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ABSTRACT

A COMBINED SIMULATED ANNEALING AND TABU SEARCH
STRATEGY TO SOLVE A NETWORK DESIGN PROBLEM WITH TWO

CLASSES OF USERS

by
Qifeng Zen g

A methodology to solve a transportation network design problem (TCNDP)

with two classes of users (passenger cars and trucks) is developed. Given an existing

highway system, with a capital investment budget constraint, the methodology selects

the best links to be expanded by an extra lane by considering one of three types of

traffic operations: exclusive for passenger cars, exclusive for trucks, and for both

passenger cars and trucks such that the network total user equilibrium (UE) travel time

is minimized.

The problem is formulated as an NP-hard combinatorial nonlinear integer

programming problem. The classical branch and bound methodology for the integer

programming problem is very inefficient in solving this computationally hard

problem. A combined simulated annealing and tabu search strategy (SA-TABU), was

developed which is shown to perform in a robust and efficient manner in solving five

networks ranging from 36 to 332 links. A comprehensive heuristic evaluation function

(HEF), a core for the heuristic search strategy, was developed which can be adjusted to

the characteristics of the problem and the search strategy used. It is composed of three



elements: the link volume to capacity ratio, the historical contribution of the link to the

objective function, and a random variable which resembles the error term of the HEF.

The principal characteristics of the SA-TABU are the following: HEF, Markov

chain length, "temperature" dropping rate and the tabu list length. Sensitivity analysis

was conducted in identifying the best parameter values of the main components of the

SA-TABU. Sufficiently "good" solutions were found in all the problems within a

rather short computational time. The solution results suggest that in most of the

scenarios, the shared lane option, passenger cars and trucks, was found to be the most

favored selection. Expanding approximately 10% of the links, results in a very high

percentage improvement ranging from 73% to 97% for the five test networks.
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CHAPTER 1

INTRODUCTION

This dissertation presents a methodology to solve a transportation network design

problem with link improvements to the existence of cars and trucks in the traffic

stream. Highway safety and operational efficiency are two of the primary issues of

highway capital program management. The motivation for this study stems from the

disparity in the operational characteristics between trucks and passenger cars, and the

unavailability of a methodology that provides a systematic way in identifying the best

candidate improvements to be made on a highway network. The present

methodologies applied usually consider a rather small number of alternatives without

consideration to their global effect on the network.

1.1 Overview of Current Urban Transportation System and Network Design
Problem

In recent decades, most of the major urban transportation systems in United States

have been characterized by roadway congestion. Congestion causes longer commuting

time, higher vehicle operating cost, and consequently brings several social and

economical issues to the stage by impeding on the regional economical development,

excelling air pollution and impacting the residents' daily life qualities. The trend in

staggering travel demand and the inadequacy of the existing transportation facility

capacity further sharpens this problem.

1
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Various efforts have been undertaken to alleviate the urban transportation

system congestion. To mention some, Intelligent Transportation System (ITS) uses

advanced communication and information systems to improve highway mobility; high

occupancy vehicle (HOV) lane policies increase highway passenger capacity by

carrying more passengers; improvements of transit systems attract more automobile

riders to high capacity transit systems boosting the transportation system's overall

flow throughputs.

Due to the scarcity of available capital and the low cost-benefit value of large

capital investments for new infrastructure, today, most of the urban transportation

capital investment projects are focused in maintaining and improving the current

transportation facilities. In optimizing the limited capital resources, one of the most

widely used methods is the implementation of project cost and user benefits analysis.

The transportation network design problem is one of the tools for conducting such

types of transportation network investment analysis.

The transportation network design problem is an integral part of the

transportation planning process. It provides answers to the question: how to optimize

the use of the capital investments in an existing facility based on a set of objectives

and subject to specific constraints of the specific problem. Furthermore, recent

developments in transportation system analysis have assigned a broader meaning to

the network design problem, such as: toll policy, specifying traffic direction in certain

streets, ramp metering and setting exclusive passenger car lane, traffic control

improvements, HOV lane and other types of operational improvement options.
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The main functionality of the transportation network is to move goods and

people. In the highway system, such movement is presented by various types of

vehicles operating on the roadways. The principal differences among these vehicles

are their sizes and operational characteristics. In general, passenger cars and heavy

trucks are two primary aggregated classes for the traffic stream. The passenger car is

usually a small vehicle with 30 to 60 lb/hp weight-to horsepower ratio. The heavy

trucks can have more than 200 lb/hp weight-to-horsepower ratio and are more than

double and triple the size of regular passenger cars. It is quite significant to consider

passenger cars and trucks as two different classes of users in the highway network

analysis. Compared with the passenger car, the truck has bigger size while demanding

more roadway space, and its "Crawl speed" is much more lower when traveling over a

significant distance at over 2% grade. Thus, the heavy truck induces much more

impact on the roadway capacity than the regular passenger car. In the 1994 Highway

Capacity Manual, passenger car equivalent factors are used to capture the cars and

trucks disparity on the roadway capacity, where the truck's impact is considered to be

three to four times higher than the passenger car at low grades and can be as high as 28

for high grades. Additionally, the trucks have a much more severe impact on the

roadway pavement life period.

In recent decades, the change in traffic composition has been characterized by

a growing proportion of heavy trucks in the traffic stream and an increase to the traffic

operational difference between the passenger cars and trucks. Cars are becoming

smaller, lighter and less powerful, while trucks are becoming larger and more
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powerful. It raises the issue of efficiency and safety of the roadway where two

different vehicles in terms of size, speed and acceleration rate, competing for the same

right of the way, and share the same facility simultaneously. The truck accidents in

California have increased by 10% per year since 1985, while their total number was

12,000. A delay average of 2,500 vehicle-hours have been noted for each truck related

accident in California (Reference from Middleton (1996)).

Some efforts in addressing the passenger cars and trucks dissimilarity have

been under taken in improving the highway efficiency and safety. For example,

climbing lane are utilized for slow trucks on certain long uphill roads; the trucks are

prohibited in the left most lane in some multilane highways (freeways); and in some

heavy duty highway networks, such as the New Jersey Turnpike, exclusive passenger

car roadway and shared roadway networks are used to separate passenger cars and

trucks.

1.2 Overview of the Problem Structure and Methodology

The core of this study is a network design problem where the roadway capacity is

expanded by building an extra lane on selected links which may be associated with

any one of three types of traffic operation- both passenger cars and trucks allowed,

exclusively for trucks or exclusively for passenger cars. The primary issues that this

study focuses are the following: First, given a specific network configuration and the

two origin-destination (O-D) matrices - the passenger car O-D matrix, and the truck O-

D matrix, how are the flows distributed on the links of the network? Second, what is
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the optimal network configuration based on the three alternatives mentioned above,

that will minimize the network total travel time, subject to a budget constraint on the

number of allowable lane additions? The problem is subsequently referred to as a two

classes of users (Passenger Cars and Trucks) transportation network design problem

(TCNDP).

The main objective is the total travel time of the network, which is the

summation of the User Equilibrium (UE) passenger cars and trucks travel times on all

the links. The most common travel time function used is the Bureau of Public Roads

(BPR) travel time cost function where the link travel time is a function of the traffic

flow and capacity. The links' traffic flows are assigned by the UE traffic assignment

rule. Therefore the problem is classified as a two level (called bilevel) optimization

problem. In addition to the objective function - minimizing the UE total travel time,

the link traffic flows are obtained by solving another optimization problem -

minimizing the individual traveler's travel time. One of the methodologies in solving

the problem is by separating the two level optimization into two sequential procedures:

first predicting traffic flows on the links according to the current network

configuration and then identifying the links to be improved links to optimize the total

UE network total travel time.

This problem falls into the category of nonlinear and integer programming

problems. The classical method to solve such discrete transportation network design is

the branch and bound method. The efficiency of the branch and bound method lies in

its emphasis in the determination of good bounds or cuts to reduce solution space.
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However, the size of the solution space increases exponentially with the network size,

whereas the execution time experienced by the traffic assignment solution algorithm is

rather slow, restricting the application of the branch and bound method to fairly small

networks. In recent years, heuristic algorithms are becoming more and more promising

in empirical applications with large network sizes. In a simplified view of the heuristic

search strategy, a gathering of information, drawn from historical data and past

experience is used to guide the move - locate the new solution state from the current

solution state, until the global optimal solution state or a satisfactory solution state is

found.

1.3 Motivation and Objectives

The importance of the TCNDP problem has been highlighted in Section 1.1. Due to

the complexity of the problem structure and the computational difficulties, no

intensive study of this problem has ever been conducted.

The current transportation planning process addressed the problem of truck

lane needs on an empirical manner rather than a global optimization objective. Often,

safety supersedes the decision to address truck related improvements. Traditionally,

the most common truck-related improvements are observed on high grades where

truck climbing lanes are proposed to improve the operation of the roadway, improving

the speed of the passenger cars. Other types of truck related improvements is observed

in freeways where trucks are often prohibited from using the left (high speed) lanes.

Additionally, trucks are restricted to specific roadways of the network. Parkways,
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usually do not allow heavy vehicles to operate on them, whereas in some cases trucks

are restricted during certain hours of the day. However, a systematic approach in

identifying the most optimal truck related strategies to be implemented on a network-

wide basis does not appear in the literature. This study presents a methodology for

addressing truck lane needs on a network wide basis. The problem was first addressed

by Mahmassani et. al. (1985), although no efficient optimization procedure was

presented that time. The advancements in computational efficiency of computer

hardware and recent advancements in the application of heuristic search strategies

provided the motivation for re-examining the original problem. The primary objectives

of this dissertation are presented below:

Objective I:

Present a mathematical formulation of the transportation network design problem with

two types of users, passenger cars and trucks. The problem is formulated as a bi-level

mathematical program. The lower level addresses the identification of the link flows,

passenger cars and trucks. The upper level addresses the truck related improvements

considered in this study: i) both passenger cars and trucks allowed, ii) exclusively for

trucks, iii) exclusively for passenger cars.

Objective 2:

Investigate the application of the diagonalization algorithm to solve the user

equilibrium traffic assignment with user asymmetric interactions, passenger cars and

trucks. A primary concern of this traffic assignment procedure is whether a unique

solution exists or not.
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Objective 3:

Develop a heuristic search strategy to solve the UE transportation network design

problem with two classes of users. To analyze the proposed solution methodology, the

following tasks were undertaken:

• Sensitivity analysis on different networks was performed that assessed the

effectiveness of the search strategy.

• Sensitivity analysis on different parameters and coefficients of the search was

performed to identify their "best" values in optimizing the search strategy.

• An analysis of the main features of the SA-TABU used in solving the

transportation network design problem.

In summary, the complexity and the large size of the empirical network used to

discourage the application of the network design problem in transportation planning

practice, coupled with rather slow computing facilities and lacking of empirical

application oriented methodologies. Additionally, the TCNDP problem has

distinguished itself as one of the most important issue in highway planning, as well as

highway safety. This study presents a heuristic search strategy based on the

combination of simulated annealing and tabu search, providing a promising

methodology for addressing an otherwise computationally intractable problem.

Furthermore, this study provides an additional tool to highway network design and

planning.
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1.4 Overview of this Dissertation

This dissertation includes an introduction, a literature review, methodology

development and the numerical experiments. The literature review covers the

formulations and algorithms involved in transportation network design problem, the

single user class and two classes of users traffic assignment formulation for the User

Equilibrium (UE) and System Optimum (SO) rules, the Frank-Wolfe algorithm

(Reference from Sheffi (1985)), as well as the diagonalization algorithm. As part of

the solution methodology review, the simulated annealing and tabu search algorithm

are presented in detail.

The primary literature review on the transportation network design problem

formulation and methodology is presented in Chapter 2. Chapter 3 constructs the

formulation and reviews the current methodology status for the TCNDP problem

specified in this study.

In Chapter 4, a comprehensive study for the two classes of user traffic

assignments and the diagonalization algorithm is presented, followed by TCNDP

problem. The study includes an analysis of the mathematical formulation, numerical

example analysis and sensitivity analysis study.

In Chapter 5, the SA-TABU search strategy developed is presented. A

complete analysis of the search strategy and its rationales can also be found in this

chapter, as well as description of the computer program.

Numerical experiments on the search strategy under different sets of the

parameters and coefficients on five networks are presented in Chapter 6. The



1 0

experiments evaluate the quality of the proposed search strategy and the heuristic

values.

Chapter 7 presents insights derived from the numerical experiments conducted

on a sample networks. It presents the characteristics of the TCNDP problem and the

basic conclusion and guidelines derived from empirical application.

Chapter 8 summarizes the general conclusions from the study and provides

recommendations for future studies.



CHAPTER 2

LITERATURE REVIEW

The equilibrium transportation network design problem falls into the category of

integer non-linear programming problems, and various of the methodologies involved

in solving the integer programming problems could be employed to solve this

problem. However, the classical integer programming methodologies in solving large

scale and complicated problems, have limited capabilities. Recently, heuristic search

strategies such as simulated annealing, tabu search, neural network and others, are

used more often to solve computationally hard integer programming problems. This

chapter provides a review of transportation network design models and solution

algorithms or heuristic search strategies, with emphasis given to the equilibrium

transportation network design problem formulation, the simulated annealing and tabu

search methodologies.

2.1 Transportation Network Design

The Transportation network design covers a broad range of issues arising in

transportation planning and other related fields. Various formulations and solution

algorithms are presented in the literature. One of the most comprehensive reviews on

transportation network design can be found in Magnanti and Wong (1984).

The basic network components are arcs, nodes and centroids. In a network,

there usually exist a vector of commodities to be transported from some centroids

11
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(origin) to some centroids (destination). Thus, the general network design problem can

be addressed as follows: Construct a new network with a number of links (arcs),

satisfying some objective function subject to the specific constraints of the problem.

Magnanti, and Wong(1984) summarized the transportation network design problems

in terms of demand structures, objective functions, types of capacity and side

constraints. The general model presented in this study leads to some more specific

models such as the minimal spanning tree, shortest path, steiner tree problem,

(nonlinear cost) multi-commodity flow problems, minimal directed spanning tree,

traveling salesman problem, vehicle routing, facility location, fixed charge network

design problem, network design traffic equilibrium, and budget problems.

Solution methodologies discussed in Magnanti, Wong(1984) includes Benders

decomposition, branch and bound, Lagrangean relaxation, linear programming and

heuristics method. Despite the differences in each approach, most of the algorithms

can be categorized as: i) identifying good constraints (cuts) such as the Bender cuts; ii)

approximating the current problem by one where a solution methodology is known to

be more efficient or iii) searching for a non-optimum but sufficiently good solution

using heuristics rule.

The UE transportation network design is one of selecting a set of network links

to optimize the objective(s) (UE total travel time) by changing the selected links'

capacities, while the network flow distribution follows the UE traffic assignment rule.

The UE traffic assignment rule best describes the users' behavior, where at equilibrium

no traveler can improve its travel cost by unilaterally changing routes (Wardrop 1952).
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The selection of the solution methodology for a specific network design

problem usually depends upon the network configuration and problem formulations.

Although there exist various network design formulations, these formulations differ in

the following aspects: i) the nature of the origin-destination matrix (i.e., single class or

multiple classes of users trips); ii) link cost function (i.e., capacity constraint); iii) form

of the objective function (i.e., single or multiple objectives, linear or nonlinear); iv) the

constraints (i.e., linear or nonlinear); v) the traffic assignment rules (i.e., user

equilibrium(UE), system optimum(SO), all or nothing); vi) the design variables data

structure (i.e., discrete or continuous).

Following, some representative network design algorithms and applications, as

well as some key issues concerning the solution methodology and problem

formulation in the literature, are presented:

2.1.1 Bilevel Programming

The solution to an equilibrium transportation network design problem involves two

procedures: the first predicts the flow distribution on the links of the network with a

given demand, and the second optimizes the objective function by defining the design

variables. Therefore, the problem is a two level programming problem, which falls

under the category of bilevel programming.

In this study, the decision variables determine the links to be expanded or not,

thereby defining a new network configuration. The objective is to minimize the total

network UE travel time, which is a function of the decision variables and the link flow
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pattern. The link flow pattern can be obtained by solving another nonlinear

optimization problem - minimizing the user's individual travel time, based on the

current network configuration, which is defined by the decision variables ( e.g. to

build or not to build an extra lane). The solution of these two vectors of unknown

variables is required to satisfy two objective functions simultaneously.

According to Bard (1983), the general formulation form of bilevel

programming problems is as follows:

The objective function MIN F(x,y) is referred to as the upper level problem,

and MIN f(x,y) for fixed y as the lower level problem. In this study, the variables y in

the upper level are the variables referring to the network configuration components,

(adding or not adding a new lane for either exclusively for cars, trucks or both), and

the lower level variables x are the link traffic flows.

It is well documented that the bilevel programming problem is an NP-hard

(Anandalingam, et. al , 1992 and Ben-Ayed, et. al., 1980). Bard(1983) proposed an

problem approximate approach to solve the above bilevel problem. In his procedure, a

substitute objective function is defined as a convex combination of the upper and

lower objective functions:
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/1-[F(x,Y)]+( 1— 2)[f(x,Y)] 	 (2.1.4)

where A is a fixed parameter.

To solve the UE transportation network design problem, after setting 2 =1, the

iteration index k =1 and choosing the tolerance s> 0, Bard's bilevel programming

algorithm becomes:

STEP 1. Minimize (2.1.4) subject to (2.1.3) and denote the solution by

(x k ,y k ).

STEP 2. Check whether the link flows X " are user optimum flows. If so, stop;

the solution (x k ,y k ) is an optimal solution to the network design

model.

STEP 3. Using sensitivity analysis on the objective function coefficient a,, find

A min 0, the smallest value of A for which (x k ,y k ) remains

optimum in the program. Change A to A min — e and go to STEP 1.

Bard's procedure terminates in a finite number of steps. The solution obtained

in the first step has the parameter value 2=1, and, in fact, this is the network design

model with the SO flow, since the UE flow is weighted to be zero. As A decreases, the

weight of SO flow increases and eventually the solution approaches to include UE

flow only.

LeBlanc and Boyce (1985) indicated that if formula (2.1.2) can be solved by

the Frank-Wolfe algorithm, the constraint (2.1.3) for the combined model (2.1.4) is

redundant, for that the Frank-Wolfe algorithm employs an all-or-nothing assignment

which satisfies constraint (2.1.3). Consequently, formula (2.1.4) can be solved very
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efficiently using the Frank-Wolfe algorithm. Nevertheless, the formulation and the

solution methodology was developed for the continuous network design problem.

However, the bilevel programming algorithm by LeBlanc et. al. (1985) is only

capable of solving small size problems with simplified variables and constraints. As

the network size becomes significant, and the problem becomes more complicated,

this methodology is computationally prohibitive.

2.1.2 Branch and Bound Algorithm

Branch and bound is one of the most classical methodologies in solving integer

programming problems. By defining the proper bounds, the algorithm reduces the

search space of the feasible solution set. The procedure continues iteratively and

explores the reduced feasible region only. The procedure terminates when an

exhaustive search is conducted and the optimal solution is identified.

LeBlanc (1975) presented a branch and bound algorithm solution methodology

for the discrete equilibrium transportation network design problem. To avoid Braess'

"paradox", LeBlanc used both UE and SO rules to define lower and upper bounds. The

primary concept of his approach is that given the same network configuration, the [IF

traffic assignment has a total travel time greater than or equal to the SO traffic

assignment total travel time, and furthermore, the network with additional new links or

links with expanded capacity leads to smaller SO total travel time. This solution

methodology becomes rapidly intractable as the number of variables increases. It is

therefore only applicable for very small networks.
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Chen et. al. (1991) proposed a branch and bound with a stochastic incremental

traffic assignment approach for the single class network design problem. The branch

and bound method was used without taking into consideration Braess' "paradox" and

the logit based incremental traffic assignment is used to reduce the number of

iterations in the assignment process. The results imply, that if the network congestion

increases, the algorithm may not work properly due to the weakness of the incremental

method.

The success of the branch and bound approach is restricted to small size

networks. In large network problems, where the solution search space grows

exponentially with the scale of the network, the approach becomes computationally

prohibitive. In the worst case, given a network design problem with n binary variables,

it would require the solution of 2" number of solutions of the traffic assignment

routine.

Another approach involves simplifying either the problem formulation or the

network representation. The network aggregation method condenses a given network

into one that is small enough to be managed efficiently and effectively while still

preserving some desired characteristics or satisfying certain objectives. There are two

main approaches: network element extraction and network element abstraction -

deletion and aggregation of insignificant network elements, Haghani et. al.(1984) used

both methods on a 60 link network and the computational time is greatly improved. A

similar application in the literature can be found in Chan (1976). Poorzahedy et. al.

(1982) used an approximate problem to substitute the original problem, where the
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branch and bound methodology was employed. Though the approximation method

appears quite reasonable in some applications, the optimal solution to the original

problem is not guaranteed. Network aggregation suffers from the potential occurrence

of Braess "Paradox". It is not known a priori which links can be grouped together or

deleted without causing an increase in the network travel time. Furthermore, the better

solutions may be undiscovered which can be found in the original network

configuration.

2.1.3 Heuristics Search Strategies and Network Design

In recent years, the applications of heuristic search strategies to transportation network

design problems attracted more attention. Unlike the classical branch and bound

method, the heuristic search strategy methods aim to find sufficiently "good" solutions

instead of the optimum solution and are compromising practical approaches for large

scale network design problems.

A heuristic search strategy methodology, is one that solves the problem using

trial and error, and is highly dependent on past experience or information about the

structure of the problem. Starting from one feasible solution, a heuristic search

strategy leads to another feasible solution using a certain guideline. The guideline is

designed in such a way that sufficiently "good" solutions, not necessary an optimum

solution, would appear during the search over a partial solution set. The solution set

structure plays important role in the success of the heuristics search application.
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Pearman (1979), after investigating the structure of the solution set in the

network optimization problems with various optimization functions, came with the

following findings: "Firstly, none of the spatial combination problems examined

indicates a distribution skewed in such way that would imply the existence of a small

number of very good candidates markedly superior to the main body of solution.

Secondly, the road network optimization problem appears to be the most favorably

disposed of all the problems analyzed from the point of view of possessing large

numbers of good sub-optimal solutions. That is, it has the most positively skewed

distribution of objective function values," that implies "a reasonable good solution

could be found in a relatively short time." There is no doubt that this finding

encourages the application of a heuristic search strategy in the transportation network

design problem in terms of the solution set structure.

The most distinguished heuristic search strategies reported in the literature

include: tabu search, simulated annealing, artificial neural network and genetic

algorithm.

The artificial neural network optimization method designs the "generator" or

"neuron", which generates the new solution state, in such a way that new solution state

has a lower objective function value. The "generator" is kept on being adjusted from

the feedback of the previous solution state. Xiong and Schneider (1992) applied an

artificial neural network blended with a genetic algorithm to solve the single user

transportation network design problem and found that the neural network algorithm

does improve the solution quality and computational efficiency in some particular
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problems if sufficient information is available to train the "neurons". Wei and

Schonfeld (1994) employed similar neural network structure to solve multi-period

network design models and the test on a very small network with three link variables,

and the accuracy and efficiency of the neural network methodology was acclaimed.

However, due to the immaturity of the neural network algorithm, the application is

very restrictive and it also needs other methods to provide the solutions to train the

"neurons".

Genetic algorithms borrow the concept of evolution. The algorithm starts from

a set of solution states. In each iteration, the relative good solution states are kept to

generate their "children" solution states, while the bad solution states are disposed. No

applications of genetic algorithms have been applied to the transportation network

design problem.

The tabu search strategy (See Glover 1986, 1989, 1990, 1993) experienced

tremendous development in recent years, especially in areas such as scheduling and

sequencing problem. Tabu search algorithm was first introduced to the discrete single

class user equilibrium transportation network design problem by Mouskos (1991). The

study showed that the optimal solutions for five small networks were found in less

than 500 iterations, and good solutions were reported for 3 medium size networks.

The simulated annealing search strategy is motivated by an analogy of the

optimization problem to the statistical mechanics of annealing of solids. Simulated

annealing has been widely used in solving large scale combinatorial problems. In a 76

arcs traditional transportation network design problem with continuous decision
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variables, Friesz et, al (1990) obtained a satisfactory result by employing a simulated

annealing algorithm approach. Kang (1994) also used a simulated annealing algorithm

in solving a one-way street network design problem. in a 5 node by 5 node square grid

network, Kang used the difference of the volumeicapacity and the traffic volume as the

heuristics and the near optimal solution result is found. Simulated annealing theory is

presented in detail later in this chapter .

2.2 Traffic Assignment Models and Formulations

Traffic assignment is one of the core procedures in transportation network analysis. it

models network user's travel behavior and predicts the link travel flow pattern with

given demands. The most widely used traffic assignment models are user equilibrium

(UE) and system optimal (SO) traffic assignment. This section presents single class

and two classes of users traffic assignment models and their solution methodologies.

2.2.1 Wardrop (1952) Principles

The classical network traffic assignment model was born as early as 19211 in the work

of Pigou (Reference from Nagureney (1993)), and was further developed by Knight

(Reference from Nagureney (1993)). Wardrop (1952) proposed two principles that

best described network route choice that have been widely recognized and used since

then.
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Wardrop stated the traveler's route choice in two principles: First Principle:

The travel times of all routes actually used are equal, and less than those which would

be experienced by a single vehicle on any route; Second Principle: The average travel

time is minimum.

The first principle is known as the user equilibrium (UE) rule, which can he

further explained as follows: no user can improve his/her travel time by unilaterally

switching routes, and consequently any unused route has a higher cost than the used

one (between a given O-D pair).

The second principle is -referred to system optimal (SO), under which users

select their routes according to what is optimum from a society point of view. Under

the SO the total travel cost in the system is minimized. This principle does not

necessarily generate an equilibrium flow, where the users are able to improve their

individual travel time by using other routes. Thereby, in most cases, the SO solution

produces a non-stable system which is not realistic, unless users are "forced" to use the

designated paths.

Beckman (1956) had formulated the above Wardrop principles into

mathematical optimization models. In general, these problems fall under the category

of a finite-dimensional variational inequality mathematical formulations.

2.2.2 Variational Inequality Theory

Variational inequality theory is frequently utilized for the network equilibrium

problems, especially in optimization problems, complementary problems and fixed
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point problems. In the optimization problems, both constraint and unconstrained cases

can be formulated as variational inequality problems.

The finite dimensional variational inequality problem is to determine a vector

x E K c R", such that

F(x * ) 1 -(x x * ). 0, Vx E K	 (2.2.1)

where F is a given continuous function from K to R" and K is a given closed

convex set.

One of the variational inequality theory theorems is as follows:

Let x * be a solution to the optimization problem:

Minimize f (x)	 (2.2.2)

subject to: x e K

where f is continuously differentiable and K is closed and convex. Then x * is a

solution of the variational inequality problem:

Vf (x * ) T -(x x * ) 0, Vx E K.	 (2.2.3)

and vice versa. The proof of the theorem can be found in Nagurney (1993).

2.2.3 Single Class User Equilibrium Assignment Model

In the single class problem, the Wardrop (1952) first principle can be written as :
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Formula (2.2.4) implies that the travel time cost on the path where the flow is

zero is higher than an equilibrium disutility value which is the travel time cost for the

path where the flow exists. It concludes that the flow pattern generated by Wardrop's

first principle is an equilibrium flow, since there is no incentive for the user to alter its

traveling path.

Variational inequality governing the equilibrium condition has the following

theorem: A vector f * E K, is an equilibrium pattern if and only if it satisfies the

variational inequality problem

t(f * )-(f —	 e K. 	 (2.2.5)

where t(f * ) is the link cost function and f is the traffic flow on the link, while K is

the feasible set for the problem.

The single class UE traffic assignment then can be written as (Beckman 1956):
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Constraints (2.2.6b, c, d) are the flow conservation and non negativity. The

solution to the mathematical program Formula 2.2.6 is a user equilibrium flow.

The SO traffic assignment model can be directly formulated as mathematical

optimization problem like problem 2.2.6. The objective function is to minimize the

total network travel time, and it has the same constraints as the UE formulation. It is

worth to note that the SO is quite different traffic assignment model from the UE, in

spite of the similarity of their mathematical optimization formulas.

2.2.4 Two Classes User Equilibrium Assignment Mathematical Formulation

The condition (2.2.4) in the scope of the two classes of users is revised as

where tp is the class i user travel cost on the path p, xrit denoting the flow on the

path p for Class i , and 2i,„ is the equilibrium travel disutility for Class i associated

with the origin destination pair co.

Theorem (2.2.5) would also hold for the two classes of users problems

(Nagumey 1993). However, one of the factors determining whether the variational

inequality problem can be formulated to the optimization mathematical formula is the

link travel cost function t(X). If this function satisfies the symmetric condition (to be

explained later), then solving such a variational inequality problem is equivalent to

solving the optimization problem:
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Minimize f 	t (1, (x)dx	 (2.2.8)
a ,r 0

where k is the feasible set for flow f , a presenting link and i is class type.

The link's travel cost function symmetric condition, or symmetrical interaction

between different classes of users, means that the marginal contribution of the Class j

flow on the Class i travel cost on the Link a is same as the marginal contribution of

the Class i flow on the Class j travel cost on the Link a . In mathematical terms, it

can be expressed as follows (See Sheffi 1985):

wuci

of Link a the flow vector X, and also x„„ x„) denote the flows of class i and class j

on Link a respectively. Asymmetrical interaction between different classes of users

would occur, when the equal sign in Formula 2.2.9 changes to an unequal sign.

The Jacobian matrix (of a vector of scalar functions) is formed by arranging the

derivatives of all these functions, with respect to all the arguments, in matrix form.

The Jacobian matrix of t(X), which is denoted by Vt(X) , includes the partial

derivatives of all the link travel times to all link flows, is



It can be shown that (Sheffi, 1985) if the Jacobian matrix of the link travel cost

function is symmetric, an equivalent mathematical program can be found, the solution

of which would satisfy the UE conditions.

However, in a number of cases, the interaction is asymmetric such as the one

between trucks and passenger cars. The impact to the passenger car travel time due to

the change of the truck flow is different from the impact to the truck travel time

resulting from the change of the car flow. This problem is formulated as a variational

inequality and can not be formulated as an equivalent mathematical programming

formulation.

Several direct algorithms have been found to be successful in finding the user

equilibrium solution for the two classes of users UE traffic assignment. The

diagonalization algorithm is one of the most commonly known procedures that is used

to solve the traffic assignment with asymmetric interactions. The diagonalization

algorithm is presented in Chapter 4.
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2.3 Heuristic Search Strategies

Simulated annealing and tabu search are two of the primary search strategies which

have been utilized in solving computationally hard integer programming problems.

They are also the principal components of the SA-TABU search strategy developed in

this study in solving the TCNDP problem. This section presents a detailed review of

simulated annealing and tabu search strategies.

2.3.1 Simulated Annealing

In the early 1980's, Kirkpatrick, Gelatt & Vecchi (1982, 1983) and independently

Cerny (1985) introduced the concept of the physical annealing process in

combinatorial optimization problem. The reason originates from the analogy between

the solid annealing process and the problem of solving large scale combinatorial

optimization problem.

In condensed matter physics, annealing is known as a thermal process to obtain

low energy states of a solid. The process contains two basic steps. At first a solid

material is heated to the temperature that it would melt in a heat booth. Then the

temperature is gradually decreased until the material particles arrange themselves in

the ground state of the solid. In the liquid phase, all particles of the solid arrange

themselves randomly. In the ground state the particles are arranged in a highly

structured lattice and the system energy is the smallest.

Back to 1953, Metropolis, Rosenbluth, Teller (1953) introduced a simple

algorithm to simulate the evolution of a solid in a heat bath in the annealing process. A
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sequence of states of a solid are generated in the following way. Given a current state i

of the solid with energy E i, then a subsequent state j is generated by applying a

perturbation mechanism which transforms the current state i into a next state j by a

small distortion. The energy of the next state is E. If the energy difference, is

less than or equal to 0, the state j is accepted as the current state. If the energy

difference is greater than 0, the state j is accepted with a probability of

where T denotes the temperature of the heat bath and K B is a physical constant called

Boltzman constant. This simulation methodology is known as the Metropolis

algorithm.

The simulated annealing algorithm is the one that applies the Metropolis

algorithm to a combinatorial optimization problem. The analogy between a physical

many-particles system and a combinatorial optimization problem results from the

following equivalence. The solution states in a combinatorial optimization problem are

equivalent to the states of a physical system, and the objective function value of a

solution is equivalent to the energy of a state. The temperature controlling the whole

annealing process is equivalent to a parameter that is called a control parameter in the

simulated annealing algorithm.
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The basic simulated annealing algorithm steps are as follows:

STEP 0 Initialize i r,„,„ c o , Lo : i,,„, is the initial solution state; co a control

parameter and Lo denotes maximum number of transitions allowed

under one specific control parameter. Let i

STEP I Set L = 0

STEP 2 Create next solution state j from current solution state i .

f (j), f (i) is objective function value for the States j and i If

expC
f (i) - f (I)

	rand 01 , then i	 j, and L = L +1 .
ck (or co )

STEP 3 If L< Lk (L0 ) go to STEP2, else update ck (co ) and Lk ( L0 ).

STEP 4 If stopping criteria is satisfied, stop; else go to STEP1.

The main elements of the simulated annealing algorithm are described below:

1) The acceptance criteria : exp( f (i) f ('j) ) > rand(0,1)
ck (or co )

This acceptance criteria determine whether to accept the new solution state j as the

new current solution state. In most similar algorithms, such as the hill climbing

method, the move from the current solution to a new solution state is made only if

the new solution state has a better objective function value than the current

solution state. The simulated annealing algorithm uses a probability to ascertain a

move, so that it allows a certain degree of deterioration by occasionally accepting

the new solution state that is inferior to the current solution state in terms of the

objective function value. In doing so, the algorithm can effectively overcome the

limitations of local optimality.
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2) The control parameter C (Also called "temperature". )

Besides the current solution state and the new solution state objective function, the

control parameter is the only factor in the acceptance criteria. The greater the

control parameter is, the easier the acceptance criteria is met. Thus the control

parameter C steers the whole simulated annealing process and determines the

characteristics of the move. At the beginning of the iteration process, the control

parameter C is usually set to a large number so that most of the new solution states

would be accepted. As the control parameter C value decreases, only a few good

new solution states would be accepted resulting in a relatively small deterioration.

Finally, as the value of C approaches 0, no deterioration will be accepted at all and

only the finding of the better solution state would lead to the transition of the

current solution state to a new solution state. This means that the simulated

annealing algorithm, in contrast to local search algorithms, can escape from local

optimum while still exhibiting the favorable features of a local search algorithm.

3) The control parameter updating function

In Step 3, the control parameter C is changed by the updating function. The

updating function always scales down the control parameter C values. The control

parameter C decreasing rate is one of the most important factors in deciding the

nature of the simulated annealing process. If the decreasing rate is too high, the

process would be terminated quickly due to the stricter acceptance criteria . Thus,

the so called "annealing" effect can not be achieved, instead the "quench" effect

would emerge, as the desirable solution can not be obtained. If the decreasing rate
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is too low, the simulated annealing would require a very long process to terminate

to a desirable solution state so that it becomes very inefficient or even prohibitive

for large scale problems.

4) The Markov chain length and its updating function

The Markov chain length decides the cycle of the constant control parameter value.

It starts at a small value and then the updating function increases its value. The

simulated annealing algorithm can be analyzed by the Markov chain theory. A

"trial" corresponds to a transition in Markov chain theory, and the finite set of

solutions is equivalent to the set of outcomes. It can be shown that in the simulated

annealing algorithm, the outcome of a trial depends only on the outcome of

previous trial. It is proved by Korst (1988) that the simulated annealing guarantees

asymptotically convergence to the set of globally optimal solutions under the

condition that a stationary distribution is obtained at each value of C, and that the

probability of finding an optimal solution increases monotonically with decreasing

C. The Markov chain length and its updating function determine whether the

stationary distribution can be achieved or not. Due to the nature of a practical

application - a finite-time application and seeking desirable solutions instead of the

global optimum solution, it usually requires a substantially long Markov chain

length at every control parameter C. However, if the Markov chain length is too

long, it would lead to a very inefficient algorithm.
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The main features of the simulated annealing process can be outlined as

follows (See Korst, 1988):

1) The probability of find the optimal solution 5„p„ is equal to 1 after a large enough

number of trials k. That is: 	 P{ X (k) E SOp, } = 1 	 (2.3.2)

2) The probability of finding an optimal solution increases monotonically with

decreasing C.

3) The asymptotic behavior of the simulated annealing algorithm can be approximated

in polynomial time at the cost of guaranteeing of reaching optimal solutions.

4) A finite-time implementation of the simulated annealing algorithm can be realized

by generating homogeneous Markov chains of finite length for a finite sequence of

descending values of the control parameter.

In summary, although the finite-time simulated annealing algorithm can not

guarantee to reach the optimum solution, some features are very favorable in finding

sufficiently "good " solutions, such as the asymptotic behavior of the iteration

procedure and that the probability of finding an optimal solution increases

monotonically with decreasing of the scheduling control parameter. To design a proper

simulated annealing algorithm, not only the solution state generating mechanism

should be well designed, but also, more importantly, the cooling schedule. The long

homogenous Markov chain length and small decreasing rate of the "temperature"-

control parameter are essential for the "good" solution, but they greatly increase the

computing difficulty.
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The simulated annealing algorithm has been widely applied in various

combinatorial optimization problems, such as scheduling and sequence problems.

Matsuo et. al.(1987) used simulated annealing on the job shop scheduling problem

with the makespan as objective. Laarhoven et. a1.(1992) used simulated annealing to

find the minimum makespan in a job shop scheduling problem. The algorithm

successfully avoid the local minimum, though it is at the cost of a large running time.

Suresh et. al.(1993) applied simulated annealing on the multiobjective facility layout

problem and the solutions obtained compare favorably with the best known results.

2.3.2 Tabu Search Strategy

Tabu search was developed by Glover (1986, 1989, 1990, 1993) which is briefly

presented below.

Tabu search, as a heuristic search strategy approach for computationally hard

optimization problems, has a broad range of applications from graph theory and

matroid settings, to general pure and mixed integer programming problems. It is an

adaptive procedure with the ability to make use of many other methods, such as linear

programming algorithms and specialized heuristics that it directs to overcome the

limitations of local optimality.

The tabu search strategy as presented in Glover (1990) is described below:

To describe the workings of tabu search, we present a combinatorial

optimization problem in the following form.
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Minimize c(x)	 x E X in R,,	 (2.3.3)

c(x) is the objective function, x E X is the constraint. We define a move s to consist of

a mapping defined on a subset X(s) of X:

s: X(s) --> X	 (2.3.4)

Associated with x E X is the set S(x) which consists of those moves s E S that can be

applied to x; i.e., S(x) = { s E S: x E X(s) ( and we may thus also write X(s) = {x E

X : s S(x) 1 ).

Tabu search in a simple form discloses two of its key elements: constraining

the search by classifying certain of its moves as forbidden, and freeing the search by a

short term memory function that provides " strategic forgetting."

The operation of the procedure in simplified form is described as follows. A

subset T of S is created whose elements are called tabu move. These elements of T are

determined by utilizing historical information from the search process, extending up to

t iteration in the past, where t can be fixed or variable depending on the application or

stage of search. Membership in T is by means of an itemized list or by reference to a

set of tabu conditions. Thus the simplified form for tabu search is:

STEP 1. Select an initial x E X and let x*:=x. Set the iteration counter k=0 and

begin with T empty.

STEP 2. If S(x) - T is empty, go to STEP 4; otherwise, set k:= k+1 and select sk

E S(X) - T such that Sk(x) = OPTIMUM(s(x):sES(x) T).

STEP 3. Let x:= sk(x). If c(x) < c(x*), where x* denotes the best solution

currently found, let x* := x.
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STEP 4. If a chosen number of iterations has elapsed either in total or since x*

was last improved, or if S(x) - T = 0 upon reaching this step directly

from Step 2, stop; otherwise, update T (as subsequently identified) and

return to Step 2.

The principal elements of the Tabu Search are the following:

1) Tabu lists T

The tabu list encloses the most recent moves. Its function is to prohibit certain

moves for a period of time (number of iterations) to enter or exit the current

solution state, to prevent cycling and avoid local optimum.

2) Heuristic Evaluation Function OPTIMUM(s(x):sE S(X) - T)

This function is used to generate the new solution state s(x) from the current

solution state x, which is assumed to be a best "move". If the new solution state

improves the objective function value, it would be accepted as the new current

solution state.

3) Aspiration Level

The use of an aspiration level function A(s,y), which depends on the move s and/or

vector y, is one of the tabu search's important features. If the objective value

c(s(y)) of a move s(y) is less than a prespecified aspiration level A(s,y), then the

tabu status of the move may be overridden. The move is now defined as a solution-

specific move, depending on both s and y. Each solution-specific move is

characterized by a set of attributes. The aspiration level might be defined either for
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a collection of these or for a specific objective. Once a move passes the criterion

then its tabu status is overridden.

4) Strategic oscillation

The strategic oscillation is also an important element tabu search, referring to the

search stage where the moves are allowed to enter the infeasible region. The search

oscillates back and forth between the feasible and infeasible solution space. Thus it

provides the opportunities to select paths which otherwise might not be allowed.

Strategic oscillation might also be useful for sensitivity analysis by providing a

range of solutions around the constraint.

5) Intermediate and long term memory

The intermediate term memory function records features that are common to a set

of best trial solutions during a particular period of the search. The search then

continues, using these common features as heuristics to identify the new solutions.

The long term memory function diversifies the search from the current search

stage by using a heuristic which is usually generated from the search. It generally

works in a manner opposite to the intermediate memory by penalizing good moves

rather than rewarding them. This step might achieve an escape from a local

optimal solution. Both functions are used for a short number of iterations and then

the search continues with the original heuristics or evaluation criteria.

The results from various tabu search applications have been very encouraging.

These applications include a job schedule problem, traveling salesman, mixed integer

programming, as well as the transportation equilibrium network design problem and a
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variety of other discrete optimization problems. Knox and Glover (1988) demonstrated

the power of a prototype tabu search method on a benchmark set of seven "small but

hard" symmetric traveling salesman problems ranging from 25 to 110 cities. Laguna,

Barns, and Glover (1991, 1992) developed powerful tabu search methods for two

related single machine problem with linear delay penalties and sequence dependent set

up costs.

Tabu search strategy has also ever been implemented successfully by Mouskos

(1991) in solving a single user class transportation equilibrium network design

problem, where the optimal solutions for 5 small networks were found in less than 500

iterations, and good solutions were reported for 3 medium networks.



CHAPTER 3

FORMULATION OF TWO CLASSES OF USERS EQUILIBRIUM
TRANSPORTATION NETWORK DESIGN PROBLEM (TCNDP)

ADDRESSED IN THIS STUDY

The TCNDP in this study is addressed as: Given a transportation network with a set of

nodes N and a set of links A, a fixed 0-D matrix representing passenger cars and a

fixed 0-D matrix for heavy trucks, link travel cost functions reflecting the interaction

between passenger car flow and truck flow on the same roadway, and a set of links

that can be expanded by one additional lane on the original network with the following

options:

Option 1: Expand the link by one lane and allow all traffic on new lane,

Option 2: Expand the link by one lane, but allow only passenger car traffic on

new lane,

Option 3: Expand the link by one lane, but only truck traffic is allowed on new

lane,

then, the objective is to minimize the UE total travel time of the network, subject to

the available budget.

The most important issues arising in solving TCNDP are: 1) two different

types of network users, passenger cars and trucks, sharing the same roadway, which

possess different impacts to the roadway congestion and the interaction between

themselves, and 2) the network design variable needs to include one of the three traffic

operation associated with each new lane.

39
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The TCNDP problem framework has been developed by Mahmassani et.

al.(1985). Mahmassani et. al. (1985) used five options of traffic operations associated

with each link and its potential additional new lane. The other two options considered

are the ones that restrict the use of an existing link by the trucks in Option 1 and

Option 3. The reduction to three options was made to reduce the complexity of the

problem.

In order to model two different travel performance along the same roadway by

passenger cars and trucks and the interactions between them, as well as the three

different types of the traffic operations, a "conceptual" network presentation is used.

In the "conceptual" network presentation, each physical highway link is

divided into two sub-links, one for the passenger cars and the other for the trucks. The

interaction between the cars and trucks is represented by the interaction between these

two sub-links. In addition, a dummy node with a dummy link and the candidate links

for addition are also added on each sub-link, in order to address the three link

expansion options (See Figure 3.1.1). When both the dummy links of the passenger

cars and the trucks sub-links are "turned on", Option 1, the shared lane would be

selected. When neither dummy links is "turned on", no build option would otherwise

be selected (no expansion). Options 2 and 3 are represented by "turning on" one of the

dummy links respectively. This network representation is similar to the Mahmassani,

et. al. (1985) network representation.

Consider a highway network with N nodes, and assume that nodes 1,2, ..., N

are passenger car nodes and N+1 , N+2, ..., 2N are truck nodes. Let passenger car sub-
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links (in single direction only) to be numbered 1, 2, ..., m; dummy links (defined as

mechanisms to keep the existing lanes distinct from the new lanes ) to be numbered

A - original highway link. Link i for cars, and links 3m+i for trucks.

B - dummy links. Links m+i for cars, and links 4m+i for trucks.

C - proposed lane additions. Links 2m+i cars, and links 5m+i for trucks.

i=1,...,m. where m= total number of existing links in single direction only

Figure 3.1.1 Example of Single Highway Link Presentation

m+1,..., 2m; and label proposed lane additions to the network 2m+1,...,3m. Thus, if i is

the highway link under consideration, then m+i is the dummy link associated with

Link i , and 2m+i is the lane addition associated with link i. Consequently, the truck

sub-links, dummy links and proposed addition links are number from 3m+1 to 4m,

4m+1 to 5m, and 5m+1 to 6m, respectively.
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The TCNDP problem mathematical formulation is customized for this study

where ta(xa) is the travel time on Link a .

xa is the flow on link a.

c a is the fixed cost of expanding extra lane for Link a

B is the available budget

ya is zero if Link a is not added to the network and one if

included.

m is total number of existing links in single direction.

M is a very large constant.

Formula 3.1.1 is the network total travel time with respect to the user

equilibrium flows; Formula 3.1.2 is the budget constrain; Formula 3.1.3 is prohibiting

flow on links not constructed; Foimula 3.1.4 is the decision variable definition and

Formula 3.1.5 restricts the flow to be a user equilibrium flow.
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Mahmassani et. al. (1984) presented a solution methodology based on the

branch and bound algorithm for the TCNDP problem. However, for a binary variable

0-1 integer programming problem, the computation complexity is equal to 2", where n

is equal to the total number of integer variables, or number of links. Consequently, the

TCNDP computational complexity would grow to 4' when the three types of traffic

operation options are introduced. With presence of the high computation complexity

of TCNDP problem, the branch and bound methodology is not practical even to solve

a moderate small size network. Therefore, a heuristic search strategy was developed in

this studyto solve problem 3.1. The developed heuristics based search strategy solution

methodology for TCNDP problem in this study, which aims to find the sufficient

"good" solution for middle to large size networks, is presented in Chapter 5.



CHAPTER 4

CHARACTERISTICS OF THE TRAFFIC ASSIGNMENT PROCEDURE
USED IN THE TCNDP

This chapter presents a review of traffic assignment with asymmetric link interactions

and the characteristics of the two classes of users equilibrium traffic assignment with

passenger cars and trucks.

The primary concerns of the traffic assignment procedure are the following; I)

The form of the link travel cost function which captures the interaction between trucks

and passenger cars, 2) the existence of a unique solution to the traffic assignment

procedure and 3) the convergence characteristics of the solution algorithm.

4.1 Review of Traffic Assignment Algorithm

The most representative algorithms used in the single class of user traffic assignment

include Frank-Wolfe algorithm and gradient projection method. The diagonalization

algorithm is one of the methodologies used to solve the two classes of users with

asymmetric interactions UE traffic assignment problem. In this section, the Frank-

Wolfe algorithm and the diagonalization algorithm are reviewed .

4.1.1 Frank-Wolfe Algorithm (Convex Combination Method)

Since the travel cost function til is usually nonlinear, the UE mathematical model

(2.3.6) is a nonlinear optimization problem with the linear constraints. If the travel cost

function t„ is convex and differentiable in the feasible set, the general approach to

44
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such problem is to use the gradient descent method. The gradient decent method

converges to the equilibrium flow. In each iteration, it takes the move along the

deepest decent direction of the current state with the best step size that optimizes the

current state objective function value.

The Frank-Wolfe algorithm is one of the gradient decent methods which is

applicable to traffic assignment models (2.2.6). At each iteration, the Frank-Wolfe

algorithm first finds a search direction by solving a linearized approximation, then

solves the optimum move size along that direction. The efficiency of the algorithm

derives from the fact that the direction finding step is equivalent to performing an all-

or-nothing traffic assignment, that all flow between given origin and destination is

assigned to the shortest path between them.

The basic steps of the Frank-Wolfe algorithm used in the UE or SO models are

as below (See Sheffi 1985):

STEP 0: Initialization. Perform all-or-nothing assignment based on the free

flow t„' = ta° = tc, (0), Va. ; This yields the set of link flows {x,° }. Set

counter n=1.

STEP 1: Update. Set tc", = to (x;' 	 Va.

STEP 2: Direction finding. Perform all-or-nothing assignment based on 1/ (1;1.

This yields a set of (auxiliary) link flows { y an }.

STEP 3: Line search. Find optimal move size a„ that solve
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MIN	 ft„ (w)dw	 subject to 0 an
0

STEP 4: Set X'„'+' = X,", + a„ 	 — XD, Va.

STEP 5: Convergence test. If a convergence criterion is met, STOP (the

current solution is the set of equilibrium link flows); otherwise, set

n=n+1 and GO TO STEP 1.

4.1.2 Diagonalization Algorithm for Two Classes of Users Traffic Assignment

As described in the preceding sections, the two classes of users traffic assignment

needs to capture the interaction between different classes of users. The most widely

used algorithm for multiple classes of users traffic assignment procedure is the

diagonalization algorithm. The diagonalization algorithm is based on solving a series

of standard UE programs, which can be solved by the Frank-Wolfe algorithm. Each

iteration of this procedure requires the solution of one such program. The

diagonalization algorithm is presented below:

STEP 0: Initialization. Find a feasible link flow vector X. Set n = 0.

STEP 1 : Diagonalization. Solve the following problem:



where a denotes Link a.

xu denotes the link flow on Link a.

fkr'' denotes path k for traveler from origin r to destination s.

q r's denotes the total flow from origin r to destination s.

This yields a link flow vector X" .4.1 .

STEP 2 : Convergence test. If X"	 , stop. If not set n= n+1, and go to

step 1.

In Sheffi (1985), it is shown that in the diagonalization algorithm, X" = X"+ 1 if

and only if X" is a vector of flows that satisfies the UE conditions, and the uniqueness

of the solution requires that the Jacobian matrix (2.2.10) is positive definite. The prove

of the uniqueness referred to Smith (1979) and Dafermos (1980) where a variational

inequality formulation was adopted. It implies that if the algorithm converges, its

solution is an equivalent flow pattern.

By noting that only the last iteration's flow pattern needs to be determined

accurately, that the problem at each iteration is subject to the same set of constraints

and that the solution of problem is similar to the solution of a single user class, Sheffi

suggested a "streamlined" version of the diagonalization algorithm, in an attempt to

reduce the computational cost. It has to be noted that the convex combinations
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algorithm requires many iterations to research convergence. Thus the solution of

Problem 4.1.2 requires a number of internal iterations to reach convergence per outer

iteration of the diagonalization algorithm. The streamlined version applies only one

iteration to Problem 4.1.2, thus reducing it to a similar form as the convex-

combination algorithm for a single user class (Sheffi, 1984).

The next section presents the travel cost functions used in the traffic

assignment procedures of the TCNDP.

4.2 Travel Cost Functions

4.2.1 Link Travel Cost Function

This section presents brief literature review on the link travel cost functions. Both

single class and two classes of users link travel cost functions, as well as the most

recent travel cost functions with turn movement will be presented.

4.2.1.1 BPR Single Class Travel Cost Function: The most used link delay function

in highway network projects, developed by the US Bureau of Public Roads (BPR) has

the following form:

to =-- t„0 (1+ a(--7)
fl 
) 	 (4.2.1)

Ca

where to is the travel time on Link a.

ea is the free flow on Link a.

a, 13 are parameters calibrated on the basis of speed limit and the link capacity.
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c a ' is the "practical capacity" of Link a.

xa is the actual flow on Link a.

Florian et. al. (1976) provided estimates for parameters a and la and the

corresponding free flow travel time.

4.2.1.2 Two Classes of Users Link Travel Cost Functions: A modified BPR type

travel cost function was used in Mouskos (1985) and Mahmassani et. al. (1987) to

represent the interaction of passenger cars and trucks sharing the same link.

Although the function was not calibrated with any real data, it is consistent

with the concept of passenger car equivalents for heavy vehicles as applied by the

1985 Highway Capacity Manual (HCM) and later the 1994 HCM. The modified

version of the two classes of users travel cost function has the following form

(Mahmassani, et. al., 1987)

Where taA , taT are the travel times of the passenger cars and trucks on Link a,

respectively.

taA°, taT° are the free flow time of the passenger cars and trucks on Link a

respectively.

aA, p A and aT, pi. are roadway congestion parameters for the passenger cars

and trucks respectively.
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Ca' is the capacity of Link a.

XaT are the actual flow of the passenger cars and trucks on Link a

receptively.

s is truck equivalent factor to passenger car.

4.2.2 Link Travel Cost Functions (LTCF) Used in this Study

The two classes of users link travel cost functions used in this study are a modification

of the BPR functions (See Section 2.3). The main reason for using this modified BPR

curves is: first, to capture the interaction between trucks and cars, which are not

present in the original curves; and second, to ensure that a unique solution can be

found by solving the traffic assignment procedure.

Mahmassani and Mouskos (1987) defined the interaction between the

passenger cars and trucks by converting the truck flow volume to passenger cars and

derived the truck and passenger car link cost BPR functions as shown in Formula 4.2.2

and 4.2.3. However, in most of highways, the left most lanes are always passenger cars

only lanes. The impact of the trucks to passenger cars consists of the indirect impact

(to leftmost lane cars) and the direct impact (cars sharing same lanes). Taking into

consideration into the fact that in most of highways, a high percentage of passenger

cars utilize the truck free lanes to avoid the interaction with trucks, a modified link

travel cost function other than the one used in Mahmassani and Mouskos(1987) which

overestimates such an impact by using the direct impact over all the lanes. No study

has been conducted to quantify this impact, so a moderate formula is used by scaling



Table 4.2.1 Volume/Delay Functions (Florian et.al. 1976)
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0.7 	 0.8 	 0.9 	 1.0 	 1.1 	 1.2 	 1.3 	 1.4 	 1.5

Ratio of Link Volume (Sum of Number of Passenger Cars and Trucks ) Over Link Capacity

Figure 4.2.1 Two Classes of Users (Passenger Car and Truck) Link Travel Cost Function (Formula 4.2.4-4.2.5)
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down the total impact of the passenger cars and trucks as the half of the direct impact.

The same concept is applied to the truck travel cost function. Therefore, the modified

two classes of users link travel cost function (LTCF) used in this study is formulated

as:

OX + .5 x el X '  )fl
tUA = t :A (1 ± a A ( "A 	

al 	)	 (4.2.4)

0.5 x X ail + e2 ' 	 ),6, )t = 1-L.0 aT ( 	 (4.2.5)

The notation is the same as Formula 4.2.2 and 4.2.3. The functions are depicted in

Figure 4.2.1 with the assumption that E I = &, is equal to 4; 30% of total number of

vehicles are trucks, and free flow travel time for passenger cars t,'„, is 1.0 minute and

1.2 minute for trucks	 on the link. The type of the road is consistent with the one

defined in B.P.R. travel cost function (Table 4.2.1).

As mentioned in the previous chapter, the network consists of two identical sub

networks, one of which is the passenger car network and the other is the truck

network. The corresponding links in two sub networks share the same roadway. Thus

Network G(N, A) consists of the passenger car network P(N, A), and the truck

network T(N, A), Links ai (i=1, A) are the links in P(N, A) while links bi(i=1, A) is

the links in T(N, A). Only the pairs of links ai and bi (i-1, n) share the same roadway.

Assuming the individual link LTCF travel cost function is ; , where j is the links in

P(N, A) and T(N, A)), then the network travel cost function matrix is represented as:

TF = (\ tal)••• tai 5 " • ' tan 	 • 'tbi,'“,tbn) 	 (4.2.6)
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The passenger car link travel cost function is ta, f(t,',,a„,,,8„,,x,,,x 1,,c,,,e) and

truck link travel cost function is tb, = f(th°,,a bi 	, 	 ,Cbi , e) , where t	 Bai ° 5 	 al , 	ail

Xai, e a; and tbi° , abi , f3 bi , Xbi , Cbi are the free flow travel time, parameter a, 1 in BPR cost

function, link flow and link capacity for passenger car link ai and truck link bi

respectively; and s is the truck equivalent factor to the passenger car. Since only the

corresponding passenger car link and truck link share the same road, we have:



equilibrium flow pattern, and direct approximate solution algorithms rather than a
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mathematical programming formulation, such as diagonalization algorithm, are used

to solve the problem. However, the diagonalization algorithm requires the link-travel-

time Jacobian be positive definite. Otherwise, the problem may not have unique

equilibrium solution. (See Sheffi 1985).

In the presence of the asymmetric matrices, the positive definite cannot be

proven by using the leading minor determinant or the eigen values. The definition for

a matrix to be positive definite is presented below:

Definition: An n x n matrix A is positive definite, if and only if:

XA(X) 1. > 0, for any X=(x l , ..., x i , ...x2„), x i c R and one of x i must be non zero.

The Jacobian matrix for the LTCF travel cost function is quite unique. Each

row represents the impact of the volume change in one specific link to all the links.

Only the link itself (passenger link) and the con-esponding truck link which shares the

same roadway have non-zero impact and all the others have the impact value equal to

0.
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4a „a (i+n)(4 ,, ) > (a i(i+n) + a(1+1,),, ) 2
	

if i < n

4a „a 	 > (a „ (1_„ ) + a (1_,, )i ) 2
	

if i	 n

then the matrix A is positive definite.

Proof

Assume any given 2n dimension vector X=(x l , ..., x i , ...x2n), x i c R and one of x ; must

be non zero.

- a 1 1 	 a ln 	 a i(n+1) 	 a10+1) 	 a 1(2n)

- 	

(
X I

a il 	 all 	 a 1,, 	 a i(n+1) 	 a101+0 	 a ;(2n) 	 X 	 X

_a(201 	 ••• a (201 	 • " a (2n)n 	 a (2n)(n+1) 	 a(2,)0+0 	 • " a (20(2n) _ 	 \,x2n)

Since a ii>0, and ao,i ) > 0 if i< n , and a i(n _ i) > 0 if i n, then:

XA(X)' =

(a 11 x 1 + a (n+1)1 x„+1 ,••• 5 a 1,,x; +a ( ,,,,oxn+i , • • , ann Xn + a(2n)(n)x2n,..., aI)X 1 + a(j_t)j x;_„ ,
• • • , a (2,)(20x 2, + a (n)(2,)x n)

x x i   

2 +
	 2 	 2

= (a l 	-r- a 	 • x x.)+• • •+(a fi x, 	 a(n+i)i Xn+ i Xi )+• • •±(Cl nn Xn  + a ( 20n) X2 , 1 X n )+. • • • -F(n+1)1 n+ 	 i

2
(a .11..x + a(j-n)j xi-nxj )+ "+(a(2n)(2n) X 2n

2 _L

 a (n)(2n) X X 2n)

where i< n and j>n.
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greater man zero tor any A. I nereiore, oaseu on Lne uennmon of a posluve uennue

matrix, the Matrix A is positive definite. Theorem 1 is proved.

The two classes of users BPR travel cost function used in Mahmassani and

Mouskos (1987) (Formula 4.2.2, 4.2.3) fails to satisfy Theorem 1 condition and its

Jacobian matrix is not positive definite, as shown below:

Copying the same notation in Formula 4.2.6, 4.2.7, 4.2.8 and 4.2.10, we have

flip fir& ripri-unti-up of the Fnrrrtilla d 7 7 and d 7 ac-



Therefore, the matrix is not positive definite, which implies that a unique

solution to the traffic assignment is not guaranteed. In the following, the LTCF

function is examined. Substituting the first derivatives of the LTCF travel cost

function (Formula 4.2.10) to the Theorem 1 condition,



(4.2.12)

If Term 4.2.12 is wanted to be greater than 0, it requires that the following inequality

formula holds:

C.

The inequality condition (4.2.13) can be easily satisfied in almost all scenarios of the

specific problem. For the travel cost functions BPR parameters used in this study, the

inequality condition (4.2.13) is held, thus the diagonalization algorithm for the two

classes of users traffic assignment using LTCF in this study would converge to a

unique equilibrium flow. In the following section, a set of numerical experiments is
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presented to study the convergence characteristics of the diagonalization algorithm

based on the link travel cost functions used in this study.

4.3 Numerical Experiment of Diagonalization Algorithm

In the following example, a two-link-two-node network is used to test the validity and

effectiveness of the diagonalization algorithm, including the streamlined version of the

diagonalization algorithm, as applied to the two classes of users traffic assignment.

Link al

Link b2

Figure 43.2 Example Truck Network

The link performance functions are assumed as:



Diagonalization Algorithm

To apply the algorithm, an initial feasible solution is needed. Assume that the initial

enliitinn

The algorithm's iteration is described as follows:

First Iteration:

Step 1: Diagonalization. Solve the sub problem:

minimize:
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The Frank Wolfe algorithm is used to solve the problem, and the solution of step 1 is:

A convergence criteria of I% is used, so the first iteration does not meet the criteria.

Second Iteration:

Step 1: Diagonalization. Solve the sub-problem
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A summary of 11 algorithmic iterations is shown in Table 4.3.1. This table

displays the iteration number, the solution of the sub-problem, and two convergence

measures, one of which is the convergence to the final solution.

Table 4.3.1 shows that the algorithm converges to the correct equilibrium

solution. The convergence measure with respect to the previous solution shows a

monotonous

A 2 1

and asymptotic convergence rate, while the actual converge measure with respect to

the final solution) rate is not monotonous, but it finally converges to zero.

In this example, solving the sub-problem uses only two to three iterations

before the sub-problem converges. Therefore, a modified version of the

diagonalization algorithm, the streamlined algorithm which just uses one iteration for
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every sub-problem, is suggested to reduce the number of iterations. Following, the

streamlined algorithm is presented to solve the example problem.

A summary of 10 algorithm iterations is shown in Table 4.3.2. In comparison

to the solution obtained by the original diagonalization algorithm (Table 4.3.1), it may

be observed in this specific example, the solutions of the two algorithms in each

iteration is very close and both of them approach to the final equilibrium flow. For the

example shown in Sheffi (1985), though the two algorithms' each iteration solution is



Table 4.3.2 Iterations of the Streamlined Algorithm Procedure for the Example
Iteration x" X2a X lb X"2b

max{ - xa '
la

1-.11„ tl"b t'27b

xa

0 0 3000 0 300 2 21.315 3 6.408

1 1440.001 1559.999 270.003 29.997 oo 8.679 2.235 6.408 3.012

2 899.999 2100.001 89.999 210.001 6 2.235 4.697 3.056 3.545

3 1259.998 1740.002 157.5 142.5 0.75 3.895 2.804 3.550 3.134

4 1124.001 1875.999 112.5 187.5 0.3158 2.803 3.446 3.177 3.305

5 1214.999 1785.001 129.499 170.501 0.1511 3.310 3.055 3.282 3.225

6 1180.999 1819.001 118.125 181.875 0.0878 3.055 3.220 3.240 3.251

7 1203.751 1796.249 122.375 177.625 0.0360 3.190 3.127 3.260 3.234

8 1195.25 1804.75 119.531 180.469 0.0232 3.127 3.168 3.242 3.250

9 1200.938 1799.062 120.594 179.406 0.0089 3.161 3.145 3.249 3.245

10 1198.813 1801.187 119.883 180.117 0.0059 3.145 3.156 3.245 3.248

Iteration
,la Y )21a Y 1211

a s ab x„"
max

xa

0 3000 0 300 0 0.48 0.9 1
1 0 3000 0 300 0.375 0.6667 1.25

2 3000 0 300 0 0.1714 0.3214 0.25

3 0 3000 0 300 0.1080 0.2880 0.3125

4 3000 0 300 0 0.0485 0.0907 0.0637

5 0 3000 0 300 0.0280 0.0878 0.0792

6 3000 0 300 0 0.0125 0.0234 0.0158

7 0 3000 0 300 0.0071 0.0232 0.0198

8 3000 0 300 0 0.0032 0.0059 0.0040

9 0 3000 0 300 0.0018 0.0059 0.0050

10 3000 0 300 0 0.0008 0.0015 0.001
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Table 4.3.4 Iterations of the Streamlined Algorithm for the Example with Different Initial Solution (2)
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not as close, the streamlined algorithm almost performs as well as the diagonalization

algorithm. Table 4.3.3 and Table 4.3.4 are the summary of the streamlined

diagonalization algorithm on the above example using different initial solution states

is presented. Contrary to the initial stating solution used above, one starting solution

has all the traffic load in Link la and Link lb. The other starting solution has the

traffic load equally distributed over two passenger car links and trucks.

The results from Table 4.3.3-Table 4.3.4 show that despite utilizing different

solution states, the streamlined algorithm leads the solutions to the equilibrium flow

with a very similar convergence rate. Furthermore, as it was proved earlier that the

link performance function (Formula 4.2.4 and 4.2.5 ) Jacobian matrix is positive

definite, which implies that the UE solution found is also a unique solution. It may be

concluded that the link performance function (Formula 4.2.4 and 4.2.5) used in this

study would allow the diagonalization algorithm to converge to the problem unique

equilibrium solution.

4.4 Numerical Experiment of Diagonalization Algorithm on Five
Test Networks

In this section, the performance of the diagonalization algorithm for two classes of

users traffic assignment is tested on five networks.

4.4.1 Five Test Networks

Five different size networks, ranging from 16 links to 110 links for single class

network (Figure 4.4.1-4.4.5), are used as the test networks of this study.
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Figure 4.4.1 Network 1



Figure 4.4.2 Network 2



0.1,1,

Figure 4.4.3 Network 3



Figure 4.4.4 Network 4



Figure 4.4.5 Network 5
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The network used have similar settings as the common transportation networks. As

shown in Figures 4.4.1-4.4.5, the centroids are the network users origins and

destinations and the nodes are the intersections of the physical roadway. The centroid

is connected to the network by the centroid connectors, which have infinite capacities

and no travel time costs. Most of the links represent single direction traffic

movements. The database for the attributes of each link include the links length (also

shown in the graphs), link capacity, type of links (determine the free flow travel speed

and the coefficients used in the travel time cost function) and the capacity for the

additional lane. The two classes of users networks contains two layers of the networks,

one of which is for the passenger cars and the other is for the trucks.

Network 1 is illustrated in Figure 4.4.1. It has 6 nodes, 18 links and 5 centroids

for single class network and 12 nodes, 36 links with 10 centroids for the two classes

network.

Network 2 contains 10 nodes and 38 links , as well as 4 centroids for single

class network and double number of nodes, links and centroids for two classes

network. Network 2 is more than two times the size of the Network 1.

Network 3 is more complicated than Network 1 and 2, which has 21 nodes, 64

links and 5 centroids and double number of two classes of users. It is constructed in

the way to simulate the typical urban transportation journey to work trip structure that

is from radial spreading suburban residential areas to a central business district.
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Network 4 is doubles the size of Network 3 and has a similar structure. It has

33 nodes, 126 links and 11 centroids for the single class network. Likewise, the two

classes network has double numbers of nodes. links and centroids.

Network 5 is formed by 50 nodes, 166 links and 6 centroids for single class

network and 100 nodes, 332 links and 12 centroids for two classes network. Network 5

has a freeway network structure. a primary freeway and parallel service roads.

4.4.2 Test of Convergence and Convergence Rate with Number of Internal
Iteration

One of the important issues arising from Section 4.3 is that since the degree of the

convergence of the sub problem does not have a significant impact on the

diagonalization algorithm's final convergence to the solution, what is the best

convergence degree such that the algorithm can most efficiently converge to its final

solution. In the computer programmed diagonalization algorithm, the sub problem

convergence degree is interpreted as the number of internal iterations.

In this numerical experiment, we apply the computer programmed

diagonalization algorithm on the five test networks (Figures 4.4.1-4.4.5) with different

number of internal iterations. The criteria for terminating the program procedure is

when the final convergence reaches 0.001, that is the ratio of total link flow change

during the last two iterations against the current link flow. The result is shown in

Figure 4.4.6-4.4.25.
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From this result, the following observations are made:

1) The diagonalization algorithm does converge in all five networks with different

internal iteration number, though none of them demonstrate any monotone

convergence property. This observation is consistent with the findings in Section

4.3, where the manual calculation approach is applied.

2) The algorithm fast approaches to certain point during the first few iterations, and

then it slowly and gradually reaches the final convergence criteria. In Network 1

experiments, the algorithm quickly converge from 0.2 to the neighborhood of 0.01

within first 15 iterations, and then use over 70 iterations to reach 0.001 (See

Figures 4.4.6-4.4.9). Networks 2, 3, 4 and 5 have very similar convergence pattern

(See Figures 4.4.10-4.4.25). Thus, different convergence measurements established

by the specific problems would be a dominant factor in determining the speed of

the diagonalization algorithm.

3) Network configuration does not seem to affect the general properties of the

diagonalization algorithm application. The five networks have very different

network sizes and general network structures, but all the graphs of the

experiments have very similar pattern as the computing iteration process

approaches to the termination. This confirms the results of Mahmassani and

Mouskos (1986), even though the Jacobian matrix in their application is not

positive definite.

4) There does not exists a best internal iteration number. In Network 1, the algorithm

converged to 0.001 at around 70 iterations when the internal iteration numbers are
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1, 2 and 3, while 4 internal iteration needs over 100 overall iterations to reach

convergence 0.001. Internal iteration equal to 2 though is the best one for Network

2. In Network 3, the algorithm with internal iteration equal to 1 or 2 is twice

efficient than internal iteration equal to 3 or 4. Conversely, in Network 4 and

Network 5, the greater the internal iteration number is, the faster the algorithm

proceeds. These observations implicitly suggest that the best internal iteration

number is more or less determined by the problem itself. With complicated

network structure, it requires more internal iteration for the sub-problem solution,

and the small number iteration would cause the solution approach the optimal

solution with high degree of fluctuation, requiring more iterations to converge.

Observation 4 findings conflict with Sheffi 's proposal that the streamline

algorithm which only uses one internal iteration, is a more efficient algorithm by

reducing the iteration number, which is also reported in Mahmassani and Mouskos

(1986). In this study, the computerized diagonalization algorithm with internal

iteration between 2 and 4 is used, which corresponds to the findings of the numerical

experiments.

4.4.3 Test of Network Flow Equilibrium and Distribution Pattern

In this series of numerical experiments, the goal is to find whether the diagonalization

algorithm converges to the user equilibrium flow and study the flow distribution. Both

passenger car trips and truck trips are examined on the five test networks, and the

results are summarized in Table 4.4.1 - Table 4.4.7.



Table 4.4.1 Network 1: Passenger Car Path for Car Only Trips 	 Table 4.4.2 Network 1: Truck Path for Truck Only Trips

Table 4.1.3 Network 1: Passenger Car Path for Combined Trips 	 Table 4.4.4 Network 1: Truck Path for Combined Trips



Table 4.4.5 Network 3: Passenger Car Path for Car Only Trips

Table 4.4.6 Network 3: Truck Path for Truck Only Trips



Table 4.4.7 Network 3: Passenger Car Path for Combined Trips



Table 4.4.8 Network 3: Truck Path for Combined Trips



Table 4.4.11 Network 4: Truck Path for Truck Trips

Table 4.4.12 Network 4: Truck Path for Combined Trip



Table 4.4.13 Network 5: Car Path for Car Only Trips

Table 4.4.14 Network 5: Truck Path for Truck Only Trips
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Table 4.4.16 Network 5: Truck Path for Combined Trips
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Table 4.4.1 shows a pair of passenger car paths when applying 1000 car trips

from Centroid 1 to Centroid 4. The two paths have identical travel time of 0.0567 with

555 car flow allocated on Path 1. The 250 truck trips from Centroid 1 to Centroid 4

utilize the same two paths as the passenger cars as shown in Table 4.4.2. When the

passenger car trips and truck trips are combined in the same network, both paths have

almost the same travel time (due to the computer program's convergence measure ) for

the car trips, and for the truck trips (See Tables 4.4.3 - 4.4.4). However, the paths flow

allocations are slightly changed, which demonstrates the interaction between the cars

and the trucks when they simultaneously use the network.

Table 4.4.5-4.4.8 shows the results from the application of the same four

scenarios on network 3. Network 3 is a much more complicated network compared

with Network 1. The car trips are from Centroid 1 to Centroid 3, and all the cars use

the path along the outer edge of the network. The truck trips are from Centroid 2 to

Centroid 3. Three paths with almost identical travel time are used by truck trips, where

one of them use a section of the car trip path and attract 595 trips out of total 100 trips,

and the other two paths have almost same links. When the passenger car and truck

trips are merged, the trucks cause congestion on part of the passenger car path, and

therefore 263 out of 1000 car trips divert to the other two paths with similar travel time

as the original one. The congestion by additional car trips cause longer travel time for

the trucks on their original three paths, so that the two new paths become attractive

and the diverted 37 trucks on the new paths balance the travel time over 5 paths, which

is around the neighborhood of 0.495 minutes (See Table 4.4.8).
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In network 4 , the car trips origin is Centroid 2 and the destination is Centroid

8 respectively. Similarly, the origin for the trucks is Centroid 3 and the destination is

Centroid 7. Both passenger cars and trucks have one dominate path in their own trips

assignment (Table 4.4.9 and Table 4.4.10). Since the car path and truck path use

different links , when the trips are combined, a very small impact is observed, a slight

increase in the travel time of the shared links takes place on both car trips and trucks.

No new paths are generated in this case.

Network 5 represents a highway network in an suburban area, where a major

freeway is accompanied with a pair of parallel service roads. Three paths with

identical travel times are used by both passenger cars and trucks under the individual

traffic assignments are conducted separately (Table 4.4.13 and Table 4.4.14). When

their trips are combined together, under the same traffic assignment, three more

identical new paths for the passenger car trips, and one more new path is created by

truck trips. (See Table 4.4.15 and Table 4.4.16).

In general, the interaction between passenger cars and trucks, caused by

sharing the right of the way simultaneously in the network, primarily increases the

congestion, diverts both car and truck traffic to other new paths, though the magnitude

of the impact to passenger cars and trucks is different.

From the results of these experiments, it can be confirmed that the

diagonalization algorithm does converge to an equilibrium flow pattern. It is also

confirmed the travel times in all paths are identical for each user class separately,

which confirms that this is a UE traffic pattern ( Tables 4.4.1 - Table 4.4.16.). These
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results are very important for the TCTNDP, since they provide confidence that the

solution of the traffic assignment at each iteration is a UE traffic pattern.



CHAPTER 5

DEVELOPMENT OF THE COMBINED SIMULATED ANNEALING AND
TABU SEARCH STRATEGY (SA-TABU)

This chapter presents combined simulated annealing and tabu search strategy (SA-

TABU) to solve the two classes of users equilibrium transportation network design

problem (TCNDP). The search strategy developed identifies the best combination of

links to be expanded and their three traffic operation options for capacity improvement

within a feasible budget constraint such that the system wide total UE travel time is

minimized. The problem was formulated as an integer, nonlinear programming

problem, where the nonlinear two classes of users link travel time function (Formulas

4.2.4, 4.2.5) was used.

5.1 General Background of the Combined Simulated Annealing and Tabu
Search Algorithm in this Study

The most important feature of the simulated annealing algorithm is that the acceptance

of the new solution state is probabilistic. The new solution state that improves the

objective function, is unconditionally accepted, and on the other hand, the probability

of accepting the non-improved solution state increases with the quality of the new

solution states-the better objective function values, the higher quality of the new

solution state is, and decreases with the progress of the search. In general, the

simulated annealing algorithm tends to accept all the moves - from the current solution

state to a new solution state, in the early stage of the search, and as the search goes on,

94
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it starts to focus on some good solution space and finally becomes a local optimum

search strategy approach.

As mentioned in Section 2.6.1, the original version of the simulated annealing

algorithm requires that the generation of the new solution state should be randomized

and the decreasing rate of the move acceptance probability should be very small in

order to reach "annealing" status. Such procedure is not suitable for large scale

network design problems, since the computing time of the solution state objective

function value is extremely high, and the number of possible solution states is

prohibitively high.

By introducing heuristic information, the generation of the new solution state

would be more informed, and the simulated annealing process would only search in a

high quality solution state region. Therefore, it has the potential to dramatically

improve the efficiency of the algorithm, though the risk of not finding the global

optimum may also be increased. However, with the proper design of the heuristic

evaluation function (HEF), an efficient simulated annealing algorithm could be

designed to find satisfactory near optimal solutions.

The historical information may be considered as one of the HEF variables. The

information about the impact of each link or each of the three options from the past

experience, which is gained throughout the search process, provides valuable

information. Given the significant computational expense of the two classes of users

user equilibrium traffic assignment (TCUEA) procedure, it becomes a necessity to

seek sufficiently good solutions within a reasonable number of iterations of the
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TCNDP. Including the historical information as part of the HEF variables may greatly

increase the algorithm's efficiency. A "noise" or a random error can be added to the

HEF to provide variability of the candidate solution states, as well as to fulfill the

randomization property of the original simulated annealing algorithm.

Tabu search is considered a rather more aggressive heuristic search

methodology. The moves produced by the tabu search algorithm relies more on the

HEF, regardless of the quality of the new solution state. One of its most important

features is the use of the tabu list, which reduces the risk of cycling. Early numerical

experiments show that cycling and reoccurrence of the solution states greatly affect the

effectiveness of the simulated annealing with the use of an HEF. The more informed

the HEF is, the higher the risk of cycling. Therefore, the combination of the

convergent characteristics of simulated annealing and the reduction of the risk of

cycling through tabu search provided the rationale for developing a combined

simulated annealing / tabu search strategy (SA-TABU) to solve the TCNDP.

The following sections present the basic elements of SA-TABU approach

developed for this study.

5.2 Heuristics Based Combined Simulated Annealing and Tabu Search
(SA-TABU) Strategy

The basic elements of the SA-TABU search strategy are: type of moves, HEF and the

search strategy itself. These elements are presented in the following subsections:
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5.2.1 Type of Moves

A move is defined as the basic mechanism which achieves a change from the current

solution state to a new solution state. A solution state in the TCNDP refers to the

network's configuration.

The network design problem decision variables are 0-1 integer numbers. A pair

of two sets can be used to present a solution state. One set includes all the variables

with values equal to one (expanded links), which is defined as the Solution-1 set. The

other set contains the variables with zero value (non-expanded links), and it is defined

as the Solution-0 set.

The new solution state can be generated by exchanging the elements in two

sets(e.g. some variables change from 0 to 1 and some from 1 to 0). At the same time

the budget constraint (Formula 3.1.2) must be satisfied to ensure the feasibility of the

new solution state. The add/drop move, knapsack move, and random perturbation are

the most frequently methods used to produce a new solution state. The knapsack type

move generates the new solution state by solving a linear integer programming

problem. The random perturbation method randomly swaps a number of elements

between the two sets to generate a new solution state, and is widely used in bipartite

graph problems and travel salesman problems. The add/drop type of move, presented

in Figure 5.2.1, exchanges source element(s) belonging to Solution 1 set which have

the least HEF value(s) with source element(s) belonging to Solution 0 set which have

the highest HEF value(s). Similarly, as before, the new solution state must satisfy the

budget constraint.
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The knapsack move and add/drop move were applied by Mouskos (1990) to

solve the single class network design problem (SCNDP) utilizing tabu search.

Balakrishnan, et. al.(1989) employed the add/drop type move for the solution to the

large scale uncapacitated network design application with dual ascent procedure, and

Janson et. al.(1983) also used the add/drop type move in a network design application

for highway improvements on a real highway network.

Although the knapsack move can immediately identify a new solution state

taking into consideration the HEF values for all the variables of the problem set, it has

a higher computational cost by requiring the solution of a linear integer programming

problem. Its effectiveness is not yet clear. However, it can be stated that it can provide

a good starting solution, and it can redirect the search for a local optima, thereby

diversifying the search (Mouskos, 1991). The add/drop type move generates the new

solution state from the current solution state by a small perturbation and heavily relies

on the HEF 's information. It also performs like a neighborhood search. Furthermore,

it has low computational cost and feasible new solution states could be found easily.

Another attractive characteristic of the add/drop type move is that it can provide

valuable historical information of the contribution of each move to the current solution

state from the previous one. Based on these characteristics, the add/drop type move is

used in this study.
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5.2.2 Heuristic Evaluation Function (HEF)

The available budget in the network design problem is usually small and the degree for

changing the network configuration is rather limited, so the redistribution of the

network flow usually does not significantly change most of the links FIEF are

primarily based on the link flow. If some critical link flow patterns happen to result in

low HEF values, they may not be considered for capacity expansion during the whole

search procedure process. In addition, other information which emerge during the

search such as the solution state objective function values may not be fully utilized.

At present, most of the heuristics functions used are non solution specific. For

example, in Mouskos (1990), the new solution state projecting the new configuration

of the network results in the redistribution of the network flow and the change of each

link heuristics values such as V/C ratio, speed and travel time values, and then these

new heuristics functions values are used to generate the new solution state. Thus, in

this approach, the generation of the new solution state only depends upon the current

solution state link flow pattern . A solution-specific HEF is developed in this study.

A simplified version of the composite HEF used in this study is as follows:

= it 1 c; + F, x r and (0 )+ BH, I (MAX(BHi ,Vi))	 (5.2.1)

H,: HEF value for Link i „

V / C, : Link i 's V/C ratio,

: Random variable expanding factor,

BH,: Link i 's historical contributions to the objective function, this component is

termed as LCOF.
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The main characteristics of the composite HEF developed in this study are:

The inclusion of the V/C ratio which captures the link's current traffic flow status; The

second component introduces a random variable to the HEF which acts as an error

term. In essence, the HEF with the inclusion of this random "error" term becomes a

stochastic HEF from a deterministic one. The use of the current value of the solution

state and the historical solution state information in the third term (LCOF) provides an

additional element in the search that rewards variables which performed well in the

past and penalizes those that did not.

The maintenance of the L.COF is shown in Figure 5.2.2. The LCOF values are

only updated for the links whose decision variable values are changed (either enter or

exit the Solution-1 set). For example, if the new solution state has better objective

function value than the current solution state, the links which were changed from

solution 1 set to the solution 0 set (we refer to the links that have such change as

dropped links ) are believed to be inferior to the links which were changed to the

solution I set from solution 0 set (we refer to the links that have this change as added

links) and thus the dropped links are penalized in their heuristics values while the

added links heuristics function values are credited due to their better contribution to

the objective function. On the other hand, if the new solution state is worse than the

current solution state, the added links will be penalized and the dropped links will be

credited (See Section 5.3).
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The inclusion of the above mentioned elements into the HEF prompted the use

of the term solution-specific REF. The solution-specific HEF originates from the

concept of the neural networks. In the neural network process, the "neuron" is

"trained" or adapted by the feedback of the objective function value derived from the

previous "neuron". As the search process continues, the links which contribute most to

the network's objective function value form a cluster of links in the Solution-1 set of

the final solution.

More details about the solution specific REF used in this study can be found in

Section 5.4.

5.13 Search Strategy

The proposed algorithm for this study borrows the main structure of the simulated

annealing algorithm, using tabu type of moves and tabu lists to reduce cycling and to

local optimum, in an attempt to develop an efficient, robust search strategy for the

solution of the Tel\TDP.

Preliminary experiments of the above search strategy indicated that cycling

was encountered very frequently. This resulted from the fact that after a number of

iterations, some links HEF values have significant lead over others due to their

positive impact on the improvement of the objective function value, which forces them

back in the solution if they are dropped. To avoid cycling, tabu lists are utilized to

inactivate certain moves for a few iterations and let the search spread over a wider

solution space.
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In the algorithm, developed the tabu list contains the reverse of the moves most

recently made. For example, if the Link A is just dropped from the Solution-1 set to

the Solution-0 set (e.g. ya----1 => y a=0), the reverse move is the one that the Link A is

added to Solution-1 set from Solution-0 set (e.g. y a=0 ya=1). The implementation of

the tabu list is implemented through the use of the link's heuristic values. After Link A

is dropped from Solution 1 set and resides in Solution-0 set (y a=0), Link A is assigned

with the lowest HEF value in the Solution-0 set, and thus Link A has the smallest

probability to be added up to Solution 1 set in next few moves. When the tabu period

(number of iterations) for the Link A is expired, it is reassigned back to its original

HEF value prior to entering the tabu list.

The next section presents the basic steps of the SA-TABU search strategy

developed in this study.

53 General Procedure of the Heuristic Based Simulated Annealing and Tabu
Search Strategy (SA-TABU).

In the previous section, the basic components of the SA-TABU search strategy were

introduced. Following, the basic steps of the SA-TABU search strategy to solve the

TCNDP are presented (See also Figure 5.4.1).

STEP 1 The program starts from an initial solution state/ 0 with the following

initial values of the parameters : i) initial scheduling control parameter

Co (usually referred as "temperature"); ii) initial maximum Markov
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chain length Lo, and maximum number of iterations Itermax . Compute

yo objective function value fo  (total UE network travel time)

STEP 2: Determine the starting control parameter Ck

STEP 2.0 Let C =Ck 	 °-

STEP 2.1 Use the random generator to generate the trial solution state yi from

the current solution state y, and compute its objective function value ft

(current total UE network travel time)

STEP 2.2 If exp((fi — fo )I Ck )> Random (0,1) , then accumulate the

number of transition trials by 1, otherwise accumulate the

number of the non-transition trials.

STEP 2.3 After 20 iterations of procedure STEP 2.1 to STEP 2.2, if the

number of transition trials is greater than 16 (Acceptance rate

is greater than 0.8), then go to STEP 3, otherwise let

Ck = 2 x Ck , and reset the number of transition trials and

non-transition trials to 0, before going back to STEP 2.1.

STEP 3 Use the trial solution state generator to generate the new trial solution

state yt from the current solution stateao (This is further explained

later in the section.)

STEP 4 Compute the network total travel time f t for the new trial solution state
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STEP 5 If exp((f	 I Ck ) > Random (0,1) , then go to STEP 6 , otherwise

increase the number of non-transition indicator Nochg by 1 and go to

STEP 9.

STEP 6 Make the move and set Nochg=0. The current solution state is

overwritten by the new trial solution state. yo 	y, fo 	f, .

STEP 7 Accumulate the Markov chain length L by 1, and if L < L o , then go to

STEP 9

STEP 8 Decrease the control parameter Ck and increase the Maximum Markov

chain length Lo and let L=0. 

STEP 9 Update the link's HEF values.

STEP 10 Increase the number of iteration indicator her by 1. If her is equal to

Iterma, or Nochg reaches the maximum number of no change parameter

, Stop, otherwise Go to Step 3.

The generation of the trial (STEP 3) solution state is illustrated in Figure 5.3.2.

The following steps present how to use the add/drop move to generate a feasible trial

solution state utilizing the link heuristics HEF values:

STEP 3.1 Generate Solution 1 set and Solution 0 for the current solution state

and update the link FIEF values.

STEP 3.2 Sort the Solution 1 set and Solution 0 set links based on the current

HEF values in decreasing order.



Figure 5.3.1 Flowchart of SA-TABU Search Strategy
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STEP 3.3 Extract the link with the least HEF value in the Solution 1 set and

retrieve its budget value b 1. Extract the link with the highest HEF

value in the Solution 0 set and retrieve its budget value b0.

STEP 3.4 If bl - b0 > 0, let bi = bl - b0, and set the value of the link

extracted from Solution 1 set to 0 and from Solution 0 set link to 1,

otherwise go to STEP 3.7.

STEP 3.5 Extract the link with next highest HEF value in the Solution 0 set

and retrieve its budget value b0.

STEP 3.6 If bl - b0 > 0, let bl = bl - b0, set the link value to 1 and go to

STEP 3.5, otherwise Stop.

STEP 3.7 Extract the link with next highest HEF value in the Solution 0 set

and retrieve its budget value b0.

STEP 3.8 If bl b0 > 0, let bl 	 b0 , and set the link value to 1. Go to

STEP 3.7, otherwise go to STEP 3.9.

STEP 3.9 Extract the link having the next least HEF value from Solution 1 set,

and retrieve the budget value b2, and let bl = bl + b2 .

STEP 3.10 Extract the link with the highest HEF values in the Solution 0 set

and retrieve its budget value b0.

STEP 3.11 If bl b0 > 0, let bl = hi b0, and set the value of the link

extracted from Solution 1 set to 0 and Solution 0 set link to 0,

otherwise go to Step 3.10.
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STEP 3.12 Extract the link with the next highest HEF value in the Solution 0

set and retrieve its budget value b0.

STEP 3.13 If bl b0 > 0, let 131 = bl — b0, let the link value to 1 and go to

Step 3.12, otherwise Stop.

The procedure and formula for updating the link LCOF values is outlined in

Figure 5.3.3. Assuming that :

i) Co is the initial processing control parameter (called "temperature") and C c is the

current control parameter;

ii) f fb , f is the objective function value of the current solution state, solution state

with best objective function value, and the present trial solution state respectively;

iii) The variables set E, A is a set of variables in the Solution 1 set of the current

solution state and in Solution-0 set in the trial solution state, and B is vice versa;

iv) heuristic ; , v i/c i is the ith link LCOF value and WC ratio, and fheur : is the ith link

HEF value to be used for generating a trial solution set;

v) Fl is the random number expanding factor.

Thus links FIEF updating procedures is as:

fheur, = / +F, x rand(0,1)+ heuristic, I (MAX(heuristic,, V i))	 (5.3.1)

if ft < fb , we have:



it. !NM 301111.11/11 3LULe LilljeCt.1Ve r UTICLI011 value 	 ro: Lurrent oitnion tate uojecuve runcuon value
Co: Initial Temperature 	 Cc:Current Temperature

Figure 5.3.3 Diagram of Link Updating LCOF Values in SA-TABU Approach



As described in the previous section and also in Figure 5.3.2, in order to

prevent cycling, the link HEF values are updated based on the tabu condition to

prevent the reversal of the most recently made moves. The elements which are

dropped from Solution-1 set to Solution-0 set are temporarily assigned with the

minimum HEF value in the Solution-0 set. These elements have very small

probabilities to be selected back to the Solution-1 set again when a new trial solution

state is generated. However, after several iterations (the length of the tabu list) they are

reassigned to their origin HEF values and they become candidates for inclusion to the

new solution. Similarly, the elements that change from Solution-0 set to the Solution-1

set are assigned very high temporary HEF values (for the length of the tabu list). The

use of these two tabu lists in the Solution-1 set and Solution-0 set respectively, force

the search strategy to select new elements to either enter or drop to/from the Solution-

1 set.
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5.4 Implementation of the SA-TABU Search Strategy

In this study, several different versions of the SA-TABU search strategy methods were

developed. The next section describes the computer program implementation of the

SA-TABU search strategy developed. The program is written in Fortran 77 language

computer code and is compiled by FORTRAN SPAR Compiler in Sun workstation

UNIX operating system environment.

5.4.1 Main Program (Figure 5.4.1-5.4.2)

This program consists of two main steps. The first step determines the initial control

parameter value tO, or "temperature". The second step is the main process of the SA-

TABU search strategy. These two steps are very similar, and they both use the basic

procedures of the simulated annealing approach, where the primary difference is in the

generation of the trial solution state. The random swapping trial solution state

generation strategy is used for the first step, while the trial solution state generation

method utilizing the comprehensive heuristic based add/drop type move, with the

activation of the tabu list takes place in the second step.

The main program starts with initialization of several parameters such as the

"penalty" and "credit" parameters for the link HEF values, Markov chain length,

control parameter decreasing rate and maximum number of iterations. These

parameters differentiate the various versions of the search strategies developed. The

network data such as the origin destination (0-D) trip table, network configuration and

link attribute data are read within the INITUE subroutine. The UE subroutine solves
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the user equilibrium (UE) traffic assignment to obtain the initial traffic flow for the

initial network. Then the Init grade procedure is called to get the initial link HEF

values (score), which is the function of the initial link congestion factor. The initial

solution state (y0) is generated by subroutine Initial_y. The subroutine Compute Y,

which is a modified version of the combination of the UE subroutine and other

subroutines is called to compute the initial solution state total travel time(f0).

The "temperature" - control parameter is initialized (See Figure 5.4.1) in a way

such that the starting "temperature" would be close to the desired initial "temperature"

in most of the scenarios. The subroutine perbationl is activated to generate the trial

solution state (newy), and the Compute_y subroutine computes the objective function

values (fl), and the simulated annealing acceptance criteria are used to determine

whether or not to accept the trial solution state. The preceding procedure is repeated

for 20 times. If the trial solution state acceptance ratio is less than 80%, the

"temperature" value is doubled. This procedure continues until the acceptance ratio

exceeds 80 %, and then the current "temperature" is accepted as the initial

"temperature" for use in the second step of the search.

Having a value for the initial "temperature", the SA-TABU procedure is

activated. The current solution state and value (yn, f0) are stored as the best solution

state and value (fbest, ybest), respectively. The tabu list is initialized as an empty set.

The subroutine tgrade_perbationl is called to generate the trial solution state (newy)

by the combined method and the compute _y subroutine computes its objective
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Figure 5.4.1 Main SA-TABU Program Flow Chart (1/2)
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Figure 5.4.2 Main SA-TABU Program Flow Chart (2/2)
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function value (f1). The best solution (fbest, ybest) is updated if the solution (newy,fl)

is the best solution state. The acceptance criteria is used to judge if the (newy, fl) is

accepted as the next current solution state. Then, the updating of the HEF values

(Figure 5.4.3 - 5.4.4) is conducted.

The value impact factor (tini) is used to consider the percentage improvement

of the trial solution state against the current solution state. The higher the

improvement,((fo-fl)/f0) is, the greater the impact factor is. The "temperature" impact

factor (a) is used to count the difficulty of accepting the trial solution state. As the

"temperature" decreases, the quality of the accepted trial solution state increases, and

the "temperature" impact factor awards the higher quality solution state a better

"credit" by multiplying the related link HEF values by a. Thus, factor "a" is increased

based on the decrease of the current "temperature" "t0" by a factor of (1+(tini-t0)/t0).

The array score  stores the link HEF values for non tabu links and the

temporary HEF values for the tabu links. The array hiscore has two functions. The first

function is to record the link's tabu status, and the other is to store the origin HEF

values for the links in the tabu list. If a link's hiscore value is positive, it implies that

the link is currently in the tabu list. The hiscore value for a link in tabu list is the link's

origin HEF value and the variable score for this link is assigned a number, a temporary

HEF value, which causes this link to have a very low probability to be considered for

swapping. The array last_add records the most recent added link into the solution and

the corresponding added link's value is changed from 0 to 1, which implies that the

link is added to the Solution-1 set from the Solution-0 set. The array last_drop records
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the link that being dropped most recently from the Solution-1 set to the Solution-0 set.

If, for a link residing in the tabu list, the difference of the current iteration and its

last add or the difference of the current iteration and last drop reaches the tabu list

length, the links residing in the tabu list exit by setting score(i) to its basic HEF value

hiscore(i) and hiscore(i) is set to -1.

The following scenarios are applied to links equal to 1 in the current solution

state and equal to 0 in the trial solution state, or dropped out from the Solution 1 set to

the Solution 0 set, and the trial solution state has been accepted (change_status—true):

i) if the trial solution state is better than the current solution state, the link's LCOF

value is penalized more by the "temperature" impact factor; ii) if the trial solution state

is the overall best solution state so far, the link's LCOF value is penalized more by the

best solution factor. However, in an extreme case, the tabu links may still participate

in the swapping, since the final HEF value (Formula 5.3.1) is stochastic.

Therefore, if the link is in the tabu list and drops from Solution-1 set to

Solution-0 set, the link would immediately exit the tabu list and the LCOF value

would be factored by the above scenarios. The non-tabu link would enter the tabu list

by setting hiscore(i) to the origin HEF value score(i) and the score(i) to the minimum

value of all of the Solution-0 set's links, which is a temporary HEF value, and then set

the last drop to the current iteration number.

However, if the trial solution state is not accepted (change_status—false), the

link's basic HEF values are increased by the drop credit factor.
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Figure 5.4.3 Link Basic Heuristics Value Updating Flow Chart (1/2)



Figure 5.4.4 Link Basic Heuristics Value Updating Flow Chart (2/2)
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For the links which are added to the Solution 1 set from the Solution 0 set, the

link's LCOF value is updated in the opposite way to the procedure described for the

dropped links in the preceding paragraph. If the move is accepted, the added links

LCOF values are increased by the add_credit and value impact (a) factors. If the trial

solution state has better value than the current solution state, the added link LCOF

value is increased more by the "temperature" impact factor ttini. If the trial solution

state is the best solution state, the LCOF value is factored more by the best solution

factor (chest). The added links would enter the tabu list by letting hiscore equal to

score, score equal to the maximum HEF value of all the links of the Solution 1 set and

last add is set to the current iteration number.

After updating the link HEF values, the main program continues its process. If

the trial solution state is accepted, the trial solution state would replace the current

solution state ((f0, newyj), and the counter of the number of the straight trials

that no trial solution state is accepted (no change) is set to 0, while the counter of the

number of the trial solution states accepted under the same "temperature"

(yes change) is incremented by 1, otherwise, the current solution state keeps

unchanged and no_change counter is incremented by 1.

If the number of the transition (yes change) reaches the current Markov chain

length, the "temperature" will be decreased at a constant rate of 0.8 and

simultaneously the Markov chain length (1m length) is multiplied by 1.2 and the

yes_change is set to 0 . The maximum Markov chain length is set to 21.
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The termination of the program is determined by two factors. Either the

number of the iteration reaches a preset maximum number of iterations or no

acceptable trial solution states have been created for the last 25 trials ( no change =

25).

5.4.2 Subroutines

The main subroutines for this program involve procedures to generate the trial solution

state. In the first step of the main program, the tperbationl subroutine is used to

generate the trial solution state, that uses the random swapping strategy. In the second

step of the main program, the tgrade_perbation subroutine is used to create trial

solution states. Next, the subroutines tperbationl and tgrade_perbationl, as well as

their supporting subroutines tadd drops, tadd more and tdrop more are described.

Subroutine tperbationl (Figure 5.4.5-5.4.6)

Subroutine tperbationl randomly swaps the links between the Solution- I set and the

Solution-0 set.

The subroutine's input data include the current solution state Solution-1 set,

the Solution-0 set, the budget, the current solution state total budget cost, the link cost

and the number of the passenger car links (n).



Figure 5.4.5 Subroutine tperbationl Flow Chart (1/2)



Figure 5.4.6 Subroutine tperbationl Flow Chart (2/2)
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The subroutine's basic procedure is to randomly pick the links for swapping

and then test if the new solution state violates the budget constraint. A random number

is generated between 0 and 1 to the number of elements of the Solution-1 set (iout),

and a random number for the Solution 0 set (iin) is also generated. Each of them

represents the ith element in their sets. In general, the new budget cost, that is equal to

the current budget cost minus the cost of ioutth link in Solution-1 set plus the cost of

the iinth element in the Solution-0 set, is tested against the budget constraint (budget).

Whether the cost of the selected link to be dropped from the Solution 1 set to

the Solution 0 set is subtracted from the current budget cost, depends, upon the status

of the selected link's corresponding car or truck link. The program adds or subtracts

the appropriate link cost based on the selected options. The new solution state will be

accepted if the current budget cost is feasible, otherwise the same process is repeated

by randomly picking another pair of the Solution 1 set and Solution 0 set to be

swapped. After a maximum number of iterations is reached and a new feasible

solution state is not found, the program will be terminated.

Subroutine tadd more is called if a 0-1 random number is greater than 0.5. The

tadd more subroutine would add as many links as possible from the Solution-0 set to

the Solution-1 set within the budget constraint. Since tadd more subroutine is not

necessarily needed at all times, only an average of 50% percent of time it is called.

Similarly, at an average of 10% of the time the subroutine tdrop more is called to

drop more links from the Solution 1 set to Solution 0 set. The reason of adopting

tdrop more is that when the Solution 0 set links have a high budget cost, a feasible
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swapping could not be easily reached and the tdrop more subroutine helps to consider

a large number of links.

Subroutine tadd more (Figure 5.4.7)

The function of subroutine tadd more was presented in subroutine tperbationl. The

input variables are the same as of tperbationl.

One link is randomly picked up in Solution 0 set (iin=random(oldO no)). The

selected link is tested to find if it is a truck link or a passenger car link (is old0(iin)>n

true ?, or is it a truck link ?), and its corresponding link's status is also checked (is

y(old0(iin))n=1, true ? or is y(old(iin)-n)=1 true? ). If the corresponding link is in the

Solution-1 set, the current budget cost remains the same and the selected link is added

to the Solution-1 set, otherwise the current budget will be increased by the selected

link cost and the feasibility of the new current budget is checked (is tbudet < budget,

true? ). If the budget is not feasible, a new randomly picked link from Solution-0 set

will be created and the preceding action will be repeated. This process will continue

for a number of iterations until a feasible solution is found.

The addition of the selected link to the Solution 1 set requires the following

steps: i) the selected link's value is set to 1; ii) the Solution 1 set number of elements

is increased by one and the Solution-0 set is decreased by 1; iii) the budget cost is

equal to the old budget cost plus the selected link cost; iv) the selected link's id is

entered to the end of Solution-1 set's array and the elements in Solution-0 set are

moved forward one position.



Figure 5.4.7 Subroutine tadd more Flow Chart
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Subroutine tdrop_more (Figure 5.4.8)

This subroutine is very similar to subroutine tdrop more . It randomly picks up one

link from Solution 1 set. The current budget is tested in a similar way as subroutine

tdrop more. If the budget is changed, the task is completed, otherwise the process

repeats until the budget changed or the number of iterations reaches 6. Other

information can be referred to subroutine tdrop more.

Subroutine tgrade_perbationl (Figure 5.4.9)

This subroutine is used to generate the trial solution state. The primary required input

variables include the current solution state (a), link LCOF values (score), and the

link's tabu status (hiscore).

The maximum and minimum LCOF values should be found first. The LCOF

values (score) of all links except the links in the tabu list are scanned. The obtained

maximum and minimum LCOF value are used in the next iteration.

The link's HEF values are those that are actually used. The LCOF values (score)

present a summary information of the link's performance in the past trials of solving

network design problem. The HEF (act_score) gathers the link congestion index

information, and the LCOF values with random error to provide a more instructive

stochastic information. The HEF value may vary with different designs of the search

strategy. After getting the HEF values, the subroutine tadd drops] is called to conduct

the add/drop move based on the HEF values ( act score).



Figure 5.4.8 Subroutine tdrop_more Flow Chart



Figure 5.4.9 Subroutine tgradeperbationl Flow Chart
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Subroutine tadd drops] (Figure 5.4.10 , 5.4.11, 5.4.12)

This subroutine performs the add/drop move based on the link's HEF values.

The important input data required is the current solution state (y), the current

total cost (cbudget), number of car links (n), link cost (mcost), budget (budget), and

link HEF values (heur).

The sorting subroutine, hpsort, is called to sort the Solution-1 set and Solution-

() set to orxin and orxout in decreasing order of the link HEF values (heur). The pointer

for Solution-1 set is set to the first link of sorted Solution-1 set (Ismall=1) and for

Solution-0 set, it is set to the last link of sorted Solution-0 set (itryl=k, k is the number

of the elements in Solution-0 set).

Similar to subroutine tperbationl, the status of the current Solution-0 set

corresponding link is checked to determine whether the current budget cost remains

the same or be updated by adding the selected link cost, if this link is added to

Solution-1 set. If the current budget cost is not feasible, the Solution-0 set pointer

keeps on moving to the next available link and the same action is conducted until all

the available links in Solution 0 set are checked. Budget feasibility is continuously

checked and more links become members of Solution-0 set until feasibility is reached.

The initial value for kadd and klast is set to zero. Variable kadd is incremented

by 1 if the new feasible solution involves changing the exclusive lane to both car and

truck operation lane. Variable klast is set to be equal to kadd after it is decided whether

or not the new feasible solution should be accepted. The criteria for acceptance is



Figure 5.4.10 Subroutine tadd_drops1 Flow Chart (1/3)



Figure 5.4.11 Subroutine tadd drops] Flow Chart (2/3)



Figure 5.4.12 Subroutine tadd drops] Flow Chart (3/3)
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whether klast equal to kadd or kadd=1 is true. The first feasible solution will be

automatically accepted no matter what kind of change is made. If the new feasible

solution involves a change of the current budget cost, both kadd and klast are set to 0,

and if a new feasible solution involves an non budget cost change (eg. changing from

exclusive lanes to both passenger car and truck operation lane), kadd will be set to 1.

After testing of the first feasible solution, the variable klast is set to the value of kadd.

If the next feasible solution involves a change to the current budget changed, both

variables kadd and klast remain the same and the condition kadd=klast is true, then the

new feasible solution will be accepted as a new trial solution state. If the next feasible

solution only involves a change of traffic operations in the link, the variable kadd

would be increased by 1 and neither the conditions kadd=klast nor kadd=1 would be

satisfied. This new feasible solution will be rejected as a new trial solution state.



CHAPTER 6

NUMERICAL EXPERIMENTS OF THE SA-TABU SEARCH STRATEGY

This chapter presents numerical experiments of the application of the SA-TABU

search strategy. Five networks (Figures 4.4.1-4.4.5), ranging from 36 links to 363 links

with various levels of budget constraint were tested. The primary objective of these

numerical experiments is to examine the efficiency and effectiveness of the proposed

of the proposed search strategy, and secondary is the test of the sensitivity of the key

parameters of the SA-TABU.

6.1 Overview of the Numerical Experiment

The SA-TABU is a heuristic search strategy, which does not guaranteed to find an

optimal solution. Thus, the difference of the search strategy's obtained "best" solution

from the optimal solution could be used as a measurement of the solution quality of

this heuristic. However, as mentioned in the previous chapters, the computational

complexity of the TCNDP is non-polynomial, and with the current computing

facilities, even for very small network problems, the computing time for obtaining the

optimal solution required by the most efficient branch and bound algorithm can be out

of practical feasible range. In this numerical experiment, it has been out of reach to

compute the optimal solution for the five test networks with the available computing

facilities. Therefore, it is not appropriate to use a very small network as the test

network, just for obtaining the optimal solution while undermining the main purpose

136



137

of this study - designing an efficient procedure for large network applications.

Consequently, compromising criteria were employed in this study. The network total

travel time when links are expanded by an extra lane for both passenger car and truck

operations was set as a pseudo "upper" bound of the solution, and the difference

between each specific problem's (different budget level) best solution and the "upper"

bound value was used as the criterion to determine the quality of the SA-TABU.

Conventionally, a bench mark problem is needed to be used for comparison

with the new proposed algorithm. However, in the current literature, except for the

branch and bound algorithm (Mahmassani, et. al. 1984), no other algorithms have ever

been developed which address the TCNDP, and no other bench mark problems have

ever been set. The experiment ideally needs to cover as many networks with different

configurations and characteristics as possible in the event of no bench mark problems

is available. However, practically, the test problems need to be designed based on a

reasonable number of experiments and good coverage of various types of

transportation networks. Thus five different transportation networks (Figures 4.4.1-

4.4.5) were used as test networks, which were associated with 10%, 20%, and 30% of

available budget, respectively. These five test networks represent a variety of

characteristics of real transportation networks (The five test networks were presented

in Chapter 4).

Since no other algorithms have been developed to solve the TCNDP problem,

the conventional simulated annealing algorithm is used as the only reference algorithm

for comparison.



138

Some important features of the SA-TABU had been documented in early

experiments on the single class of user network design problem application (Zeng et.

al. 1996). Due to the complexity and lack of the optimal solution for the two classes of

users network design problem in the test problems, these features could not be

explored for the TCNDP, though they have been conducted for the solution of the

single class user equilibrium network design problem. However, the principal

characteristics of the procedure developed for the single class network design problem

(SCNDP) were considered to be good candidates for the solution of the TCNDP as

well. In this chapter, some important results that were obtained for the SCNDP are

also presented since their basic rationale was followed for this study as well.

The five test networks trip tables are presented in Section 6.2. The relevant

experimental results from the application of the SA-TABU on the SCNDP are

summarized in Section 6.3. The numerical experiments on the comparison of the

standard version the SA-TABU with the conventional simulated annealing algorithm

in regard to the search strategy's efficiency are presented in Section 6.4. Sensitivity

analysis conducted on different versions of the search strategies derived from the

standard version is presented in Section 6.5, where the experiments are conducted by

changing some key parameter values.
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6.2 Test Networks

The five test networks (Figures 4.4.1 -4.4.5) and trip tables with 10%, 20% and 30%

budget level in Tables 6.2.1-6.2.10 are used as the test problem in this study. A

detailed description of the test networks' characteristics was presented in Chapter 4.

Table 62.1 Network 1 Passenger Car Trin Table



Table 6.2.4 Network 2 Truck Trip Table

Table 6.2.5 Network 3 Passenger Car Trip Table

Table 6.2.6 Network 3 Truck Trip Table

Table 6.2.7 Network 4 Passenger Car Trip Table
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Table 6.2.8 Network 4 Truck Trip Table

I able h_L_V Network Vsscenoretr ( !nr Inn I •nhlp

Table 6.2.10 Network 5 Truck Trip Table

141



142

Network 2 with 10% budget problems, where the optimal solutions are known, the

SA-TABU search strategy found the optimal solutions. The optimal solutions for these

networks were obtained through complete enumeration of the feasible solutions. The

SA-TABU outperformed the conventional simulated annealing algorithm with better

solutions and in less number of iterations.

In Figure 6.3.1, the entire solution space that consists of all feasible solutions

for the Network 1 with a 30% budget problem and the solution space explored by the

SA-TABU search strategy are presented. The graph shows that the SA-TABU search

strategy focuses in searching the neighborhood of the best solutions, and wastes less

time in the neighborhood of poor solutions. It partially explains the reason that the SA-

TABU is more efficient and effective in solving the SCNDP.

The graph shown in Figure 6.3.2 provides an indication of the performance of

the HEF developed in this study. Under the SA-TABU search strategy, the greater a

link's HEF value is, the higher the probability that the link is selected to be expanded,

or enter the Solution-1 set. The link's HEF values continue to be updated at every

iteration. It can be observed in Figure 6.3.2 that, with the progress of the iterations, the

gap between the average HEF values of the optimum solution links in the Solution-1

set and links in the Solution-0 set is steadily built up, and consequently the links in the

optimal solution's Solution-1 set would have more and more chances to be selected.

Eventually, the gap is so significant that only the optimal solution's Solution 1 set

links are selected in the Solution 1 set by the search procedure and finally the search
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strategy converges after a certain number of iterations. This implies that the HEF

developed is capable of distinguishing the good candidate links, and enables the search

strategy to converge to a local optimal solution, which in this example is the global

optimal.

Figures 6.3.3-6.3.5 demonstrate the performance of the SA-TABU, the

conventional simulated annealing and the tabu search strategies (Mouskos, 1991) for

Network 3 with a 30% budget level problem. The performance is measured by the

objective function value or network total travel time during each iteration. The tabu

search strategy (Figure 6.3.5) quickly approaches a good solution state - small network

total travel time, in the early iterations, while however the solution does not seem to

improve significantly as iterations progress. The conventional simulated annealing

approach (Figure 6.3.4) does improve the solution as the iteration progresses, but most

of the iterations are conducted in a poor solution state neighborhood. The SA-TABU

(Figure 6.3.3) inherits the advantages of both simulated annealing and tabu search

strategies, progresses in a superior solution state neighborhood and gradually

approaches towards a much better solution state in an effective and robust manner.



Table 6.3.1 Summary of Numerical Experiment on Network 1 SCNDP with SA-TABU and Conventional Simulated Annealing
NETWORK INFORMATION

	
Network 1

Number of Links: 18
	

Number of Nodes: 6
	

Number of O-D Pairs: 20
Initial Network UE Travel Time (Upper Bound): 	 8593 Vehicle-Hours 	 Maximum

	
5960

All Links Expanded Network SO Travel Time (Lower Bound): 	 2633 Vehicle-Hours 	 Improvement:

Optimum Solution: 	 10% Budget
	

6281 Vehicle-Hours 	 38.79% Improvement
20% Budget
	

5000 Vehicle-Hours 	 60.29% Improvement
30% Budget
	

4121 Vehicle-Hours 	 75.03% Improvement
PERFORMANCE OF THE ALGORITHMS

10% Budget 20% Budget 30% Budget       

Best Solution
% Improvement

SA-TABU SA SA-TABU SA SA-TABU SA

6,281
38.8%

6,281
38.8%

5,000
60.3%

5,000
60.3%

4,121
75.0%

4,421
70.0%

Number of Iteration 584 1,000 403 573 1,000 1,000
Termination Type Converge Converge Converge Converge Max. Iteration Max. Iteration
Starting Solution 7,807 6,281 6,751 5,368 5,025 6,740

Final Solution 6,281 6,281 5,009 5,009 4,121 4,448

Current Solution State
Mean 6,399 6,322 5,192 5,424 4,255 4,413
Standard Deviation 258 138 171 350 198 356

Current Trail Solution State
Mean 6,753 6,559 5,341 5,669 4,430 4,710
Standard Deviation 446 282 243 383 264 375



Table6.3.2 Summary of Numerical Experiment on Network 2 SCNDP with SA-TABU and Conventional Simulated Annealing.
NETWORK INFORMATION 	 Network 2

Number of Links: 38 	 Number of Nodes: 10
	

Number of O-D Pairs: 12
Initial Network UE Travel Time (Upper Bound): 	 1731 Vehicle-Hours 	 Maximum 	 413

All Links Expanded Network SO Travel Time (Lower Bound): 	 1318 Vehicle-Hours 	 Improvement:

Optimum Solution: 	 10% Budget 	 1570 Vehicle-Hours 	 38.98% Improvement
20% Budget Unknown
30% Budget Unknown

PERFORMANCE OF THE ALGORITHMS
10% Budget 20% Budget 30% Budget       

Best Solution
% Improvement

SA-TABU SA SA-TABU SA SA-TABU SA

1,570
39.1%

1,579
36.9%

1,472
62.8%

1,466
64.1%

1,410
77.8%

1,416
76.3%

Number of Iteration 1,000 330 1,000 878 1,000 858
Termination Type Converge Converge Max. Iteration Converge Max. Iteration Converge
Starting Solution 1,613 1,613 1,541 1,636 1,505 1,597

Final Solution 1,578 1,579 1,486 1,485 1,410 1,430

Current Solution State
Mean 1,584 1,613 1,495 1,522 1,430 1,478
Standard Deviation 12 25 15 36 20 40

Current Trail Solution State
Mean 1,603 1,629 1,509 1,542 1,441 1,492
Standard Deviation 16 25 17 33 19 36



Table6.3.3 Summary of Numerical Experiment on Network 3 SCNDP with SA-TABU and Conventional Simulated Annealing.
NETWORK INFORMATION 	 Network 3

Number of Links: 64 	 Number of Nodes: 21 Number of O-D Pairs: 20
Initial Network UE Travel Time (Upper Bound): 40,383 Vehicle-Hours Maximum 20,633
All Links Expanded Network SO Travel Time: 19,750 Vehicle-Hours Improvement:

Optimum Solution: 	 10% Budget 	 Unknown
20% Budget 	 Unknown
30% Budget 	 Unknown

PERFORMANCE OF THE ALGORITHMS
10% Budget 20% Budget 30% Budget

SA-TABU 	 SA SA-TABU SA 	 SA-TABU SA

Best Solution 	 26,357 	 26,618 23,486 23,537 22,012 22,807
% Improvement 	 68.0% 	 66.7% 81.9% 81.7% 89.0% 85.2%

Number of Iteration 1,000 557 1,000 946 1,000 630
Termination Type Max.Iteration Converge Max. Iteration Converge Max. Iteration Converge
Starting Solution 33,901 34,539 32,002 32,357 29,034 36,560

Final Solution 26,357 26,618 24,010 23,543 22,774 22,807

Current Solution State
Mean 27,467 31,797 24,239 25,118 22,973 28,064
Standard Deviation 2,149 2,366 635 2,556 418 4,509

Current Trail Solution State
Mean 28,175 33,387 24,561 26,156 23,202 28,660
Standard Deviation 2,604 3,048 1,016 2,695 764 4,351



Table 6.3.4 Summary of Numerical Experiment on Network 4 SCNDP with SA-TABU and Conventional Simulated Annealing.
NETWORK INFORMATION 	 Network 4

Number of Links: 126 	 Number of Nodes: 33 Number of O-D Pairs: 110
Initial Network UE Travel Time (Upper Bound): 10,794 Vehicle-Hours Maximum 4,374
All Links Expanded Network SO Travel Time: 6,420 Vehicle-Hours Improvement:

Optimum Solution: 	 10% Budget 	 Unknown
20% Budget 	 Unknown
30% Budget 	 Unknown

PERFORMANCE OF THE ALGORITHMS
10% Budget 20% Budget 30% Budget

SA-TABU 	 SA SA-TABU SA 	 SA-TABU SA

Best Solution 	 7,408 	 7,444 6,820 7,181 6,677 6,988
% Improvement 	 77.4% 	 76.6% 90.8% 82.6% 94.1% 87.0%

Number of Iteration 548 802 1,000 874 572 1,000
Termination Type Converge Converge Converge Converge Converge Max. Iteration
Starting Solution 8,716 9,308 8,641 8,906 8,781 8,923

Final Solution 7,624 7,640 6,843 7,181 6,720 6,988

Current Solution State
Mean 7,640 7,873 6,946 7,611 6,769 7,207
Standard Deviation 97 376 162 462 128 276

Current Trail Solution State
Mean 7,733 8,024 6,990 7,685 6,794 7,272
Standard Deviation 179 384 160 465 108 278



Table 6.3.5 Summary of Numerical Experiment on Network 5 SCNDP with SA-TABU and Conventional Simulated Annealing
NETWORK INFORMATION 	 Network 5

Number of Links: 166 	 Number of Nodes: 50
Initial Network UE Travel Time (Upper Bound): 	 8,221
All Links Expanded Network SO Travel Time: 	 3,678

Optimum Solution: 	 10% Budget 	 Unknown
20% Budget 	 Unknown
30% Budget 	 Unknown

Number of O-D Pairs: 30
Vehicle-Hours
Vehicle-Hours

Maximum
Improvement:

4,544

PERFORMANCE OF THE ALGORITHMS
10% Budget 20% Budget 30% Budget

SA-TABU 	 SA 	 SA-TABU SA 	 SA-TABU SA

Best Solution 	 5,006 	 5,375 	 4,240
% Improvement 	 70.8% 	 62.7% 	 87.6%

4,631
79.0%

3,996
93.0%

4,227
87.9%

Number of Iteration 156 540 1,000 556 1,000 1,000
Termination Type Converge Converge Max. Iteration Converge Max. Iteration Max. Iteration
Starting Solution 7,432 7,400 6,571 6,283 6,300 6,416

Final Solution 5,006 5,375 4,287 4,648 4,060 4,241

Current Solution State
Mean 5,701 6,301 4,354 5,243 4,097 4,703
Standard Deviation 526 619 213 579 209 463

Current Trail Solution State
Mean 5,785 6,424 4,428 5,327 4,143 4,761
Standard Deviation 460 585 241 562 220 462
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Figure 6.3.1 Frequency of the Solution States Visited By SA-TABU in Solving the SCNDP; (Network 1 30% Budget Level)
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Figure 6.3.2 Average HEF Values of the Links in the Optimal Solution (Solution-1 Set) and the Links in the Solution-0 Set vs.
Iteration; (Network 1, 10% Budget Level, SA-TABU in Solving SCNDP)



Figure 6.3.3 Network UE Total Travel Time (Veh-hours) VS. Iteration Number;(Network 3, 30% Budget Level, SA-TABU in
Solving the SCNDP)



0 	 100 	 200 	 300 	 400 	 500 	 600

Iteration

Figure 6.3.4 Network UE Total Travel Time (Veh-hours) VS. Iteration Number;(Network 3, 30% Budget Level, Simulated
Annealing Algorithm in Solving the SCNDP)
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Figure 6.3.5 Network UE Total Travel Time (Veh-hours) VS. Iteration Number;(Network 3, 30% Budget Level, Tabu Search
Strategy in Solving the SCNDP)
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6.4 Numerical Experiments of the SA-TABU Search Strategy in Solving the
TCNDP Problem

The primary difference between the SA-TABU strategy and the conventional

simulated annealing algorithm is the methodology of generating the new trial solution

state. In the conventional simulated annealing algorithm, the new trial solution state is

generated by the random perturbation. However in the SA-TABU, a heuristics based

add/drop type move, which incorporates a comprehensive HEF and tabu search

characteristics, is used.

A number of different versions of the SA-TABU search strategies have been

developed for the study. A standard version of the strategy is defined as a reference

algorithm for comparison purposes in the sensitivity analysis study. The standard

version has the following parameter settings: i) The control parameter ("temperature")

decreasing rate is 85 %, while the Markov chain length is 21 and its increasing rate is

20%; ii) The tabu list length is equal to 50% of the total number of the network links;

iii) The HEF random number factor is 0.5.

The conventional simulated annealing algorithm uses the same "temperature"

and Markov chain length parameters which were used in order to have an unbiased

comparison with the standard version of SA-TABU search strategy.

Tables 6.4.1-5 provide the statistical summary of the numerical experiments on

the five test networks with 10%, 20% and 30% budget. From the summary tables, the

following observations are made:



Table 6.4.1 Summary of the Numerical Results of the Application of the SA-TABU and SA; Networkl;TCNDP



Table 6.4.2 Summary of the Numerical Results of the Application of the SA-TABU and SA; Network2;TCNDP
NETWORK 2 	 76 Links, 20 Nodes



Table 6.4.3 Summary of the Numerical Results of the Application of the SA-TABU and SA; Network3;TCNDP
NETWORK 3 	 128 Links, 42 Nodes



Table 6.4.4 Summary of the Numerical Results of the Application of the SA-TABU and SA; Network4;TCNDP



Table 6.4.5 Summary of the Numerical Results of the Application of the SA-TABU and SA; Network5;TCNDP
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1) The SA-TABU produced the better "best solution" in almost scenario, except for

the Network 1 - 30% budget level and the Network 4 - 10% budget level problems.

The advantage of the SA-TABU search strategies can be observed rather clearly for

the problems with larger feasible solution spaces, they do manifest their edge over the

conventional algorithms in almost every problem.

2) The conventional simulated annealing algorithm(SA) takes much more iterations

than the SA-TABU to reach comparable solutions. Except for Network 1, it does not

converge in all the problems ( The term "converge" is redefined to mean that the

search strategy stops because none of the trial solution states has been accepted in the

last limited number of iterations). Except for large networks such as Network 5, the

SA-TABU converged in most of the problems conducted within 2000 iterations.

Under these criteria, the SA-TABU is fast and more effective. In small network

problems such as Network 1, the SA converges in more iterations while it does not

generate any better "best solution" than the SA_TABU search strategy. This may be

explained by the fact that the "temperature" drops too fast and the algorithm falls into

a local optimum. Though, it can not be guaranteed that the solution obtained by the

SA-TABU search strategy is the optimum solution, it is very encouraging to observe

that it can produce better "best solution" while the SA converges to a local optimum.

3) In the SA, the starting solution state is randomly generated, while the SA-TABU

search strategy utilizes the heuristic's information to generate the starting solution

state. The results provide a strong indication that the SA-TABU search strategy starts

at a much more superior solution state. However, it is noted that in Network 1 with a
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10% budget level and in Network 2 with a 30% budget level problems, the SA starts

with a better starting solution state. As the network size and budget level increase,

though the gap of the starting solution state quality between the SA-TABU and SA is

widened. In the Network 5 - 30% problem, the difference is very large, which

underscores one of the advantage of the SA-TABU over the SA. It is expected that for

large scale problems, this advantage would be much more transparent.

4) The "best solution" appears in an earlier iteration for the SA-TABU search,

compared with SA. As the SA-TABU searches a solution space which is formed based

on heuristic information, the probability in finding the "best solution" is much larger

than the SA which uses a more slow and conservative iterative process with no

information. The comparison of the two procedures is not significant in small size

Networks (e.g. 1 Network 1 and Network 2). However, as the network size increases,

the SA finds its "best solution" close to the maximum iteration. That is an indication

that the SA is too slow in reaching better solution for large scale networks.

5) The SA-TABU search strategy always has a smaller mean of the current solution

state, and especially for the relatively large network - Network 5 problem, the

difference of the current solution state mean between the two search strategies is

significant. The mean of trial solution state value, showing the same property as the

current solution state in the results, is the gathering of the generated searching space.

The standard deviation of the current solution state values reflects the fluctuation of

the current solution state. Similarly, the standard deviation of the trial solution state

addresses the degree of the search in exploring the solution space. The tables



162

demonstrate that the SA explores a much wider searching solution space. Therefore,

for small network applications, the SA may produce better solutions to the SA-TABU

in some cases. However for large network applications, the SA-TABU strategies

would be much more efficient and effective. Though most of the problem experiments

support the above statement, the results from both Network 1 and Network 2 present a

contradiction. This contradiction can be explained by the complexity of the algorithm

and the nature of the network design problem, especially when a dynamic random

variable is involved in the search process.

Figures 6.4.1 and 6.4.2 show the current solution state values at each iteration

for the SA and the SA-TABU search strategies in Network 3-30% problem

respectively. The trial solution state values per iteration for each of the two search

strategies are depicted in Figures 6.4.3 and Figure 6.4.4 respectively. The observations

from these figures are found to be consistent with the above discussion.

It may be concluded that the SA-TABU search strategies are much more

efficient and effective than SA, especially for larger networks.



Figure 6.4.1 Network UE Total Travel Time (Veh-hours) VS. Iteration Number;(Network 3, 30% Budget Level, SA in Solving the
TCNDP, Current Solution State)



Figure 6.4.2 Network UE Total Travel Time (Veh-hours) VS. Iteration Number;(Network 3, 30% Budget Level, SA-TABU in
Solving the TCNDP, Current Solution State)



Iteration

Figure 6.4.3 Network UE Total Travel Time (Veh-hours) VS. Iteration Number;(Network 3, 30% Budget Level, SA in Solving the
TCNDP, Trial Solution State)



Figure 6.4.4 Network UE Total Travel Time (Veh-hours) VS. Iteration Number;(Network 3, 30% Budget Level, SA-TABU in
Solving the TCNDP, Trial Solution State)
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6.5 Sensitivity Analysis of the Key Components of the SA-TABU Search
Strategy

The primary goal of this section's numerical experiments is to conduct sensitivity

analysis of some key components of the SA-TABU search strategy, namely, Markov

chain length, control parameter, tabu list length and the HEF.

The SA-TABU strategy is composed of three major sub-processes - simulated

annealing, tabu search and the HEF. For the simulated annealing search strategy, the

control parameter or "temperature" decreasing rate, and the Markov chain length are

the two most important components that determine the efficiency and effectiveness of

the search. A small temperature decreasing rate and a longer Markov chain length

would yield a more smooth "annealing" that would generate the desired near-optimal

solution, but it requires longer processing time. Thus, it is necessary to study the

impact of these two parameters on the search procedure.

The search strategy uses a tabu search procedure to prevent the occurrence of

cycling and to avoid local optimal. The tabu search procedure is implemented by not

allowing the most recently updated element(s) to have its value changed for a period

of time (number of iterations) that is termed as tabu list length. The tabu list length is

the primary factor which features the tabu search characteristics of the algorithm.

In an heuristics search strategy, the most important factor is the heuristics

evaluation function (HEF). In SA-TABU, a linear combination of the current link

volume to capacity ratio (V/C ratio), the historical link performance and a random

variable is used as the HEF. The current link volume capacity ratio, is one of the best

parameter in characterizing the performance a link of the network. The link's LCOF
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variable provides the link's historical contribution to the objective function. The

random variable transforms the HEF from a deterministic to a stochastic function. The

form of this HEF and particularly the coefficients (weights) for each of the three

components of the function have an impact on the performance of the algorithm.

Therefore, the sensitivity analysis focused on the above three components. The

analysis was conducted on the five test networks, which were subjected to three

different budget levels 10% , 20% and 30%.

6.5.1 Sensitivity Study on Markov Chain Length and Control Parameter

In the standard version of the SA-TABU search strategy, the control parameter

decreasing rate is 15% and the Markov Chain length increasing rate is 20%. Therefore,

5% and 25% control parameter decreasing rates were used for comparison, while the

Markov chain length increasing rate were set at 30% and 10%, respectively.

The Version 1- SA-TABU search strategy uses a 30% Markov chain length

increasing rate and a 5% "temperature" dropping rate as a modification to the standard

version, while Version 2 applied a 10% Markov chain length increasing rate and a

25% "temperature" dropping rate. In comparison to the standard SA-TABU version, a

slower approach trend is expected to have a major impact on the Version 1 SA-TABU

search strategy. Extending the Markov chain length under the same "temperature"

allows the algorithm to accept more trial solution states and decreasing the

"temperature" dropping rate also makes trial solution state acceptance criteria less

restrictive. Consequently, the algorithm would explore a wider solution space and the
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search then resembles a more global search rather than a narrow local search.

However, the slow progress creates a significant disadvantage on the efficiency of the

algorithm, especially when the network size increases and the maximum iteration

criterion is imposed. In contrast, the Version 2 - SA-TABU search strategy is much

more restrictive on the acceptance of the trial solution state and approaches fast to a

good solution, however, with an increasing risk of loosing good solutions.

The numerical results are summarized in Table 6.5.1. Figures 6.5.1-2 and

Figure 6.4.4 present the trial solution state values during each iteration for each of the

three versions of the SA-TABU as applied on the Network 3 30% budget level

problem.

1) In the "best solution" category, Version 1 performs best for the small networks such

as Network 1 and Network 2, where the feasible solution space is relatively small and

the slow approach helps the search to explore as many feasible solutions as possible.

As the network size increases, in most of cases, Version 2 produces the best "best

solution", and Version 1 is usually unable to reach convergence which implies it needs

much more iterations in order to obtain a better "best solution".

2) Version 2 requires the least number of iterations to converge since the approach

focuses more on a smaller solution space of higher quality. Its ability to concentrate

more on solution states of higher quality, makes the procedure more attractive for

solving large scale networks, converging to better solution states at a few iterations.



Table 6.5.1 Summary of the Markov Chain Length and Control Parameter Sensitivity Analysis

Version 1: 	 Same as Standard Version, except 5% - control parameter decreasing rate, 30%- Markov Length increasing rate.
Version 0: 	 Standard Algorithm . See Section 6.4.1 for more details.
Version 3: 	 Same as Standard Version, except 25% - control parameter decreasing rate, 10%- Markov Length increasing rate.



Table 6.5.2 Summary of Tabu List Length Sensitivity Analysis

Note:
Algorithm Version 3: Same as Standard Version, except 1/3 of Total Number of Links as Tabu Length.
Algorithm Version 0: Standard Algorithm . See Section 6.4.1 for more details..
Algorithm Version 4: Same as Standard Version, except 2/3 of Total Number of Links as Tabu Length.



Version 6: 	 Same as Standard Version, except 1.5 for the weight of V/C ratio is the heurisitcs function.



0 	 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

Iterations
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Figure 6.5.3 Network UE Total Travel Time (Veh-hours) VS. Iteration Number;(Network 3, 30% Budget Level, SA-
TABU(Version 4) in Solving the TCNDP, Trial Solution State)
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Figure 6.5.4 Network UE Total Travel Time (Veh-hours) VS. Iteration Number;(Network 3, 30% Budget Level, SA-
TABU(Version 4) in Solving the TCNDP, Trial Solution State)
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TABU(Version 5) in Solving the TCNDP, Trial Solution State)



Figure 6.5.6 Network UE Total Travel Time (Veh-hours) VS. Iteration Number;(Network 3, 30% Budget Level, SA-
TABU(Version 6) in Solving the TCNDP, Trial Solution State)
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3) The combination of the trial solution state's mean and its standard deviation best

describe the solution space the search strategy explores. It can be observed that

Version 1 explores larger search space than Version 2 and the standard version. In the

small size networks, Version 1 is able to cover most of the feasible solution space,

while for larger networks, the feasible solution space coverage shrinks dramatically

and the "good" solution space neighborhood is not explored enough. On the other

hand, the Version 2 SA-TABU exhibits opposite characteristics to the Version 1.

It may be concluded that Version 1 is good for small network size problem and

Version 2 is more suitable for large network size problems. Thus, the Markov chain

length can be used in conjunction with the "temperature" dropping rate, as the control

parameters in designing different versions of the algorithm according to the specific

size of network problem. In this regard, the SA-TABU search strategy is a very

flexible methodology which can control the solution quality and computational speed

to fit different variety of problems.

6.5.2 Sensitivity Analysis on Tabu List Length

In the simple tabu search, the tabu list length has a major effect on the algorithm. In

Glover(1990) a tabu list length 7 is suggested. However, the proper tabu list length

also depends upon the problem size. The standard version algorithm adopts half of the

total number of links as the tabu list length. The sensitivity analysis utilizes 33% and

67% of the total number of the links as the tabu list lengths for comparison.
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The tabu list length of the Version 3 -SA-TABU is 33% of the total number of

the links, and in Version 4 -SA-TABU, the tabu list length is 67% of the total number

of the links. When the tabu list length is shorter, the algorithm would allow more

appearances of the same solution states that are "good" solution states. However, the

generated trial solution state set to be explored is smaller. In this aspect, the SA-TABU

with shorter tabu list length has similar characteristics with the shorter Markov Chain

length or higher "temperature" rate such as Version 1-SA-TABU. However, the

search procedures based on tabu list length variations are not equivalent to the

algorithms on Markov chain length or "temperature" dropping rate variations, since

they are more related to the size of the explored trial solution set, while the later ones

refer to the acceptance of the trial solution states. A summary table of the experimental

results is presented in Table 6.5.2 and in Figures 6.5.3-4, and Figure 6.4.4 of the

Network 3 30% budget level problem. The results are summarized below:

1) In Network 1 and Network 2 problems, where the problem size is relative small, the

Version 3 produces the best "best solution" and the Version 4 the worst "best

solution". This may be caused by the longer tabu list length used by the Version 3 -

SA-TABU, as the "good" set of solution states is not explored enough. This is also

evidenced by the required number of iterations. The Version 4 -SA-TABU search

requires the fewest number of iterations, especially for Network 1, due to the fact that

a larger number of "good" solution states are held on the tabu list and the acceptance

of the trial solution state becomes harder, resulting in the early termination of the

process. This also causes the mean of the trial solution state for the Version 4-SA-
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TABU to be relative higher. Furthermore, the strict acceptance of the trial solution

state leads to a higher standard deviation of the trial solution state means.

2) For relative large problem sizes such as Network 3, 4 and 5, the Version 4 -SA-

TABU uses less iterations to obtain a better "best solution". Network 3, 4 and 5

problems also have less congested network flow, and the sets of "good solution" are

larger. The longer the tabu list length is, it helps the search to explore more of the

"good solution" set by diversifying the search. Based on the trial solution state mean

and standard deviation of the trial solution state, the Version 4 search strategy

demonstrated its ability of stretching out the search space under the "good" solution

state neighborhood. The reason for Version 2's lackluster performance in the large

scale problems is that the short tabu list length, results in the frequent occurrence of

cycling, visiting the same solution states, while losing valuable processing time to

explore the new feasible solution space.

In conclusion, the tabu list length is one of the vital elements that greatly

affects the quality of the search procedure. It should be designed according to the

characteristics of the specific problems. The tabu list length should be longer if the set

of "good solutions" is relatively large. The size of the "good solution" set depends

upon the size of the network and the number of similar links having very similar HEF

values in the network.
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6.5.3 Sensitivity Analysis on Heuristic Evaluation Functions (HEF)

There are three variables in the HEF, the V/C ratio, the basic heuristic variable and

random number. The weight for V/C ratio variable is 1, LCOF's value was set to 0.5

and for the random "error" was set to 1. Early experiments showed that the

performance of the procedure does not have a clear relation with the variation of the

weight of the basic heuristics value variable. In these experiments, the weight factor

ratio for the V/C ratio versus the random variable is explored.

The weight of the V/C ratio variable for the Version 5 - SA-TAWBU

procedure is 0.5 and 1.5 for the Version 6 procedure. In essence, the Version 6

procedure relies more on the heuristic information to direct the search. The use of the

heuristic information guides the search towards a "good solution" state neighborhood

that makes the procedure more efficient and effective. However, the excessive use of

the heuristic information may force the search to avoid some very "good" solution

states or the global optimum.

The previous experiments provided some insights into the elements that play

an important role to the performance of the search strategy, such as the Markov chain

length, and the tabu list length, should be designed to reflect the specific problem

characteristics. The variation on the Markov chain length and the "temperature"

dropping rate dictate the move size, and the tabu list forces the selection of non-

prohibited moves, while the V/C ratio utilizes the network flow characteristics.

Table 6.5.3 presents a summary of the experimental results for Versions 5, 6

and the standard version procedures, while Figures 6.5.5-6 depict the trial solution
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state values versus the number of iterations for the Version 5 and 6 procedures,

respectively. The following observations are made:

1) Version 6 procedure requires the least number of iterations, the smallest mean and

standard deviation of the trial solution states in Network 1 and Network 2,

respectively. The "best solution" does not follow any trend by the problem size. The

use of the V/C ratio does not provide any advantage to the search procedure, based on

the "best solution" observed. Using a higher weight of the V/C ratio information,

Version 6 focuses more on some "elite" links resulting in less iterations and a smaller

trial solution states space.

2) Networks 3, 4 and 5 are larger than Networks 1 and 2. Version 6 has an advantage

over the other two versions of the searches, for the larger networks, by reaching the

best "best solution" in less iterations and exploring a smaller trial solution state space.

However, it is not necessary true that the larger the problem size is, the more the

procedure relies on the V/C ratio information. It can only be concluded that the search

procedure utilizing higher V/C ratio information , forces the search towards "good

solution" trial solution state sets, which might be a local optimum, thereby increasing

the risk of missing the global optimum.

Identifying the proper weights for the HEF for a specific problem is much

more difficult than the Markov chain length , "temperature" dropping rate and the tabu

list length which can be derived from the size of the problem. However, the higher

V/C ratio weight tends to be more suitable for large networks if finding the global

optimum is not strictly required and the computing time is constrained.
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The series of experiments conducted provided a general understanding of the

SA-TABU search strategy in solving the TCNDP. The procedures presented are highly

stochastic due to the two times that random variables are involved ( One appears in the

acceptance criteria and the other is involved in the HEF), which do not provide any

specific conclusions. However, some general conclusions are derived which facilitated

the decisions on the use of certain weights on the variables of the HEF.

It can be concluded that SA-TABU search strategy is not only an efficient and

feasible methodology in solving large scale TCNDP, but it also a very flexible and

robust algorithm. It can be designed to fit a specific problem by modifying the HEF,

the iteration processing manner and trial solution state size to reflect different problem

structures, characteristics, size and complexity.



CHAPTER 7

TWO CLASSES OF USERS NETWORK DESIGN PROBLEM STUDY

This chapter presents the results of numerical experiments on network flow

characteristics and their implications in network design. A study of the characteristics

of the TCNDP is also presented.

7.1 Study of the Characteristics of the TCNDP

The network design variables considered in this study involve the addition of an extra

lane to the existing network links which can assume one of three traffic operation

options: i) extra lane is allowed for both passenger car and truck; ii) extra lane is

exclusively for the trucks; iii) extra lane is exclusively for the passenger cars. In this

section, a simplified example is utilized to better illustrate how the two classes of users

respond to the addition of an extra lane, subject to the specific traffic operational

options specified above.

Link a

Link b

Figure 7.1.1 Example Network

Figure 7.1.1 shows a simple one link network. It is assumed that the passenger

car link cost function is: ta = 2(1 +1.03( 
 + 

1600 " Y
." ), and the truck link Link b cost

185
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0.5x, + 4xL IA

function as: t h = 3(1 + 0.62( 	 "	 The passenger car demand is 1200 and
1600

the truck demand is 200.

Under the scenario with an exclusive passenger car lane and truck lane, for the

roadway is utilized by the same class of user, it is assumed that the travel speed in the

new lane would increase by 10%. The streamlined diagonalization algorithm, is used

to assign the traffic flow of the two classes of users over the original network and the

expanded network under the three different options. The results are shown in Table

7.1.1.

From Table 7.1.1, the following observations are made:

i) The addition of a new lane improves the total travel time. The three different types

of lane addition produced better total UE travel times compared to the original

network. The class's link travel time in every scenario has decreased by the reduction

of its own congestion or its counterpart's traffic congestion.

ii) The link travel time for each class is identical between the existing lane and the new

lane. This confirms that this is an equilibrium solution.

iii) The exclusive lane for either class not only significantly improves its own user's

travel time, but also it decreases its counterpart's travel time by a certain percentage.

The counterpart's percentage decrease is less than the corresponding decrease

observed under the shared lane option expansion. The option for expansion of the

capacities for both classes (shared lane) equally improves the passenger car and truck's

travel time.
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iv) The exclusive car lane option produces the optimal total travel time in comparison

to the two options. The passenger car traffic demand accounts for 87.5% of the total

flow. The addition of the passenger car lane produces the largest improvement for the

majority of users, the passenger cars, so the total travel time saved is maximized.

v) These results may also have policy implications. For example, if it is desired to

benefit either the trucks or passenger cars, then an exclusive new truck or car lane

should be sought. If the objective is to minimize the total travel time then a new

exclusive car lane should be constructed. If it is desired to reduce the travel time for

both classes in an equitable manner, then a shared lane would be appropriate.

It is noted however, that the above results are applicable to the specific

example and the specific travel cost functions utilized. It cannot be concluded that they

can be generalized to networks.



Figure 7.1.2 Total Network Travel Time vs. Truck /Car Flow Ratio; V/C ratio = 0.1
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Figure 7.1.3 Total Network Travel Time vs. Truck /Car Flow Ratio; V/C ratio = 0.5
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Figure 7.1.4 Total Network Travel Time vs. Truck /Car Flow Ratio; V/C ratio = 0.875
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Using the same example, several experiments were conducted with different

levels of congestion and truck to passenger car volume ratio (See Figures 7.1.2-7.1.6).

In these figures, the horizontal axis shows the trucks to passenger cars volume ratio,

varying from 5% to 200%, and the vertical axis is the total travel time, while the four

different category lines represent the original network and three network expansion

options, respectively. Figures 7.1.2-7.1.6, show the results under the 0.1, 0.5, 0.875,

1.0, 1.5 congestion levels (V/C ratio).

It is observed that the aforementioned conclusions obtained from the example

were preserved in all test scenarios. The following observations are made:

i) Figure 7.1.2, with 0.1 V/C ratio, shows that the exclusive car lane performs best for

truck/car flow ratios of less than 50%.

ii) In Figure 7.1.3, when the V/C ratio is 0.5, new lane for both, exclusive new car

lane, and exclusive new truck lane produce the same improvement up to a

truck/passenger car flow ratio of 50%. Then the shared lane and the truck lane perform

best.

iii) Figure 7.1.4 demonstrates that shared lane and exclusive passenger car lane

performs best up to a truck/car flow ratio of 25%, when the shared lane starts

performing better. After about a 40% truck/car flow ratio, the exclusive car lane

becomes the worst of the three options.

iv) A V/C ratio of 1, it produces similar results to those with a V/C ratio of 0,875,

which is shown in Figure 7.1.5 and Figure 7.1.4.
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v) Under the condition of V/C ratio equal to 1.5 of Figure 7.1.6, the shared lane

produces the best results for almost all the truck/car flow ratios.

7.2 The Experimental Results of the Network Design Solutions

In this section, the network results such as network flow and network design solution

are summarized.

Table 7.2.1 presents the network design solution and the network link flow

volumes for Network 1 with 10%, 20% and 30% budget level with the best solutions

of 6605, 6488 and 6232 vehicle-hours, respectively, of the network total UE travel

time. The best total UE travel time for Network 2 (Table 7.2.2) were 2171, 1720 and

1693 vehicle-hours for the 10%, 20% and 30% budget levels, respectively. Similarly,

Tables 7.2.3-7.2.5 demonstrate the best network solutions and the link flow volumes

for Network 3, Network 4 and Network 5 with 10%, 20% and 30% budget levels,

respectively.

Some key interesting observations can be derived from the results in Tables

7.2.1-7.2.5 as follows:

1) Almost every expanded link of the best solution is a shared lane (passenger cars

and trucks) operations.

2) The links selected to be expanded at a lower budget level are not necessary

selected at higher budget level. This is consistent to the findings for the SCNDP

(Mouskos, 1991). This is expected as the flows redistributed themselves based on

the new network configuration which is the essence of Braess's paradox.



Table 7.2.1 Network 1, TCNDP Best Solutions and Network Link Flows

Note: The links in the shadow are the expanded links.



Table 7.2.2 Network 2, TCNDP Rest Solutions and Network Link Flows
Network Configuration

Link
From 	 7i,

Capacity

(l'ehieles)

Free Flow
Speed

(Miles/Hour)

Initial Nework
Car Flow 	 Truck Flow
(Vehicles) 	 (rehiL les)

WC
10% Budget

Car Flow Truck Flow
(Vehicles/ 	 (Vehicles)

V/C
20% Budget

Car Flow 	 Truck Flow
(I 'chicks, 	 II"chick.9

V (
30"/. Budget

Cat I.1(AN 	 I luck Flow 	 V/C
, I 'elm h.,) 	 ( 1111, I.

9 10 500 30 583 29 1.40 592 28 1.41 402 49 0.60 467 	 ,a11.160,59

9 18 4500 50 2,696 357 0.92 2,555 365 0.89 2.212 356 0.81 2,135 336 0.77

9 17 1500 35 1,221 34 0.90 1,353 27 0.97 1,384 15 0.96 1,430 	 21 	 1.01

10 9 500 30 586 30 1.41 576 30 1.39 399 49 0.60 .44111k. 441111111111
10 11 1500 35 957 29 0.72 960 28 0.71 990 49 0.79 993 	 64 0.83

10 18 500 30 326 0 0.65 298 0 0.60 75 0 0.15 51 0 0.10

11 10 1500 35 911 30 0.69 874 30 0.66 980 49 0.78 .986 48 0.78

11 12 4500 50 778 20 0.19 827 20 0.20 720 20 0.18 861 20 0.21

11 18 2000 40 1.311 410 1.48 1,299 410 1.47 1,300 391 1.43 I ,153 392 1.36

12 11 4500 50 642 150 0.28 636 150 0.27 693 150 0.29 758 150 0.30

12 13 4500 50 2,245 270 0.74 2.096 270 0.71 1,822 270 0.64 2,210 270 	 0.73

12 18 2000 40 1,895 90 1.13 1,806 90 1.08 1,736 90 1.05 1.3241 90' AIM
13 12 4500 50 2,343 240 0.73 2.108 240 0.68 2.149 240 0.69 2,251 24() 0.71

13 14 1000 30 1,327 64 1.58 1,034 54 0.83 1,Q13 53,4iiifie 0.82 778 46 0'%4
13 15 500 30 571 36 1.43 519 20 1.20 542 19 1.21 409 14 0.47

13 18 500 30 485 0 0.97 428 0 0.86 413 0 0.83 301 0 60

14 13 1000 30 1,409 11 1.45 1,019 12 0.71 902 15 0.70 793 10 0.55

14 15 500 30 76 0 0.15 143 0 0.14 263 0 0.53 12 0 0.02

14 16 1500 35 1,385 64 1.09 1,276 80 1.06 1.296 81 1.08 1 	 . 	 I 	 --"X 70 1) 9 -

I 5 13 500 30 573 9 1.22 523 3 1.07 521 5 I 08 403 1 0 I 1

15 14 500 30 58 0 0.12 92 0 0.18 120 0 0.12 ') 0

I5 16 500 30 571 36 1.43 430 20 031 448 19, 0.53 409 14 0.47

15 18 1500 35 105 0 0.07 107 0 0.07 132 0 0.09 17 0 0.01

16 14 1500 35 1,485 11 1.02 1.496 17 1 04 1,314 15 0.92 1.207 15 0.85

16 15 500 30 602 9 1.27 533 3 0.54 404 2 0.82 404 1 0.41
16 17 1500 35 1,585 69 1.24 1,284 41 0.72 1,283 16 0.90 1.265 17 0 91

16 18 2000 40 1,328 531 1.73 1.002 559 1.62 964 564 1.61 773 563 1.08

1 1 9 1500 35 1,109 69 0.92 1,370 41 1.02 1,372 36 1.01 1,190 37 0.89

17 16 1500 35 1,580 34 1.14 1,472 27 1.05 1,466 15 1.02 1,2111r	 5 '4". 0.62
17 18 2000 40 476 0 0.24 599 0 0.30 549 0 0.27 75 0 0.04

18 9 4500 50 2,806 331 0.92 2,554 360 0.89 2,223 345 0.80 2,375 345 0.83

18 10 500 30 374 0 0.75 369 0 0.74 86 0 0.17 59 0 0.12

18 11 2000 40 1.401 391 1.48 1,404 392 1.49 1,317 371 1.40 1.249 356 1.34

18 12 2000 40 1.661 250 1.33 1,603 250 1.30 1.382 250 1.19 1,114 250 0.76

18 13 500 30 499 0 1.00 lir71111 0 t 0.47 379 0 0.76 329 0 0.66

18 15 1500 35 58 0 0.04 236 0 0.16 194 0 0.13 9 0 0.01

18 16 2000 40 1,464 416 1.56 1,344 423 1.52 1,323 435 1.53 1,198 429 1.46

18 17 2000 40 358 0 0.18 119 0 0.06 82 0 0.04 378 0 9 19_

Note: The links in the shadow are the expanded links.



Table 7.2.3 Network 3, TCNDP Best Solutions and Network Link Flows

Note: The links in the shadow are the expanded links.



Tabke 7.2.3 Network 3, TCNDP Best Solutions and Network Link Flows (Continued Previous Page)

Note: The links in the shadow are the expanded links.



Table 7.2.4 Network 4, TCNDP Solutions and Network Link Flows (V/C ratio > 0.1 Only)



Table 7.2.4 Network 4. TCNDP Solutions and Network Link Flows (V/C ratio > 0.1 Only) (Continued Previous Page)

Note: The links in the shadow are the expanded links.



TAhlp 7_2_5 Network 5_ TCNDP Solutions and Network Link Flows (V/C ratio > 1.0 Only)



Table 7.2.5 Network 5, TCNDP Solutions and Network Link Flows (V/C ratio > 1.0 Only) (Continued Previous Page)

Note: The links in the shadow are the expanded links.



Table 7.2.5 Network 5 TCNDP Solutions and Network Link Flows (V/C ratio > 1.0 Only) (Continued Previous Page)

Note: The links in the shadow are the expanded links.
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3) Most of the links with high V/C ratios are included for link expansion, but some of

the links of with smaller V/C ratios were also selected for expansion. This

observation further demonstrates that the V/C ratio provides a valuable

information that can be used as one of the criteria for link selection. One of the

most important features of the network design problem is that every single link in a

network is not an isolated individual link but it is a member for a number of paths,

and the selection of the link to be expanded relies more on the path characteristics.

Thus a low V/C ratio for a link which is a part of a vital congested path can

improve the network performance more than an otherwise isolated link (which is a

member of only a few paths) with a high V/C ratio.



CHAPTER 8

CONCLUSION AND FUTURE RESEARCH

8.1 Summary

The motivation for this study stems from the recognition that the traffic stream may be

divided into two distinct classes of users with different operational characteristics,

passenger cars and trucks. Various states have designated specific truck routes,

climbing lanes are widely used throughout the country, and trucks are prohibited from

entering the left lane of almost all major highways. In addition, several states are

considering the implementation of special truck lanes, to improve the safety and

operational efficiency of roadways with high truck volumes.

The specific problem addressed in this dissertation is addressed only the

operational aspect of truck lane needs which is outlined below:

Given the passenger and truck origin-destination (0-D) matrices, the available

budget and a highway network, identify the best combination of the network links for

capacity expansion and operational improvements, in minimizing the total network UE

travel time. The following link improvements were considered:

I. Do not expand link,

2. Both passenger cars and trucks allowed on new lane,

3. Only passenger cars allowed on new lane,

4. Only trucks allowed on new lane.

205
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The above problem is classified as a mixed integer non-linear problem. Its

complexity falls under the category of Non-polynomially hard problems. In the worst

case it requires 4" (n is the total number of candidate links) iterations to enumerate all

possible solution states of the problem. Even for very small networks the

computational time required to solve the problem is prohibitive (e.g. assuming a

network with 10 candidate links, the total number of iterations would be 1,048,576).

Therefore, branch and bound based procedures cannot be used to efficiently solve even

moderately small size problems.

The major contribution of this dissertation is the development of a

methodology in providing "good" solutions to the above problem. The methodology

developed utilizes a combination of simulated annealing and tabu search strategies.

These strategies have been widely used in solving large scale combinatorial problems.

While it is recognized that these procedures may not reach a global optimum, for large

scale problems near-optimal solutions may be sufficient.

The combined simulated annealing and tabu search strategy (SA-TABU)

developed requires at every iteration to solve a multi-class (passenger cars and trucks)

traffic assignment procedure with asymmetric link interactions, to identify the flows

on the links of the network. The diagonalization algorithm was used to solve the traffic

assignment at every iteration of the SA-TABU search strategy developed. In all

iterations, the traffic assignment procedure converged, which implies that equilibrium

was reached at each iteration. The solution to the traffic assignment problem is also the
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major burden to the computational time required by the search strategy, especially for

large networks.

The specific travel cost functions used in the traffic assignment, were derived

primarily from engineering judgment using a modification of the BPR type curves and

the concept of passenger car equivalents as applied by the 1994 HCM. In particular the

travel cost functions were set in such a way in order to reflect the higher contribution

that the cars place on passenger cars' travel time and the lesser contribution of the

passenger cars on the trucks' travel time. The Jacobian of these travel cost functions is

proven to be positive definite which guarantees that the UE solution found is also

unique.

The SA-TABU search strategy developed combines the advantage of the

conventional simulated annealing procedure to guide the search in a systematic way,

the tabu search strategy's advantage in reducing the risk of cycling and in avoiding

local optima, and the characteristics of the two classes of users network design

problem. A major contribution in this study is the development of a comprehensive

heuristic evaluation function (HEF) which is used to evaluate each available move at

every iteration which is composed of three elements: the link's volume to capacity

ratio which captures the current flow characteristics of the link, the historical

contribution of the link to the objective function that is updated continuously

throughout the search (LCOF), and a random variable which provides a stochastic

nature to the HEF developed.



Table 8.2.1 Summary of Selected Results
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8.2 Conclusions

The following findings and conclusions are abstracted from the summary and results

of the analysis of the numerical experiments presented in Chapter 7 and Chapter 8.

8.2.1 TCNDP Characteristics

1) Link Selection for Expansion

• The probability that the links selected for capacity expansion, have higher volume

to capacity ratio than the links not selected for capacity expansion, is very high.

Links selected for capacity expansion with relatively low volume have also been

observed to be included in the optimal solution. These links are either members of

a critical path or they are included due to the budget constraint which may not

allow links with higher volume to capacity ratio but having a higher cost to enter

the solution.

• The higher the budget level the larger its contribution is to the network total travel

time. However, usually most the contribution to the total travel time of the network

is achieved with low budget levels. This can be clearly observed from "Network

improvement and Budget" in Table 8.2.1.

• The links selected for expansion with lower budget levels are not necessarily

included at the solutions with higher budget levels. This result exemplifies the user

behavior in selecting their routes based on the current network configuration.

• Table 8.2.1 indicates that under the situation where all the existing links were

allowed to be expanded by one shared lane, for both passenger cars and trucks for
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the five test networks, the passenger cars experience more travel time reduction

than the trucks in most of the cases.

2) Lane Traffic Operation Selections

• In most of the tests conducted the selected link expansion option was the shared

lane with both passenger cars and trucks.

• In limited cases, the exclusive lane is either a truck or a passenger car lane, which

occurs when one class dominates the other class. In Table 8.2.1 under the heading

"Break Point of Exclusive Car Lane and Exclusive Truck Lane", the break point of

selecting exclusive truck lane or passenger car lane various congestion level

(overall V/C ratio) is presented. With moderate to heavy congestion levels, the

exclusive passenger car lane would be the better selection than the exclusive truck

lane when the ratio of truck flow to car flow is lower than around 33% in the

experiment. However, the lane expansion for both passenger cars and trucks is

selected most of the times rather than the lane expansion for exclusive use.

• If the network is not congested, there is no significant difference between the three

different options. When the network becomes more congested, the differences

between the different options are much more distinct.

3) Traffic Flow

• The expanded links usually attract more traffic than the level of traffic they

experienced prior to the expansion. This result applies primarily to the expanded

links with high volume to capacity ratios.
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• The expanded link's volume to capacity ratio usually decreases. However, in some

occasions it may increase by attracting more traffic.

• The mitigation of the congestion usually leads to the reduction of the total travel

times. However, in some occasions while the total travel time is reduced for some

links their corresponding v/c ratio increases.

4) Heuristic Evaluation Function (FIEF)

• The traffic flow parameters provide important information (e.g. V/C ratio) that

may be used for the selection of link candidates for expansion.

• The combined passenger car and truck volume to capacity ratio provides a very

valuable parameter for the selection of the links to be expanded, especially when

the passenger car and truck volumes are relatively close to each other.

• The individual passenger cars or trucks volume to capacity ratios are not as

valuable, especially when the links are not congested.

• The link's contribution in reducing the total travel time is also an important

component of the heuristic evaluation function, and it becomes quite crucial when

the information based on the links attributes are difficult to be identified.

• The random error terms expands the search space and reduces the risk of cycling.

8.2.2 Characteristics of the SA-TABU Search Strategy and the Traffic
Assignment

The primary conclusions regarding the performance of the SA-TABU search strategy

are summarized below:
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• The SA-TABU search strategy is an efficient and robust algorithm in providing

"good" solutions to the TCNDP.

• In comparison to the conventional SA algorithm, the SA-TABU directs its search

faster towards a set of "good' solutions, that makes it applicable for the solution of

large scale problems (network sizes). In contrast, SA becomes inefficient for large

scale problems due to the explanation of a much larger set of solutions. Table 8.2.1

under the heading " SA, SA-TABU Comparison-Test Solution' and First

Appearance of Test Solution' " shows the performance difference is accelerated

by the increase in network size, when measured by the "best solution" generated.

• Table 8.2.1 " SA, SA-TABU Comparison-Test Solution' and First Appearance of

`Best Solution' " also presents the iteration when the "best solution" first appears

(the number is in bracket). The SA-TABU found a better "best solution" much

earlier than SA.

• The most important components of the algorithm, such as the Markov chain

length, "cooling schedule", tabu length and heuristics function, can be customized

for different problems and objectives.

• The Markov chain length and "cooling schedule" determine the search process's

mechanic features. The longer the Markov chain length is and the smaller the

control parameter or "temperature" dropping rate is, the better the final solution is,

while the longer time is required, and vice versa.

• Network 1 and Network 2 are relatively small size network, which are favored by

the longer Markov chain length and the slower "temperature" dropping rate such
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as the Version 1 SA-TABU search strategy, and Networks 3,4, and 5 would prefer

Version 2 SA-TABU which features a shorter Markov chain length and a faster

"temperature" dropping rate. The shorter the tabu list length SA-TABU in Version

3 performs well for the small networks, Network 1 and Network 2. The version

with a heavy weight on the V/C ratio information in the HEF such as the Version 6

SA-TABU, exhibit an advantage in the numerical experiments for the larger test

networks, Networks 3,4, and 5.

• If the link attributes such as the V/C ratio are found to be informative then the

weight of this attribute in the HEF can be greater, otherwise the weight of the

random variable or the link historical contribution should be set higher.

• The tabu list length is determined by the number of feasible solutions which is

determined by the network size and the budget level.

• The use of the modified link travel cost function for the two classes of users

guarantees that the traffic assignment converges to a unique equilibrium solution

since its Jacobian is positive definite.

8.3 Future Research

In this study, the primary objective was the reduction of the total travel time of the

network. However, other important objectives may also be considered in determining

truck routes and truck lane needs such as, safety, roadway pavement life time,

environmental impacts. In addition, the passenger cars and trucks travel times may be

considered as two separate objectives in the formulation. The consideration of these
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objectives in the TCNDP would be very useful and more realistic to the engineering

practices. The problem can be set as a multi-objective one, minimizing the total travel

time of the network, maximizing safety, minimizing the truck travel time etc..

In this study, the modified passenger car and truck link cost functions were

used in order to ensure that the diagonalization algorithm converges to an equilibrium

flow in the two classes of users traffic assignment. Future research is needed in

developing actual travel cost functions based on a comprehensive traffic flow and

travel time data at various transportation facilities.

The SA-TABU search strategy performed very well for the solution to the

TCNDP. Other techniques may be considered which can further improve the

performance of the search procedure. In particular, other advancements in

combinatorial optimization such as the utilization of elements from neural networks,

genetic algorithms may be considered.

Develop a set of benchmark problems for the TCNDP that may be used to

continuously compare several algorithms or search strategies. In most of the heuristic

search strategies the global optimum solution is not guaranteed, however, the

benchmark problems will aid in the comparison on the quality of the solutions

obtained.

The heuristic evaluation function plays an important role in determining the

efficiency and effectiveness of the search strategy. Though the HEF developed in this

study is quite robust, it doesn't take full advantage of the network design

characteristics. Efforts should be undertaken to focus more on the passenger car and
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truck respective congestion index and more important, the path link structure. The

traffic assignment is primarily based on path flows rather than link flows. Therefore,

by identifying the paths that pass through critical links more insights can be found in

identifying the critical links of the network to be expanded. In addition, other elements

may be considered to become parts of the HEF, as well as to consider other forms not

necessarily linear. A sensitivity analysis for various types of HEF would be beneficial

in identifying the best form of the HEF.

The search strategy currently utilized the add/drop type of move, by dropping

one element and adding as many as to satisfy the budget constraint. An alternate

procedure may be sought where two or more elements are dropped and an appropriate

number of links are then added to satisfy the budget constraint.

Another area of research is to try and optimize the computational efficiency of

the search strategy through parallel computing. Several aspects of the search strategy

can be optimized such as the traffic assignment procedure, and the heuristic search

itself.



REFERENCES

E. Aarts and J. Korst, Simulated Annealing and Boltzman Machines. Interscience

Series Discrete Mathematics and Optimization, John Wiley & Sons, Inc., New York,

New York, 1989.

M. Abdulaal and L. J. LeBlanc, "Continuous Equilibrium Network Design Models,"

Transportation Research, Volume 13B, Number 1, pp. 19-33, March 1979.

M. D. Amico and Marco Trubian, "Applying tabu search to the job-shop scheduling

problem," Annuals of Operations Research, 41, pp. 231-252, 1993.

Y. Arezki and D. V. Vliet, "A Full Analytical Implementation of the PARTAN/Frank-

Wolfe Algorithm for Equilibrium Assignment," Transportation Science, Volume 24,

Number 1, February 1990.

A. Balakrishnan, T. L. Magnanti, and R.T. Wong, "A Dual - Ascent Procedure For

Large Scale Uncapacitated Network Design," Operational Research, Vol. 37, No.5,

September-October 1989.

J. Bard, "An Algorithm for Solving the General Bilevel Programming Problem,"

Mathematics of Operation Research, 8, pp. 260-272, 1983.

O. Ben-Ayed, D. E. Boyce, and C. E. Blair III, "A General Bilevel Linear

Programming Formulation of the Network Design Problem," Transportation Research

Board, Volume 22B, No. 4, pp. 311-318, 1988.

S. Berka, J. Raj, and A. Tarko, "Turning Specific Link Travel Time Functions for

Network Modeling," Advance Working Paper Series Number 26, University of Illinois

at Chicago, July 1993.

D. E. Boyce and J. L. Soberanes, "Solutions to the Optimal Network Design Problem

with Shipments Related to Transportation Cost," Transportation Research Board,

Volume 13B, pp. 65-80, 1979.

216



217

S. Catoni and S. Pallottino, "Traffic Equilibrium Paradoxes," Transportation Science.
Volume 25, No.3, pp. 240-244, August 1991.

Y. Chan, "Transportation Network Investment Problem - A Synthesis of Tree-Search

Algorithms," Transportation Research Record,1074, 1986.

Y. Chan, T. S. Shen, and N. M. Mahaba, "Transportation-Network Design Problem:

Application of a Hierarchical Search Algorithm," Transportation Research Record,
1251, 1989.

M. Chen and A. S. Alfa, "A Network Design Algorithm Using a Stochastic

Incremental Traffic Assignment Approach," Transportation Science, Volume 25, No.
3, August 1991.

G. B. Dantzig, R. P. Harvey, Z. F. Lansdowne, D. W. Robinson, and S. F. Maier,

"Formulating and Solving the Network Design Problem by Decomposition,"

Transportation Research Board, Vo1.13B, pp. 5-17, 1979.

C. S. Fisk, "Effects of Heavy Traffic on Network Congestion," Transportation

Research Board. Vol. 24B, No.5, pp. 391-404, 1990.

T. L. Friesz, "Transportation Network Equilibrium, Design and Aggregation: Key

Developments and Research Opportunities," Transportation Research, Volume 19A,

No. 5/6, pp. 413-427, 1985.

T. L. Friesz, H. Cho, N. J. Mehta, R. L. Tobin, and G. Anandalingam, "A Simulated

Annealing Approach to the Network Design Problem with Variational Inequality

Constraints," Working Paper, July, 1990.

F. Glover, "Tabu Search - Part I," ORSA Journal on Computing, Vol. 1, No.3,

Summer 1989.

F. Glover, "Tabu Search - Part II," ORSA Journal on Computing, Vol. 2, No.3, Winter

1989.



218

A. E. Haghani and M. S. Daskin, "Network Design Application of an Extraction

Algorithm for Network Aggregation," Transportation Research Record, 994, pp. 37-
46, 1984.

D.W. Hearn, "Fundamental Research on Transportation Networks: Workshop Report,"

Transportation Research, Volume 19A, No. 5/6, pp. 411-412, 1985.

J. E. Hicks, D. E. Boyce, and A. Sen, "Static Network Equilibrium Models and

analyses for the Design of Dynamic Route Guidance Systems," Illinois Universities

Transportation Research Consortium, 1992.

J. N. Hooker, "Needed: an Empirical Science of Algorithms," Operations Research,

Volume 42, No.2, March-April 1994.

R. Jayakrishnan, K. Wei, Prashker, J. N. Tsai, and S. Rajadhyaksha, "A Faster Path-

Based Algorithm For Traffic Assignment," Present in INFORMS Conference,

Washington, D. C., Spring 1996.

J. S. Kapov, "Tabu Search Applied to the Quadratic Assignment Problem," ORSA

Journal on Computing, Volume 2, No.1, Winter 1990.

S. Kawakami, H. Lu, and Y. Hirobata, "Estimation of Origin-Destination Matrices

From Link traffic Counts Considering the Interaction of the Traffic Modes," The

Journal of the RSAI, 71,2, pp.139-51, 1995.

J. Knox, and F. Glover, "Tabu Search, An Effective Heuristic for Combinatorial

Optimization Problems," Center for Applied Artificial Intelligence, University of

Colorado, March 1988.

M. Laguna, J. W. Barnes and F. Glover, "Tabu Search Methods for a Singular

Machine Scheduling Problem," Journal of Intelligent Manufacturing, Vol. 2, pp. 63-

73, 1991.

L. J. LeBlanc, "An algorithm for the Discrete Network Design Problem,"

Transportation Science, pp. 183-199, 5/24/1987.



219

J. LeBlanc and D. E. Boyce, 'A .}. --311evel Proz-am,rn':agAla-or'..-.1-nri for Exact Solution

of the Network Design Problem ith User-Optimal Flows," rearaportation Research

Board, Vol. 208, No.3, pp, 259-265, 1986.

L. j. LeBia.nc and M. Abdulaal, "A Comparison of User-Optimum Versus System-

Optimum Traffic Assignment In Transportation Network Design," Transportation

Research, Volume 18B, Mo.2. pp..115-121, 1984.

C. Lee, "Network Design of One Way Streets: A Mathematical Programming

Approach," Working Paper for the Corksidetation_ of 1994 TRB Presentation, 1994.

C. Lee, L. Lei, and M. Pinecio,"Recem -Develo.prnetit in Search. Algorithms Npptied to

Scheduling," Working Paper, Department of Irdus -xlal Engineering, Columbia

University, 1995.

M. Los and C. Lardinois, "Combinatorial Programming, Statistical Optimization and

the Optimal Transportation Network Problem," Transportation Research Board,

Vol.16B, No.2, pp. 89-124, .1982.

T. L. Magnanti. and R. T. Wong, "Network Design and 'Transportation Planning',

Models arid Algorithms," Tra-zsportatiG a Science, [984.

H. S. Mahmassani, C. M. Walton, K. C. Nfouskos, J. J. Massimi, and I. Levinton, "A

Methodology For the Assessment of Truck Lane Needs in the Texas Highway

Network," CTR Report 356-3F, Center for Transportation Research, the University of

Texas at Austin, 1985.

H. S. Mahmassani, K. C, Mouskos, and C. M. Walton, "Application and Testing of the

Diagonalization Algorithm for the Evaluation of Truck-Related Highway

Improvements," Presentation. at the 66th Annual Meeting of the Transportation

Research Board, January 1987.



220

H. S. Mahmassani, S. Peeta, G. Chang, and T. Junchaya, "A Review of Dynamic

Assignment and Traffic Simulation Models for ATIS/ATMS Applications," CTR

Report DTFH61-90-R-00074-1, Center For Transportation Research, the University of

Texas at Austin, April 1992.

H. Matsuo, C. J. Suh and R. S. Sullivan, "A Controlled Search Simulated Annealing

Method for the Single Machine Weighted Tardiness Problem," Working paper 87-12-

2, Department of Management, University of Texas at Austin, 1987.

H. Matsuo, C. J. Suh and R. S. Sullivan, "A Controlled Search Simulated Annealing

Method for the General Job shop Scheduling Problem," Working paper 03-44-88,

Department of Management, University of Texas at Austin, 1988.

J. J. Massimi, H. S. Mahmassani, and C. M. Walton, "Truck Lane Needs

Methodology: A Heuristic Approach to Solve a Five-Option Network Design

Problem," CTR Report 356-1, Center For Transportation Research, the University of

Texas at Austin ,1985.

Z. Michalewicz, Genetic algorithms + Data Structures = Evolution Programs.

Addison Wesley, Reading, Massachusetts, 1989.

D. Middleton and K Fitzpatrick, "Truck Accident Countermeasures for Urban

Freeways," ITE Journal, November 1996.

K. C. Mouskos, "A Tabu-based Heuristic Search Strategy to Solve a Discrete

Transportation Equilibrium Network Design Problem," Ph.D. Thesis, Department of

Civil Engineering, The University of Texas at Austin, 1991.

K. C. Mouskos, H. S. Mahmassani, and C. M. Walton, "Network Assignment Methods

for the Analysis of Truck-Related Highway Improvements," CTR Report 356-2,

Center For Transportation Research, the University of Texas at Austin, 1985.

K. C. Mouskos and Q. Zeng, "A Simulated Annealing Heuristic Search Strategy for

the User Equilibrium Transportation Network Design Problem," Present at INFORMS

Conference, Washington, D. C., Spring 1996.



221

A. Nagureney, Network Economics. Kluwer Academic Publishers, Dordrecht, The
Netherlands, 1993.

G. L. Newhauser, "The Age of Optimization: Solving Large Scale Real-World

Problems," Operations Research, Volume 42, No.1, January-February 1994.

N. Oppenheim, Urban Travel Demand Modeling. Wiley - Interscience, John Wiley &

Sons, Inc., New York, New York, 1995.

A. D. Pearman, "The Structure of the Solution Set to Network Optimization

Problems," Transportation Research, Volume 13B, Number 1, pp. 81-90, March

1979.

H. Pirkul, J. Current and V. Nagarajan, "The Hierarchical Network Design Problem: A

New Formulation and solution Procedures," Transportation Science, Volume 25,

No.3, August 1991.

H. Poorzahedy and M. A. Tumquist, "Approximate Algorithm for the Discrete

Network Design Problem," Transportation Research Board, Volume 16B, No.1, pp.

45-55, 1982.

C. R. Reeves, "A Genetic Algorithm For Flowshop Sequencing," Computer

Operations Research, Volume 22, No.1, pp. 5-13, 1995.

W. Rothengatter, "Application of Optimal Subset Selection to Problems of Design and

Scheduling in Urban Transportation Networks," Transportation Research Board, Vol.

138, pp. 49-63, 1979.

Y. Sheffi, Urban Transportation Networks. Prentice-Hall, Inc., Englewood Cliffs,

New Jersey, 1985.

N. F. Stewart, "Equilibrium VS System-Optimal Flow: Some Examples,"

Transportation Research, Volume 14A, pp. 81-84, 1980.


	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract (1 of 2)
	Abstract (2 of 2)

	Title Page
	Approval Page
	Biographical Sketch
	Ackowledgment
	Table of Contents (1 of 4)
	Table of Contents (2 of 4)
	Table of Contents (3 of 4)
	Table of Contents (4 of 4)
	Chapter1: Introduction
	Chapter2: Literature Review
	Chapter3: Formulation of Two Classes
	Chapter4: Characteristics of The Traffic Assig.
	Chapter5: Development of the combined simulated
	Chapter6: Numerical Experiments of the sa-tabu
	Chapter7: Conclusion and Future Research
	References

	List of Tables (1 of 4)
	List of Tables (2 of 4)
	List of Tables (3 of 4)
	List of Tables (4 of 4)

	List of Figures (1 of 5)
	List of Figures (2 of 5)
	List of Figures (3 of 5)
	List of Figures (4 of 5)
	List of Figures (5 of 5)




