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ABSTRACT

AUTOMOBILE AIR BAG INFLATION SYSTEM
USING PRESSURIZED CARBON DIOXIDE

by
Bart Adams

A novel air bag inflator based on the evaporation of liquefied carbon dioxide was

developed. A detailed qualitative model was established on the basis of an extensive

experimental study. An integrated quantitative model of this inflator was constructed.

The system was studied by discharging the inflator into a tank and measuring

pressure and temperature evolution (0-50 ms). The dispersion of the two-phase spray

during inflation was investigated by high-speed cinematography.

The optimal storage pressure of the liquid CO2 was found to be 2000 psig (at 22

°C). Two distinct inflator behaviors were identified. First, at conditions corresponding to

an initial entropy below the critical point, a two-phase evaporating spray was ejected from

the inflator into the tank. Second, at an initial entropy above the critical point, the

inflation sequence constituted the expansion of a real gas without a significant phase

transformation. The minimal flow section in the nozzle was found to control the

dynamics of this new inflator.

To prevent the formation of solid CO2 during inflation, small amounts of organic

liquids were added to the inflator. A significant increase in tank temperature was

observed, resulting in a profound improvement in performance. An explanation for the

influence of organic liquids was developed based on a 'layered evaporation model'.



The qualitative model was based on the interaction of the flashing process with

the two-phase outflow from the inflator. This interaction was manifested in two different

waves, namely a forerunner and an evaporation wave which controlled the evacuation of

the two-phase mixture from the inflator. The latter was predominantly dispersed

according to classical atomization mechanisms. The generated droplets evaporated

partially by consuming their own internal energy and by interacting with tank gases. The

characteristics of the condensate were evaluated by a detailed thermodynamic analysis.

The quantitative description of the inflator involved the development of a

transient one-dimensional, two-fluid model. Preliminary simulations show excellent

agreement with the expected results. The tank model was formulated on the basis of an

empirical correlation for the atomization process, coupled with a simple droplet

evaporation model, followed by a model for the mixing of real gases.



AUTOMOBILE AIR BAG INFLATION SYSTEM
USING PRESSURIZED CARBON DIOXIDE

by
Bart Adams

A Dissertation
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

Department of Mechanical. Engineering

May 1998



Copyright 0 1998 by Bart Adams

ALL RIGHTS RESERVED



APPROVAL PAGE

AUTOMOBILE AIR BAG INFLATION SYSTEM
USING PRESSURIZED CARBON DIOXIDE

Bart Adams

5r. Mohamed E. Labib, Dissertation Advisor
Research Professor of Civil and Environmental Engineering,
New Jersey Institute of Technology, Newark, NJ

Dr. Rong Y. Chen, Committee Member 	 Date
Professor of Mechanical Engineering,
New Jersey Institute of Technology, Newark, NJ

Dr. Pasquale J. Florio, Committee Member 	 Date
Associate Professor of Mechanical Engineering,
New Jersey Institute of Technology, Newark, NJ

Dr. Ralph Hensler, Committee Member 	 Date
Director of Engineering Technology, Breed Technologies Inc.,
Boonton, NJ

Dr. Robert P. Kirchner, Committee Member 	 Date
Professor of Mechanical Engineering,
New Jersey Institute of Technology, Newark, NJ



BIOGRAPHICAL SKETCH

Author: 	 Bart Adams

Degree: 	 Doctor of Philosophy

Date: 	 May 1998

Undergraduate and Graduate Education:

• Doctor of Philosophy in Mechanical Engineering,
New Jersey Institute of Technology, Newark, New Jersey, 1998

• Master of Science in Mechanical Engineering,
Free University of Brussels, Brussels, Belgium, 1992

• Bachelor of Science in Electro-Mechanical Engineering,
Technical College of the City of Antwerp, Antwerp, Belgium, 1989

Major: 	 Mechanical Engineering

Presentations and Publications:

Adams B.,
Thermodynamics and Nature of Particle Formation during Expansion of Liquid
CO2-Organic Solvent Mixtures, Presented at the University of Delaware, June
1997 at the 71 st Colloid and Surface Science Symposium

iv



To my parents, my brothers and sister and Marianne



ACKNOWLEDGMENT

I wish to express my sincere thanks to a few of those who assisted me during the course

of this work (Spring '95-Spring '98). Most of all, I thank Dr. Mohamed E. Labib for

giving me inspiration, guidance and words of encouragement. Also, thanks to Dr.

Stanislav S. Dukhin for the hours of stimulating 'small' discussions and to my committee

members, Dr. Rong Y. Chen, Dr. Pasquale J. Florio, Dr. Ralph Hensler and Dr. Robert P.

Kirchner for their time and comments. I also thank Yacoob Tabani for his help and for

starting out as a colleague and ending up as a good friend. The entire staff of Breed

Technologies Inc., Boonton, NJ was extremely helpful in providing technical assistance. I

would also like to acknowledge Breed Technologies Inc. for their financial support of my

project. Furthermore, I thank Dr. R. Dave for allowing me to use the high-speed

cinematographic equipment. And last, but certainly not least, I sincerely thank my parents

and Marianne for supporting me during the last three years.

vi



TABLE OF CONTENTS

Chapter 	 Page

1 INTRODUCTION 	 I

1.1 Objective 	 1

1.2 General Information about Air Bags 	

1.2.1 Safety Aspects 	 3

1.2.2 Components of an Air Bag System  	 5

1.2.3 Types of Air Bag Systems 	 6

1.2.3.1 Driver Side Air Bag 	 8

1.2.3.2 Passenger Side Air Bag 	 8

1.2.3.3 Side Impact Air Bag 	 8

1.2.4 Quantifying the Performance of an Inflator 	 9

1.2.5 General Design Requirements of an Inflator  	 11

1.2.6 Current Inflator Technology 	 12

1.2.6.1 Pyrotechnic Inflator 	 12

1.2.6.2 Stored Gas Inflator 	 13

1.2.6.3 Hybrid or Augmented Gas Inflator 	 16

1.2.6.4 Combustible Gas Mixture Inflator 	 16

1.3 Novel Approach 	 17

1.3.1 Selection of the Working Fluid  	 19

1.3.2 General Properties of CO2  	 20

vii



TABLE OF CONTENTS

(Continued)

Chapter 	 Page

1.3.3 Relevant Phenomena in the System  	 23

1.3.3.1 Phenomena in the Inflator Vessel 	 25

1.3.3.2 Phenomena in the Release Mechanism and the Nozzle....  	 32

1.3.3.3 Phenomena in the Receiving Tank (or Air Bag)  	 33

1.4 Present Work 	 36

2 EXPERIMENTAL SET-UP AND PROCEDURES 	  38

2.1 Introduction  	 38

2.2 Main Experiments 	 40

2.2.1 Inflator Vessel 	 40

2.2.2 Release Mechanism and Nozzle 	 42

2.2.2.1 Release Mechanism 	 42

2.2.2.2 Nozzle 	 45

2.2.3 Receiving Tank 	 47

2.2.4 Pressure Transducers 	 48

2.2.5 Thermocouples 	 49

2.2.6 Data Acquisition System and Computer 	 50

2.2.7 Gas Booster Compressor 	 51

2.2.8 Gases 	 51

viii



TABLE OF CONTENTS

(Continued)

Chapter 	 Page

2.3 Procedure of Main Experiments 	 52

2.3.1 Standard Experimental Procedure 	 52

2.3.2 Procedure for Experiments at Low Initial Tank Temperature 	 54

2.3.3 Procedure for Experiments at High Initial Inflator Temperature 	 55

2.3.4 Procedure for CO2/Organic Liquid Experiments 	 55

2.4 Reference Experiment 	 56

2.5 High-Speed Cinematography Set-up 	 63

2.5.1 Tank Images 	 64

2.5.2 Jet Images 	 64

2.5.3 Nozzle Exit Images 	 66

3 IDEAL GAS EXPERIMENTS AND VALIDATION OF THE PERFORMANCE
OF THE MAIN EXPERIMENTAL SET-UP 	  67

3.1 Introduction 	 67

3.2 Experimental Results 	 68

3.3 Theoretical Model 	 75

3.4 Performance of the Main Experimental Set-up 	 78

4 EXPERIMENTAL STUDY OF THE STORED LIQUEFIED GAS INFLATOR . 80

4.1 Introduction 	 80

4.2 Experimental Results 	 84

ix



TABLE OF CONTENTS

(Continued)

Chapter 	 Page

4.2.1 Influence of Initial Tank Conditions 	 84

4.2.1.1 Effect of Different Tank Gases 	 85

4.2.1.2 Effect of Increased Initial Tank Pressure 	 88

4.2.1.3 Effect of Decreased Initial Tank Temperature 	 92

4.2.2 Influence of Critical Flow Section 	 95

4.2.3 Influence of Initial Inflator Conditions 	 98

4.2.3.1 Effect of Initial Inflator Pressure 	 98

4.2.3.2 Effect of Initial Inflator Temperature 	 101

4.2.3.3 Effect of Initial Inflator Size 	 105

4.2.4 Results of the High-Speed Cinematography 	 106

4.2.4.1 Observations of the Tank Phenomena during the Main
Experiments 	 107

4.2.4.2 External Spray Characteristics 	 110

4.2.4.3 Nozzle Exit Recordings 	 112

4.2.5 Influence of Small Amounts of Organic Liquids 	 113

4.2.5.1 Effect of Different Amounts of Methanol 	 114

4.2.5.2 Effect of Different Organic Liquids 	 116

4.3 Discussion 	 118

4.3.1 Qualitative Model of the Stored Liquefied Gas Inflator 	 118



TABLE OF CONTENTS

(Continued)

Chapter 	 Page

4.3.1.1 Stage 1: Opening of the Release Mechanism and Initial
Depressurization 	 120

4.3.1.2 Stage 2: Passage of the Forerunner and Initial Vapor
Generation 	 121

4.3.1.3 Stage 3: Passage of the Evaporation Wave and Main
Discharge 	 126

4.3.1.4 Stage 4: Final Discharge 	 130

4.3.1.5 Equilibration Stage  	 132

4.3.2 Influence of Initial Inflator Conditions  	 133

4.3.2.1 Effect of Initial Inflator Pressure 	 133

4.3.2.2 Effect of Initial Inflator Temperature 	 136

4.3.3 Influence of Critical Flow Section 	 140

4.3.4 Influence of Initial Tank Conditions 	 141

4.3.5 Qualitative Explanation of CO2/Organic Liquid Experiments 	 145

5 THEORETICAL MODELING ASPECTS 	 148

5.1 Introduction 	 148

5.2 Modeling the Behavior of CO2 	 149

5.2.1 Requirements of the CO2-Model 	 150

5.2.2 Alternative Models for the Non-Ideal Behavior of a Fluid 	 150

5.2.3 General Aspects of the CO2-Model 	 153

xi



TABLE OF CONTENTS

(Continued)

Chapter 	 Page

5.2.3.1 Isobaric Specific Heat Capacity, Ideal Gas Enthalpy,
Ideal Gas Entropy 	 153

5.2.3.2 Saturation Pressure 	 155

5.2.3.3 Latent Heat of Vaporization 	 156

5.2.3.4 Internal Energy 	 156

5.2.4 Selection of the eos 	 157

5.2.4.1 Peng-Robinson eos 	 157

5.2.4.2 Beattie-Bridgeman eos 	 159

5.2.4.3 Huang-Li eos 	 160

5.2.4.4 Conclusions 	 164

5.3 Generated Vapor Mass Calculations 	 165

5.4 Model of the Main Experiments 	 168

5.4.1 Stored Liquefied Gas Inflator Model 	 169

5.4.1.1 Main Assumptions 	 171

5.4.1.2 Governing Equations  	 175

5.4.1.3 Constitutive Equations 	 177

5.4.1.4 Numerical Algorithm 	 181

5.4.1.5 Initial and Boundary Conditions 	 182

5.4.1.6 Validation of the SLG-Inflator Model 	 184

xi i



TABLE OF CONTENTS

(Continued)

Chapter 	 Page

5.4.1.7 Preliminary Results and Discussion 	 186

5.4.2 Tank Model 	 192

5.4.2.1 Dispersion Model 	 194

5.4.2.2 Evaporation Model 	 196

5.4.2.3 Mixing Model 	 199

6 GENERAL CONCLUSIONS AND FUTURE WORK 	  200

6.1 General Summary 	  200

6.2 Claims to Original Research 	 202

6.3 Technological Contributions 	 203

6.4 Suggestions for Future Work 	 203

6.4.1 Fundamental Level 	 203

6.4.2 Technological Level 	 204

APPENDIX A TYPICAL OUTPUT OF THE IDEAL GAS MODEL 	  205

APPENDIX B ENERGY ANALYSIS OF THE INFLATION SEQUENCE 	  206

APPENDIX C EQUATIONS OF STATE FOR THE REAL GAS BEHAVIOR

	

OF CO2   211

APPENDIX D DESCRIPTION OF THE CO2-MODEL 	  215

APPENDIX E NUMERICAL ASPECTS OF THE SLG-INFLATOR MODEL 	  218

REFERENCES 	  224



LIST OF TABLES

Table	 Page

1.1 Air Bag Safety Facts  	 4

1.2 Specification of Inflator Performance 	 9

1.3 Gas Temperatures for a Stored Gas Inflation Sequence 	 14

1.4 Critical Temperature and Pressure of some Common Fluids 	 20

1.5 Initial Conditions of CO2 in the Inflator 	 23

2.1 Overview of Inflator and Nozzle Characteristics 	 46

2.2 Pressure Transducer Specifications 	 48

2.3 Nominal Initial Conditions  	 57

3.1 Ideal Gas Experiments 	 68

4.1 Experiments with Different Purging Gases (1 atm) 	 86

4.2 Experiments at Increased Initial Tank Pressure (1 and 4 atm) 	 89

4.3 Experiments at Decreased Initial Tank Temperature (1 atm) 	 93

4.4 Experiments at Different Initial Inflator Pressure 	 98

4.5 Experiments at Increased Initial Inflator Temperature 	 102

4.6 Experiments with Large Inflator Vessel  	 105

4.7 Summary of High-Speed Cinematographic Studies  	 107

4.8 Experiments with CO2/Organic Liquid Mixtures 	 114

4.9 Summary of Influence of Initial Tank Conditions  	 141

5.1 Performance Checks of the PR eos 	 158

5.2 Performance Checks of the BB eos 	 159

xiv



LIST OF TABLES

(Continued)

Table 	 Page

5.3 Performance Checks of the HL eos 	 161

B.1 Specific Internal Energy of Saturated Solid CO2  	 209

xv



LIST OF FIGURES

Figure 	 Page

1.1 Types of Passive Safety Systems 	 3

1.2 Components of an Air Bag System 	 6

1.3 Types of Air Bags  	 7

1.4 Pressure-Time Curves for Different Types of Air Bag Inflators 	 10

1.5 Simplified Phase Diagram of CO2 	21

1.6 Components of the SLG-Inflator with Relevant Physical Phenomena 	 24

1.7 P-v Phase Diagram of CO2 	28

1.8 Propagation of the Forerunner and the Evaporation Wave in the Inflator 	 30

2.1 Schematic Layout of the Main Experimental Set-up 	 39

2.2 Cross Section of Inflator Vessel A 	 41

2.3 Cross Section of Inflator Vessel B 	 41

2.4 Nozzles with Built-in Release Mechanisms 	 43

2.5 Characteristic Times of the Second Release Mechanism 	 45

2.6 Cross Section of the Receiving Tank 	 47

2.7 Measurements during the Reference Experiment 	 58

2.8 Generated Vapor Mass during the Reference Experiment 	 62

3.1 Measured and Simulated Tank Pressure for Experiments 1, 3, 4 and 5 	 69

3.2 Measured and Simulated Inflator Pressure for Experiments 2 and 3 	 70

3.3 Measured and Simulated Tank Pressure for Experiments 6-8 	 71

3.4 Measured and Simulated Inflator Pressure for Experiments 6 and 7 	 72

xvi



LIST OF FIGURES

(Continued)

Figure	 Page

3.5 Measured and Simulated Tank Temperature for Experiment 7 	 73

3.6 Measured and Simulated Mass of Nitrogen in the Tank for Experiment 7 	 74

3.7 Control Volumes in the Ideal Gas Model	 75

3.8 Flow-chart of the N2-model 	 77

4.1 Overview of the Experimental Data 	 81

4.2 Effect of Different Tank Gases 	 87

4.3 Effect of Increased Initial Tank Pressure 	 90

4.4 Generated Vapor Mass for Experiments with Different Purging Gases
and Increased Initial Tank Pressure 	 91

4.5 Effect of Decreased Initial Tank Temperature 	 94

4.6 Effect of Decreased Critical Flow Section 	 96

4.7 Generated Vapor Mass for Experiment with Decreased Critical Flow Section 	 97

4.8 Effect of Storage Pressure 	 99

4.9 Inflator Measurements for Experiments 1-3 of Table 4.4 	 100

4.10 Effect of Initial Inflator Temperature 	 103

4.11 Generated Vapor Mass for Experiments at High Inflator Temperature 	 104

4.12 Effect of Inflator Vessel Volume 	 106

4.13 External Spray Characteristics 	 110

4.14 Spray Images 	 112

4.15 Effect of Different Amounts of Methanol 	 115

xvii



LIST OF FIGURES

(Continued)

Figure	 Page

4.16 Effect of Different Organic Liquids at 5% (mass) Concentration  	 117

4.17 General Qualitative Model 	 119

4.18 Phenomena during Stage 1 of the Inflation Sequence 	 120

4.19 Phenomena during Stage 2 of the Inflation Sequence 	 122

4.20 Phenomena during Stage 3 of the Inflation Sequence 	 126

4.21 Phenomena during Stage 4 of the Inflation Sequence 	 130

4.22 Average Tank Temperature and Corresponding Saturation Temperature 	 132

4.23 T-s Phase Diagram of the Metastable Liquid Region of CO2 	 134

4.24 T-s Phase Diagram of the Critical Region of CO2 	 136

4.25 Influence of Initial Internal Tank Energy 	 142

5.1 Overview of Non-Ideal Fluid Behavior Models 	 151

5.2 Performance Check of HL eos: Error on P-prediction from (v,T) 	 161

5.3 Performance Check of HL eos: Error on v-prediction from (P,T) 	 162

5.4 Performance Check of HL eos: Error on h-prediction from (P,T) 	 162

5.5 Performance Check of HL eos: Error on s-prediction from (P,T)  	 163

5.6 Generated Vapor Mass Calculation 	 167

5.7 Overview of the Theoretical Model of the Main Experiments 	 168

5.8 Inflator System in the SLG-Inflator Model 	 170

5.9 Outflow Boundary Condition 	 183

5.10 Propagation of Forerunner in the Water Model 	 185

xviii



LIST OF FIGURES

(Continued)

Figure 	 Page

5.11 Inflator Properties during Stage 1 of the Inflation Sequence 	 187

5.12 Inflator Pressure and Temperature during Stage 2 of the Inflation Sequence 	 189

5.13 Void Fraction and Velocity in the Inflator during Stage 2 of the Inflation
Sequence 	 190

5.14 Flow-chart of the Tank Model 	 194

A.1 Output of a Typical Ideal Gas Simulation 	 205

B.1 Control Volume for the Energy Analysis of the Inflation Sequence 	 207

B.2 Summary of the Energy Analysis of the Inflation Sequence 	 208

B.3 Energy Redistribution during the Inflation Sequence 	 210

E.1 Flow Chart of the Main Integration Loop  	 220

x ix



LIST OF SYMBOLS

	

a	 speed of sound	 [m/s]
bubble/droplet radius	 [m]

A	 area	 [m2]

B mass transfer number	 [/]

	

c	 specific heat	 [J/(kg.K)]
concentration	 [I]

C	 drag coefficient	 [I]
D molecular diffusion coefficient 	 [m²/s]

	

e	 void fraction	 [/]

	

f	 force on a bubble	 [N]
fugacity	 [/]

	

h	 specific enthalpy	 [J/kg], [J/mol]
heat transfer coefficient	 [W/(m².K)]

H enthalpy	 [J]

	

j	 evaporation rate	 [kg/m².s]

	

k	 thermal conductivity	 [W/(m.K)]

	

I	 spray peneteration	 [m]

	

L	 length of inflator vessel	 [m]
latent heat	 [J/kg], [J/mol]

m 	 mass	 [kg]
in 	 mass flow rate	 [kg/s]
MW	 molecular weight	 [kg/mol]

	

n	 number of moles	 [mol]
bubble number concentration	 [1/m3]

P pressure	 [Pa], [bar], [atm], [psi g], [psi a]
✓ radial droplet coordinate	 [m]

	

R	 gas constant	 [J/(kg.K)], [J/(mol.K)]

	

s	 specific entropy	 [J/(kg.K)], [J/(mol.K)]

	

t	 time	 [s]

	

T	 temperature	 [K], [°C]
u specific internal energy	 [J/kg], [J/mol]
U internal energy	 [J]
✓ specific volume	 [m3/kg], [m3/mol]
✓ volume	 [m3 ]

	

w	 velocity	 [m/s]
maximum spray width	 [m]

	

Y	 mass fraction	 [I]

	

z	 coordinate along inflator axis	 [m]

	

Z	 compressibility factor 	 [I]

	

a	 thermal diffusivity 	 [m²/s]

xx



LIST OF SYMBOLS

(Continued)

specific heat ratio	 [i]
mole fraction

5	 binary interaction coefficient	 [I]
dynamic viscosity	 [kg/(m.)]

v	 kinematic viscosity	 [111²/s]
0	 spray angle	 [O]

p	 density	 [kg/m³]
surface tension	 [N/m]
characteristic time	 [s]
Pitzer acentric factor
bubble break-up rate 	 [1/m³.s]

0	 diameter	 [m]

Subscripts
A	 buoyancy component (force of Archimedes)
amb	 ambient
c	 property at the critical point
cond	 property of the condensate
crit	 critical cross section in the flow path
d	 droplet property
e	 equilibrium value
inflator	 property of the inflator
m	 virtual mass component

liquid phase
P	 constant pressure
peak	 referring to the peak pressure during a tank test
✓ reduced property
ref	 property in the reference state
s	 solid phase
tank	 property of the receiving tank
✓ constant volume, vapor phase
vapor	 vapor phase
0	 initial value

drag component
cc	 flat surface value

Superscripts

under ideal gas assumption (P—>0)
cr	 critical value
sat	 saturation value



CHAPTER 1

INTRODUCTION

1.1 Objective

The objective of this dissertation is to study and develop a new automotive air bag

inflator, based on the rapid transformation of liquid carbon dioxide into vapor. This

inflator system is simple in principle and basically consists of a pressure vessel,

containing the liquefied carbon dioxide, and a release mechanism which can be activated

on command. Because of the benign nature of carbon dioxide, the relatively low storage

pressure and the simplicity of the system, the novel inflator offers considerable

advantages over the existing technology.

The performance of air bag inflators is commonly studied in terms of pressure-

time curves, recorded when the generated gas is discharged into a receiving tank.

Simultaneous measurement of the average tank temperature allows the calculation of the

produced vapor mass and the properties of the condensate that is formed during the

inflation. A series of such experiments was performed to study this inflator and to define

its design parameters. The latter included: the size of the storage vessel, the optimal initial

pressure, the size of the rate determining orifice in the release mechanism, and the effect

of small amounts of organic solvents mixed with the liquid carbon dioxide prior to

activation. Further understanding of the system was obtained through high-speed

cinematographic experimental studies. In addition, an attempt was made to measure the

droplet size distribution of the two-phase jet exiting from the nozzle during the inflation

sequence.

1
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After identifying the phenomena that determine the performance of the Stored

Liquefied Gas Inflator (abbreviated: SLG-Inflator), a comprehensive qualitative model

was developed to describe the system. Based on this model, a computer code was written

to simulate the behavior of the SLG-Inflator. Preliminary results are included and show

excellent agreement with the expected behavior. In addition, quantitative descriptions of

the main phenomena in the tank were established.

In this chapter, relevant general information about air bags is summarized. This

includes recent safety statistics, the components and types of typical air bag systems and a

discussion of the current state of the technology. Next, the novel inflator type is

introduced and its potential is illustrated. The choice of carbon dioxide as working fluid is

justified and some of its main properties are discussed by means of a simplified phase

diagram. All the phenomena relevant to the understanding and modeling of the new

system are introduced at the end of the chapter. This discussion demonstrates the strong

multi-disciplinary character of this thesis.

1.2 General Information about Air Bags(¹)

As of January 1998, nearly 200 million cars and light trucks were traveling on U.S. roads

[1]. While they are essential to the modern society, accidents involving these vehicles are

the leading cause of death for people between the ages of 5 and 27 [2]. Hence, at present,

automobile safety is an issue of paramount importance.

(I) Additional information on air bags can be found in [85] or on the Internet at the National Highway
Traffic Safety Administration's (NHTSA) web-site (htip://www.nhtsa.doi.gov/airbags/).
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Cars and light trucks are currently equipped with a number of Passive Safety

Systems. By definition, these systems do not require the intervention of the occupant in

order to be activated. Air bags belong to the class of Passive Restraint Systems, as is

shown Figure 1.1. About 36% of the current vehicles have a driver side air bag. More

than 21% of these also have a passenger side air bag. Starting from model year 1998,

federal law requires that all passenger cars must early air bags on both the driver and the

passenger sides. A similar ruling holds for light trucks, starting from model year 1999 [1].

PASSIVE RESTRAINT SYSTEMS 

. air bags or supplemental
inflatable restraints (SIR)

. motorized or door mounted belts

. safety belt pretensioners

. head restraints

OTHER

. collapsible steering column

. safety glass

. reinforced occupant compartment

Figure 1.1 Types of Passive Safety Systems

1.2.1 Safety Aspects

Table 1.1 summarizes recent statistical data about the safety aspects of air bags W. It

indicates that air bags have not only proven to be effective in reducing fatalities, but they

also reduce the risk of severe injury to vital body parts considerably.

In a moderate or severe crash, even belted occupants are likely to hit the interior

of the car as their belts stretch and pull around their reels. Therefore, safety belts need to

be complemented by a secondary restraint system such as air bags. It has to be stressed

that air bags are intended to operate as supplemental restraints and should always be
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accompanied by seat belts. In case no seat belts are worn, the risk of severe injuries,

caused by the deployment of the bag itself, increases [94]. Also, seat belts should be worn

at all times because they provide protection in non-frontal crashes, unlike most air bags.

Table 1.1 Air Bag Safety Facts [1]

While air bags can drastically reduce the risk of moderate to severe injuries, they

can be the cause of minor injuries such as abrasion, laceration and contusion injuries to

the face, arms and wrist [94]. Typically, a beneficial shift in injury pattern is observed,

with a decrease in severe head and chest injuries and an increase in minor injuries to less

vital parts of the body.

Although air bags provide considerable protection in moderate or high-speed

crashes, a total of 91 deaths caused by the inflation of air bags in low severity crashes has

been reported (Table 1.1). Except for the cases with rear-facing infant seats, almost all of
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these fatalities involved unbelted or improperly belted occupants who were too close to

the steering wheel or the dashboard when the bag began to inflate. The vast majority of

these deaths could have been avoided by buckling up, moving the front seats back as far

as possible and seating children under 12 in the back with properly adjusted restraints.

According to the NHTSA, the distance between the center of the air bag cover and the

center of the driver's breastbone should be at least 10 inches [2]. When these rules are

observed, very few people - for example, individuals of extremely short stature - are still

at risk for injuries inflicted by the air bag deployment. These people can request a permit

from the NHTSA to have an on-off switch installed for their air bags. All other people

will be at greater risk if they turn off their air bag.

In response to the fatalities in low-speed crashes, most cars of model year 1998 or

later contain depowered air bags, which are 20-35% less forceful. This feature should

further reduce the need for the on-off switch [2].

The ultimate solution at this point in time seems to be the advanced or smart air

bag. These systems contain additional or more advanced sensors that provide information

about the crash severity, the belt usage and the occupant size or position at the time of the

crash. Based on this information, the bag deployment is suppressed or tailored such that

the risk for injuries is minimized. This technology is expected to be introduced over the

next few years and should decrease the risks produced by current air bag designs.

1.2.2 Components of an Air Bag System

Figure 1.2 shows the three typical components of an air bag system. The crash detection

hardware consists of multiple acceleration sensors and electronics to interpret the
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generated signals. Based on the severity and the direction of the impact, it determines

whether the air bag should be activated. If necessary, an electrical signal is sent to the

inflator to initiate the gas generation, which, in turn, fills the bag.

( Crash Detection
Hardware

AIR BAG SYSTEM

Gas Generator o
Inflator

nflatable Bag

Figure 1.2 Components of an Air Bag System

On average, air bags should deploy in crashes that are equivalent to a vehicle hitting a

solid wall head-on at 10-12 mph. The manufacturers Mercedes and BMW adjust this

threshold, depending on the belt usage of the occupants.

Ever since it became clear that it was commercially feasible to equip vehicles with

air bags, each component of the system has been, and continues to be, the topic of

intensive research. Elaborating on the current state of the art of each component is beyond

the scope of this dissertation. In the remainder of this text, issues pertaining to the gas

generator or inflator technology will be considered.

1.2.3 Types of Air Bag Systems

Originally, air bags were intended for use in frontal crashes above a certain severity only.

They were not expected to deploy in side, rear, rollover or low speed frontal crashes.

Recently, in addition to these frontal air bags, the development of side impact air bags, to

be activated in side crashes, has received considerable attention. To date, only a limited
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number of commercially available vehicles is equipped with this new type of air bag.

Figure 1.3 provides an overview of all air bag types, classified according to the direction

of the impact.

AIR BAG TYPES

Frontal Impact
1. Driver Side Air Bag
2. Passenger Side Air Bag

Side Impact
1. Side Impact Air Bag

Figure 1.3 Types of Air Bags

The operation principle of a frontal air bag differs significantly from that of a side impact

air bag. Frontal air bags are designed as cushions to absorb the kinetic energy of the

forward motion of the occupant by deformation and compression of the bag and by

forcing out the gas through vent holes. These vents also facilitate the swift deflation of

the bag such that it cannot smother or restrict the movements of the occupant after the

crash. Typically, frontal air bags are required to deflate in a period of 1-1.5 seconds after

the impact. On the other hand, side impact air bags do not rely on energy absorption, but

on the generation of sufficient force to move the occupant away from the actual crash

location. This way, the risk of injury by the impinging side of the vehicle is reduced. A

side impact air bag does not have any vent holes and is expected to maintain pressure.

Although side impact bags are primarily designed to protect people's chests, they are also

likely to offer some head protection.
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1.2.3.1 Driver Side Air Bag: Driver side modules are stored in a compartment inside the

steering column of the vehicle. Since the distance between the driver and the steering

wheel is considerably smaller than the distance between a passenger and the dashboard,

the driver side bag needs to deploy faster than the passenger side bag. The duration of the

inflation sequence is about 30 to 45 ins [15]. The nominal volume and the peak pressure

of a driver side bag is about 65 liters and 2-3 psig, respectively. Typically, the bag is

shaped as a flat spherical disc of about 720 mm in diameter and 150 nun in depth.

1.2.3.2 Passenger Side Air Bag: This air bag module is mounted in the dashboard and

contains a bag of about 150 liters. It is quarter-cylindrical in shape and much wider than

the driver side air bag. During deployment, a peak pressure of about 1-2 psig is generated

inside the bag. The inflation sequence takes 50-65 Ms [15] and is more gradual than in the

case of a driver side bag. Because of the broad range of human body sizes and the

variable position of a passenger on the seat, the design of this air bag is far more difficult

than that of the driver side bag.

1.2.3.3 Side Impact Air Bag: Most of the side impact air bags in the early 1990's were

door-mounted. Today, the majority of the side impact modules is located in the seat,

because this results in a smaller area to be covered and consequently in a smaller bag [9].

Since the space between the vehicle door and the occupant is small, the bag needs to

inflate rapidly - typically in about 10-20 ms -. The volume of a side impact bag is about 6-

20 liters [9] and, according to an initial study, a peak pressure of 9 psig results in optimal
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protection. As stated before, and in contrast to frontal bags, the pressure inside the bag

must be maintained over a considerable period of time.

1.2.4 Quantifying the Performance of an Inflator

In the past, it was common to assess the performance of an inflator by looking at the

pressure-time curve that was recorded when discharging the device into a rigid tank of a

standard size. Especially the peak pressure (Ppeak) and the time at which it was reached

(tpeak), were considered important parameters. Clearly, this is a rather crude method and

soon the need for a better quantification of the performance was recognized, for example,

by simultaneously considering the temperature-time curve [90]. Experiments with actual

air bags are expensive and time consuming and are usually not conducted until a later

stage in the development cycle of the inflator.

Current specifications of inflators include the size of the module (given by the

dimensions of the outer envelope), the number of moles of gas produced and the time it

takes to generate 80% of the total mass of gas (40%). Table 1.2 contains these

specifications for the three types of air bags, together with the specifications relating to

tank tests.

Table 1.2 Specification of Inflator Performance [5]



10

a) Driver Side Inflator Tank Curve 	 (Receiving Tank volume 100 liter)

b) Passenger Side Inflator Tank Curve 	 (Receiving Tank volume 100 liter)

c) Side Impact Inflator Tank Curve 	 (Receiving Tank volume 28 liter)

Figure 1.4 Pressure-Time Curves for Different Types of Air Bag Inflators
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The values of the peak pressure in the second column of Table 1.2 correspond to tank

tests and are considerably higher than the optimal pressure during the actual inflation of

an air bag. Typical pressure-time curves of tank tests for the three types of air bags are

shown in Figure 1.4(a-c) .

1.2.5 General Design Requirements of an Inflator

In addition to the performance specifications, illustrated in Table 1.2, a number of general

demands can be listed:

1. Cost: The device should be small and simple in design and construction to minimize

the raw material, the manufacturing and the assembly costs.

2. Power Consumption: Only a small fraction of the vehicle power can be used.

3. Weight and Dimensions: Car manufacturers impose stringent requirements with

respect to the size and weight of the air bag module. Since the introduction of air

bags, both the size and weight have decreased drastically.

4. Safe Deployment: To minimize the risk for secondary injuries, the gases and other

products in the air bag should be relatively cool and non-toxic.

5. Safety in Inactivated State: The inflator must be able to withstand large thermal and

mechanical stresses and should not pose a safety hazard in emergency situations such

as an engine fire.

6. Recycling: At the end of the lifetime of the car, the inflator module needs to be easy

to dismantle and, preferably, at least partially recyclable.
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7. Influence of Ambient Temperature on the Inflator Performance: To assure proper

deployment of the bag under all climatic conditions, the inflator performance is

required to vary by not more than 10% over the temperature range from -40 to 85 °C.

8. Longevity: The inflator is expected to be operational for at least 15 years with a

minimal change in performance over its lifetime. Especially for devices which rely on

chemical reactions this requirement can pose a problem, because of the change in

reactivity as the chemical components age.

9. Reliability: Since the aim of the inflator is to provide life-saving protection, it is

required to be extremely reliable.

1.2.6 Current Inflator Technology

Four different types of inflators are either used or under development in current inflator

technology.

1.2.6.1 Pyrotechnic Inflator: The majority of commercially available inflators generate

gas (at least partially) through the combustion of a pyrotechnic substance. The main

advantages of this approach are that it leads to small, light and powerful inflators. Mostly,

sodium azide (NaN 3) is used as pyrotechnic substance. An enhancer, such as potassium

nitrate (KNO 3), is added to speed up the ignition and to assure a high reaction rate during

the initial phase of the combustion. Different kinds of oxidizers are used, for example

copper oxide (CuO) or silicon dioxide (SiO2). A typical reaction scheme for this type of

inflator is as follows:
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10 NaN3 + 2 KNO3 + 5 SiO2) —>5 Na2O.K2O.5 SiO2 + 16 N2

The reactants are solid pellets and the main combustion products are slag (about 54

mass% [24]) and nitrogen gas (about 99 vol% [26]). Secondary reaction products include

CO, CO2, No, NH 3 and SO2, together with NaOH, Na2CO3 and other metal oxide

particles. Most of the secondary reaction gases are toxic and hazardous for the

environment. Also, a filter needs to be incorporated to remove the airborne particles. The

latter not only complicates the system, but also increases the cost and causes a pressure

loss. Although the NaOH particles may cause irritation to the skin and the eyes of the

occupant, the concentration is such that it does not pose a health hazard. Similarly, the

CO concentration remains under the occupational exposure limit at all times [26]. The

temperature of the generated gases varies between 260 °C and 650 °C [82]. This

necessitates the usage of expensive bag material and increases the risk of facial burns. In

addition, heat transfer from the hot gases to the environment causes the bag pressure to

drop. Especially for the side impact bag, which needs to sustain pressure for a

considerable time, the pressure loss due to heat transfer creates difficulties. However, it is

especially the NaN3 itself that poses a problem [49]. It is toxic when ingested and an

azide-water mixture lowers the blood pressure upon contact with the skin. Furthermore,

NaN 3 forms primary explosives upon contact with heavy metals such as copper, lead or

mercury. This not only generates concerns during the normal lifetime of the inflator, but

also complicates the disposal procedure of the car.

1.2.6.2 Stored Gas Inflator: In this type of inflator, the total amount of gas needed to fill

the bag is stored under pressure. Usually argon or nitrogen are used at storage pressures
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of about 5000 psig (at ambient temperature of 25 °C). This relatively high pressure

requires a container with considerable wall thickness and in turn results in a heavy and

bulky device. Upon activation, the storage compartment is opened, typically by means of

a rupture disk arrangement, and the stored gas expands into the air bag. Because of the

short duration of this process, it can be considered adiabatic and all expansion work is

compensated for by the internal energy of the gas itself. A number of expressions were

developed to describe this expansion under the assumption of ideal gas behavior and a

complete discharge of the inflator [60]. Using these relations, typical values for the

idealized stored gas inflation sequence were obtained, as shown in Table 1.3. The

calculations were done for different working fluids and for the upper and the lower limit

of the specified ambient temperatures (requirement 7 of § 1.2.5). In reality, the inflator

discharge will not be complete (an estimated 3-6% of the initial amount of gas remains

inside the inflator) and the final temperatures will be higher than the ones listed in Table

1.3.

Table 1.3 Gas Temperatures for a Stored Gas Inflation Sequence [°C]

Note that the conditions are such that condensation and real gas behavior of the working

fluid should be taken into account. During almost the entire inflation sequence, the flow

from the inflator is choked and the exit velocity equals the local sound speed of the
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working fluid. The evacuation rate is therefore determined by the orifice size, the

temperature of the gas and its molecular weight. The difference in average temperature of

the gas in the bag (Table 1.3), together with the influence of the temperature on the

evacuation rate, explain the strong dependence of the inflator performance on the initial

temperature. This is considered to be the main drawback of this inflator type.

In contrast to the pyrotechnic inflator, the generated gases are cold. Besides

reducing the risk for facial burns, this eliminates the problem of pressure loss due to

cooling. Furthermore, the stored gas inflator is environmentally friendly and easy to

recycle. The cost of the stored gas inflator is comparable to that of the pyrotechnic

inflator.

At the Breed Technologies Inc., a Temperature Compensated Stored Gas Inflator

was developed, with a significantly smaller temperature dependence than the traditional

stored gas inflator [60]. This is achieved by complementing the traditional inflator with a

temperature controlled valving mechanism and a passive temperature reservoir. The

valving mechanism is based on the thermal expansion of plastics, while a carefully

chosen wire mesh filter functions as heat exchanger. At hot initial conditions, only a very

small portion of the expanding gas is lead through the mesh and heat transfer between the

gas and the reservoir is limited. The lower the initial temperature, the more the valve

directs the gases through the wire mesh and therefore the larger the heat transfer. While

the performance of the inflator remains virtually the same, the temperature dependence,

and therefore one of the major drawbacks of this type of inflator, is significantly reduced.

It will be shown in the next section that the novel inflator type, which is the

subject of this work, is similar to the stored gas inflator in principle and components.
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1.2.6.3 Hybrid or Augmented Gas Inflator: This type of inflator combines the previous

principles and uses compressed gas and a combustion reaction in a single device. The

concept of this inflator is to mix the high-energy reaction products with the stored gas,

causing the latter to expand, and to use this mixture to fill the bag. This allows a

reduction of the amount of propellant and reduces both the temperature and the

particulate content of the generated gas. Early designs contained both the gas and the

propellants in one compartment. Production difficulties and undesired autoignition under

extreme circumstances lead to designs in which the gas and the reactants are stored in two

or more chambers, separated by a burst disc [82]. A wide variety of reactants can be used,

including gases, liquids and solids. Versions with three compartments, storing the

oxidants and the fuel separately, reduce long term storage problems. The main drawbacks

of this inflator type are its complexity, size and high cost.

1.2.6.4 Combustible Gas Mixture Inflator: The combustion of a mixture of gases, for

example hydrocarbons and oxygen or hydrogen and air, is used to generate the required

amount of gas. A recent project at NJIT, in cooperation with Breed Technology Inc.,

illustrated the potential of this concept [85]. The main advantages over the NaN 3 -system

are the lower price, non-toxicity of the reaction products, the environmental friendliness

and the fact that the system can be recycled easily. However, due to the high pressures

during the reaction, the system tends to be heavy. Work remains to be done to investigate

the long-term storage behavior and some other issues such as restricting the reaction to

the inflator vessel.
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Very recently (October 1997), TRW introduced the Heated Gas Inflator [22]. It

relies on the combustion of a lean hydrogen/air mixture, stored at 175-310 bar (2500-

4500 psig), to generate the required amount of gas. The inflator is claimed to be the

cleanest available, since its residue is mere water vapor. The unit is lighter than the

pyrotechnic inflator and is easy to recycle. Interestingly, the physical size of the Hearted

Gas-Inflator is much larger than any other inflator type. To the best of the author's

knowledge, this is the first time since the introduction of commercial air bags that the

trend towards ever decreasing inflator sizes has been reversed. This type of inflator is

used by some manufacturers in their 1999 model year.

1.3 Novel Approach

The discussion of the inflator technology in the previous section demonstrates that no

single type meets all the design requirements in a satisfactory way. The combustion based

systems, on the one hand, are small and powerful but invariably raise safety, recycling

and health issues. The stored gas inflator, on the other hand, is non-toxic and simple, but

needs a relatively complicated mechanism to minimize the temperature dependence of its

performance and is large and heavy.

In this research, a novel inflator type, based on the rapid phase transformation of a

liquefied gas into vapor, is studied and developed. It will be shown that, if certain

problems are overcome, the new type meets more of the design requirements than other

inflator types.

The new system consists of a storage compartment, which contains the liquefied

gas, and a nozzle with a built-in release mechanism. Like other inflator designs, the latter
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is made of a burst disc which can be made to rupture on command. Upon activation, the

release mechanism opens the storage chamber, causing a sudden pressure drop and

initiating the rapid phase transformation in the fluid. Subsequently, the generated vapor,

along with entrained liquid, exits the chamber through the nozzle as a two-phase jet and

fills the air bag. Ideally, the total amount of liquid is transformed into vapor within the

required time.

Clearly, the system is similar to the stored gas approach, but it involves a phase

transformation instead of an expansion and it stores the working fluid as a liquid instead

of a gas. Based on this similarity, the novel type is called the Stored Liquefied Gas

Inflator. Storing the fluid as a liquid is beneficial because of the higher density, i.e. the

same amount of fluid fits into a smaller volume. However, in order to store the working

fluid in the liquid phase, the pressure inside the vessel must exceed the saturation

pressure corresponding to the fluid temperature. For substances with a critical point

slightly above ambient conditions, this can be achieved at relatively low storage

pressures. Hence, a careful selection of the working fluid leads to the reduction of both

the storage volume and pressure and consequently to the elimination of two important

disadvantages of the stored gas inflator. At the same time, all the advantages of the stored

gas inflator, such as simplicity, low-toxicity and low price, are maintained.

Similar to the stored gas inflator, the heat transfer to the system during the

deployment sequence is negligible. Hence, the latent heat of evaporation and the energy

for the expansion of the gas is taken from the fluid's internal energy. On the one hand,

this leads to the production of cool gas, which is advantageous for the same reasons as

mentioned in the case of the stored gas inflator. On the other hand, this may lead to
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phenomena that obstruct the filling of the bag, such as freezing of the fluid inside the

inflator vessel or solidification of the evaporating liquid in the bag. Both effects result in

a loss of part of the working fluid for the purpose of filling the bag. These and all other

relevant phenomena are discussed in section § 1.3.3.

The previous discussion illustrates that, if one succeeds in transforming the stored

liquid into gas such that the air bag is filled in a satisfactory manner, the new inflator type

offers more advantages than any other type:

1. simple in principle and construction, therefore inexpensive and reliable

2. no health or environmental risks

3. small and light compared to stored gas inflators

4. easy to dismantle and recycle

5. no long term storage problems since no chemically active substances are involved

6. cool gas is produced, thus minimizing the risk for facial burns and making it

easier to maintain pressure over a long time

7. low power consumption

Although the new principle is intended in the first place to be used as an inflator

for side impact air bags, it is obviously not limited to this type of air bag or this

technology.

1.3.1 Selection of the Working Fluid

Table 1.4 lists some common fluids with a critical point slightly above ambient

conditions. Considering issues such as cost and safety, carbon dioxide is clearly the best
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choice from this list. Not only do some of the other substances form explosive mixtures

upon dilution in air, but all of them are more expensive than CO2. In addition, CO2 is

virtually nonreactive, readily available and has a well-documented behavior. Some

general properties of CO ,) are discussed in the next section.

Table 1.4 Critical Temperature and Pressure of some Common Fluids [45]

1.3.2 General Properties of CO,

The physical properties of CO2 have been the topic of intense research in the past and are

now readily available in the literature. The majority of the CO2 properties used in this

work are based on references [12,30,95].

At ambient conditions, CO2 is a colorless and almost odorless gas with an acidic

taste and a density of about 1.5 times that of air. It is present in the atmosphere in small

quantities, about 0.03 vol%, and is fairly inert. Concentrations in air above 5 vol%, are

toxic and prolonged exposure causes loss of consciousness and eventually death [4].

Carbon dioxide has a simple, linear molecule with very low polarity and no dipole

moment. Its quadrupole moment, however, is strong enough to affect its thermodynamic
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properties and to cause a behavior quite different from other gases with nonpolar

molecules of similar size and molecular weight.

The pressure - volume - temperature relationship - so called PvT-inforination - for

CO2, is shown in a simplified T-s phase diagram in Figure 1.5 . The critical point (at

304.2 1 K and 73.825 bar and indicated by cp) is located at the top of the vapor-liquid

(v+1) coexistence dome. The line t-t '-t (at 216.58 K and 5.185 bar) represents the triple

point. This line separates the vapor-liquid and the vapor-solid (v+s) coexistence regions.

The other two boundaries of the vapor-liquid region are the saturated liquid - or boiling -

line to the left and the saturated vapor - or dew - line to the right, indicated as t'-cp and t-

cp respectively. Similarly, the two sublimation lines b'-t" and b-t are the remaining

boundaries of the vapor-solid two-phase region.

Figure 1.5 Simplified Phase Diagram of CO2
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The negligible compressibility of the solid phase reduces the corresponding region to a

line, coinciding with the b'-t" sublimation line. The liquid region extends to the left of

the boiling line and runs into the supercritical region on top. While not clearly visible on

a diagram of this size, it can be shown that the isobars in the liquid region do not

coincide. As a result, liquid carbon dioxide cannot be approximated as an incompressible

liquid. This does not only mean that the compressibility has to be taken into account

when modeling the system, but also that the optimal storage pressure for the inflator is

likely to be higher than the saturation pressure. Another indication of the non-ideal liquid

behavior is the significant difference between the isobaric and the isochoric specific heat

capacity in this region. Strictly speaking, the supercritical region extends from the critical

isotherm and the critical isobar upwards. Practically, however, for applications such as

supercritical fluid extraction, this area is considered to be outlined by the isotherms

corresponding to T, and 1.1 x T, and the isobars corresponding to P c and 1.5 x Pc [53].

The vapor region is located to the right of both the supercritical and the two coexistence

regions. At low pressures and elevated temperatures - the upper right corner in Figure 1.5

- the isenthalps run parallel to the isotherms. This indicates the ideal gas behavior of the

vapor in this region. Note that the 1 atm isobar intersects the right hand sublimation line

rather than the dew line, in accordance with the common knowledge that it is impossible

to liquefy CO2 at ambient pressure.

Only thermodynamic equilibrium states (i.e. states corresponding to slow

variations of properties) are represented in Figure 1.5. Rapid changes generate states that

deviate from this diagram. This is discussed in greater detail in the next section.
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According to the general specifications (§1.2.5), the inflator performance is

required to be nearly constant for ambient temperatures ranging from -40 °C to +85 °C.

At the same time, the storage pressure should be lower than that of a stored gas inflator

(typically about 5000 psig) to avoid a heavy and bulky device. The lower limit on the

storage pressure will be determined by the performance of the inflator itself and is not

known at this point. These considerations provide the range of initial conditions that need

to be investigated. Table 1.5 summarizes the limits of this range, which is also

represented in Figure 1.5.

Table 1.5 Initial Conditions of CO2 in the Inflator

1.3.3 Relevant Phenomena in the System

Figure 1.6 contains a symbolic representation of the SLG-Inflator, along with a list of

physical phenomena that occur in each component of the system. The phenomena marked

with an asterisk (*) were not taken into account in the description of the system. This

section contains a brief description of the events that take place in each component of the

system during a typical inflation sequence. All phenomena which are encountered in the

following chapters are introduced during this description. The interaction of these

phenomena is discussed and key references are included. Since the inflator drives all

effects in the system, this component is considered first, followed by the nozzle with the
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built-in release mechanism and, finally, the receiving tank or the air bag. All phenomena

are introduced and described in the same order as they appear in the lists of Figure 1.6.

hi this section, it will be assumed that the initial entropy of the inflator is below

that of the critical point of CO2. The case with an initial entropy in excess of that of the

critical point is discussed in Chapter 4.

AIR HAG / RECEIVING TANK

• Real gas behavior
• Mixing of real gases
• Liquid dispersion (classical / flash atomization)
• Spray behavior (droplet evaporation)
• Droplet solidification
• Vapor Condensation
• External heat transfer (*)
• Coagulation / Coalescence / Secondary break-up (*)
• Droplet - wall / bag interaction (.)

NOZZLE + RELEASE MECHANISM
• Two-phase (critical) flow
• Liquid dispersion

INFLATOR
• Non-ideal liquid (compressible)
• Rarefaction & evaporation waves
• Metastable states (superheated liquid)
• Nucleation (Heterogeneous / Homogeneous)
• Bubble growth (flashing)
• Bubble break-up
• Non-equilibrium (thermal & mechanical) two-phase

outflow
• Solidification
• Heat transfer from inflator wall (*)

Figure 1.6 Components of the SIG-Inflator with Relevant Physical Phenomena
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1.3.3.1 Phenomena in the Inflator Vessel: For this discussion, it is assumed that the

vessel is tubular in shape (i.e. a relatively high length to diameter ratio) such that a one-

dimensional approximation of the phenomena is justified.

Prior to activation, the inflator vessel is filled with compressed liquid carbon

dioxide. In Figure 1.5, this corresponds to a point in the lower part of the shaded region

which contains the initial conditions. As shown in the previous section, even at low

temperatures, the compressibility of liquid carbon dioxide cannot be neglected. Hence,

when modeling the system, it is not justified to approximate the CO 2 in the initial state as

an ideal liquid. Instead, a more complicated equation of state needs to be used. Chapter 5

contains a detailed discussion of the selection of the equation of state. In the final model,

an equation with 27 constants is used, which is shown to cover the entire fluid region of

CO) [46].

When the inflator is activated, the release mechanism ruptures the burst disk. In

this section, the opening time of the mechanism will be neglected. The destruction of the

burst disk initiates a rapid pressure drop in the system under the shape of a steep

rarefaction wave, traveling through the liquid at the local speed of sound towards the

closed end of the vessel. This wave is referred to in the literature as the (elastic)

forerunner [47,63,86]. Due to the small dimensions of the inflator vessel, the forerunner

reaches the closed end within the first millisecond after the start of the inflation sequence.

After hitting the closed end, the forerunner bounces back towards the front of the vessel

but is attenuated drastically by localized vapor formation [47,63]. The passage of the

forerunner causes a rapid isentropic expansion of the liquid [52]. As is often the case in

fast processes, the system's behavior deviates from equilibrium and evaporation does not
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start when the pressure downstream of the forerunner attains the local saturation value.

Instead, the pressure drops further and the liquid enters a metastable state in which it

becomes superheated. By definition, a liquid is superheated when it exists at a

temperature above the boiling point corresponding to the local pressure. It is metastable

because its entropy is not maximum for its given energy. The effect of the forerunner in

Figure 1.5 corresponds to a vertical drop to a point inside the vapor-liquid coexistence

region. In reality, however, no vapor formation has taken place and the actual state of the

liquid cannot be represented in the diagram. The region in the phase diagram to the right

of the saturated liquid line, containing the superheated liquid states is called the

metastable region. Metastable liquids are well-behaved and have reproducible properties

which can be calculated by extending the chosen equation of state into the metastable

region [58]. The departure from equilibrium is usually expressed as the difference

between the actual temperature and the boiling point corresponding to the local pressure.

This difference is called the superheat.

At a certain value of the superheat, depending mainly on the depressurization rate

and cleanliness of the liquid and the apparatus, the superheated liquid suddenly starts to

evaporate. Since the process is considered adiabatic, part of the internal energy of the

liquid is used to supply the latent heat of evaporation. Therefore, the phase transformation

results in a drop in temperature. At the same time, the generation of vapor leads to an

increase in pressure. Both effects reduce the superheat and push the system towards its

new equilibrium state. The phase transformation under consideration differs from boiling

by the fact that it is adiabatic and therefore not driven by heat transfer. Instead, it is the

pressure drop in the system that causes the evaporation. Such phase transitions are called
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flashing or flash boiling. Due to the interest of the nuclear power industry in the flashing

phenomena to estimate the pressure loss in a cooling circuit caused by a pipe failure, a

considerable amount of work has been done on the flashing of water. Studies focus both

on the inception of flashing [34,54,77,97] and on the calculation of the maximum - so

called critical - flow rate [21,28,61,69]. A number of studies have been performed on the

flashing of cryogenic liquids - freons in particular - [40,42], and some use CO, as

working fluid [37,52,54,58]. The initiation of flashing in a superheated liquid is described

by nucleation theories [14,20,29,77], which predict the volumetric formation rate of

evaporation nuclei. Under extremely clean conditions and for very rapid

depressurizations, the initiation of evaporation is driven by density fluctuations. This is

described in the homogeneous nucleation theory. In most practical situations, however, a

significant number of impurities acts as evaporation nuclei and expedites the initiation of

flashing. This process is described by the heterogeneous nucleation theory. The further

the departure from equilibrium (i.e. the larger the superheat) the faster and the more

violent the flashing process [29].

There exists an upper limit for the size of the superheat. No matter how high the

depressurization rate or how clean the fluid and the vessel, evaporation cannot be delayed

past a certain, reproducible limit. This limit is called the maximum superheat or superheat

limit. Extensive work has been performed by Skripov [81] and Lienhard [57] to determine

the maximum superheat experimentally. Cases where this limit is reached are often

referred to as vapor or thermohydraulic explosions because of the violent nature of the

phase transformation. Experiments prove that the superheat limit for a liquid, where

homogeneous nucleation initiates the evaporation, lies very close to the liquid spinodal
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limit [57]. The spinodal limits, at least the ones that are of interest in the current

discussion, are located at the high density inflection points of the subcritical isotherms in

a pressure-volume phase diagram. As such, they mark the transition from negative slope

of the isotherm to positive slope, or from thermodynamic metastablility to absolute

instability. The liquid spinodal line is formed by connecting these inflection points. This

is illustrated in Figure 1.7, which contains a P-v phase diagram of CO2. The diagram was

generated with the same equation of state which is used in the actual model of the SLG-

Inflator [46]. The metastable liquid region is located between the saturated liquid line and

the liquid spinodal. Similar to the liquid spinodal, the low density inflection points of the

subcritical isotherms mark the vapor spinodal line. In contrast to the liquid spinodal, the

vapor spinodal does not lie in the vicinity of the limit of maximum supersaturation of the

vapor phase (i.e. the onset of homogeneous nucleation in the condensation process).

Hence, it is of no importance in the current work and it is not represented in Figure 1.7.

Figure 1.7 P-v Phase Diagram of CO2
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Nucleation theories indicate a very strong dependence of the formation rate of

nuclei on the local temperature. Consequently, since the temperature decreases as soon as

the flashing commences, nucleation occurs over a very short period. After the formation

of the nuclei, the flashing process continues at the interface between the two phases, and

it causes the freshly formed bubbles to grow. Bubble growth has been studied extensively

in the past [25,48,70]. In applications similar to the current one, it is common to assume

thermally controlled bubble growth [21,28,47,63].

Simultaneous to the nucleation and bubble growth phenomena, a two-phase

outflow starts to develop under influence of the pressure gradient between the inside and

the outside of the inflator. In the early stages, when the vapor fraction is low and most of

the fluid is still in the liquid phase, the flow rate is limited by inertia. Due to the

difference in density between the liquid and the vapor phase, the latter accelerates faster

and a relative velocity between both phases develops. Likewise, the difference in thermal

conductivity leads to a difference in temperature. As a result, the flow inside the inflator

will be non-equilibrium, both from thermal and from mechanical point of view. The

relative velocity between both phases generates hydrodynamic instabilities on the surface

of the growing bubbles [47,63]. The amplitude of these disturbances increases with the

relative velocity. When the instabilities exceed the consolidating effect of the surface

tension, the bubble will break up in smaller bubbles. Note that this process is similar to

the atomization of a liquid jet in a gaseous atmosphere, which is considered during the

discussion of the phenomena in the receiving tank. The break-up of the bubbles leads to a

drastic increase in interfacial area and, therefore, to enhanced mass transfer and

evaporation.
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At t 0, the burst disk ruptures instantaneously and

the forerunner starts to propagate towards the
closed end of the inflator at the local speed of sound
(a). No vapor has been formed in the inflator and
the void fraction is uniformly zero. All liquid is in
the subcooled initial state (Po, To).
( P sat : vapor pressure corresponding to To)

• : subcooled liquid

At 0 < t < tf (tf = L/a), the forerunner has
propagated through part of the inflator. The liquid
upstream of the forerunner is still in the initial state.
The liquid downstream enters the metastable state,
after which nucleation and evaporation brings it
closer towards equilibrium.
The void fraction is very low due to insufficient
time for significant bubble growth.
Near the open end of the inflator, the outflow

z	 commences and the bubbles break up, which leads
to an enhanced evaporation.

[7: : two-phase mixture (e «)

At t	 ti , the forerunner has traveled through the
entire inflator and is reflected from the closed end.
This creates a local pressure drop and an increase in
nucleation and evaporation. In return, this causes
the forerunner to die out shortly afterwards.
Nucleation has occurred over the entire length and
bubble growth has progressed further near the open
end of the inflator. Enhanced evaporation at both
ends causes a slight increase in the void fraction.

At t » tf , the evaporation wave has propagated
through part of the inflator, at much lower speed
than the forerunner. The evaporation wave causes
bubble break-up, which leads to a drastic increase
in interfacial area and hence, in evaporation. In
turn, this leads to a two-phase mixture of relatively
high void fraction and low temperature downstream
of the evaporation wave. Because of the low
temperature, the flashing rate is limited and the
pressure drop due to outflow can not be
compensated. Hence, a gradual decrease in pressure
behind the flashing front is observed.

: two-phase mixture (e »)

Figure 1.8 Propagation of the Forerunner and the Evaporation Wave in the Inflator
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Since the outflow, and thus the relative velocity, develops first at the open end of the

vessel, the coupling between the fluid flow and the flashing process generates a second

wave process. The evaporation wave (also flashing front or interfacial wave) similar to

the forerunner, travels from the open end towards the closed end of the vessel, but at a

much lower speed. It progresses through the vessel with a marked increase in bubble

number concentration and void fraction [47,63,75,86]. After the evaporation wave

reaches the closed end of the inflator vessel, a gradual pressure decrease occurs until the

end of the inflation sequence. Figure 1.8 illustrates the existence of the two wave

phenomena in the inflator.

For the evaporation inside the inflator, all latent heat of evaporation is taken from

the initial energy of the liquid. As a result, the liquid cools down during the inflation

sequence. In the later stages of the process, part of the liquid in the vessel and/or the tank

will reach the triple point and solidify. This part of the fluid is considered lost for the

inflation.

During the evacuation of the vessel, the void fraction changes from zero to a value

close to unity. Correspondingly, the two-phase flow pattern in the vessel evolves from

single phase liquid flow to bubbly flow, slug flow, annular flow, mist-annular flow and

finally, dispersed droplet flow. As is common practice, the transition between flow

patterns is assumed to occur at empirically determined values of the void fraction. The

constitutive equations of the model, which describe the interfacial transport processes, are

dependent on the flow pattern. In cases with drastic changes in the void fraction, it is

necessary to adapt the constitutive equations during the simulation.
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As stated before, heat transfer from the vessel walls during the process is

neglected. This is justified, based on the very short time of the inflation sequence.

1.3.3.2 Phenomena in the Release Mechanism and the Nozzle: During the inflation

sequence, two important phenomena occur inside the nozzle with the built-in release

mechanism.

In the initial stages of the process, the mass flow rate of the two-phase mixture

through the nozzle is limited by inertial effects of the fluid and by the finite opening time

of the mechanism. As the evacuation progresses, the two-phase flow through the nozzle

accelerates and the exit velocity increases. The acceleration of the flow is enhanced by the

evaporation process, since this reduces the density and therefore the inertia. At some

point, shortly after the appearance of the evaporation wave, the mass flow rate reaches its

maximum or critical value and the flow becomes choked. For single-phase gas flows, the

phenomenon of choking is well-understood. It is generally accepted that for a one-

dimensional, isentropic gas flow, the maximum flow rate is limited to the local sound

speed through the smallest cross section in the flow path. Multi-phase critical flow is

nearly always considerably more complicated because of thermal and mechanical non-

equilibrium between the phases (i.e. difference in temperature, pressure and velocity).

Approaches for the simulation of critical two-phase flow range from mainly theoretical

[23,31,38], to semi-empirical [28,69] and highly-empirical [43,51].

The second phenomenon that needs to be addressed in this section, is actually

initiated in the nozzle and continues in the receiving tank. It concerns the dispersion of

the liquid phase in the two-phase jet from the nozzle. Both the shape and the dimensions
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of the nozzle determine the behavior of the two-phase spray inside the tank to a large

extent. A considerable number of correlations, for a variety of nozzle types and shapes,

has been established [56]. A large part of the work in the past was driven by the strong

interest of car manufacturers for evaporating sprays [33,80,84]. For the current model, the

two-phase flow is assumed to have an annular structure - i.e. a liquid core surrounded by

a vapor layer - and a correlation for a flashing injector is used [84].

1.3.3.3 Phenomena in the Receiving Tank (or Air Bag): In this section, it is assumed

that the inflator discharges in a receiving tank which was filled with nitrogen gas prior to

the experiment.

The CO2 vapor in the two-phase jet from the nozzle will expand into the tank and

mix with the nitrogen that is already present. The state of the CO2 vapor is located close

to the vapor saturation curve and its behavior deviates from that of an ideal gas. In the

current model, the real gas effects during the expansion, such as for example the Joule-

Thomson effect, and the mixing with nitrogen is modeled by means of a cubic equation of

state and a simple mixing rule [65].

As discussed in the previous section, the dispersion of the liquid phase is initiated

in the nozzle and continues in the receiving tank. Elaborate theories exist for the break-up

of low and moderate speed, single-phase, subcooled liquid jets [6,56]. A thorough

qualitative understanding of the dispersion of liquid jets at higher velocities has not yet

been established and intensive research is ongoing. The dispersion of subcooled liquid

jets will be referred to as classical atomization and relies on hydrodynamic forces. A

large number of correlations is available to predict the droplet size distribution and the
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shape of the resulting spray [6,56]. When the liquid is not subcooled (i.e. its temperature

is such that the corresponding vapor pressure equals or exceeds the pressure of the

medium that is surrounding the jet), flash evaporation might enhance the dispersion. This

process is called flash atomization and has received limited attention in the past

[64,71,76]. In contrast to classical atomization, the main driving force for the dispersion

of the liquid in this case is the evaporation process. Flash atomization leads to sprays with

a large spray angle, so called feathered sprays [62]. In this work, the shape of the two-

phase jet from the nozzle was studied by means of high-speed cinematography.

The dispersion process transforms the liquid phase of the jet into individual

droplets with a certain size distribution. Depending on the internal temperature and the

surrounding conditions, these droplets will evaporate and generate additional CO ,) vapor.

For the current application, it is of interest that the evaporation proceeds at maximum

speed. Since the evaporation rate depends to a large extent on the size distribution of the

droplets, accurate modeling of the dispersion process is necessary. The evaporation of

sprays has been studied in the past, often with the application of fuel injectors in mind,

but still remains an active field of research [6,33,56,80]. During the evaporation of a

droplet, the latent heat will be supplied by the internal energy of the liquid or the

surroundings, or a combination of both. Two scenarios must be considered. On the one

hand, if the latent heat is mainly compensated for by the internal energy of the liquid, the

droplet will cool down considerably during the evaporation. This is the case for the

evaporation of highly volatile droplets [56]. When the temperature of the liquid reaches

the triple point, the droplet will solidify and is lost for the remainder of the inflation

sequence. On the other hand, if sufficient energy is supplied by the surroundings, the
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droplet will evaporate completely. This is the case for the evaporation of droplets with

low volatility [56].

Especially during the first stages of the experiment, the pressure increase in the

tank is the result of the generation of CO 2 vapor. During this process, the contents of the

tank cools down considerably and a significant temperature gradient between the walls

and the CO2 -N2 mixture is established. The resulting heat transfer from the walls to the

gas mixture is expected to interfere with the measurements, since it also leads to an

increase of the pressure in the tank. Bearing the limited time of the inflation sequence in

mind (typically about 30 ms), heat transfer is neglected during the actual evacuation of

the inflator.

The experimental observations indicated that the temperature in the tank,

immediately after the end of the inflation sequence, was considerably higher than the

saturation temperature corresponding to the local pressure. Therefore, general vapor

condensation cannot have occurred during the expansion.

In addition to the effects described above, other phenomena occur in the tank. All

of them are assumed to be of secondary importance and will be neglected. During the

experiment, the two-phase jet impinges on the walls of the receiving tank. This produces

additional break-up of the droplets and establishes heat transfer between the liquid and

the wall. Studies on the interaction of fuel jets with the sides of the combustion chamber

have been performed [6]. Because of the dense character of the spray, secondary droplet

interaction occurs. Depending on the relative velocity, this will lead to coagulation or

secondary break-up [6].
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1.4 Present Work

A detailed study of the SLG-Inflator is presented in this work. The novel inflator is based

on the rapid phase transformation of liquefied CO2, and offers considerable advantages

over the existing technology.

The performance of the inflator was primarily studied by means of tank tests, in

which the pressure and temperature were measured as a function of time. In addition,

high-speed cinematographic recordings were made to investigate the dispersion

characteristics of the two-phase jet from the inflator during the inflation sequence.

Theoretical models have been developed to simulate the phenomena inside the

SLG-Inflator and the receiving tank. Because of the complex nature of the process, a

large number of phenomena is involved. These phenomena include, among others: vapor

nucleation in a metastable liquid; bubble growth by flashing; bubble break-up; two-phase,

non-equilibrium, critical outflow; dispersion of a two-phase jet and spray evaporation.

Chapter 2 contains a description of the components of the main experimental set-

up and procedures. In addition, a brief discussion of the results of a typical main

experiment is included. At the end of the 2 nd chapter, the experimental set-up and

procedure for the high-speed cinematography study is described.

Prior to the experimental study of the SLG-Inflator, a series of experiments was

conducted in which the inflator was filled with pressurized N2 instead of liquefied CO2.

By comparing the results with the output of a simple theoretical model, the performance

of the experimental set-up was assessed. Both the results of the experiments and the

description of the theoretical model are presented in Chapter 3.
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The first part of Chapter 4 contains a discussion of all results pertaining to the

experimental study of the SLG-Inflator. A comprehensive qualitative model of the system

is presented in the second part of this chapter. The tank tests are considered first and

illustrate the influence of design parameters such as the size of the inflator, the storage

pressure, the initial inflator temperature and the area of the critical flow section. In

addition, experiments were conducted with varying initial conditions in the receiving tank

and with small quantities of organic liquids added to the CO2. The results of the high-

speed cinematography studies are discussed next. After the presentation of the qualitative

model, the latter is used to explain the main experimental observations described in the

first part of Chapter 4. At the end of the chapter, a qualitative explanation for the effect of

the organic liquids on the performance of the system is included.

All modeling aspects are discussed in Chapter 5. First, a general model for the

behavior of CO2 is presented. This is followed by a discussion of the calculation of the

generated vapor mass during the inflation sequence. The main model, which consists of

two parts, corresponding to the inflator and the tank, is given next. The SLG-Inflator

Model constitutes a comprehensive two-fluid model, based on the conservation laws for

the liquid and the vapor phase. The main parts of the Tank Model are an empirical

description of the dispersion of the two-phase jet from the nozzle and a simplified droplet

evaporation model.

Chapter 6 contains the conclusions of this research and a list of the main

contributions is included. Also, suggestions for further improvement of the inflator's

performance and future work are formulated.



CHAPTER 2

EXPERIMENTAL SET-UP AND PROCEDURES

2.1 Introduction

Two kinds of experiments were performed to study the SLG-Inflator and to assess the

effect of the various design parameters on its performance. The principal experiments,

referred to as main experiments in this text, correspond to tank tests. These experiments

are commonly used for inflator development in industry. In these experiments, the device

is discharged into a tank of known size and the resulting pressure and temperature change

is used to evaluate the inflator performance. Based on these pressure and temperature

curves, the performance of the inflator for the actual inflation of an air bag can be

predicted to great extent. The experimental set-up and the procedure for the main

experiments are described first. A detailed discussion of the results of a typical main

experiment are presented next. The initial conditions for this experiment are considered

nominal and the results are used as a reference for all other main experiments.

The second kind of experiments concerns a high-speed cinematography study of

the system. Both the experimental set-up and procedure are described in the second part

of this chapter.

During this research, attempts were made to determine the size distribution of the

evaporating CO2 droplets in the two-phase spray from the inflator. A Malvern

Mastersizer, based on small angle light scattering, was used for this purpose. Due to the

highly transient character of the spray, its variable orientation and size, and the large

38
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temperature gradients between the center of the spray and the surroundings, no conclusive

data could be obtained.

Figure 2.1 Schematic Layout of the Main Experimental Set-up
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2.2 Main Experiments

Figure 2.1 contains a schematic layout of the main experimental set-up. All important

components of the set-up are discussed below. The main experiments in this work are

similar to Blowdown Experiments, as described in the literature [11,18,37,40,42,52].

However, these blowdown experiments are almost exclusively conducted to develop

models which predict the behavior of a system in case of an emergency, for example the

failure of a chemical reactor or a pipe in the cooling circuit of a nuclear power plant (so

called `LOCA': Loss of Coolant Accidents). In contrast, in the case of the SLG-Inflator,

the blowdown process is the desired effect and concerns the normal operation mode

rather than an emergency.

2.2.1 Inflator Vessel

Two stainless steel vessels were used during the experiments. Both of the vessels are

cylindrical in shape and have a collar fitted to them, such that they can be mounted on the

bottom plate of the receiving tank by means of four clamps. The collar contains two O-

rings to make a gas-tight seal between the tank and the inflator. When mounted on the

bottom plate of the tank, the vessel itself remains outside, while the nozzle and the release

mechanism are inside.

The first vessel, shown in Figure 2.2 and referred to as vessel 'A', is a two-ended

reactor vessel (1) . A hole in the side wall (hole '3' in Figure 2.2) was manufactured to

allow the connection of a pressure or temperature sensor. The release mechanism is

mounted on the vessel in hole '2'. The other side, hole 'I ', is connected to the filling

(I) Manufactured by Autoclave Engineers Inc., Erie, Pennsylvania 16512, USA
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assembly. Part of the original closure design is used, including a hollow conical plug

which sits on the tapered part of hole 2' in Figure 2.2. The inside diameter of the plug is

7.96 mm.

58.8

Figure 2.2 Cross Section of Inflator Vessel A [dimensions in mm]

The internal volume of the reactor was measured by filling it with water and recording the

weight increase. The result was 113 ± 1 ml, which corresponds well to the 103 ml

nominal capacity, as specified by the manufacturer.

Figure 2.3 Cross Section of Inflator Vessel B [dimensions in mm]

The second vessel, referred to as vessel 'IT, was manufactured by Breed

Technologies Inc., and consists of pieces of stainless steel pipe which are welded
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together. Figure 2.3 is a cross sectional view of this vessel. One end of the vessel - hole

'2' - is connected to the release mechanism and the other end - hole '1' - to the filling

assembly. Hole '4 ' in the side wall is used to mount a thermocouple. The other hole in the

side wall - hole '3' - is used to connect a pressure transducer. Again, the vessel volume

was measured by filling it with water and recording the weight increase. The result was

26.0 ± 0.5 ml. For safety reasons, before the experiments started, the vessel was tested by

static water pressure up to 15,000 psig at room temperature. Most of the experiments

were conducted with this vessel.

2.2.2 Release Mechanism and Nozzle

The release mechanism consists of a burst disk that can be ruptured on command by

means of an actuator. The entire mechanism is housed inside the nozzle, which is

mounted on the end of the inflator. A different nozzle and release mechanism was used

for each inflator vessel. All parts were made of stainless steel.

2.2.2.1 Release Mechanism: Figure 2.4 (a&b) shows the principle of both release

mechanisms. The dotted lines near the bottom mark the contours of the inflator vessel to

which the nozzle is connected.

Both mechanisms are driven by a piston actuator(²) . This cylindrical device (33

mm long and 8 mm in diameter), is activated by applying 12 V from the battery through

the activation wires.

(2) Manufactured by ICI Explosives, Aerospace and Automotive Business, Nobel's Explosives Co. Ltd.,
Stevenson Scotland, UK. Part # Metron DR 2000 Series : DR2006/C1
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The electrical signal initiates the explosion of a small pyrotechnic charge at one end of

the actuator. The energy of this reaction is used to push a 14 mm long axial rod through

the housing and out of the other end of the actuator. The average force with which the rod

is pushed from the actuator is about 2300 N.

Figure 2.4 Nozzles with Built-in Release Mechanisms

In the first mechanism, Figure 2.4(a), the actuator is mounted such that the

actuator rod hits the striking pin and pushes it through the burst disk, which causes it to

fail. The rating of the burst disk is critical in this design. On the one hand, it should be

strong enough to withstand the stress that is generated by filling the inflator with

pressurized liquid. On the other hand, it was observed that burst disks with a rating

considerably higher than the storage pressure, do not fail catastrophically when punctured

by the striking pin. Instead, only part of the disk tends to be destroyed or only a central

hole is made. Therefore, in order to perform the experiments at different initial pressures,
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a series of disks with varying rating was used (³) . The usage of a rated burst disk limits the

flexibility of the release mechanism. The opening time of the first mechanism is

determined by the rupturing of the burst disc and is expected to be negligible.

The actuator in the second mechanism, Figure 2.4(b), is identical to the one used

in the first mechanism. Although the second mechanism is slightly more critical in

manufacturing precision, it avoids the usage of rated disks and is therefore considerably

cheaper and more flexible. Brass shim - thickness 0.0254 mm - is used as a burst disk and

is supported by the sliding piston in the inactivated state. The piston is held in place by

the tangential locking pin. Upon activation, the actuator rod pushes the locking pin

through the tangential channel, allowing the sliding piston to move freely along the axis

of the nozzle body. At that point, the shim stock is no longer supported and it is ruptured

by the pressure in the vessel. Finally, the piston is pushed upwards and the exit holes of

the nozzle are cleared. In practice, additional components are needed to slow down the

sliding piston as it reaches the top of the nozzle body and to prevent the locking pin from

shooting out sideways. A simplified dynamic analysis of the mechanism was performed.

The only forces acting on the sliding piston are assumed to be the inflator pressure, which

is taken constant and equal to the storage level, and gravity. Initially, the piston is

stationary and positioned such that it supports the burst disk. The calculation of the

accelerated motion of the piston yields the time that it takes to reach the lower and the

upper edge of the exit holes in the central channel in the nozzle. The results for inflator

pressures ranging from 50 - 2000 psig are shown in Figure 2.5. For inflator pressures

exceeding 1000 psig, the exit holes are cleared completely in 2 ms or less. The distance

(3) Manufactured by Oklahoma Safety Equipment Co., Broken Arrow, OK, USA, rating : 830 - 1550 psig.
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between the curves represents the time for which the nozzle is only partially opened (i.e.

the piston is located somewhere between the lower and the upper edge of the exit holes).

Figure 2.5 Characteristic Times of the Second Release Mechanism

2.2.2.2 Nozzle: The nozzle of Figure 2.4(a) was used in combination with inflator vessel

A (Figure 2.2). After rupturing the disk, the fluid flows through the central channel of the

nozzle and through six, equally spaced, radial exit holes into the receiving tank. The

diameter of the axial channel is 12.7 mm. Each exit hole is 4.8 mm in diameter. Both the

cross section of the central channel and the total area of the six holes combined, is larger

than the inner diameter of the conical plug in the closure mechanism of the inflator

vessel. Therefore, the plug will limit the evacuation rate of the vessel. The radial

orientation of the exit holes assures that there is no thrust force on the vessel during the

inflation sequence.
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The second nozzle, Figure 2.4(b), was used in combination with inflator vessel B

(Figure 2.3). Once the sliding piston of the mechanism clears the exit holes, the fluid

flows through the central channel in the nozzle and through the four holes into the

receiving tank. The diameter of the central channel is 11.2 mm, which is slightly larger

than the inner diameter of the inflator vessel (10.5 mm). The four exit holes are at a 45°

angle with the nozzle axis and are each 6.35 mm in diameter. Putting the holes at an angle

instead of radially facilitates the outflow of the fluid. At the same time, it introduces a

thrust force on the device during the inflation sequence. This force is absorbed by the four

clamps on the bottom plate of the receiving tank.

Table 2.1 summarizes the most relevant information about the two inflator vessels

and their corresponding nozzles and release mechanisms.

Table 2.1 Overview of Inflator and Nozzle Characteristics

(*) Estimated on the basis of simplified internal dimensions.
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2.2.3 Receiving Tank

The receiving tank consists of a Plexiglas tube, pressed between two circular, chromated,

steel plates by means of four tie rods. O-rings between the plates and the tube end

guarantee a gas-tight seal. Figure 2.6 contains a cross sectional drawing of the receiving

tank.

Plexiglas tube

Bottom plate

Thermocouple
mounting hole

Figure 2.6 Cross Section of the Receiving Tank [dimensions in min]

The dotted lines at the bottom of Figure 2.6 mark the contours of the inflator vessel when

it is mounted on the bottom plate. The volume of the tank was measured by filling it with

water and measuring the weight increase. The result was 9.72 ± 0.09 liter. A finite
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element analysis was performed on the receiving tank to investigate the stresses in the

Plexiglas tube. For the analysis, the maximum pressure inside the tank was taken to be 10

bar. The simulation indicated that this load generates a maximum stress of 16 N/mm ² at

the point where the tube end meets the steel plates. Since this is less than a quarter of the

maximum allowable stress - specified by the manufacturer as 66.2 N/mm2 ² -, the design

was considered to be safe.

2.2.4 Pressure Transducers

Three different strain-gage pressure transducers were used during the main experiments.

Table 2.2 summarizes the relevant properties of each sensor. The first two transducers in

Table 2.2 were used to measure the inflator pressure. The second one was used only in

experiments where the initial inflator pressure exceeded the range of the first transducer.

Table 2.2 Pressure Transducer Specifications

Because of the larger response time, only static pressure measurements were performed

with the second sensor (i.e. measuring the initial inflator pressure). The last transducer in

Table 2.2 was used to record the pressure evolution inside the tank. All transducers

measure relative pressures.



49

2.2.5 Thermocouples

Two different kinds of thermocouples were used in the set-up. The thermocouples in the

receiving tank, part 10 & 13 in Figure 2.1, are described first. Both are unsheathed, fine

gage, E-type thermocouples with a beaded junction and a wire diameter of 0.0005 inch

(12.7 μm)(4 ) . The miniature dimensions of the thermocouple guarantee a fast response.

Measurements, provided by the manufacturer [7], indicate a response time ofof the

thermocouples of 4 ms when submerged in air flowing at 20 m/s. Especially in the first

stage of the inflation sequence, a rapid response of the sensors is required to accurately

record the fast changes in the system. Since the turbulence in the receiving tank is

maximal during the first stage, it is estimated that the mixing velocity exceeds 20 m/s and

a response time of less than 1 ms is anticipated. In the later stages of the experiment,

when the tank gases are fairly stagnant, a larger response time is expected. Since the

temperature variations in the tank will be smaller and slower than in the initial stage, this

will not pose a problem. The main drawback of this kind of thermocouple is obviously its

low mechanical strength. Not only does this complicate the handling procedure, but it

also restricts its position in the set-up to regions away from the direct path of the two-

phase jet.

The thermocouple inside the inflator - part 14 in Figure 2.1 - is an E-type, pencil

probe, eroding thermocouple (6) . Its junction is made by smearing small particles from one

metal to another by means of an emery cloth.

(4)Purchased from Omega Engineering Inc., Stamford, CT, USA. Part # : CHCO-0005.
(5)The response time of a thermocouple is defined as the time required to reach 63.2% of the final value

after an instantaneous temperature change.
(6) Manufactured by NANMAC Corporation, Framingham, MA, USA. Part # E12-3-E-U-¼N-SP.
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The result is a very thin junction, which, according to the manufacturer [8], allows

response times of less than 10 μs. The junction is continually renewed by the eroding

effect of the gas stream. While this thermocouple works well in fluid streams with a

relatively large heat capacity - either a dense fluid or a high flow rate -, the body of the

sensor tends to disturb the temperature field in flows with a small heat capacity. This

causes the results of the dynamic inflator temperature measurements to become unreliable

after the first few milliseconds.

All thermocouples are used in combination with a miniature full bridge

compensator (7) and a signal conditioner (8) , which amplifies the thermocouple output to 0-

5 V at a sampling rate of 2500 Hz.

The output of the thermocouple circuit was experimentally correlated to

temperature over the range of 0-50 °C. This was done by gradually heating an oil bath and

recording both the output of the circuit and the temperature indicated by an accurate

mercury thermometer. A linear expression was established : T [CC] = ac, + a1.v , with a0 =

0.3024919, a l = 328.30524 and v the circuit output in volts. This expression was used in

all experiments to correlate the measured output of the signal conditioner to the actual

value of the temperature.

2.2.6 Data Acquisition System and Computer

The data acquisition box, with four input channels, samples and digitizes the output

signals from the sensors before sending the information to the computer.

(7)Manufactured by NANMAC Corporation, Framingham, MA, USA. Part # Fl 1-12.
(8)Purchased from Omega Engineering Inc., Stamford, CT, USA. Part # :OM5-WMV-50B-C.
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The latter contains software that was developed by Breed Technologies Inc. The program

allows the specification of the sampling rate, the storage of the data in a text file and the

real time display of all sensor outputs. Most of the experiments were performed with a

sampling rate of 1000 Hz. Higher sampling frequencies are not useful since the response

time of the sensors is about 1 ms.

2.2.7 Gas Booster Compressor

When CO ² is ordered from a manufacturer, it is delivered in cylinders at a pressure of

about 830 psig. The required inflator pressure in the experimental set-up, typically 2000

psig, was obtained by means of a booster pump (9) . This is a purely mechanical device

which consists of a large area, reciprocating, air driven piston, directly coupled by a

connecting rod to a small area gas piston which operates in a high pressure gas barrel

section. There is no risk of hydrocarbon contamination of the produced gases or liquids as

the pistons run without lubrication. Gases such as propane, CO ,), nitrous oxide and others

can be pumped either as a gas or a liquid. The pump has a piston area ratio of 62:1 and a

maximum outlet pressure of 9000 psig.

2.2.8 Gases

The CO² that was used in the experiments was of the quality 'Bone Dry'. In the majority

of the cases, nitrogen was used to purge the receiving tank prior to the experiment. The

nitrogen that was used was of pre-purified quality with a water content of less than 3

ppm.

(9) Manufactured by Haskel International Inc., Burbank, CA, USA. Model AG-62.



52

2.3 Procedure of Main Experiments

A brief description of the standard experimental procedure is presented in this section. In

addition, information is provided about the experiments in which the procedure differed

considerably from the standard procedure. These include experiments at low initial tank

temperature, high initial inflator temperature and cases where an organic liquid was added

to the system.

2.3.1 Standard Experimental Procedure

The following steps were taken during each of the main experiments:

1. Record ambient pressure from a mercury barometer.

2. Power up the data acquisition box and the computer and allow 30 minutes for the

sensors to heat up. At this point, two of the data acquisition channels are connected to

the pressure transducers, while the other two are connected to the vessel thermocouple

and the tank thermocouple in the bottom plate.

3. Assemble the release mechanism and insert a new actuator.

4. Zero all data channels after making sure that the pressure transducers are exposed to

ambient pressure and shorting the input of the thermocouple signal conditioners. This

is equivalent to submerging the thermocouples in an ice bath, which corresponds to

the reference temperature of the cold junction compensator.

5. Purge the inflator with CO², insert a burst disk and attach the nozzle to the vessel.

6. Use the booster pump to increase the pressure in the inflator. This has to be done in

stages, such that time is allowed for the inflator to cool down after every compression.
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7. Close the filling valve of the inflator, bleed off the CO² from the filling hose and

disconnect the hose from the vessel.

8. Mount the inflator on the bottom plate of the receiving tank.

9. Connect the activation wires to the actuator and assemble the receiving tank.

10. Purge the receiving tank with nitrogen or another dry gas by opening the venting

valve while the gas flows in through the purging valve. After purging, both valves are

closed. This action removes the moisture from the tank and prevents it from

condensating on the cold CO² spray.

11. Record the initial vessel temperature and connect the signal wire from the vessel

thermocouple to the top tank thermocouple.

12. Initiate the data capturing sequence on the computer by entering a file name, the

duration of the experiment and the sampling rate.

13. Close the switch in the activation wires to fire the actuator.

14. After the data capturing sequence has terminated, the system is left to equilibrate until

the temperature in the receiving tank becomes uniform and is only slightly below

ambient temperature. During this time, the pressure and the temperature in the tank

are recorded repeatedly. This allows an accurate calculation of the initial amount of

CO² that was contained in the inflator prior to activation.

15. Open the venting valve of the tank and the filling valve of the vessel to release the

gases from the system.

16. Remove the vessel from the bottom plate.

17. Disassemble and clean all parts of the experimental set-up.
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2.3.2 Procedure for Experiments at Low Initial Tank Temperature

Experiments at low initial tank temperature were conducted with both N2 and CO 2 as

purging gas. The case in which N² was used, is discussed first.

Cooling was obtained by placing the receiving tank, except for the tank pressure

transducer, in a refrigerator at a controlled temperature. After allowing time for the

equilibration of the temperature (at least 4 hours), the tank, wrapped in thermal insulation,

was removed from the refrigerator. Subsequently, the vessel was mounted on the bottom

plate and the tank was opened to connect the activation wires to the actuator. Then, the

tank pressure transducer, also wrapped in thermal insulation, was mounted on the top

plate of the tank. Further reduction of heat transfer was accomplished by separating the

transducer and the cold tank wall by means of a short plastic tube. In a last step prior to

the experiment, the tank was purged with cold N², which had been stored in the same

refrigerator as the tank. Typically initial tank temperatures downto about -40 °C could be

attained in this manner.

For experiments at lower initial tank temperature (below -50 °C), CO² was used

as purging gas. The procedure was similar to the one above, but before the tank was

closed, several pieces of dry ice were placed on the bottom plate inside the tank. Time

was allowed for the sublimation of the dry ice and the excess CO² vapor was bled off

through the purging valve of the tank. After complete sublimation of the dry ice, the

purging valve was closed and the actuator was activated.

In all experiments, the inflator was connected to the cold tank for about two

minutes before the activation of the release mechanism. This time proved sufficient for

significant heat transfer between the inflator and the tank to occur. Hence, the inflator
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temperature tended to drop below ambient conditions during the preparation of the

experiment. To compensate for this cooling, electrical heater tape was wrapped around

the inflator and the power was regulated such that the inflator temperature remained close

to ambient. Because the inflator temperature is measured at only 1 location and because

of the influence of the inflator wall temperature on the nucleation process [52], the

heating of the inflator is a source of significant uncertainty.

2.3.3 Procedure for Experiments at High Initial Inflator Temperature

The standard experimental procedure for the main experiments was followed, except that

the inflator was heated by means of electrical heater tape. To minimize internal

temperature gradients, the heater tape was wrapped over the entire length of the part of

the inflator that remains outside the tank during an experiment. In addition, the

temperature was maintained at the required level for at least 15 minutes before activating

the actuator. The power supply to the heater tape was controlled manually by means of a

variable transformer and the inflator thermocouple was used to monitor the temperature.

2.3.4 Procedure for CO2/Organic Liquid Experiments

The standard experimental set-up was used for all experiments. The organic liquids were

added to the CO² in the following manner. After purging the inflator with CO² for at least

1 minute, the filling valve was closed and the inflator was placed in a vertical position

with the mounting hole for the nozzle facing upwards. A plastic cap was placed over the

nozzle hole to prevent the surrounding air from entering the inflator. Using a pipette, a

specified amount of solvent was metered and injected in the vessel through the nozzle
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hole (after removing the plastic cap). In order to minimize the evaporation of the organic

liquid, care was taken to mount the nozzle assembly on the inflator immediately after the

injection of the solvent. Subsequently, the booster pump was activated for several strokes

to build up pressure in the filling hose. Only then, the filling valve was opened and the

pressurization of the vessel was completed. This procedure was adapted to prevent the

organic liquid from flowing into the filling hose. The remainder of the experimental

procedure was identical to the standard procedure.

2.4 Reference Experiment

This section contains the results of a typical main experiment. The initial conditions that

were used are considered nominal, and the corresponding results serve as a base of

comparison for all other main experiments. Hence, this experiment is referred to as the

Reference Experiment. The nominal initial value of the inflator pressure is the result of

the study of the effect of the initial pressure on the performance of the system. This study

is described in Chapter 4, along with the other experimental results and the qualitative

model of the system.

Table 2.3 lists the initial conditions for the Reference Experiment, together with

the typical amounts of fluid in each compartment. The initial amount of N² in the tank

was calculated using the ideal gas law and the knowledge of the pressure, temperature

and volume. The amount of CO² in the inflator was obtained by measurements of the

equilibrium pressure and temperature in the system after the experiment. This procedure

is described in §2.3.I.
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The evolution of the tank pressure, the inflator pressure and the average tank

temperature is shown in Figure 2.7(a-c). As stated before, the measured pressures are

relative to ambient pressure. Typical for nearly all main experiments are the two

distinctive stages in the tank pressure curve (Figure 2.7(a)). In the first stage, the tank

pressure increases rapidly at a rate of about 0.2 psi/ms. The maximum pressure at the end

of the first stage is 5.3 psig, which is reached at about 33 ms after the first drop in inflator

pressure was detected. This maximum pressure corresponds to P- peak in the common tank

tests. The results of the high-speed cinematography studies, which will be discussed in

Chapter 4, indicate that the end of this first stage coincides with the end of the existence

of the two-phase jet in the tank. The rapid increase in pressure in this stage is the result of

the expansion of the vapor phase of the jet, in combination with the rapid evaporation of

small and high-energy liquid droplets. The flat part of the curve during the first 3 ms is

due to the finite opening time of the release mechanism and the finite response time of the

pressure transducer.
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Figure 2.7 Measurements during the Reference Experiment
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The increase in pressure in the second stage of the curve is considerably slower. Initially,

the pressure rises at a rate of about 0.06 psi/ms, but after 100 ms this rate continually

decreases and eventually reaches zero as the system attains equilibrium with the

surroundings. The slower increase in pressure is the result of two phenomena. First, heat

transfer from the tank walls starts to become important and heats up the gaseous mixture,

which leads to an increase in pressure. Second, the same heat transfer causes the

solidified droplets to sublimate. The latter generates more CO² vapor and also increases

the pressure.

The inflator pressure curve is shown in Figure 2.7(b) and typically contains four

characteristic stages. The first of these is the relatively slow pressure drop during the

initial 2 ms. As shown in Figure 2.5, the duration of this stage corresponds to the time for

the sliding piston of the release mechanism to reach to lower edge of the exit holes in the

central nozzle channel (see Figure 2.4(b)). The additional volume inside the nozzle,

which is created by the movement of the sliding piston, is about 10% of the total inflator

volume. During the first 2 ms, the compressed liquid CO, expands isentropically into this

additional volume. The second characteristic stage in the inflator curve starts at about 2

ms, and consists of a rapid decrease in pressure. During this stage, the forerunner

propagates through the vessel at the local speed of sound and bounces back from the

closed end. The finite opening time of the mechanism is expected to flatten the forerunner

[63]. At the end of the second stage, about 5 ms into the inflation sequence, nucleation

has occurred over the entire length of the inflator and the generated bubbles continue to

grow by evaporation at the interfacial surface. The maximum depressurization rate is

observed during the second stage of the curve and is about 55 bar/ms. The third stage of
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the curve corresponds to the flat part extending from about 5 to 15 ms. In this time, the

evaporation wave, which was initiated at the end of the second stage, propagates towards

the closed end of the inflator. The last stage in the curve, a gradual decrease in pressure,

starts when the evaporation wave passes the location of the pressure transducer.

Assuming that the evaporation wave started to travel shortly after the steep pressure drop

in the second stage of the curve, its average velocity can be calculated as 15-20 m/s. This

corresponds well to the values listed in the literature [47,63]. The average

depressurization rate during the experiment is about 4.5 bar/ms. Most of the other

experimental studies were done at lower depressurization rates [11,18,37,40,42,52]. The

end of the 4 th stage in the inflator curve coincides with the end of the first stage in the

tank pressure curve and the end of the two-phase jet from the nozzle.

The result of the measurement of the average tank temperature is shown in Figure

2.7(c). It is obtained by averaging the signals from the top and bottom thermocouple in

the receiving tank and is based on the assumption of good mixing of the gaseous

components in the tank. Certainly during the early stages of the experiment (t < 30 ... 40

ms), the turbulence inside the tank is such that this assumption is justified. A

straightforward manner to check this assumption consists of comparing the signals from

the top and the bottom thermocouple during the inflation sequence. When good mixing

takes place, both thermocouples should generate a similar signal. This procedure was

performed for each experiment and in nearly all cases, both thermocouples generated very

similar readings throughout the inflation sequence. To the best of the authors knowledge,

this is the first time that the measurement of the average temperature in tank tests was

performed with high accuracy. Other studies which include the results of tank tests
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measure only tank pressure [24] or use an approximate tank temperature measurement

[85]. Three distinctive stages in the temperature curve are observed. In, the first one,

lasting to about 5 ms, the temperature remains virtually constant. Up to that time, most of

the phenomena take place inside the inflator and little flow from the nozzle has occurred.

The second stage is characterized by a rapid drop of the temperature and lasts to about 33

ms. During this stage, the two-phase jet exits from the nozzle. The vapor component of

this jet expands and mixes with the nitrogen. The liquid component is dispersed and

evaporates partially. The interaction of the evaporating droplets with the tank gases

depends on the initial conditions in both the inflator and the tank. Both the expansion and

mixing of the vapor phase and the interaction of the tank gases with the evaporating

droplets cause a temperature drop in the tank. The end of the second stage coincides with

the end of the evacuation of the inflator. At the onset of the third stage in the temperature

curve, at about 33 ms, a minimal temperature of -64 °C is reached. During the third stage,

the temperature stays constant at its minimal value, until about 1 s after the start of the

experiment. At the onset of the third stage, the conditions in the tank are relatively far

from saturation conditions and the constant temperature is caused by the slow sublimation

of the generated dry ice and the slow rate of heat transfer to the system.

By combining the tank pressure and the tank temperature curves, together with the

knowledge of the initial amount of nitrogen and the dimensions of the tank, the evolution

of the generated amount of CO² vapor can be calculated. It is assumed that the volume of

the liquid and solid CO ² in the tank is negligible. A detailed description of this

calculation is included in Chapter 5. Basically, a mixture of real gases is considered and
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modeled by means of the Peng-Robinson equation of state in combination with a van der

Waals Mixing Rule. The result is shown in Figure 2.8.

Figure 2.8 Generated Vapor Mass during the Reference Experiment

The generated CO² vapor mass is represented relative to the initial amount of CO, in the

inflator. The mass curves are considered to be the most important output of the main

experimental set-up. Similar to the tank pressure curve, two stages can be distinguished.

In the first stage, lasting to about 33 ms, a rapid increase in generated vapor mass is

observed. For the purpose of the inflation of an air bag, it is mainly this first stage that is

of interest. About 68% of the initial inflator mass is transformed into vapor at the end of

the inflation sequence. During the second stage, starting at about 33 ms, the generated

vapor mass increases slowly, as the dry ice in the tank sublimates. Typically, the curve

does not reach 100% transformation into vapor until after Is. However, at that stage in

the experiment, the gases in the tank are stagnant and it is likely that thermal stratification

has occurred. As a result, the assumption of good mixing fails and the measured
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temperature does no longer represent the average tank temperature. Hence, the generated

mass curve contains a high degree of uncertainty in this region. An indication for the

thermal stratification is the relatively large difference between the signals from both tank

theirnocouples which is typically observed at this stage in the experiment.

Using the value of the generated vapor mass, the partial pressure of CO2 ² in the

tank was determined. Based on this partial pressure, the corresponding saturation

temperature was calculated and compared to the measured average tank temperature.

Since the latter was at all times considerably higher than the saturation temperature, it

was concluded that condensation does not occur in the receiving tank. Like the

calculation of the generated vapor mass, this conclusion is based on the assumption of a

uniform tank temperature.

During each main experiment, a visual observation of the formation of dry ice in

the receiving tank was performed. Although an accurate assessment of the amount is

difficult, comparative conclusions could be formulated. In the reference experiment, dry

ice was formed in two isolated locations in the receiving tank.

2.5 High-Speed Cinematography Set-up

In order to obtain accurate visual observations of the two-phase spray which exits from

the nozzle during the inflation sequence, a high-speed cinematographic study was

performed. The spray size, shape and penetration velocity provide valuable information

about the phenomena which govern the dispersion and evaporation of the liquid.

Depending on the quality of the images, an estimate of the droplet sizes and velocities can

be made.
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Three different kinds of recordings were made. In all cases, a Kodak EktaPro

1000 Motion Analyzer in combination with a Kodak EktaPro Intensified Imager was

used. This is an analog system which stores the recordings on special video tapes. The

imaging rate is variable an can be set to 30, 60, 125, 250, 500 or 1000 images per second.

After the recording, the tapes can be played back at a reduced rate or frozen on a single

frame. Also, the tapes can be copied onto ordinary video cassettes and images can be

digitized and stored in a personal computer for further processing.

A series of spray images are included in Chapter 4.

2.5.1 Tank Images

The first recording is an observation of the two-phase spray as it is released in the

receiving tank during the main experiments. A halogen spot, reflected from an umbrella

located near the upper right corner of the tank, was used as a continuous light source. The

camera was fitted with a 50 mm lens with an aperture setting of 8. This provided

sufficient focal depth to see both the front and the back of the tank clearly. The diameter

of the upper part of the nozzle (31.75 mm) can be used as length scale. During the

recording, no information of the other sensors was captured and the thermocouple

mounting bracket inside the tank was removed to avoid the obstruction of the view. The

tank was purged with nitrogen as in the standard procedure of the main experiments.

2.5.2 Jet Images

The second recording contains images of one of the four jets exiting from the nozzle, as it

expands freely in a stagnant nitrogen atmosphere. A special expansion chamber was built
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for the experiments. The side walls of the chamber were constructed from Plexiglas,

while the top and the bottom was covered with black plastic sheeting. The end wall,

opposite to the nozzle hole, was also covered with plastic sheeting, but contained venting

holes to relieve the pressure when the jet was released. The objective of the chamber was

to surround the spray with dry nitrogen, such that condensation of moisture upon contact

with the cold CO 2 vapor was avoided. Prior to the recording, the chamber was thoroughly

purged with nitrogen. During the actual experiment, the supply of nitrogen was turned

off, such that the spray expanded in a stagnant atmosphere.

A xenon slip-sync strobe (¹0), with a maximum flashing frequency of 300 Hz, was

used as light source. The flashes are synchronized with the imaging system through the

external probe trigger. A recording rate of 250 images per second was used. The flash

duration is not accurately specified by the strobe manufacturer and lies between 8 - 30 11S

when operated in the 131-300 Hz range. Simple ways of measuring the flash duration are

known [88], and were considered in case the quality of the images would allow the

estimation of the velocity of individual particles by measuring their corresponding blur on

a single frame. The actual light emerges from a flexible bundle of fiber optics, connected

to the strobe head. Different backgrounds and positions of the light source were tested. A

black background with the light source located in the top of the chamber was used.

Everything was kept as dark as possible and it was mainly the luminescence of the spray

droplets that shows on the images.

(10) Manufactured by Chadwick-Helmuth Company Inc., El Monte, CA, USA. Model : Strobex 8440-3.
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The camera was positioned perpendicular to the side wall of the expansion

chamber, at the same height as the nozzle exit. It was frtted with a 50 mm lens on aperture

setting 2.8. The camera position was about 2 meters away from the expansion chamber.

The distance between the nozzle exit and the light source functioned as a length

scale. It was measured in the experimental set-up to be about 560 mm. This length scale

was used when determining the dimensions of the spray.

2.5.3 Nozzle Exit Images

The last series of images are detailed observations of a nozzle exit hole. The objective

was to closely monitor the type of jet that emerged from the vessel and to determine its

lifetime accurately.

The set-up was similar to the one from the jet images, and the same chamber was

used to surround the spray with nitrogen. The camera was fitted with a macro lens with an

aperture setting of 8. It was positioned perpendicular to the chamber and close to the side

wall. The observed area is roughly 8 by 10 mm. The same strobe as in the jet images was

used, but it was located at the top of the chamber, directly above the nozzle exit hole. A

frame of a collection of beads of 200 and 500 μm was used as length scale.



CHAPTER 3

IDEAL GAS EXPERIMENTS AND VALIDATION OF THE
PERFORMANCE OF THE MAIN EXPERIMENTAL SET-UP

3.1 Introduction

Prior to the actual experimental study of the SLG-Inflator, several experiments were

conducted in which the inflator was filled with pressurized N2 instead of CO 2 . These

preliminary experiments are referred to as the ideal gas experiments. The primary

objective of the ideal gas experiments was to estimate the reliability and the accuracy of

the measurements obtained from the main experimental set-up. The inflator conditions in

these experiments were such that the behavior of the N² in the system approached that of

an ideal gas. Based on this observation, a theoretical model which predicts the

measurements in the main experimental set-up during the ideal gas experiments was

developed. By comparing these simulations with the actual measurements, the accuracy

of the measurements was estimated. A similar procedure to validate the performance of

the experimental set-up was followed in [52,85]. The experimental results and the

corresponding simulations of the ideal gas experiments are presented in the first part of

this chapter. Next, the theoretical model is discussed. Finally, the accuracy of the

measurements of the main experimental set-up is assessed.

With respect to the inflator, the expansion of the N² in the ideal gas experiments is

very similar to that during a typical inflation sequence of the Stored Gas Inflator

(1.2.6.2). In order to assure ideal gas behavior of the N², the initial inflator pressure in

the ideal gas experiments was lower than the typical storage pressure of the Stored Gas

67
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Inflator (e.g. 5000 psig). However, in both systems, the flow from the inflator is choked

for nearly the entire process and a drastic drop in temperature of the inflator gases occurs.

Assuming a complete evacuation of the inflator (i.e. expansion into vacuum), the

temperature drop in the Stored Gas Inflator was calculated and listed in Table 1.3.

Because of the lower initial inflator pressure, and because the inflator is discharged in a

receiving tank with initially ambient pressure (i.e. an incomplete evacuation), the

temperature drop in the inflator during the ideal gas experiments will be less than in the

case of a Stored Gas Inflator.

3.2 Experimental Results

For the ideal gas experiments, the standard experimental procedure was followed (except

for filling the inflator with N²) and the receiving tank was purged with N² in all cases.

Initial inflator pressures in excess of the pressure of N² in the storage cylinders were

obtained by means of a booster pump.

Table 3.1 Ideal Gas Experiments

er definition: Z-= (P.v)/(R.T). Values that differ from unity indicate non-ideal gas behavior.
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Table 3.1 provides an overview of all ideal gas experiments that were conducted.

The last column lists the properties that were recorded during each experiment. The ideal

gas behavior of N² was verified for each set of initial inflator conditions by calculating

the corresponding compressibility factors using Lee & Kesler's Tables [16]. The resulting

compressibility factors are listed in the 4 th column of Table 3.1. For experiments 4, 5, 7

and 8, a deviation from ideal gas behavior is observed. As expected, the non-ideality

increases with the initial inflator pressure. The implications of this deviation will be

discussed in this section. The experiments with the large inflator vessel (experiments 1-5)

will be discussed first.

Figure 3.1 compares the simulated and the measured evolution of the tank

pressure for experiments 1 and 3-5 of Table 3.1. The vertical marks on the simulated

curves indicate the transition from choked to non-choked flow. Typically, the flow is

choked during 75-80% of the expansion. The expanding N² in the tank causes

considerable pressure fluctuations during the experiment.

Figure 3.1 Measured and Simulated Tank Pressure for Experiments 1, 3, 4 and 5
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These fluctuations disappear after about 200 ms. An attempt was made to relate the

period of these pressure fluctuations to the dimensions of the receiving tank and the sonic

velocity of N². No simple relationship could be established and it is believed that the

fluctuations are the result of a complex interaction between shock waves bouncing off the

top, bottom and side walls of the tank. For the experiments at low initial inflator pressure

(experiments 1&3), excellent agreement is observed. At higher initial inflator pressure

(experiments 4&5), a small difference in the magnitude of the tank pressure is shown.

The latter is caused by the non-ideal gas behavior of the N² in the inflator. As shown in

Table 3.1, the compressibility factor of N² for experiments 4 and 5 exceeds unity. As a

result, the actual initial amount of N² in the inflator will be lower than that predicted by

the ideal gas law.

Inflator Pressure

Figure 3.2 Measured and Simulated Inflator Pressure for Experiments 2 and 3

This effect is taken into account by dividing the calculated tank pressure by the

compressibility factor corresponding to the initial inflator conditions. This procedure was
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performed for the tank pressure curve of experiment 5. Subsequently, the difference

between predicted and measured tank pressure was averaged over the time interval from

50 to 100 ms. The result showed an average difference between predictions and

measurements of slightly more than 3%. The limited duration of the time interval justifies

neglecting the influence of external heat transfer during the calculation.

Figure 3.2 shows the measured and predicted inflator pressure evolution for

experiments 2 and 3. Excellent agreement is observed. This concludes the discussion of

the results of the N² experiments with the large inflator vessel.

Figure 3.3 Measured and Simulated Tank Pressure for Experiments 6-8

The simulated and measured tank pressure for the last 3 experiments of Table 3.1

(with the small inflator vessel) are compared in Figure 3.3. The absolute magnitude of the

pressure fluctuations is the same as before (Figure 3.1). Relative to the average pressure

level, the fluctuations have increased in amplitude. For experiment 6, with low initial

inflator pressure, the measured and simulated curves correspond very well. The



72

experiments with high initial inflator pressure (experiments 7&8) show a significant

deviation between measurement and simulation. Using the same procedure as before to

compensate for the non-ideal gas behavior of N² in experiment 8, the dotted line was

obtained. The difference between the measured and the predicted tank pressure was

averaged over the interval from 50-100 ms. An average deviation of 6.5 % was obtained.

Figure 3.4 contains the measured and simulated inflator pressure for experiments

6 and 7 of Table 3.1. While the evacuation process of the large inflator vessel (volume of

100 ml) lasts about 40 ms, the expansion from the small inflator (volume of 26 ml) is

completed in less than 10 ms. The finite opening time of the release mechanism is taken

into account by translating the simulated curves parallel to the time-axis over a distance

of 2 ms. The latter is approximately equal to the time it takes for the sliding piston in the

second release mechanism to clear the exit holes in the central channel of the nozzle. This

time was calculated in §2.2.2.1.

Inflator Pressure

	exp. # 6 : measured

	 exp. 4 6 : simulated

— — — exp. # 7 : measured

exp. # 7 : simulated

Figure 3.4 Measured and Simulated Inflator Pressure for Experiments 6 and 7
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For times larger than 2 ms, both the amplitude and the dynamics of the simulated and the

experimental curves agree very well.

During experiment 7 of Table 3.1, the average tank temperature was also

recorded. The result is compared with the corresponding simulation in Figure 3.5. Again,

the simulated curve is translated to compensate for the opening time of the release

mechanism. At first, the discrepancy between the measurement and the simulation seems

significant.

Figure 3.5 Measured and Simulated Tank Temperature for Experiment 7

However, two issues need to be taken into account. First, based on the experimental

results in this section and those of the Reference Experiment in §2.4, it is clear that the

tank temperature variation for an ideal gas experiment is much smaller than that for an

actual inflator experiment in which liquefied CO² is used. Hence, assuming that the

absolute error on the temperature measurement is the same for both types of experiments,

the relative error for the experiments with liquefied CO² will be considerably smaller than
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in Figure 3.5. The second issue concerns the drop of the measured temperature below the

simulated value that occurs at about 14 ms in Figure 3.5. As discussed earlier, the

expansion during the N² experiments is identical to that during the inflation sequence of a

stored gas inflator. Hence, similar to the predictions in Table 1.3, the N ² that remains

inside the inflator after the completion of the expansion is extremely cold. It is believed

that the drop in temperature in Figure 3.5 is caused by the mixing of the remaining gas in

the inflator and the tank gases. This is not taken into account in the model.

Amount of Nitrogen in the Tank

Figure 3.6 Measured and Simulated Mass of Nitrogen in the Tank for Experiment 7

The amount of N² in the tank was calculated using the measurement of the tank

pressure and the average tank temperature. Conditions are such that ideal gas behavior

may be assumed. The initial amount of N² in the inflator was calculated from

measurements of the pressure and temperature in the system after it equilibrated with the

surroundings. Using the ideal gas law, along with the knowledge of the tank volume and

the initial amount of N² in the tank and the inflator, the increase in mass in the tank could
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be calculated. This result is compared with the corresponding simulation in Figure 3.6.

Excellent agreement between the simulation and the experiment is observed.

3.3 Theoretical Model

As shown in Table 3.1, at initial inflator pressures below 100 bar, N ² exhibits ideal gas-

behavior. Based on the short duration of the experiment, it is justified to neglect heat

transfer from the tank or inflator walls to the expanding gas. In addition, the influence of

wall friction and viscosity is assumed to be negligible. Hence, the process can be modeled

as an isentropic expansion of an ideal gas. Furthermore, the considerable length to

diameter ratio of the inflator suggests a one-dimensional approximation of the flow. The

specific heat capacity of N² varies very little in the temperature range under consideration

and was considered to be constant. Figure 3.7 contains a schematic representation of the

main experimental set-up, with an indication of the two control volumes which are

considered in the model. The adiabatic walls indicate that no heat transfer is taken into

account.

Figure 3.7 Control Volumes in the Ideal Gas Model
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The two control volumes are connected through the no771e, with a known area of the

critical flow section (Acrit). Throughout the expansion, a relatively powerful N 2-jet exits

from the nozzle and causes strong mixing in the tank. Based on this observation and on

the relatively small size of the inflator vessel, a uniform temperature in both control

volumes is assumed during the expansion process.

The mass flow rate ( m) between the two control volumes was calculated using the

well-known one-dimensional laws for the isentropic flow of an ideal gas [74]. Transient

effects during the initial stages of the experiment are neglected and the process is

assumed to be quasi-steady. If the pressure ratio (¹) is smaller than the critical ratio, the

flow from the inflator is choked. The critical pressure ratio is determined by:

When the flow is choked, the velocity of the gas through the critical section in the nozzle

is sonic and the Mach number reaches unity in this section. For this case, the mass flow

rate is given by:

On the other hand, if the pressure ratio is larger than P

P

	 the flow is not choked. This

is the case in the last stages of the experiment, and the Mach number at the critical section

is smaller than 1:

(I) The pressure ratio is defined as the ratio of the pressure inside the tank to the pressure inside the inflator.



Based on this, the mass flow rate becomes:

Initial Conditions
•N 2 -properties
• (P, T, V, m, U)tank
• (P, T, V, m, Li)' inflator

• area of critical section
• At (timestep)

• calculate mass flow rate :
• calculate mass fraction passing from the inflator
to the tank in this timestep : Am = M. At

• remove Am from the inflator :
minflator minflatorAm

Uinflator —>Uinflator Δm.hinflator
• calculate new (P, T)inflator

• add Am to the tank :

mtank	 mtank

Utank 3 Utank Δm.hinflator
• calculate new (P,T) tank

t+At
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Figure 3.8 Flow-chart of the N2-model
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The concept of the model is similar to that used to simulate the Stored Gas

Inflator [60] and basically combines the mass and energy balance for each control volume

with the calculation of the mass flow rate between them. A computer program was

developed to perform the calculations and a flow-chart of the code is included in Figure

3.8. A typical output of the program is shown in Appendix A.

In addition to this model, a simulation with a professional CFD-code - from AEA

Technology Computational Fluid Dynamics Services, Inc. - was performed in which the

two-dimensional character of the flow was considered. Since this gave no significantly

different results for the predicted pressure and temperature evolutions, the simple one-

dimensional model was used for all other simulations.

Instead of developing a computer program, analytical expressions for the

evolution of the tank and the inflator properties during the experiment could have been

derived. For example, the expression for the decrease in the inflator pressure is given in

[52]. Similar relations could have been developed for the other properties. However,

since this involves a considerable amount of mathematical manipulations, the current

approach (i.e. writing a small computer program) was preferred.

3.4 Performance of the Main Experimental Set-up

The results in this Chapter demonstrate that even in the case of the N2-experiments, in

which the expansion process occurs about five times faster than in the actual CO 2

experiments, all sensors react sufficiently fast. In addition, based on the comparison of

the experimental results and the theoretical simulations, the pressure and temperature

measurements in the main experimental set-up are estimated to have an uncertainty of
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approximately 3-5%. Since it is expected that the absolute error of the measurements is

the same for both the N2-experiments and the CO2- experiments, the larger variations in

pressure and temperature during the CO2-experiments will produce a smaller relative

error. Hence, an uncertainty of 3-5% is a conservative estimate.

A more accurate assessment of the uncertainty of the measurements could be

obtained by extending the theoretical model to include non-ideal gas behavior and the

mixing of the gases in the tank and the inflator (i.e. two-dimensional effects). This lies

beyond the scope of this research.

During the experimental study of the stored liquefied gas inflator, several key

experiments were repeated to verify the reproducibility of the results. For all cases, the

measurements varied less than the above uncertainty.



CHAPTER 4

EXPERIMENTAL STUDY OF THE
STORED LIQUEFIED GAS INFLATOR

4.1 Introduction

The objectives of the experimental study were to obtain a thorough phenomenological

understanding of the system and to develop a qualitative model of the SLG-Inflator. For

this purpose, a systematic study was performed of the influence of the main system

parameters on the inflation sequence. The main system parameters include: the initial

conditions in the receiving tank, the size of the critical section in the nozzle and the initial

inflator conditions. High-speed cinematographic recordings of the tank phenomena

during the Reference Experiment and of the two-phase jet from the inflator were made

and the observations were correlated with other experimental results. In addition, the

effect of adding small amounts of different organic liquids to the CO2 in the inflator was

investigated. Based on the experimental results of this research and with the aid of similar

studies in the literature, the dominant phenomena describing the behavior of the SLG-

Inflator were identified. This detailed understanding has served as the basis for

developing a quantitative model (Chapter 5).

The current chapter consists of two main parts. In the first part, the results of the

experimental study of the SLG-Inflator are described. In the second part, the qualitative

model of the SLG-Inflator is presented and a detailed discussion of the experimental

observations is given. An overview of the experimental data is provided in Figure 4.1.

80
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Figure 4.1 Overview of the Experimental Data

As illustrated in Figure 4.1, the presentation of the experimental results is organized in 5

sections, as follows:

1. Influence of Initial Tank Conditions: The initial tank conditions were varied by

using different tank gases, increasing the initial tank pressure and decreasing the

initial tank temperature. The objectives of these experiments were to assess the

influence of the tank conditions on the performance of the inflator and to obtain

understanding of the complex phenomena that occur in the tank during the inflation

sequence. The phenomena under consideration include the dispersion of a two-phase

jet, the evaporation and solidification of liquid CO 2 droplets, the mixing of non-ideal

gases and heat transfer from the tank gases to the evaporating spray. Heat transfer

from the tank walls is neglected because of the short duration of the inflation

sequence.
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2. Influence of Critical Nozzle Section: To illustrate the influence of the critical flow

section in the nozzle, results are presented of an experiment in which the critical

section was reduced.

3. Influence of Initial Inflator Conditions: Experiments were performed at different

initial inflator pressures and temperatures. Based on these results, the optimal storage

pressure for the SLG-Inflator was determined and the influence of the ambient

temperature was assessed. In addition, to illustrate the effect of the inflator volume,

results of an experiment with a larger inflator vessel are presented.

4. High-Speed Cinematographic Observations: Additional information about the tank

phenomena and the behavior of the two-phase spray from the nozzle was obtained

with the aid of high-speed cinematography.

5. Influence of Organic Liquids: Organic liquids were added to the system in order to

prevent (or delay) the CO 2 from freezing during the last stages of the inflation. These

experiments have demonstrated a drastic change in the tank measurements. No

references to this effect were found in the literature and it is believed that these results

constitute a new phenomenon.

A comprehensive qualitative model of the SLG-Inflator is presented at the

beginning of the second part of this chapter. The model was developed by combining the

current experimental data, thermodynamic evaluations of the system and results from

previous studies. The most important studies with respect to the inflator phenomena were

published fairly recently (1992, 1994) [47,63]. They contain a detailed discussion of the

interaction between the flashing process and the two-phase outflow of water from a
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tubular vessel. This interaction is essential for the understanding of the system. Based on

the qualitative model, key observations of the experimental study are explained. Phase

diagrams of the critical and metastable liquid region of CO2 were generated to clarify the

effect of the initial inflator conditions. Also, a qualitative explanation for the observations

pertaining to the CO2/Organic Liquid experiments is included.

The experimental set-ups and procedures were described in Chapter 2, together

with a detailed discussion of the results of the Reference Experiment (see Table 2.3 for

the initial tank and inflator conditions). Since these results serve as the basis for

comparison with other experiments, they are repeatedly referred to in this chapter.

In nearly all experiments, condensate (liquid and/or solid CO 2) is formed in the

tank and/or inflator during the inflation sequence. For the cases in which both the tank

pressure and tank temperature were measured, the amount and average specific internal

energy of the condensate at the end of the inflation sequence were determined. The

amount of condensate is an important parameter for the assessment of the performance of

the SLG-Inflator, since it represents the fraction of the initial liquefied CO2 that is not

transformed into vapor. The calculation of the amount and average specific internal

energy is based on a combination of the conservation of mass and the first law of

thermodynamics. A discussion of the energy analysis of the system is included in

Appendix B. By comparing the average specific internal energy of the condensate to that

of saturated solid CO 2 , the condensate phase can be estimated. A table with the specific

internal energy of saturated solid CO2 is included in Appendix B.

In addition to evaluating the amount and the properties of the condensate that is

being produced, the energy analysis of Appendix B was used to determine the energy
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redistribution in the system during the inflation sequence. These results are presented in

the second part of this chapter and provide an indication of the energy exchange between

the tank gases and the evaporating spray.

4.2 Experimental Results

In this section, the results of the experimental study of the SLG-Inflator are presented.

4.2.1 Influence of Initial Tank Conditions

As shown in Figure 4.1, three different types of experiments were conducted to assess the

influence of the initial tank conditions on the behavior of the system. For all cases,

nominal inflator conditions were used (i.e. P 0 = 2000 psig; T0 22 °C, see Table 2.3).

In the first type of experiments, three different gases (He, N2 and CO2) were used

to purge the receiving tank. Because of the difference in density and specific heat

capacity of the purging gases, the initial internal energy in the tank is different for the

three cases. The standard experimental procedure was followed (§2.3).

In the second type of experiments, the pressure of the purging gases in the tank

was increased. Experiments were conducted with two different gases (N2 and CO2), each

time at a relative initial tank pressure of 3 atm (i.e. an absolute pressure of 4 atm). The

higher initial tank pressure led to a significant increase in the initial amount of purging

gas and hence, to a considerable increase in the initial internal energy of the tank. The

standard experimental procedure was followed, with the exception of filling the tank to a

relative pressure of 3 atm. Since the sensors were zeroed prior to the purging process, the
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output of the tank pressure transducer was about 45 psig (3 atm) at the start of the data

acquisition.

The last type of experiments was conducted at low initial tank temperatures. The

initial tank pressure was equal to ambient pressure. The difference in temperature of the

purging gas resulted in different levels of initial internal energy in the tank. In addition, a

reduction in initial tank temperature led to a decrease in the temperature gradient

between the purging gases and the evaporating droplets in the two-phase spray from the

nozzle. Hence, heat transfer from the gases to the droplets decreased.

During all experiments, the inflator pressure, the tank pressure and the average

tank temperature were recorded. Except for the experiments at low initial tank

temperature, visual observations of the formation of condensate in the tank were

performed. Since the inflator pressure curves were identical for all cases, it is concluded

that the tank conditions (in the range that was investigated in this research) do not

influence the phenomena inside the inflator. Therefore, only the tank results and the

visual observations of the tank phenomena are discussed.

4.2.1.1 Effect of Different Tank Gases: Figure 4.2 contains the tank measurements

corresponding to the experiments in which the tank was purged with different gases (He,

CO2, N2). Initial conditions in the tank were ambient (about 20 °C and 1 atm) for the

three cases. Assuming ideal gas behavior of the purging gases at the initial tank

conditions and a constant isochoric specifrc heat capacity, the initial amount of tank gases

(mtank) and the initial internal energy in the tank (Utank) were calculated. The results are

shown Table 4.1. The last three columns of this table list the amount (mcond) and the
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average specific internal energy of the condensate (ucond) that was formed during the

inflation sequence.

Table 4.1 Experiments with Different Purging Gases (1 atm)

(I) With a reference temperature of 220K, and a cv of 3119, 745 and 611 J/kg.K for He, N, and CO2,
respectively.

(2) The initial amounts of CO 2(l) were calculated from equilibrium measurements (approx. 24.0 g for
all cases).

Figure 4.2(b) shows a small difference in the average tank temperature at the onset

of the horizontal plateau in the curves (at about 25-30 ms). The minimum average

temperature is highest for the case where CO.) was used -60 °C) and lowest for the case

where the tank was purged with He -71 °C). The curve corresponding to the Reference

Experiment (with N2 as purging gas) lies between the other two cases -64 °C). Also,

Figure 4.2(b) shows a strong influence on the average tank temperature during the actual

inflation sequence (from 2-25 ms). The temperature drop is slower for the case in which

the tank was purged with CO2 than in the other two cases. Furthermore, when He was

used as purging gas, the average tank temperature during the inflation sequence dropped

below the level that is reached at the onset of the horizontal plateau. It is thought that the

latter is the result of a temporary non-uniformity in tank temperature. The quality of the

mixing in the tank is expected to decrease with an increase in density difference between

the expanding CO2-vapor and the tank gases. This argument explains the more uniform

tank temperature in the cases where CO2 or N2 was used as purging gas.



Figure 4.2 Effect of Different Tank Gases

The tank pressure curves in Figure 4.2(a) show a slightly higher pressure and a

slightly longer inflation sequence when CO2 was used to purge the tank. The lowest

pressure and the shortest inflation sequence occurs in the case where the tank was purged

with He. Again, the curve corresponding to the Reference Experiment (N2 at 1 atm) lies

between the other two cases. The flat part in the tank pressure curves during the first 2

ms of the experiment, is mainly the result of the finite opening time of the release

mechanism.

87
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The generated vapor mass curves, corresponding to the pressure and temperature

measurements of Figure 4.2, do not show a signifrcant difference for the three cases and

are therefore omitted. This observation is confirmed by the calculated mass and average

specific internal energy of the condensate that is formed during the inflation sequence

(Table 4.1). In all cases, about 70% of the original amount of CO 2 was transformed into

vapor by the end of the inflation process. The value of the specific internal energy of the

condensate is virtually the same for the three experiments and lies within 2% of the

specific internal energy of saturated solid CO 2 at the triple point (Table B.1). This

indicates that the condensate is in the solid phase for the three cases. The visual

observations of the formation of condensate in the tank during the inflation sequence was

identical for the three experiments. In each case, similar isolated agglomerates of snow

were observed.

4.2.1.2 Effect of Increased Initial Tank Pressure: The tank measurements of the

experiments in which a relative initial tank pressure of 3 atm (absolute pressure of 4 atm)

was used, are shown in Figure 4.3. The experiments were conducted with CO 2 and N2 as

purging gas. Table 4.2 lists the initial amount of purging gas and the initial internal

energy in the receiving tank, calculated with the same assumptions as before. Similar to

Table 4.1, the last three columns contain the amount and average specific internal energy

of the condensate that was formed during the inflation sequence. The information about

the experiments with N2 and CO-) at ambient initial tank pressure is included in the last

two rows.
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Table 4.2 Experiments at Increased Initial Tank Pressure (1 and 4 atm)

(I) With a reference temperature of 220K, and a c, of 745 and 611 J/kg.K for N2 and CO 2 , respectively.
(2) The initial amounts of CO2(l) were calculated from equilibrium measurements (approx. 24.0 g for all

cases).

Both tank pressure curves of Figure 4.3(a) exhibit a different behavior compared

to the experiments conducted with ambient initial tank pressure. After the delay

corresponding to the opening of the release mechanism, three characteristic stages can be

identified. The first stage concerns a limited, but fast increase in pressure. This is

followed by a pressure drop in the second stage of the curve. The third stage in the curve

shows a slow increase in pressure. While the last stage is the same for both experiments, a

significant difference exists for the first two characteristic stages in the pressure curve.

The pressure increase during the first stage is slightly larger when CO2 was used as

purging gas. Also, the pressure drop in the second stage of this curve is smaller than in

the one corresponding to the experiment where the tank was pressurized with N2.

Figure 4.3(b) contains the average tank temperature measurements for the

experiments in Table 4.2. A clear difference between the curves is observed, both in the

rate at which the temperature drops and in the value of the average tank temperature at the

end of the inflation sequence (at about 30-40 ms). The experiment in which the tank was

filled with CO2 at an initial pressure of 4 atm shows the slowest and smallest decrease in

average tank temperature. The largest and fastest drop in average tank temperature is

observed in the curve corresponding to the experiment in which the tank contained N2 at
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1 atm. Figure 4.3(b), together with the values of Utank in Table 4.2, suggests a correlation

between the average tank temperature and the initial internal energy in the tank.

Figure 4.3 Effect of Increased Initial Tank Pressure

The generated vapor mass curves of the experiments in Table 4.2 are shown in

Figure 4.4. While the difference between experiments at the same initial tank pressure is
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small, a definite increase in generated vapor mass can be observed for the experiments at

higher initial tank pressure.

Figure 4.4 Generated Vapor Mass for Experiments with Different Purging Gases
and Increased Initial Tank Pressure

For the calculation of the properties of the condensate, the end of the inflation

sequence is typically taken at the end of the fast rise in the tank pressure curve (at about

30 ms). Because of the particular shape of the tank pressure curves in these experiments,

the end of the inflation sequence was taken at the onset of the horizontal plateau in the

average tank temperature curve. During the experiments at increased initial tank

pressure, the temperature non-uniformity in the tank was considerably larger than in the

experiments at ambient initial tank pressure. This was reflected by a large difference

between the signal from the top and the bottom tank thermocouple. While this difference

does not exceed 5-10 °C in the Reference Experiment, a prolonged difference of

approximately 20 °C was observed during both experiments at increased initial tank
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pressure. As a result, the uncertainty with respect to the calculation of the generated

vapor mass and the formed condensate is higher than for other experiments. Furthermore,

the low amount of condensate leads to additional uncertainty in the calculation of its

properties. The combination of both effects is believed to be responsible for the failure of

the calculation of the average specific energy of the condensate that is formed during the

inflation sequence of the experiment in which the tank was purged with N2 at 4 atm

(Table 4.2). In agreement with the generated vapor mass curves of Figure 4.4, the mass

of condensate for the experiments at increased initial tank pressure is lower than for the

experiments at ambient initial tank pressure. In addition, the average specific internal

energy for the experiment in which the tank was purged with CO2 at 4 atm suggests that

the condensate is not solid but liquid or a mixture of solid and liquid.

During the experiments at increased initial tank pressure, no snow formation was

observed. Instead a dense fog settled in the tank, which lifted within 3-4 s after the

activation of the release mechanism.

4.2.1.3 Effect of Decreased Initial Tank Temperature: The influence of the initial tank

temperature was investigated by a series of experiments in which the purging gas was

systematically cooled to lower temperatures. The initial tank temperature, together with

the initial mass and the initial internal energy in the tank, is listed in Table 4.3. Also the

results of the calculation of the properties of the condensate are included.

The tank measurements for the experiments in which N2 was used as purging gas

(experiments 1-4 in Table 4.3) are presented in Figure 4.5. For lower initial tank
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temperatures, the rate of pressure increase during the inflation sequence (from 3-30 ms)

increases.

Table 4.3 Experiments at Decreased Initial Tank Temperature (1 atm)

(I) With a reference temperature of 220K, and a c v of 745 and 611 J/kg.K for N, and CO,, respectively.
(2) The initial amount of CO2(1) was calculated based on the initial inflator pressure and temperature

(approx. 24.0 g for all cases).

At the same time, higher tank pressures are reached at the end of the inflation (at approx.

30 ms) for experiments with lower initial tank temperature. Both effects are the result of

the increased initial amount of purging gas at lower initial tank temperature (Table 4.3).

The average tank temperature curves show a significant difference during the

inflation sequence (3-30ms). Furthermore, at the onset of the horizontal plateau in the

curves, the average tank temperature decreases slightly with the initial tank temperature.

The generated vapor mass curves corresponding to the tank measurements from

Figure 4.5 were calculated, but show no significant difference between the four

experiments. For the sake of brevity they were omitted.

Inspection of the tank measurements of the last experiment in Table 4.3, in which

the tank was purged with cold CO2, led to similar observations. The tank pressure curve

showed a marked increase due to the additional mass of purging gas at low temperature.

The average tank temperature at the onset of the horizontal plateau was the same as in
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the Reference Experiment. Also the generated vapor mass at the end of the inflation

sequence was about the same as in the Reference Experiment.

Figure 4.5 Effect of Decreased Initial Tank Temperature

The initial internal energy in the tank in the last experiment of Table 4.3 is the lowest of

all experiments that were conducted in this research (obviously it is zero because of the

choice of the reference temperature). In the case of an actual air bag deployment instead

of a tank test, the initial internal energy in the bag is zero (strictly speaking). In this
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respect, the last experiment of Table 4.3 approaches the situation of a real bag inflation

more than other experiments. It is expected that the amount of generated vapor mass in

this tank test is a good indication of that which would be observed in an actual bag

deployment.

The last three columns in Table 4.3 indicate that virtually the same amount of

condensate was formed for all experiments and that about 70% of the stored liquefied

CO2 was turned into vapor at the end of the inflation sequence. Since the specific internal

energy of the condensate lies close to the value of saturated solid CO), it is concluded

that the condensate is solid in all cases.

4.2.2 Influence of Critical Flow Section

In the standard experimental set-up, as discussed in Chapter 2, the combined area of the

four nozzle exit holes is 127 mm2 . This area represents the critical section in the flow

path of the expanding CO2. An experiment was conducted in which two of the four exit

holes of the nozzle were blocked. Obviously, this led to a 50% reduction of the critical

flow section. The curves of the tank and the inflator measurements are presented in

Figure 4.6.

For the experiment with smaller critical flow section, an increase in the duration

of the rapid pressure rise in the tank is observed (Figure 4.6(a)). With respect to the

Reference Experiment, the increase in this duration is about 10 ms. At the end of the

rapid pressure rise, both the Reference Experiment and the experiment with smaller

critical flow section reach the same tank pressure.
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Figure 4.6 Effect of Decreased Critical Flow Section
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The decrease in critical flow section leads to a slightly slower depressurization in the

inflator immediately after the complete opening of the release mechanism (Figure

4.6(b)). In addition, the pressure of the horizontal plateau in the inflator pressure curve,

corresponding to the experiment with smaller critical flow section, is higher. The

depressurization during the last stage of the inflator pressure curve corresponding to the

experiment with smaller critical flow section occurs slower than in the Reference

Experiment.

Finally, the average tank temperature curve (Figure 4.6(c)), in agreement with the

above, shows a slightly slower drop in temperature for the experiment with smaller

critical flow section. However, after less than 20 ms, the temperature curves of both

experiments are identical.

Figure 4.7 Generated Vapor Mass for Experiment with Decreased Critical Flow Section

Figure 4.7 contains the generated vapor mass curve corresponding to the

experimental curves of Figure 4.6. Again, a slight decrease in the speed of the process is
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observed, but the final state is identical to the one corresponding to the Reference

Experiment. No difference in the formation of condensate was observed.

4.2.3 Influence of Initial Inflator Conditions

This section contains the results of the experiments in which the initial inflator conditions

were varied. As indicated in Figure 4.1, the inflator conditions were changed by using:

a) different initial inflator pressures (with constant initial inflator temperature)

b) different initial inflator temperatures (with constant initial inflator pressure)

c) a different inflator volume (with nominal inflator conditions, see Table 2.3)

Nominal initial tank conditions were used for all cases (purged with N2; ambient pressure

and temperature; see Table 2.3).

4.2.3.1 Effect of Initial Inflator Pressure: The inflator conditions for the experiments at

different initial inflator pressures are listed in Table 4.4.

Table 4.4 Experiments at Different Initial Inflator Pressure

The initial amount of CO2 in the inflator is listed in the last column. The latter indicates

that the gain in stored CO2 decreases as the initial pressure increases. For example, at
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1000 psig, a 500 psi increase in pressure results in the additional storage of 2.2 g (about

10%) of CO2. The same pressure increase (500 psi) at a storage pressure of 4000 psig,

leads only to a 0.4 g (1.5%) increase in initial amount of CO2.

Figure 4.8 Effect of Storage Pressure

Figure 4.8(a&b) contains the results of the tank pressure measurements for

experiments 1-3 and 3-5 (Table 4.4), respectively. The experiments do not indicate a

significant difference in the rate at which the pressure increases during the initial rapid
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rise in tank pressure. The duration of this initial rapid rise increases with the storage

pressure. The most important difference between the curves in Figure 4.8 concerns the

pressure that is reached at the end of the fast rise in tank pressure. An increase with the

storage pressure is observed and is caused by the higher initial amount of liquefied CO 2 in

the inflator (Table 4.4). As noted earlier, the increase in stored CO) decreases for higher

storage pressures. This is reflected in Figure 4.8 by a decrease in the pressure difference

at the end of the rapid rise in the curves for experiments at higher storage pressures.

Figure 4.9 Inflator Measurements for Experiments 1-3 of Table 4.4
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Figure 4.9 contains the curves corresponding to the inflator measurements for the

first three experiments of Table 4.4. Since the signal from the inflator thermocouple is

only reliable during the initial stages of the process (§2.2.5), the corresponding

temperature curves are shown for the first 15 ms of the inflation sequence. Figure 4.9

shows that both the inflator pressure and temperature at the end of the rapid

depressurization increase with a decrease in storage pressure. Furthermore, The duration

of the horizontal plateau in the inflator pressure curve increases with the initial inflator

pressure. Finally, the last stage in the inflator pressure curve (i.e. the relatively slow

decrease to ambient pressure) lasts longer for low initial inflator pressures. These

observations will be explained by means of a T-s phase diagram of the metastable region

of CO-) in section §4.3.2.1.

4.2.3.2 Effect of Initial Inflator Temperature: The results of four different experiments

are presented in this section, see Table 4.5. The first three columns list the initial inflator

conditions, while the last three columns contain the results of the calculation of the

amount and average specific internal energy of the condensate that is formed during the

inflation sequence. During all experiments, the inflator pressure, the average tank

temperature and the tank pressure were recorded.

Figure 4.10(a-c) contains the measurements corresponding to the experiments in

Table 4.5. With respect to the tank pressure curves, increasing the initial inflator

temperature has two effects. First, the speed of the initial pressure rise in the curve

increases with increasing initial inflator temperature. Second, the pressure at the end of
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the first stage in the curve decreases for higher initial temperatures. The latter is the result

of the lower initial amount of CO-) in the inflator, as listed in the 4 th column of Table 4.5.

Table 4.5 Experiments at Increased Initial Inflator Temperature

(*) Calculated from equilibrium measurements.

The inflator pressure measurements (Figure 4.10b) show a gradual disappearance of the

horizontal plateau in the curve with increasing initial inflator temperature. At the same

time, the depressurization rate after the complete opening of the release mechanism

decreases. In addition, the duration of the entire evacuation sequence decreases for higher

initial inflator temperatures. The measurement of the average tank temperature (Figure

4.10c) shows little difference between the reference curve and the one corresponding to

an initial inflator temperature of 31 °C. At an initial inflator temperature of 50 °C, the

drop in average temperature occurs slower, but virtually the same temperature is reached

after the completion of the inflation sequence as in the experiment at 30 °C initial inflator

temperature. A further increase in initial inflator temperature results in an even slower

drop in average temperature. Also, the temperature after the evacuation of the inflator is

complete, is considerably higher, as shown for the curve corresponding to an initial

inflator temperature of 70 °C.
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Figure 4.10 Effect of Initial Inflator Temperature
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The generated vapor mass curves, calculated from the previous experimental

results, are presented in Figure 4.11. While the experiments with an initial inflator

temperature below 70 °C show a similar rate of vapor generation, the maximum value at

the end of the inflation sequence (at about 30 ms) increases slightly with the initial

temperature of the inflator. The vapor generation rate in the experiment with an initial

inflator temperature of 70 °C is considerably higher and at the end of the inflation

sequence, more than 80% of the initial amount of CO2 is transformed into vapor.

0

Figure 4.11 Generated Vapor Mass for Experiments at High Inflator Temperature

The visual observations of the formation of condensate in the tank were similar

for the first two experiments of Table 4.5. Scattered snow deposits were formed in both

cases and no difference in the amount was observed. No snow agglomerates were

observed in experiment 3. Instead, the tank was temporarily filled with fog (for approx.

1.5 s). In experiment 4, hardly any fog or other form of condensate was formed. These

visual observations agree with the results of the calculation of the properties of the
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formed condensate, as listed in the last three columns of Table 4.5. Only in the Reference

Experiment, solid condensate is produced. In all other cases, the condensate exists as a

liquid or as a mixture of solid and liquid. The amount of condensate decreases with

increasing initial inflator temperature and at temperatures above 70 °C, virtually no

condensate is formed. The uncertainty of the calculated average specific internal energy

increases with decreasing amount of condensate. Hence, the values in the last column of

Table 4.5 become uncertain for higher initial inflator temperatures.

4.2.3.3 Effect of Initial Inflator Size: To study the influence of the initial volume of the

inflator, experiments were conducted with the large inflator assembly (100 ml vessel and

Nozzle A, §2.2.1 and §2.2.2). Table 4.6 summarizes the initial conditions of the

experiments under consideration. The results are presented in Figure 4.12.

Table 4.6 Experiments with Large Inflator Vessel

(*) Calculated using the tabulated density in [12] and the known vessel volume.

The opening time of the release mechanism is negligible in comparison with the

duration of the inflation sequence and is not observed in the pressure curve. Similar to the

experiments with the small inflator vessel, the pressure rise occurs in 2 stages with a

considerably different rate of pressure increase. Both the duration of the first pressure rise
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and the pressure at the onset of the slower part of the curve increase with the initial

inflator pressure.

Figure 4.12 Effect of Inflator Vessel Volume

Furthermore, the results illustrate clearly that a considerably higher tank pressure can be

achieved when a larger inflator is used.

4.2.4 Results of the High-Speed Cinematography

The experimental set-up and procedure of the high-speed cinematography studies were

discussed in section §2.5. Three different types of recordings were made:

a) observations of the tank phenomena as they occur during the main experiments

b) observations of the two-phase spray from the nozzle, freely expanding in a stagnant

N2 atmosphere

c) observations of the flow just outside a nozzle exit hole
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These three types of recordings were made for the Reference Experiment and for an

experiment in which 10% (mass%) methanol was added to the system. Hence, a total of

six different recordings was obtained, see Table 4.7.

Table 4.7 Summary of High-Speed Cinematographic Studies

This section contains a brief description of the observations of the tank

phenomena during the main experiments, based on recordings 1&4 of Table 4.7. The

external characteristics of the spray were determined from recordings 2&5 of Table 4.7.

The results about the spray penetration(¹), the maximum spray width, and the spray angle

are presented. At the end of this section, a description of the images concerning the

nozzle exit hole is included (recordings 3&6 of Table 4.7).

4.2.4.1 Observations of the Tank Phenomena during the Main Experiments: A

detailed description of each recording was made on a frame to frame basis. This section

contains a summary of the descriptions of recordings l&4 of Table 4.7.

(1) The penetration of a spray is defined as the maximum distance it reaches when injected into stagnant air.
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Reference Experiment: The inflation sequence in the tank commences with the

simultaneous appearance of the 4 jets from the nozzle. Based on the imaging rate and the

length of the sprays, the penetration velocity of the jets was estimated at about 75 m/s. At

this high speed, the sprays reach the side of the receiving tank in about 1 ms after their

appearance. During the first millisecond, they are slightly divergent-convergent in shape,

with a maximum width of about 20 mm, which is reached at about half of their length.

The opacity of the jets is fairly uniform, with a denser region in the center of the sprays.

After the first millisecond, the sprays hit the sides of the tank and spread both upwards

and downwards along the inner wall of the tank. At the same time, a dense fog develops

near the bottom plate and starts to obscure the observations. At about 6 ms after the initial

appearance of the sprays, the entire tank is filled with a dense fog and intense mixing of

the gases can be observed. The impact of the jets on the sides of the tank is still clearly

visible. The first snow agglomerates on the sides of the tank are observed at 23 ms after

the start of the experiment. At that time, the mixing of the gases in the tank continues, but

it is not clear whether the jets from the nozzle still reach the side walls of the tank. In the

interval from 23-33 ms, the initial snow agglomerate grows and the mixing continues.

Although it is difficult to determine accurately, it is estimated that the jets from the nozzle

ended shortly after the formation of the first snow agglomerates. A secondary jet (²) ,

causing a local clearing in the fog, appears about 70 ms after the start of the experiment.

By that time, additional snow agglomerates have been formed and seem to have reached

their maximum size. Also, the intensity of the mixing in the tank has decreased

considerably. The fog in the tank lifts partially from about 120-140 ms after the start of

(2) The initial jet is referred to as the primary jet, while all jets appearing after that are called secondary jets.
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the experiment. After that, the density of the fog remains fairly constant. A second, less

powerful, secondary jet is observed around 150 ms. At that time, the snow agglomerates

are still present and no significant sublimation has occurred. It is only at about 3900 ms

after the start of the experiment that all condensate has sublimated. At that time, a light

fog is still present in the tank.

CO2-Methanol Experiment: Similar to the Reference Experiment, the inflation sequence

starts with the simultaneous appearance of the 4 jets from the nozzle. In contrast to above,

a significant difference in the size of the jets is observed. After 1 ms, the jets are barely

touching the sides of the tank and the penetration velocity is estimated at about 70 m/s.

With respect to the Reference Experiment, no significant difference in shape, dimension

or opacity of the jets was observed. The asymmetry of the sprays is more pronounced at 2

ms after the start of the experiment, although all jets are touching the sides of the tank and

spreading upwards and downwards along the tank wall. After 3 ms, the asymmetry has

disappeared and a fog starts to develop a short distance above the bottom plate. During

the next 3 ms, the fog fills the tank, but remains less dense than in the Reference

Experiment. At the same time, an intense swirling motion of the gases in the tank is

visible. At 26 ms after the start of the experiment, the primary jets lose strength and die

out soon after. The fog gradually becomes denser, but no snow formation, except for an

isolated agglomerate which sublimates within 50 ms, is observed. About 1 s after the first

appearance of the jets, methanol can be observed on the sides of the tank, as it slowly

runs down towards the bottom plate. At this time, the dense fog is still present and it

obscures all inner parts of the tank. Only after about 6.5 s in the experiment, the fog

slowly clears.
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4.2.4.2 External Spray Characteristics: Based on recordings 2&5 of Table 4.7,

measurements of the external spray characteristics were performed. These characteristics

include the spray penetration (1), the maximum spray width (w) and the spray angle (0).

The results of the measurements are presented in Figure 4.13.

Figure 4.13 External Spray Characteristics

The spray angle was measured between the axis of the nozzle exit hole and the line that

connects the point of maximum spray width with the edge of the nozzle exit hole. Since



111

the recordings were not synchronized with the activation of the opening mechanism, a

small shift in time between the two curves of Figure 4.13 is likely to have occurred.

Figure 4.14 shows six consecutive frames of the spray images, recorded during the

experiment in which methanol was added to the system (recording 5 of Table 4.7). The

nozzle exit hole is located near the bottom right corner of the images and the jet expands

freely in a stagnant N2 atmosphere. The figure contains the negatives of the original

recordings, and the contrast was slightly enhanced. These images are included as

examples of the spray images and show the evolution of the shape and the density of the

jet during the inflation sequence. The actual measurements of the external characteristics

were performed on the original images, which are larger and of better quality.

As shown, the spray was symmetrical over almost its entire length. Only at the

very tip, protrusions up- or downwards could be observed. In both recordings (2&5 in

Table 4.7), the spray died out between 28-32 ms. During the first 8 ms, a growth phase

was observed, in which the spray reached its maximum penetration and maximum width.

While the spray penetration remained fairly constant until 20-24 ms after the start of the

expansion, the density, the spray width and the spray angle slowly decreased after the end

of the growth phase. Hence, the stage from 8-28 or 32 ms will be referred to as the decay

phase of the spray. The orientation of the jet remained relatively constant during the

entire sequence, although a tendency to move upwards near the end of the expansion was

observed.

Both the images and the measured external spray characteristics (Figure 4.13)

show no significant difference between the Reference and the methanol experiment.
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Therefore, it is concluded that the addition of an organic liquid to the CO2 prior to

expansion does not influence the atomization mechanism.

Figure 4.14 Spray Images

4.2.4.3 Nozzle Exit Recordings: In the first place, these recordings were made to

accurately determine the lifetime of the primary spray from the nozzle. Furthermore, they
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were expected to provide additional information on the radial expansion of the jet, which

is indicative for the importance of flash atomization [62,64].

In agreement with previous observations, no significant difference could be found

between the Reference Experiment and the experiment in which methanol was added to

the system. In both cases, the total lifetime of the primary spray was 32-36 ms. During the

last 4 ms, the intensity of the spray is very low. This explains why earlier observations

failed to show the primary jet after 32 ms. During the growth phase and in the beginning

of the decay phase, considerable radial expansion is observed. It occurs mainly in a region

immediately downstream of the nozzle hole. In the second half of the experiment (after

about 16 ms), the radial expansion decreases and the spray diameter reduces to the

diameter of the exit hole. At the same time, the density of the spray decreases. After the

primary spray has died out, typically a phase follows in which scattered particles exit the

nozzle at low velocity. The size of the particles varies considerably but is less than 500

pm. This phase is followed by a secondary jet, or a phase in which neither a spray or

particles exit the nozzle. The pattern of particle ejection, followed by a secondary spray or

a phase in which no material exits the nozzle, is repeated several times and can last up to

400 ms after the activation of the release mechanism. In comparison with the primary jet,

the strength and the intensity of the secondary sprays and the ejected particulate is

negligible.

4.2.5 Influence of Small Amounts of Organic Liquids

A series of experiments was performed in which different organic liquids were added to

the CO2 in the inflator prior to the expansion. Different amounts and types of organic
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liquids were investigated. Originally, the solvents were added in an attempt to avoid or

delay the solidification of the CO-) in the inflator at the end of the evacuation process. It

was expected that an additional amount of CO2 vapor could be produced in this manner.

In the present work, it was discovered that small amounts of organic liquids have a drastic

beneficial influence on the tank pressure and temperature evolution during the inflation

sequence. No earlier reference to this phenomenon was found in the literature. A detailed

study of the physics of this novel effect lies beyond the scope of this work. Hence, the

phenomenon is introduced in this section by means of some key experiments and only a

qualitative explanation is provided in the second part of this chapter.

Table 4.8 Experiments with CO 2/Organic Liquid Mixtures

Table 4.8 contains information about the organic liquids that were used in the

experiments which are considered in the current section. The initial conditions of the

inflator and tank were identical to those of the Reference Experiment (Table 2.3).

4.2.5.1 Effect of Different Amounts of Methanol: Figure 4.15 contains the tank

measurements for experiments 1&2 of Table 4.8, and illustrates the effect of an

increasing amount of methanol added to the system.
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Figure 4.15 Effect of Different Amounts of Methanol

The tank pressure curves show a significant increase in pressure for the cases where

methanol was added to the system. With respect to the Reference Experiment, the

pressure at the end of the fast rise of the curve increased by 1.0 psig (19%) and 2.4 psig

(45%) for the case of 5% and 10% methanol, respectively. A change in the slope of the

slow rise in the curve can also be observed. An equally drastic change in the evolution of

the average tank temperature is shown in Figure 4.15(b). Relative to the Reference
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Experiment, the average temperature at the end of the actual evacuation of the vessel (at

about 25-30 ms) increased by 7 °C and 31 °C in experiment 1 and 2, respectively.

For the experiments of Table 4.8, inflator pressure curves did not differ

significantly from the one corresponding to the Reference Experiment. The generated

vapor mass, calculated from the curves in Figure 4.15 and neglecting the vapor pressure

of methanol, showed a slight increase at the end of the evacuation process, relative to the

Reference Experiment. However, the main part of the increase in tank pressure is caused

by the higher temperature at the end of the inflation. No snow was formed in either

experiment 1 or 2. Instead a dense, white fog filled the tank after the inflation. While it

never cleared completely, it started to disappear at about 6 s after the activation of the

inflator.

At higher concentrations of methanol, the pressure effect is observed to decrease.

It is believed that this is caused by the decreasing initial amount of CO2 in the inflator as

more methanol is added.

4.2.5.2 Effect of Different Organic Liquids: The effect of different organic liquids at a

constant concentration of 5% (mass) is compared in Figure 4.16, which contains the tank

curves of experiment 1,3 and 4 of Table 4.8.

At the end of the inflation sequence, the acetone experiment shows the highest

tank pressure. Also in the corresponding average tank temperature curves, the effect of

acetone is the largest. Similar as before, no significant difference in the inflator pressure

or generated vapor mass curves could be observed. The same observations concerning the
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formation of condensate as in the methanol experiments hold for the cases where other

solvents were used.

Figure 4.16 Effect of Different Organic Liquids at 5% (mass) Concentration

The complete experimental study of this phenomenon includes experiments at

higher concentrations (15 and 20% mass) and using ethanol and propanol. The effect of

ethanol and propanol was similar to the one described in the above. However, at higher
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concentrations (20% mass), the pressure effect continued to increase, in contrast to the

observations with methanol.

4.3 Discussion

The qualitative model of the SLG-Inflator is presented in this section. The model

describes the interaction of the dominant physical phenomena in the various components

of the system and provides a qualitative explanation of the experimental results that were

presented in section §4.2.

First, the model is introduced with the aid of the curves corresponding to the tank

and inflator measurements of the Reference Experiment. Four characteristic stages in the

inflation sequence are identified. Second, the experimental results regarding the influence

of the initial inflator conditions, the effect of a reduction in the critical flow section and

the influence of the initial tank conditions are discussed based on this qualitative model.

4.3.1 Qualitative Model of the Stored Liquefied Gas Inflator

The qualitative model of the system is presented by means of Figure 4.17, which

combines the measurements of the Reference Experiment with the results of the high-

speed cinematographic study of the lifetime and properties of the spray. The latter is

represented symbolically at the bottom of the figure and the two characteristic phases in

the jet are indicated. Since a qualitative model is presented, no numerical values for the

pressure and temperature are given. Four characteristic stages are identified. The

transitions between these stages coincide with the transitions between the characteristic

stages in the inflator pressure curve. The last part of the curves is colored gray since it is
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Figure 4.17 General Qualitative Model
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not a part of the actual inflation sequence. After the end of the inflation sequence, heat

transfer from the tank and inflator walls brings the system slowly towards equilibrium

with the surroundings. The understanding of the system is introduced by describing the

relevant phenomena and their interactions during each stage in the inflation sequence.

Only the nominal initial conditions are considered during the description of the model

(Table 2.3). The influence of different initial conditions in the inflator and tank is

discussed later (sections §4.3.2-4.3.4).

4.3.1.1. Stage 1: Opening of the Release Mechanism and Initial Depressurization: The

first stage in the inflation sequence corresponds to the relatively slow initial pressure drop

in the inflator, which is related to the opening of the release mechanism. A cross sectional

drawing of the inflator and the nozzle is shown in Figure 4.18. It represents the state of

the system during this first stage. The pressure and temperature transducer are indicated

by `P' and 'T', respectively.

Figure 4.18 Phenomena during Stage 1 of the Inflation Sequence
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The first stage is initiated when the shim in the release mechanism is ruptured, and lasts

until the sliding piston reaches the lower edge of the exit holes inside the nozzle (Figure

4.18). A dynamic analysis of the motion of the sliding piston was presented in section

§2.2.2.1. Based on this analysis, the duration of the first stage in the inflation sequence

was calculated to be 1.3 ms for an initial inflator pressure of 2000 psig. This is in close

agreement with the inflator pressure curve of Figure 4.17. During the entire first stage, the

sliding piston blocks the exit holes and there is no flow from the nozzle. As a result, the

tank conditions remain unchanged (Figure 4.17).

As the sliding piston moves, the liquefied CO2 in the inflator expands

isentropically and fills the growing space in the central channel of the nozzle. This

isentropic expansion propagates through the inflator as a relatively flat rarefaction wave

from the nozzle towards the closed end of the vessel and generates a non-uniform

pressure and temperature distribution along the axis of the inflator. The pressure profile is

such that the value at the location of the pressure transducer remains close to the initial

pressure, while the pressure near the nozzle drops to a lower value. For the nominal initial

inflator conditions (P0=2000 psig; T0 22 °C, Table 2.3), the pressure in the inflator

remains above the saturation pressure at the corresponding local temperature. Therefore,

at the end of the first stage, the CO2 in the inflator remains in the subcooled liquid phase

and no nucleation occurs up to this point.

4.3.1.2 Stage 2: Passage of the Forerunner and Initial Vapor Generation: The second

stage of the inflation sequence is characterized by a rapid drop in the inflator pressure.
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Based on Figure 4.17, a maximum depressurization rate of 55 bar/ms was estimated. This

is considerably higher than most other blowdown studies [11,37,40,42].

At the start of the second stage, the sliding piston has reached the lower edge of

the exit holes. According to the dynamic analysis of the release mechanism, it takes an

additional 0.12 ms to reach the upper edge and clear the exit holes completely. Figure

4.19 contains a cross sectional drawing of the system, after the nozzle exit holes have

been cleared completely. Note that 'e' represents the void fraction of the two-phase

mixture.

Figure 4.19 Phenomena during Stage 2 of the Inflation Sequence

The clearing of the exit holes initiates a second rarefaction wave in the inflator,

traveling from the nozzle to the closed end at the local speed of sound (a). This wave

corresponds to the elastic forerunner, as discussed in similar studies [47,63,86].

References [47,63] consider the flashing outflow of initially uniform subcooled water

from a long tube which is instantaneously opened at one end at the beginning of the

process. In the above studies, because of the zero opening time and the uniform initial
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conditions, the forerunner consists of a steep depressurization wave which propagates at a

constant velocity (equal to the local sonic velocity of liquid water, i.e. about 1000 m/s).

The passage of the forerunner in the SLG-inflator differs from that in [47,63] in

two ways. First, as indicated earlier, a non-uniform pressure and temperature profile is

generated during the first stage of the inflation sequence. In turn, this profile leads to a

non-uniform local sonic velocity and the forerunner in the inflator is expected to

gradually speed up as it propagates towards the closed end. Second, the finite opening

time of the release mechanism is expected to lead to a flattened forerunner [63].

The forerunner brings about a rapid isentropic expansion of the subcooled liquid

CO2 in the inflator. Immediately downstream of the forerunner, the CO? exists as a

metastable, superheated liquid. The amplitude of the superheat, i.e. the penetration depth

in the metastable liquid region, depends on the local nucleation characteristics, as

described by nucleation theories [20,29,57]. It is generally accepted that homogeneous

nucleation is only possible in experiments with tightly controlled conditions (i.e. an

extremely clean apparatus and working fluid) [29]. In case of homogeneous nucleation,

the penetration in the metastable liquid is maximum and the liquid spinodal state is

attained [20,57]. The subsequent return towards equilibrium is characterized by a very

brief (approx. 1 μs [52]) and violent evaporation. In nearly all practical systems,

heterogeneous nucleation initiates evaporation [14,20,29]. Studies of blowdown

experiments for vessels with a small volume to internal surface ratio, have shown that

nucleation predominantly occurs at the walls of the container as well as at the liquid-

vapor interface [21,29]. In vessels with a large volume to internal surface ratio,

heterogeneous nucleation occurs predominantly on the dissolved gases and other
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impurities (particles) in the bulk of the liquid. Based on these considerations, it is

expected that the nucleation in the inflator occurs mainly at the vessel walls. The

nucleation rate (³) depends strongly on the local superheat and the interfacial tension [20].

In addition, it is influenced by the depressurization rate and the wall material and surface

finish of the inflator vessel. In general, the delay in nucleation increases with the

depressurization rate [11]. Immediately after the formation of the nuclei, intense

evaporation takes place. This leads to a drastic reduction of the local superheat and causes

the nucleation to cease. Therefore, nucleation occurs only at the maximum pressure

undershoot near the end of the forerunner and is suppressed immediately after by intense

evaporation. The latter diminishes the degree of non-equilibrium in the CO 2 liquid-vapor

mixture and brings the system closer to saturation conditions. However, due to the short

duration of this evaporation, only a limited void fraction is developed (Figure 4.19). This

series of events is initiated at the open end of the inflator at the start of the second stage

and travels at the local speed of sound towards the closed end.

Near the end of the second stage in the inflation sequence, the forerunner reaches

the closed end of the inflator and is reflected towards the nozzle. This results in a local

pressure drop and an enhanced evaporation which, in turn, attenuates the forerunner and

causes it to die out soon after [63]. The gradual stabilization of the inflator pressure curve

at the end of the second stage (Figure 4.17) is believed to be the result of two effects.

(3) The nucleation rate is defined as the volumetric rate at which evaporation nuclei are formed and is
calculated by means of nucleation theories [20,29].
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On the one hand, the response time of the pressure transducer exceeds the time interval in

which the maximum pressure undershoot and subsequent nucleation and intense

evaporation occurs. Therefore, these phenomena could not be observed in the inflator

pressure curve. On the other hand, the transducer is located near the closed end of the

inflator (Figure 4.19), and indicates the resulting pressure of the complex interaction

between the reflection and the original forerunner. This complex interaction makes it

impossible to predict the behavior of the inflator pressure without the use of sophisticated

simulations.

The jets from the nozzle enter the tank shortly after the onset of the second stage

in the inflation sequence (Figure 4.19). Since the ejection of the fluid occurs immediately

after the nucleation and initial evaporation take place, these jets consist almost entirely of

high-energy liquid. The relatively large density of the liquid phase leads to a high mass

flow rate and a relatively slow acceleration of the flow. The dispersion of this high-energy

liquid in the tank occurs primarily by classical atomization (i.e. driven by hydrodynamic

forces between the rapidly moving liquid and the stagnant tank gas) [56]. At the same

time, some degree of flash atomization occurs [6,76]. This description of the dispersion

process is consistent with the high-speed cinematographic recordings of the spray during

the growth phase of the jets. The radial expansion, which is observed in the recordings of

the nozzle exit hole, is typical of a flashing spray and indicates flash atomization [62,64].

At the same time, the external spray characteristics (i.e. a long, narrow cigar-shaped

spray), as shown in the general spray images and in the measurements of the external

spray characteristics (Figure 4.13), indicate classical atomization of the liquid jets [6,56].

Because of the high temperature of the dispersed liquid, the generated droplets are
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expected to evaporate quickly and generate relatively warm CO2 vapor. The evaporation

of the liquid CO, droplets is discussed in detail during the description of the next stage in

the inflation sequence.

4.3.1.3 Stage 3: Passage of the Evaporation Wave and Main Discharge: The horizontal

plateau in the inflator pressure curve (at pressure Ph), constitutes the third stage of the

inflation sequence (Figure 4.17). A cross sectional drawing of the system during this

stage is provided in Figure 4.20.

Figure 4.20 Phenomena during Stage 3 of the Inflation Sequence

At the end of the 2 nd stage in the inflation sequence, the forerunner has propagated

through the entire inflator and the latter is filled with a two-phase mixture at near

saturation conditions. The flashing process continues in the two-phase mixture, and it is

usually assumed that the rate of evaporation is limited by the thermal conductivity of the

liquid [21,28]. The near saturation conditions, in combination with the relatively slow
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heat conduction in the liquid, result in a slow evaporation. In turn, this leads to the

horizontal part in the inflator pressure curve. This description is supported by the

experimental data provided in section §4.2.3.1 (Figure 4.9). Both the inflator pressure and

temperature measurements show a horizontal plateau during the third stage in the

inflation sequence. Using tabulated properties of CO2 [12], it can be verified that these

horizontal plateaus correspond to conditions close to the liquid saturation line of the

phase diagram. The duration and relative position of the horizontal plateaus will be

explained when the influence of the initial inflator pressure is discussed (§4.3.2.1).

While evaporation proceeds slowly in the bulk of the inflator during the third

stage, intense flashing occurs at the nozzle end of the vessel. The enhanced evaporation is

the result of two effects. First, the outflow of the two-phase mixture causes a pressure

drop near the nozzle end of the inflator and leads to increased flashing of the liquid.

Second, bubble break-up occurs due to the growing bubble size and the increasing

difference between the velocities of the liquid and the vapor phase in the accelerating

flow. Because bubble break-up leads to a drastic increase in interfacial surface area, it

enhances evaporation. The intense flashing in or near the nozzle causes a drastic increase

in the local void fraction of the two-phase mixture. The lower inertia of this mixture at

high void fraction leads to a swift acceleration and outflow. In turn, the latter results in a

pressure drop and enhanced flashing in the inflator, at a location slightly closer towards

the closed end of the vessel. The above illustrates that the interaction of the flashing

process and the two-phase outflow through the phenomenon of bubble break-up creates

an evaporation wave in the inflator [47,63]. This interfacial wave consists of a front in

which intense evaporation and bubble break-up occur and propagates from the nozzle
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towards the closed end of the inflator with a typical velocity of about 1-10 m/s [63]. The

wave is marked by a sharp increase in the bubble number density and the void fraction.

The two-phase mixture, which is generated by the evaporation wave, has a high

void fraction and a low inertia. Furthermore, because of the intense flashing in the

interfacial wave, the temperature of this two-phase mixture is relatively low. In turn, this

low temperature limits the flashing rate in the mixture downstream of the interfacial

wave. Therefore, when this mixture is swiftly accelerated and the pressure behind the

wave starts to drop, the evaporation rate is too low to sustain the pressure. Hence, a

gradual pressure decrease occurs downstream of the evaporation wave. The passage of the

evaporation wave at the location of the inflator pressure transducer marks the end of the

third stage in the inflation sequence (Figure 4.17).

The above illustrates that the duration of the horizontal plateau in the inflator

pressure curve is inversely proportional to the average propagation speed of the

evaporation wave. Bearing the relevant phenomena in mind, it is clear that the speed of

the evaporation wave increases with the void fraction of the upstream two-phase mixture.

During the third stage in Figure 4.17, the two-phase mixture downstream of the

evaporation wave is ejected into the tank. Because of its low inertia, the mixture is

accelerated swiftly and the critical flow rate is expected to be attained shortly after the

onset of the third stage in the inflation sequence (i.e. the flow chokes).

Because of the low flashing rate, the dispersion of the two-phase mixture through

the nozzle and in the tank occurs purely by classical atomization. This is confirmed by the

high-speed cinematographic study of the spray. The latter shows little or no radial

expansion of the spray, indicating the absence of flash atomization. Due to the presence
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of the vapor in the spray, the dispersion is similar to that of a prefilming type airblast

atomizer, where typically air is used to enhance the break-up of the liquid (i.e. the CO2

vapor functions as the gas which assists the dispersion) [6,56,84].

Because of the low temperature downstream of the evaporation wave, the

dispersed droplets will be cooler than the ones generated during the second stage of the

inflation. Nevertheless, they remain fairly volatile and evaporate mainly according to the

transient regime (4) [56]. As will be shown in §4.3.4, when the influence of the initial tank

conditions is discussed, the interaction between the evaporating droplets and the tank

gases depends primarily on the initial amount of internal energy in the tank. According to

an energy analysis of the system, in experiments with low initial internal tank energy,

nearly the entire amount of the latent heat of vaporization is supplied by the droplets.

However, for experiments with high initial internal tank energy, a considerable fraction of

the latent heat is supplied by the tank gases. In any case, the droplet temperature

decreases as the evaporation progresses. When the droplet temperature attains the triple

point, the liquid CO2 freezes and turns into dry ice.

According to the above, the decrease in average tank temperature is mainly the

result of two effects. On the one hand, the mixing of the generated cold CO2 vapor and

the tank gases leads to a drop in average tank temperature. On the other hand, a fraction

of the internal energy of the tank gases is used to supply part of the latent heat of

vaporization, and results also in a decrease of the average tank temperature.

(4) Droplets of low volatile liquids evaporate in a steady state regime, in which the internal temperature
remains constant and the latent heat of vaporization is supplied entirely by the surrounding gas [56],



130

Additional cooling is caused by the Joule-Thomson effect when the CO2 vapor, produced

inside the inflator, expands in the tank.

4.3.1.4 Stage 4: Final Discharge: The last stage in the inflation sequence corresponds to

the gradual pressure decrease in the inflator pressure curve (Figure 4.17). A cross

sectional drawing of the system during the fourth stage is provided in Figure 4.21.

Figure 4.21 Phenomena during Stage 4 of the Inflation Sequence

As discussed in the previous section, the end of the third stage in the inflation

sequence is marked by the passage of the evaporation wave at the location of the pressure

transducer. Since the latter is located near the closed end of the inflator (Figure 4.21), the

evaporation wave has progressed through almost the entire vessel by the time it reaches

the transducer. Therefore, at the start of the last stage in the inflation sequence, the

inflator is nearly completely filled with a two-phase mixture with considerable void

fraction and low temperature. As discussed earlier, the latter limits the flashing process,
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and the last stage consists mainly of the evacuation of the two-phase mixture from the

inflator, without significant change in void fraction. The flow from the inflator is

expected to remain choked during most of the fourth stage of the inflation sequence.

The pressure increase in the tank is the result of the continued evaporation of

liquid CO2 droplets, generated during this and the previous stage(s), and the expansion of

the vapor from the inflator. The mixing of the generated vapor with the tank gases and the

continued interaction between the evaporating drops and the tank gases causes the last

part of the drop in average tank temperature. At the end of the fourth stage, 34 ms after

the start of the opening of the release mechanism, the tank pressure reaches P peak (Figure

4.17). This pressure corresponds to the peak pressure in tank tests, and is extensively used

as an indication for the performance of the inflator. The minimal average tank

temperature is Th (Figure 4.17).

At the end of the inflation sequence, the system is mainly filled with a mixture of

purging gas and generated CO2 vapor. In addition, for nominal initial conditions (2000

psig; ± 22 °C, Table 2.3), typically about 30% of the initial amount of CO2 is present as

snow. It is likely that part of the snow was formed in the inflator, while part of it was

generated by the solidification of the evaporating droplets in the tank. After the fourth

stage, the snow and the CO2 vapor in the tank are in non-equilibrium since the tank

pressure and temperature differ from saturation conditions, as illustrated in Figure 4.22.

The figure shows the average tank temperature and the saturation temperature

corresponding to the measured tank pressure for the experiment in which the tank was

purged with CO2 at -53 °C (§4.2.1.3). As shown, the measured tank temperature remains
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at least 10 °C above the saturation temperature and the actual tank conditions do not

approach saturation conditions.

Figure 4.22 Average Tank Temperature and Corresponding Saturation Temperature

In addition, this figure indicates that condensation of the generated CO 2 vapor

does not occur. This issue is discussed in detail in section §4.3.4, when the influence of

the initial tank conditions is addressed. The absence of condensation implies that there are

only two sources of solid CO2 in the system (the solidification of the evaporating liquid

droplets in the tank and freezing of the remaining liquid in the inflator).

4.3.1.5 Equilibration Stage: This stage corresponds to the gray parts of the curves in

Figure 4.17. As discussed above, immediately after the end of the inflation sequence, the

system consists of a gaseous mixture of CO2 vapor and purging gas with about 30% of

the initial amount of CO ,) present as dry ice. Since the vapor and the solid are not at

saturation conditions, the system is in non-equilibrium. The limited rate of heat transfer
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and sublimation results in a slow return to equilibrium with the surroundings, which

typically takes about two minutes. Note that, once the inflation sequence (stages 1

through 4) has ended, the average tank temperature measurements become less reliable

because of the absence of mixing in the tank and the growing thermal stratification.

4.3.2. Influence of Initial Inflator Conditions

In this section, the qualitative model is used to discuss and justify the experimental results

pertaining to the study of the influence of the initial inflator conditions on the

performance of the system. It is shown that the model takes all relevant phenomena into

account and succeeds in explaining the experimental observations.

4.3.2.1 Effect of Initial Inflator Pressure: The corresponding experimental results are

presented in section §4.2.3.1.

The tank pressure curves of Figure 4.8 indicate that an increase of the storage

pressure above 2000 psig leads to a small increase in tank pressure. Therefore, 2000 psig

was selected as the optimal value of the initial inflator pressure.

The observations pertaining to the inflator measurements (Figure 4.9) are

explained by means of the T-s phase diagram of the metastable liquid region of CO2 in

Figure 4.23. This diagram was generated by means of the equation of state described in

[46], which is also used in the quantitative model of the system (Chapter 5). Note that this

diagram is an enlargement of the liquid and the superheated liquid region of Figure 1.5

and that it contains isobars in the metastable liquid region.
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Figure 4.23 T-s Phase Diagram of the Metastable Liquid Region of CO2

The initial states of the CO2 in the inflator are marked by numbers, corresponding to the

ones in the first column of Table 4.4. Hence, the storage pressure of initial points 1

through 3 are 1000, 1500 and 2000 psig, respectively. The total isentropic expansion of

CO2, occurring during the first and the second stage of the inflation sequence, is

represented in Figure 4.23 by means of vertical arrows. The end of the expansion depends

on the nucleation rate and is difficult to predict. However, the depressurization rates in

the experiments are such that penetration of the metastable liquid region is certain.

Figure 4.23 clearly indicates that the expansion in experiment one, with low initial

pressure, ends at a relatively high temperature and a high pressure. In experiment three,

with high initial pressure, the vertical drop is longer and the end of the arrow is located at

a lower pressure and temperature. This agrees well with the experimental observations

concerning the lower pressure and temperature after the passage of the forerunner (Figure

4.9). Detailed inspection of the experimental results and the phase diagram indicate that
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the departure from equilibrium (i.e. saturation conditions with the same entropy as the

initial state) increases with increasing storage pressure. In turn, this agrees with the fact

that the penetration in the metastable region is expected to increase with the

depressurization rate [11]. The difference in location of the thermocouple and the

pressure transducer in the inflator (Figure 2.3) explains the difference in length of the

horizontal plateaus in the pressure and temperature curves of Figure 4.9. Because the

thermocouple is located closer to the nozzle, the evaporation wave will reach this location

earlier than that of the pressure transducer. Hence, the drop in temperature, marking the

passage of the evaporation wave, occurs earlier and the horizontal plateaus in the

temperature curves are shorter than in the corresponding pressure curves.

According to Figure 4.23, the two-phase mixture after the passage of the

forerunner in experiment one, is at relatively high temperature. Hence, the evaporation

wave proceeds swiftly through the inflator and the length of the horizontal plateau in the

curve is relatively short. The low temperature of the two-phase mixture in experiment

three (Figure 4.23) limits the velocity of the evaporation wave and leads to a longer

horizontal plateau in the pressure curve. Again, this agrees with the experimental

observations in Figure 4.9.

As stated earlier, the flow from the nozzle in the fourth stage of the inflation is

choked for almost the entire duration. Previous experimental work on the critical flow

rate through nozzles and orifices demonstrates a strong dependence of the mass flow rate

on the quality or the void fraction of the mixture [44]. For a constant pressure drop over

the nozzle or orifice, mixtures of high quality (i.e. high void fraction) have a much lower

critical mass flow rate than mixtures of low quality (i.e. low void fraction). The
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dependence of the evacuation rate on the void fraction explains the difference in the

duration of the last stage in the inflator pressure curves. In experiment one, the two-phase

mixture after the passage of the forerunner is at relatively high temperature and bubble

growth proceeds at a considerable speed. Hence, the two-phase mixture is at high void

fraction and the critical mass flow rate from the inflator is low. The lower temperature of

the two-phase mixture in experiment three hinders bubble growth and results in a lower

void fraction. In turn, this leads to a higher mass flow rate and a relatively faster

evacuation of the inflator.

4.3.2.2 Effect of Initial Inflator Temperature: The corresponding experimental results

are presented in section §4.2.3.2.

Figure 4.24 T-s Phase Diagram of the Critical Region of CO2

Similar to the previous section, the experimental observations will be explained

by means of a T-s diagram. Figure 4.24 was calculated with the equation of state which is
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used in the model of the experimental system [46]. The initial states of the CO2 in the

inflator are indicated by numbers, corresponding to the first column in Table 4.5. Hence,

the numbers 1 through 4 indicate the initial states at 20, 31, 50 and 70 °C, respectively.

Based on the entropy of the initial state, the experiments of Table 4.5 can be

categorized in two groups (Figure 4.24). The first group contains experiments one

through three, with an initial entropy below the critical value (s=l56.58 J/mol.K).

Experiment four is the sole member of the second group, with an initial entropy in excess

of sc . Note that at an initial pressure of 2000 psig (139 bar), all initial states with a

temperature below 328 K (54.9 °C) belong to the first group. All initial states with a

higher temperature belong to the second group.

The first group of experiments (numbers 1-3) is considered first. They are similar

to the experiments that were discussed earlier, since they also penetrate the metastable

liquid region upon isentropic expansion. The latter is represented in Figure 4.24 by the

vertical arrows, starting in the initial points. Again, the end of the expansion is

determined by the onset of nucleation and is difficult to predict theoretically. Figure 4.24

shows that the temperature and pressure at the onset of nucleation in experiment two is

higher than in experiment one. As a result, the evaporation proceeds faster in experiment

two and a significant void fraction develops before the arrival of the evaporation wave.

This leads to a less distinct horizontal plateau in the inflator pressure curve and to a

higher propagation rate of the flashing front. In turn, the higher speed of the evaporation

wave results in a shorter horizontal plateau and an earlier onset of the last stage in the

inflator pressure curve. These considerations explain the shape of the inflator pressure

curve of experiment two (Figure 4.10(b)). In addition, because of the higher temperature
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at the onset of nucleation and evaporation, the latent heat of the phase transformation is

less than in experiment one. Since the internal energy of the liquid is used to compensate

for the latent heat, a relatively larger amount of liquid CO2 will transform into vapor. The

latter is supported by the results of the calculation of the amount of condensate that is

being formed during the inflation sequence, as listed in 6 th column of Table 4.5.

The initial state of experiment three is located in the supercritical region of CO2.

Because the initial entropy is close to the critical value, experiment three can be

considered as a transient case between the two groups of experiments. In general, the

properties of supercritical fluids lie between those of a liquid and a vapor. Hence, CO, at

the initial conditions of experiment three, has a considerably larger compressibility than

CO2 at the initial conditions of experiment two. The increased compressibility leads to a

slower depressurization during the isentropic expansion and hence, to a reduced slope in

the corresponding part of the inflator pressure curve (Figure 4.10(b)). As shown in Figure

4.24, the depth of the metastable liquid region reduces to zero near the critical point.

Therefore, virtually no delay in evaporation occurs in experiment three, and the phase

transformation starts as soon as the saturated liquid line is crossed. The small superheated

liquid region in combination with the relatively high temperature at nucleation (and

therefore small latent heat of evaporation), leads to a very high evaporation rate. As a

result, the evaporation wave hardly develops and the horizontal plateau is reduced to a

bump in the inflator pressure curve of experiment three (Figure 4.10(b)). Consequently,

the final stage of the inflator curve starts even earlier than in experiment two. Finally,

because of the higher evaporation rate, less liquid will be discharged in the tank. In

addition, the produced vapor is at higher temperature. Both effects lead to a slower drop
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in tank temperature and a faster rise in the tank pressure, as shown in Figure 4.10(c).

Furthermore, since less liquid is discharged in the tank, less condensate will be generated,

as indicated by the calculation of the amount of condensate that is faulted during the

inflation sequence in Table 4.5. The previous explanation indicates that both wave

phenomena (i.e. the forerunner and evaporation wave), which dominate the evacuation

process at low initial temperature, disappear as the entropy of the initial state approaches

the critical value.

Except for the average tank temperature curve, the results of experiment four are

similar to those of the N2 experiments in Chapter 3. In experiment four, the isentropic

expansion of the initial amount of CO2 does not end in the liquid phase and no phase

transformation from liquid to vapor occurs. Instead, the metastable vapor region is

penetrated and, depending on the initial conditions, condensation might take place. The

onset of condensation is described by basically the same nucleation theories as the onset

of flashing or boiling. However, as discussed in section §1.3.3.1, the limit of maximum

subcooling of vapor is not located near the vapor spinodal. The bump in the inflator

pressure curve at t = 8-9 ms (Figure 4.10(b)), is believed to be the result of condensation.

The considerable drop in average tank temperature (Figure 4.10(c)), which was not

present in the N2 experiments, is caused by the real gas behavior of CO2 (i.e. the Joule-

Thomson Effect).

The effect of the smaller initial amount of CO2 (column 4 in Table 4.5) was

neglected in the explanation of the experimental observations. While it assists in the

explanation of the faster evacuation and the slower or smaller average temperature drop,

it is not sufficient because it does not account for all experimental results.
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With respect to the SLG-lnflator, the above describes the changes in the system

for increased ambient temperature. In terms of tank pressure and generated amount of

CO2 vapor, it is demonstrated that the system's performance improves with higher

ambient temperature. At the same time, it is shown that the inflator's performance will

decrease for lower ambient temperatures. The system will generate less CO2 vapor and a

lower tank pressure as the initial inflator temperature decreases.

4.3.3 Influence of Critical Flow Section

The corresponding experimental results are presented in section §4.2.2.

In agreement with intuitive expectations, the experimental results indicate an

increase of the duration of the inflation sequence when reducing the critical section in the

flow path. However, it can not be concluded that an increase in the critical flow section

will lead to a shorter inflation process. It is expected that for some value of the exit

section, the rate-limiting process will shift from the choking phenomenon in the nozzle

exit holes to the actual phase transformation of CO2. In this case, a further increase in the

critical flow area will not lead to a faster pressure increase in the tank.

As discussed during the presentation of the experimental results, the inflator

pressure curve of Figure 4.6(b) for the case where the nozzle holes were blocked, shows a

slightly slower decrease in pressure during the second stage in the inflation sequence and

a horizontal plateau at a higher pressure level during the third stage. Because of the

reduced critical section, the forerunner, which is initiated at the onset of the second stage

in the inflation sequence, is flattened with respect to the Reference Experiment. As a

result, the depressurization rate is lower, which, in turn, leads to an earlier onset of
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nucleation [11]. Therefore, the horizontal plateau in the third stage occurs at a higher

level. The slower depressurization during the last stage is the result of a reduced mass

flow rate through the smaller critical section. The observations pertaining to the tank

measurements are easily explained. Since the mass flow rate of the two-phase jet from the

inflator is smaller, the release of the liquid and vapor in the tank occurs slower and hence,

leads to a slower drop in tank temperature and increase in tank pressure.

4.3.4 Influence of Initial Tank Conditions

Table 4.9 summarizes the results of the experiments in which the influence of the initial

tank conditions was investigated (4.2.1). The experiments are organized in order of

increasing initial internal tank energy. For all experiments in Table 4.9, nominal initial

inflator conditions were used (24 g of CO2(¹) at 2000 psig and 22 °C).

Table 4.9 Summary of Influence of Initial Tank Conditions

The first five columns characterize the initial conditions of the tank and list the tank gas,

the initial tank temperature and pressure, the initial amount of tank gas and the initial

internal energy. The next two columns contain the results of the calculation of the amount
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and the average specific internal energy of the condensate that was formed during the

inflation sequence in each experiment. All these numbers were taken from Tables 4.1-3,

and additional information can be found in sections §4.2.1.1-3. In the last two columns of

Table 4.9, 'All' represents the enthalpy increase of the fraction of the initial amount of

liquefied CO2 that evaporated. Two effects contribute to this enthalpy increase. On the

one hand, the part of the initial amount of liquefied CO2 that is not evaporated is cooled

and solidifies partially or completely (depending on the initial conditions). On the other

hand, part of the consumed enthalpy (ΔH) is supplied through interaction of the tank

gases and the evaporating droplets. The relative contribution of both effects was

evaluated in the energy analysis of the inflation sequence, as discussed in Appendix B

and is represented in the last two columns of Table 4.9. The results are also shown in

Figure 4.25.

Figure 4.25 Influence of Initial Internal Tank Energy
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Figure 4.25 illustrates that the fraction of AH that is supplied by the tank gases increases

with increasing initial internal tank energy. At the same time, Table 4.9 shows that for the

frrst seven experiments, with Utank < 800 J, the state of the condensate is nearly constant.

In these experiments, about 30% of the initial amount of liquefied CO2 was turned into

dry ice by the end of the inflation sequence. Note that for the first experiment, nearly all

enthalpy is supplied by the stored liquefied CO2. As stated earlier, this experiment reflects

closely the behavior of the SLG-Inflator in case of an actual air bag deployment.

In the last experiment of Table 4.9, with considerably higher initial internal tank

energy, 69% of ΔH is supplied by the tank gases, and the amount of generated condensate

is lower than in the first seven experiments. In addition, the condensate is not completely

solidified.

Based on the above, two conclusions can be formulated with respect to the

influence of the initial tank conditions. First, the interaction between the evaporating

droplets and the tank gases becomes more important as the initial internal tank energy

increases. Second, there exists a threshold value of the initial internal tank energy, above

which the amount of condensate decreases and only partial solidification occurs.

Due to the complex nature of the tank phenomena and their interactions,

additional experiments are required to establish a detailed qualitative explanation of the

above conclusions.

In section §4.3.1, Figure 4.22 was presented, which contains the measurement of

the average tank temperature and the calculated saturation temperature for the experiment

with cold CO2 (-53 °C) as purging gas. Because CO2 was used to purge the tank, the

partial pressure of CO2 is equal to the measured tank pressure. Consequently, the partial
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pressure and corresponding saturation temperature of the CO 2 is considerably larger than

for the experiments in which N2 or He was used as purging gas. In addition, the low

initial tank temperature will lead to a low average temperature during the inflation

sequence. The combination of the high partial pressure and low average temperature

during this particular experiment, creates conditions at which condensation of the

generated CO2 vapor is most likely to occur. The necessary condition for condensation

requires that the measured tank temperature drops below the saturation temperature.

Based on Figure 4.22, it is concluded that general condensation of the generated CO2

vapor does not occur. However, during the experiment in which the tank was purged with

ambient He (§4.2.1.1), for example, brief temperature non-uniformities in the tank were

observed. During these temperature non-uniformities, the condition for condensation of

the generated CO2 vapor was fulfilled and hence, localized condensation cannot be

excluded. Since these non-uniformities were only observed in a few experiments, the

effect of condensation will be neglected.

The observations corresponding to the experiments at increased initial tank

pressure (section §4.2.1.2) are discussed in the remainder of this section. The peculiar

shape of the tank pressure curves in Figure 4.3(a) is mainly the result of the mixing of the

generated CO2 vapor with the tank gases. The tank pressure is influenced by two

competing phenomena. On the one hand, the increase in the amount of gaseous mixture

in the tank leads to a higher pressure. On the other hand, the mixing of the cold CO2

vapor decreases the mixture temperature and leads to a lower pressure. Initially, the

generated CO2 vapor is relatively warm and the first phenomenon is dominant. As the

inflation progresses, the temperature of the CO2 vapor decreases and the second
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phenomenon gains importance. The above explains the rise and drop of the tank pressure

during the inflation sequence. The slow increase in tank pressure after the inflation

sequence corresponds to the Equilibration Stage, as described in section §4.3.1.5.

4.3.5 Qualitative Explanation of C02/Organic Liquid Experiments

This section contains a concise qualitative explanation for part of the results of the

experiments with C02/organic liquid mixtures (§4.2.5). The most important observation

during the CO2/organic liquid experiments concerns the drastic increase in average tank

temperature compared to the Reference Experiment.

Consider a droplet with radius a, consisting of a CO2/organic liquid mixture. For

the sake of simplicity, it is assumed that the receiving tank was purged with CO2 prior to

the experiment. The argument can easily be extended to include an inert purging gas such

as N2 or He. With reasonable accuracy, the pressure at the droplet surface can be

approximated by the measured tank pressure:

P(t)r=a	 Ptank(t)	 (4.1),

with P(t)r=a the pressure at the droplet surface. At the same time, the evaporating surface

of the droplet is at saturation conditions. For a pure substance, the saturation pressure is

function of temperature only (Gibbs Phase Rule):

Psat pure[T(t)r=a = P(t)r=a	 Ptank (t)	 (4.2),

with T(t)r=a the droplet surface temperature. For a mixture of two components, the

saturation pressure is function of the temperature and the composition:

Psat mix [c(t)r=a,T(t)r=a] = P(t)r=a 	 Prank (t)	 (4.3),
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with c(t)r=a the droplet surface concentration of one of the components of the

CO2/organic liquid mixture. Figures 4.15 and 4.16 show a higher tank pressure for the

CO2/organic liquid experiments than for the pure CO.) experiments. These observations,

in combination with (4.2 and 4.3) yield the following condition :

Meanwhile, according to Raoult 's Law [59],[59], the saturation pressure of the

CO2/organic liquid mixture decreases for increasing concentrations (i.e. mole fraction) of

the organic liquid :

with n(t)r=a the mole fraction at the droplet surface of the organic liquid in the mixture.

Taking (4.5) into account, (4.4) can only be fulfilled if the temperature of the droplet

containing the mixture exceeds the temperature of the pure droplet. In other words, the

decrease in saturation pressure, which occurs when adding the organic liquid to the CO2,

must be compensated by a spontaneous increase of the droplet surface temperature. In

turn, the increased droplet surface temperature leads to an increase in the temperature of

the generated C02 vapor and average tank temperature.

When it is assumed that the droplet concentration is uniform and equal to the

initial concentration (Table 4.8), the predicted temperature effect by (4.5) is too small to

account for the observations in section §4.2.5. However, due to the large difference in

evaporation rate between CO2 and the organic liquid, the concentration in the droplet will

(5) Raoult's Law holds for dilute mixtures and is used as a defining condition for 'ideal' mixtures. Although
the mixture in the current application is not necessarily dilute or ideal, (4.5) indicates the correct trend in
the dependence of the mixture saturation pressure (e.g. it decreases for increasing concentrations of the
organic liquid).
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not be uniform. Instead, the concentration of the organic liquid in the surface layer of the

droplet (which determines the saturation pressure) is expected to exceed the initial

concentration considerably. This phenomenon is called Layered Evaporation and is

believed to be the explanation for the increase in the average tank temperature compared

to the Reference Experiment.

The actual concentration in the surface layer can be evaluated and depends on the

relative size of the evaporation rate of the CO2 compared to the mass diffusion rate inside

the droplet [36]. Using the results of [36], it has been shown that layered evaporation in

the case of the C02-methanol experiments must occur in droplets larger than 6 μm in

diameter. Although the droplet size distribution was not measured in this research, it is

expected that all, or at least the majority, of the droplets in the spray from the nozzle are

larger than 6 im in diameter. Consequently, layered evaporation is believed to be the

main phenomenon responsible for the drastic increase in the average tank temperature

during the C02/organic liquid experiments.



CHAPTER 5

THEORETICAL MODELING ASPECTS

5.1 Introduction

The objective of the theoretical part of this research is to provide the foundations for the

development of a comprehensive theoretical model for the simulation of the main

experiments. Due to the large number of relevant physical phenomena involved, it is

beyond the scope of this work to advance a complete quantitative model for this inflator.

This chapter is mainly directed towards the phenomena that occur inside the inflator,

rather than those which take place in the tank.

An accurate description of the behavior of CO2 is essential for the development of

the SLG-Inflator Model. The first section of this chapter addresses the issues pertaining to

the modeling of the behavior of CO2. A flexible and robust CO2-model was developed.

This model is capable of accurately predicting P-v-T information, enthalpy and entropy of

a large region of the phase diagram.

The second section in this chapter contains a brief discussion of the calculation of

the generated vapor mass during the inflation sequence in the main experiments. This

calculation, which uses the tank pressure and temperature measurement as input, was

repeatedly used in Chapter 4 to interpret the experimental data.

A quantitative model for the simulation of the main experiments is discussed in

the last part of this chapter. The model consists of two main parts. The first part, the SLG-

Inflator Model, concerns a detailed quantitative description of the phenomena inside the

inflator vessel and the nozzle. The second part, the Tank Model, consists of a simplified

148
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model of the main phenomena taking place in the receiving tank, i.e. the dispersion of the

liquid phase, the evaporation of the produced droplets and the mixing of the CO2 vapor

with tank gases. Both models operate independently of each other and can be run

separately. In addition to the simulation of the pressure, temperature, void fraction,

bubble size and velocity in the inflator, the SLG-Inflator Model calculates the evolution

of the characteristics of the two-phase flow exiting the nozzle. These characteristics form

the input of the Tank Model. Preliminary results of the simulation of the phenomena in

the inflator are presented.

5.2 Modeling the Behavior of CO2

The generated CO2 vapor during the inflation sequence is relatively close to saturation

conditions and does not exhibit ideal gas behavior. Furthermore, the CO2 in this inflator

system does not only exist in the vapor phase, but also as a compressible liquid, a

metastable liquid, a supercritical fluid and as a solid. In summary, nearly all possible fluid

states and their corresponding transitions are encountered during the inflation sequence.

Therefore, a first and important step towards a quantitative model of the SLG-Inflator

must consist of developing a general, robust and flexible model for the behavior of CO2.

The requirements of the C02-model are defrned first. Next, a concise overview of

the alternatives to model the behavior of a real fluid is included. Based on this overview,

and keeping the requirements of the model in mind, it is opted to use a complex equation

of state in the CO2-model. A number of properties, such as the enthalpy and entropy in

the low pressure limit, the saturation pressure and the latent heat, are evaluated without

the use of the equation of state. This part of the model is discussed next. The equation of
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state itself was selected by comparing the results of various equations with tabulated CO2

data for a large region in the phase diagram.

5.2.1 Requirements of the CO2-Model

The following list contains the requirements of the C02-model:

1. Easy to implement in a computer: Since the theoretical model consists of a

numerical simulation of the phenomena in the system, the CO2-model should be such

that it can easily be incorporated in a computer code.

2. Maximum deviation from tabulated values of less than 3%: To assess the agreement

of the experimental observations and the simulations, the accuracy of the model must

be at least of the same order as that of the measurements. The uncertainty of the

measurements was estimated in §3.4 to be approximately 3-5%.

3. Generate P-v-T information, but also enthalpy and entropy values: Besides the

behavior of C02 in terms of the pressure-volume-temperature relation, the enthalpy

and entropy of the fluid need to be calculated.

4. Flexible: Two properties suffice to determine the thermodynamic state of a pure,

single phase fluid (Gibbs Phase Rule [16]). The model should be flexible in the sense

that any two properties can be used as input to generate all others.

5.2.2 Alternative Models for the Non-Ideal Behavior of a Fluid

The literature contains a considerable number of methods to model the non-ideal behavior

of a fluid. An overview is provided in Figure 5.1 ('eos' is used as an abbreviation of

equation of state).
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Figure 5.1 Overview of Non-Ideal Fluid Behavior Models

Keeping the first requirement of the previous section in mind, it is obvious that

graphic methods, such as the 'Nelson-Obert Compressibility Charts' [16], are not suitable

for application in this research. A second way of modeling the non-ideal behavior of a

fluid consists of storing tabulated data in a computer and equipping it with an

interpolation algorithm. This method requires a large amount of computer memory, but

leads to a fast and very accurate model. By choosing tabulated data that is based on the

corresponding states principle, such as the Lee & Kesler's Tables [16], the model will not

be limited to one particular fluid. Typically, this method produces P-v-T information with

an average accuracy of about 0.5% [66]. Tables that are specific for one fluid, for

example [12,30] in the case of CO?, will lead to even more accurate predictions. Using

[12], the maximum error of the prediction of the specific volume (for a given value of the

pressure and temperature) is located near the critical point and is less than 0.5%. The

error of the enthalpy and entropy predictions is less than 0.2%. Accuracies of these orders

of magnitude are not required for the current model. Taking this into account, together

with the required computer memory and the work involved to enter the tabulated data in
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the computer, the last alternative was selected, i.e. to use an equations of state. According

to [79], more than 100 different eos have been developed in the past. The virial equation

of state, commonly written as a power series expansion of the compressibility in the

reciprocal volume, is the only one which is free of empiricism. The coefficients of the

power series, which for pure substances depend on temperature only, can be derived from

the intermolecular potential using statistical mechanics. Although this equation is

important from theoretical point of view, it has little value for the use in this research.

The most compact semi-empirical equations contain two parameters and lead to a cubic

expression in the compressibility (Z), hence the name cubic eos. They are widely used to

represent limited regions of the phase diagram and offer a good compromise between

simplicity and accuracy. The Soave-Redlich-Kwong eos (1972) [83] and the Peng-

Robinson eos (1976) [65] are popular examples of cubic eos [73]. For simplicity, all other

empirical eos are classified in this text as complex eos. The latter category comprises not

only classical equations such as the Beattie-Bridgeman eos (1928) and the Benedict-

Webb-Rubin eos (1942), described in general thermodynamic handbooks [16], but also

more recent developments such as the quartic eos (1994) [73] and the equation developed

by F.H. Huang & F.M. Li et al. (1985) [46].

It is common to refer to an eos by the first letters of the last names of the authors.

For example the Peng-Robinson eos is referred to as the 'PR eos' and the Soave-Redlich-

Kwong eos becomes the 'SRI( eos'. This notation is also used in this text.
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5.2.3 General Aspects of the CO2-Model

The following discusses the part of the CO2-model that is independent of the choice of

the eos.

5.2.3.1 Isobaric Specific Heat Capacity, Ideal Gas Enthalpy, Ideal Gas Entropy: All

thermodynamic properties can be calculated from P-v-T information in combination with

the knowledge of the temperature dependence of one specific heat capacity in the ideal

gas limit (P—> 0). The thermodynamic property is determined by choosing a path between

the reference state and the actual state that consists of an isobaric part at low pressure and

an isothermic part [67]. The same approach is used in this research to calculate the

enthalpy, the internal energy and the entropy. The first part of the thermodynamic path

(i.e. the ideal gas part) is considered here. The second part, the so called enthalpy or

entropy departure depends on the choice of the eos and is discussed in §5.2.4.

The temperature dependence of the isobaric specific heat capacity of CO, at low

pressure was modeled by means of a polynomial curve fit of the 2" order. Values of the

ideal gas tables of [12] from 220-350 K served as input. Within this interval, the curve fit

does not deviate from the input values by more than 0.03% (T [K] ; cp [J/kg.K]):

c [7] = —0.00082 T2 +1.53071T + 460.38735	 (5.1)

Integration of (5.1) over temperature yields an expression for the enthalpy in the ideal gas

limit (T [K] ; h * [J/kg]):
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The reference state (href) is chosen from the ideal gas tables of [12]:

This choice ensures that the enthalpies, calculated from (5.2-3) correspond to the values

listed in [12]. Using (5.2-3), the ideal gas enthalpy was calculated in the temperature

interval 220-500 K and compared with the ideal gas table in [12]. This produced an

Average Relative Deviation (ARD)(¹) of 0.01%.

The entropy variation in the ideal gas limit for an isobaric change of state is given

by:

(5.4)

Substitution of (5.1) in (5.4) and integration yields an expression for the entropy,

corresponding to a given temperature, in the low pressure limit (T [K] ; s * [J/kg.K]):

Also the entropy of the reference state (S ref) is taken from the ideal gas tables in [12]:

Using (5.5-6), the ideal gas entropy was calculated in the temperature interval 220-500 K

and compared with the ideal gas table in [12]. This produced an ARD of 0.02%.

(I) Per definition: ARD =	 (with ri: relative deviation ; N: number of datapoints)ARD=ENIriI/N
i=1
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5.2.3.2 Saturation Pressure: The condition of phase equilibrium for a one component,

two-phase system, requires that the fugacities of both phases are equal [67]. By

combining this condition with pressure and temperature equilibrium and the eos, the

saturated vapor curve can be obtained. However, especially for complex eos, this

procedure is time consuming and it is advantageous to use a correlation for the saturated

vapor pressure instead [46].

Liquid-Vapor System: Two correlations were found [4,46]. Both were compared to

values from [12], ranging from the triple point to the critical point. The correlation from

[4] gave the best results, with an ARD of 0.3% (P„ T r [I]):

Note that this expression is implicit in pressure and needs to be solved iteratively.

Solid-Vapor System: One correlation was found for the solid-vapor system [39]: (T [K] ;

Plat [cmHg]):

The correlation (5.8) is valid in the interval 154 - 195 K. It was complemented with a 4 th

order polynomial fit for the range 195 - 216 K. Tabulated values from [30,39] were used

to develop this curve fit (T[K] ; pat [Pa]):

(5.9)

By combining (5.8) and (5.9), the saturation pressure of the solid-vapor system can be

predicted in the interval 154 - 216 K. These predictions were compared with tabulated
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data from [30,39] and produced an ARD of 0.3%. The derivatives of (5.8) and (5.9), with

respect to T, will be used later to compute the entropy of the saturated solid state.

5.2.3.3 Latent Heat of Vaporization: Similar to the saturation pressure, the latent heat

can be calculated from the eos. Since this would lead to lengthy cycles of iterations, a

correlation was used to predict the latent heat corresponding to a given temperature.

Liquid-Vapor Transition: Two correlations were found for the latent heat of evaporation

[16]. However, both deviated more from the tabulated values in [12] than the following

4th order polynomial fit (T [K] ; L [J/kg]):

(5.10)

In the temperature range from 216-300 K, (5.10) generated an ARD of 0.9% when

compared to the tables in [12].

Solid-Vapor Transition: No correlation was found in the literature for the latent heat of

sublimation. Using tabulated data from [30], ranging from -130 °C to -56.6 °C, the

following polynomial curve fit was developed (T [K] ; L [J/kg]):

L = —0.09231T3 + 44.59902T2 — 7687.33374T +1058607.32266	 (5.11)

This expression reproduces the tabulated data of [30] within the specified temperature

range with an ARD of 0.04%.

5.2.3.4 Internal Energy: Based on the enthalpy and the P-v-T information, the internal

energy can be obtained from the enthalpy definition:
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h[P,T] = u[P, + Pv	 (5.12)

5.2.4 Selection of the eos

For the selection of the eos for the C02-model, the performance of 3 different eos was

investigated by comparing their P-v-T, enthalpy and entropy predictions with tabulated

values in [12] and [30].

As stated before (§5.2.2), the tables of [12] deviate very little from experimental

observations and can therefore be considered as exact for the current purpose. Tables [30]

do not contain any information about their accuracy, but since they compare well to [12]

in the overlapping regions, they are also considered exact.

The objective of the selection procedure is to determine the simplest eos (in

computational terms) that meets the requirements in §5.2.1. Therefore, the eos that were

investigated were organized according to increasing complexity and the frrst one that met

the requirements was selected.

5.2.4.1 Peng-Robinson eos: The PR eos [63] is a cubic, semi-empirical eos, with the

same repulsion term as the van der Waals eos, but a different attraction term:

Parameter b is a function of the critical properties only and therefore constant. Parameter

a is not constant and depends on temperature, the critical properties and the Pitzer

acentric factor (co). The complete expressions corresponding to the PR eos are listed in
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Appendix C.1. When (5.13) is expressed as a function of the compressibility factor, a

cubic relation is obtained:

Z³—(1—B)Z²+(A-3B²-2B)Z—(AB—B²—B³)=0 	 (5.14)

Both A and B are functions of P, T and a, b respectively (see Appendix C.1).

In the two-phase region, (5.14) has three positive real roots. The smallest

corresponds to the compressibility of the liquid, while the largest corresponds to the

compressibility of the vapor. Outside the two-phase region, (5.14) has only one real root.

The enthalpy departure for the PR eos is also included in Appendix C.1.

Reference [55] contains tabulated values of the compressibility factor, predicted at

different conditions and by different eos. The output of the computer code, which was

generated to estimate the accuracy of the PR eos in this research, compared well with

these values.

Table 5.1 Performance Checks of the PR eos

Table 5.1 contains an overview of the performance checks that were carried out

for the PR eos. Columns 2, 3 and 4 characterize the input properties. The input data was

organized along characteristic lines in the phase diagram, listed in the 3' column. The 5th
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column contains the predicted property. For all data points the difference between the

prediction and the tabulated value [12,30] was determined. This difference was

represented with the aid of contour plots, such that the regions in the phase diagram could

be identified where the eos fails to meet the 3%-accuracy requirement.

For the PR eos, it was observed that it generates acceptable values in the saturated

and superheated vapor region, but it fails to meet the requirements in the saturated solid,

the saturated liquid, the compressed liquid, metastable liquid and the supercritical region.

Therefore, the accuracy of a more complex eos, the Beattie-Bridgeman eos [16], was

investigated next.

5.2.4.2 Beattie-Bridgeman eos: The BB eos is a semi-empirical eos with five empirical

constants [16] :

RT	 A
P = ² (1 - 6)(V B) — 	 (5.15)

V V ²

A complete list of expressions and constants for C02 are included in Appendix C.2. Table

5.2 (similar to Table 5.1) provides an overview of the performance checks which were

performed with the BB eos.

Table 5.2 : Performance Checks of the BB eos
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The only region where the BB eos produced better predictions than the PR eos is

the superheated vapor region. In all other areas, it produced the same accuracy or worse

than the PR eos. Next, the eos proposed in [46] was investigated.

5.2.4.3 Huang-Li eos: This empirical eos with 27 constants has the following standard

form [46]:

(5.16)

The coefficients b1 are temperature dependent, while the coefficients c, are constant. A

complete list of expressions and the 27 constants, together with the enthalpy and entropy

departure is included in Appendix C.3. The expression of the enthalpy departure in this

appendix differs from the one published in [46] with one factor: p' was omitted in the 8 th

term. This correction proved necessary to obtain a satisfactory prediction of the enthalpy.

Similarly, a correction to the expression of the entropy departure proved necessary: the

sign of the coefficient c 7 was reversed.

According to [46], (5.16) predicts densities over a wide range of temperatures

(216 - 423K) and pressures ( 0-310 MPa), with an accuracy of within 1% near the critical

point, and 0.1-0.2% elsewhere. Table 5.3 provides an overview of the performance

checks which were performed with (5.16). The contour plots of the absolute relative error

of the first four performance checks are presented in Figures 5.2-5 respectively. The white
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regions represent the parts of the investigated range in which no tabulated data was

available.

Table 5.3 : Performance Checks of the HL eos

Performance Check HL eos : P prediction from (v,T)

Figure 5.2 Performance Check of HL eos: Error on P-prediction from (v,T)



162

Performance Check ILL eos : v prediction from (P,T)

Figure 5.3 Performance Check of HL eos: Error on v-prediction from (P,T)

According to these figures, the predictions of the P-v-T information and enthalpy by

(5.16) fall well within the required accuracy for the entire region of investigation. At high

pressure and relatively low temperature, the entropy prediction exhibits an error in excess

of 3%. Since this region will generally not be encountered during the current experiments,

this effect was not further investigated.

Performance Check HL eos : h prediction from (P,T)

Figure 5.4 Performance Check of HL eos: Error on h-prediction from (P,T)
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Figure 5.5 Performance Check of HL eos: Error on s prediction from (P,T)

Performance check 5 of Table 5.3 indicated that the specific volume of both the

saturated vapor and the saturated liquid can be predicted with sufficient accuracy. The

predicted value of the specific volume of the solid phase was not accurate. This was

expected since the lower limit for which (5.16) was developed, coincides with the triple

point. Bearing this in mind, the predicted volume at temperatures below T, by (5.16) is an

extrapolation of the saturated liquid line, rather than an estimate of the solid phase. For

the current purpose, an estimate of the specific volume of solid CO2 is not needed.

The 6th performance check of Table 5.3 showed that the enthalpy predictions of

saturated vapor and saturated liquid are acceptable. Using the enthalpy of saturated vapor

and the correlation for the latent heat of sublimation (5.11), the enthalpy of the saturated

solid could be calculated:
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These values deviated by less than 3% from the tabulated values in [12].

The entropy predictions for both the saturated vapor and saturated liquid, differed

by less than 3% from the tabulated values. The entropy of the saturated solid C02 could

not be calculated directly. The following thermodynamic identity, based on the

fundamental equation of phase equilibrium for a one component, two phase system, was

used:

The first term was generated using the eos (5.16). The change in volume during

sublimation, Δvvs, was calculated for the interval -110 °C to -56.6 °C, using values from

[12]. It was observed that the change in volume deviates by less than 1% from the volume

of saturated vapor at the same temperature. Therefore, Δvvs, was approximated by the

saturated vapor volume, as predicted by (5.16), with an error of less than 1%. The last

term of (5.18) was calculated by differentiating (5.8) and (5.9). The resulting entropy

predictions of the saturated solid state in the interval -110 °C to -56.6 °C deviated from

the tabulated values in [12] with an ARD of 1.1% and were therefore acceptable.

5.2.4.4 Conclusions: Based on the above results, two different eos were chosen for two

different purposes.

On the one hand, the PR eos was selected for the calculation of the generated

vapor mass in the tank. For this calculation, only saturated or superheated CO 2 vapor

properties are needed. The performance checks in this section indicate that the PR eos
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provides sufficient accuracy in this region of the phase diagram. A detailed description of

the generated vapor mass calculation is given in §5.3.

On the other hand, the HL eos was selected to be used in the CO2-model. The HL

eos predicts P-v-T information, enthalpy (and therefore also internal energy according to

(5.12)) and entropy with sufficient accuracy. Since the specific volume of solid C02 is not

needed to simulate the behavior of the SLG-Inflator, the fact that the HL eos does not

predict these values does not pose a problem. Using this eos, a set of subroutines was

developed, which allows the calculation of P-v-T information, enthalpy, internal energy

and entropy of CO2 in subcooled and saturated liquid states, supercritical states and

saturated or superheated vapor states. Only the enthalpy and the entropy of the solid state

were modeled. The properties of C02 in the superheated liquid state are determined by

the extrapolation of the HL eos in the metastable liquid region [58]. The prediction of the

pressure along three isochores in the metastable liquid region was compared with the

measurements in [72]. A maximum relative deviation of 2.7% was observed.

A brief description of the main subroutines of the general CO2 model are given in

Appendix D.

5.3 Generated Vapor Mass Calculations

For the calculation of the generated vapor mass, the volume of the liquid and/or solid

condensate in the tank is neglected. Hence, the pressure in the system is the result of the

gaseous mixture of the generated C02 vapor and the initial tank gases, which fills the

entire volume of the system (tank and inflator).



166

Depending on the purging gas, two different situations need to be considered. If

CO2 was used, the tank contains only one component (CO?), and the PR eos can be

applied directly to model the real gas behavior. In case the tank was purged with N2 or

He, a mixture of two components is present in the system (either a CO 2/N2- or a CO 2/He-

mixture). The behavior of this mixture is modeled in two steps. First, a pseudo-fluid is

created by combining the properties of the mixture components by means of a mixing

rule. Next, the PR eos is applied to model the behavior of the pseudo-fluid. In this

research, the classical van der Waals-mixing rule is used to determine the properties of

the pseudo-fluid [65]:

The parameters a and b characterize the pseudo-fluid and are used in the PR eos in the

same way as for a pure fluid. The coefficient 8,j is an empirically determined interaction

coefficient, characterizing the binary interaction between the components i and j of the

mixture. In [93], the PR eos and the same mixing rule was used to predict the behavior of

a N2-0O2 mixture over the temperature range 220 - 270 K and for pressures up to 100

bar. This region does not coinicide entirely with that of the current study, but due to the

lack of a better value, the same interaction coefficient for the N2-0O2 mixture was used:

- 0.017 (5.20)N2 -C°2

The small value of the coefficient indicates that there is little interaction between the two

components. No value could be found for the mixture of He and CO2. Similar to the N2 -

CO2 case, a very weak interaction is expected. Therefore, the interaction coefficient in the

case of He - CO2 was taken to be zero.
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calculate N, mass in the tank, using the ideal
gas law and the initial tank conditions

calculate the PR eos parameters (a,b)
for CO, and 1\17 at Ttank

estimate CO, mass from the ideal gas
law and Ttank Ptank

• calculate mole fractions of the CO, - N2 mixture
• calculate PR eos parameters (a,b) for the pseudo-

fluid from the mixing rule

calculate Pcalc, from PR eos for the
pseudo-fluid at Ttank

adjust estimate of
CO, mass

Figure 5.6 Generated Vapor Mass Calculation

The calculation of the generated vapor mass is performed in an iteration loop

which contains the PR eos for the gaseous mixture. The flow chart of the calculation is

included in Figure 5.6. By repeating the iteration for each measured set of tank pressure

and tank temperature (P tank and Ttank), a curve for the generated vapor mass is produced.

The cases of pure C02 and a He-CO 2 mixture were treated similarly.

For several purposes, the partial pressures in the system were calculated. In case a

mixture was filling the system, the partial pressure of CO2 was determined by means of

the expression for the fugacity for each component, as listed in Appendix C.1 [65]. Since

this expression requires the specification of the mole fraction of the components of the

mixture, it is advantageous to incorporate it in the calculation of the generated vapor

mass.
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5.4 Model of the Main Experiments

The theoretical model of the main experiments is presented in this section and consists of

two parts. The first part describes the phenomena inside the inflator and the nozzle and

will be referred to as the SLG-Inflator Model. The second part is driven by the output of

the SLG-Inflator Model and describes the phenomena in the tank. These phenomena

include the dispersion, evaporation and solidification of the liquid phase of the spray and

the mixing of the vapor phase and the tank gases. This part will be referred to as the Tank

Model. An overview of the complete model of the main experiments is provided in Figure

5.7. During this research, the main effort was directed towards the SLG-Inflator Model, in

keeping with the original objective of the work.

SLG-INFLATOR MODEL

Transient, Two-Fluid,
Two Temperature,

Quasi-One Velocity Model

Two-Phase Flow
(e, w, w, Tv, T1, p,„ p)

TANK MODEL

Dispersion Model
(empirical)

Evaporation Model
(semi-empirical)

Mixing with
the Tank Gases

Figure 5.7 Overview of the Theoretical Model of the Main Experiments
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The SLG-Inflator Model was primarily based on [47,63], in which a similar

problem is considered, i.e. the outflow of flashing water of a tube with one closed end.

Since the model is based on the conservation laws, supplemented with constitutive

equations to obtain closure, it belongs to the category of the Two-Fluid Models [89],

similar to [21,28,31,34,69].

As indicated in Figure 5.7, the tank model consists of three steps. The first step

concerns the dispersion of the liquid phase in the spray from the nozzle and is described

by an empirical correlation [6,56,84]. The evaporation of the generated CO2 droplets is

described in the second step of the tank model. This step also describes the solidification

of the droplets. In the last step of the tank model, the generated C02 vapor, coming either

directly from the nozzle spray or from the evaporation of the droplets, mixes

instantaneously with the tank gases.

Both parts of the model (i.e. the SLG-Inflator Model and the Tank Model) run

separately from each other. The input of the Tank Model consists of the characteristics of

the two-phase spray exiting from the nozzle and this is provided by the SLG-Inflator

Model.

5.4.1 Stored Liquefied Gas Inflator Model

As stated, the SLG-Inflator Model was mainly based on [47,63], in which a similar

problem is discussed. However, the SLG-Inflator Model differs in several ways from

[47,63]:

1. CO2 is the working fluid instead of water: For typical initial inflator conditions

(Table 2.3), liquid CO2 is more compressible than water. This leads to smaller
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gradients in the system than in [47,63]. In addition, CO2 is more volatile than water

and will evaporate faster. The latter is expected to speed up phenomena such as the

outflow and the evaporation wave.

2. Different geometry: The geometry of the inflator has a similar length over diameter

ratio as the tube in [47,63], but differs by about I order of magnitude in size.

Therefore, it is expected that wall nucleation will be important instead of bulk

nucleation, such as assumed in [47,63]. As a result, the parameters of the model,

which correspond to the initial bubble size and concentration after nucleation, will

differ from the values in [47,63].

3. Finite opening time of the release mechanism: In [47,63] an instantaneous opening

of the tube end is modeled. The finite opening time of the release mechanism in the

inflator is taken into account in the current model. This flattens the rarefaction waves

and leads to smaller gradients in the system [63]. The smaller gradients are expected

to facilitate the numerical simulations, since they allow the limits on the number of

space and time steps to be relaxed.

Z 0 z Zp Constant Cross
Section

z L

Figure 5.8 Inflator System in the SLG-Inflator Model

The system under consideration is shown in Figure 5.8 and consists of a tube with

one closed, and one open end. Since a one-dimensional approach is used, only one space
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coordinate is assigned (z). The cross section and the length of the tube are the same as for

the inflator vessel. Since the inflator has a constant diameter, the model is developed for a

constant cross section. The position of the pressure transducer is marked by Zp, near the

closed end at z=0. The nozzle and opening mechanism of the inflator are located at z=L.

5.4.1.1 Main Assumptions: The following assumptions were made when developing the

SLG-Inflator model :

1. One-dimensional model: As suggested by the geometry of the inflator vessel, i.e. a

large length over diameter ratio, a one-dimensional approach is adapted and all

properties are assumed constant within each cross section of the system. For inflators

with a smaller length over diameter ratio or for geometries with drastic changes in the

diameter of the vessel, it is expected that two-dimensional effects in the flow will

become important.

2. Transient model: Since the model concerns the start-up of the flow and the

evaporation, transient effects are essential for the explanation of the experimental

observations.

3. Equal pressure for both phases: Because of the relatively large size of the bubbles

and the high initial pressure, the effect of the capillary pressure (²) inside the bubbles is

negligible. Hence, the pressure for both phases is equal and constant in every cross

section.

(2) The capillary pressure refers to the pressure increase inside a bubble or droplet, due to the effect of
surface tension. It is described by the Laplace (or Laplace-Kelvin) equation [20].
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4. Vapor phase is saturated corresponding to the local pressure: It is assumed that the

vapor in the system is saturated with respect to the local pressure. Therefore, when the

latter is known, all other vapor properties, such as the temperature (T v), density (ρv)

and enthalpy (11,), can be determined. The combination of assumptions 3 and 4

implies uniform bubble properties. The characteristic time to reach a uniform

temperature within a bubble is calculated by means of the Fourier Number [41],

which is commonly used to non-dimensionalize time in transient heat conduction

problems within bodies:

(5.21).

For CO2, at the conditions under consideration, and for the expected bubble sizes,

was calculated in the order of 10 us. Since this is 2 orders of magnitude smaller than

the characteristic time of the inflation sequence (taken as 1 ms), it is justified to

assume uniform properties inside the bubbles.

5. Constant pressure outside the inflator: The increase in tank pressure is negligible

compared to the pressure drop in the inflator. Hence, when expressing the boundary

condition on the open end of the inflator (z=L), the pressure is assumed constant and

equal to ambient pressure (after the complete opening of the release mechanism).

Note that this corresponds to assuming that both parts of the main model (Figure 5.3)

operate separately.

6. Nucleation can be modeled by specifying the initial bubble size and concentration:

As discussed during the description of the qualitative model (§4.3.1), predominantly

wall nucleation is expected to occur in the current system. In principle, the nucleation
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rate can be calculated with the aid of heterogeneous nucleation theories [14,77,97].

However, since this requires the specification of the characteristics of the nucleation

cavities and accurate knowledge of the surface tension, which is strongly influenced

by impurities, considerable uncertainty is involved. To avoid this uncertainty and to

facilitate the numerical simulation, a simplified nucleation model is used. The latter

consists of artificially introducing bubbles of known size and concentration in the

flow when the pressure drops below the local saturation pressure. It is customary to

consider the initial bubble characteristics (size and concentration) as parameters of the

simulation and to use them to fit the predictions to the experimental observations

[31,34,69]. Typically, a bubble number density of 10 11 -10 13 1/m3 and a radius

between 0.5 - 20 lam is specified [31,63,69]. This approach is also used in the current

model. A few studies have been found where actual wall nucleation models or

correlations were used [21,28,92].

7. Two-phase flow exists in the 'bubbly-flow' regime: The bubbly flow regime, in

which isolated, near-spherical bubbles coexist in a continuous liquid phase, is

typically established after the onset of flashing. As the bubbles grow, due to

evaporation at the interface with the liquid, they are expected to touch each other and

coalesce. The latter leads to the formation of slugs and the transition to slug or churn

flow. The limit of the bubbly regime, in terms of the void fraction of the flow,

depends strongly on the rate of void development. For flows with a limited

evaporation rate, the transition is generally taken at e 0.2, however, for rapidly

evaporating flows (such as the current system), the transition to slug flow may be

delayed until e > 0.7 [21,28,31,34,69]. The specification of the flow regime is
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important because it influences the faun of the constitutive relations, which describe

the transport processes between the phases (§5.4.1.3).

8. Wall friction and heat transfer from the inflator walls are negligible: Based on the

short duration of the inflation sequence, heat transfer from the inflator walls is

neglected. In addition, because of the short length of the inflator vessel, also the effect

of wall friction is neglected.

9. Viscosity and longitudinal heat transfer in the liquid is negligible: Customary to

these kind of problems, it is assumed that the influence of the viscosity and heat

transfer within the liquid phase is negligible [31,28,31,34,69]. However, viscosity is

taken into account, when expressing the drag force from the liquid on the bubbles.

10. CO2(v) behaves like a real gas: Since the vapor phase is assumed to exist at

saturation conditions, its behavior deviates from ideal gas behavior and it must be

modeled as a real gas.

11. CO2(l) is a compressible liquid: The compressibility of the liquid phase of CO2 is

essential for the existence of the forerunner, and hence, for the explanation of the

inflator phenomena.

12. Velocity difference between both phases remains small: The velocity difference

between the phases is assumed to remain so small that it only affects the break-up

process of the bubbles. It is assumed not to affect the mixture velocity. Typically, the

velocity difference between the phases will be about 0.1-1.0 m/s.

13. Effect of gravity is negligible: The forces on the flow, resulting from the pressure

gradient in the system, are much larger than the effect of gravity. Therefore, it is not

taken into account in the SLG-Inflator model.
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5.4.1.2 Governing Equations: The state of the system is defined by seven parameters: P.

ρv, pi, n, e, w, wv, i.e. the pressure, the vapor phase density, the liquid phase density, the

bubble number concentration, the void fraction, the mixture velocity and the vapor phase

velocity, respectively. The following seven field equations, consistent with the above

assumptions, are used to solve for the system parameters:

1. Conservation of mixture mass (mixture continuity)

(5.22)

2. Conservation of vapor mass (vapor continuity)

3. Conservation of mixture momentum (mixture impulse equation)

(5.24)

4. Conservation of mixture energy (ft Law of Thermodynamics for the mixture)

(5.25)

5. Conservation of the bubble concentration

n
	 +	 (n.w) =

dz

6. Conservation of momentum for a bubble (2 nd Law of Newton)

(5.26)

(5.27)
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7. Equation of state: As discussed in detail in §5.2, the HL-eos [46] was used to model

the behavior of CO2.

In addition, the following definitions hold for the mixture density, the mixture

enthalpy and the void fraction:

for the mixture density,	 (5.28)

for the mixture enthalpy and	 (5.29)

for the void fraction.	 (5.30)

The source terms in (5.22-27) (j, y, fA, fm ,
 f, i.e. the evaporation rate, the bubble

break-up rate, the buoyancy force, the virtual mass force and the drag force, respectively)

will be related to the system parameters by the constitutive expressions in §5.4.3.1.

According to assumption 12 in §5.4.1.1, the velocity difference between the

phases does not affect the mixture flow. As a result, the conservation of momentum for a

bubble (5.27) can be integrated separately from the other field equations. Equations (5.22-

26) are rewritten in the generalized transport equation form:

(5.31)

(5.32)
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The system (5.31-32) is a 1st order hyperbolic system of partial differential equations,

with U the vector of the transport quantities, P the vector of the fluxes and J the vector

of the sources.

5.4.1.3 Constitutive Equations: To obtain closure for (5.31-32), the source terms need to

be specified. They concern the evaporation rate, the bubble break-up rate and the forces

on the bubbles. This is done with the aid of the constitutive equations.

For the liquid properties, i.e. the thermal diffusivity, the surface tension and the

viscosity, only data corresponding to the saturated liquid state was found. However, since

these properties are used to calculate the source terms in (5.31-32), i.e. after nucleation

has occurred, the condition of the liquid will be relatively close to saturation.

Consequently, it is expected that the use of saturated liquid properties will not lead to

significant errors .

Evaporation Rate (j): It is assumed that the evaporation process is thermally controlled

and that the latent heat of evaporation is entirely supplied by the superheated liquid. The

heat transfer coefficient from the liquid to the bubble-liquid interface is determined by

means of a correlation, involving the Nusselt (Nu) and the Jakob number (Ja). Additional

information on the bubble evaporation model can be found in [21,47,63].

The evaporation rate is calculated from:

j = 2.7r. a.αl . ρv.Ja.Nu 	 (5.33),



A 4th-order polynomial curve fit for the dependence of the thermal diffusivity of

the liquid (α1) on temperature was developed. Data from three sources was combined for

this purpose, ranging from the triple point to 300 K [12,17,87]. The resulting expression

is:

a1 = —3.2577.10-¹¹.Tl4 + 3.2737.10 -8 . T3 - 1.2307.10 -5 .77 2 + 2.0435.10 -3 .7; — 0.1253

(5.36).

The units of the calculated αi are [cm2/s]. This curve fit generated an ARD of 3.0% over

the temperature range. The spread of the values from the three sources is partially

responsible for the size of the deviation.

Another 4th order polynomial curve fit was developed for the isobaric specific heat

of saturated liquid CO2 (c1), based on tabulated data in [12,17]. Data was used for a

temperature interval from the triple point to 295 K. The following polynomial generated

an ARD of 2.2% over this interval:

= 4.3351.10-4.Tl4  — 0.4249.7; 3 +155.8902.7; 2 — 25366.5537.T + 1545867.3729 (5.37)

Bubble Break-up Rate (1): Bubble break-up is the result of surface instabilities, which

grow under influence of the velocity difference between the liquid and the vapor phase,

i.e. so called Kelvin-Helmholtz instabilities [19]. A flat interface model is used and

break-up is assumed to occur when the wavelength of the instability equals the droplet

diameter. This leads to a critical value of the Weber number of 271: We' 27t. When the
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local Weber number exceeds the critical value, the bubbles are assumed to break into two

equal smaller bubbles. Reference [47] contains a detailed description of the break-up

model.

The bubble break-up rate is evaluated from:

(5.38),

with the local Weber number given by:

(5.39).

The critical time (t") represents the time which it takes for the amplitude of the

disturbance to reach a value comparable to the bubble radius and can be expressed as:

(5.40)

The temperature dependence of the surface tension was described by an

expression from [32]. It concerns the flat film value (the influence of the curvature is

neglected) and the expression holds downto 160 K:

(5.41)

The units of σoo, are [dynes/cm]. The results of (5.41) were verified with tabulated values

in [3] and were in good agreement.

Bubble Forces (TA, fm, fμ): Three forces (in addition to its own inertia) are considered in

the bubble momentum balance of (5.27). They are the buoyancy force, the virtual mass

force and the drag force, as given by (5.42), (5.43) and (5.44), respectively:



180

(5.42)

(5.43)

(5.44)

The buoyancy force (fA) is equal to the force of the displaced liquid (Principle of

Archimedes). The virtual (or apparent) mass force (fm) accounts for the liquid flow

around the bubble, which is created when it accelerates relative to the liquid. According

to [69], this effect needs to be included in the bubbly flow regime only. Although

correlations were developed to determine the virtual mass coefficient (i.e. the first factor

in 5.43) in terms of the local flow characteristics [31,69], a value of 0.5 is often used

[28,47,63]. Many different forms for the drag force (fμ) have been published

[21,28,31,34,47,63,69]. Most expressions are similar and the relation from [47] was used

in the SLG-Inflator Model:

(5.45),

with the bubble Reynolds number:

(5.46).

The temperature dependence of the dynamic viscosity of the liquid phase (RI), was

expressed through a 2nd order curve fit based on data from [17] in the range from the

triple point to the critical point.



The shape of the constitutive equations strongly depends on the flow regime of the

two-phase flow. For example, when bubbly flow turns to churn or slug flow, the effect of

the virtual mass force becomes negligible. The transition between flow regimes is based

on the value and the rate of change of the void fraction. The above set of constitutive

equations are expected to adequately model the interfacial transport processes for void

fractions below 0.7.

5.4.1.4 Numerical Algorithm: Both the main system (5.31-32) and the momentum

conservation for the bubbles (5.27) are solved by a Two-step Lax-Wendroff Scheme (LW

scheme) [68], a popular algorithm for transient solutions of hyperbolic systems of PDEs.

A splitting method [68] was used to include the source terms in the LW scheme. The set

of difference equations of the numerical scheme, both for the main system and for the

bubble momentum conservation law are included in Appendix E. A flow chart of the

main integration loop, which demonstrates the sequence of operations, is also included in

Appendix E.

The LW scheme is 2 nd order accurate in space and time(³) . The space and time step

(Az and At, respectively) are connected by the CFL condition, which is a necessary

condition for the numerical stability of the algorithm (a is the local sonic velocity):

(³) The order of the numerical algorithm reflects the number of terms that was taken into account in the
Taylor expansion of the solution. For example, a 2"' order scheme in space has a local truncation error
of the order of (Δz)³, which is the order of the first term in the Taylor series which was not taken into
account due to truncation [68].
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(5.48)

Physically, (5.48) can be interpreted as a condition which ascertains that the speed at

which the information travels in the numerical algorithm is higher than the rate at which

the actual system changes.

During each step of the algorithm, the system properties corresponding to the

local vector of transport quantities need to be determined. This involves solving a non-

linear system of algebraic equations, which was done numerically by means of the

Modified Newton Method [10]. Additional information is included in Appendix E.

5.4.1.5 Initial and Boundary Conditions: For nominal initial conditions (Table 2.3), the

inflator is initially filled with uniform subcooled liquid. The initial pressure exceeds the

critical value and no bubbles are present in the system. Furthermore, the fluid is at rest

and the velocity is uniformly 0. These considerations allow the evaluation of the initial

values of the system parameters. Similarly, for other initial inflator conditions, the system

parameters are known at the onset of the process.

During the integration, the same two boundary conditions as in [47,63] were

applied. At the closed end of the tube (z=0, Figure 5.4), the velocity of both phases is zero

(no slip condition). This condition is readily incorporated into the numerical algorithm.

The boundary condition at the open end (z=L, Figure 5.4) is commonly referred to as the

outflow  boundary condition [77,91]. After the release mechanism has opened completely,

and in agreement with the 5 th assumption in §5.4.1.1, the outflow boundary condition

requires that the pressure outside the inflator is constant and equal to ambient pressure.
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For single phase or equilibrium two-phase flow, such a condition is commonly

implemented with the aid of the method of characteristics [77,91]. hi the current model,

the outflow boundary condition was incorporated into the solution algorithm by

developing the field equations and the bubble momentum conservation law in a I s' Order

Upwind Differencing Scheme [68]. The corresponding difference equations and additional

information are included in Appendix E.

The finite opening time of the release mechanism is modeled through the outflow

boundary condition in two steps. The first step corresponds to the first stage of the

inflation sequence (§4.3.1.1) in which there is no flow from the nozzle. The second step

concerns the clearing of the exit holes by the sliding piston during the initial moments of

the second stage in the inflation sequence (§4.3.1.2).

Figure 5.9 Outflow Boundary Condition
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The implementation of these two steps for the case of nominal initial inflator conditions

is shown in Figure 5.9. During the first step, the pressure drops linearly from its initial

value (139 bar) to 60 bar in 1.28 ms. The latter corresponds to the calculated duration of

the first stage of the inflation sequence, based on the dynamic analysis of the motion of

the sliding piston in the mechanism. The value at the end of the first stage (60 bar) was

calculated by assuming an isentropic expansion of the subcooled CO2 in the central

channel of the nozzle. The second step lasts 0.12 ms and concerns a rapid linear pressure

drop to ambient pressure (1 bar). Again, this duration is evaluated in the dynamic analysis

of the sliding piston.

Finally, because the implementation of the outflow boundary condition is l st order

in time and space, it is expected to reduce the accuracy of the entire solution. While it is

difficult to estimate the loss of accuracy, according to [35] it should be located between

that of a 2"d and 1 S1 order scheme. This loss of accuracy can be avoided by developing the

outflow boundary condition in a 2" Order Upwind Differencing Scheme. However, since

this scheme uses two 'previous' points, it leads to difficulties when starting the

integration loop.

5.4.1.6 Validation of the SLG-Inflator Model: References [47,63] contain the results of

the simulation of flashing outflow of water from a tubular vessel (P0=69 bar, T0=515).

The authors did not provide information on the outflow boundary condition, the equation

of state or the number of time and space steps that were used.

In order to validate the developed SLG-Inflator Model, several attempts were

made to simulate the same outflow processes as discussed in [47,63]. By comparing the
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output of the SLG-Inflator Model to the results in [47,63], the accuracy of the developed

inflator model could be verified. For this purpose, a second version of the model was

developed, in which water was used as the working fluid. The water behavior was

modeled by means of the eos which was used to generate the classical steam tables of

Keenan and Keyes [50]. Other properties such as viscosity, surface tension, latent heat,

specific heat capacity and thermal diffusivity are readily available in the literature [95]

and were approximated by polynomial curve fits. For the water model, a different

boundary condition was applied than described in §5.4. I .5. It was assumed that the flow

in the last space step of the tube could be approximated as uniform, i.e. properties such as

velocity, void fraction and temperature were assumed to be constant. In addition, an

instantaneous pressure drop to ambient pressure was applied in the outflow section at the

start of the process.

Figure 5.10 Propagation of Forerunner in the Water Model
(thin lines correspond to the current model, while the bold
curves represent the published results in [47,63])
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The output of the current model is compared with published results [47,63] in Figure

5.10. The number of space steps and the magnitude of the timestep for these calculations

were 100 and 25 pis, respectively. Figure 5.10 represents the pressure distribution along

the axis of the tubular vessel (normalized with the initial pressure) and illustrates the

formation and propagation of the forerunner in the tubular vessel (length 4.0 m).

Reasonable agreement between the output of the current model and the results of [47,63]

is observed. It is believed that the approximated outflow boundary condition (i.e.

neglecting the changes in the system in the space step before the open end of the tube), is

responsible for the observed deviation between the pressure curves in Figure 5.10.

To obtain better agreement between the output of the current model and the

results in [47,63], the outflow boundary condition should be applied as described in

§5.4.1.5, but with an instantaneous drop to ambient pressure at the onset of the process.

This should be accompanied with the use of a larger number of space and time steps to

resolve the steep gradients in the system. This approach was tried during this research, but

the required computation time on the computer that was available (Sun Workstation

SPARC 20, shared with on average 5 other users) became unacceptable (more than a

week). Therefore, further attempts to validate the SLG-Inflator Model in this manner

were abandoned.

5.4.1.7 Preliminary Results and Discussion: The output of the SLG-Inflator Model

consists of the axial distribution of the properties inside the inflator at different times in

the inflation sequence.



Pressure Distribution during Stage 1
(nominal initial inflator conditions)
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Temperature Distribution during Stage 1
(nominal initial inflator conditions)

Velocity Distribution during Stage 1
(nominal initial inflator conditions)

Figure 5.11 Inflator Properties during Stage l of the Inflation Sequence
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These properties include the temperature and velocity of both phases, the void fraction,

the pressure, the bubble size and the bubble concentration. Commonly, the output is

represented in property profile curves, taken at a particular point in time. To assess the

agreement between experiments and simulations, a series of pressure and temperature

profile curves needs to be considered. The evolution of the pressure and temperature

given by the series of profile curves at the locations corresponding to the positions of the

pressure transducer and the thermocouple must be compared with the measurements.

At present, only preliminary results from the SLG-Inflator model are available.

The simulation was performed for initial conditions corresponding to the Reference

Experiment: 2000 psig (139 bar) and 22 °C (295 K). Results were obtained for the first

stage and part of the second stage of the inflation sequence (up to t=1.35 ms).

The results for the first stage of the inflation sequence, with a duration of 1.28 ms,

are presented in Figure 5.11. As discussed in §4.3.1, this stage corresponds to the

isentropic expansion of the subcooled CO2 in the central channel of the nozzle, and no

nucleation takes place. The boundary condition (Figure 5.9) applies a linearly decreasing

pressure during this stage to a value of 60 bar. Profile curves for the pressure, temperature

and velocity are presented. Figure 5.11 clearly illustrates the non-uniform pressure and

temperature distribution at the end of the first stage, which influences the propagation

speed of the forerunner during the second stage (§4.3.1). It can be verified that the

saturation pressure, corresponding to the temperature profile curves in Figure 5.11, is

lower than the local pressure at all times and that no nucleation takes place. The velocity

curves illustrate the no-slip boundary condition at the closed end of the tube and the

gradual acceleration of the outflow.
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Figure 5.12 Inflator Pressure and Temperature during Stage 2 of the Illflation Sequence 

Partial results for the second stage of the inflation sequence are presented in 

Figures 5.12 and 5.13. The pressure and temperature profiles are shown in Figure 5.12, 

while the development of the void fraction and the velocity distribution are illustrated in 

Figure 5.13. During the first 0.12 ms of the second stage, the nozzle exit holes are 

completely opened, and the pressure at the open end of the inflator drops from 60 bar to 
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ambient. This results in the forerunner, which propagates through the inflator at the local 

speed of sound. Due to the pressure and temperature profile in the inflator at the onset of 

the second stage, the forerunner is expected to speed up as it approaches the closed end of 

the vessel. The start of the formation of the forerunner is shown in Figure 5.12 as a rapid 

pressure drop near the open end of the inflator. 
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Figure 5.13 Void Fraction and Velocity in the Inflator during Stage 2 
of the Inflation Sequence 
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Figure 5.13 shows that nucleation and evaporation commence shortly after the start of the

2nd2. stage in the inflation sequence. An initial bubble size of 1 um and an initial bubble

concentration of 10 13 1/m³ were used. Note that in the figure which contains the void

fraction curve, only the last 50 mm of the inflator is shown.

For the above simulation, the space domain was discretized in 500 steps, while a

time step of 0.5 μs was used. It is clear that the results of the simulations in Figures 5.11-

13, i.e. for the first 1.35 ms of the inflation sequence, do not allow a meaningful

comparison with the experimental observations.

The SLG-Inflator model was run for different values of the initial bubble size and

initial bubble number concentration, ranging from 0.1-20 pm and 10 9-10 16 , respectively.

For very small initial bubble sizes (below 0.5 μm), the velocity of the vapor phase

immediately after the introduction of the bubbles oscillated around the liquid velocity

with growing amplitude. Within a few timesteps, the velocity difference between the

phases became unacceptable. This phenomenon was not observed for larger initial bubble

sizes (above 0.5 p.m), in which case the term corresponding to the drag force in the

bubble momentum balance is less dominant. For low initial bubble number

concentrations (below 10 11 -10 12 ), the evolution of the liquid phase during the inflation

sequence was such that the spinodal line was reached. In reality, this situation

corresponds to very clean operating conditions (liquid and equipment) and would lead to

homogeneous nucleation.

When the above phenomena were avoided, by choosing initial bubble sizes in

excess of 0.5 tm and initial concentrations above 10 12 , another problem occurred.

Independent of the values of the parameters, the temperature and void fraction in the
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section prior to the open end of the inflator, were observed to grow to unacceptable

values. While it is not proven at present, it is believed that this is a result of a numerical

instability. hi an attempt to avoid the instability, the calculation is being repeated with a

larger number of space steps (1000) and a smaller time step (0.2 μs).

5.4.2 Tank Model

Three different processes are taken into account in the Tank Model (Figure 5.7):

1. the dispersion of the liquid phase of the spray (Dispersion Model)

2. the evaporation and solidification of the CO2 droplets (Evaporation Model)

3. mixing of the CO2 vapor with the tank gases (Mixing Model)

The CO2 vapor in the third process is partially produced by flashing inside the

inflator and partially by the evaporation of the dispersed droplets in the tank.

Both the dispersion of the liquid phase and the evaporation of the spray are highly

complicated processes, with a large number of interrelated parameters. Only in the case of

a low-velocity, single phase, liquid jet from a nozzle with a simple geometry, the

atomization process can be described without the aid of correlations [6,56]. Similarly, all

current models for the evaporation of sprays rely on empirical correlations [6,80]. Both

for the dispersion of the liquid and for the evaporation of the droplets, correlations are

used in the Tank Model. A large part of the research in the dispersion of liquid and the

evaporation of sprays is driven by the strong interest of the automobile industry in

improving the performance of injectors for internal combustion engines. The correlation
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in the Dispersion Model, as well as the one in the Evaporation Model (Figure 5.7) were

taken from an investigation concerning fuel injectors.

It is assumed that the generated CO2 vapor mixes instantaneously with the tank

gases. The evaluation of the resulting tank properties is similar to the calculation of the

generated vapor mass (§5.3).

The input of the Tank Model consists of the characteristics of the two-phase flow

in the nozzle exit plane, as calculated by the SLG-Inflator Model (Figure 5.7). These

characteristics include the void fraction, the temperature, density and velocity of both

phases. Since the flow from the inflator is not steady, the characteristics of the two-phase

flow from the nozzle will change during the inflation sequence. It is assumed that all

processes in the tank are quasi-steady, such that correlations for steady conditions apply.

To take the time dependence of the outflow characteristics into account, the tank

processes are modeled by a sequence of small time steps. At the beginning of each step,

the characteristics of the two-phase flow in the nozzle exit plane are considered (as

calculated by the SLG-Inflator Model) and the Dispersion Model is used to predict the

average diameter, the number and the temperature of the generated droplets. Before the

Evaporation Model is applied, the properties of the freshly formed droplets is combined

with the properties of the droplets that were already in the tank. In this manner, the

average properties (i.e. size, number and temperature) of the total amount of droplets in

the tank are updated. Based on these average properties, the Evaporation model predicts

the change in average droplet diameter and temperature as well as the amount of

generated vapor during the time step under consideration. Finally, before repeating the

above in the next time step, and based on the total amount of generated vapor, the Mixing
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Model is used to calculate the new conditions of the gaseous mixture in the tank. This

sequence of operations is repeated until the end of the inflation process. Figure 5.14

contains a flow-chart of the Tank Model.

t = 0

/ Read Outflow
Characteristics at t

Dispersion Mode

Determine average
properties of all droplets

Evaporation Model

Mixing Model

END

Figure 5.14 Flow-chart of the Tank Model

5.4.2.1 Dispersion Model: The dispersion model describes the break-up of the liquid

phase in the two-phase outflow from the inflator. The main output of the dispersion

model is the size distribution of the generated droplets. While it is impossible to

characterize a size distribution by a single parameter, it is common practice to base

calculations on the average diameter only [56]. Different definitions of the average

diameter of a size distribution are used for different purposes [56]. For processes
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involving mass transfer, it is common to use the Sauter Mean Diameter(SMD), which is

(5.49),

with N, the number of droplets in the size range with middle diameter D,. Droplets with a

diameter equal to the SMD have the same volume to surface ratio as the entire spray.

As discussed in detail in Chapter 4, the high-speed cinematographic observations

of the shape of the spray indicate that classical atomization predominates during the entire

inflation sequence. If the influence of the flashing and the presence of the vapor phase in

the jet is neglected, a correlation for a Plain Pressure Orifice Atomizer can be used [56].

Numerous correlations of the SMD for liquid jets from a constant diameter orifice have

been reported. The Mayer-correlation (1961) [84], was developed for conditions with

relatively high liquid velocities:

(5.50),

with B an empirical parameter of order unity.

The presence of the vapor phase in the jet from the inflator nozzle creates a

similar situation as in a Twin Fluid Atomizer, where air is supplied to enhance the

dispersion [56]. Based on this observation, [84] successfully employed a correlation,
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developed for a Prefilming Air Blast Injector (4), to predict the average droplet size in case

of a flashing injector(5) . The following correlation from [56] was used:

with ηn: atomization efficiency, based on the performance of the particular injector.

Depending on the influence of the flashing and the presence of the vapor phase on

the dispersion process, (5.50) or (5.51) will be most suited to be used in the Dispersion

Model. It is expected that by comparing the simulated tank properties with the

experimental observations, a selection between (5.50) and (5.51) will be possible. Note

that all parameters in both correlations are known when the characteristics of the outflow

are specified.

When the average diameter of the droplets is known, the number of drops that is

being injected can be evaluated from the total amount of liquid that is discharged in the

tank during that time step. Furthermore, the temperature of the drops is assumed to be

uniform and equal to the temperature of the liquid phase in the exit plane of the nozzle.

5.4.2.2 Evaporation Model: The evaporation of the CO2 droplets in the tank during the

inflation sequence is described by the model for drop vaporization presented by Reitz in

[31], which is based on Chapter 8 in [56].

(4)In a Prefilming Air Blast Injector, the liquid is first spread out in a thin continuous sheet and then
subjected to the atomizing action of high-velocity air. They are used in a wide variety of aircraft, marine
and industrial gas turbines [56].

(5)A Flashing Injector operates on the principle that the liquid flashes as it passes through the injector.This
improves the atomization properties (reduction in drop size and spray penetration and better spread) [84].
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A brief summary of this model is included in this section.

The vaporization of a spherically symmetric droplet is considered and molecular

diffusion is assumed to be the rate-controlling process. Starting from Fick's law of

diffusion, the rate of drop radius change for steady state evaporation can be expressed as:

with ρ the density of the gaseous mixture surrounding the evaporating droplet and B the

mass transfer number, defined as follows:

(5.53).

In (5.53), YsCO2 and Y the mass fraction of CO2 at the droplet surface and the

average mass fraction of CO2 in the tank, respectively. The mass fraction at the surface is

determined by assuming that the partial pressure of CO2 is equal to the saturation pressure

corresponding to the droplet temperature (Td):

(5.54).

In (5.52), the quantity (ρDCO2_N2  ) is commonly replaced with (k/cp ), assuming a Lewis

number of unity. The thermal conductivity and the specific heat are mean values for the

gases surrounding the droplet, and are calculated at a reference temperature and

composition, obtained from the one-third rule:

(5.55)
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(5.56).

Using these references, the thermal conductivity and specific heat can be calculated by an

(5.57)

(5.58).

The above holds for the evaporation of a droplet in quiescent conditions. When a

relative velocity exists between the drop and the surrounding gases, convective effects

enhance the evaporation and the lifetime of the droplet decreases. This effect is taken into

account by multiplying the right hand side of (5.52) with a correction factor. The latter is

commonly obtained with the aid of the Frossling correlation, which involves the

Reynolds and the Schmidt number.

The change in droplet temperature is calculated from the energy balance for the

droplet:

(5.59),

with L the latent heat corresponding the droplet temperature and Qd the rate of heat

conduction to the drop. The Ranz-Marshall correlation is used to evaluate the heat

conduction. The correlation contains the Reynolds and the Prandtl number.

The involved properties in the dimensionless numbers of the Frossling and the

Ranz-Marshall correlation should be evaluated at the reference temperature and

composition (5.55 and 5.56). Similar mixing rules as (5.57 and 5.58) hold for the density

and the viscosity.
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The main difficulty with the above model concerns the relative velocity between

the droplets and the tank gases, which is required for the evaluation of the droplet

Reynolds number. This velocity is not known and should be estimated or considered as a

parameter of the Tank Model.

It is clear that the Evaporation Model involves severe approximations, such as

neglecting the influence of the surrounding droplets and assuming steady state

evaporation. Therefore, it should be considered as a first attempt to describe the

evaporation process and requires further research.

5.4.2.3 Mixing Model: It is assumed that the freshly generated CO2 vapor mixes

instantaneously with the gaseous mixture, already present in the tank. The updated

properties of the gaseous mixture (i.e. mole fractions, temperature and pressure) are

determined by using the PR eos, in combination with the van der Waals mixing rule,

similar to the procedure in §5.3.



CHAPTER 6

GENERAL CONCLUSIONS AND FUTURE WORK

6.1 General Summary

A novel type of automotive air bag inflator, called the Stored Liquefied Gas (SLG)

Inflator, has been studied and developed. The inflator is based on the rapid evaporation of

liquefied CO2 and was investigated both experimentally and theoretically.

The main part of the experimental study consisted of tests in which the air bag

inflation was simulated by discharging the inflator into a receiving tank. The resulting

tank pressure and temperature were recorded as functions of time and used for a detailed

evaluation of the inflator's performance. An experimental set-up was developed and

constructed for this purpose where measurements were performed on a millisecond

timescale. In contrast to other studies, the measurement of the average tank temperature

during the inflation sequence was highly accurate. A thermodynamic analysis of the

experimental data provided information about the amount of generated CO2 vapor and the

influence of the tank gases on the inflator's performance. Additional experimental

observations were obtained with the aid of high-speed cinematographic recordings.

Based on the experimental study of the critical parameters of the inflator,

including initial temperature and pressure, size of the inflator vessel, and area of the

critical section in the discharge nozzle, the dominant physical processes in the system

were identified. A comprehensive qualitative model for the inflator and the tank was

established. This model was shown to provide a phenomenological explanation for the

main experimental observations obtained during this research.
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A recent literature model describing a transient flashing outflow of water from a

tubular vessel was extended and served as the basis for a detailed quantitative model of

the SLG-Inflator. Simplified quantitative models for the dominant tank phenomena were

also constructed. The combination of both the inflator and tank models provides a

framework for the complete quantitative description of the system.

It was demonstrated that adding small amounts of organic solvents to the system

leads to a significant increase in the temperature of the generated CO2 vapor. A

qualitative explanation for this effect based on a layered evaporation model was

established was established.

In comparison with existing inflator technology, the SLG-Inflator is simple, safe

and environmentally attractive. At this initial stage, the SLG-Inflator does not meet all

design requirements for a side impact inflator. More industrial scale research and

development effort is required to produce a final version of this new air bag inflator. For

the vessel dimensions that was considered in this research (26 ml volume; 10 mm

diameter), the tank tests indicated that the generated peak pressure is low and is not

sufficiently fast (25 ms vs. 10 ms). The peak pressure can be increased by using a larger

inflator vessel and by adding small amounts of organic solvents to the system.

Furthermore, an increase in vessel diameter and corresponding critical flow section in the

discharge nozzle is expected to accelerate the pressure build-up. Since the system's

performance depends strongly on the ambient temperature. It is expected that the required

pressure at low ambient temperature can only be attained by incorporating a heat source

in the system.
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6.2 Claims to Original Research

1. An experimental apparatus, which measures the bulk atomization and evaporation

behavior of transient sprays (with a minimum lifetime of 5-10 ms), was developed

and constructed. The apparatus allows the simultaneous measurement of pressure and

temperature on a millisecond timescale. In the current research the set-up was used to

evaluate the performance of a new type of inflator. However, the experimental

apparatus is not limited to the air bag technology, and can be used to study other types

of single or two-phase transient sprays.

2. A new type of air bag inflator, based on the rapid evaporation of liquefied CO2, was

studied experimentally. The influence of the main design parameters on the

performance of the system was investigated. The key parameters of the system

included the initial temperature and pressure, the inflator vessel volume, and the area

of the critical flow section in the discharge nozzle.

3. Based on the results of the experimental study, the dominant physical phenomena

which determine the performance of the SLG-Inflator were identified. A

comprehensive phenomenological model of the system was established. Also, a

description of the behavior of the system in terms of the phase diagram of CO 2 was

developed.

4. A quantitative model of the SLG-Inflator, based on the extension of a recently

established model for a transient two-phase outflow from a tubular vessel was

developed. In addition, a simplified quantitative model for the tank phenomena was

formulated. The combination of both models provides the framework for an

integrated quantitative description of the behavior of the SLG-Inflator in tank tests.
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5. With respect to the effect of organic liquids, the effect of layered evaporation on the

flashing process during the blowdown of low boiling fluids was discovered and a

qualitative description was advanced.

6.3 Technological Contributions

This research constitutes the first systematic and rigorous study of a novel type of air bag

inflator, based on the rapid evaporation of a liquefied gas. The dominant physical

phenomena involved in the system were identified and evaluated. These included

heterogeneous nucleation, flash boiling, two-phase critical outflow, two-phase dispersion,

transient spray evaporation, sublimation and mixing of real gases. The SLG-Inflator is

simple in principle and construction, inexpensive and environmentally attractive.

6.4 Suggestions for Future Work

The suggestions for future work can be divided into two levels: the fundamental level,

relating to the physical phenomena involved, and the technological level.

6.4.1 Fundamental Level

1. The presented Tank Model needs to be extended and coupled to the SLG-Inflator

Model, such that an integrated model for the experimental set-up is established.

2. High accuracy optical imaging of the two-phase spray, including the evaluation of the

droplet size distribution, is necessary to study the dispersion phenomenon in detail.

3. The influence of heat transfer from the tank walls to the impinging spray needs to be

investigated and quantified.
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4. A wall nucleation model must be incorporated in the SLG-Inflator Model.

5. A quantitative model for the phenomenon of layered evaporation needs to be

developed and validated with the experimental observations.

6.4.2 Technological Level

1. The SLG-Inflator model needs to be run for cases at different initial inflator pressure

and temperature and the simulations must be compared with the experimental

observations.

2. Numerical tests of SLG-inflator model must be performed.

3. Experiments with a larger vessel (approx. 50 ml) and a large critical flow section need

to be conducted to assess the increase in pressure and speed of the system.

4. Different methods to add heat to the system need to be studied. These methods may

include an independent chemical reaction, a combustion of a portion of the CO 2 , or an

optimized heat transfer from the bag material to the evaporating droplets.

5. The influence of the nozzle type and the quality of atomization must be investigated.



APPENDIX A

TYPICAL OUTPUT OF THE IDEAL GAS MODEL

Figure A.1 Output of a Typical Ideal Gas Simulation

The properties followed by a 'IT' refer to the conditions in the inflator, while those

followed by a 'c' refer to the conditions in the tank.
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APPENDIX B

ENERGY ANALYSIS OF THE INFLATION SEQUENCE

Based on a static thermodynamic analysis, the following three characteristics of the

inflation sequence were calculated:

I. the amount of generated condensate: Since the condensate does not assist the

inflation of the air bag, it is considered as a pure loss of CO2 for the current purpose.

2. the average specific internal energy of the condensate: The value of the average

specific internal energy serves as an indication of the phase of the condensate (i.e.

liquid or solid, or a mixture of both). While the condensate is formed in the course of

the inflation, the value of the specific internal energy is calculated based on

measurements at the end of the process. Therefore, it indicates an average value for

the specific internal energy.

3. the enthalpy exchange between the components of the system: The enthalpy

exchange between the components of the system provides information about the

origin of the energy used to transform the stored liquefied CO 2 into vapor. It allows

the assessment of the heat transfer from the tank gases to the evaporating spray.

With the current experimental set-up, it is not possible to determine the location

of the condensate at the end of the inflation sequence. It is assumed that part of it remains

inside the inflator, while part of it is generated by the solidification of liquid droplets in

the tank.
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The control volume for the analysis comprises the inflator, the nozzle and the tank

in a closed thermodynamic system, as illustrated in Figure RI. The system is shown in its

initial state and an internal constraint, corresponding to the opening mechanism in the

actual system, separates the liquefied CO 2 in the inflator from the purging gases in the

tank. At t=0, the internal constraint is removed and the inflation sequence commences.

For the current analysis, the system is considered at two points in time. The first point

(indicated with superscript '0') corresponds to the initial state of the system. The second

point (indicated with superscript '1') corresponds to the end of the inflation sequence.

Figure B.1 Control Volume for the Energy Analysis of the Inflation Sequence

In this work, the end of the inflation sequence is taken to coincide with the end of the

initial fast rise in the tank pressure curve. For a typical experiment, the time between the

two points (i.e. the duration of the inflation sequence) is about 30 ms. As discussed in

section §4.3.1, the end of the fast increase in tank pressure coincides with the end of the

spray from the nozzle and the end of the gradual decrease of inflator pressure.

The analysis is based on a combination of the conservation of mass and the first

law of thermodynamics. The latter states that, since heat transfer is negligible (because of
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the short duration of the inflation sequence) and since the system produces no work

(because of the rigid boundaries of the system), the total internal energy of the system is

constant. In addition, taking the intense mixing during the inflation sequence into

account, the temperature of the system will be assumed uniform.

Figure B.2 Summary of the Energy Analysis of the Inflation Sequence

The mass of the generated CO 2 vapor at the end of the inflation is calculated based on the

assumption that the volume of the condensate is negligible. The same procedure as for the
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generated vapor mass curves is followed. A detailed discussion of this procedure is

included in Chapter 5. The complete analysis is summarized in Figure B.2 for the case of

the Reference Experiment and is easily changed for different purging gases and/or other

initial conditions. Note that the properties corresponding to the condensate are indicated

with a subscript `(s/1)' because it is unknown during the analysis whether it concerns

liquid or solid CO2.

The calculated average internal energy can be used as an indication for the phase

of the condensate. Table B.1 lists the value of the internal energy of saturated solid CO,

for temperatures slightly below the triple point [30]. When the value of the calculated

average specific internal energy of the condensate (u.0  ) is close to the ones listed in

the last column of Table B.1, it may be concluded that the condensate is in the solid

phase. For values higher than the ones listed in Table B.1, it must be concluded that the

condensate does not consist of solid CO2, but of liquid or a mixture of liquid and solid

CO2.

Table B.1 Specific Internal Energy of Saturated Solid CO2
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Figure B.3 contains a graphical representation of the energy redistribution in the

system during the inflation sequence corresponding to the Reference Experiment.

Figure B.3 Energy Redistribution during the Inflation Sequence

The size of the bars represents the amount of energy that is stored in each component.

Note that the total energy of the system is constant, as indicated by the two arrows at each

side of the figure. During the inflation sequence, enthalpy is used to transform the

liquefied CO2 into vapor: This enthalpy is supplied by the cooling and

solidification (in the case of the Reference Experiment) of part of the original amount of

CO2 (ΔH1-->S/1) and by interaction with the tank gases (ΔHnitrogen). Since these are the only

enthalpy fluxes in the system, they must be balanced:

v = ΔHl--.sII ΔHnitrogen (B.1).

Based on these values, the origin of the energy which is used to vaporize the liquefied

CO2 can be determined and the importance of the heat transfer between the tank gases

and the evaporating spray can be assessed.



APPENDIX C

EQUATIONS OF STATE FOR THE REAL GAS BEHAVIOR OF CO2

C.1 Peng-Robinson Equation of State [65]

C.1.1 Standard From

C.1.2 Cubic Form

Z 3 – (1– B)Z 2 +(A – 3B 2 –2B)Z – (AB– B 2 – B 3 ) = 0

C.1.3 Enthalpy Departure

da
— – a n(Z + 2.44BH	 = RT(Z –1)+ T 617

1n-0.414B)



C.1.4 Fugacity of a Mixture Component k

C.2 Beattie-Bridgeman Equation of State [16]

C.2.1 Standard From
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C.2.2 Constants for CO2

C.3 Huang F.-H. & Li M.-H. Equation of State [46]

C.3.1 Standard Form
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C.3.4 Enthalpy Departure
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C.3.5 Entropy Departure



APPENDIX D

DESCRIPTION OF THE CO 2-MODEL

The CO2-model is intended to be used in a temperature range of 154-420 K and for

pressures up to 500 bar. It provides predictions of P-v-T information, enthalpy and

entropy in the liquid (including the metastable state), supercritical and vapor region of the

phase diagram. In addition, the enthalpy and the entropy of the saturated solid state can be

calculated.

Several iteration loops are implemented in the CO2-model. The bisection -method

was used in all cases [10]. The computation time of the SLG-Inflator Model depends

strongly on the speed of the general CO2-model. Therefore, considerable time was spent

to minimize the number of iteration steps in the CO2-model. The main strategy consisted

of reducing the number of steps by providing the best possible initial value for each

iteration. All subroutines allow the specification of the optimal initial value, based on

earlier calculations.

The CO2 -model consists of the following subroutines:

• Psat(T): This function calculates the saturation pressure corresponding to a given

temperature. Depending on the latter, different correlations are used :

Tt < T <	 •	 expression (5.7)

195 <T < T t 	•	 expression (5.9)

154 K <T < 195 K :	 expression (5.8)
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• Tsat(P): This subroutine determines the saturation temperature corresponding to a

given pressure by iteration on Psat(T). Hence, the same expressions as in the previous

subroutine are used.

• P Tv(T,v): Expression (5.16), together with the constants and the additional

equations from Appendix C.3, are used to predict the pressure when both the

temperature and the specific volume are given.

• v PT(P,T) and T Pv(P,v): Both functions use the previous subroutine in an iteration

loop to predict the specific volume and the temperature, respectively.

• LatHeat(T): This subroutine calculates the latent heat corresponding to a given

temperature. Depending on the latter, different expressions are used:

•Tt < T < 're 	expression (5.10)

140 K < T < Tt • expression (5.11)

• H PT(P,T): Using the pressure and the temperature as input, the specific enthalpy is

calculated. The ideal gas enthalpy is determined using (5.2) and the reference state

(5.3). For temperatures above the triple point, the enthalpy departure of (5.16), which

is listed in Appendix C.3, is used. The enthalpy of the vapor phase below T t is

obtained in the same manner. For the solid phase, the enthalpy along the saturation

curve is calculated by means of (5.17).

• U PT(P,T): Using the previous subroutine and (5.12), the internal energy is

calculated when the pressure and the temperature are given.

• S PT(P,T): First, the entropy corresponding to the specified temperature, but in the

low pressure limit, is calculated by means of (5.5-6). Next, the entropy departure of

(5.16), as listed in Appendix C.3 is used to obtain the specific entropy for liquid or
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gaseous CO 2 . An additional subroutine (dPsatdT(T)) was developed to determine the

derivative of expressions (5.8) and (5.9) with respect to temperature. This allows the

calculation of the specific entropy of saturated solid CO2 by means of (5.18).

The above list contains the main subroutines of the general CO2 model. Additional

subroutines were developed to determine the liquid spinodal.

Note that the CO2-model can be considered as not flexible, since it is not possible

to generate all properties starting from any two arbitrary properties. However, additional

subroutines, consisting of an iteration loop containing one of the existing subroutines are

easily developed and lead to a flexible model.



APPENDIX E

NUMERICAL ASPECTS OF THE SLG-INFLATOR MODEL

E.1 Main Two-Step Lax-Wendroff Scheme [68]

In the following, U, PL.] and ][...]correspond to the vectors in (5.31-32), but the

arrows were omitted.

(E.1)

(E.2)

(E.3)

(E.4)

E.2 Bubble Momentum Conservation

The conservation of momentum for the bubbles (5.27) was rewritten, using the

assumption that Pt >> ρv , as:

(E.5),

In (E.5), I can be considered as the source term and the expression can be developed in

the following two-step Lax-Wendroff scheme:
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In (E.8), [I¹]n+1/2i++ : /' 2 represents I from (E.6), calculated using the values from (u'1 1 " 2

and (pw)	 . Similarly, in (E.10), [Pr' represents I from (E.6), calculated using the
-p-1/2

E.3 Main Integration Loop

The sequence of the operations in the main integration loop is shown in the flow chart of

Figure E.1. In this figure, j and n are the counters for the space and time step,

respectively. The total number of space steps is L, while the integration is performed over

a total of N timesteps.



Initialize U, F, J, ρw,
n=0

Step 1, Main System : Apply (D.1)

Solve for System Parameters

Step 1, Bubble Mom. Cons. : Apply (D.7

Step 2, Main System :  Apply (D.2)

Step 2, Bubble Mom. Cons. :  Apply (D.8)

Solve for System Parameters

Step 3, Main System : Apply (D.3)

Solve for System Parameters

Step 3, Bubble Mom. Cons. : Apply (D.9)

Step 4, Main System : Apply (D.4)

Step 4, Bubble Mom. Cons. : Apply (D.10)

Solve for System Parameters

Update F at n+1

Solve for System Parameters

j+ 1

Apply Outflow Boundary Condition

Copy new U, F, ρwv in U, F, pwv at n

END

Figure E.1 Flow-chart of the Main Integration Loop



221

The subroutine Solve for System Parameters is used repeatedly in the main integration

loop and concerns the calculation of the system parameters from a given U. It involves

solving a system of non-linear algebraic equations and is discussed in §E.4. The outflow

boundary condition is applied in the last space step. Issues pertaining to the outflow

boundary condition are addressed in §E.5.

As discussed, the nucleation in the system was modeled by injecting a known

concentration of bubbles of certain size into the system when the local pressure dropped

below the saturation pressure. The nucleation in the model can occur at two locations, as

indicated by the dotted arrows in Figure E.1. At these locations, the local pressure is

compared with the saturation pressure corresponding to the local liquid temperature. If

the saturation pressure is larger than the local pressure, and nucleation has not occurred

before, the bubbles are injected into the system. The vapor in the bubbles is saturated with

respect to the local pressure, in agreement with the 4 th assumption in §5.4.1.1. When the

bubbles are introduced, the enthalpy and density of the system is adjusted such that the

conservation laws are respected.

E.4 Solving for the System Parameters

Depending on whether nucleation has occurred, a different subroutine was used to solve

for the system parameters. Both subroutines are based on the Modified Newton Method

[101. Since the case for pure liquid, i.e. nucleation has not yet occurred, is simpler and

very similar to the case of a two-phase mixture, only the latter is discussed.

The problem at hand is to solve for the 7 system parameters (P, ρv, ρi, n, e, w, Dv)

when U is given. U was introduced in (5.32) as:
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(E.11).

Clearly, the mixture velocity (w) and the bubble number density (n) can be solved for

immediately. Using the definitions of the mixture density and enthalpy (5.28-29), (E.11)

was transformed into the following system of 3 algebraic non-linear equations in P, e and

T1:

This system was solved by the Modified Newton Method, which consists of solving each

equation by the Newton Method for one unknown, while considering all other quantities

as known. The derivatives with respect to P and T1 were calculated through numerical

differentiation. With respect to the classical Newton Method for systems, the current

method avoids the solution of a linear system in each iteration step, but it will require

more iterations. Once the solution of (E.12) is known, the remaining parameters are easily

calculated by means of the equation of state and the definition of the void fraction.

E.5 Outflow Boundary Condition

The outflow boundary condition consists of applying a given pressure at the open end of

the inflator. To incorporate this condition in the main numerical scheme, the field

equations and the conservation of momentum for a bubble were developed in a P I order
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Upwind Differencing Scheme {64 Two different procedures are implemented, depending

on whether nucleation has occurred or not. Since the pure liquid case is simpler and easily

derived from the two-phase case, only the latter is discussed.

Because the pressure is specified at the inflator end, and the vapor is assumed to

be saturated, all vapor properties are known. When writing the field equations and the

bubble conservation of momentum in a 1 st order upwind difference scheme, the

remaining system parameters on the boundary can be determined directly:

The index L indicates the boundary of the space domain (z=L) and n is the counter

corresponding to time, i.e. n is the current timestep and n+1 is the next timestep.
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