
Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of
the personal information and all signatures from
the approval page and biographical sketches of
theses and dissertations in order to protect the
identity of NJIT graduates and faculty.

ABSTRACT

IMPLEMENTATION OF A GEOMETRIC HASHING TECHNIQUE AND
ITS APPLICATION TO 3D MOLECULAR STRUCTURE SEARCH

by
Jennifer Lynn Cerequas

This paper proposes the application of a geometric hash technique to the searching of 3D

chemical structures. Chemical structures are represented in global XYZ coordinate

format. An algorithm is applied to the substructures within the existing chemical

structures to hash them into hash tables on disk. A query substructure is then hashed to

find matches (hits) of the existing hash tables. The entries in the matching hash tables are

compared to the query substructure to find the existing substructures that are an

"approximate" match.

The result is a technique which allows existing substructures to be compared to a

(new) query substructure and matches found in the case of rotation, atom

insertion/deletion, and small differences in precision of the XYZ coordinates.

IMPLEMENTATION OF A GEOMETRIC HASHING TECHNIQUE AND
ITS APPLICATION TO 3D MOLECULAR STRUCTURE SEARCH

by
Jennifer Lynn Cerequas

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Computer Science

Department of Computer and Information Science

May 1998

IMPLEMENTATION OF A GEOMETRIC HASHING TECHNIQUE AND
ITS Ai PLICATION TO 3D MOLECULAR STRUCTURE SEARCH

Jennifer Cerequas

Dr. Yason T.L. Wang, Thesis Adviser 	 Date
Associate Professor of Computer and Information Science, NJIT

Dr. James Calvin, Committee Member 	
'
Date

Assistant Professor of Computer and Information Science, NJIT

Dr. Franz Kurfess, Committee Member 	 Date
Assistant Professor of Computer and Information Science, NJIT

BIOGRAPHICAL SKETCH

Author:	 Jennifer Lynn Cerequas

Degree:	 Master of Science in Computer Science

Date:	 May 1998

Undergraduate and Graduate Education:

• Master of Science in Computer Science
New Jersey Institute of Technology, Newark, NJ, 1998

• Bachelor of Engineering (Major in Computer Science)
Stevens Institute of Technology, Hoboken, NJ, 1986

Major:	 Computer Science

This thesis is dedicated to
my husband, Fred R. Cerequas IV, for all his love and support.

ACKNOWLEDGMENT

The author wishes to give special thanks to her advisor, Professor Jason T.L. Wang for all

his guidance, encouragement, and patience throughout this project. Thanks also to

Professors James Calvin and Franz Kurfess for serving as committee members.

vi

TABLE OF CONTENTS

Chapter	 Page

1 INTRODUCTION 	 1

2 APPLICATION DEVELOPMENT 	 3

2.1 Environment 	 3

2.2 Algorithms 	

2.2.1 Pre-Processing Phase 	 3

2.2.2 On-Line Phase 	 5

3 RESULTS AND DISCUSSION 	 7

3.1 Pre-Processing Phase 	 7

3.2 On-Line Phase 	 8

4 CONCLUSIONS 	 9

4.1 Future Enhancements 	 9

4.1.1 Data Storage 	 9

4.1.2 User Interface 	 9

APPENDIX PROGRAM LISTINGS 	 10

REFERENCES 	 31

vii

CHAPTER 1

INTRODUCTION

There are many cases where 3D graphs are used to represent physical entities. This

includes chemical compounds and proteins. It is desired to search existing 3D molecular

databases, for example, to find compounds similar to a new compound in drug discovery

[Charifson and Leach 1998]. Similar compounds should be found in the case of rotation,

and adding/deleting an atom. It is also desired that the search be as efficient as possible.

This thesis presents the application of geometric hashing technique [Lamden and

Wolfson 1998] to 3D molecular structures [Wang and Wang 1997]. In the first step,

existing structures (which have been divided into substructures) are converted from their

global XYZ coordinates to a local XYZ coordinate frame and then hashed into 3D hash

tables on disk. The lowest numbered node in the substructure is at the origin of the local

coordinate frame.

The substructure is processed (hashed) three nodes (atoms) at a time. Three

points is enough to be uniquely defined in three dimensions. The lengths of the three legs

of the triangle formed by the set of three nodes are used to determine the hash table

address. The local coordinates of the three nodes, with respect to the basis points of the

local coordinate frame, are stored in the appropriate hash table (file).

In the second step, a query substructure can be compared against the existing

substructures in the hash tables on disk. Again, the query substructure is processed three

nodes at a time. Once the hash table address is determined, the existing entries are

2

compared against the global coordinates of the current three nodes. The result is used to

maintain a counter for each existing substructure. Each time the result for an existing

substructure is the same, the counter is incremented. It can be shown that if the counter is

large enough relative to the number of nodes in the query substructure, the existing

substructure should be considered a match.

CHAPTER 2

APPLICATION DEVELOPMENT

2.1 Environment

The current programs were developed on a Pentium PC with Windows95 OS using the

Borland C/C++ compiler and programming environment. The input was 3D substructures

in a modified MOLfile format.

2.2 Algorithms

2.2.1 Preprocessing Phase

This phase processes the existing input substructures from Ascii files and outputs each into

one or more Ascii hash files. Each input file will contain a substructure in a modified

MOLfile [Dalby and Nourse 1992] format. The first line in the file contains the structure

number (1-M), and the substructure number (0-N) within the structure. The following

lines contain the XYZ global coordinates for each node (atom) in the substructure.

The lowest numbered (first) node (atom) in the substructure will be used to the

determine the local XYZ coordinate frame for the substructure. This node will be the

origin of the local coordinate frame. The local coordinate frame is represented by three

basis points:

PB1 (XO,YO,ZO) PB2 (X0+1, YO,ZO) PB3 (X0, YOH-1,ZO)

3

4

Using these basis points, subtract their coordinates from the global coordinates of each

node in the substructure to determine the local coordinates of each node:

Xj - X0, Yj -	 - ZO

The hash address is determined for each combination [Knuth 1973] of three nodes

in the substructure. For each combination of three nodes, determine the distance between

each pair of nodes as follows:

L I = ((X; - Xj)² + (Yi- Yj)² + (Zi - Zj)²)

L2 = ((Xi - x02 4_ (Yi -Yk) ²

L3 	Xj)² + (Yk Yj)² 2 +	 Zj)²)

Use these lengths to sort the three nodes so the pair with the shortest distance is stored

first. This is done to maintain consistency with the on-line, search phase.

Each length is multiplied by a large number (e.g. 10,000) so it can be treated as an

integer and small differences in precision are ignored. This value is then divided by a

prime number (e.g. 1009), and the remainder divided by the number of desired hash entries

for each of three dimensions (e.g. 62). The hash address of the three node combination

(i,j,k) will therefore be:

h[11][12][13]

The entry in the hash table will consist of the 3D graph number (1-m), the

substructure number (0-n), and the local coordinates of the three nodes with respect to the

basis points of the substructure. The vectors Vi,bn are used to represent another local

coordinate frame for the three nodes. The coordinates of the three basis points with

respect to this local coordinate frame form a 3 x 3 matrix which is calculated as follows:

where

(Vi,bl) is the vector from node i to basis point 1; Vi,j, is the vector from node i to

node j.)

The hash table entry (at address	 I 112] [13]) for the three node combination (i,j,k) is

therefore:

D, S, SFs[i,j,k]

where D is the structure number (1-M), and S is the substructure number (0-N)

within D.

2.2.2 On-Line Phase

This phase processes a query substructure Q from an Ascii file and outputs the existing

structure and substructure numbers (D,S) that are considered to match Q.

5

6

0 is hashed using the same techniques described in section 2.2.1. For each

combination of three nodes (u,v,w) in Q, the hash address is calculated. Then the

coordinates of the three basis points of each existing entry in the hash table with respect to

the global coordinate frame of the query substructure are calculated as follows:

where P i , is the global coordinate of node u.

For each match (hit) in the hash table for substructure s that yields the same SFQ ,

increment a counter for s. Then, for each counter that is greater than:

(n-1) x (n-2) x (n-3) / 6

where n is the number of nodes in Q, display the structure number D and substructure

number S since this substructure is considered an "approximate" match.

CHAPTER 3

RESULTS AND DISCUSSION

3.1 Pre-Processing Phase

The two input files each contained one substructure from the input structure.

The input data for substructure 0 was as follows:

The input data for substructure 1 was as follows:

When the pre-processing program is run for substructure 0, thirty-five hash files

are created (there are thirty-five combinations of seven nodes taken three at a time).

When the program is run for substructure 1, twenty hash files are created (there are

twenty combinations of six nodes taken three at a time).

7

3.2 On-Line Phase

The input file for the query substructure was as follows:

The output to the screen showed a match for structure 1, substructure 0. The number of

hits to the hash files was ten (there are ten combinations of five nodes taken three at a

time). The counter was ten.

The results show that a match is found even though the global coordinates of the

query substructure are different from those of the input substructure, and the query

structure had one less node than the input substructure.

8

CHAPTER 4

CONCLUSIONS

In this thesis, we show that geometric hashing technique can be used for 3D molecular

substructure searching and approximate matching. Minor differences in precision do not

affect the match. A match will be found in the case of rotation and differences such as one

node (atom) not present in search substructure versus input substructure.

4.1 Future Enhancements

4.1.1 Data Storage

A relational database could be used to store the existing 3D structures. The information

would include the type of structure (eg. Chemical, biological, protein). Alternatively the

structures could be grouped based on chemical or biological properties. A technique

could then be used to find structures "similar" to the query structure. A metric would

have to be defined for what is "similar".

4.1.2 User Interface

The application could use a third party tool (eg. ChemDraw) for input of the data

structures and the query structures. The tool would translate the structures into the

necessary format for use by the program (eg. MOLfile format). The matching structure(s)

would then appear graphically within the tool.

9

APPENDIX

PROGRAM LISTINGS

This appendix contains the programs used to implement the algorithms presented in this
thesis.

/***/

#include <stdio.h>
#include <string.h>
#include <math.h>
#include <stdlib.h>
#include "thesis.h"

main()

int status,i,j,k,l,m,n,t,s,st;
int BOUND;
int savnode;
double PB1[3], PB2[3], PB3[3], N[100][3];
double M[3][3],M1[3][3],MIB[3][3] ;

float mf;
double x[3],y[3],z[3];
struct nl {
double length;
int fnode;
int snode;
struct nl *lptr;

;
struct nl *Ienptr, *savptr, *ptr1, *ptr2, *sav3ptr;
long int 11,12,13;
long int prime = 1009;
long int nrow = 62;
int dn,sn,nsnode;

1 0

11

PB 1[2] = N[0][2]; /* coordinate Z of lowest numbered node in substructure*/
PB2[0] = N[0][0] +1; /* coordinate x of lowest numbered node in substructure*/
PB2[1] = N[0][1]; /* coordinate Y of lowest numbered node in substructure*/
PB2[2] = N[0][2]; /* coordinate Z of lowest numbered node in substructure*/
PB3[0] = N[0][0]; /* coordinate x of lowest numbered node in substructure*/
PB3[1] N[0][1] +1; /* coordinate Y of lowest numbered node in substructure*/
PB3[2] = N[0][2]; 1* coordinate Z of lowest numbered node in substructure*/

for (k=1; k<=nsnode-2; k++)

for (j=k+1; j<=nsnode	 j++)

for (i=j+1;	 =nsnode; i++)

nc[0] = k-1; /*N array index*/
nc[1] = j-1;
nc[2] = i-1;

lenptr = (struct n1 *)
malloc (sizeof(struct n1));

savptr = lenptr;
for (1=1;1<3;1++)
{ lenptr->Iptr = (struct n1 *)

malloc (sizeof(struct nI));
lenptr = lenptr->lptr;

}

lenptr->Iptr = savptr;

lenptr= savptr;

lenptr->length = sqrt (pow((N[nc[1]][0] - N[nc[0]][0]),2) +
pow((N[nc[1]][1] - N[nc[0]][1]),2) +
pow((N[nc[1]][2] - N[nc[0]][2]),2));

lenptr->fnode = nc[0];
lenptr->snode = nc[1];

lenptr = lenptr->lptr;

lenptr->length sqrt (pow((N[nc[2]][0] - N[nc[1]][0]),2) +
pow((N[nc[2]][1] - N[no[1]][1]),2) +
pow((N[nc[2]][2] - N[nc[1]][2]),2));

lenptr->fnode = nc[I];
lenptr->snode nc[2];

13

14

15

16

17

18

19

20

}

21

22

23

24

25

26

27

28

}

29

30

REFERENCES

Dalby, Arthur and James G. Nourse, "Description of Several Chemical Structure File
Formats Used by Computer Programs at Molecular Design Limited", J. Chem. Inf.
Comput. Sci, 32(1992):244-255.

Charifson, Paul S. and Andrew R. Leach, "The Generation and Use of Large 3D
Databases in Drug Discovery" [On-line]. Available HTTP:
www.awod.com/netsci/Science/Cheminform/feature03.htlm, January 1998.

Kazmierczak, Marcus, "Java Script Linear Algebra Calculator" [On-line]. Available
HTTP: www.mkaz.com/math/js_calc.html, January 1998.

Knuth, Donald E., The Art of Computer Programming, Vol. 1, Second Edition,
Addision-Wesley, Reading, MA, 1973, pp. 51,52.

Kochan, Stephen, Programming in C, Hayden Books, Indianapolis, Indiana, 1988.

Lamdan, Y. and H. Wolfson, "Geometric Hashing: A General and Efficient Model-Based
Recognition Scheme", Proc. Inter. Conf. on Computer Vision, (1998):237-249.

Wang, Jason and G.W. Chirn and T.G. Marr, "Combinatorial Pattern Discovery for
Scientific Data: Some Preliminary Results", Proc. ACM SIGMOD Conf,
(1994):115-125.

Wang, Xiong and Jason T.L. Wang, "Approximate Substructure Search in a Database of
3D Graphs", Proceedings of the Third International Conference of Information
Sciences, Research Triangle Park, North Carolina, March 1997, pp. 12-15 .

	 . Handbook of Mathematical, Scientific, and Engineering Formulas, Research and
Education Association, New York, NY, 1984, pp. 13-17, 291-294.

31

	Copyright Warning & Restrictions

	Personal Info Statement

	Abstract

	Title Page

	Approval Page

	Biographical Sketch

	Dedication Page

	Acknowledgment

	Table of Contents

	Chapter 1: Introduction

	Chapter 2: Application Development

	Chapter 3: Results and Discussion

	Chapter 4: Conclusions
	Appendix: Program Listings
	References

