
Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of
the personal information and all signatures from
the approval page and biographical sketches of
theses and dissertations in order to protect the
identity of NJIT graduates and faculty.

ABSTRACT

A FOLDER ORGANIZATION MODEL FOR OFFICE INFORMATION
SYSTEMS: EXPLORING ITS ARCHITECTURAL EXPRESSIVE POWER AND

PREDICATE-BASED FILING

by
Simon Doong

This dissertation presents an Internal Folder Organization (I-ORG) which supplements

the architectural deficiencies of the existing model - the User Folder Organization (U-

ORG), to electronically model a person's filing system in the modern office environment.

An I-ORG folder organization gives a logical representation of how documents of the

same or different kinds are related and grouped into folders based on predefined

premises. Our model is represented by a Rooted Direct Acyclic Graph (RDAG). Each

node in the graph represents a folder; and folders are related by "subfolder relationship"

(for capturing the "and" relation) and "virtual-folder relationship" (for capturing the "or"

relation). Each folder in the organization has a criterion, specifying in terms of a local

predicate, which governs the document filing for that folder. The dissertation also

investigates how the new model demonstrates its architectural support in the four

functional areas: (1) Construction - It reduces the complexity of predicate specifications;

(2) Filing - It improves the performance of document distribution; (3) Retrieving - It

facilitates system responsiveness to queries, especially for the documents which are

frequently requested by the user; and (4) Reorganization - It reduces the volume of

documents to be redistributed when the folder organization is modified. The

justifications of our model in possession of critical architectural attributes to support the

above functions efficiently and effectively are presented throughout this dissertation,

which lead us to draw an initial conclusion - our proposed model is architecturally

superior over the other representative models.

In comparison with the I-ORG, which is operational more efficient, the U-ORG

has its simplicity because it maintains only a single type of link. Therefore, the

implementation of the system can have two models which represent the folder

organization at two different levels: the user interface level (or the external representation

using U-ORG), and the system execution level (or the internal representation using I-

ORG). Interoperabilities between the two models needs to be well-coordinated and kept

transparent to the user while the system optimizes its performance by utilizing the

architectural strength from both models.

The dissertation also investigates the transformation between the two models and

proposes a step-locked reduction algorithm to accomplish that task. This transformation

capability provides to the user more flexibilities to specify predicates when his folder

organization is created and represented by an U-ORG. This U-ORG is transformed and

fine-tuned into a content-equivalent folder organization represented by an I-ORG, which

optimizes the overall predicate structure to help improve the functional performance. In

such a final representation, each folder in the organization only associates with a single

atomic predicate.

A FOLDER ORGANIZATION MODEL FOR OFFICE INFORMATION
SYSTEMS: EXPLORING ITS ARCHITECTURAL EXPRESSIVE POWER AND

PREDICATE-BASED FILING

by
Simon Doong

A Dissertation
Submitted to the Faculty of
New Jersey Institute of Technology

in Partial Fulfillment of the Requirements for the Degree of
Doctor of Philosophy

Department of Computer and Information science

August 1998

Copyright © 1998 by Simon Doong

ALL RIGHTS RESERVED

APPROVAL PAGE

A Folder Organization Model for Office Information Systems: Exploring
Its Architectural Expressive Power and Predicate-Based Filing

Simon Doong

Dr. Peer A. Ng, Dissertation Advisor 	 Date
Professor of ComputerAnd Information Science, NJIT

Dr. Murat M. Tanik, Committee Member 	 Date
Associate Professor of Computer and Information Science, NJIT

Dr. D.C. Douglas Hung, Committee Member	 Date
Associate Professor of Computer and Information Science, NJIT

Dr. Ronald S. Curtis, Committee Member 	 Date
Assistant Professor of Computer Science, William Paterson University

Dr. Tina Taiming Chu Committee Member	 Date
Assistant Professor of Mechanical Engineering, NJIT

BIOGRAPHICAL SKETCH

Author: 	 Simon Doong

Degree: 	 Doctor of Philosophy

Date: 	 August 1998

Undergraduate and Graduate Education:

• Doctor of Philosophy in Computer Science,
New Jersey Institute of Technology, Newark, New Jersey, 1998

• Master of Computer Science,
State University of New York at Stony Brook, Stony Brook,
New York, 1983

• Master of Mathematics,
University of Southern Mississippi, Hattiesburg, Mississippi
1980

• Bachelor of Mathematics,
National Central University, Chung-Li, Taiwan, ROC, 1978

Major: Computer Science

Presentations and Publications:

Simon Doong, C.S. Wei, Xien Fan, D.C. Hung and Peter A. Ng,
"A Folder Organization Model in the Office Environment", submitted to
the 4th International Conference on Information Systems Analysis and
Synthesis, Orlando, Florida, July 1998.

Simon Doong, Xien Fan, C.S. Wei and Peter A. Ng,"A Process for Constructing a
Personal Folder Organization", submitted to the 4th International
Workshop on Multimedia Database Management Systems, Dayton, Ohio,
June, 1998.

iv

Simon Doong, Ron Curtis and Peter A. Ng, "Document Filing Approaches Using
an I-ORG Based Folder Organization", submitted to the 17th International
Conference on Conceptual Modeling, Singapore, November, 1998.

TO MY BELOVED FAMILY

vi

ACKNOWLEDGMENT

The author would like to take great pleasure in acknowledging his advisor, Professor

Peter A. Ng, for his kindly assistance and remarkable contribution to this dissertation.

He spent time and effort to review various drafts of the manuscripts and provided

valuable comments and crucial feedback that influenced the final manuscript.

The author also likes to thank his committee members: Dr. D.C. Douglas Hung,

Dr. Murat M. Tanik, Dr. Tina Tanning Chu, and Dr. Ronald S. Curtis for their

continuous support in reviewing the research progress and providing feedback with

valuable comments.

vii

TABLE OF CONTENTS

Chapter 	 Page

	

1 INTRODUCTION 1

	

1.1 Background 1

1.2 Folder Organization for Logical Representation 	 6

1.3 Filing System for Document Distribution 	 10

2 FOLDER ORGANIZATION: USER FOLDER ORGANIZATION (U-ORG) 	 17

	

2.1 The Logical Model 17

2.2 Local Predicate and Global Predicate 	 24

	

2.3 Predicate Evaluation Procedures 27

2.4 Problem Definition 	 34

3 FOLDER ORGANIZATION: INTERNAL FOLDER ORGANIZATION (I-ORG). .41

3.1 Descriptive Definition 	 43

	

3.2 Formal Definition 44

	

3.3 Predicate Composition 46

3.4 Example of Creating a New Folder with I-ORG Representation 	 47

4 SEQUENTIAL FILING MODEL 	 50

5 PERFORMANCE ASSESSMENT FOR SEQUENTIAL FILING 	 62

6 PARALLEL FILING MODEL 	 67

6.1 Status Broadcast 	 69

6.2 Result Relay 	 72

7 PERFORMANCE ANALYSIS FOR PARALLEL FILING 	 82

viii

TABLE OF CONTENTS
(Continued)

Chapter	 Page

8 DOCUMENT MANAGEMENT BASED ON I-ORG 	 84

	

9 IMPLEMENTATION GUIDELINES (OBJECT MODELING) 89

10 U-ORG TO I-ORG TRANSFORMATION 	 92

10.1 Initial Transformation Between U-ORG and I-ORG 	 92

10.2 Content Equivalence 	 95

10.3 Definitions 	 97

10.4 Transformation - Overview 	 98

	

10.5 Transformation - Details 101

11 CONCLUSION 	 110

12 FUTURE RESEARCH 	 115

REFERENCES 	 124

ix

LIST OF FIGURES

Figure Page

1 Architecture Overview of TEXPROS System	 2

2 Relational Constraint 12

3 Frame Instance Distribution in U-ORG 	 13

4 Frame Instance Distribution in I-ORG 	 14

5 An University Folder Organization 	 21

6 Frame Instance 	 23

7 Part of Derivation Generated by Depth-First Search 	 29

8 Logical Structure of Atomic Predicates 	 30

9 Creating a New Folder 	 38

10 Complexity of Predicate Specifications 	 ' 40

11 Folder Organization Represented by the New Model 	 48

12 Creating a New Folder with I-ORG Representation 	 49

13 Sequential Filing 	 55

14 Complete-Parent-First: Example 	 56

15 Topologically Sorted (Filing Order) 58

16 Filing Model 	 63

17 Parallel Filing (Status Broadcast) 	 71

18 Status Broadcast Filing - Example 	 73

19 Relax the Filing Precedence Constraint 	 77

20 Parallel Filing (Result Relay) 	 78

LIST OF FIGURES
(Continued)

Figure Page

21 Result Relay Filing - Example 	 80

22 Another Example of Result Relay Filing 	 81

23 Reorganization (Rehome) 	 86

24 An Object Model of Folder Organization 91

25 Initial Transformation 	 94

26 Supnet Examples 	 98

27 CPF, CPFC and LCPF Examples 	 99

28 Reconfigure Sub(C) 	 104

29 Step-Locked Transformation Process 108

30 Step-Locked Transformation Process - Another Example 	 109

31 Redundant Folders 	 119

32 Conflict Folders 120

xi

CHAPTER 1

INTRODUCTION

1.1 Background

In the modern electronic and multimedia office environment, there is significant demand

of using office information systems in order to facilitate automated processing of office

documentation [3,10,15,68,69,84,89,95]. The TEXt PROcessing System (TEXPROS)

project has developed to foster and integrate many innovative concepts and research

efforts in order to exploit and realize the construction of such an intelligent system [91].

The folder organization, as originally proposed in TEXPROS to model a personal

filing system in the office environment, is a logical repository system that supports all

other structured operations for document filing, storing [48,89,99], retrieving

[49,46,47,49,50], reformatting [89,91] and organizational management activities.

In addition to the front-end documentation process where a document is converted

into an electronic structured representation, the overall architecture of TEXPROS as

shown in Figure 1 is comprised of the following functional components: (1) training, (2)

classification [92-94], (3) extraction [28-32,92,94], (4) construction (of folder

organization), (5) filing [99-101,103,104], (6) reorganization [48,91,99], and (7) retrieval

[44-50,88,108].

Some components in the architecture are supported by a thesaurus [64]. For

instance, during the information extraction process, the thesaurus needs to be consulted in

order to deal with the ambiguous "kind of relationships among synonyms. A thesaurus

provides functions for clarifying semantically any ambiguities of a given keyword,

phrase, or attribute [63]. For handling incomplete or insufficient information during

information extraction, an advance and knowledge rich thesaurus is needed which

supports a set of intelligent knowledge inferring and deriving capabilities. Although the

thesaurus topic is not in the scope of this dissertation, we would like to point out that one

of the challenges of the TEXPROS is how does the thesaurus assist to structure, clarify

and summarize (extract information from the text pertinent to the users' significance) the

unstructured part of a text (e.g., the content of a document in free text form).

Auto. Doc Proc.

Figure 1 Architecture Overview of TEXPROS System

3

The process of intelligent document processing is described briefly as follows. A

given document imaged with a scanner, is transformed into a tree-like logical structure by

the "classification" subsystem [29]. This logical structure reflects the document's spatial

relationships among identified blocks. Documents of the same type are represented by a

collection of tree-like structures, which are stored in the sample base. Each document

type is characterized by a set of attributes to form a frame template. To classify this

document as a document type, the classification subsystem tries to find appropriate

matches between its associated structure tree and the other structure trees in the sample

base. Once a close match is identified, the system outputs the corresponding document

type in terms of its associated frame template of the matched tree. If however, the system

is unable to find a match, the user will be directed to the "training" subsystem [30,89] to

help the system learn this type of document. Under this situation, the document is either a

new type of document or an existing document type with a different format. Its associated

tree-like structure is then stored in the sample base for future references.

A user-defined frame template describes the common information fields [76]

(called attributes) for a given document type. Once a frame template for a given document

is identified, the "extraction" subsystem [31] starts assigning each template-defined

attribute with values extracted from the given document (filling the template).

The filled frame template becomes a frame instance / which is considered a synopsis of

the document and is used to represent the original document. However the frame instance

The most significant information is extracted from the original document to fill the frame template which was obtained from the
classification subsystem. A filled frame template serves as a synopsis of the original document and is called a Frame Instance (FI).
From this point, the original document can be represented by its corresponding frame instance, Each frame instance is stored as an
object in the folder organization.

4

may or may not contain sufficient information (extracted from the original document) for

filing. But every frame instance deposited into a folder must at least satisfy the folders'

filing criteria of a path from the root to the folder.

The "construction" subsystem [48] is used to build a personal folder organization

for storing the frame instances. For each folder, a user defines its predicate that serves as

the filing criteria for determining the depository of frame instances into the folder. The

construction subsystem is employed to define and construct the desired folder

organization (including folders, relationships, and predicates), and performs the validity

checks whether the folder organization has met the RDAG structure and is free from the

predicate syntax error [106].

Instead of filing the original document, the predicate-based "filing" subsystem

[48,91,99,101] processes and distributes its corresponding frame instance into

appropriate folders in the folder organization. A frame instance will, in most cases, satisfy

more than one folder's filing criteria and thus multiple copies of the frame instance may

be logically deposited into the organization.

Whether the frame instance of a given document can be deposited into the

appropriate folders remains to be investigated. The filing subsystem should guarantee the

uniqueness of the filing characteristics. A loosely defined uniqueness is that regardless

the number of trials, filing the same set of m frame instances always results in depositing

a total of n copies of these frame instances into the folder organization. On the other

hand, a tightly defined uniqueness is that filing the same set of m frame instances into a

5

given organization should produce exactly the same output (namely, the frame instance

copies made for each deposited folder are uniquely determined).

We employ an agent-based [48,89,91,107] concept to handle the distribution of

frame instances. Consider a folder as an "object" which has attributes and operations.

Each folder in the organization is represented by a filing agent [48, 89,91, 100] which is a

self-contained autonomous process in the system. Filing agents are activated via filing or

reorganization requests, and remain active until the process of distributing (for filing) or

redistributing (for reorganization) frame instances into folders is completed. For each

folder organization, we shall call the deposit of a frame instance into a folder an object

depository (or simply depository).

Since each agent may perform the filing functions independently, each relies on

information exchange with the filing agents of other folders to update its current filing

state and decide what has to be done next. Agent to agent communications are

accomplished via message passing mechanisms.

After the filing is done (we defer the filing discussion until later sections), the user may

(I) browse [45,88,108] or query the information via the "retrieval" subsystem [32], or

(2) propose a reorganization of the existing folder organization via the "reorganization"

subsystem [48,91,100].

Each filed frame instance with its represented original document must be easily

retrievable from the object repository. This object repository may be split into two

logically separated repositories, one (represented as a folder organization) for storing

frame instances while the other (can be a file structure) is for storing the original

6

documents [104]. Through a well-defined interactive graphical interface which

synthesizes information components retrieved from the repositories, the user should be

able to browse through either frame instances or any part of the original documents, place

queries, and retrieve nearly anything of his/her interest from the documents.

For TEXPROS, any structural change of an existing folder organization is termed

reorganization. Reorganizing an existing folder organization includes, but is not limited

to, inserting a new folder into the organization and removing a folder from the

organization. Inserting a new folder to the folder organization requires re-computing the

global predicates of all of the children under this new folder and redistribute the existing

frame instances from the parents and the children of this new folder. Removing a folder

with or without its subsequent folders from the organization can be a simpler

reorganization in comparison with the insertion of a new folder.

Note that any reorganization proposed by the user may be granted or rejected by

the system for various reasons. For instance, the proposal of rehoming a folder from its

current parent folder to one of its child folders will be rejected by the system since this

reorganization proposal violates the Rooted Direct Acyclic Graph (RDAG) architectural

constraint which allows no cyclic structure in the folder organization [48,91].

1.2 Folder Organization for Logical Representation

Since the filing, reorganization, browsing and retrieving functions all operate upon a

common structural foundation - the folder organization - its representation model plays a

key role of performance in the overall system architecture. In addition, this representation

7

model must also model a personal filing system in the real world, help reduce the

complexity of specifying folders' criteria, and support the automation for document

processing.

A folder organization is a logical representation which gives the user a global

view of how the documents are grouped. Each folder in the organization can contain

documents of different types. A local predicate is specified by the user for each folder

created. This predicate is local to the folder and it governs the filing decision of frame

instances for that folder.

The current folder organization model of the TEXt PROcessing System

(TEXPROS) was originally proposed in [48,91]. It is represented by a Rooted Direct

Acyclic Graph (RDAG) [61,101]. Each node in the graph represents a folder. Each link

connecting two nodes represents a potential filing path. The folder on the starting-end of

the link is called the parent folder, and the folder on the arrow-end of the link is called the

child folder.

A given document arrives at a parent folder A, traverses the filing path which

interconnects A and B and deposits in the child folder B if the information extracted from

the document satisfies the local predicate of the folder B. Otherwise, the document stops

at the parent folder A. Therefore, the links in this organization define the folder

relationships for the model. These folder relationships are simple and direct. We refer to

this folder organization model as the User - ORGanization or U-ORG for simplicity.

However, this existing model also presents some architectural constraints such as it is

unable to model a more complicated folder organization without introducing the

8

complexity of specifying predicates. For example, given a folder organization, if the user

wants a new folder F to be added to the organization in such a way that the new folder

only contains common documents collected from a set of the existing folders, say Fl, F2

and F3, it requires the user to carefully specify the predicate for the folder F so the

documents which are not common to the three parent folders would not be deposited into

this new folder. Between F and any of its parent folders Fl, F2 and F3, there exist three

possible filing links, (F1, F), (F2, F) and (F3, F). Since a qualified document which is

common to F!, F2 and F3, may flow into folder F via any of these three links, the

predicate specification for the folder F needs to take into account the predicates of all of

F's ancestral folders (i.e., Fl, F2, F3 and all of their upstream direct or indirect parent

folders). Therefore, it is difficult and complicate to specify the right predicate for the

folder F. Moreover, the complicated predicates presented in the organization may hurt the

system performance in both folder reorganization and document filing.

Our proposal supplements the only filing path relation link found in the U-ORG

model with a subfolder relation link to form a new organization model. This new

organizational model supplements the architectural deficiency of the existing model

because: (1) it models the folder relationship in the previous example without creating

unnecessary complexity; (2) it helps the user to simplify predicate specification inputs,

and (3) it facilitates both sequential and parallel filing approaches to improve the

document filing performance in a distributed operating environment [107]. In contrast to

U-ORG, which is simple but limited in modeling capabilities, the proposed new model

can be implemented as an Internal representation of a folder ORGanization (I-ORG). In

9

doing so, a two-layer representational hierarchy, tightly coupling a U-ORG and its

underlying supportive I-ORG, is proposed. This representational hierarchy constructs a

common system foundation for processing, filing, managing, and retrieving documents in

the electronic office environment.

Similar to the U-ORG, an I-ORG is also represented by a RDAG in which each

node represents a folder, and each of its link represents either of the subfolder relationship

or virtual-folder relationship. The subfolder relationship is an "and" relationship, which

means that the frame instance of a document is "considered" for depositing into a folder if

and only if every of its parent folder with the "and" relation contains a copy of the frame

instance of the document. The virtual-folder relationship on the other hand, is the

existing "or" relationship, which specifies that the frame instance of a document only

needs to appear in at least one of the parent folders with the "or" relation.

For the I-ORG, filing a given frame instance from a parent folder into a child folder

requires the frame instance satisfying the following two conditions: (1) it qualifies the

child folder's predicate specification, and (2) it does not violate the relational constraint.

The relational constraint specifies that some of the parent folders of this child

folder must contain a copy of the frame instance before the filing of the frame instance

takes place for the child folder. This constraint is automatically enforced in a folder

organization where the two relationships are used to link folders together. For

performance reasons, since the filing agent of each folder is a fully autonomous entity (it

is responsible for its own folder's filing process), the agent won't initiate the filing

(evaluates the associated predicate) until the relational constraint of the folder is checked

10

and passed. As an example, in Figure 2, filing a frame instance fi into a given folder F5,

the following two conditions constitute the relational constraint between the parent

folders Fl, F2, F3 and F4 and the child folder F5:

(1) the folders Fl and F2 must contain fi, and

(2) either the folder F3 or the folder F4 contains fi.

Two major objectives behind the new model for designing such a structure for

representing a folder organization are to reduce the complexity of specifying predicates

and to achieve better filing and reorganizing performance. Although the model introduces

an additional folder relationship, its contributions in reducing complexity of predicate

specification by representing a good portion of complicated predicate specification in

terms of proper links yields a superior architectural expressive power over the old model.

With this enhanced folder organization model, users can easily create, attach or insert

folders into their folder organization without too much concern whether they have

translated correctly the desired filing rules for the folders into complicated predicates. In

Chapter 2 and Chapter 3, we will further establish this statement by giving additional

examples.

1.3 Filing System for Document Distribution

Many document processing systems have been developed in the past dealing with the

topics of filing and retrieving [6,7,19,24,64,69,71,79,82]. We use the following example

to describe the frame instance distribution (filing) in the folder organization which is

represented by the existing model or the U-ORG. As shown in the Figure 3, the folder

ii

organization contains six folders, F1, F2, F3, F4, F5, and F6 with respective local

predicates P1, P2, P3, P4, P5 and P6. A total of nineteen copies of the frame instances

(fl, f2, f3, f4 and f5) are distributed in the folder organization with the rooted folder (F1)

maintaining a copy of all frame instances. From the distribution, it is easy to see that the

frame instance "f 1" satisfies the predicates PI, P2, P4 and P6; therefore, a copy of "f 1"

can be found in each of the four associated folders F1, F2, F4 and F6; the frame instance

"f2" satisfies the predicates P1, P2, P3, P5 and P6, so a copy of "f2" is found in each of

the five associated folders Fl, F2, F3, F5 and F6. Similarly, the frame instance "f3"

satisfies the predicates P1, P2, P3 and P6, and a copy of "f3" is found in each of the

folders Fl, F2, F3 and F6, and so on for the remaining frame instances f4 and f5.

A file path from the rooted folder to a folder where a given frame instance is

deposited simply indicates the frame instance flowing along the links from the rooted

folder to the folder in the folder organization. For instance, the frame instances fl, f2 and

f3 are filed into the folder F6 from a path starting from the rooted folder Fl, following

through F2 before reaching the folder F6. Frame instance fl is the only frame instance

filed into the folder F6 from a path starting from the rooted folder F1, following through

the folder F4 and then the folder F6. The filing of frame instances along different paths

are independent from each other.

1 2

Figure 2 Relational Constraint

In contrast to Figure 3, Figure 4 gives an example of an I-ORG based folder

organization. As shown in the figure, the folder organization contains the same six

folders, Fl, F2, F3, F4, F5 and F6 with respective predicates P1, P2, P3, P4, P5 and P6.

There are only two links of the virtual-folder relationship, (F4,F6) and (F5,F6) in this

organization, and the rest of the links are of the subfolder relationship. A total of sixteen

copies of the frame instances (fl, f2, f3, f4 and f5) in this example are distributed in the

folder organization. Likewise, the rooted folder (F1) keeps a copy of all frame instances.

From the distribution, it is easy to see that the frame instance "f 1" satisfies the predicates

13

P1, P2 and P4; therefore, a copy of - fl" can be found in each of the three associated

folders Fl, F2 and F4. The frame instance "f2" satisfies the predicates P1, P2, P3, P5 and

P6, and therefore a copy of "f2" is found in each of the five associated folders Fl, F2, F3,

F5 and F6. Similarly, the frame instance "f3" satisfies the predicates P1, P2 and P3, and a

copy of "f3" is found in each of the folders Fl, F2 and F3, and so on for the remaining

frame instances f4 and f5.

Fi:	 folder

Pi:	 local predicate

fi: frame instance

op-	 filing path

Figure 3 Frame Instance Distribution in U-ORG

14

Figure 4 Frame Instance Distribution in I-ORG

However, the folder F6 contains only one frame instance (f2) instead of the four

instances (fl, f2, f3 and f4) as shown in Figure 3. To deposit a frame instance in the

folder F6, the frame instance has to meet the folder F6's predicate and the relational

constraint of the folder F6 which states that the frame instance has to be in both folder F2

and folder F3, and in one of the folders F4 or F5.

To further support the architectural expressive power of the new organizational

model, we propose three support models to minimize the predicate evaluation task as the

filing objective. First of all, we propose a "complete-parent-first" filing algorithm which

employs the well-known topological sorting and its underlying supportive Depth-First

15

Search (DFS) technique to accomplish the filing tasks. This filing algorithm is to do the

filing of frame instances in an sequential manner. The processing and filing performance

of this filing model are analyzed and evaluated. The other two filing models, namely the

"broadcast model" and the "status relay model", are proposed to complete the filing of

frame instances in a parallel fashion. The significance of these two filing models are

twofold: firstly, the frame instance distribution process is more dynamic which relies

more on the message (filing status and filing result) exchanges among folder agents.

Again, because each filing agent is a self-contained and fully autonomous process,

it determines its own filing pace, and therefore, the filing order becomes less predictable.

Secondly, the parallelism of filing perfectly fits into our overall object-oriented design

architecture in which each of the basic components (folders, folder relationships, links,

predicates, frame instances, documents, etc.) is treated as an object. Notable performance

savings in parallel filing can be expected as the system is implemented, with object favor,

in distributed environments.

Another objective for designing a filing system under the new organization model

is to ensure that the frame instances are deposited into the right folders. It is not the focus

of our research; nevertheless, it can be partially supported by redefining the predicates to

prevent the frame instances from false dropping [103,104,105].

The rest of this dissertation is organized as follows: Chapter 2 defines the

problems with the existing folder organization model. Chapter 3 describes an approach to

modeling a personal folder organization by utilizing two types of folder relationships: the

subfolder relationship and the virtual-folder relationship. Chapter 4 presents a sequential

16

filing model which performs the filing on an I-ORG based folder organization. In

addition, a process with its performance analysis of the filing algorithm "Complete-

Parent-First" for the sequential filing model is discussed. Chapter 5 presents a simple

performance model and explains the filing advantages of that the new model possesses.

Chapter 6 describes the two new filing models which distribute frame instances

dynamically. Chapter 7 explores the performance advantages of the new filing models.

Chapter 8 explores the performance superiority of the enhanced model over the existing

model in folder reorganization and document retrieval activities. Chapter 9 provides

implementation guidelines which explain why the new models are more suitable as an

application candidate in the object-oriented design. Chapter 10 investigates the

transformation issues between U-ORG and I-ORG models. Chapter 11 summarizes what

has been accomplished in this work. Chapter 12 discusses some issues observed during

the present work which may provide a guideline for our future research directions.

CHAPTER 2

FOLDER ORGANIZATION: USER FOLDER ORGANIZATION (U-ORG)

As we mentioned in the previous chapter, our essential goal in designing an intelligent

document processing system is to mimic robustly a personal filing system with the related

operations in the office environment [5]. There are two major concerns: firstly, this

intelligent system must provide a structured mechanism to better organizing office

documents in a consistent view, and secondly, this intelligent system must support fast

and correct information retrieving. Taking these two concerns into system design

considerations, the establishment of a concrete document repository foundation or the

introduction of a folder organization for supporting automated document processing and

management, and the organizational and functional capabilities, such as folder

reorganizating, filing and retrieving, becomes a critical success factor in developing and

implementing such an intelligent system.

2.1 The Logical Model

In [59,61,101], a folder organization is represented by a Rooted Direct Acyclic Graph

(RDAG) where each node represents a folder and each directed link between two nodes

represents a filing path folder relationship. A root is designated as the rooted node (also

called the rooted folder) of the organization. The rooted folder has only outgoing links

without any incoming link. A leaf folder is an end folder with only incoming links. An

intermediate folder is a folder which possesses both incoming and outgoing links.

17

18

Each folder in a folder organization contains a collection of frame instances of

various document types. Each folder is associated with a user defined filing criteria

(predicate) which governs the filing decision for the folder. A frame instance from its

parent folders can be deposited into this folder only if the frame instance satisfies this

folder's filing criteria.

The rooted folder serves as a starting point connecting to the rest of the folders of

the organization using links. This rooted folder contains a copy of every frame instance

the user desires to keep in his/her folder organization. Its associated predicate is set to be

"TRUE".

A filing path of a given folder in the organization is a path from the rooted folder

to this folder where a particular frame instance is flowing through (making deposits at

every stop along the path). The filing path of a given frame instance to be deposited into a

folder from the rooted folder may not be unique. If a frame instance satisfies all the filing

criteria along two different paths toward a common folder, the filing process should drop

a copy of this frame instance at every stop of each respective paths except those common

folders in which only a copy of the frame instance is deposited. In other words, if a folder

has more than one parent folders, a given frame instance, which is deposited in any of

these parent folders, can flow into this folder through its incoming links provided it

qualifies the child folder's predicate. Once a copy of the frame instance is dropped into

the child folder, the same frame instance coming from the other parent folders will not be

re-deposited into the folder so only one copy of the frame instance is kept in the child

folder.

19

On the other hand, it is also impossible to find a frame instance in a child folder

without having a copy found in any of the parent folders. Therefore, if a document was

found in a child folder, it is guaranteed that there is "at least" one filing path of the child

folder where the frame instance flowed into the folder.

Consider again the folder organization as shown in Figure 3. We shall use it to

explain the above folder organization model. Since the frame instance fl satisfies the

predicates P1, P2, P4 and P6, a copy of fl can be found in each of the four associated

folders Fl, F2, F4 and F6.

The frame instance(s) flowing from the rooted folder along each link between folders in

the folder organization simply indicates a filing path. For instance, the frame instance fl

is deposited into folder F6 via the filing path Fl-F2-F6 or F1-F4-F6 because it satisfies

P1^P2^P6 or Pl^P4^P6 respectively. But this frame instance fl does not go through the

filing path Fl-F3-F6 because fl does not satisfy P3 (and therefore P I ^P3^P6). The frame

instance "f2" is deposited into folder F6 via the following filing paths: Fl-F2-F6, Fl-F3-

F6 or Fl-F5-F6 for it satisfies P1^P2^P6, P1^P3^P6 or P1^P5^P6. But it does not go

through Fl-F4-F6 for its does not satisfy P1^P4^P6.

Figure 5 depicts an example of a real world folder organization for an university

administrator based on the U-ORG model. Under the rooted folder (folder NJIT), the

administrator divides the folders into two branches, one for academic departments (folder

Academic_Dept which is divided into folders named CIS, EE, etc.) and the other for

university employees (folder Univ_Emp which is divided into folders Faculty, Staff, etc.).

Under the CIS Department (folder CIS), the administrator categorizes the personnel

20

records into two folders: the Staff folder and the Student folder. Furthermore, the

administrator subdivides the student folder into three more folders: the B.S. folder, the

M.S. folder, and the Ph.D folder depending on which program the student is enrolled. The

folder Student may contain students who do not enroll in any of the given three programs,

such as a student in a non-degree study program.

On the other branch of the folder organization, the user tracks all of the university

employees' records. The personnel records are divided under two employee classes: the

faculty class (folder Faculty) and the staff class (folder Staff). The faculty class is further

divided into several other folders based on the hiring positions such as the Professor,

Assoc_Professor and Asst_Professor folders. The staff class has folders such as

Spec_Lecturer and TA (for special lecturers and teaching assistants, respectively).

Finally, all employees whose ages are greater than 30 are gathered into a folder (called the

folder Emp_of Age_30+), which is created under the two employee classes, faculty and

staff.

Each folder has a local predicate associated with it. For instance, the folder NJIT's

predicate is school="nj it"; the folder Academic_Dept' s predicate is

organization="academic_dept"; the folder Univ_Emp's predicate is role="univ_emp"; the

folder CIS's predicate is dept="cis"; the folder EE's predicate is dept="ee", and so on.

Figure 5 An University Folder Organization

Consider a frame instance f as shown in Figure 6. After filing, the given frame

instance is deposited into the following nine folders: the N.1.11 , Academic_Dept,

Univ_Emp, CIS, Student, PHD, Staff, Spec_Lecturer and Emp_of_Age_30+ folders. The

information carried within the given frame instance must qualify the predicates of the

nine associated folders. By observation, a copy of the given frame instance is deposited

into the Emp_of_Age_30+ folder although it does not show in the Faculty folder which is

one of the parents of the Emp_of_Age_30+ folder, but the Staff folder contains a copy of

this frame instance. It is because this frame instance satisfies the predicate of the

21

22

Emp_of Age_30+ folder and its filing path to the Emp_of_Age_30+ folder goes through

the parent folder called Staff, rather than through the parent folder called Faculty.

However, if the frame instance f does not satisfy the predicate of the Staff folder,

then it is impossible to find a copy of f in the Emp_of Age_30+ folder even though f

satisfies the Emp_of Age_30+ folder's predicate. This is because none of the parent

folders Faculty and Staff contains a copy of f.

The folder relationship as shown in the example is simple and straightforward.

When the filing of a given folder is completed, the control moves to one of its child

folders and continues the filing. Even if the folder has more than one child folders, filing

on those child folders are independent from each other (i.e., filing result of one child

folder does not affect the filing results of the other child folders of the same parent). On

the other hand, if a child folder has more than one parent folder, the filing of a frame

instance into this child folder is independent from the filing of the frame instance by the

other parent folders of the child; that is, it follows its link down to the child folder for

predicate evaluations, disregarding the existence of the other links. This folder

organization is an User ORGanization or U-ORG for short. A user defines his/her folder

organization in which every link simply indicates a possible filing path between the two

connected folders.

Figure 6 Frame Instance

23

2.2 Local Predicate and Global Predicate

Before we discuss the shortcomings of the U-ORG folder organization model, let us first

review the "predicate".

An atomic predicate is defined as

<attribute> op <value>

where "attribute" is defined by the user and can be treated as a keyword. A predicate can

be defined as an atomic statement, or a composite statement that comprises multiple

atomic and/or composite statements, connected by logical operators such as "AND",

"OR", and "NOT" to form a composite predicate. For example, both (dept=CIS) ^

(position=Faculty) and ((dept=CIS) ^ (position=Faculty)) v (dept=EE) are composite

predicates. These predicates consist of two and three atomic predicates, respectively.

Attributes with the same or close semantic meaning can be grouped together and placed

in a semantic network. For example, the two keywords "dept" and "division", which have

the same semantic meaning, belong to the same keyword group. When an incoming frame

instance does not have any information about to which department it belongs, but rather it

includes the division information, then the division will be taken into consideration² .

When a user inputs predicate specifications as part of constructing his/her folder

organization, each attribute specified must also define a data type. For example, the data

type of the attribute "age" is an integer, and the data type of the attribute "position" is a

character string or an array of characters.

2
The more challenging problem is how to define a set of inference rules to best serve situations in which an frame instance carries

incomplete information for filing.

25

"op" is an arithmetic (e.g. "=", ">") or set (e.g. "IN", "BELONG TO") operation.

"value" gives data of the type for the attribute.

Every folder must have an atomic or a composite predicate which serves as its

local filing criteria. A valid predicate (atomic or composition) can be derivable from the

following production rules (a given grammar).

where "Predicate" is the start symbol and terms without brackets are terminal symbols.

Given a folder organization in which each folder has a local predicate, the global

predicate of each folder can be derived from ANDing the folders' local predicates of a

filing path from the rooted folder through the folder; and ORing the global predicates of

the folders for all the filing paths from the rooted folder to the folder. Each local predicate

of a folder can be in the form of either atomic or composite [8]. Before filing a frame

26

instance into a folder, the filing process simply needs to evaluate whether the frame

instance from at least one of the parent folders of the folder qualifies the folder's local

predicate and draws a depositor) , decision. On the other hand, unlike the local predicate

that represents a folder's filing criteria in the local context, the global predicate of a

folder, represents this folder's overall filing criteria of the filing path in the context of the

entire folder organization. Therefore, the global predicate of a folder governs its content

in the organization. This also implies that a folder's global predicate must be a part of any

of its descendant folders' global predicates.

To compose a folder's global predicate, only incoming links to this folder affect its

composition. The following rules apply.

I. The global predicate of the rooted folder is equal to its given local predicate.

2. Assume that p is the local predicate of a folder F which has n parent folders, Fl, F2, ..,

Fi, Fn (n1). Let Pi be the global predicate of the folder Fi. Then the global predicate

of the folder F is p^RvPi) (i.1, n)].

If we have a folder organization which consists of four folders F1, F2, F3 and F4,

where F1 is the parent folder of both F2 and F3; and F4 is the child folder of both F2 and

F3. Let P1, P2, P3 and P4 be the four local predicates for Fl, F2, F3 and F4, respectively.

From the above composition rules, we know that the global predicate of folder F1 is P1;

the global predicate of folder F2 is P1^P2; the global predicate of folder F3 is P1^P3;

and the global predicate of folder F4 is P4^((P1^P2)v(P 1^P3)) which is equivalent to

P4^P 1 ^(P2vP3).

27

2.3 Predicate Evaluation Procedures

In the previous section, we discussed how a predicate is currently defined. It is simple,

though it may result in the false drop problem [105]. A false drop is a filing result where a

frame instance is deposited into a folder to which it does not belong. Since defining a

sound and complete predicate is an on-going research topic [105], our architecture work

should be independent from the development of predicate evolution. In the other words,

as long as the predicate-based filing concept is adopted, our architecture should be able to

support the associated predicate evaluation work disregarding the format of predicate

specifications.

If accepting the concept of how predicates are defined, their evaluation processes

are straightforward. We will have more discussion in the later of this section. But

regardless, whether the predicate of a folder is atomic or composite, its evaluation against

the information extracted from a given frame instance always generates a Boolean result:

True or False. If the result is True, then a copy of the frame instance is deposited into this

folder, and the filing process proceeds downward along with this folder's filing paths.

Otherwise, the filing process halts at the folder and skips all the descendant folders of this

folder. Repeat the same filing (predicate evaluation) procedure for another selected folder

(dependent on the filing algorithm).

Before a predicate is used as a filing criteria, we need to validate the correctness

of its syntax [106]. The semantic correctness checking, which understands and verifies

the semantic meaning of a given predicate (for instance, whether this predicate is

redundant or conflicts with another predicate in the organization) [106], is beyond the

scope of this dissertation. Nevertheless, we will include some exploratory discussions in

Chapter 12.

In addition to the validation of the predicate's syntax, it may be helpful if we can

decompose a complicated composite predicate into simpler representations (i.e. a set of

atomic predicates) for the subsequent evaluation processes. "Predicate parsing",

"evaluation ordering", and "predicate verification" constitute an important part of the

construction subsystem and are usually done during the construction phase of a folder

organization. We elaborate each of these three tasks as follows:

(1) Predicate parsing:

Predicate parser examines whether a given predicate is derivable from the

following production rules for validating the correctness of its syntax. For instance, by

applying recursively the rules given in Section 2.2, the composite predicate (dept=CIS)

AND ((pos=student) OR (yr IN (94, 95)) can be derived as follows:

<Predicate> --> <composition>

--> (<composition>) <OP> (<composition>)

--> (<atomic>) <OP> (<composition>)

--> (attribute <op> value) <OP> (<composition>)

--> (attribute = value) <OP> (<composition>)

--> (attribute = value) AND (<composition>)

--> (attribute = value) AND ((<composition>) <OP> (<composition>))

--> (attribute = value) AND ((<atomic>) <OP> (<composition>))

29

The derivation tree of the predicate is given in Figure 7, which is generated by the

depth-first search.

Figure 7 Part of Derivation Generated by Depth-First Search

30

(2) Evaluation ordering:

The predicate parser examines whether a given predicate is syntactically correct. We are

investigating here, a logical representation of the ordering of evaluation process for these

atomic predicates of a given composite predicate. The ordering of evaluating atomic

predicates has possible short-circuit effect for improved performance. There may exist

different ways of organizing the atomic predicates; and some of these ways may give the

ordering of evaluating atomic predicates an optimal performance.

The above example is decomposed into three atomic predicates: "dept=CIS",

"pos=student" and "yr IN (94, 95)" and is represented by the operational structure as

shown in Figure 8:

Figure 8 Logical Structure of Atomic Predicates

We develop the following algorithm to facilitate a general predicate evaluation process:

Algorithm:

31

return "false";

Predicate: evaluate the predicate & return either true or false depending

on the verification result;

End switch;

End Eval_order

The ordering for processing the three atomic predicates in the example is

significant to the performance: That the leftmost predicate (dept=CIS) is evaluated first

with a return "false", will cause the evaluation process to stop and return a "false" to the

filing subsystem so that the filing subsystem will not put a copy of the frame instance into

the current folder. Otherwise, the evaluation process proceeds to evaluate the other two

atomic predicates and then evaluate the result with "AND" and "OR" operators for its

completion if the current evaluation returns a "true" result. In contrast to this, the other

approach evaluates first either of the predicates on the right hand side, and the evaluation

process must continue disregarding the output of the previous evaluation. Therefore, from

the performance perspective, we should evaluate the leftmost predicate first for this case.

(3) Predicate verification:

Predicate verification (evaluation) is a process which evaluates whether a given frame

instance satisfies a predicate. It is done during the filing phase. The filing subsystem

needs to first extract the necessary information from the given frame instance and

compares them with the sorted atomic predicates of the target folder. The comparison is

33

done one after the other or per atomic predicate basis (algorithm dependent) until a filing

decision can be made.

For determining whether the information extracted from a given frame instance

satisfies a given atomic predicate, we need to extract the "right" information from the

frame instance for predicate verification. If the attribute of an atomic predicate does not

appear at any part of the frame instance, then we may need to consult the thesaurus for

possible keyword matching, which, in turn, provides us linkages between the given

attribute and those relevant terms stored in the thesaurus. If any of those general terms in

the thesaurus can be located in the frame instance, we may subsequently extract from the

frame instance the associated value part of this term (which is considered as equivalent to

the predicate's attribute). Verifying the value part should be straightforward depending on

the operator and the data type. For instance, from the frame instance, if a person's age that

we extracted out for verification is 50, verifying this information against the target

predicate "age>30" should result in a true output. As we mentioned above, the ordering of

evaluating atomic predicates is a dominant factor in achieving performance optimization.

The number of atomic predicates need to be evaluated before a filing decision

may be made should be kept to a minimum. Therefore, when the system finishes

evaluating each individual atomic predicate contained in such a set and a filing decision

can be drawn after applying the logical operators (which link the atomic predicates) upon

the results from those atomic predicate evaluations, then the evaluation procedure for the

predicate is said completed. Otherwise, the evaluation process continues for another set of

atomic predicates until a filing decision finally can be made. A generic structured

34

predicate evaluation process is still under investigation which should not be locked into

the way the predicate format is currently defined.

2.4 Problem Definition

The structure of a personal folder organization in the office environment plays a major

role in supporting the capabilities of fast and correct filing and retrieving. For instance, to

achieve the effectiveness of the fast and correct filing, we minimize, as many as possible,

the number of predicates to be evaluated as they are part of the underlying folder

organization. Evaluating a single predicate can be a time-consuming process. The process

of evaluating whether a given frame instance qualifies a predicate involves the following

two tasks: firstly, searching and extracting the right information from the given frame

instance; this information may be obtained directly from the frame instance or through the

use of a thesaurus. Secondly, determining the match of the extracted information against

the local predicate associated with the target folder. Therefore, a simple specification of

predicates for any folder organization is desired.

The existing organizational model U-ORG has some architectural constraints: it is

difficult to model a complicated folder organization without creating the complexity of

the specification of predicates, and consequently, it cannot meet the objective of fast

filing.

A complicated folder organization can be an organization created with special

user requirements, which may have logical relationships embedded in the folders. For

instance, add a new folder into a given folder organization, which contains only the

35

common documents from its selected parent folders. By adding a folder into the folder

organization, the user is required to specify carefully the associated filing predicate for

the new folder in order to ensure the correctness of the subsequent filing. The predicate

specification of this new folder must take into account the predicates of all of the related

ancestral folders. Modeling such a folder relationship within the existing framework

requires the user to provide a condition-equivalent filing predicate for the folder. In doing

so, predicate specification work becomes a nightmare for the user.

Assume that a new folder is created to contain all common frame instances from a

set of selected folders. How do we present such a folder relationship between this new

folder and its parent folders? Now, let us generalize it into a complicated case. Let us

divide the desired parent folders of this newly created child folder into two groups,

namely, group-A and group-B. How do we present a relationship so that this new child

folder contains common frame instances found from every folder of the group-A, "and"

from at least one folder of the group-B? It is difficult to model this kind of folder

requirements with the existing folder relationship. The child folder requires a predicate

which specifies some constraints for monitoring the distribution of frame instances from

its parent folders. This creates a burden for users to construct such a predicate for meeting

the requirements. In this dissertation, we shall investigate a structural way of simplifying

the specification of the predicate.

Consider the example given in Figure 5, let create a new folder which contains

frame instances regarding the "special lecturers" of "age>30" who are either enrolled in

"MS" program in "CIS" or the "PhD" program in "CIS". Assume that this new folder has

36

linked to each of the four respective parent folders. The required predicate for this new

folder must take into consideration all of the following: (1) the status is "special lecturer";

(2) age is older than "30"; (3) attends either the doctorate program or master's program;

(4) the employee class is either "faculty" or "staff'; (5) the position is "student"; (6) the

department is "cis"; (7) the organization is "academic_dept"; (8) the role is "univ_emp";

and (9) the school is "njit".

For the U-ORG model, the user must specify correctly the following local predicate for

such a folder:

(a) role

(b) employee class

(c) age

(d) status

(e) organization

(f) dept

(g) pos

(h) (pgm

pgm

In the hierarchy of an U-ORG folder organization, any non-rooted folder inherits

all of its ancestral folders' predicates. Those ancestral folders may lie on the different

filing paths of this non-rooted folder and these predicates must be included in the

predicate specification of the folder. Therefore, the specification of predicate for a newly

37

created folder in such an environment is complicated because it is easy to create

redundancy or miss any part of the required predicates.

As shown in Figure 9, the predicate specification for the new folder is based on

the configuration in which this folder is attached to the four related parent folders: MS

folder, PHD folder, Emp_of Age_30+ folder and Spec_Lecturer folder. Since a frame

instance of this newly created child folder may come from any of the four parent folders,

we must take into account the global predicates of these parent folders, when specifying

an appropriate local predicate for the new folder. Therefore, the local predicate for the

folder must include the atomic predicates of (e), (f), (g) and (h) to ensure that any frame

instance arriving from the Emp_of_Age_30+ folder from the Spec_Lecturer folder into

the new folder must be a CIS student, who enrolled in either the MS or PHD program.

This is because frame instances which do not qualify some filing criteria on the

"Academic_Dept" branch, could still arrive at the new folder from either of these two

paths. Similarly, this predicate also needs to include the atomic predicates (a), (b), (c) and

(d) to ensure that any frame instance containing information regarding a special lecturer

whose age is above 30 can be deposited into the new folder via the MS folder or PHD

folder. It is certain that a frame instance will not flow into the new folder from the Faculty

folder, and therefore, the Faculty folder's predicate can be excluded from the predicate

specification of the new folder.

If, for some reason, this new folder is connected to only MS folder and PHD

folder, then the predicate for this new folder would be changed accordingly. The predicate

38

specification under this configuration should be simpler in comparison with the previous

case, since there are fewer possible filing paths from the rooted folder to this new folder.

Figure 9 Creating a New Folder

A simplified model as shown in Figure 10 summarizes the above problem: a new

folder (F6) is added to the existing folder organization where it accepts only the frame

instances which are from both the folders F2 and F3; and must also be from one of the

folders F4 and F5. As shown in the figure, Folder F6 contains a copy of "f1" and "12".

The frame instance "f 1" satisfies the local predicates PI, P2, P3 and P4. The frame

39

instance "f2" satisfies the predicates P1, P2, P3 and P5. The frame instance "f3" satisfies

P1, P2 and P4, but not the required P3; the frame instance "f4" satisfies P1, P2 and P3,

but neither P4 nor P5; and the frame instance "f5" satisfies P1, P3, P4 and P5, but not P2.

The local predicate P6 of the folder F6 can be specified as follows: P6 = G2 ^ G3 ^ (G4

v G5) where Gi represents the global predicate of the folder Fi.

Redundancy or duplication can arise if the predicate of the folder F6, P6, is

specified in terms of Gi's because each of the Gi contains P1, the local predicate of the

rooted folder. Such redundant or duplicate parts should be removed from the composite

predicate P6 to improve the performance efficiency. Very often we specify a very

complicated predicate for a newly created folder in which, even if the user's requirements

remain unchanged, different configurations used for adding the same folder may result in

different predicate specifications. This means that the predicate specification for a new

folder depends on how this folder is linked to the rest of the folder organization.

P6=G2AG3A(G4vG5)

Fi:	 folder

Pi:	 local predicate

Gi:	 global predicate

Ii: frame instance

filing path

Figure 10 Complexity of Predicate Specifications

40

CHAPTER 3

FOLDER ORGANIZATION: INTERNAL FOLDER ORGANIZATION (I-ORG)

In this chapter, we investigate an approach to enhancing the existing folder organization

model. The primary motivation for designing an enhanced folder organization model is to

help the user specify the local predicates for folders in a simpler form. This local

predicate specification, which is part of constructing a folder organization, must have the

following characteristics:

(1) eases user's definition input,

(2) greatly reduces the processing time for document distributions and retrievals, and

(3) correctly governs the deposition decision of the incoming document objects.

In this dissertation, we propose the following two types of links to model the

folder relationships defined on an organization: the subfolder link and the virtual-folder

link. A subfolder link captures the "and" relationship among links between the child

folder and its parent folders. On the other hand, the virtual-folder link, which is the same

as the only link defined in the old U-ORG model, captures the "or" relationship among

links between the child folder and its parent folders. Our focus here is on the child folder

and not the parent folder because we are employing the top-down filing approach which

visits a parent folder first before the child folder. The relationship between a parent folder

and any of its child folder are twofold: firstly, it shows a possible filing path; and

secondly, before a deposition is made into this child folder via any filing path, all of its

41

42

parent folders need to be examined to ensure that the relational constraint is maintained.

The relational constraint specifies that certain parent folders must contain the document

before this document can be filed against their common child folder. The relational

constraint should be checked prior to filing a document to a folder takes place.

With this new representation, it eases the folder creation task by reducing the

complexity of predicate specification, and achieves superior performance in filing and

reorganization over the existing model. It is because the two types of links not only

represent complicated logical folder relationships, but also introduce a new relational

constraint which, in turn, facilitates the filing efficiency (checking relational constraint

via lookup flags and/or bit patterns check is much simpler than evaluating a predicate

which requires finding and comparing information). A folder organization represented in

this model, is called an Internal ORGanization or I-ORG in short. For the concern of the

expressive simplicity, the ideal system should allow the user to create his/her personal

folder organization with fewer restrictions. In other words, the system should present to

the user a very simple and comprehensive organizational structure. This structure allows

the user to configure the folders and specify predicates freely but keeps all complexity

transparent to the user. If the U-ORG folder organization is the model considered for that

purpose and being implemented in the user interface layer, then the I-ORG should be

considered as the underlying support implementation for its operational efficiency.

Meaning that once the creation of a folder organization is done, the subsequent

operation and management activities should be transparent to the user and should not be

based on this external representation due to the performance considerations.

43

With the proposal to separate U-ORG from the I-ORG representation, the

interoperability between the two models becomes a big issue. For instance, as we know

that every folder in the user-created folder organization or U-ORG has its predicate

defined, and the predicates of the folder organization, collectively form a predicate

hierarchy. How a given U-ORG predicate structure could be simplified and transforms

into an equivalent I-ORG based structure becomes a challenge. We will investigate the

issue and present some preliminary ideas in Chapter 10.

3.1 Descriptive Definition

In this section, we give a semantic description of the folder relationships, and then follow

by a formal definition:

A. Subfolder relationship (connected by a subfolder link called AND-link): Every frame

instance of a child folder also belongs to its parent folder.

B. Virtual-folder relationship (connected by a virtual-folder link called OR-link): A

virtual-folder relationship between two folders simply means that the frame instances in

the child folder may or may not come from its parent folder. This virtual-folder

relationship is equivalent to the filing path relationship of the U-ORG model.

Given two folders with the virtual-folder relationship (connected them by an OR-

link), where does a frame instance in the child folder come from if it does not come from

the parent folder. Apparently, it must come from the other parent folders. If we accept this

assertion, then how do we define the virtual-folder relationship formally? It does not

make any sense if we limit the scope of viewing a virtual-folder relationship only between

the two related folders interconnected by an OR-link. Instead, we view it in a broader

scope, all of the virtual-folder relationships between a given folder and its parent folders

as a whole in the filing environment.

In other words, if there are multiple parent folders connecting to a common child

folder via virtual-folder links, it simply means that every frame instance found in the

child folder must come from at least one of its parent folders. Therefore, if a folder has

only one incoming virtual-folder link, then this link has no difference from a subfolder

link. Consequently, we may impose a design rule for the folder construction phase,

namely the number of virtual-folder relationships of a child folder in the folder

organization must not be equal to one; otherwise, the system should convert automatically

the link of virtual-folder relationship into a subfolder link.

3.2 Formal Definition

Let C be a child folder and P be a parent folder of C. Both folders C and P contain their

respective frame instance objects. Let fp be a mapping function which maps objects in

folder C into 0 or 1, depending on whether the objects are contained in the folder P

(i.e., fp: C -> {0, 1)).

45

The object mapping function fp is defined as follows: For any x E C

= 0, otherwise

To complete this formal definition, we also need to cover the following two

situations:

(1) if the domain of the function fp (i.e., the object set C) is an empty set, and

(2) if none of the objects (not an empty object) in C can be mapped into objects in P.

The first situation states that the child folder does not contain any frame instances, when

the folder organization was first constructed or simply because none of the filed frame

instances can reach C and the second situation is that none of the frame instances in P

qualifies C's local predicate.

We therefore extend the folders C and P to be sets of objects including the empty object

0. By default, the empty object Ø belongs to both of them. Therefore fp(Ø) = 1, since

Øe C and Øe P; or the function fp maps the "empty" object in C into the "empty" object

in P.

Now, we can use function 5 to define the relationships between two folders C and P as

follows:

A. Subfolder relationship: (For any x E C) [fp(x) = 1].

B. Virtual-folder relationship: (There exists an object x E C, possibly an empty object)

[fp(x) = 1].

The above definition of folder relationships covers all kinds of organizational scenarios.

For instance, given a child folder C which has two parent folders S 1 and S2 connected by

46

subfolder relationship and two other parent folders V1 and V2 connected by virtual-folder

relationship. Assume that both S1 and S2 contain a frame instance fl; Vi contains a frame

instance fl, and V2 contains a frame instance f2. Any frame instance found in the child

folder C must come from both S1 and S2, and from either V1 or V2. Therefore, each of

the four links appeared in this part of the folder organization satisfies the above

definition:

3.3 Predicate Composition

Given the definitions of folder relationships, how do we compose the global predicate of

a folder which has both subfolder and virtual-folder links? For instance, given a folder

with local predicate p, the folder has n parent folders, of which the first k parent folders

are subfolder parents and the other n-k folders are virtual-folder parents (n-k=1). Let Pi be

the global predicate of the parent folder Fi. Then the global predicate of this

folder is equal to p^ [(^Pi) (i=1,..k)] ^[(vPi)(1=k+1,..n)].

In Figure 11, we revisit the previous example (as shown in Figure 10) by

representing the folder organization with our new model. As shown in the figure, the

folder organization contains six folders and a total of twenty frame instance copies. Note

that the specification of the predicate for F6 is much simpler (P6=true) in contrast to the

47

complicated predicate specification in the previous example shown in Figure 10. This is

because the user requirements for creating the folder F6 is embedded in the four links that

connecting the four parent folders F2, F3, F4 and F5 to their common child folder F6. In

other words, the two types of links are used to replace some complicated predicates

without losing the desired folder relationships (but they need to be differentiated when

composing the global predicates for folders). The filing against this organization needs to

take into account the relational constraint. To deposit a copy of a frame instance into the

folder F6, this frame instance must appear in both folder F2 and folder F3. In addition, the

frame instance must also appear in either folder F4 or folder F5. For example, the frame

instance f1 is filed into the folder F6 because it meets the above constraint while the

frame instance f3 is not filed into folder F6 because the folder F2 does not contain a copy

of f3.

3.4 Example of Creating a New Folder with I-ORG Representation

In the example as shown in Figure 9, it is difficult to specify the local predicates for a

new folder. The corresponding example where the new folder is constructed under the I-

ORG model is given in Figure 12. The local predicate specification for this new folder is

true and the original predicate can be represented by its folder relationships.

Figure 11 Folder Organization Represented by the New Model

48

Figure 12 Creating a New Folder with I-ORG Representation

49

CHAPTER 4

SEQUENTIAL FILING MODEL

The design of the filing under the new organization model should capture some

architectural attributes of the model in order to gain performance advantages. For

instance, the filing model should perform the predicate evaluations as few as possible,

because the predicate evaluation process is considered as a time-consuming task and can

be avoided if the check of relational constraint fails.

The input of the filing process consists of (I) a given frame instance fi to be filed,

(2) the target folder Fc and its associated local predicate, (3) the folder relationships

between the folder Fc and its parent folders (forming the base of the relational

constraints), and (4) the filing statuses and results of fi in those parent folders. The output

of the filing determines whether a copy of fi is deposited into the folder Fc.

The third and fourth input items, namely the folder relationships between folder

Fc and its parent folders, and the filing status and results of these parent folders provide

the filing process with the information to (1) check whether the frame instance fi qualifies

the relational constraint, and (2) determine the filing time for filing the frame instance fi

against the folder Fc. At the folder Fc, once the frame instance fi passes the relational

constraint check, the predicate evaluation process carries out the following two tasks: (1)

searching and extracting the right information from the given frame instance fi, and (2)

examining the extracted information against the local predicate of the folder Fc. Since the

new organization model helps reduce the complexity of predicate specifications,

50

51

performance saving in filing frame instances may be significant because now we should

have fewer atomic predicates to be evaluated. For predicate evaluation, we need only to

extract the minimum relevant information from the frame instance which is required to be

compared against the local predicate. This implies that the simpler the predicate is

specified, the less information is required to be extracted from the frame instance.

Therefore, the volume of information to be extracted is really predicate dependent. In

brief, since the specification of a predicate for a folder may be simpler by representing a

good part of its predicate with links, and the time required for checking the relational

constraints becomes insignificant in contrast to evaluating a complicated predicate, a

filing model can be designed to take this architectural advantage into considerations.

In this chapter, we propose a basic filing approach designed for the new I-ORG

folder organization - the sequential filing model which performs the filing in a sequential

manner.

Sequential filing performs a filing task by traversing in a sequential order through the

entire folder organization. Starting from the rooted folder and following the links that

interconnecting folders, the filing system visits folders one after the another to determine

if the filing time of a given folder has been reached (thus sequentially). This ordering of

traversal allows to synchronize the filing time between a given child folder and its parent

folders. Because of this synchronization requirements, the ordering of the sequential

filing approach becomes important. The synchronization rule requires the filing to be

performed at all parent folders before their common child folder can be filed. This

ordering requirement can be represented by a sort result as produced by the topological

52

sorting algorithm, which in turn, utilizes the well-known Depth-First Search (DFS)

algorithm to support the sorting task. Topological sorting on a RDAG is the reordering of

its nodes (folders) along a horizontal line so that all directed links go from left to right

indicating the filing order. Therefore, we employ the topological sorting algorithm in our

sequential filing model to help construct a list of sorted folders which gives the desired

filing order.

"Complete-Parent-First" algorithm takes the sequential approach to distribute

frame instances into the I-ORG folder organization. The algorithm recursively traverses

the entire folder organization and determines which folders should get a copy of the frame

instance. The algorithm starts the filing process from the rooted folder, for each stop at a

folder, the algorithm returns to the folder's immediate parent folder if any of the parent

folder has not yet completed the filing. Otherwise, the algorithm performs the filing on

the folder and continues the process on its child folders. Filing a frame instance into a

folder, the algorithm first checks: (i) whether the frame instance has not already existed in

the folder; (ii) whether the folder relational constraint is satisfied (to do this, the system

needs to know which parent folders have link connections to this folder and what are the

link types); and (iii) whether the frame instance qualifies this folder's local predicate. If

either condition (i) or condition (ii) is not met, the filing process does not need to proceed

to (iii) and consequently, the frame instance is not deposited into the folder. Therefore, (i)

and (ii) can be considered as the pre-conditions before the condition (iii) is examined.

However, if both conditions (i) and (ii) are met, before the deposition decision (whether a

copy of the frame instance is deposited into the folder) is made, the filing process needs

53

to ensure the information contained in the frame instance satisfies the folder's local

predicate,

Figure 13 gives the process transition diagram of the "Complete-Parent-First"

filing algorithm which consists of three states:

(1) "Searching" - discovers the next candidate node to be filed,

(2) "Synchronizing" - checks all parent folders' filing status, and

(3) "Filing" - checks the relational constraint and evaluates the local predicate if needed.

The filing process terminates if the "Searching" of the next candidate folder to be

filed detects that all of the folders have already done their filing (all folders' associated

flags are raised to indicate their "filing done" status). Otherwise, the process identifies the

next candidate folder and enters into the "Synchronizing" state which in turn, determines

if the folder is ready for filing (i.e., checking the filing status of all of its parent folders).

If the folder is not ready for filing, the process returns to the "Searching" and continues

looking for another candidate folder. On the other hand, if the folder is ready for filing,

the system performs the "Filing" against the folder (i.e., checking relational constraint

and comparing the content of frame instance with the folder's local predicate), raises the

filing flag for the folder, then returns to the initial "Searching" state and repeats the same

process cycle.

Note that the "Searching" follows the DFS algorithm discovering procedure and

find the folder to be visited next. Once the folder is identified and returned from the

"Searching", it is only considered as a candidate folder for filing. The "Synchronizing"

subsequently checks this folder's readiness for filing by examining its parent folders'

54

filing status. The folder enters into the "Filing" state if all of its parent folders complete

the filing. Otherwise, the process returns to the "Searching" and proceeds (again, follows

the DFS discovering steps) to another folder. The local predicate of the folder is evaluated

against the information extracted from the frame instance as the folder enters in the

"Filing" state. When the predicate evaluation is done, the filing of the folder is completed

and the associated filing flag of the folder is raised disregarding the filing result, the

process returns to the "Searching" state, and the filing continues on the folders that are

not yet visited or filed. Each folder should be visited at least once. The number of times

for visiting at a folder depends on how this folder's relationship is defined.

The folder organization shown in Figure 14 contains twelve folders. Assume that,

for each folder, the traversing order of its outgoing links goes from left to right. The

number shown in the folder node indicates the filing order and the number shown on each

link indicates the link traversing order. Links accompanied by more than one number

simply means those links have been traversed more than once. From this example, we

know that the rooted folder is the first folder to be filed, its left child folder is the second

folder to be filed, its right child folder is the fifth folder to be filed, and so forth.

The above filing order is topologically sorted. If we change the link traversing

order from right to left instead, the revised filing order matches exactly the order as

shown in Figure 15(a). In the figure, the number contained in each folder node indicates

the filing order of that folder. The pair of numbers for each folder represents that folder's

discovery time and finishing time in accordance to the Depth-First Search algorithm [18].

Figure 13 Sequential Filing

Discovery and finishing time indicate different states during the execution of the Depth-

First Search algorithm. On a directed graph, each node migrates to the discovery state

from its initial state when it is discovered the first time in the search process. This state

change is timed as the node's discovery time. Similarly, as a node's adjacency list

(contains all nodes which are adjacent to the current node) has been examined completely

in the search process, the node moves from the discovery state into the finished state, and

55

56

this move is timed as the node's finishing time. This technique guarantees that each node

ends up in exactly one depth-first tree, so that these trees are disjoint.

• number in folder: indicates filing order

• number along link: indicates traverse order

Figure 14 Complete-Parent-First: Example

57

As soon as a folder is finished, it is inserted into an ordered filing list as shown in

Figure 15(b) where each directed link indicates the required filing precedence between

the two folders which interconnected by the link. From the process procedure, it is easy to

see that the time a folder is finished affects the precedence in which the folder is placed in

the list, and, therefore, the earlier the folder is filed. Also note that the system needs not

to wait until the preparation (sorting) of such a filing list is completed (topologically

sorted) before it starts the actual filing process. The two tasks can be integrated and

performed in the proper order.

5/6

xly: discovery time/finishing time (DFS)

(a)

58

(b)

Figure 15 Topologically Sorted (Filing Order)

59

The following presents the "Complete-Parent-First" filing algorithm:

Algorithm:

// Define filing_flag=1 if the folder finishes the filing; filing_flag=0 otherwise.

// This main routine starts the filing process from the rooted folder and proceeds through

// the root's descendant folders by calling Distribute routine.

// This routine traverses the folder organization for filing by calling itself recursively.

// The routine stops and returns at the folder if any of its parent folders has not yet

// finished the filing.

60

// The main body of filing is given as follows. The three conditions must be met before a

// copy of the frame instance is deposited into the folder.

// Given a folder, this routine checks if all its parent folders have already done the filing.

61

Check_Parent (F)

if [filing_flag(F') = 1 for every F' in <F1> and every F' in <F2>]

then	 return 1

else	 return 0

end Check_Parent

The above algorithm combines the topological sorting and the subsequent filing

action together. An alternative approach is to finish filing order discovery first and then

based on that order to complete the filing one folder after the other. Their performance

should be the same because they both carry out the same tasks but only via different

procedural orders. The following performance model is based on the alternative approach.

Given a folder organization where N represents the number of nodes (folders) and

L represents the number of links (folder relations among the nodes). Disregarding the

predicate evaluation time, the filing algorithm takes θ(N+L) time to determine the filing

order (contributes to the "discovery" part of the filing performance). This is because

topologically sorting a given folder organization relies on the DFS searching technique to

determine the order of discovery for each folder of the folder organization. And it takes

θ(N+L) time for DFS to achieve that purpose [18]. Moreover, accompanying each DFS

discovery step, the sorting algorithm subsequently takes 0(1) time to insert each of the

finished (state after discovered) INI nodes onto the front of the sorted link list, which

forms a desirable filing order for the given folder organization.

CHAPTER 5

PERFORMANCE ASSESSMENT FOR SEQUENTIAL FILING

Based on the filing algorithms proposed initially for the U-ORG and I-ORG respectively,

a simple model is presented for comparing the performance of filing frame instances

using these two organizations. Namely, we are trying to model the computing cost of

filing a frame instance into a particular folder of two different representations, the U-

ORG representation and the I-ORG representation.

Let fi be a frame instance to be filed into a folder X in a given folder organization.

Given the I-ORG representation shown in Figure 16, suppose that this simplified folder

organization has n virtual-folder links and m subfolder links interconnecting X with its

parent folders V1, V2, Vn (parent folders of virtual-folder links), and Si, S2, ..., Sm

(parent folders of subfolder links). In the U-ORG representation, suppose that the folder

organization contains only n links from each Vi (1 i n) to X. The local predicates of X

are different in these two representations. For the sake of simplicity and without loss of

generality, assume that the local predicate of X is "TRUE" in the I-ORG representation

and is ^[G(Si), 1 i m] in the U-ORG representation.

It is assumed that the system has already performed the filing process on all the

Vi's and Sj's folders. The distribution of frame instances among these parent folders of X

significantly affects the subsequent filing performance in the U-ORG representation, but

it has no effects in the I-ORG representation. For instance, in the U-ORG representation,

62

63

the best case situation is that none of X's parent folders contains a fi before filing fi into

X. In this case, the filing system does not need to do anything. On the other hand, the

worst case situation is that each of the n parent folders of the folder X has a copy of fi.

There are two scenarios of this situation: The first scenario is to present the best case of

filing fi into X in the U-ORG, and the second scenario presents the worst case.

Figure 16 Filing Model

Assume that the global predicate of a folder Si contains an average of i atomic

predicates. Let ti be the average time for evaluating an atomic predicate. Let t2 be the

average time for processing setting/checking flags or examining the existence of a frame

instance in a folder (This operation is required as part of the relational constraint checkup;

it only requires a quick ID lookup). Assume that t 1 >> t2. t2 becomes insignificant in

comparison with U because it may be just some straight operations which could be taken

place within the computer registers, rather than creating a lot of I/0's on the other end.

Scenario I (the best case situation):

None of the parent folders with virtual-folder relationship, Vi (1 5_ i 5_ n) contains the

frame instance fi. Since the parent folders of X do not contain fi, the U-ORG filing

algorithm stops at each Vi without considering further the filing of fi into any of its

descendants. Therefore, the filing time for filing fi into the folder X is zero.

Scenario 2 (the worst case situation):

Let fi be a copy found in every Vi (1 S i 5_ n). The filing time for filing fi into the folder X

is in the range of [(t2 * n + i * m * t1), (t2 + i * m * 	 * n]. After filing fi at each Vi,

the algorithm must proceed to filing of fi into X. However, in [99,100], the filing

algorithm indicates that the existence of fi in the folder X should be first checked before

any predicate evaluation takes place. Therefore, this worst case has two scenarios: (1) fi is

deposited in X (during the first run), or (2) fi is not deposited in X. The respective

performance of these two scenarios gives the above performance range between

65

(t2 * n + i * m * t 1) and (t2 + i * m * ti) * n. Since we assume that the global predicate of

Si (G(Si)) contains an average of i atomic predicates and because G(Si) is included as part

of L(X), the local predicate of the folder X in the U-ORG, there exists a total of i * m

atomic predicates (with possible overlaps) in L(X) to be evaluated.

For the first scenario, the frame instance fi is deposited into the folder X at the

very first run, which is also the only run. During the run the X's predicate is evaluated.

The remaining n-1 filings only need to check the existence of fi. For the second scenario,

although fi is not deposited in the folder X during the first run (i.e., fi from V1 does not

qualify the predicate of X), we still need to check the existence of fi at X and evaluate X's

predicate for the rest of the runs (fi from V2, V3, etc.) to complete the filing process for

X.

The corresponding filing performance with the I-ORG representation is

predictable!

No matter how fi is distributed in the parent folders of X, the algorithm requires 2 * t2 to

complete the filing of fi into X. Since we assume that the system has already performed

the filing process on all the Vi's and Sj's folders, the filing on X is completed in the last

visit at X from a parent folder of X. In this visit, the system checks the existence of fi at X

which requires t2, and examines whether the relational constraint of X is satisfied which

also consumes t2 time. Note that the I-ORG based filing does not contain any tl term

because the model specifies "TRUE" as the local predicate for X. In addition, t2 can be

ignored in comparison with the time required for predicate evaluation, and therefore, the

66

U-ORG's superior performance under the best case scenario is easily offset by the worst

case scenario and any other cases.

CHAPTER 6

PARALLEL FILING MODEL

Unlike the sequential filing model where a central process synchronizes and controls all

the activities, the parallel filing model requires the agent of each folder in the

organization be responsible for its own filing process for the folder. Basically each agent

is a self-contained autonomous process which is activated by the filing function. Agents

communicate each other and exchange information about (1) knowing the filing status of

their parent folders, and (2) letting their child folders know their filing status and/or filing

result. The 'filing status' of a folder indicates whether the folder has already done the

filing. A folder is considered to be done in filing if its representative filing agent

completes the filing process on the folder and changes its associated filing flag. The

'filing result' of a folder indicates whether a copy of a frame instance is deposited into

this folder after filing is done for the folder. In other words, the parallel filing model

utilizes both structural (static) and real-time (dynamic) information to speed up its filing

process. The static information refers to knowledge of the fixed, organizational structure,

which comprises all the user-defined predicates and folder relationships. Dynamic

information, on the other hand, is the information that may be updated and subsequently

affects the down-stream processes during the filing course.

As discussed in the previous section, the sequential filing model has performance

overhead since a folder may need to be visited several times before a frame instance can

be filed into it. For each visiting at the folder, the same routines (e.g., initial checkup

67

68

and/or house cleanup tasks) need to be performed repeatedly. The parallel filing model

reduces the time spent on these tasks by letting each individual agent determine the

readiness of the filing for its representative folder so that the same amount of tasks are

being carried out in a parallel sense.

The parallel filing model may inherit the essential synchronization rule from the

sequential filing model to ensure the timing of filing any frame instance into a folder.

This restricts the parallel filing model to file a given frame instance into the parent folders

first before filing it into the child folder. However, the parallel model significantly

reduces the number of visits at folders as presented in the sequential filing model.

In order to accomplish the parallelism of processing but not violating the filing

precedence restriction, the agent-based concept is employed to handle the frame instance

distribution process. Each folder in the organization is represented by a filing agent which

is basically a self-contained autonomous process in the system. Filing agents are activated

by either of the following request triggers initiated by the user, `Tiling" or

"reorganization". The activated filing agents remain active until the frame instance

distribution is done for the entire folder organization (filing request), or the system

completes the necessary changes and finishes the frame instance redistribution for the

entire folder organization (reorganization request). Here we focus our further discussion

on the "filing" and include "reorganization" for our future research.

Since each agent performs the filing functions (such as determining filing time,

extracting information from frame instance, evaluating predicate, updating filing status,

notifying filing result to others, etc.) at its own disposal, it needs to rely on information

69

exchange to update it's current state, and make subsequent processing decision(s). Agent-

to-agent communication is accomplished via message passing mechanisms.

In this chapter, we will present two parallel filing models which utilize static and

dynamic information to facilitate the filing process. The first model uses a "status

broadcast" message passing mechanism while the second model uses a "result relay"

mechanism.

6.1 Status Broadcast

For the "status broadcast" filing, each filing agent needs to broadcast to all of its

immediate child folders as soon as the agent completes the filing at the folder (a filing is

completed as soon as a depository decision of the target frame instance is made and the

associated pointers are connected if necessary). Recipients of this broadcast message

trigger their internal functions to check and determine if they need to start the filing (for

each folder, its representative agent needs to ensure that all of its parent folders have

already done the filing) or continue to wait.

We would like to point out here that the filing approach does not prohibit filing

multiple frame instances simultaneously. We can assume that the system needs to

establish a filing session for serving each frame instance fi when it arrives at the rooted

folder, and the filing session terminates when the system completes the filing process for

the fi. Since each frame instance to be filed has a unique identity, we can distinguish

filing sessions that have been established to serve for different frame instances. With

careful design, the only possible filing collision (i.e. filing two separate but identical

70

frame instances simultaneously into the rooted folder which may end up depositing two

copies, instead of just one copy, of the frame instance into the rooted folder) can easily be

avoided.

Once the filing of a folder is completed, this folder should update its filing status

and multicast the message "I have done the filing on <frame instance ID>" to its

immediate child folders (disregarding the types of links). Implementation of this process

can be as simply as flipping a flag for status change and addressing a message to multiple

objects for status broadcast.

Figure 17 depicts the "status broadcast" filing model which describes the process

transitions. As shown in Figure 17(a), a folder object (agent) is woken up and transited

into the "check parent" state upon the reception of a broadcast signal (indicated by "b")

from one of its parent folders. This folder agent will return to the "idle" state if there are

some of its parent folders which have not done the filing. Otherwise, it performs the filing

and subsequently broadcasts, disregarding the filing result, the "already filed" message to

all of its immediate child folders, and returns to the "idle" state.

In the system level, there has to be a dedicated process to monitor the overall filing

progress as shown in Figure 17(b). The filing process is completed when it detects that all

filing agents are idle.

Given the folder organization in Figure 14, we use the "status broadcast" filing

model to perform the filing. The filing procedure and the result are shown in Figure 18.

not all parents filed

71

Figure 17 Parallel Filing (Status Broadcast)

7?

The filing order of this model can be figured out since the timing of filing and

then broadcasting its "completion" filing status of an individual agent is restricted by the

synchronization rule which is presented in the "Complete-Parent-First" algorithm. Again,

the numbers in the folder nodes indicate the filing order of each folder in the

organization. And, the numbers along with the links indicate the order of broadcasting

messages. Therefore, for the parallel filing, the system requires fewer steps to complete

the filing for any given frame instance. The figure also shows that a total of four copies of

a frame instance which are deposited into four shaded folders.

6.2 Result Relay

In the "result relay" filing model, the filing is not constrained by any particular order such

as the one presented in the "Complete-Parent-First". Therefore, the filing accomplishes

the tasks by maximizing the parallel processing. This is because the static information of

folder organization and the dynamic information of different folders' filing status and

filing results are made available. They can be used collectively to facilitate the decision

making during the filing process. The "result relay" filing model is centered with the

efficient use and manipulation of this information which, in turn, is a critical performance

factor that governs the design of filing algorithms.

73

numbers in the folders: indicate filing order

numbers along the links: indicate sending order

shaded folders: frame instance deposited

Figure 18 Status Broadcast Filing - Example

The semantics of folder relationships in this model are encapsulated in the filing

algorithm. If two folders are related by a subfolder relationship, then a given frame

instance cannot be deposited into the child folder if its related parent folder fails to have a

copy first. If a child folder has virtual-folder links related to some parent folders, then it

74

must have at least one of these parent folders having a copy of the frame instance first. In

this filing model, disregarding the types of links, the filing agent broadcasts a "filing

done" message to all of its immediate folders only if it has done the filing and a copy of

the frame instance is deposited into the folder. The "filing done" message itself only

indicates that the filing subsystem has finished the filing tasks on the target folder

disregarding the filing result. If, however, there is a reason (such as the frame instance

fails to qualify the folder's predicate), the filing process is thus done at this folder without

depositing the frame instance. In this case, the filing agent sends a "no deposit" message

to each of its immediate child folders which have subfolder links to the folder, and

broadcasts the "filing done" message to its immediate child folders which have virtual-

folder links to the folders (called controlled broadcast). Each of its child folders, in turn,

sends the same "no deposit" messages to all of their immediate subfolders, and broadcasts

"filing done" to others, and so forth. Therefore, once a "no deposit" occurs at any

ancestral folder, the "no deposit" message will follow the subfolder links from this folder

and relay folder by folder, as far as it can reach, through the entire folder organization. By

propagating this message, each affected folder (the folder which falls on some relay

paths) can instantaneously set its filing flag upon receiving the message and continues to

relay a "no deposit" message or to broadcast "filing done" message, to its child folders.

Those folders waiting for a folder to finish its filing may now be able to start its own

filing process. Since each relay of the "no deposit" message may cause some chain-

reactions of activating the downstream filing processes which offer opportunities for

improving further the parallel filing performance. The filing performance of the relay

75

algorithm is expected to be superior over the "status broadcast" filing algorithm. It is

because in the "status broadcast" filing model, every folder of the folder organization is

constrained by the "synchronization" rule. But the "result relay" filing model allows us to

further reduce the number of folders that are still constrained by the rule. The

synchronization rule cannot be removed entirely, but it can only be relaxed in the "result

relay" model. We will use the next example to describe how a child folder in the "result

relay" filing model may finish the filing before its parent folders do. As shown in Figure

19, given a folder organization containing four folders Fl, F2, F3, and F4 with four

subfolder relations (all of the links are defined as subfolder links). Assume that a frame

instance fi qualifies the local predicates P1 and P2 of the folders F1 and F2 respectively.

The frame instance fi will be eventually filed into the folders F1 and F2. During the filing

process, it is possible that F4 finishes its filing before F2, even though F2 is a parent of

F4. This occurs when the folder F2 is busy in performing its filing process (assume that

the local predicate P2 of the folder F2 is a complicated predicate, and the evaluation of

whether the frame instance qualifies P2 takes a lot of time), the folder relays quickly a

"no deposit" message to F4 through the subfolder link (F3,F4) (assume that the local

predicate P3 of the folder F3 is a simple predicate) after the folder F3 completes its filing

process and the frame instance is not deposited in it. When the folder F4 receives the

message from F3, it immediately updates its filing status to "completion". Therefore, a

possible filing order in this example could be F1->F3->F4->F2.

Figure 20 depicts the "result relay filing model". It is possible to relax the

"synchronization" constraint in this model. A folder may continuously receive "status

76

broadcast" and/or "result relay" messages from other folders even if it has already

completed the filing. The messages should be ignored under this circumstance 3 .

Figure 21 again employs the "result relay" filing model to perform the filing task

on the same folder organization as shown in Figure 14. Assume that the right child of the

rooted folder detects that the filing process does not deposit a copy of a frame instance

into itself. It propagates a "no deposit" message through its subfolder linked children (the

right child folder of the rooted folder has two subfolder-linked child folders). The "no

deposit" message is continuously relayed downward to all of the subfolder-linked

descendant folders. On the other hand, a copy of the frame instance is deposited into the

left child of the rooted folder. The "status broadcast" filing process is followed. Because

the "synchronization" constraint is relaxed on the right hand side of the filing process, the

bottom-most folder in the organization may complete its filing process before some of its

parent folders.

3 The folder should check its own filing status first upon receiving a message from others.

77

Figure 19 Relax the Filing Precedence Constraint

Figure 20 Parallel Filing (Result Relay)

78

79

Figure 22 gives another example of a "result relay" filing model. It is easy to see that the

filing order is difficult to predict because it relies on the performance of real-time

dynamic frame instance distribution, which, in turn, depends on the static organization

structure and predicate specifications. For instance, the filing process proceeds to file a

given frame instance in the folder D before the folder C; and the process proceeds to file

the frame instance in the folder D before the folder B if the predicate of the folder A is

much simpler than those specified for the folder B and the folder C. On the other hand, if

the predicate of the folder A is somehow more complicated than those predicates of the

folders B and C, then the filing process is expected to proceed to file a given frame

instance into the folders B and C before the folder D.

• number in folder: indicates filing order

• number along with link: indicates traverse order

• shaded folder: frame instance deposited

• r: result relay

80

Figure 21 Result Relay Filing - Example

Number in the node: indicates a possible filing order

check relational constraint & evaluate predicate (t1)

** check relational constraint only (t2)

*** may or may not need to check relational constraint ()

ti >> t2 >= t3

81

Figure 22 Another Example of Result Relay Filing

CHAPTER 7

PERFORMANCE ANALYSIS FOR PARALLEL FILING

There are three different approaches to accomplishing the filing task, the sequential

approach, the status broadcast approach and the result relay approach. The sequential

approach represented by the "Complete-Parent-First" algorithm, as shown in Figure 14,

requires a total of twelve nodal processing time units to complete the filing for the given

folder organization. A nodal processing time unit is defined as the average time required

to finish the filing task for a folder, assuming that each folder's predicate in the

organization has the same complexity. In contrast to the nodal processing time, the

message propagation time becomes insignificant because the node only needs to send a

signal out to its adjacent node.

For the "Status Broadcast" filing model, the initial parallel filing approach,

broadcasts a folder's filing status to its immediate child folders when it completed the

filing of the folder, and subsequently, its child folders can re-examine each respective

readiness for filing (Are all parent folders completed the filing?). As shown in Figure 18,

the required nodal processing time for completing the filing on the same folder

organization as in Figure 14 is now reduced to five units. This gives a significant saving

in the overall system processing time.

The "Status Broadcast" filing model can be further modified to be a "Result

Relay" filing model, which takes full advantage of the parallel filing approach to

accomplishing the filing tasks. The primary restriction imposed on the other two models

82

83

is that the filing on a given folder would not be proceeded unless all parent folders of this

given folder completed their filings. This restriction can be relaxed in this result relay

filing model. The algorithm designed for this filing approach utilizes both static and

dynamic system information to accomplish the filing task. As shown in Figure 21, the

nodal processing time of the "Result Relay" filing is further reduced to four. The

additional saving is obtained from being aware that the given frame instance is not

deposited into the very first right child of the rooted folder, and, therefore, a specially

formulated message can be quickly relayed (propagated) downwards to all the subfolder

link-connected descendant folders. The example also shows that a no-deposit message

has already been relayed to the very bottom folder (initiated by the right child of the

rooted folder) even though some of this folder's parent folders are still performing their

filings.

CHAPTER 8

DOCUMENT MANAGEMENT BASED ON I-ORG

In this chapter, the management performance of an I-ORG based folder reorganization

will first be investigated, which is superior to that of an equivalent U-ORG based

architecture, by presenting the following simple folder reorganization activity: reset a

folder to another parent folders.

As shown in Figure 23, suppose that the folder X in the organization which

currently has two parent folders (folder A and folder B), contains frame instances found

in both A and B which satisfy the local predicate of the folder X. In the U-ORG

representation, the local predicate of X is L(X) ^ G(A) ^ G(B), where G(A) and G(B) are

the global predicates of the folder A and the folder B, respectively. If the user requests to

change the connection of folder X from B to C (called rehoming X from B to C), then the

folder X should contain only the frame instances which satisfy the revised local predicate

of X, L(X) ^ G(A) ^ G(C). With U-ORG representation, the user modifies first the local

predicate of X, changing from L(X) ^ G(A) ^ G(B) to L(X) ^ G(A) ^ G(C), wipes out

the content of the folder X, and then redistributes frame instances from the folders A and

C which satisfy the new local predicate of X. For this case, the system needs to

redistribute all frame instances found in A v C (the union of the two parent folders). If A

^ B = 0, then it gives the worst case where the system needs to redistribute all frame

instances found in the two parent folders.

84

85

With I-ORG representation, the user simply removes the subfolder link from

folder B to folder X, and creates a subfolder link to connect folder C and folder X without

changing the associated local predicate for X, which is L(X). For frame instance

redistribution, the system only needs to redistribute the common frame instances from A

^ C (the intersection of the two parent folders).

It is easy to see the required management tasks in response to the above proposed

reorganization under different model representations. The performance becomes notable

as the sizes of the two new parent folders (A and C) grow very large, but only a few

instances are in common. For example, as shown in Figure 23, assume that the folder A

contains 1000 frame instances; the folder B contains 100 frame instances, and the folder

C contains 2 frame instances. After the reorganization, we need to redistribute at least

1000 frame instances from (A v C) in the U-ORG representation while we only need to

redistribute 2 frame instances from (A ^ C) in the I-ORG representation.

For the document retrieval, since there exists certain similarities between folders'

predicate specification and the way a user specifies criteria to retrieve his documents, the

enhanced folder organization might prove helpful in simplifying user query specification

and improve response time in the document retrieval process. If the similarities between

predicate and query specification exist, then every user's query on the folder organization

could be translated to or represented as a folder predicate. Associated with this predicate

there is a view folder (a folder which may or may not be shown to the user). The system

could create and attach this folder to the existing folder organization; and it should

contain the retrieved documents in response to the query. In this way, the response time of

86

some complicated or frequent queries could be significantly improved because the system

only needs to identify the view folder and return its contents to the user, without going

through the entire time-consuming query processing and document retrieval procedures.

U-ORG Representation

* change predicate

* redistribute frame instances in (A v C)

I-ORG Representation

* predicate remains unchange

* only redistribute frame instances in (A A C)

Figure 23 Reorganization (Rehome)

As an example, suppose that a user enters the following selection criteria against

the folder organization as shown in Figure 9, requests to view records of people who are

"older than 30 and enrolled in either a Ph.D or MS program". Without taking into

87

consideration the way of specifying the corresponding predicate, a view folder can be

created and attached to the three parent folders of the folder organization:

Emp_of Age_30+, PHD, and MS folders. This view folder should contain all of the

records pertinent to the user's interest, upon which the user can retrieve and record easily.

Having such a view folder created as part of the folder organization, all of the

subsequent document filing will deposit the documents, which qualify its criteria, into

this view folder. Retrieving the content of the view folder is even simpler, it needs to

return to the user all the frame instances contained in the folder. Without this, the

retrieval subsystem needs to understand the overall information structure of the folder

organization. Before the query result can be determined, the system needs to process and

analyze the query, to identify candidate folders from the organization, and then to

discover, filter and evaluate the relevant documents from the candidate folders. If the

user wants to retrieve the same kind of (frequently accessed) documents from his filing

system at any time, the system needs to execute repeatedly the same process of

formulating the query, interpreting it and retrieving the intended documents.

The new construction of the folder organization model is introduced in such a way

that the related objects (documents) with similar properties in nature, which would be

possibly selected in response to a specific and frequent query, are collected into a single

repository (regular or view folder). The desired "selection criteria," as specified in the

original query statement is now represented in the construction of this single repository in

the folder organization. It consists of a part describing the well-defined folder

relationships and a part describing the local predicate of that folder. For instance, the

88

selection criteria in the above example can be represented by a view folder in the folder

organization, where the local predicate of this view folder is "True" and the folder is

connected to the three parent folders with virtual-folder links.

CHAPTER 9

IMPLEMENTATION GUIDELINES (OBJECT MODELING)

The filing and retrieval subsystem deals with the following data elements: folders, links,

predicates, frame instances and/or the original documents. Each of these data elements

can be modeled as an object. Relationships among these objects may become complex,

and the degree of inter-connectivity among different entities may become very high [88].

Moreover, the filing and retrieval subsystem may need to support other non-standard data

types such as an application-specific document or a multimedia document [55,72,85]. The

document may be synthesized by various components of different data type such as voice

message, text, picture and video. To support this document, the system performance

becomes poor as the folder organization grows in size so that eventually it becomes too

large and complicated to manage. In order to prevent this from happening, we should

consider implementing the system by employing object-oriented technologies. Another

good reason for considering the object approach for our implementation is the nature of

the problems that we are modeling. It is a real world problem - seeking ways for

automating the document processing in today's office environment. The object

technology has demonstrated its superior expressive power in closing the semantic gap

between problem domain and solution environment. It represents consistently the

information and knowledge gathering from different dimensions of the real world and

demonstrates more resilient to future changes (i.e., an object based system is more stable

when handling changes or enhancements). In addition, the modeling of these problems

89

90

can be directly translated into internal repository schema if the designed model and

document bases are both supported by an object database system.

We begin our model design with five classes: folder, link (includes subfolder-link

and virtual-folder link), frame instance, local predicate and global predicate. Basically, we

employ the three relations defined and used by all major object modeling methodologies:

inheritance (is_a), aggregation (has_a), and other relationship, where the other

relationship must be associated with a role 4 .

In our current design, both global and local predicate classes are defined as

subclasses of the predicate class, and subfolder link and virtual-folder link classes are

subclasses of the link class. This model may be further refined as we move forward when

some of the current uncertainties are resolved.

Figure 24 gives a object reference model which shows some desired relationships

among those classes.

4
For example, an other relationship can be defined between a lecturer class and a student class where a lecturer plays a teacher's role

in a particular classroom.

tag
set of parent folders
set of child folders
set of links
set of frame instances

merge

filing

redistribution

id
set of composed atomic
predicates

LOCAL PREDICATE id
type

set of deposit folders
1=1 set of <attribute:value>

validate
atomicDecompose
evaluate
modify

GLOBAL
PREDICATE

set of local predicates

set of composition rules

compose

audit

disconnect
connect
dump
create
delete
split

deposit
delete
transfer

LINK

id
type
parent folder

child folder

switch type

add -

delete
rehome

FOLDER
FRAME

INSTANCY',

91

Figure 24 An Object Model of Folder Organization

CHAPTER 10

U-ORG TO I-ORG TRANSFORMATION

In comparison with the I-ORG, which is operational more efficient, the U-ORG has its

simplicity because it maintains only a single type of link. Therefore, the implementation

of the system can have two models which represent the folder organization at two

different levels: the user interface level (or the external representation using U-ORG), and

the system execution level (or the internal representation using I-ORG). Interoperabilities

between the two models needs to be well-coordinated and kept transparent to the user

while the system optimizes its performance by utilizing the architectural strength from

both models.

In this Chapter, we shall explore the co-existence issues between the U-ORG and

the I-ORG folder organization and present a preliminary transformation process which

transforms the given U-ORG into an I-ORG representation when the user folder

organization is constructed.

10.1 Initial Transformation Between U-ORG and I-ORG

Given an U-ORG folder organization, it can be transformed into an I-ORG representation

by replacing all of the U-ORG links with either subfolder links or virtual-folder links in

the I-ORG representation. The transformation rules are presented in the following

algorithm:

92

93

Algorithm

For each folder except the rooted folder

If number of incoming links = I

Then replace the link with subfolder link

Else replace all incoming links with virtual-folder links

End If

End For

All of the predicates remain unchanged and the resultant I-ORG folder

organization is equivalent to the given U-ORG folder organization because the link

definition of the U-ORG is exactly the same as the virtual-folder link definition of the I-

ORG (i.e., the links defined in the two respective folder organizations are

interchangeable).

Figure 25 gives an example of transforming an U-ORG into an I-ORG representation.

Conversely, an I-ORG folder organization can be transformed into an U-ORG

representation accordingly.

94

all local predicates remain intact

Figure 25 Initial Transformation

Algorithm

For each folder C except the rooted folder

If at least one incoming links is a subfolder link

// Assume that (S1 ,C), (S2,C),.., (Sm,C) are subfolder links and (V1 ,C), (V2,C),..,

I/ (Vn,C) are virtual-folder links where Si's (1<i<m) and Vj's (1<j<n) are parent

// folders of C.

Then modify the local predicate of C, L(C), to

L'(C) = L(C) ^ [^ G(Si)] ^ [v G(Vj)]

// G(Si) and G(Vj) are global predicates of folder Si and Vj respectively.

End If

Replace all of the links (both subfolder links and virtual-folder links) by the only

type of links as defined for the U-ORG.

End For

95

The change of the local predicate of every folder which has incoming subfolder

link(s), requires the modification of the local predicate. For instance, let a folder X have

one parent folder S1 with subfolder relationship and n>2 number of parent folders V1,

V2,...Vn with virtual-folder relationships. Let G(S1), G(V1), G(V2),..,G(Vn), be the

global predicates of the folders Si, V1, V2,.., Vn respectively. Let L(X) be the local

predicate of the folder X. The new local predicate of the folder X after transforming into

the U-ORG becomes L'(X) = L(X) ^ G(S1) ^ [v G(Vi), This new local predicate

L'(X), characterizes the semantics of the original links which include one subfolder link

(S1,X), and n virtual-folder links (V1,X), (V2,X),..;(Vn,X). After the change of the

predicate, we proceed to replace all of the links (both subfolder links and virtual-folder

links) by the only type of links defined for the U-ORG. Now, we should ensure the

content of the folder organization remains intact for transforming from U-ORG into I-

ORG and vice versa.

10.2 Content Equivalence

The content equivalence between two folders of two different folder organizations can be

defined as follows: Given a folder FA in ORG-A and a folder FB in ORG-B, the folder F A

is content-equivalent to the folder FB if their contents are identical. We then prove the

equivalence between the two organizations by showing that the content of the folder X in

an I-ORG has not changed after transforming it into the U-ORG representation. Any

96

frame instance fi found in the folder X of the I-ORG representation has the following

three facts: (a) it satisfies L(X), the local predicate of X; (b) fi must appear in the folder

S1 which has a subfolder link connecting to X; and (c) fi must appear in at least one of

the folders V1, V2,.., and Vn which have virtual-folder links connecting to X.

Now, in the U-ORG representation, the new local predicate of the folder X

becomes L'(X) = L(X) ^ G(S1) ^ [v G(Vi), 1<i<n]. A frame instance fi may flow into

folder X via any of the possible paths: (S1,X), (V1,X), (V2,X),..., or (Vn,X), since we

have only one type of link defined for the U-ORG. But regardless of which path fi might

take for filing into the folder X, the implication of the above three facts (a), (b) and (c)

supports the following conclusions: (a') fi satisfies L(X), the local predicate of X in the

original I-ORG (from (a)); (b') fi satisfies G(S1) because fi is found in the S 1 (from (b));

and (c') fi also satisfies G(V1) v G(V2) v v G(Vn) because fi is found in either VI,

V2,...or Vn in the original I-ORG representation (from (c)). Therefore, we conclude that

fi satisfies L(X) ^ G(S1) ^ [G(V1) v G(V2) v	 v G(Vn)], or L'(X), the local predicate

of the folder X in the U-ORG representation.

Similarly, it can be shown that any incoming frame instance which is deposited

into folder X in the U-ORG will be deposited into the folder X in the I-ORG

representation as well.

97

10.3 Definitions

The direct transformation of a given U-ORG into its content-equivalent I-ORG as

described above is just the first step in the conversion process. We need fine-tune this

initial representation to become an optimal I-ORG representation. Before the remainder

of the transformation procedure is presented, we need to introduce the following

terminology definitions:

(a) Supnet: The supnet of a given folder F is the part of the folder organization that does

not contain any descendant folder of F.

(b) Common Parent Folder (C]»F): A CPF of a given folder set S, is a folder where all

paths from the rooted folder to any folder in S intersect (since rooted folder is a CPF

of any S, so at least one CPF can be found for any given folder set of a folder

organization).

(c) Common Parent Folder Chain (CPFC): All CPFs of a given folder set S form a direct

chain. This direct chain is called CPF chain (the rooted folder is contained in the

CPFC as default).

(d) Least Common Parent Folder (LCPF): The leaf CPF of the CPFC is called the LCPF

of the given folder set F (again, if the rooted folder is the only node in the CPFC, then

it is also the LCPF).

The examples shown in Figure 26 and Figure 27 illustrate the above definitions.

Folder	 Supnet of x

Organization -

98

Supnet of y	 Supnet of z

Figure 26 Supnet Examples

10.4 Transformation - Overview

This section continues the transformation process to further refine the I-ORG generated

from the initial direct transformation described above.

99

S = {X, Y}

CPF of S are: A and B

CPF Chain:

S = {X}

CPF of S are: A, B and C

CPF Chain:

Figure 27 CPF, CPFC and LCPF Examples

The transformation process starts from the rooted folder, follows the topological

sorting order and visits every folder in the folder organization. For each stop at a folder,

the same procedure repeat. This procedure is performed by running a step-locked

reduction process on the two structures - the supnet of the target folder and the logical

predicate representation of the folder. The two structures will be eventually reduced to

their simplest forms and merged to reflect how a complicated predicate is simplified at

100

the end of the reduction process. At each step of the reduction, the two structures need to

reference each other before changing their states (or called step-locked procedure).

The local predicate of a folder to be transformed is first decomposed into a set of

atomic predicates and represented by a logical structure. The logical structure is

simplified by removing the irrelevant atomic predicates and identifying the portion of the

structure which can be deleted from the structure and transformed into proper folder

relationships without losing the semantics of the original predicate. The removed

predicates will be kept in a set for reconstructing the local predicate of the folder at the

end of reduction process. As each reduction of logical structure is done, the remaining

structure is locked for reference and followed by the removal of non-interested folders

from its structural counterpartner, the supnet of the target folder. When the predicate of

certain folder in the supnet is not referenced in the locked predicate structure, the folder

and its descendant folders together, are removed from the supnet. So the size of the

supnet organization may be also reduced. Performing step by step, the transformation

process continues until both the supnet and the predicate logical structure reach their

simplest forms and cannot go any further. The two reduced structures are then merged

and the local predicate is reconstructed to reflect the transformation result: the simplified

predicate structure and the modified folder organization. If the simplified predicate is a

composite predicate, it will be transformed into an equivalent Partial Folder Organization

(PFO) which comprises folders, dummy folders and folder relationships. A dummy folder

is a folder whose local predicate is assigned to be "true". One purpose to create dummy

folders for instance, is for the sake of maintaining the integrity of folder organization.

toi

Each folder in the PFO is associated with an atomic predicate and logical operators

appearing in the original composite predicate are represented by dummy folders, and

proper subfolder or virtual-folder relationships. The PFO is then attached to the folder

organization to complete the transformation cycle for the given folder and its associated

local predicate. Following the topological sorting order, the same procedure is applied to

every folder in the folder organization.

10.5 Transformation - Details

Facilitating with examples, the remainder of this section describes in details the step-

locked transformation process. As mentioned above, the same transformation procedure

is applied to every folder the process visits. We shall organize the procedure into the

following eleven steps. If folder F in a given folder organization is the target folder to be

transformed, then (1) all folders except F appearing in the supnet of F have already

completed their transformations and each of them is associated with an atomic predicate,

(2) the portion of the local predicate of F, L(F), to be transformed into folder relationships

can only be linked to the ancestral folders of F in order to maintain a valid RDAG graph,

therefore, we are only interested in the supnet of F rather than the subnet of F which

comprises all descendant folders of F in the folder organization, and (3) as resulting from

the initial transformation, if the number of incoming links toward folder F is greater than

one, the links are virtual-folder links. The rest of the links in the supnet of F could be

either subfolder links or virtual-folder links.

102

With these three implications in mind, we start listing the eleven transformation steps as

follows:

Step 1: Generate the global predicate P(F) for the folder F.

Step 2: Identify the supnet of folder F, Sup(F).

Step 3: Examine the global predicate of F and remove the irrelevant atomic predicates.

The removed predicates will be kept in a set R for reconstructing the local predicate of F

at the end of the process. Irrelevant atomic predicates are those predicates which are not

associated with any folders in the supnet of F. Let P'(F) be the resulting global predicate

of F after this step.

Step 4: Identify the CPF, CPFC and LCPF from the supnet of F where S={F} in this

context.

Step 5: Use a logical structure Log[P'(F)] to represent P'(F). Refer to Figure 8 for an

example. Simplify the Log[P'(F)] by applying rules for logical operations such as:

103

(3)(A^B)v(C^B)=B^(AvC)

Step 6: Now the step-locked reduction starts with the two structures: Sup(F), the supnet

of F and Log[P'(F)], the logical representation of P'(F).

Step 7: Log[P'(F)] - Remove all atomic predicates associated with any ancestral folders

of LCPF. Suppose Log' [P'(F)] is the resulting structure after this step.

Sup(F) - Remove all ancestral folders of LCPF and disconnect F from the sup(F)

since it will be reconfigured afterward. Suppose Sup' (F) is the resulting

organization after this step and notice that the LCPF is now the rooted

folder of Sup'(F).

Step 8: For each child folder C of LCPF in the Sup' (F), do the following:

Step 8': If its atomic predicate L(C) is not found in any part of Log'[P'(F)] or L(C) e

Log' [P'(F)], identify the subnet of C, sub(C), where sub(C) contains all descendant

folders of C and the incoming links to C initially but needs to be reconfigured as follows:

If any folder C' in sub(C) whose local predicate can be found in the predicate structure, or

L(C') E Log' [P'(F)] and, (1) has incoming links from folders in the [sup'(F) - sub(C)] or

sub(C), and (2) has an incoming subfolder link from another folder in the sub(C), then

make sub(C) to also include those incoming links from [sup'(F) - sub(C)]. On the other

hand, if the condition (1) remains unchanged, but the condition (2) changes to have an

incoming virtual-folder link from another folder in the sub(C), then the sub(C) should be

104

reconfigured to remove folder C' and its descendant folders from it, but still retain the

incoming virtual-folder link to the C'. For those C' where L(C') E Log'[P'(F)] but do not

meet either of the above conditions, their predicates should be moved into R.

Figure 28 gives one example for each respective cases.

Figure 28 Reconfigure Sub(C)

Log'[P'(F)] - Remove and put into R, all atomic predicates associated with folders in

sub(C). Suppose Log"[P'(F)] is the resulting structure after this step.

105

Sup'(F) - Remove the sub(C). Suppose Sup"(F) is the resulting

organization after this step.

Step 8": If however, L(C) e Log'[P'(F)], the following reductions take place:

Log'[P'(F)] - Remove the atomic predicate associated with LCPF and let

Log"[P'(F)] be the resulting structure after this step.

Sup'(F) - Remove LCPF and its associated links. Let Sup"(F) be the resulting

organization after this step.

Repeat the same procedure (Step 8) on the descendant folders of C (C is now considered

the LCPF or the rooted folder of the split branch from the sup"(F)). The procedure repeats

with the two reduced structures Log"[P'(F)] and Sup"(F) until all folders under C are

visited or the process cannot go any further.

Step 9: Repeat (Step 8) the same procedure on the next child folder of LCPF until all of

its child folders are visited or the process cannot go any further.

Step 10: Merge the two remaining structures and restore the local predicate, L'(F), from

R to reflect how the local predicate of F, L(F), is reduced and how the folder F is re-

attached to the right folders remained in the Sup"(F).

Step 11: If L'(F) is a composite predicate, transformed it into an equivalent Partial Folder

Organization (PFO) which comprises of folders, dummy folders and folder relationships.

106

Each folder in the PFO is associated with an atomic predicate and logical operators

appear in the composite predicate are represented by dummy folders, and proper

subfolder or virtual-folder relationships. After replacing the folder F with PFO in the

original folder organization, the transformation process for the given folder F and its

associated local predicate L(F) is completed.

We will use the following examples to illustrate the above transformation

procedure. As shown in Figure 29, given a folder organization and a target folder F in it,

assuming that the number appearing in a folder represents the identification of this

folder's atomic predicate. So "1" is the atomic predicate assigned to the rooted folder, "2"

is the atomic predicate assigned to the left child of the rooted folder, and so on. Suppose

L(F)=[7^(8v9)]^2^1^(3v4) is the user supplied local predicate for the folder F. The

global predicate of F, P(F), is first generated (Step 1), that is [7^(8v9)]^2^1^(3v4)^1^

(2v3). The transformation domain of P(F) is the folder organization itself since the

Sup(F) equals to the original folder organization in this example (Step 2) and it is shown

in the figure. In the Step 3, we remove the irrelevant predicates 7, 8 and 9 since none of

them is associated with any folders in the Sup(F). So the remaining global predicate,

P'(F), becomes 2^1^(3v4)^1^ (2v3). Step 4 identifies that the rooted folder of the

Sup(F) is the LCPF of the original folder organization. Some logical operational rules are

applied to the P'(F) in Step 5 to make P'(F) the simplest logical expression. For instance,

there are two "1"s in the P'(F), so we remove one of them. In addition, since "2" is a must

condition in the logical tree, so we remove the entire branch (2v3) from the predicate

structure (see Step 5 in Figure 29). Step 6 starts the step-locked transformation procedure

107

with structures as presented in the left most displays in Figure 29 (before Step 7 is

applied). After disconnect folder F from the Sup(F), Step 7 can be skipped since the

LCPF is the rooted folder itself. The two structures iterate three times within the Step 8 to

reduce their structures, and represent their final versions with Sup"(F) and Log"[P'(F)]

respectively. Step 9 is skipped since we assume F is the only folder in the given folder

organization remains untransformed. In Step 10, the two reduced structure are merged to

show that the simplified predicate of folder F, L'(F), is reduced to 7^(8v9), and the folder

F should be connected to the folder (predicate identity "2") with subfolder link, to the

folder (predicate identity "3") with virtual-folder link and to the folder (predicate identity

"4") with virtual-folder link as well. Since L'(F) is a composite predicate, we need to

further transform it into a PFO. As shown in Figure 29, the PFO of F comprises five new

folders including two dummy folders (labeled with "T") so each of them is associated

with an atomic predicate (Step 11). The transformation process for the folder F is

completed at this point.

108

Figure 29 Step-Locked Transformation Process

Figure 30 presents another example where the local predicate of folder F, L(F), is given

by 7^4^6^1. Going through the transformation process, the local predicate of folder F

can be simplified to L'(F)=7 and F is connected to, with appropriate types of links, to the

three folders whose predicate identities are 2, 3 and 6, respectively. Since L'(F) is an

atomic predicate, meaning that the output Sup"(F) structure is the PFO of F. So we can

direct attach it to the original folder organization without going through the last

transformation step.

Figure 30 Step-Locked Transformation Process - Another Example

109

CHAPTER 11

CONCLUSION

In the modern office environment, an intelligent personal filing system is designed to

electronically mimic the folder organization and document filing and retrieving

methodology a person might use to manage daily documentation. This dissertation

presents an architectural enhancement to the existing folder organization model

[99,100,103,104], and three different filing approaches based on the enhanced model.

In [99,100,103,104], an agent based filing organization is used, in which each folder

associates with a local predicate which governs the document filing for the folder.

The existing folder organization model was originally proposed by the TEXt

PROcessing System (TEXPROS) research project [48,91]. It is represented by a Rooted

Direct Acyclic Graph (RDAG) [61,99,101], in which each node represents a folder and

each link represents a parent-child folder relationship. Each folder is created with a

predicate specification designed by the user which governs the content filing from all of

its parent folders into this folder. In other words, if the information extracted from a

document in a parent folder qualifies the child folder's predicate, the filing system will

deposit a copy of this document into the child folder. Otherwise, the document stops at

the parent folder and will not go any further beyond that folder. Therefore, a link in the

existing folder organization model describes only a possible filing path relationship

between the two connecting folders. This relationship is simple and direct. A folder

organization constructed with this type of link is perceptible by the user and therefore is

110

111

referred to as User ORGanization (U-ORG) for simplicity. However, this model also

presents some architectural constraints such as it is unable to model a more sophisticated

folder organization (with special user requirements) without introducing predicate

complexity.

For example, if a user wants to add a new folder to a given folder organization as

a depository of common documents from some selected parent folders, this requires the

user to specify carefully the filing predicate for this new folder so that the subsequent

filing and retrieving can be performed correctly. More precisely, modeling such a simple

folder relationship within the existing framework requires the user to provide a condition-

equivalent filing predicate for the folder, because the predicate specification in this case

needs to take into account all of the related ancestral folders' predicates. This creates the

design complexity and has a significant impact on system performance in both

reorganization and document filing.

Our proposal supplements the only filing path relationship in the U-ORG model

with a subfolder relation link which captures the "and" relationship among links

connecting different parent folders to the same child folder. This new organizational

model supplements the architectural deficiency of the U-ORG model because:

(1) it is able to model the folder relationship in the previous example without creating

unnecessary complexity,

(2) it helps the user to simplify predicate specification inputs, and

112

(3) it fosters the creation of different filing approaches in two innovative models -

sequential and parallel, to further improve the document filing performance based on this

new model foundation.

The new folder organization model expresses its superior architectural power by

hiding or simplifying the complexity of predicate specification and also helps improve

document filing and retrieving performance.

In contrast to the existing folder organization which is simple but limited in

modeling capabilities, the proposed new model can be implemented as an Internal

representation of a folder ORGanization (I-ORG) for taking its architectural advantages

to improve user input specifications and system output performance. In doing so, a two-

layer representational hierarchy is proposed. This representational hierarchy, tightly

coupling a U-ORG and its underlying support I-ORG, constructs a common system

foundation for processing, filing, managing, and retrieving a user's documentation in the

electronic office environment.

The design of the filing under the new organization model should capture the

architectural attributes of the I-ORG model in order to gain some performance

advantages. As an example, the relational constraint, is an architectural attribute

presented in the I-ORG model. A constraint can be that certain parent folders must

contain the document before this document can be filed against their common child

folder. It is checked prior to the time-consuming predicate evaluation task is taken place.

1 13

In doing so, filing performance is improved in comparison with the performance in the U-

ORG environment.

Another example is as follows. Since the I-ORG representation greatly reduces the

complexity of predicate specification by representing a good portion of the complicated

predicate with proper folder relationships, it facilitates the system to reduce the number of

atomic predicates to be evaluated during the filing, and therefore, it improves the filing

performance.

To further support the architectural expressive power of the new organizational

model, we present three filing models in this dissertation. First of all, we propose a

"complete-parent-first" filing algorithm which employs the well-known topological

sorting and its underlying support Depth-First Search (DFS) technique to accomplish the

filing tasks. This filing algorithm files the frame instances in an orderly sequential

manner. The processing characteristics and filing performance of this filing model are

analyzed and evaluated. The other two filing models, the "status broadcast model", and

the "result relay model", are proposed to complete the filing in a parallel fashion. The

significance of these two filing models are twofold: firstly, the document distribution is

more dynamic relying on the message (filing status and filing result) exchanges among

folders (the filing order is therefore less predictable); secondly, it fits perfectly into our

overall object-oriented design architecture and implementation which paves the road

toward our eventual goal in complying with the main development stream as well as

gaining notable performance savings in the future distributed processing environment.

114

Before giving our conclusion that the new folder organization model possesses superior

architectural expressive power over the existing model, a generalized filing scenario and a

reorganization activity were discussed for each organization model to explore the

potential savings gained in the predicate evaluation, the predicate change, and the

document redistribution processes.

With the proposed architectural enhancement and the associated filing models, we

establish a concrete infrastructure for other components in the TEXPROS system. When

an U-ORG is proposed by the user, it is transformed into a content-equivalent folder

organization represented by an I-ORG. And furthermore, the system fine-tunes this

initial I-ORG into another I-ORG representation, which not only corrects certain mistakes

the user might introduce, but also optimizes the overall predicate structure to help

improve the filing performance. In such a final representation, each folder in the

organization only associates with a single atomic predicate.

CHAPTER 12

FUTURE RESEARCH

In attempt to establish a solid organizational infrastructure for the construction, filing,

reorganization, and retrieval subsystem of TEXPROS, we have observed some interesting

issues, which are worth further investigation. A brief description of each of the

observations is given as follows:

(1) The three filing models as presented in this dissertation have their own

approach to traversing through the folder organization and determining the filing orders.

But none of them has done enough exploration in the area of predicate evaluation. The

predicate evaluation process, as we discussed in this dissertation, sounds simple and

straightforward, but it is based on the current defined predicate structure. In either cases,

if we decide to rely on this structure or if a new predicate structure proposal is well-

accepted in the future, there is always a need to develop a sound evaluation algorithm to

furnish the completeness of those three filing models.

(2) An interesting question arises: once a personal folder organization is

constructed, can a user deposit a given frame instance into any of his desired folders by

simply pointing and clicking at the targeted folder (through a well-defined user interface)

instead of always filing from the top (rooted) folder? One reason for doing this is due to

the user's perception of his own folder organization. For an incoming frame instance, a

user may request to deposit directly a copy of this frame instance into a selected folder. If

the deposition can only succeed if the filing information carried in this frame instance

115

116

satisfies the target folder's global predicate, then the remaining question is how the

system brings the folder organization back to a consistent state. We may argue that,

internally, the system can still perform the filing from the rooted folder, since this

operation is totally hidden from the user. The system can have many ways to redistribute

frame instances. But the real issue here is what happens if the filing information carried in

the frame instance does not qualify the global predicate of the desired folder?

(3) If the document classes of a folder organization are disjointed at every level

(predicates of folders from the same parent folder are mutually exclusive - for example,

male student folder and female student folder), is this kind of folder organization

architecturally simpler than a non-disjoint one and possesses with some performance

advantages?

(4) If a frame instance contains insufficient information for filing (or some key

information is missing), should we provide some kind of facility, that allows us to add or

modify the content of a given frame instance, or to attach some hints for going through

the filing process and remove them afterward?

(5) The validation process must be enforced before a user's folder organization is

actually created. The validation capabilities are twofold: firstly, the system should

examine the folder relationships which physically construct a valid organization;

secondly, the system should check the predicates whether they are free of redundancy and

contradiction.

It is simple to validate the physical construction because we only need to check

whether a user-defined folder organization has a single rooted folder and is acyclic. This

117

is due to the definition of RDAG. In addition, we need to ensure that the imposed

constraints in defining folder relationships are also met (e.g., a folder should not have a

single incoming virtual-folder link defined for it).

For validating predicates whether they are free of redundancy and contradiction, it

is necessary to validate thoroughly all of the user-defined local predicates. We use the

following three examples to explain predicate definition problems. In example 1, assume

that the folder B is a subfolder of the folder A. The A folder's local predicate is defined as

dept=CIS ^ position=chairman, while the B folder's predicate is defined as dept=CIS.

Apparently, the predicate of folder B is redundant with respect to the predicate of folder

A. In example 2, let the predicate of A folder remain the same, but the predicate of B

folder be position=student. Now it is easy to see that the two predicates are contradicted

each other unless double-positioning frame instances are allowed to entering to the

system. In example 3, let the predicate of A folder be salary > 40K and the predicate of B

folder be salary > 20K. Again, the predicate of B folder is a redundant predicate with

respect to the predicate of A folder. If any of the above cases is created by the user during

the construction phase of a folder organization, the system needs to notify the user that

the created predicates may introduce some problems to the system and offers an

opportunity to do modifications before the actual construction of this folder organization

is committed.

Note that only predicates defined with the same or synonymous attributes can be

used to detect redundancy or contradictions. Similar attributes defined with different data

types are not allowed to be compared unless the required criteria is supported by the

118

knowledge base. For example, if the predicate of folder A is defined as Salary > 40K,

while the predicate for folder B is defined as salary = HIGH, how does the system

perform a comparison between the two predicates and determine if they are free of the

redundancy and/or contradiction? This is a difficult problem.

Next, we formally define rules for detecting redundant and contradictory

predicates. Let P and Q be two related local predicates. Let Q's folder be a descendent

folder of P's. If P implies Q, then we say Q is redundant with respect to the predicate P.

For example, in Figure 31, the folder E is redundant since the local predicate of A

implies the local predicate of E and the content of the folder B (E's immediate parent) is

duplicated in the folder E. Similarly, the content of the folder C (another E's immediate

parent) is also duplicated in the folder E. We should remove the redundant folders from

the folder organization to save the unnecessary operation and management cost.

On the other hand, let Q's folder be a descendent folder of P's. Two related local

predicates P and Q are said to be conflicting predicates if P AND Q is always false. For

example, in Figure 32, folder A and folder E have contradictory predicates since (L(A)

AND L(E)) = False, and folder E is always empty. We should also remove the

contradictory folders from the folder organization to save the unnecessary operation and

management cost.

119

Figure 31 Redundant Folders

Note that both redundant and contradictory problems can be tolerated by the system

because their existence only wastes system resources (such as memory and CPU), and

does not cause any operational problems. But we can carefully guide the user during the

design phase (constructing or modifying a folder organization) to avoid creating these

kinds of problems. However, before a definition is presented for clarifying the nature and

the characteristics of these kinds of design problems [79] and before a proven technique

can be applied, these problems exist commonly in the normal design but may be hidden

from the user as his folder organization is created.

120

Figure 32 Conflict Folders

Furthermore, the validation process, as described above, is considered a passive

approach which helps the user correct problems after predicates are specifred.

Alternatively, a proactive approach may be considered, which guides the user throughout

the predicate specification process and immediately corrects or revises any inefficient

factors the user introduced, like those problems presented above.

Note that the capability of validating input predicates and folder relationships is

also required during the folder reorganization process. The only difference is that, instead

of getting all of the input information from the user, the validation process is now based

on the existing and already validated structure and a restructure proposal that requests an

12.1

reorganization change. The request for reorganization cannot be committed before the

proposal is granted by the system (passing similar validation procedures).

(6) Our current research is focused on creating a personal folder organization, a

centralized, predicate governed, and self-contained personal filing system that is

represented by a RDAG. To cover larger operating environments such as a department, an

electronic library [84,96], a corporation, etc., an extended personal model may be needed

to model a folder organization in such an environment. Each personal folder organization

is defined by its owner as a private folder system that can only be accessed by its owner.

On the other hand, sharable folders can be designed which are either open to the public or

restricted to certain user group(s). As an example, we can create a departmental, an

enterprise or a global information system which combines and links many private folder

organizations with some public folder organizations together. A folder organization

defined and operated in such an environment is partially shared by multiple users, and can

be physically distributed to different locations. Such a folder organization can be

represented by a multiple rooted DAG. The major differences between a personal model

and an extended personal model, are in their filing and folder reorganization. In filing, a

personal model always has one single source (the rooted folder) to begin with, where the

extended model can have multiple sources to do the filing. The extended personal model

also allows a filing system of person A's to receive frame instances that are deposited

from the filing system owned by person B. Moreover, the performance advantage of the

parallel filing model may only be realized when the model is implemented in an open

distributed environment. In such a computing environment, everything is networked and

object-based. As an example, we will define roles and interactions among objects like

folder, link, document, component and agent in our distributed folder organization

model. The folder objects do not necessary reside in a central location or on a single

platform; they can be distributed anywhere in the network and configured as public-

accessible or private-owned folders. Link objects for defining relationships between

folders are maintained on a bilateral basis. Each link in the organization provides only a

connection interface between two related folders. These two folders are the only objects

in the network that know about the link. Document objects presented with different

forms may be inserted into the filing system from different rooted folders as entry points.

They could be text-only documents, or multimedia documents consisting of different

components such as text, voice, picture or video. Each of these components is treated as

an individual component object. How a document is decomposed into components and

stored in the networked repositories, and how different components are retrieved, filtered

and synthesized to meet a user's inquiry interests are on-going research topics. Agent

objects of folders in our folder organization model can be enhanced to become active

agents. Active agents may be empowered with mobile capabilities that enable them to

move around and interact with each other or with functional entities of the system to

proactively searching for ways to accomplish their assignments (e.g., filing tasks) more

efficiently and effectively. The implementation of such a multi-user support system, is

expected to operate on a resource-shared distributed processing environment. We believe

the parallel filing model as proposed in this paper, perfectly fits in an object-based, open

123

and distributed architecture, which is consistent with the evolving trend of data

processing and provides opportunities to meet the performance needs.

REFERENCES

1. Adeli, Knowledge Engineering, McGraw-Hill, NY, 1990.

2. Aho, J. Hoperoft and J. Ullman, Data Structures and Algorithms, Addison-Wesley,
Menlo Park, CA, 1987.

3. E. Bertino, F. Rabitti and S. Gibbs, "Query Processing in a Multimedia Document
System", ACM Transactions on Office Information Systems, Vol. 6, No. 1, pp. 1-
41, January 1988.

4. G. Booch, Object Oriented Design with Applications, the Benjiamin/Cummings
Publishing Company, Inc., Redwood City, CA, 1991.

5. G. Bracchi, B. Pernici, "The Design Requirements of Office Systems", ACM
Transactions on Office Information Systems, Vol. 2, No.2, April 1984, pp151-
170.

6. A. Celentano, M.G. Fugini and S. Pozzi, "Knowledge-Base Document Retrieval in
Office Environments: The Kabiria System", in Proc. of the 14 th Annual
International ACM/SIGIR Conference on Research and Development in
Information Retrieval, Chicago, IL, pp. 183-189, October 1991.

7. A. Celentano, M.G. Fugini and S. Pozzi, "Querying Office Systems about Document
Roles", ACM Transactions on Office Information Systems, Vol. 13, No. 3, pp.
237-268, July 1995.

8. L. Chen, J.T.L. Wang and P.A. Ng, "A Knowledge Based System for Intelligent
Document Processing", draft, Dec. 1993.

9. S. Chen, Document Preprocessing and Fuzzy Unsupervised Character Classification,
Ph.D Dissertation, Department of Computer and Information Science, New Jersey
Institute of Technology, Newark, NJ, May 1995.

10. S. Chen, F. Shih and P. Ng, "A Fuzzy Model for Unsupervised Character
Classification", Information Sciences, An International Journal, Vol. 2, No. 2,
1994.

11. S. Christodoulakis, M. Theodoridou, F. Ho, M. Papa and A. Pathria, "Multimedia
Document Presentation, Information Extraction, and Document Formation in
MINOS: A Model and System", ACM Transactions on Office Information
Systems, Vol. 4, No. 4, pp. 345-383, October 1986.

124

125

12. H. Clifton, H. Garcia-Molina and R. Hagmann, "The Design of a Document
Database", in Proceeding of the ACM Conference on Document Processing
Systems, pp. 125-134, December, 1988.

13. W.F. Clocksin and C.S. Mellish, Programming in Prolog, Spring-Verlag, NY, 1981.

14. P.R. Cohen and R. Kjeldsen, "Information Retrieval by Constrained Spreading
Activation in Semantic Networks", Information Processing and Management,
Vol. 23, No. 4, pp. 255-268, 1987.

15. W.B. Croft, NSF Center for Intelligent Information Retrieval, Communications of the
ACM, Vol. 38, No. 4, pp. 42-43, April 1995.

16. W.B. Croft and R. Krovetz, "Interactive Retrieval of Office Documents", in proc.
ACM-IEEE Conference on Office Information Systems, pp. 228-235, NY.

17. W. Croft and D. Stemple, "Supporting Office Document Architectures with
Constrained Types", in Proc. Of ACM SIGMOD International Conference on
Management of Data, pp. 504-509, 1987.

18. T.H. Cormen, C.E. Leiserson and R.L. Rivest, "Introduction to Algorithms", The MIT
Press, (McGraw-Hill, NYC, 1991).

19. P. Dadam and V. Linnemann, "Advanced Information Management (AIM): Advanced
database technology for integrated applications", IBM Systems Journal, Vol. 28,
No. 4, pp. 661-681, 1989.

20. P.J. Denning, Electronic Junk, Communications of the ACM, Vol. 25, No. 3, pp. 163-
165, March 1982.

21. S. Doong, el., "A Major Enhancement to the Folder Organization Model for Office
Information Systems", draft paper, May, 1996.

22. P. Fischer and S. Thomas, "Operators for Non-First Normal Form Relations", in
Proceeding of the 7‘h International Computer Software Applications Conference,
pp. 464-475, 1983.

23. E.A. Fox, R.M. Akscyn, R.K. Furuta and J.J. Leggett, "Digital Libraries -
Introduction", Communications of the ACM, Vol. 18, No. 4, pp. 22-29, April
1995.

24. S. Gibbs and D. Tsichritzis, "A Data Modeling Approach for Office Information
Systems", ACM Transactions on Office Information Systems, Vol. 1, No. 4, pp.
299-319, October 1986.

126

25. A. Ginsberg, "A Unified Approach to Automatic Indexing and Information
Retrieval", IEEE Expert, pp. 46-56, October 1993.

26. U. Gupta, "Validating and Verifying Knowledge-Based Systems", IEEE Computer
Society, Los Alamitos, CA, 1991.

27. R. Guting, R. Zicari and D. Choy, "An Algebra for Structured Office Documents",
ACM Transactions on Office Information Systems, Vol. 7, No. 4, pp. 123-157.
April 1989.

28. X. Hao, Automatic Office Document Classification and Information Extraction, Ph.D
Dissertation, Department of Computer and Information Science, New Jersey
Institute of Technology, Newark, New Jersey, August 1995.

29. X. Hao, J.T.L. Wang and P.A. Ng, "Nested Segmentation: An approach for Layout
Analysis in Document Classification", in proc. Of the Second International
Conference on Document Analysis and Recognition, Tsukuba Science City, Japan,
pp. 319-322, October 1993.

30. X. Hao, J.T.L. Wang, M.P. Bieber, P.A. Ng, "A Tool for Classifying Office
Documents", Proc. of the 5th International Conference on Tools with Artificial
Intelligence, Boston, MA, Nov. 1993.

31. X. Hao, J.T.L. Wang, M.P. Bieber, P.A. Ng, "Heuristic Classification of Office
Document Classifications", International Journal on Artificial Intelligence Tools,
Vol. 3, No. 2, pp. 233-265, 1994.

32. X. Hao, J.T.L. Wang, P.A. Ng, "Information Extraction from Structured Part of
Office Documents", draft. 1995.

33. P. Hoepner, "Synchronizing the Presentation of Multimedia Objects - ODA
Extensions", ACM SIGOIS Bulletin, Vol. 12, No. 1, pp. 19-32, July 1991.

34. W. Horak, "Office Document Architecture and Office Document Interchange Format
- A Current Status of International Standardization", IEEE Computer, Vol. 18,
No. 10, pp. 50-60, October 1985.

35. J. Hughes, Object Oriented Database, Prentice Hall, NY, 1990.

36. R. Hunter, P. Kaijser and F. Nielsen, "ODA: A Document Architecture for Open
Systems", Computer Communication, Vol. 12, No. 2, pp. 69-79, April 1989.

37. C. Huser, K. Reichenberger, L. Rostek and N. Streitz, "Knowledge-based Editing and
Visualization for Hypermedia Encyclopedias", Communications of the ACM, Vol.
18, No. 4, pp. 49-51, April 1995.

1 , 7

38. E. Ide and G. Salton, "Interactive Search Strategies and Dynamic File Organization in
Information Retrieval", in G. Salton, editor, The Smart Retrieval System -
Experiments in Automatic Document Processing, pp. 373-393, Prentice-Hall Inc.,

1971.

39. G. Jaeschke and H. Schek, "Remarks on the Algebra of Non-First Normal Form
Relations", in Proc. Of the ACM SIGACT-SIGMOD Symposium on PODS,
pp.124-138, 1982.

40. N. Jardine and C.J. van Rijsbergen, "The Use of Hierarchic Clustering in Information
Retrieval", Information Storage and Retrieval, Vol. 7, No. 5, pp. 217-240,
December 1971.

41. W. Kim and F. Lochousky, Object-Oriented Concepts, Databases, and Applications,
Addison-Wesley Publishing Company, NY, 1989.

42. D.E. Knuth, J.H. Morris and V.R. Pratt, "Fast Pattern Matching in Strings", SIAM
Journal of Computing, Vol. 6, No. 2, pp. 323-350, June 1977.

43. D.L. Lee, Efficient Signature File Methods for Text retrieval, IEEE Transactions on
Knowledge and Data Engineering„ Vol. 7, No. 3, pp. 436, 1995.

44. Q. Liu, An Office Document Retrieval System with the Capability of Processing
Incomplete and Vague Queries, Ph.D Dissertation, Department of Computer and
Information Science, New Jersey Institute of Technology, Newark, NJ, 1994.

45. Q. Liu, J.T.L. Wang and P.A. Ng, "An Office Document Retrieval System with the
Capability of Processing Incomplete and Vague Queries", in Pc.ro Of the 5 th

International Conference on Software Engineering and Knowledge, pp. 11-17,
San Francisco, CA, June 1993.

46. Q. Liu and P. Ng, "A Browser of Supporting Vague Query Processing in an Office
Document System", Journal of Systems Integration, Vol. 5, No. 1, pp. 61-82,
1995.

47. Q. Liu and P. Ng, "A Query Generalizer for Providing Cooperative Responses in an
Office Document System (revised version)", to appear in Data and Knowledge
Engineering Journal, 1998.

48. Q. Liu and P. Ng, Document Processing and Retrieval: TEXPROS, Kluwer
Academic Publishers, Norwell, MA, 1996.

128

49. Q. Liu, J. Wang and P. Ng, "An Office Document Retrieval System with the
Capability of Processing Incomplete and Vague Queries", in Proc. Of the 5th
International Conference on Software Engineering and Knowledge, San
Francisco, CA, pp. 11-17, June 1993.

50. Q. Liu, J. Wang and P. Ng, "On Research Issues Regarding Uncertain Query
Processing in an Office Document Retrieval System", Journal of Systems
Integration, Vol. 3, No. 2, pp. 163-194, 1993.

51. Dario Lucarella and Antonella Zanzi, "A Visual Retrieval Environment for
Hypermedia Information Systems", ACM Transactions on Office Information
Systems, Vol. 14, No. 1, pp. 3-29, January 1996.

52. E. Lutz, H.V. Kleist-Retzow and K. Hoernig, "Mafia - An Active Mial-filter-agent for
an Intelligent Document Processing Support", Multi-User Interfaces and
Applications, pp.16-32, 1990.

53. D. Maier, The Theory of Relational Database, Computer Science Press, Potomac,
MD, 1983.

54. T. Malone, K. Grant, K. Lai, R. Rao and D. Rosenblitt, "Semistructured Messages are
Surprisingly Useful for Computer-Supported Coordination", ACM Transactions
on Office Information Systems, Vol. 5, No. 2, pp. 115-131, April 1987.

55. J. Martin, The Wired Society: A Challenge for Tomorrow, Prentice-Hall, Englewood
Cliffs, NJ, 1978.

56. B.P. McCune and et al. Rubric: A System for Rule-based Information Retrieval, IEEE
Transactions on Software Engineering, Vol. SE-11, No. 9, pp. 939-945,
September 1985.

57. J. McHugh, Algorithmic Graph Theory, Prentice Hall, New Jersey, 1990.

58. C.T Meadow, Test Information Retrieval Systems, Academic Press, San Diego, CA,
1992.

59. F. Mhlanga, D_Model and D_Algebra: A Data Model and Algebra for Office
Documents, Ph.D Dissertation, Department of Computer and Information Science,
New Jersey Institute of Technology, Newark, New Jersey, May 1993.

60. F. Mhlanga, J. Wang, T. Shiau and P. Ng, "A Query Algebra for Office Documents",
in Proc. Of the 2nd International Conference on Systems Integration, Morristown,
NJ, pp. 458-467, June 1992.

129

61. F. Mhlanga, Z. Zhu, J. Wang and P. Ng, "A New Approach to Modeling Personal
Office Documents", Data and Knowledge Engineering, Vol. 17, No. 2, pp. 127-
158, November, 1995.

62. N. Naffah and A. Karmouch, "Agora - An Experiment in Multimedia Message
Systems", Computer, Vol. 19, No. 5, pp. 56-66, May 1986.

63. E. Nodtvedt, "Information Retrieval in the Business Environment", Technical Report,
Department of Computer Science, Cornell University, TR 80-447, Ithaca, NY,
December 1980.

64. S. Pozzi, C. A. Celentano, "Knowledge-Based Document Filing", IEEE Expert, pp.
34-45, October 1993.

65. J.S. Quarterman and J.C. Hoskins, "Notable Computer Networks", Communications
of the ACM, Vol. 29, No. 10, pp. 932-970, October 1986.

66. R. Rao, J.O. Pedersen, M.A. Hearst, J.D. Mackinlay, S.K. Card, L. Masinter, P-K.
Halvorsen and G.G. Robertson, "rich Interaction in the Digital Library",
Communications of the ACM, Vol. 18, No. 4, pp. 25-39, April 1995.

67. Jr. J.J. Rocchio, "Relevance Feedback in Information Retrieval", in G. Salton, editor,
The Smart Retrieval System - Experiments in Automatic Document Processing,
pp. 313-323, Prentice-Hall Inc., 1971.

68. S. Sakata and T. Ueda, "A Distributed Office Mail System", Computer, Vol. 18, No.
10, pp. 106-116, October 1985.

69. G. Salton, Automatic Text Processing: The Transformation, Analysis, and Retrieval of
Information by Computer, Addison-Wesley, Reading, MA, 1988.

70. G. Salton, J. Allan and C. Buckley, "Automatic Structure and Retrieval of Large Text
Files", Communications of the ACM, Vol. 3, No. 2, pp. 97-108, February 1994.

71. G. Salton and M.J. McGill, Introduction to Modern Information Retrieval, McGraw
Hill, New York, 1983.

72. S. Saxin, "Computer-based Real-time Conferencing System", Computer, Vol. 17, No.
10, pp. 33-35, October 1985.

73. D. Shasha and J. Wang, "Optimizing Equijoin Queries in Distributed Databases
Where Relations are Hash Partitioned", ACM Transactions on Database Systems,
Vol. 16, No. 2, pp. 279-308, June 1991.

130

74. G. Shaw and S. Zdonik, "A Query Algebra for Object-Oriented Databases", in
Proceedings of the 6th International Conference on Data Engineering, Los
Angeles, CA, pp. 154-162, February 1990.

75. F.Y. Shih, S. Chen, D.C.D. Hung and P.A. Ng, "A Document Segmentation,
Classification and Recognition System", in Proceedings of	 International
Conference on Systems Integration, Morristown, NJ, pp. 258-267, June 1992.

76. M. Snoeck and G. Dedene, "Generalization/Specification and Role in Object Oriented
Conceptual Modeling", Data and Knowledge Engineering, Vol. 19, No. 2, pp.
171-195, June 1996.

77. S. Su, M. Gou and H. Lam, "Association Algebra: A Mathematical Foundation for
Object-Oriented Databases", IEEE Transactions on Knowledge and Data
Engineering, Vol. 5, No. 5, pp. 775-798, October 1993.

78. Y.Y. Tang, C.D. Yan and C.Y. Suen, "Document Processing for Automatic
Knowledge Acquisition", IEEE Transactions on Knowledge and Data
Engineering, Vol. 6, No. 1, pp. 3-21, 1994.

79. C. Thanos, Multimedia Office Filing: The MULTOS Approach, Elsevier Science
Publishers B. V., 1993, Chapter 3: The MULTOS Document Model.

80. R.H. Thomas, H.C. Forsdick, T.R. Crowley, R.W. Schaaf, R.S. Thomlinson, V.M.
Travers and G.G. Robertson, "Diamond: A Multimedia Message System Build on
a Distributed Architecture", IEEE Computer, Vol. 18, No. 12, pp. 65-78,
December 1985.

81. D. Tsichritzis, Office Automation, Springer-Verlag, Berlin, 1985.

82. D. Tsichritzis, S. Christodoulakis, P. Econopoulos, C. Faloutsos, A. Lee, D. Lee, K.
Vanderbroek and C. Woo, "A Multimedia Office Filing System", in Proc. Of 91)1
International Conference On Very Large Databases, 1983.

83. D.C. Tsichritzis, "Form Management", Communications of the ACM, vol. 25, no. 7,
pp. 453-478, July 1982.

84. M. Turoff and S.R. Hiltz, "The Electronic Journal: A Progress Report", Journal of the
ASIS, Vol. 33, No. 4, pp. 195-202, July 1982.

85. J. Tydeman, H. Lipinski, R. Adler, M. Nyhan and L. Zwimpfer, Teletext and Videotex
in the United States - Market Potential, Technology, Public Policy Issues,
McGraw-Hill, New York, 1982.

131

86. W.E. Ulrich, "Introduction to Electronic Mail and Implementation Considerations in
Electronic Mail", in AFIPS Conference Proceedings, pp. 485-492, Arlington, VA,
1980.

87. EM. Voorhees, "The Cluster Hypothesis Revised", in Proceedings of the 8" Annual
International ACM/SIGIR Conference on Research and Development in
Information Retrieval, pp. 188-196, NY, June 1985.

88. C.Y. Wang, Q. Liu and P.A. Ng, "Browsing in an Information Repository", in
proceedings of the 2nd World Conference on Integrated Design and Process
Technology, December 1996.

89. J.T.L. Wang, F.S. Mhlanga, Q. Liu, W.C. Shang, P.A. Ng, "An Intelligent
Documentation Support Environment", Proc. of 5h1 	Conference on
Software Engineering and Knowledge Engineering, San Francisco, CA, pp429-
436, June 1993.

90. J. Wang, F. Mhlanga and P. Ng, "A New Approach to Modeling Office Documents",
ACM SIGOIS Bulletin, Vol. 14, No. 2, pp. 46-55, December 1993.

91. J.T.L. Wang and P.A. Ng, "TEXPROS: An Intelligent Document Processing System
", International Journal of Software Engineering and Knowledge Engineering,
Vol. 15, No. 4, pp. 171-196, April 1992.

92. C. Wei, Knowledge Discovery for Document Classification Using Tree Matching in
TEXPROS, Ph.D Dissertation, Department of Computer and Information Science,
New Jersey Institute of Technology, Newark, New Jersey, May 1996.

93. C. Wei, Q. Liu, J. Wang and P. Ng, "Knowledge Discovery for Document
Classification Using Tree Matching in TEXPROS", Submitted to Information
Sciences, an International Journal, March 1996.

94. C. Wei, J.T.L. Wang, X. Hao and P.A. Ng, "Inductive Learning and Knowledge
Representation for Document Classification: The TEXPROS Approach", in Proc.

of 3 rd International Conference on Systems Integration, Sao Paulo, Brazil, pp.
1166-1175, August 1994.

95. M.E. Williams, "Electronic Databases", Science, pp. 445-446, April 1985.

96. C. Winkler, "Desktop Publishing", Datamation, Vol. 32, No. 23, pp. 92-96,
December 1986.

97. R.J. Wirfs-Brock and R.E. Johnson, "Surveying Current Research in Object-Oriented
Design", Communications of the ACM, Vol. 33, No. 9, pp. 104-124, September
1990.

132

98. D. Woelk, W. Kim and W. Luther, -An Object-Oriented Approach to Multimedia
Databases", in Proceedings of the ACM SIGMOD International Conference on
Management of Data, Washington D.C., pp. 311-325, May 1986.

99. Z. Zhu, Document Filing Based upon Predicates, Ph.D Dissertation Proposal,
Department of Computer and Information Science, New Jersey Institute of
Technology, Newark, New Jersey, October 1994.

100. Z. Zhu, Q. Liu, J. Mchugh, and P. Ng, "A Predicate Driven Document Filing
System", Journal of Systems Integration, Vol. 6, No. 3, pp. 373-403, September
1996.

101. Z. Zhu, J.A. McHugh, J.T.L. Wang, P.A. Ng, "A Formal Approach to Modeling
Office Information Systems", Journal of Systems Integration, Vol. 4, No. 4, pp.
373-403, December 1994.

102. J. Zobel, J.A. Thom and R. Sacks-Davis, "Efficiency of Nested Relational
Document Database Systems", in Proc. Of the 17th International Conference on
Very Large Databases, Barcelona, Spain, pp. 91-102, September 1991.

103. Fan, X., Q.H. Liu and P.A. Ng, "A Multimedia Document Filing System",
Proceedings on IEEE International Conference on Multimedia Computing and
Systems, Ottawa, Canada, pp. 492-499, June 3-6, 1997.

104. Fan, X., Q.H. Liu and P.A. Ng, "Knowledge-Based Document Filing: TEXPROS
Approach", Proceeding on the 13 th International Conference on Advanced
Science and Technology, in conjunction with the 2"d International Conference on
Multimedia Information Systems and IEEE/CS YUFORIC on Multimedia
Information Systems - Chicago, (ICAST97/ICMIS97), Motorola University,
Schaumburg, IL, pp. 58-67, April 3-5, 1997.

105. Simon Doong, C.S. Wei, Xien Fan, D.C. Hung and Peter A. Ng, "A Folder
Organization Model in the Office Environment", submitted to the 4th
International Conference on Information Systems Analysis and Synthesis,
Orlando, Florida, July 12-16, 1998.

106. Simon Doong, Xien Fan, C.S. Wei and Peter A. Ng, "A Process for Constructing a
Personal Folder Organization", submitted to the 4th International Workshop on
Multimedia Database Management Systems, Dayton, Ohio, June, 1998.

107. Simon Doong, Ron Curtis and Peter A. Ng, "Document Filing Approaches Using an
I-ORG Based Folder Organization", submitted to the 17th International
Conference on Conceptual Modeling, Singapore, November 16-20, 1998.

133

108. C.Y. Wang, Q. Liu and P.A. Ng, -Intelligent Browser for TEXPROS", in LASTED
proceedings of the International Conference on Intelligent Information Systems,
Grand, Bahama Island, Bahamas, December 8-10, 1997, pp. 388-398, IEEE
Computer Society.

	Copyright Warning & Restrictions

	Personal Info Statement

	Abstract (1 of 2)
	Abstract (2 of 2)

	Title Page

	Copyright Page

	Approval Page
	Biographical Sketch (1 of 2)
	Biographical Sketch (2 of 2)

	Dedication Page

	Acknowledgment

	Table of Contents (1 of 2)
	Table of Contents (2 of 2)

	Chapter 1: Introduction

	Chapter 2: Folder Organization: User Folder Organization (U-ORG)

	Chapter 3: Folder Organization: Internal Folder Organization (I-ORG)

	Chapter 4: Sequential Filing Model

	Chapter 5: Performance Assessment for Sequential Filing

	Chapter 6: Parallel Filing Model

	Chapter 7: Performance Analysis for Parallel Filing

	Chapter 8: Document Management Based on I-ORG

	Chapter 9: Implementation Guidelines (Object Modeling)

	Chapter 10: U-ORG to I-ORG Transformation
	Chapter 11: Conclusion

	References

	List of Figures (1 of 2)
	List of Figures (2 of 2)

