

ABSTRACT

The first step in any project is a statement of requirements. Requirements specification 1s
an inevitable part of any successful project. However, the “rush” to convert concepts to
products often proves as a big hindrance in the development process of any requirements
set. This, in turn, hampers the ability to produce the concept and manage knowledge as
originally envisioned.

The goal of the thesis is to foster understanding among the different communities
affected by the development of the given system. The thesis is based on the principle that
the requirements elicitation process for complex system is fundamentally a conversation
among the stakeholders that is designers, customers and implementers. The web based
tool developed for requirements elicitation allows the stakeholders to pool their
respective expertise and viewpoints to resolve requirement issues. This leads to
consensus building among the stakeholders and also provides with well-defined, clear,
and concise requirements set. The requirements gathered by the tool can help determine
the source, applicability, depth, and other factors needed for assessing and implementing
integrated, and coherent, requirements set. It also helps the design team identify whether
a specific requirement establishes a quantifiable threshold. Moreover, the tool uses the
latest technologies of client server architecture, relational database and Internet. This
make the tool efficient, portable, easy to debug. The three tier architecture of the tool also

facilitates the ease in enhancement.

The thesis also emphasizes that research efforts should be directed towards
methods and tools needed to improve requirements analysis process and in particular to
those providing more support to the elicitation of requirements. A simple lesson that can
be learnt is that no one person knows everything about what a system should do. There

are always many participants in a successful requirement elicitation effort.

REQUIREMENT ELICITATION AND KNOWLEDGE MANAGEMENT
UTILIZING RELATIONAL DATABASE, CLIENT SERVER AND INTERNET
TECHNOLOGIES

by
Umang J. Dave

A Thesis
Submitted to the Faculty of
New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of
Master of Science in Computer Science

Department of Computer and Information Science

August 1998

APPROVAL PAGE

REQUIREMENT ELICITATION AND KNOWLEDGE MANAGEN{ENT
UTILIZING RELATIONAL DATABASE, CLIENT SERVER AND INTERNET
TECHNOLOGIES

Umang J. Dave

B/2 4/ 78

Dr. Murat Tanik, Thesis Advisor Date
Department of Computer and Information Science
New Jersey Institute of Technology, Newark, NJ.

&/24/94

Dr. Ali Dogru, Committee Member Date
Department of Computer and Information Science
New Jersey Institute of Technology, Newark, NJ.

P2 I
Dr. Franz Kurfess, Committee Member Date

Department of Computer and Information Science
New Jersey Institute of Technology, Newark, NJ.

8/t /78
Leon Jololian, Cométtee Member Date

Department of Computer and Information Science
New Jersey Institute of Technology, Newark, NJ.

BIOGRAPHICAL SKETCH

Author: Umang J. Dave
Degree: Master of Science in Computer Science
Date: August 1998

Undergraduate and Graduate Education:

o Master of Science in Computer Science,
New Jersey Institute of Technology, NJ, 1998

e Bachelor of Science in Computer Engineering,
Gujarat University, Ahmedabad, India, 1994.

Major: Computer Science

vi

Dedicated to my mother, father and my beautiful wife — J igna.

vii

ACKNOWLEDGEMENT

I would like to express my greatest appreciation to Prof. Murat Tanik without whom the
Requirements Elicitation project would have been only another good idea. I also thank
him for providing me with an excellent opportunity to work with him and for his valuable
guidance. [want to express my gratitude and thank the committee members of my thesis
— Prof. Ali Dogru, Prof. Franz Kurfess and Prof. Leon Jololian for their continuous
cooperation and guidance. [also, thank Prof. Marcus Healey for his inspiration.

I would like to thank the Graduate Studies department at New Jersey Institute of
Technology and Mrs. Annette Damiano for helping me with my thesis documentation.

I take this opportunity to thank Merrill Lynch for funding the project. I thank the
computer science department and New Jersey Institute of Technology for providing me
with resources and support.

Very special thanks are due to my friends Raj, Mariam and rest of my friends who
have helped me at various stages of my thesis.

Finally, I am grateful to my mother, father and my wife for their faith, prayers
and understanding during the many hours that this thesis took my time from the, This is
especially true of my wife, Jigna, whose patience and understanding fulfilled my need for

sustenance and inspiration.

Vviil

TABLE OF CONTENTS

Chapter Page
L. INTRODUCTION .. e e 1
1.1 Requirements Engineering OVerview...........oooiiiiiiiiiiiiiiii e, 1

1.2 Knowledge Management OVEIrVIEW.......ooviriiiiiii i e 3

1.3 Environmental Life Cycle Overview.oooiiiiiiiiiiiiiii i, 4

2. STANDARD TECHNOLOGIES AND METHODOLOGIES.................. 7
2.1 Knowledge Management.o.ovouiitiiiiiiait it 7
2.1.1 Knowledge Representation..........oocooiiiiiiiiiniiiiiiii i 8

2.1.2 Knowledge FIEring.....c.ooovr it e 10

2.1.3 Knowledge Search...........oooiiii 10

2.2 Software Engineering Institute's Requirement Engineering Framework. .. 11
2.2.1 Requirements Elicitation Framework....................o 12

2.2.2 Requirement Elicitation Process Model...............ooo 15

2.2.3 Requirement Engineering Techniques......................... 17

2.2.4 Requirement Elicitation Methodology and its Methods............. 19
22401 Fact Finding....c.ooooon i 20

2.2.4.2 Gathering and Classification...............c.ocooiin. 21

2.2.4.3 Evaluation and Rationalization....................ooocn 22

2.2.4.4 Prioritization and Planning..................o 23

2.2.4.5 Integration and Validation................ooii 24

3. DOMAIN AND PROBLEMS ..o 25

ix

TABLE OF CONTENTS
(Continued)

Chapter

3.1 Problems in Requirement Engineering

(98]

.1.1 Problems of Scope

VS

.1.2 Problems of Understanding

3.1.3 Problems of Volatility

3.2 Problems in Knowledge Management

3.3 Problems in Environmental Life Cycle

4. RELATIONAL DATABASE AND INTERNET TECHNOLOGIES FOR
REQUIREMENT ELICITATION

4.1 Relational Database Management Systems

4.1.1 Requirement of Database Systemsccoooviiiiiii

4.1.2 Data Models

4.1.3 Database Languages

4.1.4 System Structure

4.1.5 Database Design for Requirement Elicitation..........................

4.2 Implementation

5. CONCLUSION AND FUTURE WORK

5.1 Benefits of Requirement Elicitation Web Presence

5.2 Future Work

REFERENCES

37

38

41

76

- 76

80

LIST OF FIGURES

Figure Page
1. Steps in the Life-Cycle Assessment of a Product..............oo 5
2. Adaptive Loops Learning Cycles............ooociiiiiin. U 12
3. Requirements Engineering is an Iterative Processcooo 14
4. Requirement Elicitation Process Modelo 16
5. Sample ER Diagram.........coooiiii i 34
6. Entity Relationship Diagram...................coooiinnn, P 35
7. DBMS System Structure.oooiiiit i e 37
8. Requirement Elicitation System Design..................ooiiiiii 46
9. Phases of Requirement Elicitation Process on the Internet....................... 62
10. Identify Relevant People / Identify Domain Experts............................. 63
1T, Add ReqUITEMENTS. ..ottt e e e, 68
12. Perform Risk ASSESSIMENt..........ooiviiiii e, 71
13. Prioritization and Planning.....................oooii i 73
14. Integration and Validation....................ooiiiir i, 74

X1

LIST OF TABLES

Table

1. Normalized table for Requirement Elicitation Database

Xii

CHAPTER 1

INTRODUCTION

Requirements Engineering 1s more a social activity than a precise technical activity.
Nevertheless, it is an important and necessary aspect of software engineering, and one

that helps distinguish software engineering from computer science.

1.1 Requirements Engineering

Software requirements negotiation is the process where the customers' needs in a

software project are identified. This process is regarded as one of the most important

parts of building a software system because during this stage it is decided precisely what
will be built. Requirements negotiation is an iterative process where, through reflection
and experience, users become familiar with the technology and developers become

familiar with the user needs [HERLEA 97].

To produce quality products, understanding of requirements for a software system
1s a major concern. Requirement engineering is a common terminology used to specify
various requirements related activities. Requirement engineering comprises of four
specific processes [RAGHAVAN 94] :

1. Requirement Elicitation - The process, through which customers, buyers, or users of a
software system discover, reveal, articulate, and understand their requirements.
Experience over the last 30 years that incorrect, incomplete, or misunderstood
requirements are the most common causes of poor quality, cost overruns, and late

delivery of software systems. The ability to employ a systematic process for

|98

requirements elicitation is therefore one of the fundamental skills of a good software
engineer [RAGHAVAN 94].

Requirements analysis - The process of reasoning about the requirements that have
been elicited; it involves activities such as examining requirements for conflicts or
inconsistencies, combining related requirements, and identifying missing
requirements [RAGHAVAN 94].

Requirements specification - The process of recording the requirements in one or
more forms, including natural language and formal, symbolic, or graphical
representations; also, the product that is the document produced by that process
[RAGHAVAN 94].

Requirements validation - The process of confirming with the customer or user of the
software that the specific requirements are valid, correct, and complete
[RAGHAVAN 94].

The software requirement elicitation process is an essential activity to the

development of quality software products. A framework has been developed by Micheal

Christel and Kyo Kang, members of the Software Engineering Institute (SEI), located at

Carnegie Mellon University in Pittsburgh, to address the requirement elicitation process

[MILLER 93]. The requirement elicitation process model consists of:

1.

Fact-Finding Phase: This process allows an examination of the organization into
which the target system will be placed, develops high level statements of the system's
missions and roles, determines constraints on the architecture of the system's mission
and roles, determines constraints on the architecture, and identifies the existence of

the similar systems [CHRISTEL 92].

(V3]

N

Requirement Gathering and Classification: This phase allows the gathering and
organizing of information with the help of multiple views which express the
information that is to be built [CHRISTEL 92].

Evaluation and Rationalization: Rationalization and evaluation phase is responsible

Lo

for exposing inconsistencies in the gathered requirements and determining why the
information has been expressed as a requirement [CHRISTEL 92].

4. Prioritization: This phase determines the relative importance of each requirement and
the relative order the requirements should be addresses in [CHRISTEL 92].

5. Integration and Validation: This phase combines all the information acquired in the
proceeding phases and creates a set of requirements. Validation is performed to
determine that the requirements meet the goals and objectives outlined during the

fact-finding stage [CHRISTEL 92].

1.2 Knowledge Management

Knowledge management entails formally managing knowledge resources in order to
facilitate access and reuse of knowledge, typically by using advanced information
technology. A wide range of technologies are being used to implement knowledge
management systems : e-mail, databases and data warehouses, group support systems,
browsers and search engines, internets and intranets, expert and knowledge-based
systems, and intelligent agents [DANIEL 98].

Since earlier days knowledge has been stored on papers and in people's minds.
Such a storage leads to inefficient management of knowledge as it is extremely difficult

to maintain and update. Storing data in knowledge warehouses and knowledge bases

greatly improves the management, maintenance and updating of data. Moreover, data
stored in such a form has a wide accessibility.

It 1s also absolutely necessary for the user as well as the developers to understand
the environment in which the system is supposed to function. The requirements must be
specified such that the system can easily be integrated into the other existing systems.
The lack of domain knowledge accessible by the user or developer can lead to improper
knowledge management.

Gregory Piatetsky-Shapiro and William Frawley define knowledge discovery as
"non-trivial extraction of implicit, previously unknown, and potentially useful
information from data. Because knowledge discovery approaches can be designed to
exploit characteristics and structures of the underlying application domain, knowledge
discovery has found use in a wide range of applications.

Knowledge bases can become quite large and have great amount of information.
Searching them efficiently becomes an extremely critical function. The most dominant
search techniques include search engines, intelligent agents, and visualization models

[DANIEL 98].

1.3 Environmental Life Cycle
A primary thrust of industrial ecology is that manufacturers practice product stewardship
- designing, building, maintaining, and recycling products in such a way that they pose
minimal impact to the wider world. Product stewardship should be broadly interpreted to
include services, which should also be performed so as to have minimal impact. The way

in which these tasks are addressed in formal manner is by the process of Life-Cycle

L

Assessment (LCA), a family of methods for looking at materials, services, products,
processes, and technologies over their entire life [GRAEDEL 95].

The essence of life-cycle assessment is the evaluation of the relevant
environmental, economic, and technological implications of a material, process, or
product across its life span from creation to waste or, preferably, to re-creation in the
same or another useful form [GRAEDEL 95].

LCA is made up of three stages: inventory analysis, impact analysis, and
improvement analysis, as pictured in Fig. 1. First, the scope of the LCA is defined. An
inventory analysis and an impact analysis are then performed, the result being an
environmentally responsible product rating (Rgrpy. This rating guides an analysis of
potential improvements (which may feed back to influence the inventory analysis).

Finally, the improved product is released for manufacture [GRAEDEL 95].

Inventory Impact
Analysis ————» Analysis

A

probability definite

Improvement
prov | P
Analysis

Figure 1 Steps in the Life-Cycle Assessment of a Product. Rggp is the
environmentally responsible product rating. [based on GRAEDEL 95.]

An effective LCA technology must be able to quickly and easily identify, then
differentiate between, critical environmental impacts. This will allow designers to
concentrate on the most important problems, reserving for later those that produce lesser
impacts [GRAEDEL 95].

According to Robert Ayres of the European Institute of Business Administration
the work done on materials at the expense of energy represents society's battle against
thermodynamics, and the energy invested per unit of material decreases as one
approaches the top of the materials flow chain.

The generality of the options set should also be explicitly defined. In many cases,
it 1s possible to generate numerous potential options, not all of which can be feasibly
reviewed. The challenge is to choose representatives options that provide valuable
guidance for real-world decisions, but are limited and general enough to make an analysis
realistic [GRAEDEL 95.].

The conclusion then is “If it mandates that something must be accomplished,
transformed, produced, or provided, it is a requirement — period”. The qualifiers follows
— in the form of characteristics and relationships. This allow a requirement to be the
focus, i.e. the key player or authority, for all related information in a requirements

management database environment [HARWELL 93]

CHAPTER 2

STANDARD TECHNOLOGIES AND METHODOLOGIES

Studying user needs is a first step to any solution, along with gaining an understanding of
available technologies and existing tools. These two tasks interact. Without an
understanding of technologies one may aim for the impossible, and without an
understanding of needs, one may solve the wrong problem [BERLIN 89].

By far, the most common kind of requirements elicitation effort is one that gets
information directly from the people who will use the system. In such cases, the
elicitation procedure can be described in very general terms as five steps [RAGHAVAN
94]:

1. Identify relevant sources of requirements (the users).

o

Ask them appropriate questions to gain an understanding of their needs.

3. Analyze the gathered information, looking for implications, inconsistencies, or
unresolved issues.

4. Confirm your understanding of the requirements with the users.

5. Synthesize appropriate statements of the requirements.

2.1 Knowledge Management
Cooperative work systems such as world wide web and Lotus Notes are beginning to
tackle the aspect of knowledge management. Database systems can contribute much of
the required functionality. Hence it is required to integrate functionality and ideas from
these sources. With the web and the use of search engines, many people are already

experiencing significant changes in how they use and manage knowledge [SKUCE 97].

2.1.1 Knowledge Representation

Knowledge Management systems represent knowledge in both human and machine

readable forms. Human-readable knowledge is typically accessed using browsers or

intelligent search agents. But some knowledge is accessible for machine-readable

urposes, designed as an expert system's knowledge base to support decision making
p o S

[DANIEL 98].

1.

LI

Human Readable Knowledge: Case-specific information appears to provide the
appropriate level of representation required for users to make best use of the
knowledge. Where the information is largely declarative knowledge text or rules
might be used to represent the information and knowledge. If on the other hand,
information is highly filtered, then it is likely to be represented as a set of declarative
statements [DANIEL 98].

Logic: The most popular way of representing knowledge is by formal logic. Formal
logic provides a very powerful tool for software development and can be used in all
stages of the development process [PEYMAN 97].

Machine Readable Knowledge: Expert systems use their knowledge bases and user
responses to guide the user to recommended solutions. Expert systems can be an
integral part of knowledge management system. Although some knowledge
management systems contain such artificial intelligence-based systems, most
knowledge management systems use artificial intelligence primarily in the form of
intelligent agents to search human-readable knowledge [DANIEL 98].

Frames: Frames are used for declarative knowledge. Frames were developed because

there is evidence that people subjected to new situations do not analyze the situation

from scratch, but analyze situations using previous experience from objects, other
people, locations, and so on. Frames contain information about many aspects of an
object or an action. A frame might for example contain slots with necessary
characteristics of an object, possible characteristics and typical instances of that
object. Frames can be used in situations where there is a large amount of context
dependent knowledge [PEYMAN 97].

Scripts: Scripts are clusters of facts about typical sequence of events in a given
context. They can have a set of entry conditions, i.e. a set of conditions that must be
met before the script can be executed. Scripts can be very useful in expressing events
with very casual relationships. Scripts can also provide a way of dividing events into
sub-events. Scripts can provide powerful tools in software development. Scripts can
provide some support for reuse in design and the means for discovering and
compensating the absence of a certain type of information in the requirements. They
can be used to record facts about an existing software system, by keeping track of and
organizing information about interaction between the systems components. They can
also be used to describe the object interaction in a software model by describing
normal flow of interaction between objects [PEYMAN 97].

Semantic Nets: Semantic nets are networks used to express semantic structures. The
structure is very simple. They are built of nodes connected by arcs. There are objects

and there are relationships between these objects [PEYMAN 97].

10

2.1.2 Knowledge Filtering

Systems often resort to knowledge filtering to ensure complete and correct knowledge.
Not all filtering 1s done by humans. Perhaps the most visible and frequent use of
computer-based filtering is the message filtering that categorizes and prioritizes e-mail

messages. A number of products also help monitor qualitative databases [DANIEL 98].

2.1.3 Knowledge Search

1 Search Engines : A wide range of well-known internet search engines - like
AltaVista, Excite, Infoseek, Lycos, WebCrawler, and Yahoo - have been used to
guide users to information on the Internet. These and other search engines can be
adapted to intranet environment for knowledge management. Alternative approaches
to conventional search engines are also developed [DANIEL 98].

2 Intelligent agents : Intelligent agents can be used to connect people to knowledge
available on the Internet or intranets. Heuristics can be used to gather additional
insights into user's interests. Based on message syntax, attempts can be made to
determine significant phrases that provide insight into user goals [DANIEL 98].

3 Visualization models : Two emerging tools - Perspecta and InXight - represent
different ways of visualizing knowledge space. Perspecta creates what it calls
SmartContent using meta information derived from source documents - be it
structured information in databases and tagged documents such as news feeds, or
unstructured information in office documents and Web pages. For unstructured
documents , it has a Document Analysis Engine that performs linguistic analysis and

automatically tags documents. InXight software, a spin-off from Xerox PARC,

11

recently released its VizControl information visualization software for visualizing
large hierarchies. VizControl technology offers several novel visualization formats,
each of which exploit "focus + context" techniques that foreground objects of
interest while preserving the overall structure of even very large data sets [DANIEL

98].

2.2 Software Engineering Institute's Requirement Engineering Framework
According to the Draft Pamphlet (Draft PAM, April 23, 1991) by Requirements
Definition Implementation Team, of Software Test and Evaluation Panel, requirements
engineering is “the disciplined application of scientific principles and techniques for
developing, communicating and managing requirements”. Loucopoulos and Champion
define requirements engineering as “the systematic process of developing requirements
through an iterative process of analyzing a problem, documenting the resulting
observations and checking the accuracy of the understanding gain.”

Requirements elicitation normally involves several developers (the requirements
analysts and software engineers) and several customers (the buyers or users of the
software). Each of these persons brings different knowledge and skills to the effort
[RAGHAVAN 94].

There are three learning cycles, as shown in Figure 2. The developers are assisted
by the users in gaining new viewpoints about their requirements, and through
reformulating the requirements, the user learns more about them. The system receives
pressure for evolution as the users learn more about how it can be used, and the system

induces that learning on the users. The system evolves by actions of the developers, who

in turn gain enhanced understanding of the system through that evolution [RAGHAVAN

94].

N

% Enhances
understanding
Induces
learning

Pressure for

evolution Evolves

New view points

Developer

Reformulates

Figure 2 Adaptive loops learning cycles [based on RAGHAVAN 94].

The requirements elicitation process using the adaptive loops framework focuses
on addressing, supporting, and facilitating these learning cycles. It is especially useful
when there are requirements articulation problems, and it is helpful in overcoming some
of the technical issues of requirements elicitation for the evolution of complex systems

[RAGHAVAN 94].

2.2.1 Requirements Elicitation Framework
Rzepka decomposes the requirements engineering process into three activities [RZEPKA
891:

e clicit requirements from various individual sources;

e insure that the needs of all users are consistent and feasible; and
¢ validate that the requirements so derived are an accurate reflection of user needs.
Elicitation will likely iterate with these activities during requirements development.

Prior to SEI's proposed requirements framework, the requirements elicitation
process consisted of scattered processes, methodologies and techniques : each having
their own benefits, strengths, and weaknesses. By themselves, none of these strategies
were able to address all the attributes necessary to produce a quality set of requirements
that met the needs of the stakeholder community. Existing models, methodologies, and
techniques failed to address the problems inherent in the requirements elicitation activity
namely : system scope, understanding among participants of the process, understanding
among personnel effected by the process, and a recognition of the volatility of
requirements [MILLER 93].

In an effort to address these issues, the framework was established. It is composed
of a process model, methodology, and a group of supporting techniques. The process
model guides the methodology and techniques imposed by the framework. A
methodology is a fine grained activity that supports a process. Methodologies are
prescriptive in nature and often recommend methods, techniques, and tools to enact them

[MILLER 93].

14

ge d o gd b3t
3 citation 2
= > S
2 ' =
=
S Q
5 =
D 2,
7
Goals Operational Model Functional Model (Under- Specification
(Context Understanding) standing of Internals)

Figure 3 Requirements Engineering is an Iterative Process [CHRISTEL 92).

One of the integral part of the requirement elicitation framework is formal

specification language. A formal specification language offers [PLAYLE 96]:

1. Clarity : Formal Specification languages can remove some elements of ambiguity
from the process. They offer explicit syntax and semantics that define the language
and a set of relations that precisely defines object interaction .

2. Consistency : Because the language is relatively fixed, a formal specification
language reduces the chance for misinterpretation when it passes through various

development groups and lifecycle phases .

N
3.

Completeness : Formal specification languages are incomplete, and some languages
are purposely incomplete to allow designers some freedom. Developers and designers
must guard against incompleteness to ensure all the requirements are treated
consistently .

Prototyping : Prototyping, as a means of requirements elicitation, can be highly
effective . Tamai and Itou also found that during the prototyping phase users were not
intimately familiar with the system, so developers provided a simplified interface. As
the users became more familiar with the system, they demanded more functionality
from the software, resulting in a more complicated interface. When this product was
delivered, the users required both the simplified version and the complicated version.
The conclusion was that “features” and “interim requirements” may become part of

the users’ expectations and eventually become system requirements .

2.2.2 Requirement Elicitation Process Model

The communication between the user-oriented and developer-oriented activities is
cyclical, and enhanced via modeling. The communication enhancement is desirable. The
representation of the requirements should promote understanding while allowing for
inevitable change, and hence this representation should be introduced as early into the
requirements engineering process as possible while still maintaining the desirable

characteristics of modifiability (extensibility and evolvability), readability, and

analyzability [CHRISTEL 92].

16

—w{ Fact-Finding
[

|

Evaluation and
Hationalization

i

Prioritization

¥

Integration %
Validation

. |

Figure 4 Requirement Elicitation Process Model [CHRISTEL 92].

This elicitation process model is first executed during the concept exploration
phase of system development, which is initiated after the creation of a mission needs
statement. Following this phase, the first level of detail in the requirements specification
is achieved. During the subsequent demonstration and validation phase, these
specifications are validated, the unclear requirements -clarified, the unknown
requirements identified, and the existing ones refined as necessary. Based on
communication mechanisms (such as prototyping) employed during this phase, these

elicitation steps are then cycled through again beginning with “requirements gathering”

17

to detail and improve the requirements document. The demonstration and validation
phase is entered with incomplete requirements, and therefore that these elicitation process
steps are returned to after the first pass through the concept exploration phase
[CHRISTEL 92].

With regard to the user community, fact-finding begins with identifying the
relevant parties at multiple levels within the community, e.g., from a high-level
commander for a strategic long term perspective to an end user for the immediate
perspective. The operational context and problem context are defined, perhaps through
goal trees and mission statements, which help with the later filtering of the requirements.
This includes an objectives analysis, which studies the user organization’s objectives,
constraints against full achievement of the objectives, and their influences and inter-
actions. Context analysis and the determination of operational modes and mission
scenarios completes the user-oriented task fact-finding activities. The developer oriented

fact-finding tasks are performed in parallel [CHRISTEL 92].

2.2.3 Requirement Engineering Techniques

The requirements definition process comprises these steps : [BRACKETT 90]
e Requirements Identification,

o Identification of software development constraints,

e Requirements analysis,

e Requirements representation,

e Requirements communication and

e Preparation for validation of software requirements

18

Techniques for requirements elicitation generally provide operational-level tactics

and guidelines. They usually focus narrowly on specific aspects of the elicitation process.

Such techniques are [RAGHAVAN 94] :

1.

Brainstorming : Brainstorming is a simple group technique for generating ideas. It
allows people to suggest and explore ideas in an atmosphere free of criticism or
judgment. The session consists of two phases. In the generation phase, participants
are encouraged to offer as many ideas as possible, without discussion of the merits of
the ideas. In the consolidation phase, the ideas are discussed, revised, and organized .
For purposes of software requirements elicitation, brainstorming can be helpful in
generating a wide variety of views of the problem and in formulating the problem in
different ways. It is especially useful very early in the elicitation process. When used
correctly, it can help overcome some of the underlying difficulties of requirements
elicitation [RAGHAVAN 94]:
e [t stimulates imaginative thinking to help users become aware of their needs,
e [t helps build a more complete picture of the users' needs,
e [t can avoid the tendency to focus too narrowly too soon and
e For some personality types, it provides a more comfortable social setting than
some of the more structured group techniques.
Good brainstorming sessions are very helpful in overcoming some of the
cognitive limitations of participants by allowing (or forcing) them to expand their
thinking. The lack of criticism and judgment during the generation phase also helps

overcome some of the communication barriers of requirements elicitation

[RAGHAVAN 94].

19

2. Interviewing : Interviewing is an important technique for eliciting detailed
information from an individual. It is commonly used in requirements elicitation for
large systems as part of some of the high level elicitation techniques. It can also be
used for small projects as the only requirements elicitation technique [RAGHAVAN
94].

Interviewing is not simply a matter of asking question. It is a more structured
technique that can be learned, and software engineers can gain proficiency with
training and practice. It requires the development of some general social skills, the
ability to listen, and knowledge of a variety of interviewing tactics [RAGHAVAN
94].

A skilled interviewer can help the user to understand and explore software
requirements, thus overcoming many of the articulation problems and

communications barriers [RAGHAVAN 94].

2.2.4 Requirement Elicitation Methodology and its Methods

Most software engineering methods presume that requirements are explicitly and
completely stated; however, experience shows that requirements are rarely complete and
usually contain implicit requirements [PLAYLE 96].

The elicitation methodology should be prescriptive in nature in order to provide
the guidance as to how the specifications should be elicited from the user. Guidelines for
tailoring the methodology to specific problems will most likely be developed, validated,
and refined iteratively. As the methodology matures and more problem areas are

addressed, the framework will grow as well [CHRISTEL 92].

20

2.2.4.1 Fact Finding: The very first step in requirements elicitation involves
determining what is the problem to be addressed, and who needs to be involved in this
decision-making as well as who will be affected by the problem’s formulation and
eventual solution. The output from this activity includes [CHRISTEL 92]:

e a statement of the problem context,

e the overall objectives of the target system and

e boundaries and interfaces for the target system

Activities performed in this phase are the creation of operational, problem, and
organizational contexts, identification and documentation of similar systems, and the
assessment of cost and implementation constraints imposed by the customer [CHRISTEL
92].

If the understanding and the representation of the problem domain is mature, the
objectives of this phase may be easily identified, understood, and completed. However, if
this is not the case, cross functional teams should be engaged to perform this task. The
objective of cross functional teams is to involve experts to aid in the definition and
development of the outputs for this stage, and to involve the relevant parties in order to
create a sense of commitment and shared ownership. The accuracy and completeness of
this phase is critical to the success of the entire process. Multiple passes through this
phase should be considered to promote completeness [MILLER 93].

An effective approach to achieving this cross-disciplinary communication for
fact-finding is the use of a group process technique, such as Joint Application Design
(JAD). All the affected parties should be represented in the group which will perform

these early fact-finding tasks. This promotes shared ownership, rapid early problem

formulation, and an aligned perspective and understanding between the elicitation
communities of the problem to be solved and the scope of the subsequent requirements

[CHRISTEL 92].

2.2.4.2 Gathering and Classification: [t is important to gather as much information as
possible from users, developers, and customers. Some of this information may come from
the group development techniques employed during fact-finding, such as JAD. More
information can be gathered through the use of interviews directly with end users and
other affected parties. Questionnaires, observations, and simulation environments are
other techniques that can be utilized to get information from different individuals and
groups. The output from this activity includes [CHRISTEL 92]:
e customer and user oriented objectives and
e customer and user oriented needs and requirements

A tailored JAD session serves to provide the framework for this step in the
requirements elicitation process. Structured interviews and questionnaires are used to
capture and document information and underlying rationale. The JAD process starts with
a problem-research phase. Analysts perform structured interviews to identify the relevant
parties and to acquire the information and rationale necessary to meet the goals and
objectives of this phase. The structure and the format of the interviews is dictated by the
techniques used to model and represent the information required [MILLER 93].

The views are better understood if they can be structured into manageable pieces.
This is especially true given that the elicitation process will be incremental, to deal with

inevitable changes in requirements. If we return to monolithic views of the complete

N
[\

system, it will be very difficult to both comprehend such a large view and also to find
portions of that view which may be affected by an incremental change to the
requirements. Thus, there must also be a decompositional process associated with
requirements gathering, where the views can be broken down into meaningful

components [CHRISTEL 92].

2.2.4.3 Evaluation and Rationalization: The goal of this phase is to fully develop and
evaluate the underlying rationale behind the requirements gathered to this point. A risk
assessment should be performed to address technical, cost, and schedule concerns. In
addition, the rationale behind the information gathered in previous stages should be
examined to determine whether the true requirements are hidden in this rationale instead
of being explicitly expressed. This rationale and risk assessment are the two main outputs
from this activity [CHRISTEL 92].

The objectives, goals, and constraints developed in the fact-finding phase are
compared to the requirements detailed in this documents and models developed in
requirements gathering and classification phase. The evaluations are performed by the
requirements analyst with the aid of the stakeholders through a series of structured
interviews [MILLER 93].

The evaluation is performed by comparing the requirements representations
against the organizational, goal, and constraint models. The comparison determines if the
requirements address the right issues [MILLER 93].

The rationale process is performed in parallel with the prior evaluation. This

consists of a series of interviews in which the analyst and the stakeholders evaluate the

23

requirements model against the rationale stored. The objective is to determine why each
requirement is present [MILLER 93].

Once the rationale has been collected and examined, Iinconsistencies can ideally
be found and better choices on decision points or issues made to both resolve these
inconsistencies and address the needs reflected in the rationale. In addition, this rationale
is extremely useful in later passes through the elicitation methodology as documentation
on why particular choices were made. If incremental changes to the requirements are to
be made, these changes can be checked to see if they are in agreement with the rationale

underlying the rest of the existing requirements [CHRISTEL 92].

2.2.4.4 Prioritization and Planning: The goal of the prioritization phase is to arrange
the requirements in order of relative importance from the view of the client and the view
of the developer [CHRISTEL 92].

Incremental development, of both the system and the requirements, is stressed in
the process model. If requirements are prioritized, then high priority needs can be
addressed first, and the subsequent requirements changes defined and reexamined, before
low priority needs (which could change as well) are implemented. This can result in cost
and time savings when processing the inevitable requirements changes during system
development. The requirements must be prioritized based on cost, dependency, and user

needs [CHRISTEL 92].

24

2.2.4.5 Integration and Validation: The goal of the integration and validation is to
reduce the conflicts found in the requirements, to address completeness, and to validate
the requirements [CHRISTEL 92].

Outputs of this activity are a set of complete requirements or a set of incomplete
but validated requirements ready for the specification and formal validation processes.
Output may also be in the form of requirements which are lacking in some quality. The
incomplete requirements are iterated through the requirements elicitation model to
resolve the open issues [MILLER 93].

Integration of multiple views should occur as much as possible through the
involvement of all the affected communities, so that this shared ownership is not lost.
Validation of the requirements by all affected parties ensures that their concerns are met.
Subsequent passes through the elicitation methodology outlined here address the
requirements deficiencies, inconsistencies, and other problems found during the
demonstration and validation steps [CHRISTEL 92].

The DoD software technology plan states that “early defect fixes are typically to orders of
magnitude cheaper than late defect fixes, and the early requirements and design defects
typically leave more serious operational consequences.” One way to reduce requirements

error is by improving requirements elicitation [CHRISTEL 92].

CHAPTER 3

DOMAIN AND PROBLEMS

Requirements problems have been identified as major contributors to program cost

overruns and schedule slips. This “problem with requirements™ can be attributed to two

major factors [IVY 90] :

1. The initial requirements were incomplete, inaccurate, and / or misunderstood by the
designers / developers.

2. Circumstances changed which resulted in changes to the requirements.

3.1 Problems in Requirements Engineering

There are many problems associated with requirements engineering, including problems
In defining the system scope, ensuring understanding between developer and user, and
problems in dealing with the volatile nature of requirements. These problems may lead to
poor requirements and the cancellation of system development, or else the development
of a system that is later judged unsatisfactory or unacceptable, has high maintenance
costs, or undergoes frequent changes. Issues involved in this problem area include
[CHRISTEL 92].:

e Achieving requirement completeness without unnecessarily constraining system

design,
e Analysis and validation difficulty and

e Changing requirements over time

25

26

Software requirements characteristically suffer from inconsistency,
incompleteness, nonspecific language (ambiguity), duplication, and inconstancy. On a
complex system, the documents that make up the requirements are voluminous [PLAYLE
96].

Cooperation between participants in the process is quite difficult, even if they
meet in a physical meeting room. The process involves a social network of people with
different professional backgrounds and different views over the system that must be built.
If the participants in the process are in different organizations or different cities, meetings
can be costly, inconvenient and infrequent. This leads to problems of communication,
which can greatly impact the quality of the elicited requirements [HERLEA 97].

Problems of requirements elicitation can be grouped into three categories:
[CHRISTEL 92].

1 problems of scope, in which the requirements may address too little or too much
information;
e the boundary of the system is ill-defined and
e unnecessary design information may be given

2 problems of understanding, within groups as well as between groups such as users

and developers;

users have incomplete understanding of their needs,

e users have poor understanding of computer capabilities and limitations,
e analysts have poor knowledge of problem domain,

e user and analyst speak different languages,

e case of omitting “obvious” information,

e conflicting views of different users and

k)

e requirements are often vague and untestable, e.g., “user friendly” and “robust”
3 problems of volatility, i.e., the changing nature of requirements.

e requirements evolve over time

3.1.1 Problems of Scope

Elicitation techniques need to be broad enough to establish boundary conditions for the
target system, yet still should focus on the creation of requirements [CHRISTEL 92].

Requirements elicitation must begin with an organizational and context analysis
to determine the boundary of the target system as well as the objectives of the system.
Less ambitious elicitation techniques not addressing this concern run the risk of
producing requirements which are incomplete and potentially unusable, because they do
not adhere to the user’s or organization’s true goals for the system. Performing an
organizational and context analysis allows these goals to be captured, and then used to
verify that the requirements are indeed usable and correct [CHRISTEL 92].

The problem is manifested by the fact that the requirements focus is often in what
is to be built without consideration for how it will be operation. Operations costs are
directly driven by program definition and the requirements imposed by all elements of
the program. Frequently, the requirements do not consider the operations concepts,
constraints, or plan. When operations requirements are finally considered, addition

requirements will be needed to overcome this initial oversight [IVY 90].

28

Elicitation techniques can be overly ambitious as well. Elicitation must focus on

the creation of requirements, not design activities, in order to adequately address users’

concerns and not just developers’ needs [CHRISTEL 92].

Environmental factors have a strong influence on requirements elicitation.

Environmental factors include: [CHRISTEL 92].

hardware and software constraints imposed on a target system (the target system will
typically be a component of some larger system with an existing or required

architecture already in place),
the maturity of the target system’s domain,
the certainty of the target system’s interfaces to the larger system and

the target system’s role within a larger system

3.1.2 Problems of Understanding

Problems of understanding can be separated into three issues: [CHRISTEL 92]

The communities involved in elicitation possess a variety of backgrounds and
experience levels, so that which is common knowledge to one group may be
completely foreign to another. This makes it difficult for a requirements analyst to
interpret and integrate information gathered from these diverse communities.

The language used to express the requirements back to these stakeholder communities
may be too formal or too informal to meet the needs of each of the groups, again

because of the diversity of the communities.

29

e The large amount of information gathered during elicitation necessitates that it be
structured in some way. The understanding of this structure is dependent on the

characteristics of the stakeholder communities.

3.1.3 Problems of Volatility

Requirements change. During the time it takes to develop a system the users’ needs may
mature because of increased knowledge brought on by the development activities, or they
may shift to a new set of needs because of unforeseen organizational or environmental
pressures. If such changes are not accommodated, he original requirements set will
become incomplete, inconsistent with the new situation, and potentially unusable because
they capture information that has since become obsolete [CHRISTEL 92].

One primary cause of requirements volatility is that “user needs evolve over
time”. The requirements engineering process of elicit, specify, and validate should not be
executed only once during system development, but rather should be returned to so that
the requirements can reflect the new knowledge gained during specification, validation,
and subsequent activities. A requirements engineering methodology should be iterative in
nature, “so that solutions can be reworked in the light of increased knowledge”

[CHRISTEL 92].

3.2 Problems in Knowledge Management
Knowledge is a critical resource but we still do not have many new ideas on how to
manage it. Most knowledge is currently kept in conventional documents that are hard to

structure, classify, browse, search, and even find. Most of the knowledge is still recorded

as unstructured natural language, with all its shortcomings of precision and conciseness.
Documents in particular, small parts of them such as sentences, are often hard or
impossible to find, hard to update cooperatively, and hard to keep coordinated merging of
information from various sources is difficult. Most systems today offer nothing in the
way of inference, semantic checking, or natural language processing. Finding and
organizing documents is very difficult [SKUCE 97].

For frames to be used in a formal manner, there needs to be some standard ways
of representing them. There needs to be a specific number of slots in each frame, or type
of frame. [PEYMAN 97]. Even though semantic nets were developed a long time ago,
except for very basic relationships there are no standard methods of how the arcs should
be labeled. It should be mentioned that even the most basic facts have problems

associated with them [OBJA 95].

33 Problems in Environmental Life Cycle

In college and university computer science programs, instructors usually create the
requirements specification; students are rarely involved in the process. It is even more
rare for students to be taught the specific techniques that software engineers use for
requirements elicitation. This can probably be attributed to the absence of these
techniques from most computer science textbooks and the lack of familiarity with these
techniques on the part of instructors [RAGHAVAN 94].

The problems in requirement engineering, knowledge management and
environmental life cycle cite that the software tools build for them are not used at all, or

are used by a small minority of people. The most basic reason of this is that the end users

were not involved while developing such tools. It is very difficult to build a successtul

system without end user involvement.

CHAPTER 4

RELATIONAL DATABASE AND INTERNETTECHNOLOGIES FOR
REQUIREMENT ELICITATION

The hardest single part of building a software system is deciding precisely what to build.
No other part of the conceptual work is as difficult as establishing the detailed technical
requirements, including all the interface to people, to machines, and to other software
systems. No part of the work so cripples the resulting system if done wrong. No other

part is more difficult to rectify later [BROOKS 87].

4.1 Relational Database Management Systems
A database-management system (DBMS) consists of a collection of interrelated data and
a set of programs to access those data. Database is referred to as collection of information
related to a particular enterprise. The most important use of a database is to provide an
environment that is both convenient and efficient to use in retrieving and storing database

information.

4.1.1 Requirement of Database Systems

Today’s environment contains humungous amount of information. In order to manage all
this large information, database systems were originated. This management of data
involves both the definition of structures for the storage of information and provision of
mechanisms for the manipulation of information [KORTH 97]. Along with this, database
systems provide proper security measures to restrict unauthorized access of information.

Advantages of Database Systems are:

|8
)

1. Eliminates data redundancy and inconsistency.

o

Facilitates easy access of data.

Provides data isolation.

(W8]

4. Provides data integrity.

5. Facilitates concurrent-access of the database mformation.

4.1.2 Data Models
Data model is the underlying structure of any database system. It is used to describe the
data, the data relationships, data semantics, and consistency constraints. The various data
models are as described below:
1) Object-Based Logical Models
This model is used to describe data at the logical and view levels. They are characterized
by the fact that they provide fairly flexible and structuring capabilities and allow data
constraints to be specified explicitly [KORTH 97]. The various object-based logical
models are:
2) The Entity-Relationship Model
The entity-relationship (E-R) data model is made up of collection of basic objects called
entities and relationships among these objects. An entity is a real world “object” or
“things” which has an independent existence. Each entity has its own specifications,
which are indicated as attributes in the E-R schema. A relationship is an association
between various entities of the E-R model.

The overall logical structure of a database can be expressed graphically by an E-R

diagram. The components of the E-R schema are:

a) Rectangles: This represents the entity sets.
b) Ellipses: Represents attributes of the entities.
¢) Diamonds: Represents relationship among entity sets.

d) Lines: Links attributes to entity sets and entity sets to relationships.

@ date of a
birth

ACCOUNT

CUSTOMER

Figure 5 Sample ER Diagram

3) The Object-Oriented Model

This model is based on the collection of objects. An object contains values stored in
instance variables within the object and the code, which defines the operation of that
object. This code which defines the working of the object is called methods.

Objects that contain the same type of values and the same methods are grouped
together into classes [KORTH 97]. Communication between objects is carried out with
the help of messages. Object-oriented model isolates the variables and the methods
defined in each object from another object, thus providing data encapsulation. The other
features of object-oriented model are inheritance and polymorphism.

4) Relational Model
This model uses a collection of tables to represent both the data and the relationships
among the data represented in the tables. Each tables is made up of multiples columns

and rows. Each row of the table is called as the ruple.

E-R DIAGRAM FOR REPI

(1,MN)

(1N E (1,1)
(1,N) ‘a

(1,N)

=

fle QUIreITE I’lt

(1,N)

.ﬁ =
1,IN)], Survc§ ;)
o

a,N)

‘@ (
CL : Compliance Level
GL : Goal Name
AUI : Authorized User 1D

C&B : Cost & Benefit
Feas : Feasibility

Figure 6 Entity Relationship Diagram

Constraints

Dep : dependency
D/T : date /Time
RT : Refers To
RB : Referred By

Hriority
"ﬂ‘-
KN hy > <Hate
standing mib
Feas > Erionts

feason>
Dep>

(O8]
h

4.1.3 Database Languages

Database system provides two types of languages:

1. Specify the database schema - Data-Definition Language.

A database schema is specified by a set of definitions expressed by a special language
called a data-definition language (DDL). The result of compilation of DDL statements 1s
a set of tables that is stored in a special file called data dictionary or data directory
[KORTH 97].

2. Express database queries and updates - Data-Manipulation Language.

This language allows:

a) Retrieval of information stored in the database.

b) Insertion of new information into the database.

c) Deletion of information from the database.

d) Modification of information stored in the database.

There are two types of data-manipulation languages:

1. Procedural DMLs requires a user to specify what data is required and how to retrieve
that data.

2. Nonprocedural DMLs requires a user to specify what data is needed without

specifying how to get that data.

4.1.4 System Structure

The relational database system structure is as shown in Figure 7.

naive application sophisticate databas USers
users programmer Users administrato
A4 v Y
application apphcaLlon query database
interface program schema
embedtie | DML DDL
DML C iler] linterpreter
precompiler Omp'“ interp query
processor
application/ query
program sevaluation|
%gjdegt engine
/ A /
—
transactio buffer
manage manage storag
manage
file
manage
/ / l database
—
/
A4 | i
indices { statistical disk
1 storag
i Y v
data files data

Figure 7 DBMS System Structure

4.1.5

Database Design for Requirement Elicitation

The database is designed by normalizing the tables that are used to store data. The design

of the Requirement elicitation database and the normalized tables are shown in Table 1.

Table 1 Normalized table for Requirement Elicitation Database

Sr. | Table Attribute Type & Key | NulU/N Description
No. | Name Name Length ot Null
1 People | people_id Char(11) | PK NN User/Developer
m Identification
Number
people_fname | Char(15) NN First name
people_Iname | Char(15) Last name
people_addrl Char(20) Address Linel
people_addr2 | Char(20) Address Line 2
people email Char(27) Email
people phone | Char(12) Phone Number
people type Char(2) NN User or Developer
people_desc Char(200) Description
people categor | Char(2) Category of
y developer or user
people filenam | Char(20) File name for
e information
2 Goal m | goal id Char(11) | PK NN Goal Identification
Number
goal pid Char(11) | FK NN User/Developer
Identification
Number
goal_desc Char(200) Goal Description
goal name Char(40) NN Goal name
goal filename | Char(20) File name for goal
description
3 Req m |req id Char(11) | PK NN Requirement
Identification
Number
req_gid Char(11) | FK NN Goal Identification #

Table I (continued) Normalized table for Requirement Elicitation Database

Sr. Table Attribute Type & Key | Null/N Description
No. | Name Name Length ot Null
req pid Char(11) | FK NN User/Developer
[dentification
Number
req_title Char(50) Requirement Title
req_desc Char(200) Requirement
description
req_category Char(25) Category
req_valid Char(1) Validity of the
requirement
req_aui Char(11) Authorization
I[dentification
Number
req_importanc | Char(3) Importance of
e requirement
req_understand | Char(3) Understanding of
ing requirement
req_costlevel Char(3) Costlevel of
requirement
req_deplevel Char(3) Dependence level of
requirement
req_upriority Char(3) User priority of
requirement
req_dpriority Char(3) Developer priority of
requirement
req_complevel | Char(25) Compliance level of
requirement
req_status Char(25) Status of requirement
req_type Char(2) Requirement type
req_filename Char(20) Filename to store
requirement
information
req_why Char(200) Why the requirement
is required
req_reason Char(200) Reason of
requirement
req_risk Char(200) Risk involved in the
requirement
req_feasible Char(200) Feasibility of the

requirement

40

Table 1 (continued) Normalized table for Requirement Elicitation Database

Sr. | Table Attribute Type & Key | Null/N Description
No. | Name Name Length ot Null
req_costben Char(200) Cost & benefit of the
requirement
req_dummy Char(3) Dummy variable
required
4 Survey | survey id Char(11) | PK NN Survey Identification
m Number
survey pid Char(11) | FK NN User/Developer
[dentification
Number
survey_name Char(40) Survey Name
survey_desc Char(200) Survey description
survey_filenam | Char(20) Filename to store
e survey information
5 Const_ | const_pid Char(11l) | FK NN User/Developer
m Identification
Number
const_name Char(40) NN Constraint name
const_info Char(200) Constraint
information
const_asses Char(200) Accessibility of the
constraint
const_filename | Char(20) Filename to store
constraint
information
6 Model | model pid Char(11) | FK NN User/Developer
m Identification
Number
model_domain | Char(200) Domain of the model
model arch Char(200) Architecture of the
model
7 Scenario | scen_id Char(11) | PK NN Scenario

m

Identification Num.

41

Table 1 (continued) Normalized table for Requirement Elicitation Database

Sr. | Table Attribute Type & Key | Nul/N Description
No. | Name Name Length ot Null
scen_gid Char(11) |FK NN Goal Identification
Number
scen_pid Char(11) | FK NN User/Developer
Identification
Number
scen_name Char(20) NN Scenario Name
scen_desc Char(200) Scenario description
8 Scenario | scen_did Char(11) | FK NN Scenario
det Identification
) Number
scen_event Char(25) Scenario Event
scen_action Char(25) Scenario Action
scen_reaction | Char(25) Scenario Reaction
4.2 Implementation

The web based tool for Requirement Elicitation consists of three major components.

Client PC running web browser.

Web server running html front pages, Java applets and application server for

communicating with the database.

Database server which stores all the information entered by various users and

developers.

Client PC running web browser: The user as well as the developers interact with the

system through the client PCs. The PC require a web browser. The web browser

should be Netscape communicator 4.0 or higher. When the PC connects to the web

[\

(8]

42

server using the web browser, the himl pages gets downloaded on the PC and the user
or developer can browse through the system using the browser.

Web server running Java applets and application server: Currently, the web server at
New Jersey Institute of Technology is the server cache. It is running the apache web
server at port 6001. The web server contains the html front pages and the Java
applets. The Java applets are coded using Java script. The front pages as well as the
applets gets downloaded on the client PC and run in the browser environment. There
is a Java applet running behind each front page. The word documents that are stored
on the server get downloaded on the PC, allowing the user to update the local copies.
The web server also houses an application server, developed in Java. The application
server is a generic server or a dispatcher that accepts the requests for database queries
and then communicates with the database server. The applets initialize and opens a
socket with application server, and all the communication between the applet and the
application server is carried out through this socket. The application server uses
JDBC to communicate with the database server. It then gets the reply from the
database server, and passes it back to the applet, which eventually passes it to the
front page. User then gets to see the results of his queries. The three generic
operations supported by the application server are insert, update and retrieval from
the database.

Database server: The database server that is used is the server logic at New Jersey
Institute of technology. First of all an entity relationship diagram was developed for
the system. Then the database tables were identified with their foreign keys and

primary keys. The tables were then normalized giving the complete design of the

database. The relational database management system used for this project is Oracle
7. The tables were created in the appropriate format. The function of the database
server is to serve to the requests submitted by the application server. The requests
could be either an insert, update or a select request. The data stored in the database
server is in a specific format. This data can then be downloaded to a plain text file
with some identifiers. The data can also be uploaded directly onto other database and
can be very easily used to generate report or presentations from it. The data if
uploaded onto another database can even be used to generate more web pages from it
and can be used as a benchmark with some other systems.

Currently, the tool is being used to gather information of various hazardous
materials that are used in the manufacturing of weapons. The DoD is planning to use it to
collect data related to these waste materials from various facilities. This data can then be
available to the actual designers of the weapons and can be used in future design process
or can be used for statistics for a forth coming project.

The procedure to be used for requirement elicitation using the tool is very
straightforward. The application guides the user from one phase to another. The user
starts from the fact-finding phase, gathering and classification phase, evaluation and
rationalization phase, prioritization and planning phase and finally the integration and
validation phase. He iterates thorough these phases.

In the fact-finding phase it is very important to identify the person entering the
requirement, before one starts to enter requirements. The identification consists of
entering personal information in the system. This is a mandatory step. The user then

enters the problem specification. Entering the goal name and goal specification is also a

44

mandatory step, as the user might need this to associate the goal with the requirements.
The user can also enter various mission scenario specifications as additional information.
The developer must also identify domain experts. As additional information the
developer can enter information related to technical surveys and assess constraints.

In the gathering and classification phase the user as well as the developer can
enter or modify the information for a particular requirement. This is a mandatory step.
The user as well as the developer can view the information entered for a particular
requirement or can list all the requirements entered by the entire group. The developer
also has the facility to classify requirements according to their category.

The evaluation and rationalization phase is used to abstract rationale from
information entered. This provides additional information and can help in designing and
planning. The user specifies why, and reason behind the requirement and the developer
evaluates the risk, feasibility and cost / benefits of a particular requirement.

The user as well as the developer then prioritizes the requirements depending on
the level of understanding, level of dependency, cost, importance and priority. This helps
the developer to plan the incremental stages and design the system so that it addresses the
most important issues first.

The integration and validation stage is used to ensure that the requirement is
specified towards a goal and to obtain authorization. This phase ensure the completeness
and consistency of the requirements.

The user as well as the developer iterate through these phases while specifying
requirements and so can very speedily converge to a common platform. At this point the

requirements are clear to both the parties and the system is well understood. The

45

developer can then proceed on to the design phase with a very clear picture of the

requirements and its priorities.

Sample Source Code (Application Server (Dispatcher) - ApplicationServer.java) :

Generic Server for Database connectivity.

47

/*$***$**********************************$**$**************************

<!-- REPI Web Site
<!-- Demo Version - August 14, 1998
<!-- Copyright (c) 1998

<le-

<!-- Author: Umang Dave

<o

Mariam Burmawalla

<!-- Email: tanik@homer.njit.edu
**/

import java.awt.*;
import java.sql.*;

import java.lang.*;
import java.util.*;

import java.net.*;

import java.io.*;

class DBAdmin {

private static final boolean DEBUG = true;

private Connection con;
private DatabaseMetaData dbmetad;

private String stCatalog =" ";
private Statement SQLstatement;

public int nRowNum, nColNum;

DBAdmin(String stUrl, String stName, String stPwd) {

String stStatus;

try {
Class.forName("oracle.jdbc.OracleDriver");
con = DriverManager.getConnection("jdbc:oracle:mariam/m15502@logic");
dbmetad = con.getMetaData();
stCatalog = con.getCatalog();
SQLstatement = con.createStatement();
stStatus = "Establishing a connection with a DataBase";
}
catch(Exception e) {
stStatus = "Connection Failed" + e.getMessage();
!
b
1If{DEBUG) System.out.println(stStatus);

}

public boolean fnExecSQLUpdate(String stQuery) {

try {
int nTmpVar = SQLstatement.executeUpdate(stQuery);

return true;

43

}
catch(SQLException se) {
if{ DEBUG) System.out.printin{se.getMessage());
}
return false;
1
3

private ResultSet fnExecSQLSelect(String stFieldName, String stTableName, String
stCondition){
String stQuery =" ";
ResultSet tmpres = null;
try {
stQuery = fnstQueryBuilder("SELECT", stFieldName.trim(),
stTableName.trim(), stCondition.trim());
System.out.println("Say bye");
tmpres = SQLstatement.executeQuery(stQuery.trim());
System.out.printin("Say byel");
}
catch(SQLException se) {
if(DEBUG) System.out.println(se.getMessage());
if(DEBUG) System.out.println(se.getErrorCode());
}
return tmpres;

}

public String[][] fngetFieldsDB(String stFieldName, String stTableName, String
stCondition) {
String stTmp ="";
String stFieldVal[][];
ResultSet tmpres;
ResultSetMetaData tmpresmetdat;
int nColumns = 0, nRows = 0;
int 1 =0;
System.out.printin("Byel");
tmpres = faExecSQLSelect(stFieldName, stTableName, stCondition);
if(tmpres == null){
}
else{
try{
tmpresmetdat = tmpres.getMetaData();
nColumns = tmpresmetdat.getColumnCount();
System.out.println("ByeBye");
if(nColumns >= 1){
String stColumnName[] = new String[nColumns];
String stColumnType[] = new String[nColumns];

49

for(i=0;i<nColumns;i++){
stColumnName[i] =
tmpresmetdat.getColumnName(i+1);

stColumnType[i] =
tmpresmetdat.getColumnTypeName(i+1);

System.out.println("Column type is "+stColumnType[i]);
}
while(tmpres.next()){
nRows = nRows + 1;
for(i=0;i<nColumns;i++){
System.out.println("Column type again is
"+stColumnName[i]+stColumnType[i});

if(stColumnType[i].equals("VARCHAR2")){
System.out.println("Say Hi");
stTmp = stTmp +
tmpres.getString(stColumnName[i]) + "";
//Each field value is separated
by a space

if(stColumnType[i].equals("LONG")){
stTmp = stTmp +
Long.toString(tmpres.getLong(stColumnName[i])) + """;
/IEach field value is separated
by a space

if(stColumnType[i].equals("BYTE")){
stTmp = stTmp +
Byte.toString(tmpres.getByte(stColumnName[i])) + "™";
//Each field value is separated
by a space

if(stColumnType[i].equals("SHORT")){
stTmp = stTmp +
Short.toString(tmpres.getShort(stColumnName[1})) + "";
//Each field value is separated
by a space

[

if(stColumnType[i].equals("SINGLE")){

stTmp = stTmp +
Integer.toString(tmpres.getlnt(stColumnName[i]}) + "~";

/fEach field value is separated
by a space

if(stColumnTypeli].equals("DOUBLE")){
stTmp = stTmp +
Double.toString(tmpres.getDouble(stColumnName[i])) + """,
//Each field value is separated
by a space
}
}
if(stTmp.endsWith("*")){
stTmp = stTmp.substring(0,stTmp.length()-1);

stTmp = stTmp.trim() + "%";
//Each Tuple is separated by an underscore

}

else{
String stColumnType =
tmpresmetdat.getColumnTypeName(1);
String stColumnName =
tmpresmetdat.getColumnName(1);
while(tmpres.next()) {
nRows = nRows + 1;
if(stColumnType.equals("TEXT")) {
stTmp =stTmp +
tmpres.getString(stColumnName) + "%";
//Each field value is separated by a
space
}
if(stColumnType.equals("LONG")) {
stTmp = stTmp +
Long.toString(tmpres.getLong(stColumnName)) + "%";
//Each field value is separated by a
space
}
if(stColumnType.equals("BYTE")){
stTmp = stTmp +
Byte.toString(tmpres.getByte(stColumnName)) + "%";
//Each field value is separated by a
space
}
if(stColumnType.equals("SHORT")){

stTmp = stTmp +
Short.toString(tmpres.getShort(stColumnName)) + "%";
/Each field value is separated by a
space
}
if(stColumnType.equals("SINGLE")){
stTmp = stTmp +
Integer.toString(tmpres.getInt(stColumnName)) + "%";
//Each field value is separated by a
space
}
if(stColumnType.equals("DOUBLE")){
stTmp = stTmp +
Double.toString(tmpres.getDouble(stColumnName)) + "%";
//Each field value is separated by a

space
i
}
}

}

catch(SQLException se){}
}
try {

tmpres.close();
}

catch(SQLException se){}

stTmp = stTmp.trim();
if(stTmp.endsWith("%")){
stTmp = stTmp.substring(0,stTmp.length()-1);
}
stFieldVal = new String[nRows][nColumns];
stFieldVal = fnFieldParser(stTmp, nRows, nColumns);
return stFieldVal;
3
private String fnstQueryBuilder(String stQueryType, String stFieldName, String
stTableName, String stCondition){
String stQuery =" ";
if(stQueryType == "SELECT"){
if(stCondition == " "}{
stQuery = "SELECT " + stFieldName + " FROM " +
stTableName:;// + ":";
;
else{
stQuery = "SELECT " + stFieldName + " FROM " + stTableName

+ " WHERE " + stCondition;// +";";

)]
]

}
1Hf(DEBUG) System.out.println(stQuery); //Debugging
3
return stQuery;
b
private String[][] fnFieldParser(String stQueryResult, int nRows, int nCols){
String stRows[] = new String[nRows];
String stFieldVal[][] = new String[nRows][nCols];
int nRowIndex = 0, nCollndex = 0;
nRowNum = nRows;
nColNum = nCols;
StringTokenizer STToken1 = new StringTokenizer(stQueryResult, "%");
while(STToken!.hasMoreTokens()){
stRows[nRowlndex] = STToken!.nextToken();//Separating the Rows

StringTokenizer STToken2 = new StringTokenizer(stRows[nRowlIndex],

u/\n),
b

while(STToken2.hasMoreTokens()){
stFieldVal[nRowlIndex][nCollndex] = STToken2.nextToken();//Separating
the columns in each row
nCollndex = nCollndex + 1;
}
nCollndex = 0;
nRowlndex = nRowlndex + 1;
}
return stFieldVal;
}
!

class ApplicationServer extends Thread {
private static final boolean DEBUG = true;
public final static int DEFAULT PORT = 7001;
protected static int port=7001;
protected ServerSocket server port;
protected ThreadGroup CurrentConnections;
public ServerConnection c;
protected Vector connections;
protected ConnectionWatcher watcher;
DBAdmin admin;
static String stDBURL = "jdbc:oracle";
static String stDBUsrName = "mariam";
static String stDBPwd = "m15502@logic";
static public void main(String args(]) {
new ApplicationServer(port, stDBURL, stDBUsrName, stDBPwd);
}
public ApplicationServer(int port, String stDBURL, String stDBUsrName, String
stDBPwd) {

}

super("Server"),
admin = new DBAdmin(stDBURL, stDBUsrName, stDBPwd);
try { server_port = new ServerSocket(port);
System.out.println(port);
H

catch (IOException e) {System.out.println(e);}
CurrentConnections = new ThreadGroup("Server Connections");
connections = new Vector{);

watcher = new Connection Watcher(this);

this.start();

public void run() {

try {
while(true) {

Socket client_socket = server port.accept();
¢ = new ServerConnection(client_socket, CurrentConnections, 3, watcher,

this, admin);

}

}

// prevent simultaneous access.
synchronized (connections) {

connections.addElement(c);
}

}
b

catch (IOException e) {System.out.printin(e);}
System.exit(0);

public String fnDisplay(){

}

[IEI

String tmpString="";
tmpString = c.getInfo();
return tmpString;

public int getNumConnections(){

}

return c.numberOfConnections;

class ServerConnection extends Thread {
private static final boolean DEBUG = true;
static int numberOfConnections = 0;
protected Socket client;

protected ConnectionWatcher watcher;
protected DatalnputStream in;
protected PrintStream out;

Connection con;

public String stDBurl;

public String stUsrName;

public String stPwd;

54

public ApplicationServer AS;
DBAdmin admin;
public ServerConnection(Socket client_socket, ThreadGroup CurrentConnections,
int priority, ConnectionWatcher watcher, ApplicationServer A, DBAdmin
_admin) {
super(CurrentConnections, "Connection number" + numberOfConnections++);
this.setPriority(priority);
client = client_socket;
this.watcher = watcher;
AS = A;
admin = _admin;
try {
in = new DatalnputStream(client.getInputStream());
out = new PrintStream(client.getOutputStream());
}
catch (IOException e) {
try
{

client.close();

}

catch (I0Exception e2)
{
if(DEBUQG) System.err.println("Exception while getting socket streams: " + €);
return;
}
}
this.start();
1
s
public void run() {
String inline;
try {
while(true) {
inline = in.readLine(); // read in a line
System.out.printIn("Printing inline"+inline);
if (inline == null) break;
inline=inline.trim();
if(inline.toCharArray()[0]=="S"){
System.out.printin("\n" + this.getInfo() + " has performed a SELECT
Operation");
String stFieldVal[][]; //The String Array that stores the results of a
query

"o,

String stFieldName =" ",
String stTableName =" ";

String stCondition ="";
String stOutPut="";

int ni, nj;

out.printin("DONE");
inline = in.readLine();
inline=inline.trim();
System.out.printin("Printing inline 2"+inline);

StringTokenizer st = new StringTokenizer(inline,"@");
try{
while(st.hasMoreTokens()){
stFieldName = st.nextToken().trim();
stTableName = st.nextToken().trim();
stCondition = st.nextToken().trim();

}

}
catch(Exception e){}

if(DEBUG) System.out.printin(stFieldName + stTableName + stCondition);
//Debugging
stFieldVal =
admin.fngetFieldsDB(stFieldName.trim(),stTableName.trim(),stCondition.trim());
for(ni=0;ni<admin.nRowNum;ni++){
for(nj=0;nj<admin.nColNum;nj++){
stOutPut = stOutPut + stFieldVal[ni][nj] + """;
System.out.printIn("Query value"+stFieldVal[ni][nj]);
System.out.println("Query value"+stOutPut);
}
if(stOutPut.endsWith("")){
stOutPut = stOutPut.substring(0,stOutPut.length()-1);
o
stOutPut = stOutPut.trim() + "%";
Y
J
if(stOutPut.endsWith("%")) {
stOutPut = stOutPut.substring(0,stOutPut.length()-1);
}
if(DEBUG) System.out.println(stOutPut); //Debuggging
System.out.println(stOutPut+"SWED");
out.println(stOutPut.trim(});
out.printin("DONE");
}
if(inline.toCharArray()[0]=="U"){
System.out.println("\n" + this.getInfo() + " has performed an INSERT
Operation");
if(DEBUG) System.out.printin("Preparing to write DataBase");//Debugging
out.printin("DONE");
inline = in.readLine();
System.out.println(inline);
inline = inline.trim();
boolean boquery = admin.fnExecSQLUpdate(inline);

if(DEBUG) System.out.println(inline + boquery);//Debugging
out.printin("DONE");
1

J
out.flush();
!
}
catch (IOException e) {}
finally {

try {
client.close();

}
catch (IOException e2) {
synchronized (watcher) {watcher.notify();}

}
}
}
public String getInfo() {
return (client.getInetAddress().getHostName());

}
}

class ConnectionWatcher extends Thread {
protected ApplicationServer server;
protected ConnectionWatcher(ApplicationServer s) {
super(s.CurrentConnections, "ConnectionWatcher");
server =s;
this.start();
} :
public synchronized void run() {
while(true) {
try {
this.wait(10000);

1
S

catch (InterruptedException e){
System.out.println("Caught an Interrupted Exception™);
}
synchronized(server.connections) {
for(int 1 = 0; i < server.connections.size(); i++) {
ServerConnection c;
¢ = (ServerConnection)server.connections.elementAt(i);
if (lc.isAlive()) {
System.out.printin("\nDisconnecting from " + c.getInfo());
server.connections.removeElementAt(i);
1--
c.numberOfConnections = c.numberOfConnections - 1;

56

h
}
}
}

Sample Source Code (Define Goals - U_FF 3java):

Java Applet for the Define Goals frame.

[sk ok R ok R ok ok R R R R o R R R R R sk ok R R R R R R R KR SRR kR
<!-- REPI Web Site

<!-- Demo Version - August 14, 1998
<!-- Copyright (c) 1998

<o
<!-- Author: Umang Dave
<fee Mariam Burmawalla

<!-- Email: tanik@homer.njit.edu
$$**************************/
import java.applet.®;

import java.net.*;

import java.util.*;

public class U_FF 3 extends Applet{

public String stServerName;
public int iPortNumber;
public String ServerReply;
public DBClient dbclient;

public String stdispvaluel[];

public String templ[];

public int i;

public int j;

public String[] GetFromDataBase(String people _id,String goal name) {
stServerName = "cache.njit.edu";
1PortNumber = 7001;
DBClient dbclient = new DBClient(stServerName,iPortNumber);
dbclient.ProcessCommand("S");
ServerReply =
dbclient.ProcessCommand("GOAL _FILENAME,GOAL DESC@goal m@GOAL_PID
="+people_id.trim()}+" AND GOAL NAME="+goal name.trim()+"");

StringTokenizer sttok = new StringTokenizer(ServerReply,"™");
stdispvalue = new String[10];
1=0;
while(1<10) {
stdispvalue[i]="\0";

i+

k4

}

1=0;

while(sttok.hasMoreTokens()) {
stdispvalue[i] = sttok.nextToken();
=
1+t

}

return stdispvalue;

public void UpdateDataBase(String id,String proj_goalname,String
proj_goaldesc,String proj_goalfile) {

temp=new String[10];
stServerName = "cache.njit.edu";

iPortNumber = 7001;
DBClient dbclient = new DBClient(stServerName,iPortNumber);

j=0;

temp=GetFromDataBase(id,proj_goalname);

dbclient.ProcessCommand("U");

if(j==0)
ServerReply = dbclient.ProcessCommand("insert into
goal m(goal id,goal pid,goal name,goal desc,goal filename)
values(autogoal.nextval,"+id.trim()+"," +proj_goalname.trim()+"',""+proj_goaldesc.trim(
" "proj_goalfile.trim()+"")");
else

ServerReply = dbclient.ProcessCommand("update goal m set
goal desc=""+proj_ goaldesc.trim()+",goal_filename=""+proj goalfile.trim()+"" where
goal pid=""+id.trim()+"" AND goal name=""+proj_goalname.trim()+"");

System.out.printIn("Thisd is thz answer"+ ServerReply);

Sample Source Code (Define Goals - U_FF 3.HTM) :
Define Goal front page.
<IDOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN">

<!-- REPI Web Site >

<!-- Demo Version - November 24, 1997 -
<!-- Demo Version - August 14, 1998 -
<!-- Copyright (c) 1997 -->

<l >

<!-- Author: Deepak Pandit -->

<!-- Umang Dave -->

<l-- Mariam Burmawalla -

<!-- Email: tanik@homer.njit.edu -->
<HTML>

<HEAD>

<META NAME="Author" CONTENT="Deepak Pandit">
<META HTTP-EQUIV="Content-Type" CONTENT="text/html;CHARSET=iso-
8859-1">

<LINK REL=STYLESHEET TYPE="text/javascript" HREF="REPL.CSS"
TITLE="Style Sheet">

<SCRIPT LANGUAGE="JavaScript" SRC="REPLJS"></SCRIPT>
<SCRIPT LANGUAGE="JavaScript">
val =new Array();
temp = new Array();
var templen;
function getfromDB(id,proj_goalname) {
ctr=0;
temp = document.U_FF_3.GetFromDataBase(id,proj _goalname);
document.U_FF 3j.Goal File.value = temp[0];
document.U_FF_3j.U_Project_GoalDesc.value = temp[1];

}

function writetoDB(id,proj_goalname,proj_goaldesc,proj_goalfile) {

document.U_FF_3.UpdateDataBase(id,proj goalname,proj goaldesc,proj_goalfile);

)
function OpenFile(filename) {

window.open(filename," top"),
}
</SCRIPT>
<TITLE>User's Fact Finding Task 3: Define Goals</TITLE>
</HEAD>

<APPLET CODE="U_FF_3.class" NAME="U _FF 3" WIDTH = 10 HEIGHT = 10>
</APPLET>

<BODY LINK="BLUE" VLINK="BLUE" ALINK="White"
BACKGROUND="REPI_BK2.JPG">

<BIG><CENTER>

60

Task 3: Define
Goals
</CENTER></BIG>
<CENTER></CENTER>

<CENTER>
<FORM NAME="U _FF 3j" METHOD="GET">
<pP>
From your point of view, list the goals to be reached by this project.
</P>
<TABLE WIDTH="100%" BORDER="0">
<TR>
<TH ALIGN="RIGHT">USER 1D:</TH>
<TD>
<INPUT TYPE="TEXT" SIZE="11" NAME="Stakeholder_Info_ID">
</TD>
</TR>
<TR>
<TD ALIGN="right">
Project Goal Name:
</TD>
<TD>
<INPUT TYPE="text" NAME="U_Project_GoalName"
SIZE="40">
</TD>
</TR>
<TR><TD COLSPAN="2"> </TD></TR>
<TR><TD COLSPAN="2"> </TD></TR>
<TR><TD COLSPAN="2"> </TD></TR>
<TR>
<TH ALIGN="RIGHT">Goal File :</TH>
<TD>
<INPUT TYPE="TEXT" SIZE="20" NAME="Goal_File">
</TD>
<TD>
<INPUT TYPE="BUTTON" NAME="U _FF 3 File"
VALUE="Open Document"
onClick = "OpenFile(Goal File.value)">
</TD>
</TR>
</TABLE>

<TABLE>
<TR>
<TH ALIGN="Centre">OR</TH>
</TR>

61

</TABLE>
<TABLE>
<TR>
<TH ALIGN="Centre">Goal Description :</TH>
</TR>
<TR>
<TD>
<INPUT TYPE="TEXT" ALIGN="RIGHT" SIZE="80"
NAME="U_Project_GoalDesc">
</TD>
</TR>
</TABLE>

<TABLE WIDTH="100%" BORDER="0">
<TR>
<TD ALIGN="Center">
<INPUT TYPE="Button" NAME="U_FF_3_Enter"
VALUE="Enter Information"
onClick =
"writetoDB(Stakeholder_Info ID.value,U_Project _GoalName.value,U_Project_GoalDes
c.value,Goal File.value)">
</TD>
<TD ALIGN="Center" COLSPAN="2">
<INPUT TYPE="Button" NAME="U _FF 1_Get"
VALUE="Get Information" onClick =
"getfromDB(Stakeholder Info ID.value,U Project_GoalName.value)">
</TD>
<TD ALIGN="Center">
<INPUT TYPE="Reset" VALUE="Clear Form">
</TD>
</TR>
</TABLE>
</FORM>
</CENTER>
</BODY>
</HTML>

64

Source Code (Identify Relevant People - U_FF 1,java):

ko R sk R R R Sk R Ok ok kRO KRR Rk ok s kol s sk ol ok ool R ok R ok SRtk ek okl o

<!-- REPI Web Site
<!-- Demo Version - August 14, 1998
<!-- Copyright (c) 1997

<l
<I-- Umang Dave
<I-- Mariam Burmawalla

<!-- Email: tanik@homer.njit.edu
**********************************3?***********************************/
import java.applet.®;

import java.net.*;

import java.util.*;

public class U_FF 1 extends Applet{
public String stServerName;
public int iPortNumber;
public String ServerReply;
public DBClient dbclient;
public String stdispvalue[];
public String temp(];
public int i;
public int j;

public String[] GetFromDataBase(String people_id) {
stServerName = "cache.njit.edu";
iPortNumber = 7001;
DBClient dbclient = new DBClient(stServerName,iPortNumber);
dbclient.ProcessCommand("S");

ServerReply =
dbclient.ProcessCommand("PEOPLE FNAME,PEOPLE ILNAME,PEOPLE EMAIL,P
EOPLE_PHONE,PEOPLE_TYPE@people_ m@PEOPLE ID="+people_id.trim()+"");

System.out.printin("Thisd is thz answer"+ ServerReply);

StringTokenizer sttok = new StringTokenizer(ServerReply,"™");

stdispvalue = new String[10];

1=0;

while(i<10) {

stdispvalue[i]="\0";
i++;

2

h

1=0;

while(sttok.hasMoreTokens()) {
stdispvalue[i] = sttok.nextToken();
System.out.println("Token is"+stdispvalue[i]);

=

i++;

>

}
System.out.println("Token is asd""+stdispvalue);
return stdispvalue;

}

public void updatePage() {
StringTokenizer sttok = new StringTokenizer(ServerReply,"");
while(sttok.hasMoreTokens()) {
System.out.println("Token is"+sttok.nextToken());
b
}

public void UpdateDataBase(String people_id, String people_fname, String
people_Iname, String people_email,String people_phone, String people_type,String cat) {

temp = new String[10];
stServerName = "cache.njit.edu";

iPortNumber = 7001;
DBClient dbclient = new DBClient(stServerName,iPortNumber);

j=0;
temp=GetFromDataBase(people _id);
dbclient.ProcessCommand("U");
if(j==0)
{
ServerReply = dbclient.ProcessCommand("insert into
people _m(people_id,people fname,people Iname,people email,people_phone,people_ty
pe,people category)
values('"+people_id.trim()+","+people_fname.trim()+","+people_Iname.trim()+"","" +pe
ople_email.trim()+","+people_phone.trim()+"",""+people_type.trim()+",""+cat.trim()+"")"

)i
}
else
ServerReply = dbclient.ProcessCommand("update people_m set
people fname=""+people fname.trim()+"',people Iname=""+people_Iname.trim()+"',peop
le_email=""+people_email.trim()+"",people_phone='""+people_phone.trim()+"',people_typ
e=""+people_type.trim()+"" where people_id=""+people_id.trim()+"");
System.out.println("Thisd is thz answer"+ ServerReply);

}

b)

d)

g)

66

Describe the problem: From the viewpoint of the stakeholder, describe the problem

that is to be solved by this project.

Define Goals: From the viewpoint of the stakeholder, list the goals to be reached by
this project.

List Mission Scenarios: This scenario will describe how the development team will
approach the problem of designing the system.

Identify Domain Models: Identify the domain models and architectural models to be
used by this project.

Conduct Technological Survey: Enter the survey information.

Assess Constraints: Enter constraint information.

Gathering and Classification Phase: The Gathering and Classification phase
comprises of gathering requirements, listing requirements entered by various

stakeholder and classifying requirements as per their category.

Add Requirements: Many engineers are not trained to enter requirements, this leads
to a major problem of stating design implementation. This may occur if a customer
mandates a design solution as a requirement or the developer generates derived
requirements, which actually may be design solutions. The dangers in stating
implementation are forcing a design when not intended and the author may be lulled
into believing that all requirements have been covered, even though some important
requirements are missing. This leads to not delivering a product, which accomplishes

the customer’s real intent.

67

The requirement must be complete to provide all project specific information to

the stakeholders. The requirement must be unambiguous so that different users would

give same interpretation to the requirement. Moreover, it should also avoid the

ambiguity arising from the lack of details and must be properly scoped. The

requirement must be concise in manner.

Requirement Compliance level defines compliance level like :

Mandatory: Even if the requirement is primary requirement or a derived
requirement it must be implemented.

Guidance: It provides some level of guidance towards the implementation of the
system. Failure to implement does not mean noncompliance, if reasonable degree
of implementation was attempted.

Information: These are not actually requirements, but are non-binding statements,
which significantly influence the project development.

The stakeholders to classify requirements into groups use requirement Categories.

The classification can be into groups that can address a particular goal.

The current status of the requirements can be :

To be Defined: Such requirements do not have defined values.

To be reviewed: Such requirements needs further review.
Defined: Final value of the requirement has been obtained.
Approved: The requirement has been reviewed and approved.
Verified: The requirement has been verified with verification plan.

Deleted: The requirement is no longer applicable.

69

public int iPortNumber;
public String ServerReply;
public DBClient dbclient;
public String stdispvalue[];
public String temp[];
public int i;
public int j;

public String[] GetFromDataBase(String id) {
stServerName = "cache.njit.edu";
iPortNumber = 7001;
DBClient dbclient = new DBClient(stServerName,iPortNumber);
dbclient. ProcessCommand("S");

ServerReply =
dbclient.ProcessCommand("req_pid,req_title,req_gid,req_category,req_complevel,req_st
atus,req_filename@req_m@req_id=""+id.trim()+"");

StringTokenizer sttok = new StringTokenizer(ServerReply,

stdispvalue = new String[10];

1=0;

while(i<10) {
stdispvalue[i]="\0";

i++;

N/\u).
Ed

h

1=90;

while(sttok.hasMoreTokens()) {
stdispvalue[i] = sttok.nextToken();

=N
14+
} .
return stdispvalue;

}

public void updatePage() {
StringTokenizer sttok = new StringTokenizer(ServerReply,"™");
while(sttok.hasMoreTokens()) {
System.out.println("Token is"+sttok.nextToken());

}
}

public void UpdateDataBase(String id,String req_id, String req_title, String gid,
String cat,String complvl, String stat, String type,String filename) {

stServerName = "cache.njit.edu";

70

iPortNumber = 7001,
DBClient dbclient = new DBClient(stServerName,iPortNumber);

=0

temp=GetFromDataBase(req_id);

dbclient.ProcessCommand("U");

if(j==0)
ServerReply = dbclient.ProcessCommand("insert into
req_m(req pid,req id,req title,req gid,req category,req complevel,req_status,;req_type,r
eq_filename,req_dummy,req valid)
values(""'+id.trim()+",""+req_id.trim()+"",""+req_title.trim()+"',"+gid.trim()+"',""+cat.trim(
)+ +reomplvltrim()+", " +stat.trim()+", "+type.trim()+", " +ilename. trim()+"", NA",'N")
");
else

ServerReply = dbclient.ProcessCommand("update req_m set
req_pid=""+id.trim()+""req_title=""+req_title.trim()+"" req_gid=""+gid.trim()+"',;req_categ
ory=""+cat.trim()+"',req_complevel=""+complvl.trim()+" req_status=""+stat.trim()+"",req
_type=""+type.trim()+"",req_filename=""+filename.trim()+"" where
req_id=""+req_id.trim()+"");

}
}

b) List Requirements: List the entire set of requirements or requirements specific to a
particular user.

c) Classify Requirements: Classify the requirements as per their category.

" 3. Evaluation and Rationalization Phase: Perform abstraction and derive rationale

from the entered requirements.

a) Perform Abstraction: To ensure that a requirement statement represents a need and
not an implementation, ask WHY the requirement is needed. If this does not lead to a
“real” need statement, then the original requirement statement is probably

appropriate, citing a need rather than implementation [HARWELL 93].

72

d) Feasibility Analysis: This attribute specifies if the stated requirement can be achieved
by one or more developed system concepts at a definable cost. Various levels of
studies are included to measure then feasibility of a requirement.

d) Cost / Benefit Analysis: This attribute specifies if the given requirement is cost

effective and if 1t beneficial to the developer, the user and the product at large.

4. Prioritization and Planning Phase: Prioritize the given set of requirements and plan

the incremental stages depending on the priorities.

a) Prioritize Requirements: This characteristic identifies the relative importance of a
requirement in terms of implementation, particularly in establishing criteria for trade
studies. To mandate that certain elements must be completed before a specified
ceiling is reached. The priority characteristic may also be used for establishing the
sequence in which specified design or test activities should occur [HARWELL 93].
Some of the parameters that can influence the prioritization are : cost level,
dependence level, level of understanding, Importance level, priority.

b) Plan Incremental Development Stages: This attribute helps is planning the
development stages once the priority of all the requirements have been established.

This helps the developer approach the design phase in a structured manner.

75

b) Obtain Authorization: Every requirement is authorized after confirming that 1t 1s not
vague or general but is quantifies. The requirement is authorized after inspection,

analysis, demonstration or test.

CHAPTER S

CONCLUSION AND FUTURE WORK

The thesis i1s aimed at utilizing client server, relational database management systems and
Internet technologies for the purpose of Requirement Elicitation. Chapter 1 introduces the
concepts of knowledge management, requirement engineering and environmental life
cycle. Chapter 2 explores the concepts in detail addressing the issues related to
knowledge management like knowledge representation, filtering and knowledge search.
It also describes Software Engineering Institute’s Requirement Elicitation framework,
process model, techniques, methods and methodologies. Chapter 3 describes the
problems facing the domains of requirement engineering, knowledge management and
environmental life cycle. Chapter 4 describes one approach using client server, relational
database, and Internet technologies for effective requirement elicitation. It also explains
in detail how these technologies can facilitate efficient communication and information
sharing between stakeholders and developers. These technologies can also help them

arrive at a common understanding.

5.1 Benefits of Requirement Elicitation Web Presence
The accurate translation of a customer’s need by the product team is essential. Identifying
requirements characteristics, determining that the stated requirement conveys a need and
ascertaining contextual adequacy are essential for assessing the accuracy of translation
before the product team proceeds. These criteria enable the analysis team to better
understand the customers intent and to better identify where disjoints, ambiguities, and

conflicts exist early in the program. The objective is to be able to integrate a collection of

76

77

requirements and to establish their achievability prior to design implementation — rather
then during test and evaluation. In addition, as we learn the effects certain combinations
of characteristics and relationships have on the development process, we can more
readily identify potential difficulties and correct them before we are committed to an
approach that maybe impracticable. [HARWELL 93].

Using the web as the platform, “facilitates the distribution of the application and
its data to geographically-separated users on diverse computing platforms”
[GIRGENSOHN 96]. One of the major benefits of requirement elicitation on web is that
it allows people and organizations separated in space of time to exchange information
and come to consensus on the needs of the people. The REPI web site provides a
distributed asynchronous environment allowing group members to interact at different
time from different places. The advantages of such meetings is that “group members do
not have to be physically in the same place to meet, not must they communicate with one
another at the same time” [OCKER 95]. These two characteristics of distributed
asynchronous communication extend the definition of a meeting; this expanded definition
of a meeting loosens the constraints in an organization and thus increases the means by
which groups can accomplish their work [OCKER 95].

“Organizational and social issues have great influence on the effectiveness of
communication activities” and therefore on the overall success or failure of a given
project [AL-RAWAS 96]. Expensive communication channel can seriously hamper the
exchange of information between the group members. Sometimes surrogates or
intermediaries are used as a representative to communicate with the client or developer

side instead of actual clients or developers. Such indirect links of communication can

78

lead to misunderstood requirements. [KEIL 95] reports that direct links are better than
indirect links because intermediaries might filter or distort messages between the two
groups and they might not have a complete understanding of the customer’s needs. [KEIL
95] also reports that up to a certain point the more links between customer’'s and
developers, the better it is for the development processes. Another possible limitation of
the expensive communication channel is that it might be restricted to one way
communication. The development side people might produce documents based on their
understanding and send these voluminous documents for the client side. They might not
take the time to validate the requirements, even if they understand the notations used in
the specifications. All these limitations of expensive communication channel reduce the
accuracy of the information [AL-RAWAS 96].

The requirement elicitation process model addresses complexity and volatility
issues present in the elicitation process. Software products are orders of magnitude more
complex than other human constructs and conceiving, describing, and testing these
products is difficult [BROOKS 87]. Additionally, the computational and memory
capacities of humans are limited and can server as a hindrance during the creation of
complex requirements. These factors are solved by the iterative nature of the model.
[teration has been identified as a suitable technique for addressing change and complexity
[MILLER 93]. The process model takes into consideration the importance of including
all the stakeholders in the definition of the tasks and responsibilities. This is necessary for
the requirements elicitation process to be successful [CHRISTEL 92].

The requirement elicitation process on the web provides database (Oracle 7)

connectivity. Providing a form of database connectivity in the back end helps in storing

79

all the information related to the requirements. This information can be very useful and
can be readily available in the later stages of design and implementation. The information
present in the database can also very used to generate reports and presentations.

The first phase of the process model is the fact-finding phase. For this phase the
accuracy and completeness is critical to the success of the entire process. Multiple passes
through this stage should be considered to promote completeness [MILLER 93]. This
phase promotes a feeling of importance among participants and forms a forum for
clarification and understanding and fostering sense of commitment.

During the gathering and classification phase it is important to decompose the
requirements into manageable pieces. If multiple iterations of the entire requirements
elicitation process are required, the decomposition will aid in the task of incremental
application and development of the requirements [CHRISTEL 92]. It ventails the
formalization of documents and models required in achieving the goals. It provides a
mechanism for representing various types of requirements and integrating them.

The benefit of the evaluation and the rationalization phase is that it provides the
missing rationale for the requirements gathered in the fact-finding and gathering and
classification phase. Moreover, it also provides an analysis of the risk, cost / benefits,
feasibility and why the requirements are required.

Prioritization and planning phase helps in arranging the requirements in order of
relative importance from the view of the client and the view of the developer
[CHRISTEL 92]. This allows the developers to focus on the most important issues and
then arranging the rest of the requirements in their relative importance. It also clearly

explains what exactly the customer is looking for in a system.

80

Integration and validation phase ensures completeness, conflicts, quality
requirements and reduces conflicts. This phase also identifies incomplete requirements
and allows further iteration.

Two evaluation criteria for requirements capture methodologies are [CHRISTEL 92]:
1. Effectiveness, the achievement of the highest valued goals; and

2. Efficiency, achieving goals without consuming more resources than necessary.

5.2 Future Work
The requirement elicitation web site developed for this thesis describes one approach for
requirement elicitation. Future work on the project will improve its usefulness and
effectiveness. This section describes the major areas in which future work is possible.

One of the major areas of research would be to add artificial intelligence to the
existing tool. This can prompt the user while using the tool and can guide him / her in the
proper direction. It can also guide in situations where the user in entering some design
issues or implementation issues instead of requirements.

The tool currently available is a generic model, it could be expanded to facilitate
functions specific to the application. Moreover, features like image processing and video
conferencing can be add to the functionality. The tool can also be made expanded to
provide information of the currently logged group members and can initiate a face-to-face
meeting. An image of the group member can be displayed along with the requirement
specified. In this way all the group members can know each other better.

For the fact-finding phase if the understanding and the representation of the

problem domain is mature, the objectives of this phase may be easily identified,

81

understood, and completed. However, if this is not the case, cross-functional teams
should be engaged to perform this task [MILLER 93]. Information may not be gathered
or documented correctly and could be filtered.

Gathering and classification phase introduces redundant data if information must
be reentered from the other representatives. This creates additional work to create and
maintain the model [MILLER 93]. Processes can be added to this phase to check the
redundancy and reduce the maintenance cost.

In, evaluation and rationalization phase little documentation is available to
support how the models and representations should be compared and contrasted in order
to evaluate them successfully [MILLER 93]. Employing different representation
techniques can lead to difficulty in comparing even the complete models. The techniques
for evaluating risk, cost / benefits and feasibility are limited. Moreover, these techniques
may vary from person to person, this can lead to some difficulty in the rationalization
phase.

In the prioritization and planning phase it is very important that the group of
people who are fully aware of the requirements and the functionality of the system must
execute the planning. Allowing all the group members to participate in planning can
hinder the system design. Proper review and prioritization are beneficial before
proceeding to the planning.

The functionality of drop down menus for the items to be selected from the
database can be added. Moreover, as a benchmark case object oriented databases can be
used to storing information. The object oriented feature can add to the functionality and

effectiveness of the tool.

82

To summarize, the web site can be improved by incorporating the above
functionality. The basics of well defined requirements do not require elegant, entertaining
prose. In the words of Albert Einstein, “When you are out to describe the truth, leave

elegance to the tailor.”

[AL-RAWAS 96]

[BERLIN 89]

[BRACKETT 90]

[BROOKS 87]

[CHRISTEL 92]

[DAVIS 93]

[DANIEL 98]

[DEBENHAM 97]

[ELMASRI 94]

REFERENCES

Al-Rawas, Amer and Easterbrook, Steve. “Communication
Problems in Requirements Engineering : A Field Study”, in
Proceedings of the First Westminster Conference on Professional
Awareness in Software Engineering. 1996.

Berlin, Lucy M. “User-Centered Application Definition: A
Methodology and Case Study”, Hewlett-Packard Journal 40(5):
pp. 90-97, October 1989.

Brackett, John W. “Software Requirements”, SEI Curriculum
Module SEI-CM-191.2. Software Engineering Institute, Carnegie
Mellon University, Pittsburgh PA. January 1990.

http://www sei.cmu.edu/publications/documents/cms/cm.019 . huml
(20 July, 1998)

Brooks, F. P. Jr. No Silver Bullet : “Essence and Accidents of
Software Engineering”, IEEE Computer, pp. 10-19, April 1987.

Christel, Michael G. and Kang, Kyo C. “Issues in Requirement
Elicitation.”, Technical Report CNW/SEI-02-TR-12 or ESC-TR-92-
012. Software Engineering Institute, Carnegie Mellon University,
Pittsburgh PA. September 1992.
http://www.sei.cmu.edu/publications/documents/92.reports/92.tr.0
12.htm! (20 July, 1998)

Davis, Alan M. Software Requirements: Objects, Functions and
States, P T R Prentice Hall, Englewood Cliffs, NJ. 1993

Daniel E. O'Leary. "Enterprise Knowledge Management", JEEE
Computer, pp. 54-61, March 1998.

John Debenham. “Constraints of knowledge Management”, AAAI
Spring Symposium, Artificial Intelligence in Knowledge
Management Stanford University. March 24-26, 1997.
http:/ksi.cpsc.ucalgary.ca/AIKM97/debenham/debenham.html (13
August, 1998).

Elmasri / Navathe. Fundamentals of Database Systems, Second
Edition, Addison-Wesley Publishing Company, 2725 Sand Hill
Road, Menlo Park, CA 94025. 1994.

83

84

[GIRGENSOHN 96] Girgensohn, Andread. “Experiences in Developing Collaborative

[GRAEDEL 95]

[HARWELL 93]

[HERLEA 97]

[IVY 90]

[KAR 96]

[KEIL 95]

[MILLER 93]

[OBJA 95]

[OCKER 95]

[ORACLE 96]

[ORACLE 7]

Applications Using the World Wide Web ‘Shell’.” Hypertext 96 :
The Seventh ACM Conference on Hypertext. 1996.

T. E. Graedel, B. R- Allenby. Industrial Ecology, Prentice Hall,
Englewood Cliffs, New Jersey 07632. 1995.

Harwell, Richard. "What Is A Requirement?”, Published in the
Proceedings of the third International Symposium of the INCOSE,
1993.

Herlea, Daniela. “Knowledge Management for Requirement
Engineering”, AAAI Spring Symposium, Artificial Intelligence in
Knowledge Management Stanford University. March 24-26, 1997.
http://ksi.cpsc.ucalgary.ca/AIKM97/herlea/KMSE. html

(13 August, 1998)

Ivy Hooks. “WHY JOHNNY CAN'T WRITE
REQUIREMENTS?”, Paper given at AIAA conference, 1990.

Kar, Pradip and Bailey, Michelle. "Characteristics of Good
Requirements', Paper given at the 6th INCOSE Symposium, 1996.

Keil, Mark and Carmel, Erran. “Customer-Developer Links in
Software Development”, Communications of the ACM. Volume
38, Number 5. May 1995.

Miller, U Greg and Tanik, Murat M. “Multimedia Applications in
Software Engineering”, Technical report 93-CSE-50. Southern
Methodist University, Dallas, Texas. November 1993.

Object Agency Semantic Networks for Object Oriented software
engineering.

Ocker, Rosalie, Hiltz, Starr Roxanne, et al. “The effects of
distributed group support and process structuring on software
requirements.” Journal of Management Information Systems.
Winter 95/96, Volume 12, Issue 3, 1995.

“Oracle Intranet Strategy”, An Oracle White Paper.

Oracle Corporation, Redwood Shores, CA- July 1996.
http://www.oracle.com/promotions/intranet/html/intrane_wp.html
(14 Feb, 1998)

Oracle 7 Server, SQL language reference manual.

[PEYMAN 97]

[PLAYLE 96]

[POHL 93]

[RAGHAVAN 94]

[RZEPKA 89]

[SKUCE 97]

[SUN 98]

85

Peyman Zehtab-Fard. “Knowledge Representation for Software
Development”, Submission to Umea’s first Students Conference in
Computing Sciences, 1997.
http:/fwww.cs.umu.se/~dvlpzd/extended.html (25 July, 1998).

Playle, Greg and Schroeder, Charles. “Software Requirements
Elicitation Problems, Tools, and Techniques”. In CrossTalk — The
Journal of Defense Software Engineering, 1996.
http://www.stsc.hill.af. mil/crosstalk/1996/dec/xt96d 12e . html

(3 March, 1998).

Pohl, Klaus. “The Three Dimensions of Requirement
Engineering”, Technical Report NATURE-92-11. 5th International
conference on Advanced Information Systems Engineering, Paris,
France. June 1993.

Raghaven, Sridhar, Zelesnik, Gregory, and Ford, Gray. Lecture
Notes on “Requirements Elicitation”, Report CMU/SEI-94-EM-10.
Software Engineering Institute, Carnegie Melon University,
Pittsburgh PA. 1994.
http://www.sei.cmu.edu/publications/documents/ems/94.em.010.ht
ml (25 July, 1998).

Rzepka, Willilam E. “A Requirements Engineering Testbed:
Concept, Status, and First Results”. In Bruce D. Shriver (editor),
Proceedings of the Twenty-Second Annual Hawaii International
Conference on System Sciences, 339-347. IEEE Computer Sociefy,
1989.

Skuce, Doug. “Hybrid KM: Integrating Documents, Knowledge
Bases, Databases, and the Web”, AAAI Spring Symposium,
Artificial Intelligence in Knowledge Management Stanford
University. March 24-26, 1997.
http://ksi.cpsc.ucalgary.ca:80/AIKM97/skuce/skuce.html

(13 August, 1998)

“The Java™ Language: An overview”, Sun Microsystems, Inc.
http://java.sun.com:80/docs/Overviews/java/java-overview-1.html
(13 August, 1998).

	Copyright Warning & Restrictions

	Personal Info Statement

	Abstract (1 of 2)
	Abstract (2 of 2)

	Title Page

	Approval Page

	Biographical Sketch

	Dedication Page

	Acknowledgement

	Table of Contents (1 of 2)
	Table of Contents (2 of 2)

	Chapter 1: Introduction

	Chapter 2: Standard Technologies and Methodologies

	Chapter 3: Domain and Problems

	Chapter 4: Relational Database and Internettechnologies for Requirement Elicitation
	Chapter 5: Conclusion and Future Work

	References

	List of Figures

	List of Tables

