure 3.6, the coordinates of point A are

and the coordinates of point B are

(3.4)

(3.5)

pier
output crank

/input crank

frame

Figure 3.6 Definition of design parameters and coupler deformation
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The distance between points A and B, which is also equal to the deformed coupler length

(a, + b), can be computed as follows:

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

Therefore, the coupler deformation is

These expressions can be simplified by writing

Then we have

Figure 3.7 illustrates the physical significance of the quantities h, v, and q.

When the input and output shaft angles are set to their ideal values, h is the horizontal

distance between points A and B, v is the vertical distance between these two points, and

q is the length of a line segment drawn between the two points.
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Figure 3.7 The physical significance of 11, v, and q.

Note that in these equations,

(3.12)

3.1.3 Definition of the Objective Function

Having defined an indirect measurement of the structural error, we can now define the

objective function. In general, for each synthesis point i, there is a pair of ideal input and

output-shaft rotations Φi, and ψi, and a coupler deformation b1 . Our objective function

will be the sum of the squares of the coupler deformations at all of the synthesis points.

Mathematically, when there are k synthesis points,

(3.13)
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Function generators typically define the input and output-shaft angles as rotations

from a starting position. This is accomplished in our formulation by defining 6  and 0,0

as the starting input and output-shaft angles, respectively, as shown in figure 3.6. Then,

(3.14)

where the angles 0 and ψ = f() define the relationship between input and output-shaft

rotations. Each synthesis point consists of a pair of input and output-shaft rotations. It is

important to note that, because this formulation of the objective function uses the coupler

stretch due to prescribed input and output-shaft rotations as a measure of error, the angles,

0, 1,11 0, and 0, represent the ideal shaft rotations as specified at the synthesis points.

The difference between the actual shaft rotations and the ideal positions is not considered

until the structural error of a mechanism is analyzed.

The goal of the optimal synthesis technique presented in this thesis is to find a set

of design parameters that minimizes the objective function, U, as defined in equation

(3.13).

3.1.4 The Loop Closure Constraint

No relationship among the design parameters has been implied in the indirect

measurement of structural error or the definition of the objective function. However, it is

evident that the four links, with the coupler in its undeformed state, must form a closed

loop. Referring to figure 3.6, this constraint is represented by two equations:

(3.15)

These equations are not independent, and reduce to Freudenstein's equation



where

(3.18)

(3.19)

where

(3.17)

Freudenstein's equation is typically used to compute the relationship between

input and output-shaft angles of a four bar linkage. In our case, the loop closure constraint

forces the solution of the optimization problem to satisfy an additional condition, namely,

that the links form a closed loop. The constraint is applied at the starting position of the

linkage. It is incorporated into the optimization problem through the use of Lagrange

multipliers.

3.1.5 The Objective Function with the Loop Closure Constraint

3.1.5.1 The Role of the Loop Closure Constraint: If the components of the vector of

design parameters were independent of each other, optimal synthesis would simply

amount to minimizing the objective function U with respect to that vector. A common

approach to minimizing the objective function is to solve for a vector of design

parameters such that the gradient of the objective function is equal to zero.

Mathematically, the vector equation to be solved is

This system of n equations can be solved for the vector of design parameters r, using

suitable techniques to assure that the solution results in a global minimum of the

objective function.

In traditional optimal synthesis techniques, the loop closure constraint is used to

compute the structural error and is thus automatically incorporated in the definition of the

objective function. The indirect measurement of structural error presented here does not
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rely on the loop closure constraint, and Freudenstein's equation has not appeared in our

definition of the objective function. In order for our optimal synthesis technique to

function properly, the loop closure constraint must be incorporated into the definition of

the objective function.

This requirement can be easily verified by referring back to the definition of

structural error as the deformation of the coupler that is necessary to connect the ends of

the input and output links. Clearly, without the use of the loop closure constraint,

minimization of our objective function could result in a set of link lengths and starting

angles that do not form a closed loop.

The presence of the loop closure constraint reduces the number of independent

design parameters. Mathematically speaking, it limits the domain in design parameter

space in which a solution can be found. The method of Lagrange multipliers is commonly

used in the minimization of a function subject to constraints among the input variables.

Before addressing the minimization of our objective function subject to the loop closure

constraint, it is helpful to discuss the theory of Lagrange multipliers.

3.1.5.2 Discussion of Lagrange Multipliers: Consider a scalar function , U(r), of an 17-

dimensional vector r. Let the components of the vector r be related by in constraint

equations

(3.20)

Each constraint equation reduces by one the number of independent components of the

vector r. Now consider the scalar function

(3.21)

It can be shown mathematically that, where the function U subject to the constraints

Fl...,Fm has an extremum, the gradient of the function V is equal to zero.¹ 4
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Thus, in mathematical terms, an extremum exists when

(3.22)

where

(3.23)

The new variables ,	 are referred to as Lagrange multipliers, and are additional

unknown quantities. The equation VrV = 0 represents n scalar equations. The

components of the vector r, along with the Lagrange multipliers, represent n m

unknowns. The constraints Fl = 	 = 0 provide an additional m equations, resulting

in 17 + in equations in n + m unknowns.

(3.24)

If we define the partitioned vector x, consisting of the vector of design parameters r and

the set of Lagrange multipliers	 as

(3.25)

Then we can write VV = 0 in place of the preceding equations, where

(3.26)

This equation V x V = 0, considered as a vector equation ex) = 0 with n+ m

components, must be solved in order to minimize a scalar function of n variables subject



subject to the constraint

The modified objective function V then becomes

Taking the gradient of V with respect to r, we obtain

The vector equation g(x) = 0 then becomes

(3.2°7)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

which can be solved to obtain x = —I, y=1, 2 = —2.
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to m constraint equations. The following simple example illustrates the use of Lagrange

multipliers.

Consider the function
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3.1.5.3 Formulation of the Modified Objective Function: The objective function has

previously been defined as the sum of the squares of the structural errors at each synthesis

point.

(3.13)

The constraint equation relating the components of the vector of design parameters is

(3.16)

(3.35)

Therefore, the modified objective function becomes

It has been stated earlier that the constraint equation is applied when the input and output-

shaft angles are at their starting values. This is equivalent to defining the starting position

of the mechanism as a precision point. In fact, due to our technique for measuring the

structural error, each position of the mechanism for which the loop closure constraint is

invoked becomes a precision point. The indirect measure of the structural error has been

defined as the deformation of the coupler that results when the input and output-shaft

angles are set to their ideal values. But the constraint equation, applied at a synthesis

point, requires that the links form a closed loop without any coupler deformation. This is

equivalent to the definition of a precision point, which is that the output-shaft angle

generated by the mechanism matches its ideal value. In the development of this synthesis

technique we have chosen arbitrarily to apply the constraint equation at only the starting

position.

3.2 Minimization of the Objective Function

3.2.1 Formulation of the Equations

Through the use of Lagrange multipliers, we have incorporated the loop closure

constraint into the objective function. It is now necessary to solve for a vector of design



and note that

If we define the partitioned vector x as

(3.36)

(3.37)

(3.38)

(3.39)

33

parameters, r, which minimizes the objective function U subject to the constraint

F(r) = 0. This is accomplished by setting the gradient of the modified objective function

equal to zero. The equations to be solved are

the equations can be rewritten as

(3.40)

where

(3.41)

In order to expand and solve these equations, it is necessary to develop

expressions for the partial derivatives of U and F with respect to the design parameters.

3.2.2 Partial Derivatives of the Unmodified Objective Function

We have previously defined the unmodified objective function U as the sum of the

squares of the coupler deformations at all of the synthesis points:

(3.13)
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The partial derivative of U with respect to the jth component rjof the vector of design

parameters r must therefore be:

(3,42)

Here, bi is the coupler deformation at the ith synthesis point, and rj is the jth

component of the vector of design parameters r, where

(3.43)

Referring back to equations (3.4) through (3.11), where we defined the coupler

deformation, at the ith synthesis point we introduce the factors:

and

In these equations,

Then,

(3.44)

(3.45)

(3.46)

(3.47)

(3.48)

(3.49)



We can now evaluate the appropriate partial derivatives.
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(3.50)

A similar process can be used to find the remaining components of the gradient of U.

(3.51)

(3.52)

(3.53)

(3.54)

(3.55)
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3.2.3 Partial Derivatives of the Constraint Function

Referring to our previous definition, the constraint function is

(3.16)

The partial derivatives of the constraint function are therefore

(3.56)

(3.57)

(3.58)

(3.59)

(3.60)

(3.61)

3.2.4 The Complete Vector Equation

The expressions from the previous two sections can be combined to obtain the vector

equation which will be solved for the optimum set of design parameters. Writing the

vector function g(x) as

(3.62)
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we obtain
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3.3 Minimization Techniques

3.3.1 The Newton-Raphson Method for a Scalar Function of one Variable

There are two basic approaches to finding the point at which a function has a minimum.

One is to work directly with the function to be minimized. The downhill Simplex method,

and Powell's methods are examples of this approach. The other approach is to find a point

where the gradient, or derivative in the case of a scalar function of a scalar, of the

function is equal to zero. This approach converts the problem of finding a minimum to

that of finding the root of an equation. We have defined an objective function which,

along with its derivatives, is straightforward to evaluate. The Lagrange multiplier

technique involves setting derivatives equal to zero, so it therefore seems prudent to

minimize the objective function by setting its gradient equal to zero.

The objective function, the modified objective function with the constraint

equation and Lagrange multipliers, and its gradient, have previously been defined.

(Equations 3.13,3.35,3.63-69). In order to minimize the modified objective function V,

the vector equation

(3.40)

must be solved. As mentioned earlier, the nature of these equations requires a numerical

solution. A common technique for finding roots of scalar or vector equations is the

Newton-Raphson method. Before discussing the application of this method to vector

equations, it is useful to examine its application to a scalar equation.

Consider the scalar function y = g(x), shown in figure 3.8. Let x0 be the initial

guess of the solution to g(x) = 0. At x = x 0 , the function y has a nonzero value g(x0 ).



Figure 3.8 Illustration of the Newton-Raphson method

A better approximation of the root of the equation can be found by calculating the

derivative of y at x = x0 , and defining the new approximation x i as

(3.70)

At x x.. a new approximation is defined as

(3.71)

Eventually, the distance between successive approximations becomes small enough that

the solution is said to converge, Mathematically, the convergence criterion can be written

as

39
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(3,75)

(3.76)
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(3.72)

where E is an arbitrarily small quantity.

3.3.2 The Newton -Raphson Method for a Vector Function

We have defined the vector equation V x V = 0 to be solved in order to minimize the

modified objective function. The Newton method described in the previous section can be

easily extended to this vector function.

Consider the vector equation g(x) = 0. As in the scalar case, we can make an

initial guess as to the solution to this equation. Let this initial guess be the vector x 0 . At

this point, the function g will have a value g(x 0 ). The next approximation to the root is

defined as

(3.73)

In this equation, J is the Jacobian matrix. For an n-component vector function g(x), the

Jacobian matrix is an n x n matrix of partial derivatives whose elements are

(3.74)

The convergence parameter is usually some norm of the difference between successive

approximations, and the convergence criterion can be written as

is called the Newton step, and the unit vector in that direction is called the Newton

direction.
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3.3.3 Limitations of the Newton Method

Consider again the case of a scalar function of a scalar. If the function approaches zero

monotonically, as shown in figure 3.8, the Newton method is likely to converge rapidly to

the solution. If, however, the function y = g(x) traces a path with an inflection such as

that shown in figure 3.9, and one of the approximations or the initial guess falls at a point

where the curve has a small slope, the subsequent iteration may result in a value of x

well outside of the permissible domain, and the Newton method will not converge to a

solution.

Figure 3.9 Nonconvergence of the Newton method

This limitation of the Newton method extends to the solution of the vector

equation g(x)= 0. It can be seen from equation (3.73) that, when the determinant of the
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Jacobian matrix is very small, the Newton step is very large. This may result in a value of

x outside of the permissible domain, and subsequent nonconvergence.

The Newton method will reliably find the solution to the equation g(x) = 0,

provided that the hypersurface defined by g(x) is suitably contoured and that the initial

guess is suitably close to the solution. This limitation is not acceptable for our problem.

In the next section, an improvement on the Newton method is discussed.

3.3.4 A Globally Convergent Newton Method

Press et a1 16 have presented a modified Newton method which is not as dependent on the

accuracy of the initial guess. In their method, the Newton step

(3.76)

is computed, but it is not automatically used. Instead, a test is performed to determine

whether the function

(3.77)

has decreased in value. Note that f is always positive, and that as g approaches zero, f

will also approach zero.

Press et al have also shown that moving from an initial x in the direction of the

Newton step will reduce f and thus bring g closer to zero. Mathematically,

(3.78)

The algorithm presented by Press et. al proceeds in the following sequence: given a value

of x, the functions g and f are computed, along with the Jacobian matrix J and the

Newton step ox. Then, g and f are evaluated at x + Ox. If f has actually decreased, the

next iteration proceeds from this point. If f has not decreased, the algorithm backtracks

along the Newton direction until it reaches a point where f is less than its previous value.

The next iteration proceeds from this point.
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3.3.5 Consideration of Other Minimization Techniques

Our fundamental problem is to minimize an objective function U(r) subject to the

constraint F(r) = O. The constraint has been incorporated into a modified objective

function

(3.36)

We have sought to minimize the function V indirectly, by finding the point at which its

gradient is zero.

A number of minimization techniques work directly on the objective function,

rather than explicitly solving for a zero gradient. Among them are the downhill simplex

method, the direction set (Powell's) method, the Davidson-Fletcher-Powell algorithm, and

simulated annealing methods. Methods such as these are not suitable for minimizing the

modified objective function V .

If we examine the modified objective function V = U +III', it is evident that the

requirement of F= 0 is not contained in this definition. In fact, an algorithm which

attempts to minimize V can find a solution which has a large positive value of U , a large

positive value of F, and a large negative value of A , resulting in a minimum value of V

which may be less than zero. This solution also represents a mechanism in which the

links do not form a closed loop.

The constraint equation F= 0 does not appear unless we require that the gradient

of V is equal to zero. Referring back to equation (3.39), the final component of the

gradient of V is

(3.39)

The objective function must therefore be minimized by finding a point at which its

gradient is zero. This will insure that the structural error is minimized and that the links

will form a closed loop. The globally convergent Newton method is a good algorithm for

this purpose.
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3.4 Formulation of the Minimization Algorithm

3.4.1 Implementation of the Newton Method for Solving the Vector Equation

3.4.1.1 Outline of the Solution Sequence: As mentioned earlier, our search for a vector

of design parameters, r, which minimizes the objective function U subject to the

constraint F(r) = 0, amounts to solving the vector equation g(x) = 0. To solve this

equation using the Newton-Raphson method, the following steps are required:

First, x 0 , an initial guess for the vector x, is made. Then, the vector function g

and the Jacobian matrix J are evaluated at this value of x. A new value of x is

calculated using the equation

(3.73)

This value of x is used as the initial guess for the next iteration. When successive values

of x are sufficiently close to each other, the solution is said to converge, and the

iterations are terminated. Figure 3.10 illustrates the solution sequence for the

Newton-Raphson method.



Start

Initial Guess X0

Calculate g(x), J[x]

Set Xold =g old = g(x)

Set X=Xnew

ox small enough?

yes

Stop

Figure 3.10 Flowchart for the Newton-Raphson method
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The sequence is modified slightly for the case of a globally convergent Newton

method. After the Newton step,

(3.76)

and a new value of x, are computed, the function 1 /2g(x)· g(x) is evaluated. If it has not
2

decreased from its value in the previous iteration, the magnitude of the Newton step is

reduced and the new value of x is computed. A new value of 1(g· g) is also computed.

This step is repeated until the value of 1 (g o g) is less than in the previous iteration.
2

Figure 3.11 illustrates the solution sequence for the globally convergent Newton method.



Set Xold = x, g a id = g(x)

Calculate
ox = —J-¹g(x)

Set x=xnew

Start

Initial Guess x0

Set x=x0

Calculate g(x), J[x]
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Calculatexnew=xold+δx

Calculate
gnew = g(xnew))

Set δx=αδx,α<1

Ox small enough?

yes

Stop

Figure 3.11 Flowchart for the globally-convergent Newton method



Therefore,

and

(3.81)

(3.82)

(3.83)
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14.1.2 Definition and Evaluation of the Jacobian Matrix: The Jacobian matrix of a

vector function g(x) is defined as follows: the ijth entry of the Jacobian matrix J is .

(3.79)

The entries of the Jacobian can be obtained directly by taking partial derivatives of the

components of g given in equations (3.63) through (3.69). For example,

(3.80)

Here, a3 is the length of link 3, the output link.

Evaluation of the Jacobian is simplified because the matrix is symmetric. This is

easily verified by referring back to the definition of g(x). (Equation 3.40)

Another technique for evaluating the Jacobian matrix is the forward difference

technique. From the definition of the partial derivative 4 a we can write axj

(3.84)

where Δx(j) is a vector whose components are zero except for the jth component, which

has the value Δxj . For example,
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Using this definition, the partial derivatives can be evaluated numerically by evaluating g

at some value of x, then subtracting it from g(x Δx ( ' ) ), and dividing the result by &x j .

The forward difference technique is used in the algorithm presented in this thesis.

3.4.1.3 Modifications when One or More Design Parameters are Specified: It is often

not necessary to solve for the entire vector of design parameters. One or more of the

parameters may be arbitrarily specified. Also, in a function generator, the ratios of the

link lengths, rather than their actual lengths, are important. For this case, one of the link

lengths is generally set to a specified value.

Specifying a design parameter reduces the order of the problem to be solved. A

vector y, consisting of the unspecified, or independent, design parameters and the

Lagrange multiplier, can be defined. For example, if the length of the frame link a, and

the starting input-shaft and output-shaft angles are specified, we have

(3.86)

(3.87)

(3.88)

(3.89)

The Jacobian is a 4 x 4 matrix whose entries are

The goal of the research presented in this thesis is the optimal synthesis of a

function generator whose frame link, starting input-shaft angle, and starting output-shaft

angle are specified. From this point onwards, only the reduced problem will be addressed.
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3.4.2 Techniques for Assuring Convergence to a True Minimum

When minimizing a function by searching for a point where its gradient is zero, there is a

chance that the algorithm will converge to a local minimum, rather than a global one. A

common and straightforward technique for avoiding this problem is to run the numerical

solution starting from a number of different, and usually random, initial guesses. The

technique presented here is similar. In this problem, the starting input-shaft and output-

shaft angles are specified, as is the length of the frame link. This leaves the link lengths

a l , a2 , a l and the Lagrange multiplier A, as unknowns. The initial guess for the Lagrange

multiplier, A. , is arbitrarily chosen to be unity.

Further insight into the nature of the objective function, and function generating

mechanisms, leads to the development of a random procedure for selecting initial guesses

of a,, a,, a 3 , and A..

In a function generator, the ratios of the link lengths, and not their absolute

lengths, are important. Thus, we might expect the initial guesses of a,, a2 , and a3 to be

1( 1 (1 4 , k2a 4 , and k3 a4 , respectively. And, since a useful synthesis algorithm should not

require an accurate initial guess, it is reasonable to set lc, = k2 = k3 = k. The initial values

of a l , a2, and a 3 therefore become ka4 , ka 4 , and ka 4 . All that is left is to choose a value

of k, and a scheme to vary the initial guesses randomly.

Referring back to the definition of the indirect measure of structural error, it can

be seen that if a l = a 3 = 0, there will be no deformation of the coupler, and if the

synthesis algorithm converges to this solution, it will appear to have found an optimal

mechanism. If we choose a small value of k for the initial guess, it is likely that the

algorithm will converge to this trivial solution. Therefore, it seems prudent to choose a

value of k much greater than one for the initial guess. In the numerical solutions that will

appear in later sections, k is generally chosen to be between 5 and 10.

The initial guess of the vector of unknowns, y, is

[ka 4 ,ka 4,ka 4 ,1]=[a 1 ,a 2 ,a 3,λ.]. 	 (3.90)
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To obtain the initial guess for the next solution, each component of y is multiplied by the

parameter

= a + (1— a)ran(t), (3.91)

where t is a dummy variable, ran(t) is a random number between 0 and 1, and a is a

parameter between 0 and 1 chosen by the user. A different value of ran(t) is calculated

separately for each component of y.



CHAPTER 4

IMPLEMENTATION OF THE ALGORITHM INTO A COMPUTER PROGRAM

4.1 General Description of the Computer Program

A Fortran computer program which implements the numerical algorithm has been

written. The source code of this program, "Inkoph", is given in Appendix A.

The program consists of an input module, an initialization module, an iteration

module, and an output module. Before running the program, the user must define the

function to be generated in the subprogram f(x). This subprogram is then compiled and

linked to the main program.

When the program is run, the user is asked whether each design parameter is

specified or free, and prompted for a value of the specified parameter or an initial guess

of the free parameter. Next, the program asks for the maximum input-shaft and output-

shaft rotations, the number of divisions (which is one less than the number of synthesis

points, and the upper and lower values of the domain of the function. Finally, the user is

prompted for the iteration decrement parameter (α in equation 3.91). The globally

convergent Newton method is then used with ten different initial guesses, and the set of

design parameters, along with the structural error of the resulting mechanism, is output

for each case. The user is then able to examine the output and select the best mechanism.

A detailed description of the program follows.

4.2 Description of the Input Module

4.2.1 Design Parameters

In the class of synthesis problems considered here, the length of the frame link, and the

starting input-shaft and output-shaft angles, are specified. That leaves the lengths of the

input link, coupler link, and output link, and the Lagrange multiplier as the free

variables. Referring back to equation (3.87), the vector of free parameters is

(4.1)

52
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At input, the user is asked whether each component of the vector of design

parameters x , is specified or free. If specified, it is flagged so that the program will not

include it in the vector y, and it is then used as a constant. Link lengths are entered in

arbitrary and consistent length units. Starting shaft angles are input in degrees

counterclockwise from horizontal. The Lagrange multiplier is generally not specified, and

a value of 1 is used as an initial guess. After the components of the vector x have been

defined, the synthesis points are set up.

4.2.2 Definition of the Synthesis Points

To determine the input-shaft and output-shaft rotations that comprise the synthesis points,

it is necessary to know the function to be generated, the domain of interest, and the range

of motion of the input-shaft and the output-shaft. The domain of the function is divided

into an arbitrary number, k —1, of equal intervals. This results in a total of k synthesis

points. Mathematically, if we are trying to generate

(4.2)

(4.3)

(4.4)

and we divide the domain into k —1 intervals, we have a set of x -values

for

The corresponding set of y-values is

Given a range or input-shaft rotation rΦ and an output-shaft range rψ , we can write

(4.5)
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(4.6)

where 'max is the greatest value of f (x) over its domain, and ymin is the smallest value. If

f (x) increases or decreases monotonically between x a and x i) , this equation becomes

(4.7)

The subroutine "siminp" computes the synthesis points. Using the user-supplied

subprogram which defines the function f(x), it prompts for the maximum input-shaft

and output-shaft rotations, the number of divisions, and the domain of the function.

Rotations are input in degrees counterclockwise, and the angles for the synthesis points

are computed in degrees counterclockwise. The input-shaft angles are stored in the vector

"phi", and the output-shaft angles are stored in the vector "psi".

4.2.3 The Iteration Decrement Parameter

In section 3.4.2. it was stated that a good initial guess for the input, coupler and output

link lengths a,, a,, and a3 is somewhere between five and ten times the length of the

frame link a 4 . Subsequent initial guesses are obtained by multiplying each link length

from the previous initial guess by the parameter y from equation (3.91):

(4.8)

The user-specified parameter α, known as the iteration decrement parameter,

controls the rate at which the initial guesses approach zero. Recalling that the algorithm

tends to converge to the trivial solution a, = a 3 0 when the initial guesses are too small,

we can see that a should be small enough to allow a significant variation between initial

guesses, but large enough to prevent the initial guess from approaching the trivial

solution. Experience has shown that a reasonable value is a= 0.7.
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4.3 The Initialization Module

In the initialization module of the program, angles are converted from their input values

in degrees counterclockwise from horizontal to radians in the coordinate system that was

used to formulate the problem. (figure 4.1) An initial call is then made to the random

number generator.

Following these steps, the program enters what is called the external iteration

loop. The purpose of this loop is to run the solution algorithm with a set of different

initial guesses. The loop is repeated ten times. It starts at the statement

do 1000 niter=1,I0

and ends at statement number 1000.

The first portion of the external loop initializes the globally convergent Newton

method. First, the vector of free parameters y, consisting of the unspecified components

of the vector x, is extracted. With the exception of the first time the loop is executed,

each component of the vector y is multiplied by a new random variable 7 as defined in

equation (3.91). Then, the globally convergent Newton algorithm is started by calling the

subroutine "newt".

4.4 The Iterative Solution

4.4.1 Overview

The subroutine 'newt", presented by Press et. al, is a ready-to-use subroutine which is

good at obtaining solutions to a vector equation g(x) = 0 when the initial guess is not

necessarily close to the answer. As it was not developed as part of this research, but rather

used as a tool to solve the problem, it will be described briefly. The routine is used in this

case to solve the vector equation

(4.9)
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It starts by checking to see if the initial guess is a solution to g(y) = 0, and if not,

it evaluates the Jacobian matrix and the Newton step, and then adds some fraction of the

Newton step to the vector y so that the magnitude of the function —(g • g) is reduced.

The iterations are repeated until the solution converges or the limit on iterations is

exceeded. A user-supplied subroutine "funcv" calculates the vector g , and the subroutine

"fdjac" evaluates the Jacobian matrix using the forward difference technique. The routine

"fdjac" can be replaced by a user-supplied routine which evaluates the Jacobian matrix

analytically.

4.4.2 Evaluation of the Vector of Functions to be Zeroed

The vector of functions to be zeroed is the gradient of the modified objective function V

with respect to the vector of free parameters y . In other words,

(4.10)

Equations for the full vector g(x) = VV have already been derived, and they have been

coded into the subroutine "funcv". This routine computes g(x), represented in the

program as the vector ''fvec", then selects the components that pertain to the vector y,

and returns those components as the vector "gstar".

When the routine ''funcv" is called, the vector y is an input, and the vector x,

along with the vectors of input-shaft and output-shaft rotations, are accessed through

common blocks. The components of y, a l , a 2 , a 1 , and A in this case, are substituted into

the appropriate components of the vector x. Then, the evaluation of g(x) is

straightforward using the analytical expressions. After g(x) is evaluated, the components

pertaining to the free parameters, g 1 , g2 , g 3 , and g7 in this problem, are extracted to form

the vector "gstar".



df(i,j)=(f(i)-fvec(i))/h. (4.11)

h = EPS * x(j) (4.12)
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4.4.3 Evaluation of the Jacobian Matrix

The subroutine "fdjac", presented by Press et al, is used to evaluate the Jacobian matrix.

The forward difference approach was chosen over the direct evaluation of the

components because it did not involve any extra programming, it was not

computationally intensive, and it produced adequate results.

Input variables for the routine are "n", the order of the problem; "x", the vector of

parameters which corresponds to y in our formulation; the vector of functions "fvec",

which corresponds to g; and "np", the dimension of the Jacobian matrix. The Jacobian

matrix, "df', is output. Elements of the Jacobian matrix are calculated by using the

forward difference formula

Here, the vector "f" is obtained by calling the routine "funcv" that generates the vector

"fvec", but using a modified vector "xnew" as the input. The vector "xnew" is obtained by

adding the quantity

to x(j). If x(j) is zero, an error will result if the result of (4.12) is used to evaluate df(i,j) in

equation (4.11). To prevent this, the program checks to see if x(j) is equal to zero before

evaluating the expression in (4.12). If x(j) is equal to zero, then the value of "h" is set

equal to "EPS".

After the jth column of the Jacobian matrix is evaluated, this process is repeated with j

varying from one to np.

4.4.4 Determination of the Vector of Free Parameters

The subroutine "lnsrch" searches for a new value of y, along the Newton direction,

which reduces the magnitude of ½(g • g) by a sufficient amount. It uses as inputs the
2
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1
order of the problem, ''n"; the starting point "xold"; "fold", the value of 

2
—(g • g) and its

gradient , "g"; a direction vector "p", which is the Newton direction; and "stpmax", a limit

on the length of the Newton step. The values of "xold", "fold", "g", "p", and "stpmax" are

evaluated in the subroutine "newt" before "lnsrch" is called. The vector xold is simply the

vector of free parameters, y, and "fold" is then ½(g • g). Its gradient is therefore ern.
2

The initial Newton step, "p", is —[J-¹]g. In the subroutine "lnsrch", the technique of

adjusting the magnitude of the Newton step, previously described in section 3.3.4, is

employed. The subroutine returns a new vector ,"x", which corresponds to the vector of

free parameters, y.

4.4.5 Convergence Test

The quantity "temp" is evaluated for each component of the vector "x" in the subroutine

"newt".

temp = (abs(x(i)-xold(i)))/max(abs(x(i)),l.)	 (4.13)

The lowest value of temp is compared to the tolerance parameter, ''TOLX", and if it is

less than that parameter, the solution is said to converge and the iterations are terminated.

4.5 The Output Module

After each call to the subroutine "newt", the main program inserts the components of the

vector of free parameters, y into the appropriate location in the vector of design

parameters, x. Then, it calculates the structural error at each synthesis point for the

mechanism which has been generated, and uses it to compute the root mean square

structural error for the mechanism. After the output is written, the main program returns

to the beginning of the external iteration loop, computes another initial guess, and issues

another call to the subroutine "newt".



CHAPTER 5

TESTING OF THE ALGORITHM ON A SAMPLE PROBLEM

5.½ Description of the Problem

In order to assess the effectiveness of our optimal synthesis algorithm, it is necessary to

synthesize some four-bar function generators using this technique, and evaluate the

structural error of each mechanism. It would also be helpful to compare the structural

errors of our mechanisms to the structural errors of function generators synthesized by

precision techniques. We will therefore find some examples of function generators

synthesized by precision techniques, use our optimal method to synthesize mechanisms

which generate the same functions over the same range, and compare the accuracy of the

mechanisms.

Freudenstein, in a 1958 article, synthesized a set of mechanisms which generated

different functions¹7. The precision synthesis technique was used, with five precision

points. Structural error was minimized by adjusting the location of the precision points.

The unspecified design parameters were the input link length, the coupler link length, and

the starting input-shaft and output-shaft angles.

We will attempt to synthesize mechanisms which generate the same set of

functions, but we will address the case where the only free design parameters are the

lengths of the input, coupler, and output links. The starting input-shaft and output-shaft

angles are specified, as is the length of the frame link. The ranges of motion for both the

input-shaft and the output-shaft are prescribed. Figure 5.l shows the configuration of the

four-bar function generators.
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Figure 5.1 Configuration for the test problem

Table 5.l summarizes the functions to be generated, and the specified design parameters.

The negative values for the input and output ranges indicate that the shaft rotations are

clockwise for all of these examples.

Table 5.½ Specified parameters for the sample problems

Function 	 Interval 	 Starting 	 Starting 	 Input 	 Output
Input-shaft 	 Output-shaft 	 Range 	 Range
Angle(deg) 	 Angle (deg) 	 (deg) 	 (deg)

log 0 x	 l<x<2 	 -52.6 	 -79.l 	 -60.0 	 -60.0

sin x	 0 __x<90" 	 242.3 	 284.4 	 -90.0 	 -90.0

tan x 	 0 5_x 5_45" 	 90.3 	 55.8 	 -90.0 	 -90.0

e ,	 0 <x<l 	 118.4 	 139.6 	 -90.0 	 -90.0

1 / x 	 1<x<2 	 -33.8 	 59.8 	 -90.0 	 -90.0

x 15 	0<x<l	 185.2 	 211.7 	 -90.0 	 -90.0

X 2 	0 <x<l	 209.3 	 126.2 	 -90.0 	 -90.0

x 2.5 	 0 <x<l 	 88.3 	 135.5 	 -90.0 	 -90.0

x 3 	 0 <x<l 	 85.9 	 142.4 	 -90.0 	 -90.0
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5.2 Setting up the Problem

The first step in setting up the computer program "lnkoph" is for the user to enter the

function to be generated into the subprogram "function f(x)". A sample listing of this

subprogram, for the case f (A- ) = log10x is shown below:

function f(x)

f=alog 10(x)

return

end

This subprogram is then compiled and linked to the main program, "lnkoph", which can

then be executed.

When the program is run, the user is prompted for initial guesses of the

unspecified design parameters, the values of the specified design parameters, and an

initial guess of the Lagrange multiplier, 2.. In all of the runs presented here, the

unspecified design parameters are the link lengths a,, a,, and a1 , and the initial guess for

each is chosen to be five times the length of the frame link, a,. Because the length of the

frame link is specified to be 100 length units for all runs, the initial guesses for the other

three links will be 500 length units. The initial guess for the Lagrange multiplier is unity.

The program then sets up the synthesis points. The user is prompted for x,„ in and

xmax, the ends of the interval on which the function f(x) is to be generated. Then, the

program asks for the maximum values of 0 and ψ, , the input-shaft and output-shaft

rotations. Finally, the user is prompted for the number of segments into which the interval

xmin x 5 xmax., will be divided. This quantity, "nstep", is one less than the number of

synthesis points. In all of the cases presented here, the interval is divided into 30

segments, resulting in 31 synthesis points.

The last user input is the iteration decrement parameter, α. It is set to 0.7 for all

of the runs presented here.



CHAPTER 6

SUMMARY OF RESULTS

6.½ Results from the Optimal Synthesis Program

Six of the nine runs converged to an acceptable result. Table 6.l summarizes the results

of these runs. In the three runs that did not yield an acceptable solution, the algorithm

converged for several of the initial guesses, but the structural error in the resulting

mechanisms was unacceptable. Some of the initial guesses resulted in converges to the

trivial solution a1=a3= 0.

Table 6.½ Results from Optimal Synthesis Program

Function Interval	 ψmax 	 00	 y 	 a, la,	 a2/a4,	 a3 /a, Error(deg)
(deg) (deg) (deg) (deg)	 rms	 max

log10 x	 x 2	 -60	 -60	 -52.6	 -79.l 3.33	 0.86	 3.49	 .07	 .11

sin x	 0 5 x 90" -90 -90 242.3 284.4 2.54	 2.78	 0.86	 .20	 .74

eA 	 0 5_ x 1	 -90	 -90	 118.4	 139.6 3.49	 0.91	 3.35	 .08	 .33

x 2 	0 x S 1	 -90	 -90 209.3	 126.2 l.86	 2.67	 0.51	 .06	 .19

x 2 5	 0 x 1	 -90	 -90	 88.3	 135.5 1.83	 0.95	 1.25	 .32	 .78

x 3
X 1	 -90	 -90	 85.9	 142.4 l.65	 0.99	 1.08	 .46 l.4
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Table 6.2 summarizes the results generated by Freudenstein.

Table 6.2 Results from Freudenstein

Function Interval	 On., V.);	 ψ0 	 a, /a4	 a, /a, a3 /a, Error(deg)
max

log 10 x	 1 x 2	 -60	 -60	 -52.6	 -79.1 3.35	 0.85	 3.49	 .01

sin x	 0 < x 90" -90 -90 242.3 284.4 l.83	 2.24	 0.69	 .19

ex	 0<x<1 	-90	 -90	 118.4 139.6 3.50	 0.88	 3.40	 .03

x 2	 0 	 1	 -90	 -90 209.3 126.2 2.52	 3.33	 0.56	 .07

x 25	 0 X 1	 -90	 -90	 88.3	 135.5	 l.80	 0.91	 l.27	 .41

X
3 	 0 X 1	 -90	 -90	 85.9	 142.4 l.61	 0.93	 1.07	 .51

6.2 Convergence

Table 6.3 shows the number of. initial guesses, the number of successful convergences,

the maximum structural error, and the value of the Lagrange multiplier for a number of

test cases. There was not a single convergence to the trivial solution, a l = a3 = 0, in any

of the runs.



Table 6.3 Statistics from Optimal Synthesis Runs

Function Interval	 Initial	 Successful	 RMS	 A

Guesses	 Convergence	 Error (deg)	 Lagrange
Multiplier

log ic) x	 l_ x 2	 10	 5	 .07	 -.0015

sin x	 0 < x 5_ 90"	 6	 1	 .20	 .0000148

e x
0 < x <l	 6	 6	 .08	 -.00367

A.2 0 x <l	 6	 2	 .06	 -.00009
25X • 	 0 _Y<1 	 10 	 8	 .32	 .00268

x 3 	0 S x <l	 10	 8	 .46	 .0009
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CHAPTER 7

DISCUSSION OF RESULTS

7.1 Overview

In this chapter, the results of the sample problem of Chapter 5 are examined in more

detail, and the performance of the optimal synthesis algorithm is discussed. The purpose

of the optimal synthesis algorithm is to produce a function generator whose input-shaft

and output-shaft rotations are as close as possible to their ideal values at a large number

of synthesis points. A good algorithm should synthesize mechanisms having a low

structural error, and should not be strongly dependent on the initial guess of the solution.

In the following sections, the ability of the algorithm to converge to a solution is

discussed, and the structural errors of the solutions are compared to Freudenstein's.

•

7.2 Convergence

The program "Inkoph" attempted to start the globally convergent Newton routine at ten

different initial guesses for each test case. One measure of the performance of the

globally-convergent Newton method, and the algorithm for selecting initial guesses, is the

number of initial guesses that result in convergence to a valid solution.

In Table 6.3, some of the test cases have less than ten initial guesses. This occurs

when the globally convergent Newton method fails to converge in an acceptable number

of iterations. In this case, the execution of the program is halted, with the results up to the

point of termination saved. In many of these cases, an acceptable solution has been

obtained by the time execution has stopped.

Because there is a small number of initial guesses, the acceptable solutions can be

selected in a straightforward manner. The actual structural error of the mechanism

resulting from each solution is printed in the output file. It is only necessary to choose the

mechanism with the lowest structural error.
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Referring back to Table 6.l, and comparing the values of a l l a 4 , a, I a,, and

a3 I a, to the initial guess a, I a 4 = a, I a, = a3 I a, = 5, it is evident that the initial guess

is not close to any of the solutions. This indicates that our formulation of the problem is

valid, and that the globally convergent Newton method is a robust algorithm.

7.3 Detailed Description of the Results from One Run

It is now useful to examine one of the cases in table 5.l in more detail. The function

y = x 2 , 0 x 51, is to be generated by a mechanism having 90 degrees of input-shaft

and output-shaft rotation in the clockwise direction. The starting input-and-output-shaft

angles are 209.3 degrees and 126.2 degrees, respectively, as shown in the table.

Thirty-one synthesis points, spaced evenly at three degree intervals for the input-

shaft, were used. Dais,

The function y= x 2 was mapped onto the output shaft rotation as follows:

or,

(7.4)

Then, link length a, was set to 100 length units, and initial guesses of 500 length units

were entered for link lengths a l , a 2 , and a 3 . The program was run, and solutions were

obtained for six initial guesses. Two of these solutions were identical, and had low

structural error. This repeated solution appears in table 6.l. Convergence was obtained in

13 iterations in one case, and 11 in the other. Figure 7.l shows the convergence test

parameter plotted against the iteration count for both cases.

(7.l)

(7.2)

(7.3)



(7 5)

(7.6)

Case 1
Case 2
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Iterations

Figure 7.1 Convergence test parameter vs. number of iterations. The first iteration is not
included because of the large value of the test parameter. Function generator is for

y x 2 , 0 < <I

When the result is compared to the linkage synthesized by the precision technique

with error minimization in the original reference, it is evident that a different, but usable,

solution has been obtained. Our solution has

{a1/a4 a2/a4, a3 /a4 } = {1.86 2.67 0.5) }

where Frendenstein had

{a1/a4 a2/a4 a3/a4	{2.52 3.33 0.56 }.

The maximum structural error of our mechanism is 0.19 degrees, whereas Freudenstein

obtained 0.07 degrees. Given a total output travel of 90 degrees, a maximum error of 0.19

degrees, with a root mean square error of 0.06 degrees, is acceptable.
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7.4 Comparison of Precision Synthesis and Optimal Synthesis Results

It is instructive to compare the mechanisms obtained by precision synthesis to those

resulting from optimal synthesis. Referring to tables 6.l and 6.2, we see that four of the

six successful optimal synthesis runs - log in x, e', x 2-5 , and x 3 - converged to essentially

the same solution as the precision synthesis results. The other two optimal synthesis runs

converged to significantly different configurations from their corresponding precision

solutions.

There are several reasons for an optimally synthesized mechanism to differ from

one obtained by precision synthesis. The first reason is that an optimal synthesis

algorithm does not solve the same problem as a precision synthesis routine. The former,

we recall, is trying to generate a function which passes as close as possible to a large

number of points, while the precision solution generates an exact match at five or fewer

points. Furthermore, the error minimization technique used with precision synthesis is

based on the maximum error, whereas the optimal synthesis minimizes the sum of

squares of the errors over all of the synthesis points.

In our case, an additional cause for discrepancy is that the objective function is

based on the coupler deformation, which is an indirect measure of the structural error.

The coupler deformation is not, in general, linearly proportional to the structural error

over the range of motion. It is therefore quite reasonable to expect our optimal synthesis

routine to converge to a result different from that of precision synthesis.

The variation of structural error with the number of synthesis points can also be

examined. We will examine in detail the structural error of the mechanism which

generates the function f (x) = x 3 . Figure 7.2 shows the structural error over the range of

motion, for the case of 31 synthesis points.



Error

Synthesis Point

Figure 7.2 Structural error of function generator for y = x 3 , 0 .v 5_ 1

The program "Inkoph" was then run with 11, 21, 41, 51, and 101 synthesis points. Figure

7.3 shows the rms structural error versus the number of synthesis points.
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RMS error

Number of Synthesis Points

Figure 7.3 RMS structural error vs. number of synthesis points for y=x ³ ,	 1

When we examine figure 7.2, we see that, with the exception of the last synthesis point,

the largest magnitude of the structural error is 0.75 degrees, which is close to the

maximum value of .51 degrees from Freudenstein's work. Figure 7.3 shows that the

benefit of additional synthesis points decreases as we add more points. The reduction in

error as we go from 51 synthesis points to 101 synthesis points is the same as that

obtained in moving from 41 points to 51 points.

We now examine the mechanism that generates the function f (x) = x2 . This is an

important example because the mechanism is significantly different from that which

Freudenstein obtained, yet its structural error is low. Figure 7.4 shows the structural error

over the range of motion.



error

Synthesis Point

Figure 7.4 Structural error of function generator for y = x 2 , 0 x I

The results presented in this section show that a mechanism synthesized by the

algorithm presented in this thesis performs comparably to one obtained from precision

synthesis with error minimization.

7.5 Significance of the Lagrange Multiplier

During the course of this investigation, it was found that small values of the Lagrange

multiplier, in general, correspond to mechanisms that have a low structural error. In fact,

for all of the runs with 31 synthesis points, values of the Lagrange multiplier greater than

0.005 were found to correspond to mechanisms with unacceptably high structural error.

Further study revealed that the magnitude of the Lagrange multiplier did not vary
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monotonically with the rms structural error, but was more of a qualitative indicator of its

magnitude.



CHAPTER 8

CONCLUSIONS

We have shown that it is possible to formulate an optimal synthesis algorithm whose

objective function is based on an indirect measure of structural error. Evaluation of the

objective function and its derivatives is straightforward.

The use of Lagrange multipliers is required in order to introduce the loop-closure

constraint. The objective function, subject to this constraint, can be minimized by using a

globally convergent Newton method to find the point where its gradient is zero.

An optimal synthesis algorithm based on this formulation has been tested and

found to produce mechanisms whose structural error is comparable to that of the best

mechanisms obtained from precision synthesis techniques with error minimization. The

algorithm has a high rate of success, and does not require that the initial guess be close to

the result.

The optimally synthesized mechanisms presented here are the result of one run of

the computer program, with synthesis points at arbitrary locations. There is no laborious

respacing of precision points, as is required for the error minimization techniques used

with precision synthesis. Furthermore, the technique presented here can be applied to an

arbitrary set of synthesis points, while the precision techniques extract their synthesis

points from a defined function.

Future research connected with this work might include extending the algorithm

to the case where the starting output-shaft angle or the starting input-shaft angle is not a

specified design parameter, further development of the algorithm for selecting initial

guesses, and further analysis of the significance of the Lagrange multiplier.
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APPENDIX

LISTING OF PROGRAM "LNKOPH"

program lnkoph

c 	 program for optimal synthesis of linkages

c 	 using new constraint function derived 2/7/96

c 	 uses iters3.f and funcv3.f and fcnerl.f

c 	 no IMSL subroutines

c

parameter(n=6,m=l,itmax=100)

real jstar(n+m,n+m),gstar(n+m),jsinv(n+m,n+m)

real g(n+m),x(n+m),phi(50),psi(50),y(7),yinit(7)

real lambda,uobj(itmax),answer(50),error(50)

character* 1 response

c 	 names associated with entries in the vector of design parameters

character*6 despar(7),prstat(2)

c 	 a vector of flags: nonzero entry indicates that the design

c 	 parameter is specified

integer desflg(7)

data prstat/'free','fixed'/

data despar/'a 1',Ja2'a3'a4','theta  ','theta4,' lambda'/

data desflg/7*0/

c

common/angs/phi,psi,lmax

common/desprm/x,desflg

c

c 	 open the output file



open(unit=11,file=lnkoph.dat',form='formatted',status='unknown')

pi=acos(-l.)

c 	 define the specified design parameters

c 	 ns is the number of specified design parameters

ns=0

do 50 i=l,n+m

write(*,9004)despar(i)

read(*,9008)response

if(response .eq. 'n')go to 45

write(*,9005)despar(i)

read(*,*)x(i)

c 	 flag this design parameter

desflg(i)=l

c 	 increment the number of specified design parameters

ns=ns+1

go to 50

45 continue

c 	 enter the initial guess for a non-specified design parameter

write(*,9006)despar(i)

read(*,*)x(i)

50 continue

c	 of is the number of free parameters in the problem

nf=n+m-ns
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c 	 define the synthesis points based on the function to be generated

c 	 angles are ccw from horizontal. psi will be

c 	 converted to minus psi

call siminp(phi,psi,lmax)

do 1001=l,1max

write(11,9201)l,phi(l),l,psi(l)

phi(l)=phi(l)*pi/180.

psi(l)=-psi(l)*pi/180.

100 continue

c

write(11,9202)

c 	 write the initial guess to the data file

c

do 120 i=1,n+m

write(11,9203)despar(i),x(i),prstat(desflg(i)+1)

120 continue

c 	 enter the iteration decrement parameter

write(*,9007)

read(*,*)dcrmnt

c 	 write the iteration decrement parameter

c

write(11,9202)



write(1 l,9204)dcrmnt

write(11,9202)

c-----make an initial call to the random number generator

idum=27

x(l)=x(1)+0.*ran0(idum)

c 	 set up the external iteration loop for random intial

c 	 guesses of the design parameters

do 1000 niter=1,10

c 	 convert the input and output shaft angles

x(5)=(x(5)+180.)*pi/180.

x(6)=(360.-x(6))*pi/180.

c 	 do an iterative solution

c 	 define the vector of free parameters, y, consisting of the

c 	 nonspecified parameters from the vector x

c

is=0

do 200 i=1,n+m

if(desflg(i) .ne.0)go to 200

is=is+1
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y(is)=x(i)

if(niter .eq. 1)yinit(is)=x(i)

200 continue

c 	 after the first iteration, do a random decrement of

c 	 the unspecified design parameter initial guesses

if(niter .eq. l)go to 260

do 250 if=l,nf

y(if)=yinit(if)*(dcrmnt+(l.-dcrmnt)*ran0(idum))

yinit(if)=y(if)

250 continue

260 continue

c 	 call the iterative solution subroutine

c

itchk=0

call newt(y,nf,check,itchk)

if(itchk .ne. 0)write(11,9205)

if(itchk .ne. 0)go to 880

c 	 update the x vector using jsinv and gstar

c

is=0

do 500 i=l,n+m
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if(desflg(i) .ne. 0)go to 500

is=is+1

x(i)=y(is)

500 continue

c 	 calculate the structural error of the mechanism obtained

c 	 from this outer iteration

go to 860

fmerit=x(7)**2

if(fmerit .gt. l.e-8)go to 860

call fcnerl(x,n,m ;phi,psi,lmax,struct,answer,error)

errmax=0.

do 850 kk=l,lmax

if(error(kk)**2 .gt. errmax)errmax=error(kk)**2

850 continue

errmax=sqrt(errmax)*180Jpi

go to 880

860 continue

struct=1000000.

errmax=1000000.

880 continue

c 	 convert the input and output shaft angles to degrees

c 	 counterclockwise from horizontal

c

x(5)=(x(5)-pi)*180Jpi
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x(6)=(2.*pi-x(6))*180./pi

c 	 write the results to the screen

write(*,9102)(despar(i),x(i),i=l,n+m),struct,errmax

write( I l,9102)(despar(i),x(i),i=l,n+m),struct,errmax

1000 continue

close(11)

•stop

9003 format(' enter the maximum number of iterations')

9004 format('do you want to specify ',a6,'? y or n')

9005 format('enter ',a6)

9006 format('enter initial guess for ',a6)

9007 format('enter the iteration decrement parameter')

9008 format(al)

9051 format(i2)

9052 format(2f 10.0)

9101 format(8(1pe10.2))

9102 format(4(a6,'=', I pe10.2,1x)/2(a6, '=',1pe10.2,1x)

l/a6,'=',l pe10.2,' rms structural error = ',1pe10.2

2/'maximum error = I pe10.2/1x)
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9201 format(' phi',i2,' =',fl0.2,' degrees 	 psi',i2,' =',fl0.2

l,' degrees')

9202 format( 1 x)

9203 format(a6,5x, I pe10.2,5x,a6)

9204 format('iteration decrement parameter = ',f6.3)

9205 format('MAXITS exceeded in newt'/lx)

end

SUBROUTINE newt(x,n,check,itchk)

INTEGER n,nn,NP,MAXITS

LOGICAL check-

REAL x(n),fvec,TOLF,TOLMIN,TOLX,STPMX

PARAMETER (NP=40,MAXITS=200,TOLF= l.e-4,TOLMlN=l.e-6,TOLX= 1 .e-7,

*STPMX=100.)

COMMON /newtv/ fvec(NP),nn

SAVE /newtv/

CU USES fdjac,fmin,Insrch,lubksb,ludcmp

INTEGER i,its,j,indx(NP)

REAL d,den,f,fold,stpmax,sum,temp,test,fjac(NP,NP),g(NP),p(NP),

*xold(NP),fmin

EXTERNAL fmin

nn=n

f=fmin(x)

test=0.

do 11 i=1,n

if(abs(fvec(i)).gt.test)test=abs(fvec(i))



11 continue

if(test.lt..01*TOLF)retum

sum=o.

do 12 i=l,n

sum=sum+x(i)**2

12 continue

stpmax=STPMX*max(sqrt(sum),float(n))

do 21 its=l,MAXITS

write(*,1511)its,test

call fdjac(n,x,fvec,NP,fjac)

do 14 i=l,n

sum=o.

do 13 j=l,n

sum=sum+fjac(j,i)*fvec(j)

13	 continue

g(i)=sum

14	 continue

do 15 i=1,n

xold(i)=x(i)

15	 continue

fold=f

do 16 i=l,n

p(i)=-fvec(i)

16	 continue

call ludcmp(fjac,n,NP,indx,d)

call lubksb(fjac,n,NP,indx,p)

call lnsrch(n,xold,fold,g,p,x,f,stpmax,check,fmin)
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test=0.

do 17 i=l,n

if(abs(fvec(i)).gt.test)test=abs(fvec(i))

17	 continue

if(test.lt.TOLF)then

check=. false.

return

endif

if(check)then

test=0.

den=max(f,.5*n)

do 18 i=l,n	 •

temp=abs(g(i))*max(abs(x(i)),l.)/den

if(temp.gt.test)test=temp

18	 continue

if(test.lt.TOLMIN)then

check=.true.

else

check=.false.

endif

return

endif

test=0.

do 19 i=l,n

temp=(abs(x(i)-xold(i)))/max(abs(x(i)),l.)

if(temp.gt.test)test=temp

19	 continue

8'3



if(test.lt.TOLX)return

21 continue

c pause 'MAXITS exceeded in newt'

1511 format(i5,lpel0.2)

itchk=1000

return

END

C (C) Copr. 1986-92 Numerical Recipes Software )=3&W#R2.

SUBROUTINE ludcmp(a,n,np,indx,d)

INTEGER n,np,indx(n),NMAX

REAL d,a(np,np),TINY

PARAMETER (NMAX=500,TINY=l.0e-20)

INTEGER i,imax,j,k

REAL aamax,dum,sum,vv(NMAX)

d=l.

do 12 i=1,n

aamax=0.

do 11 j=l,n

if (abs(a(i,j)).gt.aamax) aamax=abs(a(i,j))

11	 continue

if (aamax.eq.0.) pause 'singular matrix in ludcmp'vv(i)=1./aamax

12 continue

do 19 j=l,n

do 14 i=1,j-l

sum=a(i,j)

do 13 k=l,i-l
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sum=sum-a(i,k)*a(k,j)

13	 continue

a(i,j)=sum

14	 continue

	

aamax=0.	 .

do 16 i=j,n

sum=a(i,j)

do 15 k=1,j-l

sum=sum-a(i,k)*a(k,j)

15 continue

a(i,j)=sum

dum=vv(i)*abs(sum)

if (dum.ge.aamax) then

imax=i

aamax=dum

endif

16	 continue

if (j.ne.imax)then

do 17 k=l,n

dum=a(imax,k)

a(imax,k)=a(j,k)

a(j,k)=dum

17	 continue

d=-d

vv(imax)=vv(j)

endif

indx(j)=imax
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if(a(j,j).eq.0.)a(j,j)=TINY

if(j.ne.n)then

dum=1./a(j,j)

do 18 i=j+1,n

a(i,j)=a(i,j)*dum

18	 continue

endif

19 continue

return

END

C (C) Copr. 1986-92 Numerical Recipes Software )=3&W#R2.

SUBROUTINE lubksb(a,n,np,indx,b)

INTEGER n,np,indx(n)

REAL a(np,np),b(n)

INTEGER

REAL sum

ii=0

do 12 i=l,n

11=indx(i)

sum=b(11)

b(11)=b(i)

if (ii.ne.0)then

do 11 j=ii,i-l

sum=sum-a(i,j)*b(j)

11	 continue

else if (sum.ne.0.) then

ii=i
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endif

b(i)=sum

12 continue

do 14 i=n,l,-1

sum=b(i)

do 13 j=i+l,n

sum=sum-a(i,j)*b(j)

13	 continue

b(i)=sum/a(i,i)

14 continue

return

END

C (C) Copr. 1986-92 Numerical Recipes Software )=3&W#R2.

SUBROUTINE lnsrch(n,xold,fold,g,p,x,f,stpmax,check,func)

INTEGER n

LOGICAL check

REAL f,fold,stpmax,g(n),p(n),x(n),xold(n),func,ALF,TOLX

PARAMETER (ALF=l.e-4,TOLX=l.e-7)

EXTERNAL func

CU USES func

INTEGER i

REAL a,alam,alam2,alamin,b,disc,f2,fold2,rhsl,rhs2,slope,sum,temp,

*test,tmplam

check=.false.

sum=o.

do 11 i=1,n

sum=sum+p(i)*p(i)

87



11 continue

sum=sqrt(sum)

if(sum.gt.stpmax)then

do 12 i=l,n

p(i)=p(i)*stpmax/sum

12	 continue

endif

slope=0.

do 13 i=l,n

slope=slope+g(i)*p(i)

13 continue

test=0.

do 14 i=l,n

temp=abs(p(i))/max(abs(xold(i)),l.)

if(temp.gt.test)test=temp

14 continue

alamin=TOLX/test

alam=l.

1	 continue

do 15 i=l,n

x(i)=xold(i)+alam*p(i)

15	 continue

f=func(x)

if(alam.lt.alamin)then

do 16 i=l,n

x(i)=xold(i)

16	 continue
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check=.true.

return

else if(f.le.fold+ALF*alam*slope)then

return

else

if(alam.eq. 1.)then

tmplam=-slope/(2.*(f-fold-slope))

else

rhsl=f-fold-alam*slope

rhs2=f2-fold2-alam2*slope

a=(rhsl/alam**2-rhs2/alam2**2)/(alam-alam2)

b=(-alam2*rhs 1 /alam**2+alam*rhs2/alam2**2)/(alam-alam2)

if(a.eq.0.)then

tmplam=-slope/(2. *b)

else

disc=b*b-3.*a*slope

tmplam=(-b+sqrt(disc))/(3.*a)

endif

if(tmplam.gt..5*alam)tmplam=.5*alam

endif

endif

alam2=alam

f2=f

fold2=fold

alam=max(tmplam,.1*alam)

2oto 1
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C (C) Copr. 1986-92 Numerical Recipes Software )=3&W#R2.

SUBROUTINE fdjac(n,x,fvec,np,df)

INTEGER n,np,NMAX

REAL df(np,np),fvec(n),x(n),EPS

PARAMETER. (NMAX=40,EPS=l.e-4)

CU USES funcv

INTEGER i,j

REAL h,temp,f(NMAX)

do 12 j=l,n

temp=x(j)

h=EPS*abs(temp)

if(h.eq.0.)h=EPS

x(j)=temp+h

h=x(j)-temp

call funcv(n,x,f)

x(j)=temp

do 11 i=l,n

df(i,j)=(f(i)-fvec(i))/h

11	 continue

12 continue

return

END

C (C) Copr. 1986-92 Numerical Recipes Software )=3&W#R2.

FUNCTION fmin(x)

INTEGER n,NP

REAL fmin,x(*),fvec

PARAMETER (NP=40)
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COMMON /newtv/ fvec(NP),n

SAVE /newtv/

CU USES funcv

INTEGER i

REAL sum

call funcv(n,x,fvec)

sum=o.

do 11 i=l,n

sum=sum+fvec(i)**2

11 continue

fmin=0.5*sum

return

END

C (C) Copr. 1986-92 Numerical Recipes Software )=3&W#R2.

FUNCTION ran0(idum)

INTEGER idum,IA,IM,IQ,IR,MASK

REAL ran0<,AM

PARAMETER (IA=16807,IM=2147483647,AM=lJIM,IQ=127773,IR=2836,,

*MASK=123459876)

INTEGER k

idum=ieor(idum,MASK)

k=idum/IQ

idum=IA*(idum-k*IQ)-IR*k

if (idum.lt.0) idum=idum+IM

ran0<=AM*idum

idum=ieor(idum,MASK)

return
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END

C (C) Copr. 1986-92 Numerical Recipes Software $2511-.

subroutine funcv(nf,y,gstar)

real y(nf),gstar(nf),x(7),g(7),phi(50),psi(50),lambda

integer desflg(7)

common/angs/phi,psi,lmax

common/desprm/x,desflg

c 	 define y as a subset of the vector x

is=0

do 20 i=1,7

if(desflg(i) .ne. 0)go to 20

is=is+1

x(i)=y(is)

20 continue

c 	 initialize the residual vector g

c

do 50 i=l,7

g(i)=0.

50 continue

c 	 define terms to be used in calculations

c
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c 	 link lengths

al=x(l)

a2=x(2)

a3=x(3)

a4=x(4)

c 	 initial shaft angles

tl=x(5)

t4=x(6)

c 	 Lagrange multiplier

lambda=x(7)

c 	 trigonometric functions

ctl=cos(tl)

stl=sin(tl)

ct4=cos(t4)

st4=sin(t4)

t I t4=t1+t4

ct l t4=cos(t l +t4)

stlt4=sin(tl+t4)

c 	 evaluation of residual vector

c 	 sum partial derivative terms at each synthesis point

c

do 100 l=1,lmax

c	 define terms to be used in calculations

tlphi=t1+phi(l)



t4psi=t4+psi(l)

C

ctlphi=cos(t 1 phi)

stlphi=sin(tIphi)

ct4psi=cos(t4psi)

st4psi=sin(t4psi)

C

h=a4+a3*ct4psi+al*ctlphi

v=a3*st4psi-al*stlphi

q=sqrt(h**2+v**2)

p=l.-a2/q	

c 	 also evaluate the first n components of the residual vector g

g(l)=g(l)+2.*p*(h*ctlphi-v*stlphi)

g(2)=g(2)+2.*(a2-q)

g(3)=g(3)+2.*p*(h*ct4psi-v*st4psi)

g(4)=g(4)+2.*h*p

g(5)=g(5)-2.*a 1 *p*(h*st I phi+v*ct 1 phi)

g(6)=g(6)-2.*a3*p*(h*st4psi-v*ct4psi)

100 continue

c 	 calculate the constraint components of g
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g(2)=g(2)-lambda*2.*a2

g(3)=g(3)+lambda*2.*(a3+al*ct I t4+a3*ct4)

g(4)=g(4)+Iambda*2.*(a4+al*ctl+a3*ct4)

g(5)=g(5)-lambda*2.*a 1 *(a3*st 1 t4+a4*stl)

g(6)=2(6)-2.*a3*(al*stlt4+a4*st4)

g(7)=al**2+a3**2+a4**2-a2**2+2.*a l*a3*ct I t4+2.*a 1 *a4*ct 1

l+2.*a3*a4*ct4

c 	 define the gstar vector, which consists of the entries of g that

c 	 correspond to the unspecified design parameters

c

is=0

do 200 i=1,7

if(desflg(i) .ne. 0)go to 200

is=is+1

gstar(is)=g(i)

200 continue

c

return

end

subroutine fcnerl(x,n,m,phi,psi,lmax,struct,answer,error)

real x(n+m),phi(lmax),psi(lmax),answer(lmax),error(lmax)

pi=acos(-l.)

95

c 	 define design parameters in terms of x



c

al=x(l)

a2=x(2)

a3=x(3)

a4=x(4)

thetl=(x(5)-pi)

thet4=2.*pi-x(6)

struct=0.

xold=a4+a3 *cos(thet4)

yold=a3 *sin(thet4)

do 100 istep=l,lmax

theta=thetl+phi(istep)

c I =a 1 *cos(theta)

dl=al*sin(theta)

if(dl .eq. 0.)go to 30

p=(a4-cl)/d1

q=(a3**2-a2**2-a4**2+c 1 **2+dl**2)/(2.*dl)

xl=((a4-p*q)+sqrt((a4-p*q)**2-(l.+p**2)*(a4**2+q**2-a3**2)))

1/(1.+p**2)

x2=((a4-p*q)-sqrt((a4-p*q)**2-(l.+p**2)*(a4**2+q**2-a3**2)))

1/(l.+p**2)

yl=p*xl+q

y2=p*x2+q
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go to 60

30 continue

xl=(a3**2-a2**2+cl**2-a4**2)/(2.*(c l-a4))

x2=xl

yl=sqrt(a3**2-(xl-a4)**2)

y2=-l.*yl

60 continue

distl=(xl-xold)**2+(y l- yold)**2

dist2=(x2-xold)**2+(y2-yold)**2

xnew=x 1

ynew=yl

if(dist2 distl)xnew=x2

if(dist2 It. dist 1 )ynew=y2

c

cth4=(xnew-a4)/a3

sth4=ynew/a3

th4=acos(cth4)

if(sth4 .lt. 0.)th4=-l.*th4

angout=th4-thet4

if(angout .gt. 2.*pi)angout=angout-2.*pi

if(angout .le. -2.*pi)angout=angout+2.*pi

answer(istep)=angout

error(istep)=angout+psi(istep)

struct=struct+(angout+psi(istep))**2

100 continue
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c 	 to a root mean square term,and convert from radians to degrees

struct=( 1 80Jpi)*sqrt(struct/( 1 .*Imax))

C

return

end
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