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ABSTRACT

A RESOURCE ALLOCATION MECHANISM BASED ON COST
FUNCTION SYNTHESIS IN COMPLEX SYSTEMS

by
Carlos C. Amaro

While the management of resources in computer systems can greatly impact the

usefulness and integrity of the system, finding an optimal solution to the management

problem is unfortunately NP hard. Adding to the complexity, today's 'modern'

systems — such as in multimedia, medical, and military systems — may be, and

often are, comprised of interacting real and non-real-time components. In addition,

these systems can be driven by a host of non-functional objectives – often differing

not only in nature, importance, and form, but also in dimensional units and range,

and themselves interacting in complex ways. We refer to systems exhibiting such

characteristics as Complex Systems (CS).

We present a method for handling the multiple non-functional system objectives

in CS, by addressing decomposition, quantification, and evaluation issues. Our

method will result in better allocations, improve objective satisfaction, improve the

overall performance of the system, and reduce cost —in a global sense. Moreover,

we consider the problem of formulating the cost of an allocation driven by system

objectives. We start by discussing issues and relationships among global objectives,

their decomposition, and cost functions for evaluation of system objective. Then, as

an example of objective and cost function development, we introduce the concept of

deadline balancing. Next, we proceed by proving the existence of combining models

and their underlying conditions. Then, we describe a hierarchical model for system

objective function synthesis. This synthesis is performed solely for the purpose of

measuring the level of objective satisfaction in a proposed hardware to software



allocation, not for design of individual software modules. Then, Examples are given

to show how the model applies to actual multi-objective problems.

In addition the concept of deadline balancing is extended to a new scheduling

concept, namely Inter-Completion-Time Scheduling (ICTS. Finally, experiments

based on simulation have been conducted to capture various properties of the

synthesis approach as well as ICTS. A prototype implementation of the cost functions

synthesis and evaluation environment is described, highlighting the applicability and

usefulness of the synthesis in realistic applications.
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CHAPTER 1

INTRODUCTION

Complex Systems can be characterized as large applications running on a distributed

and heterogeneous network with an arbitrary but known topology, driven by various

non-functional goals/objectives such as performance, real-time behavior, human

factors, reliability, and fault tolerance [47]. These objectives frequently conflict, are

often non-commensurable, and sometimes compositionally imprecise. Satisfaction

of these objectives interacts strongly with assignment of system components to

resources in a distributed environment. Devising mechanisms capable of measuring

and differentiating the level of satisfaction of such objectives for a given allocation

is itself a very complex problem [54, 56, 801.

The problem of resource allocation has been addressed in many fields, including

economics [8, 49, 60] and operations research [12, 16, 20, 50, 51i. In all instances,

resource allocation is perceived as the science concerned with the problem of using or

administering scarce resources so as to attain the greatest or maximum fulfillment of

society's unlimited wants [49]. Likewise, in computer science, resource allocation is

concerned with the problem of managing system resources — i.e., memory, communi-

cation links and switches, processors, display devices, sensors, actuators, semaphores,

stacks, locks, data, buffers, etc. — so as to attain the greatest fulfillment of the

system's objectives.

In essence, resource allocation deals with the timely satisfaction of a task's

needs, while at the same time, leaning towards certain desired characteristic behavior

as a consequence of the mapping. These desired characteristics/objectives do not

have an absolute required level of satisfaction to achieve; rather, they are simply

criteria the values of which do not invalidate the allocation, but differentiate better

allocations from worse ones.

1
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Previous work on resource allocation mainly assumes only a single or at a

maximum two goals. With resource allocation almost all methods published to date

concern themselves with a cost function based on a variation of the two objectives,

load balancing (LB) and inter-processor communication (IPC) minimization [1, 15,

45]. However, today's real-time systems demand much more than just these two

simple aspirations.

A common characteristic of most of the related work is that their cost functions

are not constructed in a well-defined manner. While the decomposition of the overall

goals into smaller, tractable objectives is present in most of the papers, the second

step, which is the synthesis of the system cost function, is not covered in detail.

This thesis presents an approach to the synthesis of the cost function for

resource allocation in the development of complex real-time systems. Originating

from a user-defined decomposition of the objectives it is shown which steps have to

be followed in the derivation of the system cost function.

Also, objective deadline balancing (DLB) is introduced along with represen-

tative cost functions. In addition, this notion of DLB is extended into the concept

of scheduling to maximize the minimum inter-completion time — Inter-Completion

Time Scheduling (ICTS). These approaches, to my best knowledge, have not been

used before in complex systems.

This chapter provides a motivation for our study and application of cost

function synthesis techniques for resource allocation in complex systems, highlights

the difficulties associated with performing such techniques and points out the

contribution and the organization of the thesis. In the following section, those

requirements that distinguish complex systems are presented. Next, objectives,

cost functions, and their relationships are discussed. Then, the complexity of

the basic resource optimization problem is examined followed by a discussion on

additional requirements imposed by complex systems. Next, a tool, satisfying these



requirements is described. Finally, a summary of the major contribution of this work

is provided, concluding with an outline of the balance of the dissertation.

1.1 Complex System Requirements

While classical computer systems are driven by functional requirements and have no

timing constraints associated with them, conventional real-time systems differentiate

themselves by having a conceptual notion of time to which they must adhere to. As

Halang and Stoyen [Stoyenko] explain:

real time operation distinguishes itself from other forms of data
processing by the explicit involvement of the dimension of time. This is
expressed by the following two fundamental user requirements, which real
time systems must fulfill under all, including extreme, load conditions:

• timeliness and

• simultaneity.

These requirements are supplemented by two further ones of equal
importance:

• predictability and

• dependability.

Upon request from the external process, data acquisition, evaluation, and
appropriate reactions must be performed on time." [30]

Hence, the absolute speed at which results are attained is of little consequence;

but rather, the timeliness, within predefined and predictable time-bounds, at which

results are observed, their correctness, and their completeness are decisive.

Depending on the criticality of timing constraints imposed on the system by

the external environment, real-time systems may be classified as hard or soft. These

1 111 this thesis we are not concerned with differentiating between system 'requirements'
and 'constraints' —we are addressing non-functional objectives. Therefore, we shall use
the terms interchangeably.
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are distinguishable by the effects of violating the timeliness requirement; that is,

missed deadlines. In soft real-time environments, costs rise with increased tardiness

of observables, whereas in hard real-time systems, the cost of a missed deadline may

be infinitely high, resulting in irreversible catastrophic consequences.

Unlike conventional real-time systems which consist solely of real-time tasks,

Complex Systems may be comprised of three task types defined by their degree of

time criticality, namely: hard real-time, soft real-time, and non-real-time. In addition

to the constraints imposed by each type, their coexistence demands their interaction

to be deterministic, dependable and correct. There may be other constraints induced

by the coexistence. However, we will not concern ourselves with them in this thesis.

Examples of such systems can be found in multimedia (video on demand),

medical (patient-monitoring), and military (theater of operation) scenarios.

1.2 Objectives and Cost Function Synthesis

Objectives are descriptions of non-functional system properties, which can be quali-

tatively decomposed into smaller scoped objectives and finally into attributes as

suggested by Keeney and Raiffa in [38]. Thus attributes are atomic characteristic

behavior of the system, i.e., lowest-level objectives. Cost functions, on the other

hand, are mathematical expressions that measure and assign values to attributes

and objectives.

The top-level objectives of a real-time system constitutes the overall target

of the optimization process of the resource allocation strategy for a system, as

in [47]. These top-level goals can be identified by so-called decision makers and can

encompass a wide area or scope. The intended system is investigated and the desired

non-functional aspects are identified as in [54]. Some of the desired characteristics

may include: timeliness, predictability, fault tolerance, performance, human factors,

and security. These then must be broken down into smaller scoped objectives. These
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non-functional goals may be categorized into constraints, whose failure will result in

the rejection of a proposed allocation, and objectives, whose relative degree of satis-

faction affects in the acceptability of a proposed allocation.

Constraints typically arise from physical restrictions on the underlying appli-

cation, or on the partially-specified platform or design, but can also be hard user

requirements on acceptable designs. Objectives, in contrast, represent behavior

desired for the application; objectives frequently can be satisfied to a. greater or

lesser degree. Measuring the relative level of satisfaction of an objective or set of

objectives will call for quantification of these levels.

In this paper we do not address constraints. Rather, we assume proposed

allocations to be constraint satisfying. Our problem is more acute in that given a

set F of feasible solutions, we are trying to differentiate amongst these solutions.

Moreover, F = Fi, F C S, where S is the set of all possible permutations of an

allocation, see Figure 1.1.

Figure 1.1 Constraint Satisfying Space F

Objectives typically embody goals for an entire system, but may involve only

subsystems or single components. The system objective describes the overall target

of the system and its subsystems. Failure to achieve a certain level of objective

satisfaction is not in itself cause for rejecting the system; rather, better satisfaction
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distinguishes good implementations. However, most research on resource allocation

considers only one component of the system objective. For example, [1, 10, 15, 75]

only use the objective performance, typically quantified as a summation of two cost

metrics, interprocessor communication and execution cost. New methods need to be

devised to be able to consider more than one or two metrics.

Objective satisfaction is quantified by cost functions. A single objective may

have multiple cost functions. For example, communication optimization during

resource allocation may be realized as "minimize overall communication" , "maximize

time separation between message transmissions", or "minimize the maximum of

communication out of a single processor". But the problem of quantifying and

managing trade-offs is significant. What are the degrees of importance for the

individual cost functions for an objective? How can cost functions be computed

or estimated effectively and efficiently at different stages of the design process?

Lower level objectives result from refinement. These smaller-scoped refinements

are by themselves objectives but at a more detailed level. For example, performance

can be refined into throughput, response time, and load balancing. Any of these

objectives can be further refined. For instance, response time can entail both average

response time and minimize worst case response time.

Cost functions evaluate individual system considerations used to determine

inherent "goodness" as stipulated by system objectives. Some cost functions

encountered in complex systems are communication cost, load balancing, failure rate,

and deadline satisfaction percentage. In our model, cost functions are formulated so

that minimization corresponds to better system performance, and minimizing the

system cost function optimizes the degree of objective satisfaction.

Typically, high-level cost functions are synthesized from the amalgamation

of lower-level cost functions taking into account their corresponding weights. The

resulting multi-objective cost function may incorporate many objectives. Each can be
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expressed in diverse units, such as time, money, count, risk or opportunity cost, and

thus have fundamentally incompatible types and units. Meaningful combination of

these objectives (sometimes with artificial units, and often of fundamentally different

type) to obtain a single value requires Data Fusion.

Moreover, objectives cannot be satisfied independently, but are interrelated.

For example, the cost associated with load balancing is inversely related to commu-

nication cost, and minimization of one tends to result in a larger cost for the other.

Simultaneous minimization of such interrelated functions will be hard and sometimes

even impossible. Measurements also need to be scaled to obtain approximately equal

ranges and variances for different factor, which requires Data Scaling.

1.3 Resource Optimization is Hard

The simplest form of the general resource allocation optimization problem (single

objective, two processing elements, and n tasks) is an NP-hard problem [1]. The

problem is intractable for either mathematical programming or graph theoretical

approaches [25]. Therefore, effective heuristics need to be developed.

To reduce complexity, some allocation methods optimize on a subset of the

objectives. However, optimization cannot be performed on a single objective at

a time. Objectives may conflict and optimizing one may worsen another. In

addition, ranking tasks according to criticality and optimizing levels independently

will preclude better allocations. Furthermore, optimal satisfaction of real-time task

objectives may induce heavy costs for non-real-time task allocations.

Due to these inherent issues, current systems do not offer users many choices

nor flexibility.
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1.3.1 Resource Allocation in Complex Systems

Complex Systems like conventional real-time systems, by definition, must be deter-

ministic, dependable, and correct.. A system which satisfies these properties will

almost inevitably be much more expensive than a comparable system which does

not. This is because for real-time tasks, systems typically schedule and allocate

resources in a pessimistic manner [66, 69, 82, 81], since they must always accom-

modate worst case execution scenarios. While this is not the case for non-real-time

systems, processors in conventional real-time systems will by comparison tend to

be underutilized, spend a lot of time idling, and inevitably costlier than any other

type of system. However, Complex Systems can take advantage of this rarely used

resource-time originally allocated by real-time schedulers. The unused time can be

harvested and used by ready non-real-time preemptible tasks. With this advent the

question then becomes one of allocation: how and where are tasks to be assigned?

In Complex Systems resource allocation can be validated by three components,

specifically: schedulability, requirements conformability (other than timing), and

level of objective satisfaction. Therefore, we discuss a resource allocation process/tool

in the next section to accommodate these factors. Then, we present our contribution

to such a tool.

1.3.2 A Resource Allocation Tool for Complex Systems

A general method toward the resolution of a multiobjective planning problem was

presented by deNeufville and Stafford in [20] (1971). In their method five steps

were proposed, they are: 1. Definition of objectives, 2. Formulation of measures

of effectiveness, 3. Generation of alternatives, 4. Evaluation of the alternatives,

and 5. Selection. A similar methodology, later introduced by Cohon in [16] (1978),

augmented the model by combining the first two steps into 'Identification and

quantification of objectives,' followed by two additional steps: 'definition of decision
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variables and constraints' and data collection.' In addition, he added implemen-

tation as the last step to the planning phase.

While both methods may be adequate for social welfare resource allocation

problems, they fall short when applied to complex computer systems. In the

above models, objectives are viewed as single entities and are not decomposable —

objectives cannot be comprised of other objectives. They assume their solution space

to be of polynomial size and solvable. In addition, only a single set of alternatives is

generated, and the preferred alternative selected through human interaction.

We will now define a similar model/tool for resource allocation in Complex

Systems. We outline the tool in Figure 1.2 and describe its steps in Table 1.1.

Figure 1.2 A Tool for Resource Allocation in Complex Systems.

The first step in solving the resource allocation problem is identifying the

desired non-functional characteristics of the system. These characteristics are then

classified as the top level objectives and are further decomposed into smaller-scoped,

more specific characteristics by the system cost function builder. Decomposition

may be finitely refined until lower level objectives can be quantified by attribute

cost functions. This decomposition results in a hierarchical definition of system

objectives. The Cost Functions in turn quantify specific atomic properties of the
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Table 1.1 Steps for a Resource Allocation Tool

1 Identification of Objectives
2 Formulation & Decomposition of Objectives
3 Identification and Quantification of Cost Functions
4 Generation of allocations (constraint satisfiable)
5 Generation of simulated schedule
6 Evaluation of proposed feasible allocation
7 If termination conditions NOT satisfied go to step 4
8 Presentation of allocation(s) for implementation

allocation. Once the hierarchy is defined and quantified, the hierarchy is evaluated

bottom-up by the cost function evaluator. Value Transformation Functions may be

needed in order to combine sub-level results.

Allocations are then generated by an allocator, implementing search strategies

and state space search algorithms. At each algorithmic step the constraints are

checked for violations by the constraint checker. If any alteration by the search

algorithm violates the constraints, then it is not applied and other alternatives are

attempted. Each allocation is then checked to see if a feasible schedule (one that

satisfies time constraints) exists for real-time tasks. If one does not exist, then

the allocation is rejected and another proposed. Otherwise, a simulated schedule is

derived by augmenting it with the remaining tasks (both soft and non-real-time).

The derived symbolic-schedule can be used by time-driven objectives. Hence, every

proposed allocation by the allocator is constraint-satisfiable —temporal and spatial.

All cost functions — static and semi-static — are then evaluated. While

static functions can be measured from allocation-only data, semi-static functions

need additional auxiliary information that can only be acquired through actual or

symbolic execution of the tasks. Finally, their results may need to be transformed

and combined accordingly to evaluate the objectives at each level in the hierarchy
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This process continues until a termination condition is satisfied, some of

which include: no significant improvement between iterations; maximum number

of consecutive worsenings reached; maximum number of iterations allowed reached;

search time expired; disparity between internal objective values exceeds limit.

Afterwards, the lowest cost allocation from the set of all feasible allocations generated

is selected.

This thesis will concentrate on the objective synthesis component of the general

resource allocation tool. This includes, methods for objective decomposition and

corresponding combining functions.

1.4 Contribution

In this dissertation, we mainly study how to synthesize cost functions for resource

allocation in complex systems. The focus of this work is highlighted in Figure 1.3.

We outline and discuss relationships among top-level objectives, cost functions, and

the construction of the system cost function. We introduce a hierarchical model

for such synthesis. We demonstrate, through example, how our model is applicable

in complex systems. Finally, we implement the model in the REAL' prototype.

Detailed description of the prototype is described in Chapter 7. The contribution of

this dissertation can be summarized as follows:

• We have developed a hierarchy model to provide the basic mechanisms for

objective decomposition and cost function synthesis. The decomposition takes

the form of a Directed Acyclic Graph (DAG).

• We have specified data transformation and combining functions needed to

evaluate objective satisfaction at each level in the hierarchy. We have identified

conditions for the existence of combining models.

²The REsource ALlocation (REAL) prototype is partially Supported by U.S. ONR and
U.S. NSWC grants, and the DESTINATION team.
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Figure 1.3 Outline of Our Contribution (Gray Area).

• We have introduced the concept of DeadLine Balancing (DLB) as an objective

and extended it to Intercompletion Time Scheduling (ICTS). We describe

algorithms and discuss the implication of scheduling real-time tasks so as to

maximize their minimal inter-completion time.

To validate our work empirically, we have done the following:

• We have examined the usefulness of our approach in a realistic application.

The cost function synthesis approach is applied to a simple model of a stock

exchange system. The objective decomposition is derived as well as three

different cost function syntheses for this system. These cost functions are

applied to various hardware and software scenarios. The behavior and the

performance of the functions were evaluated by exhaustively calculating the

function values and by using the cost functions as a fitness function for a

Genetic Algorithm.

• We have studied the effects of the inter-completion time Scheduling strategy

on Inter-Processor Communication and present results.
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1.5 Organization

This dissertation is organized as follows. In the next chapter, a complex systems

model which serves as a basis for this work is defined. Chapter 3 summarizes related

work. The chapter is split into two parts, approaches and evaluation methods.

Moreover, various types of approaches to solve the resource allocation problem

are examined, as well as numerous allocation-cost evaluation methods. Chapter

4 presents our approach for evaluation of non-functional system objectives. The

first sections cover development and evaluation of cost functions and introduce the

concept of deadline balancing. The last sections describe construction and evaluation

of objective functions. In Chapter 5, the concept of deadline balancing is extended to

a new scheduling concept, namely Inter-Completion-Time Scheduling (ICTS). The

algorithms are described and the implications of scheduling real-time tasks so as

to maximize their minimal inter-completion time are discussed. Experiments based

on simulation have been conducted to capture various properties of the synthesis

approach as well as ICTS. In Chapter 6, the design and results of these experiments

are illustrated. A prototype implementation of the cost functions synthesis and an

evaluation environment are described in Chapter 7, highlighting the applicability

and usefulness of cost function synthesis in realistic applications. Finally, Chapter 8

concludes this thesis and summarizes future research directions.



CHAPTER 2

COMPLEX SYSTEMS MODEL

In the previous chapter, we motivated our study and defined the problem that this

thesis is trying to address. In this chapter, we define a complex systems model for

this work. In addition, we provide definitions for some of the terms used throughout

the thesis. In the next section we discuss an underlying distributed heterogeneous

computer network model, followed by a discussion on the arbitrary software model.

Specific model characteristics that need to be identified are dependent on

the metric to be evaluated. In addition, system resources need not be fast nor

dependable. However, they must be predictable. The system itself need not

be entirely fault-free, accurate, nor reliable; however, it must be deterministic.

Moreover, its imprecisions or anomalies must be known and measurable at all times.

Furthermore, in the literature there are many ways of measuring atomic

properties (both spatial and temporal) for reasonably real systems [30]. Therefore,

we are really not concerned with measuring all of these in this thesis. Rather, what

we are interested in is the combining of such properties. Therefore, if we have to

build hardware and software models we will start with something simple but yet

capable of exhibiting some of these properties.

2.1 Hardware Environment

In this section, the thesis' assumptions about complex system hardware environments

are stated.

Real-time hardware (for example [30]) need not necessarily be very fast, but

must provide predictable functionality enabling analysis of the system. Issues

like caching, direct memory access, virtual addressing, pipelining, or asynchronous

communication protocols can cause nondeterminism, and consequently should be

14
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handled with care [85]. In this thesis, it is assumed that the execution time of

each machine instruction is known. In addition, machines need not have identical

instruction execution times. Furthermore, all machines are connected by a commu-

nication network. It is also assumed that the hardware does not introduce any

unpredictably long delays into program execution or message propagation.

2.2 Software Environment

The software model consists of n tasks. Tasks communicate end-to-end. Moreover,

tasks do not communicate while executing, only before execution or after. Furthermore,

a task starts to execute when it has received all messages from all its predecessors,

its release time has passed, and the processor to which it has been assigned becomes

available. Moreover, no processor is executing more than one task at any given

instant in time.

Tasks with their communication messages form a Directed Acyclic Graph

(DAG). Missed deadlines of different tasks within the same time-category (recall:

hard, soft, and non-real-time) are of equal importance and costs. In this model,

each task 7; is characterized by several parameters — a release time r2 , an execution

requirement ei,j (j = 1, . . . , m), a deadline di , and interprocess communication vector

xi , with the interpretation that task Ti becomes ready for execution at time r„ and

needs to be executed for e 1, units of time over the interval [ri , di ).

Such a model is sufficient for generating some real-time and performance

measures.



CHAPTER 3

RELATED WORK

In this chapter we discuss work related to multi-objective resource allocation. We

have divided this chapter into two parts. First, we discuss various approaches to the

resource allocation problem. Then, in the second part, we look at methods used for

evaluating the costs of an allocation.

Previous work on the subject matter is varied and extensive. However, unlike

our model, none consider a mixed-task-type environment. That is, all related work

assumes the task sets to be entirely real-time or entirely non-real-time. Nor do

previous papers consider more than two objectives, as demanded by real computer

systems. Let us now review some of these approaches.

3.1 Approaches

The mapping of software to hardware can be performed at various times/states in

the life of the system, these approaches include: static, semi-static, or dynamic.

For example, prior to running a system, one can evaluate possible alternatives and

determine which is best for the selected objectives (static). Alternatively, during

run time we can monitor the system periodically and migrate tasks accordingly

(dynamic). However, we cannot always continuously monitor the system because

the evaluation process may be too expensive. It may take longer to compute than

the currently available free time, leaving less time then needed for tasks to run to

completion. Therefore, a compromise must be reached, and heuristic solutions need

to be employed. Finally, after tasks have finished running, one can determine the

accuracy of our earlier speculations and adjust the allocation for the next time (semi-

static). We will now compare the approaches and give examples.

16
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Static methods determine the mapping prior to run time. One advantage over

other methods is that static methods have ample time to derive solutions. However,

there are limitations. Primarily, information may not yet be available for evaluating

the criteria. This is a key point when it comes to measuring real-time characteristics

of any proposed allocation. For example, timing information necessary for measuring

slack, number of missed deadlines, and number of failed tasks will not be available

prior to execution of the tasks. Hence, any results from analysis performed prior to

run-time are pure speculation.

Run-time approaches are developed to circumvent the incomplete information

drawback — only at run time will exact information be available. However, unlike

static approaches where speed is not of concern, run-time approaches need to adapt

to constantly changing conditions and resolve situations on the fly. These methods

must be very quick and efficient, otherwise their solution may come too late.

In all approaches there are two components, decision-time the time decisions

are made, either at run-time (dynamic) or prior to run-time (static) — and data-type

— data can either be fixed (static) or changing with time (dynamic). By making both

of these two components the same, either static or dynamic, a method is classified

accordingly. However, semi-static approaches are hybrids, characterized by having

one of the two components dynamic and the other static.

Hence, semi-static approaches come in one of two flavors. First, the run-time

decision can be made between statically generated alternatives. Second, decisions

can be made prior to run-time while using dynamic information, such as feedback,

profiling, conditional branch probabilities, actual data, and actual message sizes.

Some approaches that have included resource allocation to some degree are

covered in the next sections.
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3.1.1 Scheduling

Given one or more resources that need to be shared by a set of tasks, scheduling is the

process of determining which task gets access to which resource, and when. Often,

in systems with more than one processor, the hardware model will be homogeneous,

with little or no notion of Interprocessor Communication (IPC) [11]. In addition,

some scheduling methods bind tasks to processors prior to scheduling analysis, while

others assign tasks based on the available processing time and needed execution

cycles [11, 23].

Static scheduling approaches for real-time systems [11, 23, 42] typically allocate

resources depending on timing requirements of tasks. Historically, these methods

have given little consideration to any criteria other than timing. Typically, all

processors are assumed to be identical and their number unlimited. Hence, "actual

details of the assignment of tasks to processors can be ignored" [12].

More interestingly, some scheduling approaches [11, 18] have implemented

resource allocation more directly. These approaches implement a variant of bin-

packing [37]. Gupta and Spezialetti, for example, have developed a compile-

time mechanism [29] for identifying clusters of tasks that may be interleaved and

overlapped based on task busy-idle periods.

In Dynamic scheduling, tasks are allocated and scheduled as the system is

made aware that they are available to be run [23]. The lookahead time, the difference

between the time when a task declares its intention to execute and its latest allowable

start time, may vary from 0 to oo, depending on the application. A survey on

scheduling is presented by D.G. Feitelson in [23].

3.1.2 Contention Resolution and Arbitration

Here, consumers/tasks compete a priori or at runtime for exclusive use of system

resources. Various arbitration mechanisms [24, 74] have been developed to decide
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which task or message is granted rights to the resource in question and when. For

example, Stoica [74] assigns each task i an initial amount of symbolic money x i at

its scheduled start time sti (usually sti = 0) and an inflow rate :2;r. The tasks then

bid for the resources they desire. Naturally, resource rk goes to the highest bidder.

The premise is that a task will bid higher and higher as it approaches a deadline or

a critical point. This also suffers from the lack of addressing other criteria directly.

3.1.3 Dynamic Reassignment

Here tasks are reassigned during their course of execution to take advantage of

changes in locality [10, 76]. At different phases of a task's life, a task may commu-

nicate with a multitude of other tasks scattered throughout the network. By

migrating a task to another processor, possibly one closer to an upcoming commu-

nicating task, IPC traffic can be reduced as well as message delays. In addition,

execution cost may be reduced by migrating to a. less expensive now available

processor.

3.1.4 Resource Reclaiming

This dynamic method recovers unused portions of previously allocated processor

time and allocates it to other ready and waiting tasks. The reclaimed time typically

arises from pessimistic scheduling policies. Schedules, typically, assume a worst case

scenario. They allot processor time according to the longest case execution path

of tasks. However, the actual execution time can sometimes be considerably less,

resulting in slack which can be harvested and used by other tasks. While Sprunt et

al. use this slack time primarily to schedule soft real-time aperiodic tasks in [69],

Shen et al. in [66] used it to reschedule subsequent tasks in the task graph.

In hard-real-time systems, this approach has the effect of shifting ahead the

start times of subsequent tasks. At best, the task set finishes early if tasks are
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allowed to start earlier than their scheduled start time. The resulting processor idle

time is equal to the sum of the differences between expected and actual execution

times of all tasks in the task set. Furthermore, reclaiming will have no effect if tasks

are unable to start earlier. In either case, processor idle periods are not utilized

and processor utilization is not increased. However, in our model, each interval of

slack may be allocated to awaiting non-real-time tasks, thereby increasing processor

utilization.

3.1.5 Objectives

In computing systems resource allocation efforts are driven by an objective of sorts,

be it maximum lateness, slack, makespan, fault tolerance, reliability, communication,

or execution costs, just to name a few [1, 15, 36, 40, 75, 84]. However, none of

these techniques alone are suitable for Complex Systems, because no single existing

approach optimizes more than two non-correlated objectives simultaneously.

Granted, there has been much work done on techniques of addressing multi-

objectives outside of computer science, some of which include: Multiple Criteria

Decision Making (MCDM) [14, 38, 83, 87], Multiple-Objective Mathematical programming

(MOMP) [16, 67], Multiobjective Linear Programming (MOLP) [19], Multiobjective

Goal Programming (MOGP) [58], and Multiobjective Fuzzy Programming (MOFP)

[51, 58, 59, 88]. However, there are many inadequacies. First, none handle incom-

mensurability and trade-offs between objectives well in large computer systems.

Typically, they divide individual objective values by the number of objectives and

add (i.e., E7_, fi where n is the total number of objectives being optimized over

and fi is the value for objective i). Second, resource allocation in Complex Systems

is not amenable to simple mathematical models, due to the high number of variables

and coefficients demanded by each cost function. Finally, if it were possible to map

the resource allocation problem to a simple mathematical model, it would render
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the solution computationally infeasible when applied to Complex Systems, due to

the non-monotonicity of aggregate objective cost functions.

Whereas in our method we aim to measure the cost of an allocation by the level

of satisfaction of the multitude of non-functional system designs specified, Bailey

and Pearson in [9] describe a tool for measuring system user satisfaction through

evaluation of level of satisfaction for different factors. They use a linear sum of the

weighted averages approach for measuring and analyzing the level of user satisfaction

in information systems. They measure 39 factors by means of a questionnaire. Each

factor is quantified by four bipolar adjective pairs (good, simple, readable, useful) and

a 'scale' (satisfactory), both having the range [-3, +3], and a weight (importance)

ranging from 0.1 to 1.0, where the higher the value the more important the factor.

The scale component is not meant to be used in the calculation, but rather, to test

the internal validity of the tool. It is used in the normalizing step to eliminate side

effects of factors that are not relevant to users.

Bailey and Pearson do handle a multitude of factors. However, all factors are

assumed or defined to be of the same type and range. Therefore, all measures are

commensurable and no scaling or fusion is performed. Furthermore, what they refer

to as the 'weight' does not differentiate level of importance of different factors; it is

simply a multiplicative factor. Also, neither the type nor the size of the system is

taken into consideration. This approach is very subjective. It deals only with user

opinion and perception, rather than concrete measures.

In this section we have been concerned with different types of resource

allocation approaches and when to use them. In the next section, we turn our

attention to the actual computation method.
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3.2 Evaluation Methods

Several approaches to the allocation evaluation method have been used, including

graph theoretic, integer programming, and heuristic techniques. All three approaches

are addressed and surveyed in [10, 15, 21, 45, 76]. While mathematical methods

provide an optimal solution, they are computationally intractable for non-trivial

systems. Similarly, graph theoretic methods are NP-hard when more than two

processors are included in the model. In addition, it is difficult to represent more

than two optimization criteria in graph theoretical methods. Therefore, heuristics

are typically developed to be fast and efficient but not necessarily optimal.

The next section is dedicated to reviewing the three methods, namely: graph

theoretical, integer programming, and heuristic.

3.2.1 Graph Theoretic

In graph theoretical methods [1, 15, 65, 75, 76, 10], graphs are used to model

the system. Typically, nodes are split into two sets, one for processors and the

other for tasks. Edges between task nodes represent interprocess communication and

those connecting nodes between the two sets, execution cost. Then graph theoretic

techniques are applied to the graph in such a way as to minimize certain criteria. A

problem with this method is that it is very difficult to handle more than one or two

optimization criteria. Also it becomes computationally intractable when more than

two or three processors are used.

Some of the graph theoretic techniques employed in resource allocation include:

• [Min -cut] In this approach, a graph is cut into n sets of nodes, each containing

exactly one processor, in such a way as to minimize the sum of the weighted

edges that were cut. Each set represent a mapping of task nodes to the

processor node contained within that set. Stone and Bokhari in [75, 76, 10]

showed this method provides the minimum cost allocation for 2 and 3 processor
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systems in 0(N • E) where N is equal to number of nodes and E is the number

of edges in the graph. However Chu et al. in [15] noted that it does not

consider load balancing, limitations on memory storage sizes, queuing delays,

nor does it consider precedence relations. Also, it quickly becomes computa-

tionally intractable as the number of processors rises above three.

a, [Clique partitioning and split graphs] Given a graph G(E,V), a clique is

defined as a set U c V of pairwise adjacent nodes. A graph G can have more

than one clique. In clique partitioning, nodes assume one of two possible types,

a software task or processor. Edges between different node types represent

execution cost. Edges between task nodes represent communication cost. The

idea is then to minimize the sum of the total edge weights between cliques [1].

[Branch and Bound (B&B)] Here, the state search space assumes a

tree structure. Then, system constraints allow the exclusion of certain

solutions from examination [45]. That is, constraints prune branches from the

search tree, thereby, dramatically reducing the search space. With sufficient

constraints the search space can be made manageable. However, due to non-

monotonicity of cost functions, there is no clear path of decreasing costs from

the root to a full allocation. Furthermore, B&B may inadvertently preclude

better allocations if one is not careful.

3.2.2 Mathematical Programming

In mathematical programming approaches, the task allocation problem is modeled as

an optimization problem. Mathematical programming techniques are then applied

so as to maximize (or minimize) an objective function subject to a set of constraints

which define feasibility [16]. Some of the mathematical programming techniques

employed in resource allocation include: linear programming [15, 40, 45, goal

programming, and multiobjective programming [9, 16, 50].
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All of these techniques provide for a better representation of the task allocation

environment over graph theoretical ones. Because these approaches permit the

introduction of constraints into the model where appropriate for the system,

whereas graph theoretical methods do not. However, these methods have shortfalls

in Complex Systems. For example, mathematical programming models require

attributes to be mutual preferentially independent, have like units, and like scales.

Furthermore, allocation only data is insufficient for generating costs. Real-time

cost-functions can not be computed without a schedule and/or symbolic execution

data.

Moreover, mathematical programming approaches are limited by the amount of

time available to compute solutions. That is, optimal solutions are computationally

intractable. Typically, these methods require exponential time for computations.

Therefore, new techniques need to be devised to reduce the amount of computing

time required for the resource allocation problem. In addition, new techniques should

be scalable to larger dimensional problems. Finally, an optimal solution may not be

necessary where a near-optimal will suffice.

3.2.3 Heuristics

Resource allocation is NP hard [1, 25] when two or more resources are implemented.

Therefore, heuristics, while not providing an optimal solution, need to be used to

arrive at a solution for the given problem in a timely fashion. However, they should

be as nearly optimal as possible.

In dynamic heuristic approaches [18, 66, 69], fast, efficient, and deterministic

methods for finding a good allocation solution are crucial for tasks in real-time

systems not to miss their deadlines. In static approaches, [1, 21, 65, 78, 84], fast

timely solutions are not as crucial. However, consider that a small system with 5,000

tasks and 100 computers has a solution space of size 100500D • Exhaustive search may
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not be desirable nor affordable. Therefore, better heuristic methods are needed for

static analysis.

Heuristic models tend to make assumptions and generalizations in order

to simplify problems. The trade-offs with heuristics are that sometimes they

oversimplify the environment and the solution they provide loses meaning with

respect to the actual system. Furthermore, heuristics now available do not consider

more than one or two objectives. Currently in real-time systems the concerns are

utilization and completion times, while in non-real-time systems the focus of most

research is on IPC, execution cost, and LB.

3.3 Where we Stand with Complex Systems

There are two issues at hand, tractability and representation. Heuristic methods may

be tractable but their system model may not be representative of the actual system

and their solution not applicable to the original problem. Graphic and mathematical

methods may employ more representative models but their solutions are typically

intractable.

Furthermore, as we have shown, current approaches fall short in representing

the multitude of objectives found in Complex Systems. All consider the task sets

to be exclusively comprised of hard, soft, or non-real-time tasks and are limited

by two objectives. These restrictions weaken the model and the solution. All

these deficiencies further justify the need for a heuristic Resource Allocation Tool

in Complex Systems.
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EVALUATION OF NON-FUNCTIONAL SYSTEM DESIGNS

As we have seen in the previous chapter, little work has been directed at handling

more than two non-functional objectives. However, the problem of structuring cost

functions is not new. The issues are significant in and outside of Computer Science.

One of the earliest mentionings in the literature is that of Lewis Carroll in [13], 1880.

He suggests various cases which we will present in section 4.5.5.

In this chapter, work done on structuring and assessing of combining functions

is introduced, adapted, and enhanced. Most of the work is outside of Computer

Science, in fields such as Mathematics, Economics, and Operations Research. First,

issues regarding objectives, objective decomposition, and attribute cost functions

are discussed. Next, the existence of combining models is discussed. Then, a hierar-

chical model is presented along with steps for deriving the corresponding system cost

function. Finally, an example is given.

4.1 Objectives

Recall that the non-functional goals of the system design process for an application

may be divided into constraints, whose failure will result in the rejection of an

allocation, and objectives, whose relative degree of satisfaction affects in the accept-

ability of a proposed design. Constraints typically arise from physical restrictions on

the underlying application, or on the partially-specified platform or design, but can

also be hard user requirements on acceptable designs. They can be either implicit or

explicit, as in [32]. Objectives, in contrast, represent behavior desired for the system;

objectives frequently can be satisfied to a greater or lesser degree. Measuring the

relative level of satisfaction of an objective or set of objectives will call for quantifi-

cation of these levels.

26
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When a design decision has been taken, here an allocation, the outcome has

to be evaluated with respect to the system objective. For evaluation purposes, a

numerical value is assigned to the top-level objective, which corresponds to the

quality of the decision. The need for quantification of objectives raises a number

of issues: first, defining a suitable metric; second, obtaining values for the metric

from an incompletely defined and non-executing platform. Many design decisions

are made before the system itself is implemented. To obtain values for a design

requires simulation. We do not address these two points here. However, the third

issue related to quantification is the usage of these values to identify a good design,

which is the topic of this thesis. This issue comprises an additional subtlety: a given

objective can often be realized by multiple independent metrics; we would like the

freedom to combine their results into a single, presumably more precise metric.

There are several obstacles to identifying a good allocation. First, since

satisfaction of objectives is relative, designs cannot be evaluated in isolation;

even a proposed design in hand, identification of a good design typically involves

comparison. Second, since objectives may interact and even interfere, it is neither

sufficient nor always possible to optimize for each objective separately. In general,

we will again need to combine metrics, this time for different objectives, into a single

numerical value reflecting the quality of a system design.

4.1.1 Quantification of Objectives Identification of Attribute Cost
Functions

Objective satisfaction is quantified through cost functions. Some of the many cost

functions generally encountered in complex systems as outlined by Nguyen and

Howell in [54] are communication cost, load balancing, elapsed time, failure rate,

deadline satisfaction percentage, relative locality, and risk level.

In Figures 4.1 through 4.5 we quantify some of these objectives into cost

functions, and give qualitative descriptions for each function. First, we define two
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Performance:
Allocation only

load balancing
min{heaviest_loaded_PE — least_loaded_PE}

reduce communication
min{ E Network_communication_traff ic}
min{max(communication_traffic_through_link)}

min{max(communi cat ion_traff ic_through_switching_node)}
Symbolic execution

reduce message contention
min { numb e r_o f _c onf lict s_at_all_links }

min{ max number_of_conflicts_at_a_link}
reduce switching node contention

min{number_of_conflicts_at_all_nodes}
min{ max nuniber_of_conflicts_at_a.node}
min{number_of _conf ii ct s_at_all_nodes+

number_of _confl ict s_at_all_links }

Figure 4.1 Performance: Objective to Cost Function Mapping

types of cost functions: static and semi-static. While static cost functions can

be measured from the allocation only data, semi-static functions need additional

information that can only be acquired through actual or symbolic execution of the

tasks, some of which include: task finish time, contention, and precedence related

delays. Run-time cost functions can be defined. However, their evaluation will be

postmortem/after the fact. Therefore, they are of no use in a dynamic sense for

resource allocation.

In the section, we give an example of attribute cost function identification and

objective quantification.



Real-Time:
Allocation only

deadline balancing
minimize the minimal deadline difference

Symbolic execution
maximize slack

max E deadline s — f inishtimei Ideadline i > f inishtime i

reduce the number of missed deadlines
min E i Ideadline i < f inishtime i

Figure 4.2 Real-Time: Objective to Cost Function Mapping

Security:
Allocation only

provided vs. demanded (assume task assigned to PE)
max iasks max((TaskSecLevel — P E SecLevel), 0)

&asks nlax((TaskSecLevel — P E SecLevel), 0)
&asks max( (T askS ecLev el I P ESecLevel), 1)
maXTaskSecLevei>PESecLevetTaSkSeCLeVei

E rnsgs

max((111 sgSecLevel — LinkSecLevel), 0)
>msgs Elink,nmsg

EMsgSecLevel> Link SecLevel msg . size
physical locality

max source.toc!=dest.iocM sg SecLevel
maxTaskSecLevel> LocSecLevelTaskSecLevel

number of sites used
Symbolic execution

ETaskS ecLevel> P ES ecLevel task.time
EA4 sgSecLevet> LinkS ecLevet msg . size I link.r ate
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Figure 4.3 Security: Objective to Cost Function Mapping



Pure Logic:
Allocation:

number of allocation preferences violated, e.g.,
„EPre f Asngn(T,setAof P) (T.procotinA)

EPref NoAssign(T,setAof P)(T.procinA)
number of collocality preferences violated

E Pre f Co Assign(T1 ,T²) (Tl.proc! = T2.proc)

EPre f NoCoAsstgn(T1,T2) (Tl.proc =T2.proc)
number of cloning preferences violated
etc.

Symbolic Execution:
number of strong precedence preferences violated

EPref Prec(71,T²)(TLend > T2.start)
number of weak precedence preferences violated

E Pre f Prec(T1,T²)(Ti.start > T2.start)

E Pre f Prec(T1,T²)(Ti. start > T2.end)

Figure 4.4 Pure Logic: Objective to Cost Function Mapping

Human factors:
Allocation:

number of human operators needed [needs a lot more info]
max number of inputs managed by operator
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Figure 4.5 Human Factors: Objective to Cost Function Mapping
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4.1.2 Deadline Balancing: An Example

Here, as an example of objective and cost function identification, we introduce the

concept of deadline balancing. We trace its development, step by step, from objective

to attribute cost function.

The objective (a) in Deadline Balancing is to avoid allocations where the

difference in time of the deadlines of tasks assigned to the same processor is small. In

other words, we aim to avoid allocations with bunched-up deadlines on any particular

processor. Problems may arise when tasks with approximately the same deadlines

are assigned the same processor or processor group. These include:

• Processor saturation or overloaded states. All tasks assigned to a processor

may have close deadlines within a interval of time.

• Processor idle states. If all tasks have to finish within a certain interval,

afterwards, there will be no more work to be performed.

• Network communication bottlenecks. Certain communication links may always

be busy during processor saturated intervals.

• Poor handling of sporadic or aperiodic tasks. Problems may occur when these

tasks arrive during saturated states.

• Poor load balancing at any particular point in time. However, over an interval

load balancing may be optimal. This effect is due to overloaded and idle states.

Since deadline balancing prefers allocations where the deadline difference

between tasks assigned to the same processor is maximal, it will tend to spread out

the deadlines over an interval, thereby reducing the occurrence of the saturated and

idle states and their anomalies.
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4.1.2.1 Definitions and Assumptions: The deadline difference ddi,j between

two tasks i and j assigned to any one particular processor k is defined to be the

absolute difference in time between their deadlines.

The minimum deadline difference, mdd, for processor k, is represented as:

where i and j range over all tasks assigned to k.

Allocations where task deadlines are most spread out are preferred, as opposed

to ones where the deadlines are close to each other for those tasks assigned to any

one particular processor. That is, the allocation with the highest Minimal Deadline

Difference, MDD, is optimal. Therefore, we define MDD over m processors for a

given allocation a as:

Note that the higher this value, the better the allocation.

Since minimization of cost functions represents the development towards a

better allocation, we need to convert this into a function where approaching zero

represents a better solution. Hence, Deadline Balancing (DLB) cost is defined as

the variance in time between the minimal deadline difference and a significantly large

constant j3 in the allocation a.

The allocations with lowest DLB cost are the allocations that have tasks'

deadlines most spread apart; in other words, for all processors, the smallest
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separation between deadlines of tasks on the same processor is the greatest. The

opposite can be said for allocations with the maximum DLB cost.

4.1.2.2 Computing Deadline Balancing Cost: The steps to find the DLB cost

for a feasible allocation a are as follows:

1. For each processor k, where k ranges from 1 to m, create a heap Hk of the nk

tasks mapped to it, partially ordered on task deadlines. If a task does not have

a deadline, disregard it, and do not insert it into the heap.

2. Remove all elements from heap Hk and compute the deadline difference ddi,j

between successive elements, retaining the lowest value (mddk), once per

processor.

3. Determine the global Minimum Deadline Difference, MDDa, from the

remaining m mdd's.

4. Evaluate the DLB a , where is equal to the largest global deadline.

4.1.2.3 Complexity: For n tasks and m processors, the first step of the algorithm,

heapifying, is 0(n x lg n) in time while requiring 0(n) space for storage. The second

step is the most demanding, both in time and space. Each heap deletion requires

0(1g n) compare and swap operations and a single subtraction. Since there may be n

elements, total time for all deletions will be 0(n x lg n), with 0(n— 1) subtractions.

0 (m) additional space will be required to store individual mdd's results. For this

step, total time required is 0 (nxlg n) and total space is 0 (m + n). The last

two steps, determining MDD a and DLBa , are linear. The third requires m — 1

comparisons to find MDDa . Additional space complexity is 0 (1) for both.

Total time complexity is 0 (nx lgn +m) and total space complexity is 0 (m +

n). This simple algorithm can be implemented on any machine.
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In this section we have introduced, as an objective, deadline balancing (DLB)

and its representative cost functions. We will extend this notion of DLB into the

concept of scheduling to maximize inter-completion time —Inter-Completion Time

Scheduling (ICTS)— in Chapter 5.

4.2 Combining Models

Combining models are aggregation function forms. They take as input two or more

values and output a single value representative of the form used. Typically, they

take the shape of a mathematical expression. In the following sections, the existence

of combining models are discussed.

4.2.1 Arrow's Theorem

In this section the implications of Arrow's theorem are investigated. Simply put:

Given the rankings of a set of alternatives, what should the overall ranking be? Arrow

proposed some relatively reasonable axioms on the aggregation of the rankings, and

studied their consequences. We briefly outline these axioms and theorem here with

adaptation to our allocation problem. For a more in-depth discussion see [38, p. 523]

or [60, p. 433]. The axioms are as follows.

Axiom 1 Complete domain. There are at least two individual decision makers,

three alternatives, and a group ordering is specified for all possible individual

orderings.

Axiom 2 Positive association of social and individual orderings. Given a

group's ordering where alternative A is preferred to alternative B, if individuals

change their preference in A's favor then the group consensus must still prefer A to

B.
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Axiom 3 Independence of irrelevant alternatives. If elimination of an alter-

native does not effect individual preference orders for the remaining alternatives,

then the groups' consensus for the remaining alternatives should also be unchanged.

Axiom 4 Individual's sovereignty. For every alternative A there should be some

set of individual orderings such that the groups consensus prefers A over any other

alternative.

Axiom 5 Non-dictatorship. There is no individual decision maker who dictates

the groups consensus regardless of other decision makers.

Theorem 1 (Arrow's Impossibility Theorem). Suppose a set of alternatives A

has at least three elements and the number t of individuals (objectives) is at least

two. Then axioms A1,A2,A3,A4, and A5 are inconsistent.

Proof: See [60, p. 440]. L.-

Thus, there is no way of combining a. set of rankings over a set of alternatives

to obtain a single ranking simultaneously satisfying the five axioms. How are we to

proceed? We have two possibilities:

1. relax some of the axioms, or

2. add information to the model.

We have chosen the second alternative in subsequent sections. For a detailed

discussion on these possibilities see Luce and Raiffa [44].

Hence, simple combinations of ranks, regardless of scale type, will not work. A

mechanism for combining values is needed.
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4.2.2 Existence of Combining Models

Keeney and Raiffa show and prove that Arrow's axioms hold for additive conjoint

measure on ordinal models in [38]. However, attributes must be mutually preferential

independent. In this section we argue for a model that does not have this restriction

of preferential independence.

Since objectives are constructed from subjective opinion, they may overlap to a

certain degree. This overlap may suggest one of two possibilities. First, the specifier

does not know what they are doing; or second, the specifier places significantly

more importance on the overlapping attributes. The former case we may proceed by

attempting to remove the doubly counted components as in set theory, union of sets.

However, the later case is what will be argued in this section.

If the specifier is fully aware of her specification and intends it to be as such,

this implies a weighted additive model. A small example follows.

Example 1 Suppose we are evaluating a system of m completed real time tasks by

objective X with production X ::= X 1 , ..., X. In addition, all lower level objectives

(X1 ) are mutually preferentially independent except for two. They are 'number of

missed deadlines' X mdl and 'lateness' Xlat , whose cost functions are defined as follows:

Cmdl=1	cti >dli

i= 1

771

Clat 	 E ct i — dl i 	cti > dl i

t=i

where, ct	 completion time; dl 	 deadline.

How should the corresponding costs x 1, xn be combined? The additive forms,

as stated by Keeney and Raiffa in [38, p. 111], cannot be used due to the dependence

of Xmdl and Xlat on dl. However, in a weighted model, we can argue that the reason a

specifier has created a dependency is because she places that much more importance

on the overlapping attributes. Furthermore, she intentionally wants this bias to be
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reflected in the aggregated evaluation. With this in mind we present the following

Axiom:

Axiom 6 Intelligent specifier. An objective function specifier is fully aware and

understands the implication of the objective structure she specifies.

This axiom asserts that an objective function specifier not only understands

the structure she has specified but has done so intentionally. Hence, the overlapping

of attributes implies an additional weight on the overlap and we present the following

theorem:

Theorem 2 Given attributes X 1, X„ and subjective weights w 1 ,	 an

additive value function

(where vi is a value function over Xi) exists if Axiom 6 is satisfied.

Proof: Let lower level objectives X 1 , ..., X, and corresponding weights w 1 ,	 w„

define a production of X. Suppose X„ and Xb, with weights w a , wb, are not mutually

preferential independent by correlation functions r( a , b) , r(b,a). Assume for now that

they are additive and following equation holds,

Preferential independence now holds on



Hence, dependencies correspond to increased weights on the dependent

attributes in a corresponding mutual preferential independent form. We will be

using this model for our work in the balance of this thesis.

4.3 A Hierarchy of Objectives

For the following considerations we have to distinguish two levels, a decision maker

level and a system level. The former hosts the objectives and their decomposition,

while attribute and atomic cost functions reside on the system level.

We view objectives as defined hierarchically as in [38]. However, our repre-

sentation takes the form of a Directed Acyclic Graph (DAG), where as Keeney and

Raiffa's [38] representation takes on the form of a tree (see Figure 4.6). There is root

objective, the system objective, which in a given application comprises the top-level

system design objectives, such as performance, real-time, security, and so on. These

may in turn be refined into smaller scoped objectives. For example, performance

may include issues of response time, throughput, load balancing, and so on, as in

the original DESTINATION documentation [54], see Table 4.1. At some point the

recursion stops. The lowest-level objectives that are not decomposed any further are

also referred to as attributes. Each of the lower-level objectives is realized by one or

more of the given predefined attribute cost functions, which constitute the interface

between the decision maker and the system level.

On the system level there may be a similar decomposition, which is predefined

and is not accessible to the decision maker. The attribute cost functions are made
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up of atomic cost functions according to combination rules that may be similar to

those at the decision maker level.

It is important to note that the decision maker perceives only the attribute cost

functions. Their decomposition is hidden to him. Furthermore, we do not discuss

atomic cost functions. In addition, we assume a one to one relation between atomic

and attribute cost functions.

Figure 4.6 General Objective Structure

The upper and lower-level objectives and cost functions form a Directed Acyclic

Graph (DAG). To ensure the logical flow of a hierarchy Mollaghasemi and Pet outline

in [521 four tests that have been recommended by J. Gibson. We have adapted these

four tests and present them as follows:

1. [How] Reading "down" any branch, each objective must answer the "how" of

its immediately higher goal.
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2. [Why] Reading "up" any branch, each higher objective answers "why" the

objective above it is needed.

3. [Necessary] Reading "across" the objectives at a given level under any one

general goal, the question are all the more specific objectives necessary to

accomplish the more general objective? must be asked.

4. [Sufficient] Reading "across" objectives at a given level under any one general

goal, the question are the specific objectives sufficient to accomplish the more

general objective? must be asked.

4.4 System Cost Function Derivation

A two-step approach is taken to create a system cost function that reflects the system

objective. The process is illustrated in Figure 4.7.

The approach starts with a given set of attribute cost functions that are

available to the decision maker. The decomposition of these attribute cost functions

into atomic cost functions is hidden behind the interface (Figure 4.7.a).

In the first step the system objective and the design objectives, which have been

identified during analysis, are decomposed into smaller-scoped objectives. Finally,

the lowest-level objectives are mapped to the attribute cost functions (Figure 4.7.b).

Each objective can be expressed by one or more attribute cost functions.

During the second step system cost function synthesis—the objective decom-

position DAG is traversed in bottom-up manner. The cost function at each node is

thereby built by combining the cost functions of its children (Figure 4.7.c). When

the root node, the system objective is reached, the system cost function has been

obtained. This important step is described in more detail in the following section.
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Figure 4.7 Steps Towards Cost Function Synthesis

4.5 Combining Cost Function Values

The upper and lower-level objectives and their corresponding cost functions, as well

as the attribute and atomic cost functions form a Directed Acyclic Graph (DAG).

This thesis aims at a general approach to combining values associated to children of

a node into a value associated with the node itself. The value associated to the node

system is then the relative measure of the "goodness" of the proposed design. Since

each of these computations can be viewed as an attribute synthesis rule, we treat

the result as a function defined in terms of the values at the children; composition

of the functions at each node will define a synthesized function at the root. In other

words, the attribute cost functions are combined in a bottom-up manner until the

system cost function at the root node of the DAG is determined.

While in many cases the value at the parent results from a simple combining

operator applied to values (possibly transformed) of the children, there may be

cases where the interaction between child values is significant and algebraically

complicated. In those cases, we usually will prefer to keep the combining operator
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simple, and instead consider separate terms for the interaction. The combining rule

is outlined in Figure 4.8.

if (at a leaf)
then evaluate the cost function
else

evaluate the cost functions at the children
for each child node

transform the child values appropriately
combine the resulting values

return (the resulting value)

Figure 4.8 Combining Rule

The rest of this section proceeds as follows: First, we consider the inputs to

the evaluation process. Second, we discuss the transformations that may have to be

applied to combine values. We then give the general form of the function synthesis

rule and guidelines to combining functions.

4.5.1 Inputs for Cost Function Synthesis

The inputs to cost function synthesis include:

• The system description s

• The top-level system objectives o.

• The proposed solution a

• Auxiliary information cp derived by tools . For example, in order to evaluate a

number of cost functions (e.g., percentage of soft deadlines satisfied), we need

an approximate execution profile/static schedule.
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4.5.2 Value Transformation

Transformations are required for various purposes in the process of combining values.

These may be applied in any necessary order to the value(s) at a child node (or set

of nodes) to derive a value used in the combining process. It may even be desirable

to apply the same type of function several times in the process of transformation.

These functions are not necessarily different in form, but rather are distinguished by

purpose. The sequence of function applications can be considered to form one single

transformation (7)).

The components of this data transformation function (D)include:

• [Scale Types T ] Each measurement of an attribute by an attribute cost

function belongs to a certain Scale. Different scale types are organized by the

amount of information that they carry, which are in decreasing order: Absolute,

Ratio, Interval, Ordinal, and Nominal. This classification is based upon the

meaningfulness [60] of a statement of measurement. Moreover, scale types

are defined by the type of admissible transformation allowed. This type of

classification is due to the work of S.S. Stevens [72] and [73]. F.S. Roberts used

this approach in [60] to derive the classification we outline in Table 4.2.

The simplest example of a scale type is one where the only admissible trans-

formation is identity (Ø(x) = x). Here, there is only one way to take

measurements. Such a scale is called an absolute scale. As an example of

an absolute scale consider number of missed deadlines. If a statement says

there are n missed deadlines, it means exactly n, and there is no admissible

transformation except the identity which changes this. For a more detailed

explanation and examples see [60].

Previously, we have mentioned that Arrow's axioms hold for additive conjoint

measure on ordinal models [38]. Since absolute, ratio, and interval scales by



Table 4.2 Some Common Scale Types—Adapted From Roberts, 1976, p. 493.

45

definition constitute stronger implications on a measurement they can all be

coerced down to an ordinal scale. Therefore, we present the following theorem.

Theorem 3 Arrow's axioms hold on absolute, ratio, and interval structured

conjoint measurement.

Proof: Proof is implicit by definition of scales types, since the axioms hold

for additive conjoint measure in ordinal models. •

The first step in aggregating measurements is to identify the scale type of

the individual components — in our case, lower level cost functions. If they

are found to be of different type then they must be coerced to a single scale

before any combination can be performed. Coercion may proceed in one of two

directions, up or down in the order of meaningfulness. Coercing down is easy
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but information is lost.. Coercing up is harder because we assume information

about the measure, which may not be true.

• [Scaling S] The value ranges or the variability of functions at different children

may differ significantly. A scaling function transforms the anticipated values

at those nodes into comparable values. There are two important issues. One is

that we may not want to transform the full range of values, but only "typical

values" or "typical values of good allocations"; thus construction of a scaling

function may involve creating a test set and determining values, and computing

statistical properties, such as maximum, minimum, mean, median, variance,

and deciles, of the test set or a filtered subset, and using those to construct

the scaling function. The other is that we may not always want to make the

value ranges identical. If, for example, different child values represent different

aspects of total time, we may just want to add times without scaling. Thus we

obtain a more accurate estimate of total time than if we had scaled anticipated

values to be comparable. Using this refinement requires more detailed semantic

knowledge on the part of the evaluation engine.

• [Fusion 11 Cost functions and different lower level objectives may be expressed

in incommensurable units. A fusion function creates commensurability. Some

existing fusion functions include: normalization, conversion to money or time,

and tradeoff functions. Fusion will be conceptually the most difficult of the

transformations, due to the dependency on the data that it is operating on.

It is defined by its current domain, where the addition of another data item

(child) may disqualify its current instantiation at a node.

• [Algebraic Transformation 0] An algebraic transformation function corre-

sponds to fitting a given "error" or "penalty" model, so that, for example,

an exponential function penalizes a few large values in comparison to average
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values for all inputs, while a square-root function does the opposite. Most

often, the algebraic transformation function is identical for all child values.

• [Weight w] Weight functions (often simply constant multipliers, or powers

in a multiplicative model) reflect the relative importance of the information at

different children. These are typically provided by the decision maker or design

elements for the hierarchy.

In addition, there are three sets of functions, of very different forms:

• [Combining Functions 0] These take the transformed results for all child

nodes, or pairs of child nodes and return a single result. Most often, the

combining function is a simple binary associative operator, or such an operator

followed by a simple unary operator such as reciprocal or negation.

• [Interaction or Correlation θ]Measures the contribution to the total cost

based on the current values, and the nature of the interaction. For many appli-

cations, if there is interaction, it is nonetheless sufficient to consider interactions

of pairs, as in statistical ANOVA and regression analysis. We need not concern

ourselves with correlation functions. As argued in Section 4.2.2, dependencies

correspond to increased weights on the dependent attributes in a corresponding

mutual preferential independent form.

• [Divergence A] Objectives may not be fully quantifiable or their metrics for

quantification not fully known. Moreover, it may be known that the metrics

used in the quantification may over or under stipulate the intended meaning of

the objective. Therefore, accountability for this deviation is needed. Hence, a

divergence function relates the difference between an objective and the metrics

used to quantify it. In addition, this function also serves as a reliability measure

of the quantification. In this thesis, we will consider the objectives to be fully
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quantifiable and the cost functions fully known. Hence, we will largely ignore

divergence functions.

This multitude of transformation functions raises two fundamental questions:

In what order should these functions be applied? Should each type of function be

applied only once, or can the same class of function be multiply applied? It is clear

that the answers are highly dependent on the domain and the sets of attribute

cost functions used. Undoubtedly, reasonable transformations and sequences of

transformations can only be constructed using a combination of domain charac-

teristics, expert knowledge, and application parameters, refined by testing and past

experience.

4.5.3 Notation

In this section we outline the notation used in the balance of the chapter.

s system characteristics
o top-level non-functional objectives
a a solution
 auxiliary information

X, node i in the objective hierarchy
k, number of children of X2

x, children evaluation vector; x,	 (xi , x2,..., Xk, )

o i objective i
C, cost function of o,
13 the jth atomic cost function
x, value for C,

I identity function
T scale type function
S scaling function

fusion function
0 algebraic transformation function
w weight function

combining function
I) data transformation functions: f (T , S, .F, 4), w, 0)

In the next section we present the cost function synthesis rule.
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4.5.4 Cost Function Synthesis Rule

Let a decomposition in the DAG describe the children of an arbitrary node X. Then

the value for its objective of is given by:

Ci(s, o, a, (p) = Di(< xi(s,o, a,	 >)	 (4.5)

where C, is a cost function.

If X i is a leaf node then D i = 1, where I is the identity function. Equation

4.5 reduces to:

Ci(s, o, a, ) = /3 (s, o, a, ço)	 (4.6)

Otherwise, we have an internal node, with

= (xi, x2, .••, xk)

that is, objective o f is divided into smaller scoped objectives (or cost functions)

X1 ,	 , Xk.

Let Φi, T, Si , and 7-; be the data transformation functions for x., (I for

singletons.) Let 0, be the node combining function.

Then we recursively define the objective at Xi by

Ci (s, o, a, (p) = f3 (w, (0i (.7; (Si (7; (< x i (s, o, a, ) >)))))	 (4.7)

In our current model, we are, of course, not using the full generality described

above. In particular:

• Our combinator	 is usually either + or *.

• The algebraic transformation functions we have considered to date have been

quite simple. They include: linear sum, product, and sum-of-squares.

• While we are experimenting with D, our current data transformation functions

consist of "scales, scale, fuse, algebraically transform, and weigh linearly (that

is, use multiplication if is addition, and powers if 13 is multiplication)" .
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• The scaling function is typically affine. Moreover, the fusion and scaling

functions (although definitely not the weight functions) are usually defined for

each child considering only anticipated types, units, and ranges at that child,

the desired unit at the parent, and the algebraic transformation and combining

function to be used, but not the number of other children nor the anticipated

characteristics of their values.

In our opinion, fusion functions are conceptually the most interesting and

hardest to develop because they address non-commensurability. In the following

sections we will see how they may be influenced by the combining function.

4.5.5 Guidelines for Choosing a Combining Function

Given a set of solutions {a l , a2 , ..., }, objective X with child values x = {x 1 , x 2 , ...,

and weights w = w2, *. . 3 WO) how are these values to be combined? It all depends

on how the user specifies the problem. In this section we shall describe situations

and their corresponding combining forms.

One of the earliest mentionings in the literature is that of Lewis Carroll in

[13]. He suggests various cases which will be presented in this section. In particular

he suggests the following two general cases: 1) If results are to depend on relative

values then use a product structure, with powers for weights if importances are

not identical; 2) If units are of the same type and results are to depend on actual

amounts then use an additive structure.

Before we start, the first problem that arises while combining values is one of

scale—objectives may not be measured on the same scale type. Values need to be

cohered to like scales before any combining can be performed [38]. In the following,

the first five functions were suggested by L. Carroll in [13]. In addition, he states

that "problems may evidently be set with many varying conditions, each requiring

its own method of solution."
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1. Product - When total cost x is to depend solely on relative cost of each value

then use the product form:

C n 	 (4.8)
2.1

2. Product of Powers - If total cost x is to depend on relative cost of weighted

For example, if three objectives are weighted such that X a is preferred twice

as much, and Xb and X, the same, then w a 	rb	 t re =	 yielding:

 1
C = x x (xb)¼ x (xb)¼.

3. Sum - When total cost x is to depend on actual amounts two additional

problems arise. The first, measurements may be of different unit type, even

if they are on the same scale. Second, scaling, measurements may have varying

active domains and need to be scaled. Once these problems are resolved,

moreover if the units are of equal scale, value type, and range, then the additive

form applies:

4. Weighted Sum - If the conditions are as before, but lower level objectives are

weighted with weight w (EL I wi = 1 ), then the form is that of a weighted

sum:

If as before, three objectives are weighted such that Xa is preferred twice as

much, and Xb and X, the same, then then w 	 -12-, rb = r, = 1, yielding:

C =	 + ¼xb  +
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5. Relative/Actual - If the weights are to be such that, given an objective X / , if

all other objectives are equal, and the total cost is to depend on the relative cost

of X/. Moreover, x/ = 0 	 > C-0 and the remaining objectives are to effect the

final cost collectively by their actual amounts. The resulting combining form

is:

To continue our examples with Xa , Xb, and X, , let / = a then C 	 x (xb+xc,)

6. Actual/Relative - If the weights are to be such that, given an objective X / , if

all other objectives are equal, then the total cost is to depend on their collective

relative amount plus that of X / . Moreover, Ei s.t.x j = 0 	 => C =	 . The

resulting combining form is:

Hence, in our examples with Xa, Xb, and X, , let 1 = a then x = x a + (xb x xc).

7. Dominance - We would like one objective to dominate over another. Given

two objectives Xa , Xb it is desired that the cost of Xa be much smaller relative

to Xb's (x„ << Kb).

8. Similarity - We wish two objectives to be satisfied similarly.

where a corresponds to an "error" or "penalty" model.
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9. Lowest - If we are satisfied with having one out of n objectives low and we

are willing to sacrifice the others then the form is:

C MIN(x1,x2)...,xn.)

For example, consider the problem of loading a computers memory bank under

the following condition: there are n empty memory-chip slots on a board that

accepts any chip type; all chips are of identical capacity, except that chips of

different type are incompatible and will not run together. Then, we don't care

how many chips we have or of what type as long as we have approximately 7 -/,

chips of the same type. Thereby, minimizing the number of empty slots.

4.6 Example

In this section an examples for the application of the function synthesis approach is

provided. This example is worked out in detail, in particular the construction of its

objective hierarchy and cost function synthesis is demonstrated.

Example 2 Consider an arbitrary software system, an arbitrary computer network,

a set of feasible allocations mapping the software to hardware, execution schedules,

and the attribute and atomic cost functions in Table 4.3. From the set of proposed

allocations, we would like to choose the one that best matches our desired charac-

teristics. They are: reduced latency (time by which a deadline is missed), good

laxity (net amount of slack or lateness), reasonable deadline satisfaction, and short

sequences of consecutive missed deadlines. Also, the combining of values should be

linear when units are relatively of the same type, product otherwise, and a penalty

incurred for larger values.

Clearly, in this example, all of the non-functional objectives are of the type

"real-time" and they are to be combined as a sum or product of squares. Lower level
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Table 4.3 Attributes and Attribute Cost Functions for the Resource Allocation
Example. ct i - completion time of task i, dl - deadline of task i, b - interval length, 71 -
total number of tasks, k - maximum path length in the task graph. txj - transmission
time of message j. rxj - arrival time of message j. xtj - expected duration of message
j.
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objectives for this objective are: minimal latency, lowest laxity, greatest deadline

satisfaction, minimal number of missed deadlines, and minimal consecutive missed

deadlines. These attributes can be mapped to the following attribute cost functions

respectively: latency, laxity, number of missed deadlines, and consecutive missed

deadlines, which are given in Table 4.3.

Figure 4.9 Objective Formulation for Example 2.

Therefore, in constructing the objective hierarchy and cost function synthesis

for the example, we start with a set of predefined attribute cost functions. Next the

design objectives are identified. Typically, objective decomposition is needed since

the objectives as they are specified might not correspond to attribute cost functions.

Finally, in a bottom-up fashion, the decision maker identifies the corresponding trans-

formation functions for each node, Table 4.4, and constructs the system cost function.

The objective decomposition and the attribute to attribute cost function mapping

for this example is shown in Figure 4.9.

The final cost function is:
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Table 4.4 Cost Function Synthesis Parameters for the Resource Allocation Example.

C 1 (s, 0, a, co) =

+ ..5(c11((c1,c2CI)²)·³³  x ((c3c4CII)²)·³³ 	 m +5(c11c12c13CIV)²))²).3433  x ((c5c6c7(.5(c8c9c10C) 

Due to space constraints, here we omit the intermediate cost functions in the

DAG of Figure 4.9.

It is quite obvious in this small example that the data are not of the same

type nor range. Types vary from time, which can be expressed as an integer, to a

bounded rational and an integer. Ranges within the same data type also vary (see

Table 4.4). This example clearly illustrates that not all cost functions produce similar

data; thereby, justifying the need for data transformation functions.



CHAPTER 5

INTER-COMPLETION TIME

In this chapter, we demonstrate the applicability of concepts originating from the

multi-objective resource allocation problem to other areas. In particular, we extend

the concept of deadline balancing of section 4.1.2 to a new scheduling concept, namely

Inter-Completion-Time Scheduling (ICTS). We describe algorithms and discuss the

implication of scheduling real-time tasks so as to maximize their minimal inter-

completion time.

In ICTS, we try to avoid allocations where the difference in completion-times

between consecutive tasks assigned to the same processor is small. The completion

time of a task is the time at which a task fulfills all its functional requirements

and stops executing. In other words we aim to avoid allocations with bunched up

completion-times on any particular processor. As noted in Section 4.1.2 allocations

having tasks with smaller deadline differences may suffer unwanted side effects, such

as: saturation and idle states, communication bottlenecks, and/or poor handling of

sporadic or aperiodic tasks. These anomalies may be far more evident in allocations

where task inter-completion times are small.

The issue of shared resources, as mentioned in Chapter 1, is of prime

importance in computer systems in general, and parallel and distributed appli-

cations in particular. Given one or several resources that need to be shared by a set

of tasks, scheduling is the process of determining which task gets access to which

resource, and when. Depending upon the characteristics of the application system

under consideration, this process of schedule generation aims to optimize specified

objectives. For hard real-time tasks, for example, the critical objective is that all

tasks complete by their deadlines.

57
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5.1 Model

Our attention in this research is restricted to the non-preemptive scheduling of

independent real-time tasks. In our model, each task Ti is characterized by three

parameters — a release time Ti , an execution requirement e i and a deadline di , with

the interpretation that task T., becomes ready for execution at time T i , and needs to

be executed non-preemptively for e, units of time over the interval [T i , d i). Given a

set T = . T,-,} of n such tasks to be scheduled on m identical processors, the

primary goal is to generate a schedule in which each task completes execution by its

deadline.

Assuming that this primary goal can be met by several different schedules,

secondary objectives may play a role in determining scheduling strategy. For

example, in complex systems, where non-real-time tasks may coexist with real-time

ones, it may be desirable to ensure that the real-time load is "balanced" among the

various PE's. The focus of this research is one such secondary objective -- that of

maximizing minimum inter-completion time. In many applications, it is undesirable

to have many different tasks which have been assigned to the same processor or

processor group all complete within a small interval of time. Several potential

problems arise if this is permitted to happen (recited from Section 4.1.2):

• Processor saturation during the intervals when a large number of tasks are

completing execution.

• Network communication bottlenecks: Certain communication links may

become overloaded during processor saturated intervals.

• Poor handling of sporadic tasks which arrive during saturated intervals.

• Poor load balancing at any particular point in time.

Scheduling to maximize the inter-completion time aims to "spread" the tasks'

executions over time, thereby reducing the occurrence of the saturated and idle
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states and the associated anomalies. When processors are clustered, as in systems

with multiprocessor computers, similar problems occur but on a global scale within

each cluster. Scheduling to maximize the global inter-completion time aims to spread

each clusters' tasks' executions over time.

Inter-completion time. 	 A schedule for T on m processors is completely defined

by specifying, for each Ti E r, the processor p i on which Ti is to execute, and the

start time s, at which it begins execution'. The time instant ci s + ei is called the

completion time of task Ti in this schedule. For a given schedule, the minimum inter-

completion time on pTocessoT p is defined to be the smallest difference between the

completion-times of successive tasks that execute on processor p (if there is only one

task that executes on a processor, then its minimum inter-completion time is defined

to be oo.). The minimum inteT-completion time (MICT) of a schedule is defined

to be the minimum, over all processors p, of the minimum inter-completion time of

processor p. Similarly, for a given schedule, the minimum global inteT-completion

time (MGICT) of a schedule is defined to be the smallest difference between the

completion-times of successive tasks, regardless of the processor they are executed

on. if there is only one task that executes, then its minimum global inter-completion

time is defined to be oo. MICT-scheduling and MGICT-scheduling are the processes

of generating a schedule with the largest possible minimum inter-completion time

and minimum global inter-completion time, respectively.

Example 3 Consider a set of tasks T	 = (0, 4, 5), T2 = (0, 3, 7), T3 = (3, 2, 10),

T4 = (0, 1, 12), T5 = (3, 1, 10), T6	 (9, 1, 12)}. Figure 5.1 shows a schedule for this

system on three processors. The minimum inter-completion time on Processor P1

is 5; since only once task completes on P2, its minimum inter-completion time is

1 Of course, a valid schedule requires that each task executes within its release time and
deadline (i.e., si >= ri and s, + e, <= di), and that no processor is assigned to more than one
task at any given instant in time (i.e., if p,	 pj , and 8, <= 8 j , then 8, + ei< 8j).
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set equal to co; the minimum inter-completion time on processor P3 is between the

completions of tasks T6 and T3, and is equal to 4. The minimum inter-completion

time for the schedule is therefore min(5, oc , 4) = 4, and the minimum global inter-

completion time is min(2, 2, 3, 2, 2), which is 2.

Figure 5.1 Schedule for Task System of Example 3

In traditional load-balancing the aim is to distribute the given set of tasks

as evenly as possible among the available PE's, as in [75] and [78]. We view

MICT/MGICT-scheduling as an extension to this view of load balancing, in that

we are attempting to "balance" the load temporally as well as spatially (i.e., over

the PE's). This perspective on load-balancing is particularly useful for handling of

sporadic non-real-time tasks and in situations where some additional work needs

to be done whenever a task completes execution, and we therefore wish to spread

out these events as much as possible. It should be noted that these secondary jobs

may involve tasks such as refreshing a display or updating system logs, and do not

have hard deadlines associated with them. It is nevertheless desirable that they be

completed within a reasonable interval of time.
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5.2 Overview

in [5] we formalized the idea of spreading out over time the instants at which different

tasks complete execution into the concept of scheduling to maximize minimum inter-

completion time — MICT-scheduling. We focused on maximizing the minimum inter-

completion time on each processoT. We showed that the MICT-scheduling problem

is, in general, NP-hard, and studied a wide variety of special cases of task systems.

For a large number of these special cases, we presented very efficient scheduling

algorithms; others we proved NP-hard. These results are summarized in Table 5.1.

In addition, we have identified a very useful relationship between MICT-scheduling

and the well-understood problem of scheduling to meet deadlines. In this thesis we

review these special cases and extend the work to maximizing the minimum global

inter-completion time.

Each task may be considered to enjoy three "degrees of freedom" — one for each

of its parameters: T, e and d. In Section 5.3 (Theorems 4, 5, and 6), we show that we

are unlikely to be able to obtain efficient MICT- & MGICT-scheduling algorithms

that can schedule arbitrary sets of tasks, even on a single processor. We therefore

investigate the issue of designing optimal MICT- & MGICT-scheduling algorithms

when one or more of the degrees of freedom are curtailed. In Section 5.5, we consider

sets of tasks in which all tasks are identical – i.e., each task has zero degrees of

freedom. In Section 5.6, we focus on task sets in which each task has one degree of

freedom. That is, we separately consider the cases where all tasks (i) have the same

release time and execution requirement, but may have different deadlines, (ii) have

the same execution requirement and deadline, but may have different release times,

and (iii) have the same release time and deadline, but may have different execution

requirements. In Section 5.7, we consider task sets where each task has two degrees

of freedom — once again, we have three different possibilities, which are individually

analyzed. For each of the cases listed above, we consider both uniprocessor and multi-
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Table 5.1 Summary of Results in This Chapter (r- release time; e - execution
requirement; d - deadline; n	 number of tasks; d -̀4-̀  the largest deadline; the
smallest release time is assumed to be 0)

processor MICT-scheduling and multiprocessor MGICT-scheduling. Our results are

summarized in Table 5.1. Finally, in Section 6.11 we present simulation results.

5.3 Inter-Completion Time Scheduling is NP-hard

In this section, we prove that the general problem of obtaining a schedule with large

minimum inter-completion time for an arbitrary task system is intractable. We start

with some definitions.

A task system is specified by an ordered pair

(1" = Un1=1{Ti = 	 di)), m),
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and represents a set of n tasks T1 , T², 	 , Tn , to be scheduled on m identical

processors, where task T is released at time T, has a deadline of d i , and an

execution requirement of e i .

mict(‹r, in)) = A indicates that there is a schedule for task system ‹r, m)

with a minimum inter-completion time at least A. Similarly, mgict(‹r, m)) = A

indicates that there is a schedule for task system ‹r, in) with a minimum global inter-

completion time at least A. Thus, asserting mict(‹r, m)) = 0 and mgict(‹r,77›)  = 0

is equivalent to stating that r is feasible on in processors.

Lemma 1 Given an arbitrary set of tasks r and an arbitrary integer A > 0, the

problem of determining whether mict(‹r, , 1)) = A is NP-complete in the strong sense.

Proof: Transformation from Sequencing with Telease times and deadlines [25, page

236]. M

As a direct consequence of Lemma 1, we obtain the following theorem:

Theorem 4 Given an arbitrary set of tasks r , it is NP-hard to schedule r on one

processor such that the minimum inter-completion time is maximized.

•

Theorems 5 and 6 immediately follow.

Theorem 5 Given an arbitrary set of tasks r and in processors it is NP-hard to

schedule r on the m processors such that the minimum inter-completion time is

maximized.

Theorem 6 Given an arbitrary set of tasks r and m processors it is NP-hard to

schedule r on the in processors such that the minimum global inter-completion time

is maximized.
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•

5.4 Reducing MICT-Scheduling to Feasibility

While the issue of non-preemptive scheduling to maximize minimum inter-completion

time has not been widely studied, there does exist a vast amount of literature devoted

to feasibility analysis for non-preemptive scheduling. These include intractability

results [25, Section A5], approximation algorithms [28, 27, 34], optimal algorithms

for special cases [26, 68], etc. In this section, we attempt to exploit this wide body of

research by establishing a relationship between MICT-scheduling and general non-

preemptive scheduling.

The following theorem reduces the problem of determining schedules with

specified minimum inter-completion times to the problem of determining feasibility

of sets of tasks.

Example 4 Consider a set of tasks T	 {T1 = (0,3,6),T²	 (0,1,7),T3

(4, 6, 12)}. We wish to determine whether T can be scheduled on one processor

such that the minimum inter-completion time is at least five (A = 5). Since

Si = 2, 5² = 4, 63 = 0, Theorem 7 claims that this is equivalent to determining

whether T (l- , 5) = {1'3 = (-2, 5, 6), T = (-4, 5, 7), T = (4, 6, 12)1 can be scheduled

on one processor:

Proof of Theorem 7: In this proof, let T ' denote the task set r(r, A).

LHS	 RHS. mict(‹r, m)) = A	 ‹7-`, m) is feasible:
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Figure 5.2 Schedule for r(r, 5), and Schedule for T with MICT 5

Suppose first that mict(‹r, m)) = A, and let So be an m-processor schedule for r

with a minimum inter-completion time >= A. We describe how to obtain a schedule

S i for r` on m processors.

For each i, 1 < i < n, let [t, t s + e i ) denote the interval during which T., was

executed in schedule S0. is executed on the same processor in S i ; its execution

interval is determined as follows:

• If δi = 0, then the execution requirements of TI and 7-; are the same, and S 1

schedules TI over the interval [t 5 , i s + ei ).

• If (5, > 0, observe that (i) the processor on which Ti is executed in So is idle

over the interval [ts — 6,, t s ) (this follows from the fact that the minimum inter-

completion time of So is at least A), and (ii) since i s >= ri, it must be the

case that is —6j > r, — 6i . Schedule Si therefore executes Ti' over the interval

[t 8 —δi , t, + e 2 ).

LHS RHS. ‹r',m) is feasible mict(‹r,m)) = A:

Suppose now that r ` is feasible on m processors, and let S2 be an m-processor schedule

for r i . We describe below how to obtain a schedule S3 for T on m processors, which

has a minimum inter-completion time of (at least) A.

For each i, 1 < i < n, let [t 8 , i s + e i + δi) denote the interval during which TI

is scheduled in S². Then Ti is executed on the same processor in S3; its execution

interval is determined as follows:
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• If Si 0, then the execution requirements of I and T, are the same, and S3

schedules T over the interval [t 5 , i s + e i ) as well. Since e i >= A, the separation

between the completion time of Ti and the task (if any) that was executed prior

to it on the same processor is at least A.

• If Si > 0, observe that t, > r — S i . S3 assigns the processor to Ti over the

interval [t s +Si , i s + e i + Si ). Observe that (i) this interval is of size en (ii) since

i s > T2 — Si , this interval starts no earlier than r i , and (iii) since e + S = A,

the separation between the completion time of T., and the task (if any) that

was executed prior to it on the same processor is exactly A.

•

Remark 1 The proof of Theorem 7 is constructive — given a schedule for r(r, A)

on m processors, we can use the reduction defined in Case 2 of the proof to construct

a schedule for r on m processors with a minimum inter-completion time >= A.

Furthermore, such a reduction can be performed in 0(n) time.

5.5 Task Systems with no Degrees of Freedom

We start out by considering the very simple problem of scheduling a set of n identical

tasks r = {Ti, T, } , where Ti = (0, E, D), on m processors. First, we address the

problem in MICT-scheduling then MGICT-scheduling.

5.5.1 MICT-Scheduling

Consider any schedule for ‹r, m). Since there are n tasks to be scheduled on m

processors, some processor will be assigned at least [n/m] tasks. The first task on

this processor completes at (or after) time E; the interval [E, D) is to be partitioned

into at least ([n/m]-1) inter-completion times. Therefore, the minimum inter-

completion time, obtained by partitioning [E, D) as evenly as possible subject to



Figure 5.3 Algorithm for MICT-scheduling a Set of Identical Tasks

integer boundaries, is

An algorithm for generating a schedule with a minimum inter-completion time of

A max is given in Figure 5.3; since its correctness is quite obvious, a formal proof of

correctness is omitted. Observe that its run-time complexity is 0(n), where n is the

number of tasks.

5.5.2 MGICT-Scheduling

Consider any schedule for ‹r , m). Since there are n tasks to be scheduled on m

processors, some processor will be assigned at least [n/m] tasks. For this system

to be feasible the sum of the execution times of all tasks on this processor must be

< D.

The first task completes at (or after) time E; the interval [E, D) is to be

partitioned into at least (n — 1) inter-completion times. Therefore, if A >= 	 the

67
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minimum inter-completion time, obtained by partitioning [E, D) as evenly as possible

subject to integer boundaries, is

d, D — E
Amax n — 1 -I

Otherwise, the minimum inter-completion time is

do, D — WI • E ,
maxdef=

m — 1

This is because when A is less than k , given any two tasks, kth and k + ?nth,

with start times sk and sk+, = sk A . 77"1, and finish times fk = sk + E and fk+m-

This implies that sk +,, < ick which cannot be since no processor can be assigned to

more than one task at any given instant.

An algorithm for generating a schedule with a minimum global inter-completion

time of A max is given in Figure 5.4. Observe that its run-time complexity is 0(n),

where n is the number of tasks.

Lemma 2 Let A be the largest number such that mgict(‹r , m)) = A. Algorithm

MGICT-SCHEDULING generates a schedule for (T, 711) with a minimum global inter-

completion time equal to A.

Proof:

Consider any schedule for r , m) that schedules all tasks. Recall that no

processor can be assigned to more than one task at any given instant (i.e., s, + E <

s2+ ,7„). Hence, there are three cases for the value of the inter-completion with respect

First, if A > E or	 = E. observe that algorithm MGICT-scHEDULING
- 771 	 n — 	 ?Ti

generates a schedule with a minimum global inter-completion time of L=Ei i. Since

the first completion time is > E, and the k'th is < (k — 1) . A E, it follows that
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Figure 5.4 Algorithm for MGICT-SCHEDULING a Set of Identical Tasks
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the minimum inter-completion time on this schedule is no smaller than [((k — 1) .

A E — E)/(k — 1) = A.

When A <	 there will be at least one processor with [n/m] tasks assigned to it.

Therefore, the minimum inter-completion time, obtained by partitioning D — 	 .E

as evenly as possible subject to integer boundaries, is

5.6 Task Systems with One Degree of Freedom

The case when the task system is allowed one degree of freedom is more interesting,

and not quite as trivial as in the previous section. The results of this section are

summarized in rows 5-7 of Table 5.1: observe that 7 of the 9 cases here are efficiently

solvable while the eighth and ninth, perhaps surprisingly, are intractable. We also

point out here that the 0(n log 7/) complexity of each of the tractable problems is

due to the complexity of sorting n numbers; if the tasks are available in sorted order

according to their non-fixed parameter, each of these problems can be solved in 0(n)

time.

5.6.1 Equal Release Times and Execution Requirements

We first consider task systems where all tasks (i) are released at the same instant,

and (ii) have the same execution requirement. Without loss of generality, we assume

that the common release time is 0, and let E denote the execution time of each task.

The deadlines of different tasks may be different. (Since we are concerned with the

off-line versions of the problem, in which all task parameters are known beforehand,

the results here, by symmetry, apply also to the case when individual release times

may differ, but all execution times are equal and all tasks have the same deadline.)
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5.6.1.1 MICT-Scheduling with Equal Release Time and Execution

Requirement:

One processor. 	 First, we consider the case when set of tasks r = {T1, T2, 	 Tn},

with Ti = (0, E, d,), are to be scheduled on a single processor. Assume that the tasks

are sorted by deadline (i.e., d i <= d, ±1 for all t) — given a set of n tasks, this can

be achieved in 0(n log n) time. Algorithm SCHEDULEPROC (Figure 5.5) generates

a schedule for y with the maximum possible minimum inter-completion time:

Figure 5.5 Algorithm SCHEDULEPROC

Lemma 3 Let A be the largest number such that mict(‹r, 1)) > A. Algorithm

SCHEDULEPROC generates a schedule for r on one processor with a minimum inter-

completion time equal to A.

Proof: Let d1, d2, dn denote the deadlines of the tasks, arranged in order of

non-decreasing deadline. Observe first that Algorithm SCHEDULEPROC generates a

schedule with a minimum inter-completion time equal to minnℓ=2{ L(dt — E)/(e— 1)j }

Consider now any schedule that schedules all the tasks. Since the first

completion time is > E, and the k'th is <= dk, it follows that the minimum inter-

completion time on this schedule is no smaller than L(dk — E)/(k — 1)] for each

integer k, 2 <= k <= n. •



72

Observe again that the run-time complexity of Algorithm SCHEDULEPROCS is

0(n) if the tasks are already sorted by deadline. If the task deadlines are not already

sorted, they can be sorted in 0(n log n) time.

Multiple processors. We now consider the case when r = {Ti = (0, E, di)}

are to be scheduled on m processors, m > 1. Given such a system, Algorithm

MULTIPROC (Figure 5.6) generates a schedule for r with the maximum possible

minimum inter-completion time.

Lemma 4 Let A be the largest number such that mict(‹r, m)) > A. Algorithm

MULTIPROC generates a schedule for ‹r, m) with a minimum inter-completion time

equal to A.

Before proving this Lemma, we need some auxiliary results. Let the deadlines of the

n tasks, arranged in non-decreasing order, be di, d2, . . . , dn.

Claim 4.1 Each k, m < k < n, imposes the restriction that

Proof: Observe that there are k tasks with deadline < dk. By the pigeonhole

principle, there is one processor which is assigned at least [On] of these tasks.

Since the first completion time on this processor is >= E, and the completion time

for each task with deadline no more than dk is < dk , it follows that the minimum

inter-completion time is no more than L(dk — E)/( [k/m] — 1)]. •

We are now ready to prove Lemma 4.

Proof of Lemma 4: Suppose that Algorithm MULTIPROC generates a schedule

with minimum inter-completion time A min . Suppose that this minimum inter-

completion time occurs on processor j, and is due to the assignment of the i'th-largest
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1. Sort the tasks by deadline.

2. Assign the tasks, considered in deadline order, to the processors in a round-
robin fashion. That is, let 	 , 	 TT, denote the tasks sorted by deadline.
Assign the tasks to the m processors, as follows:

j 	 1
for i	 1 to n do

assign Ti to the j'th processor
if (j < m) then j +— j + 1 else j 	 1

3. Schedule each processor individually, by Algorithm SCHEDULEPROC.

Figure 5.6 Algorithm MULTIPROC

where ni,j denotes the number of tasks with deadline < di that have been assigned

to processor j in Step 2 of Algorithm MULTIPROC. Since the tasks are assigned to

the processors in round-robin order, it is clear that exactly [i/m] of the first i tasks

are assigned to processor j; i.e., n i ,j = [i/ml. Therefore,

By setting k in Equation 5.1 to i, it follows that no schedule can obtain a larger

minimum inter-completion time. MI

Run-time complexity. 	 Step 1 takes 0(n log n) time. Step 2 takes 0(n)

time. Let ni denote the number of tasks allocated to processor j, 1 < j < m,

in Step 2. Step 3 requires calls to Algorithm SCHEDULEPROC on sets of tasks

that are already sorted by deadline. The total complexity of this step is therefore

'It can be shown that j is necessarily 1, since the ith deadline on processor 1 imposes a
tighter constraint on completion of the first i tasks, for each i. However, this fact does not
concern us here.
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ETIL I 0 (nj ) , which is equal to 0(n). The dominant step is therefore Step 1, and the

total complexity is 0(n log n).

5.6.1.2 MGICT-Scheduling with Equal Release Time and Execution

Requirement: We now consider the case when r = U11-1 = (0, E, d i )} are to

be MGICT-scheduled on m processors, in > 1. Given such a system, Algorithm

MGICTEQUALEXDL (Figure 5.7) generates a schedule for r with the maximum

possible minimum global inter-completion time.

Lemma 5 Let A be the largest number such that mgict(‹r, m)) >= A. Algorithm

MGICTEQUALEXDL generates a schedule for ‹r , m) with a minimum global inter-

completion time equal to A.

Proof: Similar to the proof of Lemma 2. •

Run-time complexity. 	 Step 1 takes 0(n log n) time. Step 2 takes 0(n) time.

The dominant step is therefore Step 1, and the total complexity is 0(n log n).

5.6.2 Equal Release Times and Deadlines

When all the release times and execution requirements are equal (or, by symmetry,

when all the deadlines and execution requirements are equal), we have seen that

the problem of scheduling to maximize minimum inter-completion can be very

efficiently solved on any number of processors. We will now see that, when execution

requirements may vary while release times and deadlines are fixed, the situation is

not quite the same.

Theorem 8 Let r 	 { = (0, e i , D)} be a task system. The problem of MICT-

scheduling r on M processors is NP-hard, for arbitrary m.
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Figure 5.7 Algorithm MGICTEQUALEXDL for MGICT-scheduling Tasks with
Identical Deadlines and Execution Requirement
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Proof: We prove this theorem by showing that there is a polynomial transformation

from the NP-hard problem of multiprocessor scheduling to MICT-scheduling with

equal release times and deadlines.

The multiprocessor scheduling problem is defined as follows [25, page 238]:

INSTANCE: Set T of tasks, number 777, E Z+ of processors, length
l(t) E Z.+ for each t E T, and a deadline D C Z.

QUESTION: Is there an m-processor schedule for T that meets the
overall deadline D, i.e., a function u : T Z(1" such that, for all u > 0,
the number of tasks t E T for which σ(t) < u < σ(t) + e(t) is no more
than m and such that, for all t E T, σ(t) + 4t) < D?

Given an arbitrary instance of the multiprocessor scheduling problem, we

obtain an instance of the problem of MICT-scheduling with equal release times

and deadlines, by the following mechanism: for each task t in the multiprocessor

scheduling problem instance, we define an MICT task with release-time 0, deadline

D, and execution requirement l(t). It is relatively straightforward to observe that

this system of MICT tasks can be scheduled with an inter-completion time > 0 if

and only if the multiprocessor scheduling problem instance has a solution. LI

Theorem 9 immediately follows.

} be a task system. The problem of

MGICT-scheduling r on m processors is NP-hard, for arbitrary m.

However, the situation is not quite as bleak on a single processor. Assume that

the tasks are sorted by execution requirement (i.e., e i < e i+1 for all i) — given a set

of n tasks, this can be achieved in 0(n log n) time. Observe that an MICT-schedule

would have a task with smallest execution requirement (without loss of generality, Ti)

scheduled over the interval [0, e 1 ), and that this would leave the interval [e i , D) to be

partitioned into n — 1 inter-completion intervals. We want [e l , D) to be partitioned

as evenly as possible, subject to the constraint that each e i , i > 1, has to "fit" within
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Figure 5.8 Algorithm EQUALEXUNIPROC

an interval. Algorithm EQUALEXUNIPROC (Figure 5.8) generates such a schedule,

in which the order of task-execution is T, T2,.. , Tn . (The first for-loop accounts for

the possibility that some of the later tasks have very large execution requirements,

thus forcing the remaining tasks closer together.)

Example 5 Consider a set r of 5 tasks, with r i = 0 for all tasks, d, = 21 for all

tasks (i.e., D 21)„ and e l = 1, e ² = 2, e3 = 2, e 4 = 5, and e 5 = 8. We trace below

the execution of Algorithm EQUALEXUNIPROC on r: for each iteration of the first

for loop, we indicate how the value of delmin gets updated. (The figure shows that

delmin = 5 or 4 are unacceptable, illustrating the need to loop through l = 5, 4, 3, 2

to determine the optimal delmin.)
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Theorem 10 Let A be the largest number such that mict(‹r, 1)) > A. Algorithm

EQUALLED NIP ROC generates a schedule for (1-, 1) with a minimum inter-completion

time equal to A.

Proof: Similar to the proof of Lemma 3. •

If the tasks are already sorted by execution requirement, the run-time

complexity of Algorithm EQUALEXUNIPROC is 0 (n) . Since sorting can be done in

0 (n log n) time, the total complexity of MICT-scheduling a set of tasks with equal

release times and deadlines on one processor is 0 (n log n).

5.7 Task Systems with Two Degrees of Freedom

In Sections 5.5 and 5.6, we considered task systems with zero and one degrees

of freedom. All of these were relatively straightforward to analyze and, with the
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exception of Theorems 8 and 9, could be solved from first principles. Task systems

with two degrees of freedom — the subject of this section — are a lot more

challenging. For the uniprocessor problems, we make use of the reduction defined in

Section 5.4 to transform MICT-scheduling to (general) non-preemptive scheduling,

and then design efficient solutions to the resulting scheduling problems. Each of

the three cases (Sections 5.7.1.1 — 5.7.1.3) require a fresh approach that differs

significantly from the ones employed in the other two. Four of the six multiprocessor

problems turn out to be intractable; the complexity of the others remains unresolved.

5.7.1 One Processor

Let r Uni=1 {T, = (Ti, ei, di ) } be a set of tasks to be scheduled on a single processor.

Let d f maxni=1{di}, and assume without loss of generality that min ni=1{r,} = 0.

Let A max denote the largest integer A for which mict(‹r, 1)) >= A. Observe that

[d/(n — 1)] is a (loose) upper bound on the value of Δmax . The aim in

MICT-scheduling is to generate a schedule with a minimum inter-completion time equal to

Amax•

Suppose now that we had an algorithm that, given r and a positive integer A,

determines whether r can be scheduled with a minimum inter-completion time of at

least A on a single processor (i.e., whether mict(‹r, 1)) > A); if so, it generates a

schedule with minimum inter-completion time at least A. Then an MICT-schedule

for r — i.e., a schedule with minimum inter-completion time equal to A max — can

be obtained by making O(log[dˆ/(n — 1)_1) calls to this algorithm, by essentially

performing "binary search" between the values 0 and Ili / (n — 1) . Since O(log [ci/(n-

1) j) = O(logdˆ ), the complexity of MICT-scheduling r is therefore O(logdˆ) times the
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complexity of generating a schedule with a specified minimum inter-completion time

A, if it exists³ .

In the remainder of Section 5.7.1, we consider separately the three cases when r

is restricted in one of its degrees of freedom — fixed deadlines (Section 5.7.1.1), fixed

release times (Section 5.7.1.2), and fixed execution requirements (Section 5.7.1.3).

For each, we make use of the reduction defined in Theorem 7 to design an efficient

algorithm which accepts as input a constrained task system r and a positive integer

A and, if mict(‹τ, 1)) > A, generates a schedule for T with minimum inter-completion

time of at least A.

5.7.1.1 Fixed Deadlines: When all the deadlines are equal, we may make use of

Theorem 7 to reduce MICT-scheduling on a single processor to a tractable problem

in (regular) scheduling.

Let T = U 712_ { (T, = (r,, e i , D)} be a task system in which all tasks have the same

deadline D, and let A be a given positive integer. We apply the reduction r defined in

Theorem 7 to T, yielding the taskset r A) def= = (r, — 8,, e +6„ D)}, where

f max(0, A — e i ). By Theorem 7, r has a schedule with minimum inter-completion

time A if and only if r(r, A) is feasible.

Since each task in r(T, A) has the same deadline D, it is trivial to determine

whether r(r, A) is feasible, and to generate a schedule if the answer is yes: simply

schedule the tasks according to earliest release times (ties broken arbitrarily), and

report success if they all complete by time D, and failure otherwise. The run-time

complexity is O(n log n), with the dominant cost being the cost of sorting the tasks

by order of non-decreasing release times. The overall complexity of determining

is therefore 0(n log n log dˆ).

³Observe that log dˆ is polynomial in the size of the binary representation of T; MICT-
scheduling is therefore a polynomial-time operation, provided the problem of generating a
schedule with specified minimum inter-completion time is in PTIME.
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5.7.1.2 Fixed Release Times: When all the release times are equal, a technique

similar to the one used in Section 5.7.1.1 may be used.

Let r 	 Uni=1 { (Ti = (0, ei, (4)1 be a task system in which all tasks have the

same release time (without loss of generality, we have assumed that this release time

is 0). Let A be a given positive integer. We once again apply the reduction r defined

in Theorem 7 to r, yielding the taskset r(r, A) Uni=1{(Tt1 = ( —8„ e, + 6,, d)}, where

max(0, A —e,). By Theorem 7, r has a schedule with minimum inter-completion

time A if and only if r(τ, A) is feasible.

Observe that each task in r(τ, A) may have a different release time, execution

requirement, and deadline. Scheduling such systems is, in general, NP-hard in the

strong sense (Sequencing with release times and deadlines [25, page 236]). Fortu-

nately, r(T, A) is not quite general — notice that the interval between the release

time —Si , and the instant zero, is no larger than the execution requirement e, +

for every task Ti . We may therefore conclude that at most one task executes before

time-instant zero in any schedule for r(τ, A). In the pseudocode below, each iteration

of the for loop "guesses" a different candidate Tl for this first task. The rest of the

tasks are all available by the time Tl completes execution, and may therefore be

executed in deadline order. Since some task Tj must execute first in a schedule for

T(, A), this algorithm will discover the schedule during the j'th iteration.

1 Assume that the tasks are available in order of non-decreasing deadlines

2 for e 4— 1 to n do{

/*Task Tl  is executed first *7

3	 execute task Tl over the interval [—St, e t )

4 	 execute the remaining tasks in EDF order

5	 if all tasks meet their deadlines return "success"

}
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The run-time complexity may be computed as follows: It costs O(n log n) to

sort the tasks by deadline (line 1). Each iteration of the for loop (lines 2-5) takes

O(n) time, and there could be up to n iterations, for a total complexity of 0(n log n+

n² ), which equals 0(72 2 ). The overall complexity of determining Amax is therefore

0 (n² log dˆ).

5.7.1.3 Equal Execution Requirements: Let r = U1{(1; = (ri, E, be

a task system in which all tasks have the same execution requirement E, which we

wish to schedule on a single processor. Let A be a given positive integer. We make

use of the following result from [68] in determining whether mict(‹τ, 1)) >= A:

Result 1 (Simons (1978)) Let τ be a set of n tasks, in which all tasks have

the same execution requirement. Simons presented an O(n² log n) algorithm to

determine if r can be non-preemptively scheduled on a single processor, and to

generate such a schedule if it exists. We will refer to this algorithm as Simons'

Algorithm.

We apply the reduction r defined in Theorem 7 to r, yielding the taskset

r(τ, A) f Uni=1 {(T: = (r, — E + 6, d)}, where 6 if max(0, A — E). By Theorem 7,

r has a schedule with minimum inter-completion time A if and only if r(r, A) is

feasible.

The crucial observation is that the execution requirements of all tasks in T (r A)

are equal. We can therefore use Simons' Algorithm to determine in 0(n2 log n) time

if r(r, A) is feasible, and to generate a schedule if so. The total complexity of

determining A max is therefore O(n ² log n log j).
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5.7.2 Multiple Processors

While all the problems studied above are seen to have efficient solutions, four of

the corresponding problems on multiple processors turn out to be intractable. The

complexity of the fifth and sixth remain open.

Theorem 11 Let r = U 722_ 1 	= (ri, e,, D)}. The problem of MICT-scheduling T

on m processors in NP-hard, for arbitrary in.

Proof: Directly follows from Theorem 8. •

Theorem 12 Let r = Uni=1 T, = (r i , e i , D) 1. The problem of MGICT-scheduling 'T

on m processors in NP-hard, for arbitrary m.

Proof: Directly follows from Theorem 9. •

Theorem 13 Let T = Uni=1 {Ti = (0, e i , di )}. The problem of MICT-scheduling T on

m processors in NP-hard, for arbitrary m.

Proof: Directly follows from Theorem 8. •

Theorem 14 Let T 4_1g, = (0, ei, di)). The problem of MGICT-scheduling T

on M processors in NP-hard, for arbitrary m.

Proof: Directly follows from Theorem 9. •



CHAPTER 6

EXPERIMENTAL VALIDATION

In previous chapters, an approach for cost function synthesis was presented. In

addition a new scheduling concept, namely Inter-Completion-Time Scheduling

(/CTS) was introduced. This chapter features the evaluation of these techniques.

First, the cost function synthesis approach is applied to a simple model of

a stock exchange system. The objective decomposition is derived as well as three

different cost function syntheses for this system. These cost functions are applied to

various hardware and software scenarios. The behavior and the performance of the

functions are evaluated by exhaustively calculating the function values and by using

the cost functions as a fitness function for a Genetic Algorithm. Finally, the effects

of the inter-completion time Scheduling strategy on Inter-Processor Communication

is studied and results presented.

In the following sections, the application and experiments are explained in

detail and comments on the conclusions drawn from them.

6.1 Application Description

Our application example models the transaction processing system for a stock

brokerage firm. As the stock market changes continuously, trading stock is obviously

a real-time process; orders have to be fulfilled within a certain amount of time.

The brokerage firm operates a computer system consisting of a number of

computers interconnected by a LAN. In this system each broker has its own computer

that acts as his or her front-end. Once a transaction has been started through the

front-end, it can be executed on any of the firm's computers.

A transaction starts when a customer of the firm places an order to sell or buy

shares. This order is entered into the computer system of the brokerage firm by a

84
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broker, where the order is pre-processed. After that the computer system sends the

order to the appropriate stock exchange and waits for the confirmation. Once this

confirmation arrives, the order is post-processed and the customer is notified.

The above described process encompasses a multitude of tasks, which constitute

a mix of real-time and non real-time activities. Real-time activities are for instance

the interaction with the stock exchange system and the transfer of funds from and

to the customer's account. Examples for non real-time activities are mailing confir-

mations and logging.

6.2 Model

In our model, a transaction is defined as a self-contained chain of communication and

computation actions that is initiated by a stimulus and ends with a response. This

chain is represented by an independent directed acyclic graph (DAG). Internally, a

transaction consists of a set of tasks.

Each task T, is characterized by three parameters — a release time r„ an

execution requirement ei,j (j = 1,...,7n), a deadline d i , and communication vector

c, = (c 1 , c² ,.. , all) - with the interpretation that task Ti becomes ready for

execution at time T , and needs to be executed for e i units of time over the interval

[ri , di ). In addition, tasks are executed on processors. Firms may have multiple

interconnected processors.

6.3 Objectives

The system should exhibit high degree of performance and real-time property charac-

teristics. It should finish all transactions as quickly as possible and avoid commu-

nication delays. It should try to complete all transactions by their deadlines. If

deadlines are missed, the sooner the transaction finishes the better. In addition, it



86

is better for one transaction to have many delays than for all to be delayed even a

little.

6.4 Objective Decomposition

To ensure the logical flow of the hierarchy, the objectives described above are

decomposed according to Gibson's guidelines as outlined in Section 4.3.

From the objective description in section 6.3 and the given attributes defined

in Table 4.3, we start with the highest level objective, "Exhibit high degree of

performance and real-time property characteristics." Obviously, this objective

decomposes into performance and real-time. Real-time is to be described by

deadline satisfaction and tardiness. Continuing this way, we obtain the following

decomposition:

Performance

finish all transactions as quickly as possible

-minimize completion time

avoid communication delays

-minimize communication delays.

Real-time

try to complete the transactions by their deadlines.

it is better for one transaction to be

delayed a long time than for many to be delayed.

-minimize consecutive missed deadlines within a transaction

-minimize consecutive missed deadlines on a processor

if deadlines are missed the sooner they finish the better.

avoid missing deadlines

-minimize missed deadlines
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quickly finish late transactions

-minimize latency

Now we are ready to match leaf nodes with appropriate attribute cost functions.

Figure 6.1 gives the final qualitative decomposition and corresponding quantifiable

attributes.

Figure 6.1 Application Decomposition

6.5 Cost Function Synthesis

Now that the decomposition with corresponding attribute has been determined, the

system cost function is constructed in a bottom-up fashion. The resulting synthesis

is shown in Figure 6.2.

From missed deadlines (I) and total latency (IV) we can obtain average latency

(4). The lower the average latency the less amount of time tasks are delayed on

average, for those tasks that do get delayed. This is sufficient for objective "if

deadliness are missed the sooner they finish the better." In combining, first missed

deadlines must be coerced down to an interval scale. Furthermore, since we are using

a product structure no fusion is required, but we must make certain that we do not
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divide by zero. Therefore, the value of 1 is added to the actual value of missed

deadlines. Note that missed deadlines is 0 if and only if the latency is 0. Hence

adding 1 to missed deadlines does not change the result in this case, i.e., the lowest

possible value is still 0. The combination yields an interval type scale.

c) Cost Function Synthesis

Figure 6.2 Brokerage Cost Function Synthesis

The deadline, or rather, the consecutive missed deadlines (3) component of

the decomposition can be obtained from attribute cost functions consecutive missed

deadline(II) and consecutive missed deadline on a processor (III). Both of these

attributes are of the same scale type and very similar unit type. Therefore, we

may use the additive structure without scale, scaling, or fusion transformations. The

weights are chosen such that they favor consecutive missed deadline on a processor,

since there is less of a preference on consecutive missed deadlines. Thus, consecutive

missed deadline satisfaction, is sufficient for quantifying objective "it is better for

one transaction to be delayed a long time than for many to be delayed even a little".

These two cost functions, consecutive missed deadline satisfaction (3) and

average latency (4), must now be combined to quantify real-time (1) node in the

decomposition. First, consecutive missed deadline satisfaction must be coerced to

an interval scale. Again, we are using a product structure. Therefore, no fusion is

required, but we must make certain that we do not multiply with zero. Hence, one
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is added to both child values. This combination yields average latency consecutive

missed deadline.

Turning to the performance side of the decomposition, node (2) can be obtained

from attribute cost functions completion time and communication delay. Both are

of interval scale type. Since we are using the product form once more, few transfor-

mations are required except that we must avoid zero values again. The weights are

made such that they favor completion time over communication delays, since there

is less emphasis on communication delay in the objectives description.

Finally, the system cost function, node (0), can be synthesized. It is quantified

from the lower level cost functions average latency consecutive missed deadline and

delay completion time. Both functions produce non-zero values of like scales, but

different unit type. Since we are using the product structure, most transformations

will not be required. In addition, since there is no preference between the two cost

functions, both will be weighted evenly.

The resulting synthesis is shown in Figure 6.2 and node details in Table 6.1

synthesis 1. For the same decomposition, two additional syntheses (2 & 3) were

constructed by modifying the combining function at one of the internal nodes. This

was done to test the combining decision made. In synthesis 2, the combining

function at node 2 was changed to an additive structure. While, in synthesis 3,

node 3's combining function was modified to a product structure. All node details

are described in Table 6.1.

6.6 Experiment Description

A basic requirement on any cost function for resource allocation is that it be capable

of yielding good results in a multitude of environments. Hence we set up a series of

experiments with varying numbers of processors and tasks to be allocated on those

processors. Specifically, we used the following hardware/software systems:



Table 6.1 Brokerage Cost Function Parameters.
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Scenario No. of Proc. No. of Tasks
1	 2	 6
2	 2	 10
3	 2	 18
4 3 12

A special workload generator was used to create the scenarios 2 and 3. Scenarios

1 and 4, on the other hand, were designed manually such that they have a unique

optimal solution in the unrestricted case. Unrestricted here means that no constraint

checking was performed prior to the cost function evaluation. In other words, there is

one optimal solution in the entire search space S. This solution need not necessarily be

part of the constraint satisfying space F as shown in Figure 1.1. The optimal solution

could of course be ruled out by the constraint checker. As mentioned, however, the

experiments were focused on the unrestricted case, i.e., without constraint checking.

The functions were investigated with respect to their overall behavior as well

as their performance in an optimization algorithm. Exhaustive evaluation of the cost

functions for the entire input space exhibited their general behavior. We looked into

aspects like monotony and value range. In a second step the functions were used

as fitness functions in a resource allocation algorithm based on Genetic Algorithms

(GA). In this case the convergence of the GA is of particular interest.

6.6.1 Exhaustive Evaluation

When evaluating the system cost function, questions like, "how many unique function

values exist?", "is the function monotonic?", or "which size has the value range

covered by the function values?" arise. These questions can only be answered, if

the behavior of the cost function for all possible input spaces is known. Hence, we

applied exhaustive evaluation, i.e., we created all input data sets and handed them

to the cost functions for evaluation.

This provided us with the system cost function value for each input data set.

A comparison of the three cost functions derived from the different syntheses was
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undertaken with respect to the function values for all input data and the sorted

function values. Furthermore, the number of unique function values compared to

the size of the input data space was calculated.

We also used the exhaustive evaluation to obtain the best possible function

value. This knowledge facilitates the assessment of the performance of the GA-based,

stochastic resource allocator (see below).

6.6.2 GA-Based Resource Allocator

Besides the "static", exhaustive evaluation, the functions were applied in an

optimization environment. More specifically they were integrated into a stochastic

resource allocator. The stochastic search of the allocator is based on Genetic

Algorithms (GA), a method used to solve NP-hard optimization problems in many

fields. GAs constitute a so-called "uninformed" search strategy. This term refers

to the fact that the algorithm itself does not have any knowledge on the problem

it solves. The problem specific knowledge is entirely incorporated into the fitness

function, which were implemented by the cost functions derived from our multi-

objective syntheses. The fitness function calculates the fitness value of a candidate

solution produced by the GA. The resulting fitness value is used as a feedback to

the algorithm.

A problem to be solved by a GA has to be encoded in an appropriate way,

because GAs act upon bit strings. Each bit string encodes one part of the information

on the problem solution and is called a gene. Genes are grouped to chromosomes;

one or more chromosomes form an individual. Each individual encodes a complete

solution to the given problem. The quality of this solution, i.e., the fitness of the

individual is assessed by the fitness function. A certain number of individuals form

a population.
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The GA imitates nature's process of evolution by taking one population as

parent generation and creating an offspring generation. The algorithm selects

the best, i.e., fittest, individuals of the parent population. Here the fitness of

an individual comes into play. The better the fitness value of an individual, the

greater is the probability that it is selected for reproduction. After the selection

the GA mutates some of the genes of the selected individuals by flipping bits

according to a given mutation rate and performs cross-over between the individuals

by swapping parts of chromosomes. As a result of this process a new population,

a child generation, is created, which is then evaluated. The whole process iterates

until a solution of sufficient quality is found. For a comprehensive description of

GAs and their function the reader is referred to [70]. The GA that has been used as

the basis of the experiments is presented in [53].

6.7 Evaluation Criteria

In this section the graphs and the criteria that were applied to evaluate the

performance of the three cost function types under the given scenarios are described.

Raw Data Graph. This graph compares the raw function values of the three cost

function types for exhaustive evaluation. It covers the entire input space. This

graph facilitates the evaluation of issues related to one cost function,

• the absolute value range,

• the shape regarding local minima and maxima, and

• the value distribution,

as well as issued related to the comparison of the cost function types,

• the input permutation yielding the optimal value, and

• the location of minima and maxima.
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Sorted Data Graph. This graph also takes into account the entire space of input

data. As opposed to the raw data graph this time the function values are

sorted. It therefore allows to determine

• value range covered by the functions, and

• the number of unique function values. Several permutations resulting in

the same function value are represented by plateaus in this graph.

Weight Comparison Graph. Only one function type at a time is depicted by

this graph. It shows the raw function values for this function type as resulting

from exhaustive evaluation. However, in this graph three instances of this

function type are illustrated, which differ in the weight distribution at the

system node of the synthesis. In other words, the influence of the real-time

and the performance branch of the decomposition is varied for the instances.

Using this graph one can determine the influence of either of the two branches

on the system cost.

GA-Convergence Graph. While the above-mentioned graph types dealt with

the results from exhaustive evaluation, the GA-convergence graph depicts the

outcome of the stochastic allocator. The graph shows the fitness, i.e., the cost

function value, of the best individual for each generation. By means of this

graph the number of generations needed to converge as well as the best cost

value given by the GA-based allocator can be derived.

Quality of Attribute Cost Function Selection. For any resource allocation

problem the input data space comprises all possible allocations of the given

tasks to the PEs. If n is the number of tasks and m is the number of PEs, then

mn is the size of the input space denoted by S. During the decomposition of

the objectives one has to select the set of attribute cost functions to be used.
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For each input data set there is a certain vector of attribute cost function

values. Obviously, not all of these vectors are distinct. A stands for the

number of unique attribute cost function vectors.

Given A and S, A/S is a measure for the quality of the attribute cost function

selection. A small value of the fraction means that a large number of allocations

will have the same attribute cost function vector and thus the system cost

function value regardless of the synthesis. Since in our model there is a one

to one relation between attribute and atomic cost functions, results will also

apply to atomic cost functions.

Quality of Synthesis. Depending on the particular synthesis, several input data

sets may result in the same system cost function value. The number of unique

system cost function values is denoted by U. Clearly, the maximum number of

unique solutions is bounded by the number of different attribute cost function

vectors A, i.e. U < A. The quality of the synthesis can be concluded from

the fraction which gives the ratio of unique attribute cost function vectors

resulting in unique system cost function values. A larger value means a better

discrimination between different allocations.

In the following section the various criteria are evaluated. For each criterion

we compare several or all of the 4 scenarios.

6.8 Observations

In this section we summarize the most interesting observations in the experiments.

6.8.1 Raw Data Graphs

As the input data spaces for scenarios 3 and 4 encompass 262,144 and 531,441

input data sets, respectively, the corresponding raw data graphs are too large to be
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shown here. Hence we restrict the evaluation of this criterion to scenarios 1 and 2

Figure 6.3 Scenario 1—Unsorted Cost Function Values.

1200

Figure 6.4 Scenario 2—Unsorted Cost Function Values.

The following observations can be concluded from the raw data graphs:

• At first glance it is obvious that function types 1 and 3 yield similar results.

Recalling the discussion of the cost function syntheses, we see that function

types 1 and 3 differ in the combining function of consecutive missed

deadlines and consecutive missed deadlines on a single PE. As will

be argued below, the results of the product and the sum combining function
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are relatively similar, if the operands have similar values. This is exactly the

case in the deadline branch of the objective DAG.

• Note that in both scenarios function type 2 has a value distribution similar

to that of types 1 and 3. There are, however, some differences. For instance,

for scenario 1 (Figure 6.3) function type 2 shows a local minimum for permu-

tation 10, while function types 1 and 3 exhibit a local maximum at the same

permutation.

• The monotony for all three function types is good; neither function shows large

plateaus of neighboring equal values that could trap a search algorithm.

• For scenario 1 also the sole optimal solution is reflected properly by all three

cost function types through a unique minimum function value.

6.8.2 Sorted Data Graphs

Next, we look at the sorted function values.

As scenario 1, depicted in Figure 6.5, has the smallest input data space it

enables a more detailed investigation:

• In all cases the largest plateau covers 4 input data sets.

• There is a sufficient incline and function value range in all three function types

with function type 2 being a little superior in terms of function value difference.

Overall, there are 45 distinct function values out of a potential 64 different

values for all types, which is about 70%.

Generally, the function types cover a sufficient value range for all scenarios.

Also, for all scenarios there are only small plateaus of equal function values. The

issue of the number of unique function values, i.e., the quality of the attribute cost

function selection and the synthesis, will be dealt with later.
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Also note the similarity in the function shape in the two manually constructed

scenarios 1 and 4. This is due to the similar task structure in these two scenarios.

Figure 6.5 Scenario 1—Sorted Cost Function Values.

Figure 6.6 Scenario 2—Sorted Cost Function Values.

6.8.3 Weight Comparison Graphs

The weight comparison graphs put the values for different weight distributions for

one cost function type into one figure and allow an interpretation of the influence of

the branches on the system cost function. We restrict the evaluation of this graph



Figure 6.7 Scenario 3—Sorted Cost Function Values.
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Figure 6.8 Scenario 4—Sorted Cost Function Values.
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type to scenario 1 because of its small input data space. The graphs for scenarios 2,

3, and 4 feature a similar behavior.

Several important conclusions can be drawn from these graphs:

• In the case of function type 1, where the performance branch uses a product

structure and thus has smaller values (see below), a reduction of the weight of

this branch reduces the value range of the system cost function. For function

type 2 utilizing a plus-structure, on the other hand, the value range of the

performance branch is much bigger than that of the deadline branch. Thus

this branch has a greater impact on the system cost function value even if its

weight is reduced. For this reason the weight reduction of function type 2 does

not yield a significant reduction in the value range of the system cost function.

• A reduction of the weight of the more influencing branch reduces the variation

of the function values. Small differences between function values are, however,

preserved. Hence the information content is not reduced by the weight change.

• A weight change can even reverse the bias of the system cost function. See, for

example, permutation 47 of function type 2, where a local maximum is changed

into a minimum by a shift to an 80-20 weight distribution.

6.8.4 GA-Convergence Graphs

Figures 6.11 to 6.14 depict the convergence behavior of the stochastic resource

allocator using the three system cost functions.

6.8.4.1 Observations: 	 In the following the most interesting observations

regarding the results of the stochastic allocator are listed. An explanation for

this behavior is provided in the subsequent section.



Figure 6.9 Scenario 1—Varying Weights for Function Type 1.
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Figure 6.10 Scenario 1—Varying Weights for Function Type 2.
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Figure 6.11 Scenario 1—Best Function Value of Each Generation of the GA-Based
Allocator.

Figure 6.12 Scenario 2—Best Function Value of Each Generation of the GA-Based
Allocator.
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Figure 6.13 Scenario 3—Best Function Value of Each Generation of the GA-Based
Allocator.

Figure 6.14 Scenario 4—Best Function Value of Each Generation of the GA-Based
Allocator.
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• At first glance it is obvious that the stochastic allocator does not always yield

the best solution. Looking at Figure 6.14, for example, reveals that cost

function type 3 gets stuck at a much higher cost value than function 1. On the

other hand we know from the exhaustive evaluation that function types 1 and

3 have a similar shape and the same optimal cost in all cases.

• We next compared the best result achieved by the GA-based allocator to the

optimal result known from the exhaustive evaluations. In the majority of

the test cases the GA-based allocator was able to find the optimal solution.

Exceptions are function type 1 in scenario 2 and function type 3 in scenario

4. In particular the latter yields a result that is more than twice the optimal

value.

• Regarding the convergence speed one can observe a big difference between

the function types and the scenarios. For scenarios 3 and 4, which have a

large number of potential solutions, the convergence to the final value typically

required up to 50 generations. For the smaller scenarios 1 and 2, on the other

hand, the number of generations required to converge was about 20.

6.8.4.2 GA Behavior: All of the above results were obtained by a resource

allocator based on Genetic Algorithms, a stochastic optimization method. Generally,

a stochastic method does not guarantee to deliver the optimal result.

The performance of the GA cannot be measured by the number of gener-

ations alone. Other factors like runtime and memory requirements must also be

accounted for. We did, however, not evaluate these additional measures as we were

only interested in the GA's ability to achieve the optimal result based on the cost

functions created with our approach.
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Also note that the performance of the GA depends on the parameter settings.

Increasing the population size, for example, normally reduces the number of gener-

ations required to find a solution. Other parameters like the crossover and the

mutation rate influence the search process, too.

6.9 Decomposition/Synthesis Quality Measures

In Table 6.2 the numbers for the quality measures of the chosen decomposition and

synthesis are listed. The table contains the ratio of the number of unique cost

function vectors in relation to the size of the input space as well as the number of

unique system cost values in relation to the number of unique cost function vectors.

Table 6.2 Quality Measures and for the Attribute Cost Function Selection and
the Cost Function Synthesis.

At first glance one will notice that the value of ti is the same for all cost function

types within scenarios. All system cost function types are based on the same objective

decomposition and attribute cost function selection. As only depends on the latter

and the size of the input data space, but not on the synthesis, it must be equal for

all function types.

Again, we summarize interesting observations regarding the quality measures:

For scenarios 2 and 3 that were created by the workload generator, the ratio

A/Shas an equal value. The ratio for the manually generated scenarios 1 and 4,

however, differs from this value significantly. It is as high as 70% for the small

scenario 1 and goes down to only 9% for the largest scenario 4.
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• For an increasing size of A, the ratio 1,L1 decreased minimally. This means that

for larger scenarios with larger sets of unique attribute cost function vectors,

the system cost function discriminate between different vectors almost as well

as for smaller scenarios.

• The three kinds of syntheses applied to the attribute cost functions preserved

at least 99% of the variety compared to the set of chosen attribute cost function

vectors. With the given cost function types it is possible to discriminate

between these solutions in order to obtain the optimal solution under the given

constraints.

• The numbers obtained for the ratio 4 show that the selection of attribute cost

functions reduces the variety of the input data space to about 10% for scenario

4 and about 20% for scenarios 2 and 3. Two conclusions can be drawn from

these numbers. First, there are several solutions in the input data space that

satisfy the given objectives equally well. At the same time this means that the

cost functions we picked do not make best use of the variety of the input data

space as they do not well discriminate between the potential solutions.

With respect to the last issue listed above, it has yet to be determined whether

a better selection would have been possible. Doing the objective decomposition we

are confronted with a set of attribute cost functions provided by the system. The

variety offered by this set of functions determines the best achievable discrimination

between solutions. Hence we derived the number of attribute cost function vectors

comprising all available attribute cost functions (see Table 4.3) from the exhaustive

evaluation. This number is denoted by C. In Table 6.3 the ratios 4, and 4 are

listed.

According to the numbers in the first column giving the ratio between C and S

the set of all available attribute cost functions preserves between 80 and 100% of the
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Table 6.3 Comparison Between the Variety Offered by the Set of All Provided
Attribute Cost Functions and the Variety Used by the Selected Cost Functions.

variety of the input data space. This proves that the set of attribute cost functions

provided by the system allows to discriminate between the potential solutions to a

high extent.

As a consequence, one would assume that it is better to select as many attribute

cost functions as possible. It seems to be a rule that the more attribute cost function

one selects, the better is the discrimination of the input space. This, however, is true

only in a limited number of cases. In general, one should consider two issues before

applying the above guideline.

Firstly, there is a limit to discrimination given by the fraction 4.. If this ratio

is already close to 100% like in scenario one in Table 6.3, there is no need for further

discrimination. The cost functions chosen so far do already offer a fine-grained

evaluation of the input space.

Secondly, the main concern during the objective decomposition is to represent

all objectives governing the system design in an appropriate manner. If one adds an

attribute cost function only in order to increase the number of unique cost function

vectors, the resulting decomposition does not represent the initial system goals any

more. In other words, if the objective decomposition and the mapping of attribute

cost functions results in a small number of unique cost function vectors, one should
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question the objectives rather than add attribute cost functions that do not reflect

system objectives.

6.10 Interpretation

In this section we discuss general trends observed in the combining function. We

focus mainly on the additive and multiplicative forms.

Throughout the experimentations it was observed that for some experiments

the product structure yielded lower values than the additive (see Figure 6.15), while

for others almost identical results were observed (see Figure 6.16). In addition, both

methods produced identical best and worst solutions. These observations can be

explained from the way the combining functions behave.

Figure 6.15 Sum yielding Larger Values Than Product Structure.

Given two cost function C1  and C² with values x 1 , x ² and weights w 1 , w²

respectively, each graph in Figure 6.17 gives their relative aggregate cost for both

product and additive structures under any weight configuration —since w i +w² = 1,

than w 1 = 1 — w2 . Each graph corresponds to the disparity between x i and x ² .

For example, The greater the difference between the two values the less the product
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16 Sum and Product Yielding Similar Results.Figure 6.

structure will yield in comparison to the additive form, for any arbitrary set of

weights.

Figure 6.17 Effects of Sum and Product Structures in Combining

Hence, if the values being combined are relatively the same amount than it does

not matter which combining function is used, either additive or product, see Figure

6.17.a. If on the other hand, the values are disproportionate then the sum yields

higher values than multiplication, see Figure 6.17.c. This is because the Product

structure favors lower values. An example is outlined Table 6.4.

Separately, an elastic affect was observed in some experiments. While sorted

results of product structures were consistently lower than the additive and extremes

nearly identical (see Section 6.8.2 Figure 6.8), product form outcomes were more



Table 6.4 Example of Sum and Product Behavior
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spread out. This is because at extremes operand values are similar, in between the

values may be disproportionate. Thereby, stretching the product structure values

lower, as seen in Figure 6.18.

Figure 6.18 Sum and Product Elastic Affect.

6.10.1 Guidelines

Here, we outline general guidelines for using combining functions.

Guideline 1 All values must be of same scale regardless of combining function.
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Guideline 2 When total cost x is to depend on actual amounts the values must be

of same unit type and domain.

Guideline 3 When total cost x is to depend on relative amounts use a product

structure.

Guideline 4 When using product structures avoid zero value operands.

6.11 Inter-completion Time Scheduling (ICTS)

In this section we study the effects of the inter-completion time Scheduling strategy

on Inter-Processor Communication. The performance parameters of interest are

number of messages delayed due to contention and total message delay. We will not

compare our approach to other scheduling disciplines for obvious reasons.

In all our simulations, we have assumed a task system where each task, after

completion, must send a message to a central task located on a dedicated processor

p0—such as in logging, voting, and multi-sensor single actuator systems. In all these

systems, it is crucial that data not get old and stale. We have chosen this type of

system to make demonstration and verification of inter-completion time scheduling

easier. However, the trends should remain the same for arbitrary systems.

In our simulation we assume an arbitrary communication network and a single

link with capacity 1packet I ms connecting processor P o to the network, see Figure

6.19. We also assumed the network links to be at least as fast as the link connecting

po and that all processors p i , ... pm are relatively the same time distance from p o .

We arbitrarily chose task systems with 100 identical tasks, execution time

requirements E of 100ms, 500ms, and 1000ms, a release time of 0, deadline D of

50 x E, and message size X. Since we want to have different message sizes X in

relation to task size, we chose X = 1E, E, 2E. We ran these systems on 2, 5, 10,

and 20 identical processor networks.
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Primarily, our interest is in network communication behavior under different

inter-completion times. The results of the simulations are in Figures 6.20 thru 6.25.

In all Figures inter-completion time is represented as a ratio to message size (i.e.

MGICT 
X 	 ).

Figure 6.19 Sample Network

0

Figure 6.20 Average Communication Delay vs. Inter-Completion Time, X =

The results presented in this section indicate that it is possible to achieve

higher communication performance through inter-completion time scheduling. In

all simulations, inter-completion time demonstrated a significant effect on both the

number of packets delayed and for how long. When inter-completion time is zero
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Figure 6.21 Average Communication Delay vs. Inter-Completion Time, X = E.

the communication delays are greatest. When inter-completion time is greater than

or equal to message size communication delays are negligible. This is as expected,

because there is sufficient time for messages to be received before subsequent

messages arrive.

We also note that inter-completion time and processor utilization in general

are inversely related. Therefore as inter-completion time is increased, utilization

may decrease.
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Figure 6.22 Average Communication Delay vs. Inter-Completion Time, X = 2E.

0.8

Figure 6.23 % of Packets Delayed vs. Inter-Completion Time, X =



Figure 6.24 % of Packets Delayed vs. Inter-Completion Time, X = E.
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Figure 6.25 % of Packets Delayed vs. Inter-Completion Time X = 2E.



CHAPTER 7

IMPLEMENTATION AND TEST ENVIRONMENT

In the previous chapter, the impacts of various combining characteristics on the

applicability of cost function synthesis have been studied. This chapter includes a

description of the prototyping efforts to implement and test the applicability and

usefulness of the data transformation functions of Chapter 4.

A REsource ALlocation prototype for complex systems, called REAL [6],

is being built at the Dependable Real-Time Systems Laboratory at NJIT. The

prototype includes an objective decomposer/cost function synthesizer supporting

various types of transformations as discussed in Chapter 4, an evaluator for assessing

cost functions, an allocator for task-to-processors assignment, a symbolic executer

for estimating post runtime attribute costs ; and a workload generator for creating

random systems.

This chapter is organized as follows. First, the work load generator is discussed.

Next, the synthesizer used to generate the cost function is described. Then, the

allocation mechanisms employed in the platform are outlined. Next, the symbolic

executer is discussed. Finally, the system cost function evaluator is described.

7.1 Workload Generator

The Workload Generator (WLG) is a principal component in the simulation and

testing tool. For a given problem size, the Workload Generator creates a random

task system. A system can comprise multiple independent task DAGs —each can

either be real or non-real-time. This allows the existence of the mixed task type set for

complex systems. Currently unrestricted models are generated. A later version of the

prototype will incorporate a Constraint Manager for verifying constraint satisfaction.

116
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no_of_pes	 Number of processors in the hardware model
pe_types	 Number of types of processors in the model
instruction_types	 Number of instruction types in the software and hardware model

no_of_tasks	 Number of tasks in the software model
max_no_of_dags	 Maximum number of independent DAGs in software model

dag_size	 Dag size factor [0, 1], 0-smallest 1-largest
max_children	 Maximum number of children
max_exec_time	 Maximum execution time for any instruction
min_exec_time	 Minimum execution time for any instruction
min_mesg_size 	 Minimum size of any message

max_mesg_size	 Maximum size of any message
min_swinstructions Minimum possible number of software instructions in a task
max_sw_instructions Maximum possible number of software instructions in a task
seed	 Random number generator SEED
rt_percentage	 Real-time task-DAG percentage
current_time	 current time
window_size_factor 	 Execution window size factor

Figure 7.1 Workload Generator Parameters

In the next sections the WLG's input parameters and output data files are

described.

7.1.1 Input Parameters

The WLG requires quite a few number of parameters for input. Figure 7.1 describes

these parameters. Figure 7.2 presents an example of the parameters for generating a

two processor systems with 21 tasks. We will not discuss all parameters, since most

are self explanatory. However, some do require a brief explanation. We discuss those

in the following:

• [pe_types] Although, heterogeneous processors are supported, there may be

some that are alike. Pe_types sets the maximum number of processor types.

Setting this value to 1 creates homogeneous processor environment. The larger

this value the greater the probability of obtaining unique processors.
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• [instruction_types] The number of unique instructions executable by the

entire hardware environment.

• [dag_size] Dag size sets the upper limit on the amount of tasks a task-DAG

can have. For example, when dag_size = .3, at most 30% of the remaining

tasks can be designated for the next task-DAG generation. For lesser values,

many small task-DAGs will be generated. For larger values the reverse will be

observed.

• [max_children] Max children sets the maximum number of descendants, in a

control flow graph, any task can have. The larger this value the bushier the

DAG will be. When set to 1, the result will be a sequential set of tasks. The

minimum value is always 1.

• [window_size_factor] This value is used in determining the amount of time

in which a task may execute. Moreover, it is used to compute the separation

between release time and deadline. The greater the window size factor the

greater the potential for a larger separation.

In the next section we describe data file generated by the WLG.

7.1.2 System Description File

The output file, generated by the WLG, is split into 5 parts. The first part consists of

general system information for the executer. Then, task execution time requirements

are specified. Next, is the task communication matrix. Then, the initial allocation

vector is specified. Finally, task timing characteristics are described. The file format

is given in Figure 7.3. Each part is described in more detail in the following.

1. [General Information] The first value in the general system information is

the interval. The interval delimits real-time from non-real-time tasks. Any
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Figure 7.2 Sample Parameter Values

task with a deadline greater than the interval is recognized as a non-real-time

task. The next value is the current time, which is typically set to zero. The

final two values are the number of processors m and the number of tasks n in

the system respectively.

2. [Execution Matrix] The Execution time matrix follows the general system

description. It is an table of size [no_of_pes x no_of_tasks]. For each task there

are m entries, since processors may not be homogeneous.

3. [Communication Matrix] The communication matrix is a two dimensional

table of size n x n. Each i, j value corresponds to the size of the communication

message between the i th and jth task.

4. [Allocation Vector] The allocation vector is a simple integer list of size n.

Each value in the list corresponds to a processor in the system. Therefore, each

value must lie in the interval [1,m].
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Figure 7.3 System Description File Format

5. [Timing Information] The last part constitutes detailed task timing infor-

mation, such as: release time, deadline, and recovery time. The balance of the

parameters serve as place holders for future implementation.

A sample description created by the Work Load Generator is given in Figure

7.4. In the next section, the Cost Function Synthesizer is described.

7.2 System Cost Function Synthesizer

The synthesizer is an integral component in the prototype. It is an interactive tool

that assists in the decomposition of objectives and construction of the system cost

function. It can build any decomposition, given a set of attribute cost functions and

transformation functions. Also, it stores previous hierarchy models for facilitating

decomposition decisions.
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Figure 7.4 Sample System Description Created by WLG
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7.2.1 Input Parameters

There are two input channels for the Synthesizer, from disk and terminal. First, a

list of available attribute cost functions and data transformations along with a file

containing default decompositions is loaded. Default decompositions have the same

form as system cost function description in the next section.

Then, as previously mentioned, the Synthesizer is an interactive tool. Therefore,

key information reflecting the decision makers (DM) opinion must be entered via

a terminal. For a given internal node in the hierarchy, the DM is given alternative

decompositions specified in the default file. If those are insufficient, the DM may

type in her own description. The decomposition continues in this fashion until all

leaf nodes are attribute cost functions.

The synthesizer output file is described in the next section.

7.2.2 System Cost Function Description

The cost function description file consists of all the information needed for building

the hierarchy. It contains all objective decompositions and corresponding transfor-

mation functions. The file is comprised of three parts, they are: node counts, internal

node description, and edge information. A sample is given in Figure 7.5.

The first part, node counts, consists of two variables. These values describe

the total number of nodes followed by the number of leaf nodes in the hierarchy.

The number of internal nodes is intentionally omitted because it can be derived from

these two given values.

Next, internal nodes are described. Information such as node names followed

by combining function can be found here. Note, all functions must have three

parameters, regardless if they are used or not.

Finally, the edges between nodes are described. On each line, the higher level

node is specified first, followed by one of the lower level nodes. Then, all trans-
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formation functions for the lower level node are defined. They are specified in the

following order: scale, scaling,fusion,algebraic, and weight.

7.3 Resource Allocators

Two allocation mechanisms are utilized, exhaustive and Genetic. The Genetic

mechanism was incorporated into the allocation component from [53].

The exhaustive mechanism takes three parameters: an integer vector, lowest

processor number, and highest processor number. First, it initializes all vector fields

to the minimum processor number. Then, it increments the first field. If the new

value exceeds the maximum processor number, then the current field is initialized

again and the next field incremented by one. This process continues until all vector

field values equal the maximum processor value. In essence, it works much like a

numerical counter with each vector field corresponding to a digit.

The genetic algorithm, as explained in the previous chapter, imitates nature's

process of evolution by taking one population as parent generation and creating

an offspring generation. The algorithm selects the best individuals of the parent

population according to the fitness value which is generated by the system cost

function. The better the fitness value of an individual, the greater is the probability

that it is selected for reproduction. After the selection the genetic algorithm mutates

some of the genes of the selected individuals by flipping bits according to a given

mutation rate and performs cross-over between the individuals by swapping parts of

chromosomes. As a result of this process a new population, a child generation, is

created, which is then evaluated. The whole process iterates for a specified number

of iteration. The genetic search strategy was implemented by Roman Nossal. Details

on the algorithms implementation can be found in [53].
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Figure 7.5 Sample Cost Function Description File
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7.4 Symbolic Executer

The symbolic execution of processes is handled by a single component. The executer

reads the system description file generated by the work load generator and symbol-

ically executes it in an Earliest Deadline First fashion [30].

The executers responsibilities include: administering queues, initiating execution

of tasks, and managing communication. The processor interconnection topology and

network is also simulated by the Executer. Moreover, it manages message propa-

gation delays and queuing. Currently, the simulation supports a bus topology.

7.5 System Cost Function Evaluator

The evaluator reads the cost function file, Figure 7.5, generated by the synthesizer

and creates the hierarchy. For every allocation the Evaluator computes the atomic

attribute cost functions and then evaluates the system cost function in a recursive

fashion.

Currently the following transformation functions are supported: exponential,

power, linear, square root, identity, addition, multiplication, subtraction, and

division. A detailed description is given in Figure 7.6. All functions accept three

parameters, this is for form consistency. However, not all functions utilize all

parameters. Unutilized parameters are ignored.

The evaluator applies the transformation functions in the following order: scale,

scaling, fusion, algebraic transformation, weight, and finally the combining function

is applied. However, since all functions have the same structural form, it would

be quite simple to modify the order in which they are executed by changing the

description file accordingly.



Figure 7.6 Supported Transformation Functions
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Figure 7.7 Available Attribute Cost Functions



CHAPTER 8

CONCLUSIONS AND FUTURE WORK

In this thesis, we have concentrated on the construction of an objective hierarchy

model, objective function formulation and evaluation, and cost-function development

for identifying better allocations in complex systems. While there has been much

work in the area of resource allocation in computer science and other fields, we

have shown that none of the approaches are fully suitable for complex systems,

insofar as they do not accommodate the multitude of objectives inherent to complex

systems. In addition, we have introduced a new scheduling discipline, namely, Inter-

Completion Time Scheduling (ICTS).

Moreover, we have outlined and discussed the relationships among top level

system design, objectives, and attribute cost functions and the construction of system

cost functions. We introduced a hierarchical model for such synthesis. We demon-

strated, through example, how our model is applicable in complex real-time systems.

Finally, we have implemented the model in a working platform.

We have seen how devising mechanisms to evaluate the inherent goodness of

a given allocation is not a simple chore. It requires a thorough understanding of

how individual design elements interact with each other. This interdependency may

require that assumptions and approximations be made so that meaningful combi-

nation of multiple objectives and their cost functions are possible.

We have introduced, as an objective, deadline balancing (DLB) and repre-

sentative cost functions. We extended and formalized this notion of DLB into the

concept of scheduling to maximize inter-completion time —Inter-Completion Time

Scheduling (ICTS). We have proposed the new task scheduling strategy for single

and multiprocessor systems. Simulation results indicate that the proposed strategy

achieves higher communication performance in multiprocessor systems.
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We have shown that both MICT- and MGICT-scheduling problems are, in

general, NP-hard, and have studied a wide variety of special cases of task systems,

where each special case is distinguished by being restricted along some of its degrees

of freedom. For a large number of these special cases, we presented very efficient

scheduling algorithms; others we proved NP-hard.

8.1 Future Work

The work presented throughout this thesis can be extended in many directions. First,

the system model can be extended to incorporate much more complex resource arid

task structures. Next, the tool may be enhanced. Also, the applicability of dynamic

—as opposed to static— objective evaluation should be studied. Furthermore, the

inter-completion time scheduling algorithm may be extended to more robust models.

We will now discuss these to some detail.

From the decision makers point of view, the important development is a robust

graphical tool for specifying and creating objective functions. This tool would

give users the capability to select and construct objectives graphicly. In addition,

automatic generation of functions may be possible. Given an English synopsis of

system objectives, the tool could synthesize and/or recommend objective functions.

Such a tool would be of great benefit for system planners because it would require

less interaction and yield more standard results.

This thesis focussed on objective satisfaction and therefore largely ignored

constraints. However, for complex systems, system constraints need to be addressed.

Therefore, a constraint component also need to be build for proper system evaluation.

Such a tool allow the decision maker to explicitly determine constraints on and

between individual system elements. Any constraint manager should also include a

consistency checker.
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In addition the tool should be extended to support arbitrary network topologies,

such as token ring, star, mesh, etc.. Additional transformation functions and

attribute cost functions may also be needed to quantify other objectives, such as:

fault-tolerance, security, and so on.

At some point it would be interesting to look at how to transform the static

implementation to perform allocation evaluations at runtime. Dynamic evaluation

would allow us to perform continuous optimization. We would be able to take

advantage of situations otherwise undetected prior to run time.

Also, we would like to extend ICTS to more robust models. Our current

research efforts include using the reduction theorem of Section 5.4 to obtain MICT-

and MGICT-scheduling algorithms for other problems which have tractable corre-

sponding feasibility problems.

In closing, we believe that our research enhances the confidence of complex

system developers in allocating resources, by allowing the decision maker to directly

address objective satisfaction. Our study provides guidelines for objective decompo-

sition and cost function synthesis. We believe that the studies we are conducting are

essential for the design and development of complex systems. The development of

such systems will require the assistance of resource allocation tools and techniques

to fine tune the 'performance' and enhance objective satisfaction without violating

the requirements of the system, and thereby reducing cost. In addition, currently

running applications can also benefit, by applying such a tool to investigate the

existence of better allocations.



APPENDIX A

NOTATION

system characteristics
top-level non-functional objectives
a solution
auxiliary information
node i in the objective hierarchy
number of children of X,
children evaluation vector; xi 	 (xi, x², .•., xki,)
objective i
cost function of o f

the j th atomic cost function
value for C,
identity function
scale type function
scaling function
fusion function
algebraic transformation function
weight function
combining function
data transformation functions: f (T, S, .F, q5, w, β)



APPENDIX B

GLOSSARY

Algebraic transformation function (0). An algebraic transformation function

corresponds to fitting a given "error" or "penalty" model, so that, for example,

an exponential function penalizes a few large values in comparison to average

values for all inputs, while a square-root function does the opposite.

Allocation (a). An allocation is a mapping of tasks to processors. It specifies how

and where tasks are to be assigned.

Attributes. Atomic characteristic behavior of a system.

Auxiliary information ((p). Information that cannot be derived from allocation

only data. Typically, it is acquired through actual or symbolic execution

of the tasks. For example, in order to evaluate a number of cost functions

(e.g., percentage of soft deadlines satisfied), we need an approximate execution

profile/static schedule.

Combining function (0). These functions take the transformed results for all

child nodes, or pairs of child nodes and return a single result. Most often, the

combining function is a simple binary associative operator, or such an operator

followed by a simple unary operator such as reciprocal or negation.

Constraints. Are system goals whose failure will result in the rejection of a proposed

design. Constraints typically arise from physical restrictions on the underlying

application, or on the partially-specified platform or design, but can be hard

user requirements on acceptable designs

Cost function (C). A mathematical expression that measures and assigns values

to attributes and objectives.
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Cost function instance (I). A particular cost function evaluation. For example,

a cost function can be evaluated for the entire system, or for a single (not

necessarily connected or autonomous) subsystem, or for multiple instantiations

of subsystems. There is also a trivial instance for each cost function, which

returns a constant, typically the identity for a combining operation — this allows

use of a static hierarchy above instance level, using the trivial instance for

unused cost functions.

Data transformation function (D). The given sequence of functions

(Z, T, S, .F, 0, w„3)) applications can be considered to form one single trans-

formation. We refer to this sequence as the Data transformation function .

Fusion function (.F). Cost functions and different lower level objectives may be

expressed in incommensurable units. A fusion function creates commensura-

bility . Some existing fusion functions include: normalization, conversion to

money or time, and tradeoff functions.

Identity function (I). A function that returns the same value or expression passed

to it.

Objective (o). An objective is a description of non-functional system properties.

Objectives can be qualitatively decomposed into smaller scoped objectives and

finally into attributes. Objectives represent behavior desired for the appli-

cation; objectives frequently can be satisfied to a greater or lesser degree.

Violation of objectives does not necessarily result in the rejection of a system.

However, their relative degree of satisfaction affects in the acceptability of a

proposed design.

Objective hierarchy (X). A Directed Acyclic Graph (DAG) that describes the

decomposition of objectives. There is a predefined root objective, system,
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which in a given application comprises the top-level system design factors,

such as performance, real-time, security, and so on. These may be refined into

smaller scoped objectives represented as children in the DAG. For example, a

node performance , may have as children response time, throughput, and load

balancing. These can in turn be refined.

Scale type function (n. These functions coerce values of different scale type to

a singular scale. Coercion may proceed in one of two directions, up or down.

Coercing down is easy but information is lost. Coercing up is harder because

we assume information which may not be true about the measure.

Scaling function (S). A scaling function transforms values of different cost

functions to comparable ranges.

System characteristics (s). The description of the systems hardware and software

models.

Top-level non-functional objectives (o). Constitute the overall goals of a

system such as performance, real-time, security, and so on. These may be

refined into smaller scoped objectives. For example, performance may include

issues of response time, throughput, and load balancing.

-Weight function (w). Weight functions reflect the relative importance of the infor-

mation at different children. These are typically provided by the user or design

elements for the upper levels of the hierarchy (user level) and by a function

developer for the lower levels.
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