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ABSTRACT

A LOW-COST HIGH-SPEED TWIN-PREFETCHING DSP-BASED
SHARED-MEMORY SYSTEM FOR REAL-TIME

IMAGE PROCESSING APPLICATIONS

by
Charalambos Stephanou Christou

This dissertation introduces, investigates, and evaluates a low-cost high-speed

twin-prefetching DSP-based bus-interconnected shared-memory system for real-time

image processing applications. The proposed architecture can effectively support 32

DSPs in contrast to a maximum of 4 DSPs supported by existing DSP-based bus-

interconnected systems. This significant enhancement is achieved by introducing two

small programmable fast memories (Twins) between the processor and the shared bus

interconnect. While one memory is transferring data from/to the shared memory, the

other is supplying the core processor with data. The elimination of the traditional direct

linkage of the shared bus and processor data bus makes feasible the utilization of a wider

shared bus i.e., shared bus width becomes independent of the data bus width of the

processors. The fast prefetching memories and the wider shared bus provide additional

bus bandwidth into the system, which eliminates large memory latencies; such memory

latencies constitute the major drawback for the performance of shared-memory

multiprocessors. Furthermore, in contrast to existing DSP-based uniprocessor or

multiprocessor systems the proposed architecture does not require all data to be placed on

on-chip or off-chip expensive fast memory in order to reach or maintain peak



performance. Further, it can maintain peak performance regardless of whether the

processed image is small or large.

The performance of the proposed architecture has been extensively investigated

executing computationally intensive applications such as real-time high-resolution image

processing. The effect of a wide variety of hardware design parameters on performance

has been examined. More specifically tables and graphs comprehensively analyze the

performance of 1, 2, 4, 8, 16, 32 and 64 DSP-based systems, for a wide variety of shared

data interconnect widths such as 32, 64, 128, 256 and 512. In addition, the effect of the

wide variance of temporal and spatial locality (present in different applications) on the

multiprocessor's execution time is investigated and analyzed. Finally, the prefetching

cache-size was varied from a few kilobytes to 4 Mbytes and the corresponding effect on

the execution time was investigated. Our performance analysis has clearly showed that

the execution time converges to a shallow minimum i.e., it is not sensitive to the size of

the prefetching cache. The significance of this observation is that near optimum

performance can be achieved with a small (16 to 300 Kbytes) amount of prefetching

cache.
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CHAPTER 1

INTRODUCTION

Parallel processing has had a tremendous impact on many areas of computer application.

High raw computing power of parallel computers now can meet application requirements

that were until recently beyond the capability of conventional computing techniques. One

of the key problems to be solved in the area of parallel processing is the bridging of the

gap between processors' speed and memory latency. Processor performance has increased

dramatically over the past few years while memory latency and bandwidth have

progressed at a much slower pace. Large latencies have considerably reduced the number

of processors, which can be effectively supported in shared memory parallel computers.

The focus of this dissertation is a new cost-effective parallel computer architecture that

reduces memory latency and effectively supports a greater number of processing

elements. This chapter provides an introductory background in this fast growing research

area. The outline of the dissertation as well as the motivations, objectives, and

contributions are presented at the end of the chapter.

1.1 Parallel Processing Systems

A parallel computer, in general, has attributes such as the number of processors (or

number of nodes), the memory system, peripherals, and the interconnection network (a

collection of wires and connectors for data transactions among processors, memory

modules, and peripheral devices). Parallel architectures can be classified in two large
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classes: shared-memory multiprocessors and message-passing multicomputers [32][31].

Multiprocessors have a single, global, shared address space visible to all processors. Any

processor can read or write any word in the address space by moving data from or to a

memory address. Communication is via the shared memory. Multicomputers do not have

a shared memory and must communicate by message passing.

1.1.1 Shared-Memory Multiprocessors

Multiprocessors are also called tightly coupled systems due to the high degree of resource

sharing. Three shared-memory multiprocessor models are primarily used: The uniform-

memory-access (UMA) model, the nonuniform-memory-access (NUMA) model and the

cache-only-memory access (COMA) model [32]. They differ in the way the memory and

other resources are distributed. If the time taken by a processor to access any memory

word in the system is identical the computer is classified as UMA (model shown in

Figure 1.1 The UMA multiprocessor model

Figure 1.1). All processors have equal access time to all memory locations in all shared-

memory modules (marked as SM) under the condition of no network congestion. That is

why it is called a uniform-memory-access model. In the NUMA model in Figure 1.2,
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however, the shared memory is physically distributed to all processors (called local

memories). The collection of all local memories forms a global address space accessible

to all processors. The time to access a remote memory bank is longer than the time to

access a local one (labeled as LM), because a processor has to go through the

interconnection network when accessing the former. The cache-only-memory access

(COMA) [28] is a special case of NUMA machine, in which the distributed main

memories are converted to caches.

Figure 1.2 The NUMA multiprocessor model

Multiprocessor systems are suitable for general-purpose applications where

programmability is the major concern. They preserve the intuitively appealing

programming model provided by a single, linear memory address space. It is the opinion

of many researchers [32][33][34] in the area of parallel processing that the recent failures

of many parallel computing companies are partly due to the difficulty of programming

and lack of software of their supercomputers. Mainly because of programming
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complexities of message-passing multicomputers, the architectural trend for future

general-purpose computers is in favor of shared-memory systems [32][33][37]. Another

significant factor for the observed failure is the price/performance ratio. In fact, Ted

Lewis states in [35] the following: "I could never understand why a 30-processor

multicomputer costs as much as 130 workstations when both contain the same

commodity chips." It should be also mentioned that price/performance ratio is always a

major factor for a successful uniproccessor or multiprocessor system design.

Latency tolerance for memory access is a major limitation in shared-memory

systems [3][4][13] due to the bandwidth constraint. For instance, four to eight modern

processors (with private caches-with or without prefetching), accessing the same memory

module, can easily use up all the available bandwidth [5][37].

1.1.1.1 Caches: Private caches in conjunction with hardware-based cache coherence

maintenance [36] have contributed to the reduction of the ill effects of large memory

access times. Caches are placed between the (fast) processor and (slow) main (shared)

memory and have the basic function to hold regions of recently referenced shared-

memory. References satisfied by the cache (called cache hits) proceed at processor speed;

those unsatisfied (called misses) incur a cache miss penalty to fetch the corresponding

data from the shared memory. Most modern processors must wait, or stall, until the data

arrive. Caches increase system performance not only because data is available to the

processor faster but also because they reduce congestion on the interconnection network,

i.e., a high cache hit rate eliminates some of the traffic that would have otherwise gone

out across the interconnection network to the shared-memory. Reduced traffic increases
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the number of processors that can be effectively supported on the interconnection

network. Caches explain the fact that multiprocessors systems are designed with less

memory bandwidth than the one that would be required by the sum of the individual

CPUs. When planning the design of a multiprocessor system, great consideration should

be given to what kind of applications will be executed on it. The maximum speedup of an

application is bounded by the speed of the interconnection network.

1.1.1.2 Dynamic Interconnection Networks: Multiple processors in shared-memory

systems communicate and access the common memory through a dynamic

interconnection network. This network implements all communication patterns based on

program demands using switches and arbiters along the connecting paths to provide the

dynamic connectivity. In increasing order of cost and performance, dynamic connection

networks include bus systems, multistage interconnection networks (MIN), and crossbar

switch networks. The performance is indicated by the network bandwidth, data transfer

rate, network latency, and communication patterns supported.

The simplest and least costly way to construct a multiprocessor system is to

connect the processors on a shared bus. In the past, commercial releases of bus based

multiprocessors supported as many as 32 processors. The advent of high-performance

ultra-fast processors has reduced that number to four [11] or eight [7]. For instance, each

node of the Stanford DASH multiprocessor [14] is a bus-based cluster and supports only

four high performance RISC processors. The amount of data which a shared bus can

deliver to a computer system depends on its speed (clock rate), memory access time, and

data-bus width. Conventional designs of shared-bus shared memory systems, naturally set
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the width of the bus to the same size of the data bus width of the processor. The shared

bus can only handle one transaction at a time, employing a single source; therefore

limiting the amount of total data transferred per transaction to the data bus width of the

processor. The proposed twin-prefetching system separates the traditional linkage of

shared bus and processor bus and enables the utilization of a wider shared bus. A wider

shared bus pumps into the system additional bandwidth and supports a greater number of

processors. It makes the system scalable (unheard of for shared-bus shared memory

system) since the width of the shared bus becomes independent from the processor bus

width, i.e., bandwidth is increased by increasing the shared bus width.

The crossbar and multistage networks are more complex and provide higher

bandwidth for higher cost. They are to be used if target performance cannot be achieved

through bus interconnect [10]. Digital signal processing (DSP-based) parallel computers

built for image processing [21][25][27] have no other choice but to employ crossbar and

multistage switches in order to cope with the immense processing load.

1.1.1.3 Prefetching: Recent research has shown that prefetching in caches further

reduces memory latencies and increases system performance [I ][2][3][4][8][9][30]. Any

prefetching scheme has as a goal to reduce the processor stall time by bringing data into

the cache before they are referenced. Prefetching approaches proposed in the literature are

software or hardware based. Software controlled prefetching schemes rely on the

programmer/compiler to insert prefetch instructions prior to the instructions that trigger a

miss. Hardware controlled prefetching schemes detect accesses with regular patterns and

issue prefetches at run time. T. Mowry and A. Gupta [3] (software-controlled
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prefetching), for example, report as much as 150% of performance improvement when

applications with regular data access patterns are executed on the Stanford DASH

multiprocessor [14]. Fredrik et. al. [4] report a 78% reduction in read miss by employing

a simple hardware controlled prefetching technique which relies on an automatic prefetch

of multiple consecutive blocks that follow the one that caused the miss in the cache. They

are exploiting spatial locality of data.

1.1.2 Message-Passing Multicomputers

A message-passing multicomputer consists of multiple nodes interconnected by a point to

point network. Each node is an autonomous computer including a processor, a private

local memory, and possibly disks or I/O peripherals, as modeled in Figure 1.3. Internode

communication is carried out by passing messages through the network while observing

certain communication protocols. Such actions may involve multiple links (i.e., physical

connections between nodes) and nodes, if the source is not directly connected to the

destination.

Figure 1.3 A multicomputer system
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Some common network topologies in constructing interconnection networks for

multicomputers are, as shown in Figure 1.4, binary tree, star, ring, mesh, hypercube, etc.

They are also called static connection networks because all links between nodes are fixed

after a network is built.

(a) Binary tree	 (b) Star	 c) Ring

(d) Mesh	 (e) Hypercube

Figure 1.4 Common topologies for interconnection networks

Multicomputers achieve better scalable performance due to their distributed

processor/memory nodes. However, message passing imposes a hardship on

programmers to distribute the computations and data sets over the nodes or to establish

efficient communication among nodes. Until intelligent compilers and efficient

distributed operating systems become available, multicomputers will continue to lack

programmability. Chandra et. al. [6] studied the strengths and weaknesses of the two

fundamental mechanisms of message-passing and shared-memory by comparing the
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performance of equivalent, well-written message-passing and shared-memory programs

running on similar hardware. Each application program was produced in two versions and

its performance was measured on closely-related simulators of a message-passing and a

shared-memory machine. They found that three of the four shared-memory programs ran

at roughly the same speed as their message-passing equivalents, even though their

communication patterns were different. Similar results are reported in [12]. Therefore, if

both paradigms achieve the same speedup it is preferable to choose the shared-memory

approach which is more user friendly.

1.1.3 Image Processing

Parallel image processing and computer vision have exhibited a tremendous growth in the

past decade. This process has been driven not only by the need for fast processing but

also from the fact that parallelism suits well to the tasks of digital image processing and

to the nature of digital images. Digital images are sampled on a rectangular grid and are

stored on a two dimensional array [23]. Therefore, they possess an inherent geometrical

parallelism [24]. This parallelism can be exploited by using a large two-dimensional array

of processors, possibly one per image pixel. However, this is possible only for small

images. Thus, a 512x512 or a 1024x1024 image is segmented (partitioned) in square

blocks or in strips and each block/strip is assigned to a specific processor. The latter

method allows general purpose parallel computers to solve problems in digital image

processing.

Parallel architectures can be classified into two large classes: Single Instruction

Multiple Data (SIMD) and Multiple Instruction Multiple Data (MIMD) machines. SIMD
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machines dominated in parallel digital image processing in the past. Currently MIMD

computers are progressively taking their space. The main reason is the wide availability

of general purpose MIMD computers and their use by mainstream scientists and

engineers. Some of these machines (e.g., DSP-based) are attractive because they combine

low cost and high numerical performance [21][22][26]. MIMD machines are further

divided into multiprocessors and multicomputers.

Many digital image processing algorithms are essentially local neighborhood

operations in the form:

where xij, yij are the input and the output image respectively. F is an operator (linear or

nonlinear) and A is its template window. The most frequently used window is square of

size 3x3. It contains the pixels having city block distance 1,2 from the central pixel.

Neighborhood parallelism denotes the possible parallel execution of local neighborhood

operations. Local neighborhood operations are not usually executed in parallel in general-

purpose parallel computers. They affect significantly the overall speedup of a parallel

system due to the greater locality of data (spatial and temporal), which is observed when

there is a greater the number of local neighborhood operations. It should be noted that

data locality is a determining factor for the cache or prefetching cache hit ratio. Spatial

locality means that if a location in memory is accessed, then others in the neighborhood

will probably be accessed shortly. Temporal locality means that recently referenced items

are likely to be referenced again in the near future [32].
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1.2 Motivation, Objectives, and Contributions

Access to the common memory is the key limiting factor in the performance of shared-

memory multiprocessors. The traversal of the processor-shared-memory interconnect

employs large latencies as the number of processors increases. The advent of ultra-fast,

heavily pipelined, multifunction, one-cycle-per-instruction-execution-time modern

processors have made the problem worse [19], allowing only a handful of nodes to be

effectively supported on a shared-bus shared-memory multiprocessor system. Moreover

due to the significant memory requirements of the computationally intensive nature of

digital image processing applications [18] DSP-based multiprocessors can support even a

smaller number of processing units. This limitation enforces current commercial DSP-

based shared-memory systems to employ expensive and complex crossbar switch

networks in order to support even the small number of four high-performance DSPs

[20][21]. Our vision is to meet the requirements for real-time image processing

application execution through the least expensive and least complex hardware.

The objectives of this dissertation are: (1) to introduce a new shared-bus shared-

memory multiprocessor system architecture that can maximize throughput, minimize cost

and has the potential of supporting effectively real-time high-resolution image-

processing; (2) to contact an extensive investigation of the performance of the proposed

architecture; (3) to propose appropriate values for several system design parameters.

Indeed the proposed, in this dissertation, shared-bus shared-memory

multiprocessor system can effectively support 32 DSPs. This is in sharp contrast to

existing DSP-based bus-interconnected systems, which can support only a very small

number of DSPs. This is achieved through the elimination of the traditional direct linkage
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of the shared bus and processor data bus, which enables the utilization of a wider shared

bus. Moreover, the fast prefetching cache memories and the wider shared bus provide

additional bus bandwidth that can eliminate large memory latencies and improve

significantly the number of effectively supported processors. It should be noted that the

proposed system can maintain peak performance regardless of image size (small or large).

1.4 Outline

The remaining of this dissertation is organized as follows. Chapter 2 provides a

description of the proposed twin-prefetching DSP-based shared-memory system,

including a overview of the ADSP-21060. Chapter 3 introduces the methodology for the

performance analysis and evaluation of the proposed system. Chapters 4 and 5 present

performance results that provide a useful insight into the behavior and efficiency of the

system. Chapter 6 discusses optimal size selection for prefetching caches. Finally,

Chapter 7 presents the conclusions and future research.



CHAPTER 2

TWIN-PREFETCHING DSP-BASED SHARED-MEMORY SYSTEM

The proposed multiprocessor is a high-speed low-cost DSP-based twin-prefetching

shared-memory MIMD parallel system (Figure 2.1). It consists of P nodes where P is

power of two. The system is investigated for several values of P such as 1, 2, 4, 8, 16, 32

and 64. At the heart of each node, shown in Figure 2.2, is a DSP processor (ADSP-

21060) optimized for image processing, graphics, speech, sound and other high-speed

numeric processing applications. Several characteristics of this high-performance DSP

processor (ADSP-21060) are presented in Section 2.1. Each node is also comprised of

two high-speed memories with their controllers, called Twin] and Twin2. Their twin-

prefetching operation is described in Section 2.2.

2.1 The ADSP-21060

The ADSP-21060 is a super harvard architecture processor (SHARC) [15]. It is the most

versatile and powerful processor offered by Analog Devices, an industry leader in DSP

technology [29]. It has four independent buses for dual data, instructions, and I/O. With

its separate program and data memory buses and on-chip instruction cache, the ADSP-

21060 can fetch two operands and an instruction (from the cache), all in a single cycle.

The ADSP-21060 key features are:

13
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Single-cycle multiply & ALU operations with dual memory read/writes and

instruction fetch.

Figure 2.1 Twin prefetching multiprocessor system diagram

Figure 2.2 Node block diagram
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• Super harvard architecture - four independent buses for dual data, instructions,

and I/O

• Dual ported, for independent access by core processor and DMA, on-chip 4

Mbit SRAM and integrated I/O peripherals

• Integrated multiprocessing features

• Glueless connection for scalable DSP multiprocessing architecture

• Distributed on-chip bus arbitration

• Six link ports for point to point connectivity and array multiprocessing

• 240 Mbytes/s transfer rate over parallel bus

• 240 Mbytes/s transfer rate over link ports

• 120 MFLOPS peak performance

• 40 MIPS, 25 ns instruction rate

• Dual data address generators with modulo and bit reverse addressing

• Efficient program sequencing with zero-overhead looping: single cycle loop

setup

• 32-bit single precision & 40-bit extended-precision IEEE floating-point data

formats

• 32-bit fixed-point data format, integer & fractional, with 80-bit accumulators

• 10 DMA channels

• Background DMA transfers at 40 MHz, in parallel with full-speed

processor execution
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• Performs transfers between ADSP-21060 internal memory and external

memory, external peripherals, host processor, serial ports, or link ports

• Three independent computational units

• Arithmetic logic unit (ALU)

• Multiplier/Accumulator (MAC)

• Shifter

• Internal instruction cache

• Provisions for multiprecision computation and saturation logic

• Multifunction instructions

The ADSP-21060 flexible architecture comprehensive instruction set supports a high

degree of parallelism. In one cycle the ADSP-21060 can:

• generate the next program address

• fetch the next instruction

• perform one or two data moves

• update one or two data pointers

• perform a computational operation

2.1.1 Multiprocessing

The ADSP-21060 offers powerful features tailored to multiprocessing DSP systems. The

unified address space allows direct interprocessor accesses of each ADSP-21060's

internal memory. Bus arbitration logic is included on-chip for simple, glueless connection

of systems containing several ADSP-21060s and a host processor. Master processor (bus

master) changeover incurs only in one cycle overhead. Bus arbitration is selectable as

either fixed or rotating priority.
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Due to the fact that gluless connection is limited only to 6 processors and the

proposed system is investigated for up to 64 processors, an additional arbitration unit on

the shared bus is assumed implementing rotating priority algorithm.

2.1.2 Dual-Ported Internal Memory

The ADSP-21060 contains 4 megabits of on-chip SRAM, organized as two blocks of 2

Mbits each, which can be configured for different combinations of code and data. Each

memory block is dual-ported for single-cycle, independent accesses by the core processor

and I/O processor or DMA controller. Memory can be accessed as 16-bit, 32-bit, or 48-bit

words.

While each memory block can store combinations of code and data, accesses are

more efficient when one block stores data, using the data memory (DM) bus, and the

other block stores instructions and data, using the program memory (PM) bus. Thus, a

dedicated bus to each memory block assures single-cycle instruction execution with two

data transfers. It should be noted that dual data transfer is possible if the instruction is

available in the instruction cache.

Single-cycle instruction execution is also maintained when one of the data

operands is transferred to or from off-chip, via the ADSP-21060's external port. This is

how the proposed twin-prefetching system operates, storing code and some data (filter

coefficients, for example) in the internal memory and retrieving all image data from the

DM data bus through the external port.
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2.2 Data Memory

In programming systems, processors are generally considered active resources and

memory is viewed as passive resource. For the proposed system, data memory

(prefetching cache) functions as both a passive and an active resource; passive because it

supplies the core processor with data and active because it initiates and completes data

transfers from/to the global (shared) memory.

Data memory is comprised of two controllers (twin TTCs, and two fast memories

(twin-prefetching caches) placed between the DSP processor and the shared bus

interconnect. The two TTC/cache pairs are referred to as Twin] and Twin2. In a typical

operation, one Twin is accessible to the processor providing data operands while the other

Twin is transferring data from/to the shared memory.

The elimination of the traditional direct linkage of the shared and processor data

bus enables the utilization of a wider shared bus, i.e., shared bus width becomes

independent of the data bus width of the processors. The fast twin-prefetching memories

and the wider shared bus provide additional bus bandwidth into the system, which

eliminates large memory latencies; such memory latencies constitute the major drawback

for the performance of shared-memory multiprocessors.

2.2.1 The TTCs

The TTC1 and TTC2 controllers are, more specifically, DMA-like devices capable of

two-dimensional addressing. They move rectangular regions of data between global

memory and one of the node's caches. In addition to the DMA capability, the two TTCs

comprise a bi-directional communications port, which allows command, status, and
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parameter passing between the VME-bus-connected host and the ADSP-21060.

(Communication capability of Twins is not necessary since ADSP-21060 could connect

directly to VME-bus through its own communication channels; it is required though, if

we are to place a less versatile processor at the node's core.)

The TTC is accessed and operated through a set of registers. This group of

registers appears in the ADSP-21060 data memory space. To transfer data between global

memory and one of the node's prefetching caches, the ADSP-21060:

• loads the TTC registers with the Start and End addresses of the block of data in

the global memory

• loads the TTC registers with the Start and End addresses of the block of data in

cache

• loads the TTC CONTROL register

• sets the "start transfer" bit in the CONTROL register and the transfer begins

The direction of the transfer depends on the value of a specific bit in the control register.

Loading and unloading the Twins occur simultaneously with data processing. In other

words, as soon as a block of data has been moved into the cache, the ADSP-21060 begins

processing it, while the other cache is emptied and then filled with new data. The

processor finishes processing data in Twin] , and switches to Twin2, which is filled with

fresh data. The back and forth switching of Twin1 and Twin2 allows maximum utilization

of resources, and thus optimum system performance.

For P processing elements a maximum of 2P TTCs compete for the bus which is

granted to the TTC by an arbitrator implementing rotating priority. Processor P i is
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serviced before processor 	 and Twin] is serviced before Twin2. More precisely, if

Twinij is the jth Twin of the ith processor, the rotation proceeds as follows: Twin

Twin2I,..., Twiny ], Twin] 2, Twin22,..., Twinp2.

2.3 Host Processor

Host processor is responsible for booting all nodes and downloading all necessary code

and some data to the internal memory of every ADSP-21060. The data downloaded to the

internal memories include the addresses of image segments in the global memory which

every node is assigned to process. These addresses are the result of partitioning (a

technique for decomposing a large data set into many small pieces for parallel execution

by multiple processors). These addresses are calculated once for a specific image size and

application and are available for all future requests.

Asynchronous transfers at speeds up to the full clock rate of the processor (ADSP-

21060) are supported. The host interface is accessed through the ADSP-21060's external

port and is memory mapped into the unified address space. Four channels of DMA are

available for the host interface. The host processor requests the ADSP-21060's external

bus with the host bus request (HBR), host bus grant (HBG) and ready (REDY) signals.

The host can directly read or write the internal memory of the ADSP-21060, and can

access the DMA channel set up and mailbox registers.

2.4 Theoretical Analysis

The performance of a computer system, in general, is greatly affected by the amount of

locality present in code or data of an application. Traditional caches and prefetching
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caches were invented to take advantage of the temporal, spatial, and sequential locality

present in applications. Spatial locality is the tendency of a process to access items whose

addresses are near one another i.e., indicates that if a location in memory is accessed, then

others nearby will probably be accessed soon. Temporal locality denotes that if an

address in memory is accessed once, then it will probably be accessed again soon. Lastly,

sequential locality indicates the sequential order of most instructions in code.

DSP algorithms are usually encoded in relatively small programs, which occupy

moderate amounts of program memory. Our system could easily store them in the

internal on-chip memory allowing single cycle multiple instruction execution if image

data can be retrieved as fast as well. The real challenge is data memory. It becomes

prohibitively costly to store several large high-resolution images on expensive fast data

memories (SRAM). Twin prefetching of image segments (along with the use of a wider

shared bus) is a cost effective solution for literally taking advantage of every clock cycle

of every DSP, i.e., we obtain 100% cache hit ratio (if there is enough shared-bus

bandwidth not to stall the prefetching mechanism).

2.4.1 Partitioning Images into Cache Prefetching Segments

Images are stored in the shared memory (inexpensive DRAM). All data are partitioned

into several segments. The segments' addresses could be calculated either by the host or

node processor. For our system the host processor calculates and downloads the addresses

to the nodes. Once calculated, the addresses are stored in the local memory of the host

processor and are available when needed again. A segment should be smaller than the

prefetching cache size for two reasons:



• For the segment to fit in the cache.

• To leave some space for the produced output.

We should note that even if a quite large cache prefetching memory is available, a smaller

segment may eventuate a faster system execution time. In other words, there should be

enough prefetching cache memory to satisfy the most demanding applications

(prefetching cache size demanding applications). It is not necessary to utilize all of it.

If P processing elements are available, the image is divided into lxP segments,

i.e., l segments of data are allocated to every node. (Adjacent segments may overlap each

other in certain applications). Interchangeably TTC1 and TTC2 are prefetching the

segments in their respective caches. The node processor switches back and forth

processing data in Twin] and Twin2. Constantly retrieving data from fast prefetching

caches, processors maintain single cycle instruction execution time. Continuous data

retrieval from prefetching caches eliminates shared bus latencies and maximizes system

performance. Data segments should weight equally, (contain the same amount data-take

the same amount of processing time) as much as possible, in order for the system to be

well balanced-a basic condition for obtaining maximum throughput.

2.4.1.1 Example - Two Dimensional Convolution Partitioning Rule: Let P be the

number of processing elements P,, P,,..., Pi,....,P,, in the system. Let the input be an M rxN,

image where M, is the number of pixel rows numbered 0,1,...,M r-1 while /\I, is the number

of pixel columns numbered . Let also a template matrix m rxn, where m, is the

number of rows and nc  is the number of columns of the matrix.



23

If P processors take part in the convolution, the image is partitioned into P

sections. One way to do that is to divide M r by P. Assuming Mr is divisible by P, all

sections consist of the same number of rows. For the convolution algorithm k+mr-1 input

rows are required to produce k output rows. Taking this into consideration every section

should include an additional mr-/ rows from the following section below. The last

section at the bottom of the image wraps around (to the first section). The total number of

rows in a section becomes M1P+m r-I.

Partitioning assigns the 1 1 section to processing element P. We define r, the range

of rows in the i d, section. r, is then described by

Every section consists of 1 segments (smaller divisions of a section which are

prefetched interchangeably by the Twins). If y output rows are produced for every

prefetched segment, l = Mr/P/y (1 is usually proportional to prefetching input and not

output, but it so happens that in the two-dimensional convolution algorithm the number

of prefetching input rows is equal to y+m r-1).

Let begin_row_pref addr and end_row_pref_ addr be the two row addresses that

include all data in a segment to be prefetched. All addresses of segments in the global

memory are readily determined according to the following simple code:
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end row_pref_ addr = begin_row_pref_ addr + y + m r — 2

jump to loop

Column addresses remain constant for all prefetching segments. They receive their values

from the start and end column address of the image in the global memory.

Let us give some specific values to the variables in Equation 2.1. Let M 1=1024. If

P = 2, then i = 1,2. Substituting i with 1 and then 2 in the equation we find 05_r,511+(m r

-1) and 512<r2<(1023+(m r-1 (wrap around))). Ranges r 1 and r, include all segments

assigned to P I and P2 respectively. If y = 4 then 1 = 128 and every segments consists of 4

+ (m 1-1) pixel rows. Likewise, if P=4, then i= 1,2,3,4, and 0<r1<255+(mr- I  ),

256r2<511+(mr-1), 512<r3<767+(mr-1), and 768<r4<(1023+(mr-1 (wrap around))). If y

4 then 1= 64 and every segments consists of 4 + (m 1-1) pixel rows.

2.4.2 Categories of Applications

From this point on we will refer to t w as the time required by the processor to process a

segment of data, tUL as the sum of t L (time required by a TTC to load a segment in the

prefetching cache) and t u (time required to unload the results produced from processing

the previously loaded segment), and Twratio as the ratio tw/tUL . It should be noted that in

this section we assume that arbitration delays and processor switching from one Twin to

the other are considered negligible. Negligible are also considered the few clock cycles

which the processor spends to transfer to a Twin the address of the next segment.

Simulation, though, takes into consideration all small details of the multiprocessor

system.
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Different applications require different t w to process the same amount of data. The

larger the tw the more bus bandwidth available to serve a greater number of nodes.

(During time tw the Twin does not hold or request the shared bus).The Twratio (tw/tUL) is

extremely important for the twin-prefetching multiprocessor system. If Twratio's value is

equivalent to P (Eq. 2.2), the twin-prefetching multiprocessor system reaches maximum

utilization of its resources (i.e., bus and processors bandwidth). Twratios greater than P

move the system further away from bus contention. Twratios less than P, on the other

hand, induce bottleneck and limit multiprocessor's throughput.

The boundary condition (tw/tUL=P), serves as a basis in order to comprehend the

operation and capabilities of the twin-prefetching multiprocessor system. It could be

proven simply as follows: For P processing elements there are 2P Twins in the system

sharing the common bus with rotating priority. Let T rot be the total time for all Twins to

unload results and load a new segment of image data. By definition, at the boundary

condition there is just enough bus bandwidth for all Twins to have their segments ready

for processing by their core processors. Therefore Trot is given by

During time T rot a processor has just enough time to process data in both Twins, i.e,

finishes processing Twin] and immediately switches to Twin2 without having to wait for

any data transfer to finish. Therefore Trot is also given by
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Trot = 2 x tw 	(2.4)

From Equations 2.3 and 2.4 we derive the boundary Equation 2.2.

Hence every application falls into one of three possible cases:

Cases one and two are preferable since bottleneck is undesirable in all multiprocessor

systems.

The twin-prefetching multiprocessor system is expected to perform well over

other existing shared memory multiprocessor systems because the "twin" architecture

allows cache-only data retrieval. An invaluable advantage over other systems is the

elimination of the traditional direct linkage of the shared bus and processor data bus

which makes feasible the utilization of a wider shared bus.

2.5 Simulation

Simulation model consists of the ADSP-21060, two controllers (twin TTCs), two fast

memory modules, a shared memory and a shared-bus interconnect. The most difficult part

of the simulation was the decision about the location of timers. Usually timing units are

the processing units themselves. In our system the processing units do not communicate

directly with the shared-bus; they communicate through TTCs. Therefore, timers were
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placed on TTCs which monitor both the shared-bus and processor activity. If there is

adequate bandwidth on the bus (for image segments to be loaded on time and to be ready

in prefetching caches for processing) then timer of TTC 1 starts where the timer of TTC2

stopped and vise versa. If not sufficient bandwidth is available, then delays are

encountered on the shared bus which have to be considered. Accessing the cache takes 25

ns (the same as the instruction rate) while accessing shared-memory takes 75 ns.

Arbitration costs 4 clock cycles, processor switching from one twin to the other costs I

clock cycle, and informing the TTC about the next unload and load costs 20 cycles. All

instructions are executed in one clock cycle. Multifuntion instructions with dual data

fetches are executed in one clock cycle only if they are available in instruction cache.

Hence all multifuction instructions which implement the convolution algorithm

(appendix A) execute in two clock cycles the first time the loop is entered; in any

subsequent loop they are executed in one clock cycle.



CHAPTER 3

PERFORMANCE ANALYSIS

The DSP-based twin-prefetching shared-memory multiprocessor is investigated for P

processing elements, several shared-bus interconnect widths (n1) and several prefetching

cache sizes (csz). P receives values such as 1, 2, 4, 8, 16, 32 and 64 and n1 receives values

such as 32, 64, 128, 256 and 512 while csz receives 10 different values between a few

Kbytes and 4 Mbytes. Every possible combination of P, nl, and csz define a

multiprocessor system with different capabilities. All system configurations are numbered

350. We specifically investigate the following:

• which configurations of twin prefetching multiprocessor system perform better

• how many nodes could be effectively supported by the shared-bus

interconnect

• the optimal prefetching cache size

• the effect of changing the shared-bus-width (n1) on the performance of twin-

prefetching multiprocessor system

• the effect of the wide variance of temporal and spatial locality (present in

different image processing applications) on the performance of twin-

prefetching multiprocessor systems

• the effect of the wide variance of temporal and spatial locality of applications

on the prefetching cache size

28
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Timing the execution of several image-processing applications would have been a

straightforward but inaccurate way to investigate all configurations of twin-prefetching

system. One reason is that the quantity of spatial and temporal localities (factors that

significantly affect Twratio) are not readily observed in different image-processing

applications; thus results would be quite deceiving if applications not having a wide range

of Twratios were selected. Furthermore, if the selection of some applications for the

investigation of one system is usually a debating subject for researchers one could

imagine the degree of disagreement when a number of systems is involved. Another

reason is that different applications may require different partitioning algorithms, which

possibly divide the image into significantly dissimilar segments. Thus making unfeasible

the fair performance comparison of systems. It would be impossible, for example, to

determine whether the source of a resulted significant change in the value of the optimal

prefetching cache size is the application itself or some unanticipated (before simulation)

operational detail affecting twin-prefetching.

3.1 Methodology for Performance Evaluation

In order to overcome the above problems a fair methodology is devised in order to

investigate and evaluate the performance of the 350 different configurations of twin-

prefetching shared-memory system when executing computationally intensive high-

resolution image-processing applications. This methodology is based on finding first the

main characteristics of image-processing applications when implemented on the

twin-prefetching system. Afterwards we apply low and high end values of the characteristics

aiming to cover all possible cases.
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The factor, which includes all characteristics of an application executed on the

proposed system, is Twratio (tw/tUL). According to the value of Twratio, a particular

application falls into one of three cases named Case I, Case II, and Case III:

I. Twratio = P maximum utilization of bus and processor bandwidth

II. Twratio > P	 unused shared-bus bandwidth available

III. Twratio <P	 bottleneck - unused processor bandwidth

All cases are also discussed in Chapter 2 where it is established that Twratio is the

determining factor for the performance of an application on any configuration of the twin-

prefetching multiprocessor. It inherently combines all the fundamental software and

hardware parameters. Some of the parameters are: amount of spatial and temporal locality

involved with the application (a major contributor to tw), speed of DSPs, access time of

both shared-memory and prefetching cache memories, partitioning algorithm of input

images (prefetching segment size), produced output segment size, shared-bus-

interconnect-width, communication overhead, P, and the shared-bus bandwidth. If

hardware parameters are set to specific values, then Twratio depends only on application

parameters like:

• tw

• input segment size &
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• produced output size & t U

• communication overhead

(It should be noted that the above parameters are both hardware and software dependent.

They are referred as application dependent when hardware parameters receive constant

values.)

tw (the time required by the processor to process a segment of data) is proportional

to spatial and temporal locality of the application, i.e., the more times memory-addresses,

of data in the prefetched segment, are accessed the larger the value of t w . In other words,

tw is analogous to the (average) number of times which every item in the prefetched

segment is referenced. t L is dependent on the size of input segment. If the segment size is

increased, t L and tw are also increased. tU is also generally increased. (In very rare cases

there is very little output, which is transferred to the shared memory at the last unload.)

Regardless though, of how much every parameter value increases or decreases what

really matters is Twratio (tw/tUL).

We investigate the effect of different to and t US by varying the prefetching

segment size. Moreover, varying the size of the input segment in the prefetching cache

(taking into account the change of output size too), we evaluate, also, the performance of

different sizes of prefetching cache. It should be noted that there are obvious and not so

apparent factors determining the optimal size of prefetching cache. Obvious and

predictable factors are: the size of input segment and the size of produced output. The less

obvious factors, which might affect the optimal prefetching cache size and the operation



32

of the system in general, are the various delays due to initial loading of segments

(transient performance), amount of time spent by the processor to instruct the Twins

about the next loading and unloading, amount of time spent by the processor to switch

from one Twin to the other, and possible unknown effects of the twin-prefetching

mechanism.

Finally, communication overhead (17) should be a small fraction of the workload

(w) in a parallel algorithm in order for the algorithm to be efficiently mapped onto a

parallel computer. The smaller the communication overhead the closer the efficiency (E)

to 1. Generally the efficiency of a parallel algorithm is defined as

We intent to show that the Twin prefetching system could handle great amount of

communication operations with little overhead due to the twin-prefetching mechanism

and additional bandwidth provided by a wider shared-bus.

We could summarize what was said so far in this chapter with two contradictory

statements.

1. We need the characteristics of several applications to investigate and evaluate

all 350 hardware configurations of the twin-prefetching system.

2. Timings several different applications would not support a fair comparison of

all twin-prefetching systems.
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All the above challenges are met by selecting an application, which behaves like many

applications if its attributes are judiciously varied.

3.2 Two-Dimensional Convolution

The selected application is two-dimensional convolution, which serves as the

fundamental operation for a wide variety of other image-processing and computer vision

applications, e.g., edge detection, object detection, image smoothing [16], edge

enhancement. Because of the fundamental nature of this application problem and because

of its high computing complexity on a single processor system, much attention has been

devoted to the development of efficient parallel architectures and algorithms for its

implementation [38][39][40][41]. The inputs to the two-dimensional convolution are an

MrxNc. image matrix I[0...(M,.-1)] [0...(1\1-1)] and an mxn template matrix T[0...(mr-1)]

[0...(n c-1)]. The output image is an MrxNc matrix C2 D where:

for 0 Mr-1 and 0 j

C2D is called the two-dimensional convolution of I and T. When implementing

two-dimensional convolution on the twin-prefetching multiprocessor, template matrix is

allowed to extend outside the input window (wraparound); otherwise, the output matrix is

smaller than the input matrix by m r-1 rows and n c-1 columns.
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Input image matrix I is partitioned among processors according to the rule

described in section 2.4.1.1 assuming that M r and 1\I, are powers of 2.

Let us examine, in more detail, how convolution serves as the foundation for the

fair investigation and evaluation of all 350 hardware configurations of twin-prefetching

system, i.e., how parameters of the convolution problem receive values, such that they

cover a wide variety of applications.

3.3 Application Parameters

Different Twratios ( twl(tL+tU) ) are produced by varying the size of the template matrix.

By increasing the template size we increase t w (processing time of a segment) while

keeping the size of input segment (and consequently t L) virtually the same. Spatial and

temporal locality of the application (we refer to locality of data of the application, not

code) is also increased. Measure for locality is the number of times which every segment

pixel is referenced in prefetching caches. Typically every datum in caches or prefetching

caches is referenced from a few to about 30 times. Template matrix sizes of 2x2, 3x3,

6x6, and 9x9 are utilized, yielding localities of 4, 9, 36, and 81, respectively, thus,

covering a wide range of data localities and Twratios.

Investigation of the effect of prefetching cache size on performance is

accomplished by keeping all other hardware and software parameters constant and

varying the size of input segment in the prefetching cache from a few Kbytes to 4 Mbytes.

Ten different sizes of input image segment cover a wide range of t L, tU , and prefetching

cache size.

Before explaining the way we introduce communication overhead to the system,
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let us be reminded that multicomputers (distributed memory systems) communicate

through message-passing among nodes while multiprocessors (shared memory systems)

communicate with each other through the shared-memory. In the case of convolution, if a

output matrix rows are to be produced α+mr-1 rows have to be present. Let us assume

that the image is partitioned dividing the number of rows by the number of processing

elements. In a multicomputer system every processor would have to transfer

(communicate) the m r-1 rows from other nodes in order to produce the a output rows. In

a bus connected shared-memory system every node retrieve extra m r-1 rows (besides the

equal shared from dividing all rows by P) in order to produce the a output rows. In

general, when solving convolution using a parallel computer and not a uniprocessor

system P(mr-1) extra rows of data have to be communicated. The ratio (mr -1)/α is a direct

measure of the communication overhead involved and its value is traditionally expected

to be small (much smaller than 1).

We test the twin-prefetching shared-memory system under severe communication

overhead by allowing the ratio (mr-1)/α to take values much larger than one. For example

if a=1 (in a prefetched segment) and template matrixes 2x2, 3x3, 6x6, 9x9 are used, the

value of m r-1 becomes 1,2,5,8 respectively. The twin-prefetching shared memory system

is also tested under lighter communication overhead. We introduce extreme ratios like

1/1, 2/1, 5/1, and 8/1, in order to investigate the performance of the proposed architecture

with applications employing large amount of communication overhead. It is important to

note that bus connected shared memory systems are extremely sensitive to the amount of

communication overhead. This is due to the fact that all system activity should "fit in
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only one path." For this reason DSP-based bus connected architectures support only up to

4 processors. We expect the proposed architecture to effectively support more than four

due to the twin-prefetching mechanism and wider shared-bus.

The convolution is performed on eight continuous image frames stored in the

shared memory. The resolution of every image is 1024x1024. We choose to test the

proposed architecture with large, high-resolution images because we want to show that

this architecture can sustain maximum performance in challenging processing conditions.

Existing systems claim real-time execution of small (64x64 or 128x 128) images, which

fit in small local or internal SRAM memories. If they are to perform operations on larger

images their performance degrades dramatically. The twin-prefetching architecture does

not have these limitations.

The execution time of an application on the proposed system is the time after all

output results are transferred in the shared memory. This is in contrast to some

investigations of distributed or shared-memory systems, which present impressive but

deceiving results by measuring execution time excluding time to load and time to unload

results to/from local memories.



CHAPTER 4

EFFECT OF SHARED-BUS-WIDTH ON PERFORMANCE

Chapter 4 investigates the effect of shared-bus-interconnect-width on the performance of

several configurations of the proposed P-node DSP-based twin-prefetching shared-

memory multiprocessor systems. P receives values 1, 2, 4, 8, 16, 32 and 64 and shared-

bus-width (nl) receives values 32, 64, 128, 256, and 512. Tables and figures in this

chapter demonstrate how the performance of a P-node twin-prefetching multiprocessor

system changes as shared-bus-width changes. The number of nodes (processors) which

can be effectively supported for a specific value of shared-bus-width is also investigated.

Prefetching cache size value was kept between 262 Kbytes and 290 Kbytes. The selection

of prefetching cache size is analyzed in Chapter 6. Not too much attention should be paid

to the specific prefetching cache size since in most cases prefetching cache sizes ranging

from —100 Kbytes to --300 Kbytes yield performances with no more than 2% difference.

Four applications (convolution utilizing four different template matrices) were

executed for all multiprocessor system configurations. Timings (T) are based on

convolution of eight, continuous high-resolution images (1024x1024), stored in shared

memory. Pixel size is 16 bits.

Every application demands different amount of shared-bus bandwidth. In Sections

4.1, 4.2, 4.3, and 4.4 we investigate the performance of several P-node systems for

several values of nl when the template matrix is 2x2, 3x3, 6x6, and 9x9 respectively. The

reason for focusing at the timings of individual applications (one by one) is to ensure that

37
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the observed changes in availability of shared-bus bandwidth is due only to the change of

the shared-bus width, not on the application. With the same criteria the fair comparison of

all configurations of twin-prefetching multiprocessor system is also ensured. Finally, a

small discussion on all applications is provided in Section 4.5.

Speedup factor S(P), indicates how much faster a P-node system executes an

application compared to a uniprocessor system (nl is kept the same in both cases). S(P) is

given by

where T(1) is the time required to execute a program on a uniprocessor while T(P) is the

time required to execute the same program on a P-node (processor) system. We define the

bus-width-speedup-factor S(nl), as the ratio of T(32) and T(nl). T(32) is the time required

to execute a program on a P-node system with shared-bus width equal to 32, and T(nl) is

the time required to execute a program on the same P-node system with shared-bus width

equal to nl. Thus S(nl) is given by
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System efficiency, E(P), of a P-node multiprocessor is given by

The best possible system efficiency is 1, i.e., the best speedup factor is linear, or S(P)=P
 .

Tables labeled "Time vs. Number of Processors" consist of six columns. The first

column contains P values, while the other five columns contain timings of the P-node

system when n1 is 32,64,128,256, and 512. The corresponding speedup, S(P), and

efficiency, E(P), of every entry is given in Tables labeled "Speedup vs. Number of

Processors" and "Efficiency vs. Number of Processors," respectively.

Tables labeled "Speedup vs. Shared-bus-width" consist of eight columns. The first

column contains shared-bus-width (nl) values, while the other seven columns contain the

speedup factor of a specific P-node system for every value of nl. SP1 in these tables

stands for S(1), SP2 stands for S(2), and so on. Appendix B contains tables and figures

describing "Execution Time vs. Shared-bus-width," and the corresponding tables and

figures for "Speedup vs. Shared-bus-width."

An effective system is considered to be a system with a speedup factor greater

than P/2, i.e., providing system efficiency greater than 0.5. Shaded areas within tables

labeled "Time or speedup or efficiency vs. Number of Processors," point out effective

systems.

4.1 Effect of Shared-Bus Width on Performance when Template Matrix=2x2

Tables 4.1, 4.2 and 4.3 and Figures 4.1, 4.2 and 4.3 show that Convolution with a

template matrix of 2x2 is effectively executed by up to four processors if nl=32, by up to
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four processors if nl=64, by up to eight processors if n/=128, by up to 16 processors if

nl=256, by up to 32 processors if nl=512.

Figures 4.2 and 4.3 and Tables 4.2 and 4.3 show near perfect speedup factors and

system efficiencies (E0.90) for nl-=32&P=2, for nl=64&P=2,4, for nl=128&P=2,4, for

nl=256&P=2,4,8, and for nl=512&P=2,4,8,16.

Table 4.4 and Figure 4.4 show remarkable speedups of specific P-node systems,

which are due only to n/ increase. In Appendix B, Table B.1 and Figures B.1 and B.2

show, in more detail, how the execution time decreases by increasing the shared-bus-

width. Observing, for example, the first (0.6393 sec) and the last (0.0418 sec) entry of the

seventh column (corresponding to the 32-node system) in Table B.1, we measure a

shared-bus-speedup-factor of 15.6. Table 4.4 and Figure 4.4 show a maximum shared-

bus-speedup-factor of 1.7, 1.7, 2.9, 5.7, 11.2, 15.6 and 16 for 1-node, 2-node, 4-node, 8-

node, 16-node, 32-node, and 64-node systems, respectively.

Table 4.1 Time vs. P for nl=32, 64, 128, 256 and 512 when template matrix=2x2



Figure 4.1 Time vs. P for nl=32, 64, 128, 256 and 512 when template matrix=2x2

Table 4.2 Speedup vs. P for nl=32, 64, 128, 256 and 512 when template matrix=2x2

41
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Figure 4.2 Speedup vs. P for nl=32, 64, 128, 256 and 512 when template matrix=2x2

Table 4.3 Efficiency vs. P for nl=32, 64, 128, 256 and 512 when template matrix=2x2
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Figure 4.3 Efficiency vs. P for n1=32, 64, 128, 256 and 512 when template matrix=2x2

Table 4.4 Speedup vs. Shared-bus-width (ni) for P=1, 2, 4, 8, 16, 32 and 64 when
template matrix=2x2
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Figure 4.4 Speedup vs. Shared-bus-width (ni) for P=1, 2, 4, 8, 16, 32 and 64 when
tempiate matrix=2x2

4.2 Effect of Shared-Bus Width on Performance when Template Matrix =3x3

Tables 4.5, 4.6 and 4.7 and Figures 4.5, 4.6 and 4.7 show that Convolution with a

tempiate matrix of 3x3 is effectively executed (E>0.50) by up to four processors if n1=32,

by up to eight processors if nl=64, by up to 16 processors if nl=128, by up to 32

processors if n1=256, by up to 64 processors if n1=512.

Figures 4.6 and 4.7 and Tables 4.6 and 4.7 show near perfect speedup factors and

system efficiencies (E_0.90) for nl=32&P=2,4, for nl=64&P=2,4, for nl=128&P=2,4,8,

for ni=256&P=2,4,8,16, for nl=512&P=2,4,8,16,32.

Table 4.8 and Figure 4.8 show remarkable speedups of specific P-node systems,

which are due only to ni increase. In Appendix B, Table B.3 and Figures B.4 and B.5
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show, in more detail, how the execution time decreases by increasing the shared-bus-

width. Observing, for example, the first (0.6495 sec) and the last (0.0457 sec) entry of the

last column (corresponding to the 64-node system) in Table B.3, we measure a shared-

bus speedup factor of 14.2. The value 14.2 can be confirmed by looking up the entry with

coordinates nl=51280-64 in Table 4.8. Table 4.8 and Figure 4.8 show a maximum

shared-bus-speedup-factor of 1.3, 1.3, 1.4, 2.7, 5.3, 10.0 and 14.2 for 1-node, 2-node, 4-

node, 8-node, 16-node, 32-node, and 64-node systems, respectively.

Table 4.5 Time vs. P for nl=32, 64, 128, 256 and 512 when template matrix=3x3

Figure 4.5 Time vs. P for nl=32, 64, 128, 256 and 512 when template matrix=3x3



Table 4.6 Speedup vs. P for nl=32, 64, 128, 256 and 512 when template matrix=3x3
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Figure 4.6 Speedup vs. P for nl=32, 64, 128, 256 and 512 when template matrix=3x3
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Table 4.7 Efficiency vs. P for nl=32, 64, 128, 256 and 512 when template matrix=3x3

Figure 4.7 Efficiency vs. P for nl=32, 64, 128, 256 and 512 when tempiate matrix=3x3



Table 4.8 Speedup vs. Shared-bus-width (n1) for P=1, 2, 4, 8, 16, 32 and 64 when

template matrix=3x3
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Figure 4.8 Speedup vs. Shared-bus-width (nl) for P=1, 2, 4, 8, 16, 32 and 64 when
template matrix=3x3
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4.3 Effect of Shared-Bus Width on Performance when Template Matrix =6x6

Tables 4.9, 4.10 and 4.11 and Figures 4.9, 4.10 and 4.11 show that Convolution with a

template matrix of 6x6 is effectively executed (E_0.50) by up to 16 processors if n/=32,

by up to 32 processors if nl=64, by up to 64 processors if n1=128, 256, and 512.

Figures 4.10 and 4.11 and Tables 4.10 and 4.11 show near perfect speedup factors

and system efficiencies (E>0.90) for n/-3280=2,4,8, for n1=64&P=2,4,8,16, for

n/-12880=2,4,8,16,32, for nl=256&P=2,4,8,16, 32, for nl=512&P=2,4,8,16,32,64.

Table 4.12 and Figure 4.12 show remarkable speedups of specific P-node systems,

which are due only to nl increase. In Appendix B, Table B.5 and Figures 13.7 and B8

show, in more detail, how the execution time decreases by increasing the shared-bus-

width. Observing, for example, the first (0.680 sec) and the last (0.129 sec) entry of the

last column (corresponding to the 64-node system) in Table B.5, we measure a shared-

bus speedup factor of 5.27. The value 5.27 can be confirmed by looking up the entry with

coordinates nl=512&P=64 in Table 4.12. Table 4.12 and Figure 4.12 show a maximum

shared-bus-speedup-factor of 1.1, 1.1, 1.1, 1.1, 1.5, 2.8 and 5.3 for 1-node, 2-node, 4-

node, 8-node, 16-node, 32-node, and 64-node systems respectively.

Table 4.9 Time vs. P for nl-32, 64, 128, 256 and 512 when template matrix=6x6



Figure 4.9 Time vs. P for nl=32, 64, 128, 256 and 512 when template matrix=6x6

Table 4.10 Speedup vs. P for nl=32, 64, 128, 256 and 512 when template matrix=6x6
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Figure 4.10 Speedup vs. P for n/=32, 64, 128, 256 and 512 when template matrix=6x6

Table 4.11 Efficiency vs. P for nl-32,64,128,256 and 512 when template matrix=6X6



Figure 4.11 Efficiency vs. P for n1=32, 64, 128, 256 and 512 when template matrix=6X6

Table 4.12 Speedup vs. Shared-bus-width (nl) for P=1, 2, 4, 8, 16, 32 and 64 when
template matrix=6x6
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nl
Figure 4.12 Speedup vs. Shared-bus-width (nl) for P=1, 2, 4, 8, 16, 32 and 64 when

template matrix=6x6

4.4 Effect of Shared-Bus Width on Performance when Template Matrix =9x9

Tables 4.13, 4.14 and 4.15 and Figures 4.13, 4.14 and 4.15 show that Convolution with a

template matrix of 9x9 is effectively executed (E..0.50) by up to 32 processors if n1=32

by up to 64 processors if nl=64, 128, 256 and 512.

Figures 4.14 and 4.15 and Tables 4.14 and 4.15 show near perfect speedup factors

and system efficiencies (E0.90) for nl=32&P=2,4,8,16, for nl=64&P=2,4,8,16,32, for

nl=128&P=2,4,8,16,32, for nl=256&P=2,4,8,16,32,64, for nl=512&P=2,4,8,16,32,64.

Table 4.16 and Figure 4.16 show speedups of specific P-node systems, which are

due only to n/ increase. In Appendix B, Table B.7 and Figures B.10 and B.11 show, in

more detail, how the execution time decreases by increasing the shared-bus-width.
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Observing, for example, the first (0.710 sec) and the last (0.277 sec) entry of the last

column (corresponding to the 64-node system) in Table B.7, we measure a

shared-bus-speedup-factor of 2.56. The value 2.56 can be confirmed by looking up the entry with

coordinates nl=512&P=64 in Table 4.16. Table 4.16 and Figure 4.16 show a maximum a

shared-bus-speedup-factor of 1.04, 1.04, 1.04, 1.04, 1.07, 1.43 and 2.56 for 1-node, 2-

node, 4-node, 8-node, 16-node, 32-node, and 64-node systems respectively.

The shared-bus-speedup-factor when template window=9x9 is not significant.

The reason is that applications incorporating very large amounts of spatial and temporal

localities (like the one we examine) demand much less shared-bus bandwidth compared

to applications with less spatial and temporal localities. If there is enough supply of

shared-bus bandwidth when nl=32, we do not expect a significant improvement of

performance when a wider shared-bus is utilized. How spatial and temporal locality

affects the performance of the twin-prefetching multiprocessor is examined thoroughly in

Chapter 5.

Table 4.13 Time vs. P for nl=32, 64, 128, 256 and 512 when template matrix=9x9



Figure 4.13 Time vs. P for nl=32, 64, 128, 256 and 512 when template matrix=9x9

Table 4.14 Speedup vs. P for nl=32, 64, 128, 256 and 512 when template matrix=9x9
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Speedup vs Number of Processors, template matrix=9x9



Figure 4.14 Speedup vs. P for nl=32, 64, 128, 256 and 512 when template matrix=9x9

Table 4.15 Efficiency vs. P for nl=32, 64, 128, 256 and 512 when template matrix=9x9
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Figure 4.15 Efficiency vs. P for nl=32, 64, 128, 256 and 512 when template matrix=9x9

Table 4.16 Speedup vs. Shared-bus-width (n/) for P=1, 2, 4, 8, 16, 32 and 64 when
template matrix=9x9
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Figure 4.16 Speedup vs. Shared-bus-width (nl) for P=1, 2, 4, 8, 16, 32 and 64 when
template matrix=9x9

4.5 Discussion of Results

The elimination of the traditional direct linkage of the shared-bus and processor data bus

makes feasible the utilization of a wider shared-bus. Additional bandwidth provided by a

wider shared-bus along with twin-prefetching mechanism makes possible the effective

support (E>0.50) of 32 processors, and the near perfect effective support (E>0.90) of 16

processors. The above numbers of effectively supported processors are based on the worst

case scenario when an application embedding a small amount of spatial and temporal

locality (template matrix-2x2) is executed. In the best case scenario, when an application

embedding very high spatial and temporal locality (template matrix=9x9) is executed,

even a 64-node twin-prefetching multiprocessor achieves a system efficiency greater than

0.9 (E>0.90).
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Tables 4.17 shows how many processors can be effectively supported (E>0.50)

for every value of iil. For example, the entry in Table 4.17 with coordinates

nl=512&template matrix=3x3, reads 2,4,8,16,32,64. This means that the twin -prefetching

system utilizing a shared-bus with 512 data lines could effectively support (E>0.50) up to

64 processors.

Tables 4.18 shows the P-node twin-prefetching multiprocessors achieving nearly

perfect system efficiency (E>0.90). Table 4.18 indicates a very large number of P-node

systems achieving such a high system efficiency value.

Tables 4.17 and 4.18 indicate which systems should or should not be

implemented. Let us take as an example the first entry (2, 4, 8, 16, 32) of the column

labeled n1=512 in Table 4.17. Since the number 64 is not included in the entry a 64-node

twin-prefetching system should not be built (because E<0.5) if an application with similar

characteristics (Twratio) to the one indicated (2x2) is run on the system. Depending on

the system efficiency required we select the appropriate table as a guide for the design. It

is important to note that if a specific P-node twin -prefetching system if effectively

supported by more than one value of nl, we should choose the smallest value. As an

example let us take the values of the first row of Table 4.18. We observe that shared-bus-

width of 64 or 128 or 256 or 512 supports well (E>0.90) a 4-node system. The logical

choice among all shared-bus-widths is 64.

Finally, the effect of utilizing a wider shared-bus for a twin -prefetching

multiprocessor is clearly demonstrated in both Tables 4.17 and 4.18, i.e., a wider shared-

bus increases significantly the number of effectively supported processing elements.



Table 4.17 P-node twin-prefetching multiprocessors with system efficiency E>0.50
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Table 4.18 P-node twin-prefetching multiprocessors with system efficiency E>0.90



CHAPTER 5

EFFECT OF DATA LOCALITY ON PERFORMANCE

This chapter investigates the effect of spatial and temporal locality of data on the

performance of the proposed twin-prefetching shared-memory shared-bus multiprocessor

system. The performance of any computer system is greatly affected by the amount of

data locality present in an application. Traditional caches were invented to take advantage

of data locality and increase performance. (Spatial locality is the tendency of a program to

access items whose addresses are near one another i.e., indicates that if a location in

memory is accessed, then others nearby will probably be accessed soon. Temporal

locality denotes that if an address in memory is accessed once, then it will probably be

accessed again soon.) The proposed system employs software-controlled prefetching in

caches; a technique that further increases performance according to recent research.

In the case of the convolution algorithm, the number of local neighborhood

operations is a direct measure of the amount of data locality. The following discussion

intends to show the correlation of data locality, size of template matrix and number of

memory references of every pixel value in memory. The number of local neighborhood

operations is equivalent to the number of coefficients in the template matrix by definition.

In the case of the proposed system, the number of local neighborhood operations is also

equivalent to the number of memory references required to produce an output pixel, i.e.,

due to the dual data fetch capability of the ADSP-21060, (other modern DSPs have

similar capabilities), a coefficient and an input pixel value are fetched simultaneously
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from memory; therefore, for a template matrix consisting of k coefficients, k dual fetches

(one from internal memory and one from external memory) take place to produce an

output pixel. We conclude that in the case of the convolution algorithm every datum

(except the edges) of an image segment transferred in the prefetching cache is referenced

k times (temporally or spatially). From this point on, locality k of an application will

denote that the average number of times which every image pixel is referenced is k.

Our goal of investigating the proposed system on different amounts of data

locality is achieved by increasing or decreasing the size of the template matrix.

Specifically, template matrix size is varied from 2x2 to 3x3 to 6x6 to 9x9; therefore, the

number of memory references of every image pixel value in data memory is 4, 9, 36 and

81, respectively. Thus, a wide range of data locality cases are covered.

There are five tables labeled "Execution Time vs. Number of Processors," one

table for every value that the shared-bus-width receives (nl=32, 64, 128, 256, 512). Each

table consists of five columns. The first column contains P values, while the other four

columns contain timings of the P-node system when the tempiate matrix used has size

2x2, 3x3, 6x6 and 9x9. The corresponding speedup S(P), and efficiency E(P), of every

entry in the tables labeled "Execution Time vs. Number of Processors" are found in tables

labeled "Speedup vs. Number of Processors" and "Efficiency vs. Number of Processors."

Notation in this chapter for tables or figures is as follows: Tmpl.mtrx or mtrx stands for

template matrix, S(zxz) and E(zxz) stand for speedup and efficiency, respectively, when a

template matrix of size zxz is used, P stands for number of processors, nl stands for

shared-bus-width and 1w/o stands for one processor without the twin-prefetching caches.
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An effective system is considered to be a system with a speedup factor greater

than P/2, i.e., providing system efficiency greater than 0.5. Shaded gray areas within the

tables point out effective systems.

5.1 Effect of Spatial and Temporal Locality on a P-Node Twin-Prefetching
Multiprocessor when Shared-Bus-Width is 32

Tables 5.1, 5.2, 5.3, and Figures 5.2, 5.3, 5.4 show how the proposed twin-prefetching

system performs as the size of template matrix (amount of data locality) varies, when

shared-bus-width is 32. Adjacent row entries in Table 5.1 report two timings that give us

an indication of how fast two system configurations, employing different number of

processors, execute the same application. A useful piece of information is obtained by

observing the location at each column where the values of adjacent rows do not differ

significantly. The P coordinate at this location denotes the maximum number of

processors, which can effectively (with system efficiency greater that 50%) execute the

application. It should be mentioned that this location is the last gray shaded row in a

column. From left to right column shaded areas widen, denoting a sharp increase of the

number of processors that can effectively execute the application. When a 2x2 template

matrix (locality 4) is used only 4 processors effectively execute the application, while if a

9x9 template matrix (locality 81) is used the number of processors increases to 32. The

fuel that drives the additional 28 processors is data locality. Because of greater data

locality a larger number of references, for every image pixel in the prefetching cache,

keeps processors occupied with the same image segment for a longer period of time, thus

allowing a greater number of processors to be serviced by the shared-bus.
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Tables 5.2 and 5.3, and Figures 5.3 and 5.4 show the speedup and efficiency of the

system for different sizes of template matrix and demonstrate the significant change of

performance depending on data locality. Speedup and efficiency are better system

performance evaluators (because they are observer friendly); a good speedup value

approaches value P while a good system efficiency approaches 1. When, for example,

P=16 in Table 5.2, the speedup is 2.31 for template matrix=2x2 while the speedup is

15.43 for template matrix=9x9. Likewise, when P=16 in Table 5.3, system efficiency is

0.14 for template matrix=2x2 while efficiency is 0.96 for template matrix=9x9. The

significant improvement in system efficiency is solely due to a greater amount of data

locality since all other software and hardware parameters are kept constant.

5.1.1 Performance of One DSP Processor Without Twin-Prefetching Cache
Memories

Twin-prefetching caches were removed from the one node system (P=1) and all four

applications were executed assuming all image data (eight images of size 1024x1024)

stored in main memory. Figure 5.1 shows a graph comparing the execution times of one

node system with and one without the prefetching caches. All applications were executed

faster on the system employing twin-prefetching. Results show a speedup of 2.88, 2.75,

2.23, and 1.70 when the template matrix used is 9x9, 6x6, 3x3, and 2x2, respectively.

Therefore applications employing greater amount of data locality achieve better speedup.

Also it is demonstrated that twin-prefetching could benefit uniprocessor systems too.
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P-node systems (P>1), without the twin-prefetching caches, were not simulated

because a shared-bus would not be able to support more than one ADSP-21060. It should

be noted that ADSP-21060 does not carry on-chip cache.

Table 5.1 Execution Time vs. Number of Processors for template matrix=2x2, 3x3, 6x6,
9x9 when nl=32

Figure 5.1 Execution time of applications on a uniprocessor system with and without
twin prefetching (nl=32)



Figure 5.2 Execution Time vs. Number of Processors for template matrix=2x2, 3x3,
6x6, 9x9 when nl=-32

Table 5.2 Speedup vs. Number of Processors for template matrix=2x2, 3x3, 6x6, 9x9
when nl=32
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Figure 5.3 Speedup vs. Number of Processors for template matrix=2x2, 3x3, 6x6, 9x9
when nl=32

Table 5.3 Efficiency vs. Number of Processors for template matrix=2x2, 3x3, 6x6, 9x9
when n1=32
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Figure 5.4 Efficiency vs. Number of Processors for template matrix=2x2, 3x3, 6x6, 9x9

when nl=32

5.2 Effect of Spatial and Temporal Locality on a P-Node Twin-Prefetching
Multiprocessor when Shared-Bus-Width is 64

Tables 5.4, 5.5, 5.6, and Figures 5.5, 5.6, 5.7 show how the proposed twin-prefetching

system performs as the size of template matrix (amount of data locality) varies, when

shared-bus-width is 64. From left to right column shaded areas widen, denoting a sharp

increase of the number of processors that can effectively execute the application. When a

2x2 template matrix (locality 4) is used only 4 processors effectively execute the

application while if a 9x9 template matrix (locality 81) is used the number of processors

increases to 64. The fuel that drives the additional 60 processors is data locality. Because

of greater data locality a larger number of references, for every image pixel in the

prefetching cache, keeps processors occupied with the same image segment for a longer
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period of time; thus allowing a greater number of processors to be serviced by the shared-

bus.

Tables 5.5 and 5.6, and Figures 5.6 and 5.7 show the speedup and efficiency of

the system for different sizes of template matrix and demonstrate the significant change

of performance depending on data locality. When, for example, P=32 in Table 5.5

speedup is 3.62 for template matrix=2x2 while speedup is 29.68 for template matrix=9x9.

Likewise, when P=32 in Table 5.6 system efficiency is 0.11 for template matrix=2x2

while efficiency is 0.92 for template matrix=9x9. The significant improvement in system

efficiency is solely due to the greater amount of data locality since all other software and

hardware parameters are kept constant.

Table 5.4 Execution Time vs. Number of Processors for template matrix=2x2, 3x3, 6x6,
9x9 when nl=64



Figure 5.5 Execution Time vs. Number of Processors for template matrix=2x2, 3x3,
6x6, 9x9 when nl=64

Table 5.5 Speedup vs. Number of Processors for template matrix=2x2, 3x3, 6x6, 9x9
when n1=64
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Figure 5.6 Speedup vs. Number of Processors for template matrix=2x2, 3x3, 6x6, 9x9
when n/-64

Table 5.6 Efficiency vs. Number of Processors for template matrix=2x2, 3x3, 6x6, 9x9
when n/-64
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Figure 5.7 Efficiency vs. Number of Processors for template matrix=2x2, 3x3, 6x6, 9x9

when nl=64

5.3 Effect of Spatial and Temporal Locality on a P-Node Twin-Prefetching
Multiprocessor when Shared-Bus-Width is 128

Tables 5.7, 5.8 and 5.9, and figures 5.8, 5.9 and 5.10 show how the proposed twin-

prefetching system performs as the size of template matrix (amount of data locality)

varies, when shared-bus-width is 128. From left to right column shaded areas widen,

denoting a sharp increase of the number of processors that can effectively execute the

application. When a 2x2 template matrix (locality 4) is used 8 processors effectively

execute the application while if a 9x9 template matrix (locality 81) is used the number of

processors increases to 64. The fuel that drives the additional 56 processors is data

locality. Because of greater data locality a larger number of references, for every image
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pixel in the prefetching cache, keeps processors occupied with the same image segment

for a longer period of time, thus allowing a greater number of processors to be serviced

by the shared-bus.

Tables 5.8 and 5.9, and figures 5.9 and 5.10 show the speedup and efficiency of

the system for different sizes of template matrix and demonstrate the significant change

of performance depending on data locality. When, for example, P=32 in Table 5.8,

speedup is 6.25 for template matrix=2x2 while speedup is 30.78 for template matrix=9x9.

Likewise, when P=32 in Table 5.9 system efficiency is 0.19 for template matrix=2x2

while efficiency is 0.96 for template matrix=9x9. The significant improvement in system

efficiency is solely due to the greater amount of data locality since all other software and

hardware parameters are kept constant.

Table 5.7 Execution Time vs. Number of Processors for template matrix=2x2, 3x3, 6x6,
9x9 when nl=128
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Figure 5.8 Execution Time vs. Number of Processors for tempiate matrix=2x2, 3x3, 6x6,
9x9 when nl=128

Table 5.8 Speedup vs. Number of Processors for template matrix=2x2, 3x3, 6x6, 9x9
when nl=128



Figure 5.9 Speedup vs. Number of Processors for template matrix=2x2, 3x3, 6x6, 9x9
when n1=128

Table 5.9 Efficiency vs. Number of Processors for tempiate matrix=2x2, 3x3, 6x6, 9x9
when nl---128



Figure 5.10 Efficiency vs. Number of Processors for template matrix=2x2, 3x3, 6x6,
9x9 when nl=128

5.4 Effect of Spatial and Temporal Locality on a P-Node Twin-Prefetching
Multiprocessor when Shared-Bus-Width is 256

Tables 5.10, 5.11 and 5.12, and figures 5.11, 5.12 and 5.13 show how the proposed twin-

prefetching system performs as the size of template matrix (amount of data locality)

varies, when shared-bus-width is 256. From left to right column shaded areas widen,

denoting a sharp increase of the number of processors that can effectively execute the

application. When a 2x2 template matrix (locality 4) is used, 16 processors effectively

execute the application while if a 9x9 template matrix (locality 81) is used the number of

processors increases to 64. The fuel that drives the additional 48 processors is data
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locality. Because of greater data locality, a larger number of references, for every image

pixel in the prefetching cache, keeps processors occupied with the same image segment

for a longer period of time; thus allowing a greater number of processors to be serviced

by the shared-bus.

Tables 5.11 and 5.12, and Figures 5.12 and 5.13 show the speedup and efficiency

of the system for different sizes of template matrix and demonstrate the significant

change of performance depending on data locality. When, for example, P=32 in Table

5.11, the speedup reached is 11.49 for template matrix=2x2 while speedup is 31.38 for

template matrix=9x9. Likewise, when P=32 in Table 5.12 system efficiency is 0.36 for

template matrix=2x2 while efficiency is 0.98 for template matrix=9x9. The significant

improvement in system efficiency is solely due to greater amount of data locality since all

other software and hardware parameters are kept constant.

As observed in Sections 7.1, 7.2, 7.3, and 7.4, as shared-bus-width widens, more

bandwidth is available to serve a greater number of processors. Therefore, both shared-

bus-width and data locality contribute to a better system efficiency. Thus, column shaded

areas in tables are larger as sections advance.

Table 5.10 Execution Time vs. Number of Processors for template matrix=2x2, 3x3,
6x6, 9x9 when nl=256
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Figure 5.11 Execution Time vs. Number of Processors for template matrix=2x2, 3x3,
6x6, 9x9 when nl=256

Table 5.11 Speedup vs. Number of Processors for template matrix=2x2, 3x3, 6x6, 9x9
when n1=256
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Figure 5.12 Speedup vs. Number of Processors for template matrix=2x2, 3x3, 6x6, 9x9
when nl=256

Table 5.12 Efficiency vs. Number of Processors for template matrix=2x2, 3x3, 6x6, 9x9
when nl=256



Figure 5.13 Efficiency vs. Number of Processors for template matrix=2x2, 3x3, 6x6,
9x9 when nl=256

5.5 Effect of Spatial and Temporal Locality on a P-Node Twin-Prefetching
Multiprocessor when Shared-Bus-Width is 512

Tables 5.13, 5.14 and 5.15, and figures 5.14, 5.15 and 5.16 show how the proposed twin-

prefetching system performs as the size of template matrix (amount of data locality)

varies, when shared-bus-width is 512. The shared-bus is wide enough to supply the

necessary amount of bandwidth and effectively support 64 processors when template

matrices 3x3, 6x6, and 9x9 are used. Therefore, there is little room to observe system

performance improvement due to data locality. The comparison of last entries of the first

two columns in Tables 5.13, 5.14 and 5.15 is the only possible demonstration of system

performance, i.e., when a 2x2 template matrix (locality 4) is used, 32 processors
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effectively execute the application while if a 3x3 template matrix (locality 81) is used the

number of processors increases to 64. The significant improvement of system efficiency

is solely due to greater amount of data locality in the latter application.

Table 5.13 Execution Time vs. Number of Processors for template matrix=2x2, 3x3,
6x6, 9x9 when nl=512

Figure 5.14 Execution Time vs. Number of Processors for template matrix=2x2, 3x3,
6x6, 9x9 when nl=512
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Table 5.14 Speedup vs. Number of Processors for template matrix=2x2, 3x3, 6x6, 9x9
when nl=512

Figure 5.15 Speedup vs. Number of Processors for tempiate matrix=2x2, 3x3, 6x6, 9x9
when n1=512
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Table 5.15 Efficiency vs. Number of Processors for template matrix=2x2, 3x3, 6x6, 9x9

when nl=512

Figure 5.16 Efficiency vs. Number of Processors for template matrix=2x2, 3x3, 6x6,
9x9 when n1=512
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5.6 Communication Overhead

In the convolution algorithm, if a output matrix rows are to be produced α+mr-1 rows

have to be present (assuming partitioning by dividing total number of rows by P). Every

processor in a message passing multicomputer system would have to transfer

(communicate) the m r-1 rows from other nodes. In a multiprocessor system every node

retrieves from shared-memory an extra m r-1 rows in order to produce the a output rows.

Thus, a P-node parallel computer system would have to communicate at least P(m r-1)

extra rows of data to convolute an image. The ratio (mr-1)/α is a direct measure of the

communication overhead and its value is expected to be small (much smaller than 1). We

allow ratio (m r-1)/a to take values much larger that one in order to test the performance

of the proposed architecture with applications employing large amount of communication

overhead. Table 5.16 consists of execution times when a=1; thus, the ratio (m r-1)/α

becomes 1/1, 2/1, 5/1, and 8/1. Table 5.17 consists of execution times when a=2; thus,

the ratio (mr-1)/α becomes 1/2, 2/2, 5/2, and 8/2. The difference between corresponding

timing entries in Table 5.16 and 5.17 is small. Insignificant is also the difference of

entries in Table 5.16 and 5.17 and the corresponding entries in Table 5.13 for which

a=32. This strongly indicates that the proposed system could handle applications with

large amount of communication.



Table 5.16 Execution Time vs. Number of Processors when a=1 (nl=512)
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Table 5.17 Execution Time vs. Number of Processors when a=2 (nl=512)



CHAPTER 6

DETERMINATION OF THE OPTIMAL SIZE OF PREFETCHING CACHES

In this chapter we investigate the effect of various prefetching cache sizes on the

performance of all configurations of the twin-prefetching shared-memory multiprocessor

system. The prefetching cache was varied (ten different values) from a few Kbytes to 4

Mbytes to determine the cost-performance optimal size. The twin-prefetching cache's

function is to temporarily hold blocks of input and output data. Its size is an important

design parameter, affecting performance, cost, and volume of the multiprocessor system.

Four different applications (Convolution utilizing four different template

matrices) were executed on the 350 configurations of hardware parameters (varying

shared-bus-width, number of processors and prefetching cache size). From the 1400 runs

(Appendix C), a careful collection of results, shown in Tables 6.4, 6.5, 6.6, 6.7, 6.8, 6.9,

6.10, 6.11 6.12, 6.13, and 6.14 enable the optimal prefetching cache size selection for

every P-node based system.

An important observation, which assists the analysis of results and involves the

availability of shared-bus bandwidth and categorization of applications, is described in

Section 6.1. The reasoning behind the selection of results is explained in Section 6.2.

Results are analyzed in Section 6.3 and presented in Sections 6.4-6.10. A discussion of

results is given in Section 6.11.

The notation used to label variables in the tables is as follows: P stands for the

number of processors, nl stands for the shared-bus-width, tm. wn stands for the size of the

86



87

template window, cszvr stands for the prefetching cache size, csz stands for the size of the

smallest prefetching cache for which the best execution time occurs, L95% stands for the

smallest cache size that gives at least 95% of the performance of csz, and Time stands for

the execution time of the application.

Prefetching cache size is measured in Kbytes while execution time is measured

inseconds. All execution times of applications are based on the Convolution of eight

continuous images having resolution 1024x1024.

6.1 Shared Bus Contention Cases

Chapters 2 and 3 establish that all applications executed on the twin-prefetching shared

memory multiprocessor fall into two cases of shared-bus bandwidth, depending on

Twratio. When Twratio is greater or equal to P there is enough bus bandwidth for all

processing elements, while bottleneck appears for smaller values of Twratio. More

clearly Case I and Case II are stated as

I. Twratio P adequate shared-bus bandwidth for all processors

II. Twratio <P bus contention - bottleneck

For a specific P-node based system and a specific application we test ten different

values for the prefetching cache size. For seven different values of P, five different values

of nl, and four applications, 140 sets of timings were recorded (Appendix C). After a

detailed study of all sets of timings, it was observed that some sets of timings included a

minimum value of time and some sets didn't. An example of no minimum occurrence is



88

shown in Table 6.1. Two examples of minimum occurrence are shown in Table 6.2 and

Table 6.3.

Table 6.1 Prefetching cache size vs. time when P=8, nl=32, and template window=2x2

Table 6.2 Prefetching cache size vs. time when P=8, n1=128, and template window=2x2

Table 6.3 Prefetching cache size vs. time when P=8, nl=512, and template window=2x2

Further more it was observed that a minimum occurs when Twratio is greater or equal to

P/2 and no minimum value occurs for Twratio less than P/2. In other words Case I,

above, divides into two cases, and thus

I. Twratio <P/2	 (great need of bus bandwidth-bottleneck)

II. P/2 > Twratio > P (need of bus bandwidth-bottleneck)

III.	 Twratio P	 (bus bandwidth availability)
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The importance of the three cases above is that they point out the amount the shared-bus

contention. Thus, by looking at a table entry (Table 6.4 through Table 6.14) we observe

not only the prefetching cache size needed for the particular hardware configuration but

also how good the performance of the system is, i.e., the less the bus contention the better

the execution time and the better the performance. Timings falling within Case III

(shared-bus bandwidth availability for all processors) are accompanied by double quotes

( 1 ') on the right side of their value. Timings falling within Case II (shared-bus bandwidth

in need) are accompanied by single quotes (') on the right side of their value. Lastly,

timings falling within Case I (shared-bus bandwidth in great need) are accompanied by

no quotes on the right side of their value.

It should be noted that it is unknown whether larger values of cszvr would have

produced a minimum timing in Case I. No higher values were tried because they are of

no interest to our work for two reasons. One is because results show that a much smaller

prefetching cache size provides performance very close to the maximum performance.

The other reason is that very large sizes of prefetching cache would be inappropriate for

our low cost system.

6.2 Selection of Results

We obtained 140 sets of ten timings each (Appendix C) running four applications on all

variations (seven different values of P, five different values of nl, ten different values of

prefetching cache) of the twin-prefetching P-node multiprocessor system. If a set provides

a minimum timing value (best performance), the corresponding prefetching cache size is

recorded in Tables 6.4 through 6.14 under the label csz (Case I and Case II). Under the
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label L95% we record the smallest prefetching cache size in a set, which provides at least

95% of the performance of csz (example results given in Table 6.2 and Table 6.3). If no

minimum time occurs (Case I), then no prefetching cache size value is recorded under the

label csz. Since in this case the best time occurs when the largest prefetching cache size is

tried (4 Mbytes) we record as the L95% value the smallest prefetching cache size that

gives at least 95% of the performance achieved at 4 Mbytes (example shown in Table

6.1). Observing timings in Table 6.1 and results in Appendix C, we conclude that the

error of no minimum occurrence is virtually zero. This is due to the fact that timings

which correspond to the larger prefetching cache sizes are very close to the timings which

correspond to much smaller prefetching cache sizes.

Since our goal is to design a low cost DSP-based image-processing

multiprocessor system, the smaller the size of the prefetching cache the better. Results

point to a large gap between csz value and its corresponding L95% value. The difference

in size between csz and L95% increases, as P becomes smaller. It should be noted, for the

better understanding of results and more accurate evaluation of the system, that a

difference of a few tens of Kbytes in the L95% prefetching cache size, when keeping n1

constant and varying the template window, does not imply a bus bandwidth related

prefetching cache size increase or decrease, but one that comes directly from the

algorithm. More precisely, in order to produce k output rows or columns one has to load

into the prefetching cache k+c-1 rows or columns, where c is the number of rows or

columns of the template window. Thus, for the same number of output rows we need to

load different number of input data rows depending on the size of the template window.

This variation is small and negligible reaching a maximum value of 29 Kbytes. The
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number 29 Kbytes could be calculated as follows. The largest template window used is

9x9 and the smallest 2x2. The respective extra rows loaded are eight and one. Their

difference is seven. Every row of the input image is 1024 pixels. Since pixels are store as

32-bit elements (32-bit DSP-four bytes each pixel) in the prefetching cache the maximum

of seven extra rows would take 4x1024x7=28 Kbytes of memory space. There is one

Kbyte of difference between the observed and calculated maximum variation. The

additional one is the round up Kbyte from the wrap around operation of column pixels.

Therefore, 28+1=29. This difference could be seen in some column results of Tables 6.8,

6.9, 6.10, and 6.11 where the minimum value is 12 Kbytes and the maximum 41 Kbytes.

6.3 Analysis of Results

In Tables 6.4, 6.5, 6.6, and 6.7 we observe the changes of csz and L95%, as we vary P

and nl, when template window is 2x2, 3x3, 6x6, and 9x9, respectively. In Tables 6.8, 6.9,

6.10, 6.11, 6.12, 6.13, and 6.14 we observe the changes of csz and L95%, for a particular

P-node twin-prefetching multiprocessor for all changes of the template window and nl.

Examining results in Tables 6.4, 6.5, 6.6, and 6.7 we observe the need for less

prefetching cache (L95%) as nl increases. There is also a greater need of prefetching

cache (L95%) as the number of processors (P) increases. It is also evident that the csz and

the L95% values, approach each other (much faster from the csz side) for higher values of

nl and P. We also observe the need for a larger prefetching cache size (L95%) when

moving from one category of bus bandwidth to another, i.e. from double quotes to single

to no quotes. These observations are to be considered when designing a twin-prefetching
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multiprocessor. It should be mentioned that the emphasis on the L95% values in our

analysis is due to cost attributes.

The most significant observation (Tables 6.4-6.14) is that L95% values, for all

changes of hardware or software parameters, fall within the range of 12 to 290 Kbytes.

In other words, any twin-prefetching multiprocessor system tested could obtain almost its

maximum performance using only a small prefetching cache.

Let us now focus on Tables 6.8, 6.9, 6.10, 6.11, 6.12, 6.13 and 6.14 where we

concentrate specifically on the cost-performance optimal prefetching cache size of a

particular P-node twin-prefetching multiprocessor. For every specific value of P and nl

(different shared-bus availability) four applications are executed and four different

prefetching cache sizes (L95%) are utilized. We select as optimal prefetching cache size

the largest of the four sizes. In other words, we select the prefetching cache size that

covers all applications executed on the system. It is important to note that we consider

optimal value the cost-performance optimal prefetching cache size value (L95%).

6.4 Optimal Selection of Prefetching Cache Size when P=1

When P=1 (Table 6.8) csz is in the range of Mbytes while the L95% value is always less

than 100 Kbytes. Respective L95% values for n1=32, 64, 128, 256, 512 are 65, 49, 41, 41,

41 Kbytes. The largest L95% prefetching cache size value (65 Kbytes) occurs when nl=32

and template window=9x9, and the smallest prefetching cache size (12 Kbytes) occurs

when nl=256 or nl=512 and template window=2x2. To be more precise, when nl=32 and

template window=9x9, 65Kbytes of prefetching cache provide 96.5% of the maximum

performance while when nl=256 and template window=2x2 the prefetching cache size
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provides 99% of the maximum performance (timings for calculations of L95% values are

taken from Appendix C). The above example L95% values are presented in order to

demonstrate how close to the best performance is the at-least-95%-of-the-best-

performance.

Comparing Table 6.8 with Tables 6.9-6.14 we observe that the difference between

csz and L95% is greater for smaller values of P. We notice that for all changing values of

nl and template window, there is enough bus bandwidth (double quotes next to every

value in the Table 6.8). (It is a little strange talking about bus bandwidth availability

when P-1 but let us be reminded that there are two twin controllers utilizing the bus.)

We could finally say that a minimum size value of 65 Kbytes (a small memory

size in today's technology) covers all hardware and software requirements when P=1.

6.5 Optimal Selection of Prefetching Cache Size when P=2

When P=2 (Table 6.9) csz is in the range of Mbytes (except when the template

window=2x2 where csz is half a Mbyte) while L95% values are always less than 100

Kbytes. Respective L95% values for n1=32, 64, 128, 256, 512 are 65, 49, 41, 41, 41

Kbytes. The largest L95% prefetching cache size value (65 Kbytes) occurs when nl=32

and template window=9x9, and the smallest prefetching cache size (12 Kbytes) occurs

when nl=256 or nl=512 and template window=2x2.

We notice that for all changing values of nl and tempiate window, there is enough

bus bandwidth (double quotes next to almost every value in the Table 6.9).

Finally, we could say that a minimum size value of 65 Kbytes covers all hardware

and software requirements when P=2.
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6.6 Optimal Selection of Prefetching Cache Size when P=4

For P=4 (Table 6.10) csz takes values in the range 133Kbytes<csz<4Mbytes (4Mbytes are

used as the upper limit of csz because there is one case of no minimum convergence in

the Table) while L95% values are all less than 137 Kbytes. For n1=32, 64, 128, 256, 512,

L95% values are 137, 68, 41, 41, 41 Kbytes respectively. The largest L95% prefetching

cache size value (137 Kbytes) occurs when n1-32 and template window=3x3, and the

smallest prefetching cache size (12 Kbytes) occurs when nl=256 or nl=512 and template

window=2x2.

When nl=32 and tempiate window=2x2, the application falls in Case I (no quotes-

great need of bus bandwidth). For nl=32 & template window=3x3 and n1=64 & template

window=2x2 , the application falls in Case II (single quotes - need of bus bandwidth. All

other hardware and software combinations fall into Case III.

We could finally say that when P=4, a minimum prefetching cache size value of

137 Kbytes covers all hardware and software requirements.

6.7 Optimal Selection of Prefetching Cache Size when P=8

Table 6.11 (P=8) provides csz values in the range 68Kbytes<csz<4Mbytes (4Mbytes are

used as the upper limit of csz because there is at least one case of no minimum

convergence in Table 6.11) while all L95% sizes receive values less than 137 Kbytes. For

n1=32, 64, 128, 256, 512, L95% values are 137, 137, 68, 41, 41 Kbytes respectively. The

largest L95% prefetching cache size value (137 Kbytes) occurs when nl=32 and template
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window=3x3, and the smallest prefetching cache size (12 Kbytes) occurs when n1.---256 or

nl=512 and template window=2x2.

For n1=32, 64 and template window=2x2, 3x3 we observe some shortage of

shared-bus bandwidth while all other Table entries fall in Case III (shared-bus bandwidth

availability).

We could finally say that when P=8, a minimum prefetching cache size value of

137 Kbytes covers all hardware and software requirements.

6.8 Optimal Selection of Prefetching Cache Size when P=16

Table 6.12 (P=16) provides csz values in the range 36Kbytescsz4Mbytes (4Mbytes are

used as the upper limit of csz because there is at least one case of no minimum

convergence in Table 6.11) while all L95% sizes receive values less than 149 Kbytes. For

n1=32, 64, 128, 256, 512, L95% values are 149, 137, 133, 68, 41 Kbytes respectively. The

largest L95% prefetching cache size value (149 Kbytes) occurs when nl=32 and tempiate

window=6x6, and the smallest prefetching cache size (16 Kbytes) occurs when nl=512

and template window=3x3.

For n1=32, 64, 128 and template window=2x2, 3x3, 6x6 we observe some

shortage of shared-bus bandwidth while all other Table entries fall in Case III (shared-

bus bandwidth availability).

We could finally say that when P=16, a minimum prefetching cache size value of

149 Kbytes covers all hardware and software requirements.
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6.9 Optimal Selection of Prefetching Cache Size when P=32

Table 6.13 (P=32) provides csz values in the range 40Kbytes<csz<4Mbytes (4Mbytes are

used as the upper limit of csz because there is at least one case of no minimum

convergence in Table 6.11) while all L95% sizes receive values less than 277 Kbytes. For

n1=32, 64, 128, 256, 512 L95% values are 277, 149, 137, 133, 68 Kbytes respectively.

The largest L95% prefetching cache size value (277 Kbytes) occurs when nl=32 and

template window=6x6, and the smallest prefetching cache size (24 Kbytes) occurs when

nl=512 and template window=3x3.

A severe shortage of shared-bus bandwidth is observed when nl=32, 64, and a

milder shortage when nl=128, 256. Still, nl=512 is able to effectively support all

applications executed on the system.

We could finally say that when P=32, a minimum prefetching cache size value of

277 Kbytes covers all hardware and software requirements.

6.10 Optimal Selection of Prefetching Cache Size when P=64

Table 6.14 (P=64) provides csz values in the range 65Kbytes<csz<4Mbytes (4Mbytes are

used as the upper limit of csz because there is at least one case of no minimum

convergence in Table 6.11) while all L95% sizes receive values less than 290 Kbytes. For

n1=32, 64, 128, 256, 512 L95% values are 290, 290, 277, 149, 133 Kbytes respectively.

The largest L95% prefetching cache size value (290Kbytes) occurs when nl=37 and

template window=6x6, and the smallest prefetching cache size (41 Kbytes) occurs when

nl=512 and template window=9x9.
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A severe shortage of shared-bus bandwidth is observed when nl=32, 64, 128 and

a milder shortage when nl=256. Still, n1=512 is able to effectively support applications

with template window 3x3, 6x6 and 9x9.

We could finally say that when P-64, a minimum prefetching cache size value of

290 Kbytes covers all hardware and software requirements.

6.11 Discussion of Results

Results show that by utilizing a small prefetching cache size (12 to 290 Kbytes) we

achieve at least 95% of maximum performance of any P-based twin-prefetching

multiprocessor (P=1, 2, 4, 8, 16, 32, 64). Despite its low cost, this small amount of

prefetching cache size along with twin-prefetching mechanism and a wider shared-bus

makes possible the 100% utilization of all processors' bandwidth.

Furthermore, due to the range 12Kbytes<95%<290Kbytes, we conclude that the

prefetching cache size is relatively insensitive to the amount of temporal and spatial

locality embedded in different applications. For the same reason the prefetching cache

size is relatively insensitive to shared-bus bandwidth and number of processors. The

insensitivity of the prefetching cache to the above parameters is extremely important for

the hardware implementation of a twin-prefetching system.

Table 6.15 shows the sizes of prefetching cache which should be utilized in the

implementation of a twin-prefetching multiprocessor with number of processors P and

shared-bus width nl. Every entry in Table 6.15 is the L95% value, which allows at least

95% of the best performance of all applications executed.
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290 Kbytes (maximum amount of prefetching cache in Table 6.15) is a small

quantity of fast memory in today's advanced technology. Chapter 4 suggests that

configurations (P and nI) of j1?vinprefetching multiprocessor systems shown in Table

6.15, employing j1?vinprefetching caches greater than 150 Kbytes should not be

implemented because of a lack of shared-bus bandwidth availability. Chapter 4 also

suggest that configurations of j1?vinprefetching multiprocessors summarized in Table

6.15, employing less than 100 Kbytes, are definitely worth building. It is our opinion that

an implementation of a j1?vinprefetching multiprocessors should carry double or triple the

amount shown in Table 6.15. The justification is that a small quantity, additional to the

value shown in Table 6.15, would cost very little and cover any unexpected application

needs.

All P-node win-prefeiching multiprocessors systems were tested with large, high-

resolution (eight 1024x1024) images. Due to the nature of twin-preferching mechanism,

the real-time execution of even a larger image would not require a larger prefetching

cache.

Table 6.4 Optimal prefetching cache size when template window=2x2



Table 6.5 Optimal prefetching cache size when template window=3X3
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Table 6.6 Optimal prefetching cache size when tempiate window=6x6

Table 6.7 Optimal prefetching cache size when template window=9x9



Table 6.8 Optimal prefetching cache size when P=1
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Table 6.9 Optimal prefetching cache size when P=2

Table 6.10 Optimal prefetching cache size when P=4

Table 6.11 Optimal prefetching cache size when P=8
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Table 6.12 Optimal prefetching cache size when P=16

Table 6.13 Optimal prefetching cache size when P=32

Table 6.14 Optimal prefetching cache size when P=64

Table 6.15 Optimal prefetching cache size

P nl=32 nl=64 n7 128 nl=256 n1=-5 1 2

1 65 49 41 41 41
7 65 49 41 41 41

4 137 68 41 41 41

8 137 137 68 41 41

16 149 137 133 68 41
7732 277 149 137 133 68

64 290 290 277 149 133



CHAPTER 7

CONCLUSIONS

This dissertation introduces, investigates, and evaluates, through simulation, a low-cost

high-speed twin-prefetching DSP-based shared-bus shared-memory multiprocessor

system for real-time image processing applications. The proposed architecture can

effectively support 32 modern high-performance DSPs (ADSP-21060) transcending

promising signals to the area of shared-memory multiprocessors and real-time image-

processing. It should be noted that the number of effectively supported processors (32) is

conservatively selected and it is based on the worst case scenario when the application

with the smallest number of local neighborhood operations (2D convolution with

template matrix 2x2) is executed. Applications employing high number of local

neighborhood operations (e.g., 2D convolution with template matrix 9x9) achieve a

system efficiency greater than 90% even when 64 processors share the bus. The number

of neighborhood operations is a direct measure of the amount of data locality embedded

in a particular application and the above conclusions demonstrate the significant effect of

data locality on the system's performance. The positive response of both kinds of

applications on the proposed multiprocessor system demonstrates its potential to meet, in

a cost effective manner, the challenges not only of real-time digital image processing but

also of other computationally intensive applications.

The cost of the proposed system is kept low because of the following reasons: (1)

single bus-based systems are the least costly; (2) DSPs cost considerably less that RISC
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or CISC microprocessors; and (3) as this work concludes, the amount of fast (expensive)

memory needed for every prefetching cache is small (16 to 300 Kbytes).

In contrast to existing DSP-based multiprocessors, the proposed system sustains

peak performance regardless of image size due to the twin-prefetching mechanism. It

should be noted that in the applications run on recent DSP-based uniprocessor or

multiprocessor systems the majority of instructions are multifunction, each one including

a reference to data memory (where the image resides). It is necessary for the entire

section of the assigned image to be stored on fast memory (SRAM) in order to guarantee

single-cycle execution of all (multifunction) instructions; a basic approach for real-time

DSP-based systems. However, it is quite expensive storing one or a series of input and

output high resolution images on SRAM. It should be noted that even if the entire shared

memory consisted of SRAM in a conventional shared-bus multiprocessor system

(processor and bus having the same data width), still there would not be enough

bandwidth to support more than a handful of processors. Therefore, the twin-prefetching

caches placed between the processor and the shared bus serve two goals that benefit both

cost and performance. One is the feasibility of utilizing a wider bus which provides the

additional bandwidth required to effectively support a greater number of processors. The

other is a significant cost reduction since two inexpensive small-size fast memories

(prefetching caches) achieve the performance of a much larger and more expensive

SRAM. It should be noted that, in the proposed system, the assigned to each processor

image sections, regardless of being large or small are partitioned into smaller segments

which are interchangeably loaded on the Twin1 and Twin2 prefetching caches.
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Eight consecutive high-resolution images of size 1024x1024 were mainly used to

investigate the processing power of the proposed system architecture. Our performance

analysis has demonstrated the real-time potential of this system. This is of paramount

importance iii areas like digital video processing or robotic vision where processing

sequences of 25 -30 images per second is a common place. Below we provide some

typical result; of processing times that different configurations of our system can achieve

in the case of convolution of 30 consecutive images (1024x1024) when a 3x3 template

matrix is used. When the number of processors P=64 and shared bus width n1=512

execution time T=0.172 seconds; when P=32 and n1=512 T=0.245 seconds; when P=16

and n1=2561=0..480 seconds; when P=8 and n1=256 T=0.940 seconds.

Further research will be contacted to evaluate the performance of the proposed

multiprocessor system with additional digital image processing algorithms and neural

network simulation for pattern recognition and classification. A NUMA shared-memory

parallel computer formed by several clusters of the proposed system will be also

investigated for applications requiring even greater computing power.



APPENDIX A

ASSEMBLER CODE FOR 2D CONVOLUTION

Example of assembler code listing for two-dimensional Convolution of a segment of an
image (Mr x Nc) stored in prefetching cache, when template window=3x3:
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/* The third coefficient is stored in the register file to free up a cycle to output a result.
The first write to the output buffer is unused , the pointer then wraps around to the proper
location at the start of output. */



APPENDIX B

EXECUTION TIME & SPEEDUP VS. SHARED-BUS-WIDTH

Template matrix =2x2 

Table B.1 Execution time vs. Shared-Bus-Width (nl) for P=1, 2, 4, 8, 16, 32 and 64
when tempiate matrix=2x2

Figure B.1 Execution time vs. Shared-Bus-Width (nl) for P=1, 2, 4, 8, 16, 32 and 64
when template matrix=2x2
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Figure B.2 Execution time vs. Shared-Bus-Width (n1) for P=8, 16, 32 and 64 when
template matrix=2x2

Table B.2 Speedup vs. Shared-Bus-Width (nl) for P=1, 2, 4, 8, 16, 32 and 64 when
template matrix=2x2
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Figure B.3 Speedup vs. Shared-Bus-Width (n1) for P=1, 2, 4, 8, 16, 32 and 64 when
template matrix=2x2

Template matrix =3x3 

Table B.3 Execution time vs. Shared-Bus-Width (n1) for P=1, 2, 4, 8, 16, 32 and 64
when template matrix=3x3
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Figure B.4 Execution time vs. Shared-Bus-Width (d) for P=1, 2, 4, 8, 16, 32 and 64
when template matrix=3x3

Figure B.5 Execution time vs. Shared-Bus-Width (nl) for P=8, 16, 32 and 64 when
template matrix=3x3
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Table BA Speedup vs. Shared-Bus-Width (n1) for P=1, 2, 4, 8, 16, 32 and 64 when
template matrix=3x3

Figure B.6 Speedup vs. Shared-Bus-Width (n1) for P=8, 16, 32 and 64 when template
matrix=3 x3
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Template matrix =6x6 

Table B.5 Execution time vs. Shared-Bus-Width (n1) for P=1, 2, 4, 8, 16, 32 and 64
when template matrix=6x6

0

Figure B.7 Execution time vs. Shared-Bus-Width (n1) for P=1, 2, 4, 8, 16, 32 and 64
when template matrix=6x6
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Figure B.8 Execution time vs. Shared-Bus-Width (n1) for P=8, 16, 32 and 64 when
template matrix=6x6

Table B.6 Speedup vs. Shared-Bus-Width (nl) for P=1, 2, 4, 8, 16, 32 and 64 when
template matrix=6x6
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Figure B.9 Speedup vs. Shared-Bus-Width (n1) for P=1, 2, 4, 8, 16, 32 and 64 when
template matrix=6x6

Template matrix =9x9 

Table B.7 Execution time vs. Shared-Bus-Width (nl) for P=1, 2, 4, 8, 16, 32 and 64
when template matrix=9x9
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Figure B.10 Execution time vs. Shared-Bus-Width (nl) for P=1, 2, 4, 8, 16, 32 and 64
when template matrix=9x9

Figure B.11 Execution time vs. Shared-Bus-Width (nl) for P=8, 16, 32 and 64 when
template matrix=9x9
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Table B.8 Speedup vs. Shared-Bus-Width (n1) for P=1, 2, 4, 8, 16, 32 and 64 when
template matrix=9x9

Figure B.12 Speedup vs. Shared-Bus-Width (nl) for P=1, 2, 4, 8, 16, 32 and 64 when
template matrix=9x9



APPENDIX C

RESULTS

Appendix C provides results for all combinations of hardware and software tested. In
order for one to be able to read the results one needs to know that mr stands for the

number of rows of the template matrix, nc stands for the number of columns of the

template matrix, P stands for the number of processors, nl stands for the shared bus

width, Twr stands for Twratio, cacheusd stands for the size of the prefetching cache, T

stands for the execution time of the application on the P-node system, btlnck stands for

bottleneck, and engh BUS BW stands for enough shared bus bandwidth.
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