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ABSTRACT

A COMBINED SIMULATED ANNEALING AND TABU SEARCH
STRATEGY TO SOLVE A NETWORK DESIGN PROBLEM WITH TWO
CLASSES OF USERS

by
Qifeng Zeng

A methodology to solve a transportation network design problem (TCNDP)
with two classes of users (passenger cars and trucks) is developed. Given an existing
highway system, with a capital investment budget constraint, the methodology selects
the best links to be expanded by an extra lane by considering one of three types of
traffic operations: exclusive for passenger cars, exclusive for trucks, and for both
passenger cars and trucks such that the network total user equilibrium (UE) travel time
is minimized.

The problem is formulated as an NP-hard combinatorial nonlinear integer
programming problem. The classical branch and bound methodology for the integer
programming problem is very inefficient in solving this computationally hard
problem. A combined simulated annealing and tabu search strategy (SA-TABU), was
developed which is shown to perform in a robust and efficient manner in solving five
networks ranging from 36 to 332 links. A comprehensive heuristic evaluation function
(HEF), a core for the heuristic search strategy, was developed which can be adjusted to

the characteristics of the problem and the search strategy used. It is composed of three



elements: the link volume to capacity ratio, the historical contribution of the link to the
objective function, and a random variable which resembles the error term of the HEF.
The principal characteristics of the SA-TABU are the following: HEF, Markov
chain length, “temperature” dropping rate and the tabu list length. Sensitivity analysis
was conducted in identifying the best parameter values of the main components of the
SA-TABU. Sufficiently “good” solutions were found in all the problems within a
rather short computational time. The solution results suggest that in most of the
scenarios, the shared lane option, passenger cars and trucks, was found to be the most
favored selection. Expanding approximately 10% of the links, results in a very high

percentage improvement ranging from 73% to 97% for the five test networks.
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CHAPTER 1

INTRODUCTION

This dissertation presents a methodology to solve a transportation network design
problem with link improvements to the existence of cars and trucks in the traffic
stream. Highway safety and operational efficiency are two of the primary issues of
highway capital program management. The motivation for this study stems from the
disparity in the operational characteristics between trucks and passenger cars, and the
unavailability of a methodology that provides a systematic way in identifying the best
candidate improvements to be made on a highway network. The present
methodologies applied usually consider a rather small number of alternatives without

consideration to their global effect on the network.

1.1 Overview of Current Urban Transportation System and Network Design
Problem

In recent decades, most of the major urban transportation systems in United States
have been characterized by roadway congestion. Congestion causes longer commuting
time, higher vehicle operating cost, and consequently brings several social and
economical issues to the stage by impeding on the regional economical development,
excelling air pollution and impacting the residents’ daily life qualities. The trend in
staggering travel demand and the inadequacy of the existing transportation facility

capacity further sharpens this problem.



Various efforts have been undertaken to alleviate the urban transportation
system congestion. To mention some, Intelligent Transportation System (JTS) uses
advanced communication and information systems to improve highway mobility; high
occupancy vehicle (HOV) lane policies increase highway passenger capacity by
carrying more passengers; improvements of transit systems attract more automobile
riders to high capacity transit systems boosting the transportation system’s overall
flow throughputs.

Due to the scarcity of available capital and the low cost-benefit value of large
capital investments for new infrastructure, today, most of the urban transportation
capital investment projects are focused in maintaining and improving the current
transportation facilities. In optimizing the limited capital resources, one of the most
widely used methods is the implementation of project cost and user benefits analysis.
The transportation network design problem is one of the tools for conducting such
types of transportation network investment analysis.

The transportation network design problem is an integral part of the
transportation planning process. It provides answers to the question: how to optimize
the use of the capital investments in an existing facility based on a set of objectives
and subject to specific constraints of the specific problem. Furthermore, recent
developments in transportation system analysis have assigned a broader meaning to
the network design problem, such as: toll policy, specifying traffic direction in certain
streets, ramp metering and setting exclusive passenger car lane, traffic control

improvements, HOV lane and other types of operational improvement options.



The main functionality of the transportation network is to move goods and
people. In the highway system, such movement is presented by various types of
vehicles operating on the roadways. The principal differences among these vehicles
are their sizes and operational characteristics. In general, passenger cars and heavy
trucks are two primary aggregated classes for the traffic stream. The passenger car is
usually a small vehicle with 30 to 60 lb/hp weight-to horsepower ratio. The heavy
trucks can have more than 200 lb/hp weight-to-horsepower ratio and are more than
double and triple the size of regular passenger cars. It is quite significant to consider
passenger cars and trucks as two different classes of users in the highway network
analysis. Compared with the passenger car, the truck has bigger size while demanding
more roadway space, and its “Crawl speed” is much more lower when traveling over a
significant distance at over 2% grade. Thus, the heavy truck induces much more
impact on the roadway capacity than the regular passenger car. In the 1994 Highway
Capacity Manual, passenger car equivalent factors are used to capture the cars and
trucks disparity on the roadway capacity, where the truck’s impact is considered to be
three to four times higher than the passenger car at low grades and can be as high as 28
for high grades. Additionally, the trucks have a much more severe impact on the
roadway pavement life period.

In recent decades, the change in traffic composition has been characterized by
a growing proportion of heavy trucks in the traffic stream and an increase to the traffic
operational difference between the passenger cars and trucks. Cars are becoming

smaller, lighter and less powerful, while trucks are becoming larger and more



powerful. It raises the issue of efficiency and safety of the roadway where two
different vehicles in terms of size, speed and acceleration rate, competing for the same
right of the way, and share the same facility simultaneously. The truck accidents in
California have increased by 10% per year since 1985, while their total number was
12,000. A delay average of 2,500 vehicle-hours have been noted for each truck related
accident in California (Reference from Middleton (1996)).

Some efforts in addressing the passenger cars and trucks dissimilarity have
been under taken in improving the highway efficiency and safety. For example,
climbing lane are utilized for slow trucks on certain long uphill roads; the trucks are
prohibited in the left most lane in some multilane highways (freeways); and in some
heavy duty highway networks, such as the New Jersey Turnpike, exclusive passenger
car roadway and shared roadway networks are used to separate passenger cars and

trucks.

1.2 Overview of the Problem Structure and Methodology
The core of this study is a network design problem where the roadway capacity is
expanded by building an extra lane on selected links which may be associated with
any one of three types of traffic operation- both passenger cars and trucks allowed,
exclusively for trucks or exclusively for passenger cars. The primary issues that this
study focuses are the following: First, given a specific network configuration and the
two origin-destination (O-D) matrices - the passenger car O-D matrix, and the truck O-

D matrix, how are the flows distributed on the links of the network? Second, what is



the optimal network configuration based on the three alternatives mentioned above,
that will minimize the network total travel time, subject to a budget constraint on the
number of allowable lane additions? The problem is subsequently referred to as a two
classes of users (Passenger Cars and Trucks) transportation network design problem
(TCNDP).

The main objective is the total travel time of the network, which is the
summation of the User Equilibrium (UE) passenger cars and trucks travel times on all
the links. The most common travel time function used is the Bureau of Public Roads
(BPR) travel time cost function where the link travel time is a function of the traffic
flow and capacity. The links’ traffic flows are assigned by the UE traffic assignment
rule. Therefore the problem is classified as a two level (called bilevel) optimization
problem. In addition to the objective function - minimizing the UE total travel time,
the link traffic flows are obtained by solving another optimization problem -
minimizing the individual traveler’s travel time. One of the methodologies in solving
the problem is by separating the two level optimization into two sequential procedures:
first predicting traffic flows on the links according to the current network
configuration and then identifying the links to be improved links to optimize the total
UE network total travel time.

This problem falls into the category of nonlinear and integer programming
problems. The classical method to solve such discrete transportation network design is
the branch and bound method. The efficiency of the branch and bound method lies in

its emphasis in the determination of good bounds or cuts to reduce solution space.



However, the size of the solution space increases exponentially with the network size,
whereas the execution time experienced by the traffic assignment solution algorithm is
rather slow, restricting the application of the branch and bound method to fairly small
networks. In recent years, heuristic algorithms are becoming more and more promising
in empirical applications with large network sizes. In a simplified view of the heuristic
search strategy, a gathering of information, drawn from historical data and past
experience is used to guide the move - locate the new solution state from the current
solution state, until the global optimal solution state or a satisfactory solution state is

found.

1.3 Motivation and Objectives
The importance of the TCNDP problem has been highlighted in Section 1.1. Due to
the complexity of the problem structure and the computational difficulties, no
intensive study of this problem has ever been conducted.

The current transportation planning process addressed the problem of truck
lane needs on an empirical manner rather than a global optimization objective. Often,
safety supersedes the decision to address truck related improvements. Traditionally,
the most common truck-related improvements are observed on high grades where
truck climbing lanes are proposed to improve the operation of the roadway, improving
the speed of the passenger cars. Other types of truck related improvements is observed
in freeways where trucks are often prohibited from using the left (high speed) lanes.

Additionally, trucks are restricted to specific roadways of the network. Parkways,



usually do not allow heavy vehicles to operate on them, whereas in some cases trucks
are restricted during certain hours of the day. However, a systematic approach in
identifying the most optimal truck related strategies to be implemented on a network-
wide basis does not appear in the literature. This study presents a methodology for
addressing truck lane needs on a network wide basis. The problem was first addressed
by Mahmassani et. al. (1985), although no efficient optimization procedure was
presented that time. The advancements in computational efficiency of computer
hardware and recent advancements in the application of heuristic search strategies
provided the motivation for re-examining the original problem. The primary objectives
of this dissertation are presented below:

Objective 1:

Present a2 mathematical formulation of the transportation network design problem with
two types of users, passenger cars and trucks. The problem is formulated as a bi-level
mathematical program. The lower level addresses the identification of the link flows,
passenger cars and trucks. The upper level addresses the truck related improvements
considered in this study: i) both passenger cars and trucks allowed, ii) exclusively for
trucks, iii) exclusively for passenger cars.

Objective 2:

Investigate the application of the diagonalization algorithm to solve the user
equilibrium traffic assignment with user asymmetric interactions, passenger cars and

trucks. A primary concern of this traffic assignment procedure is whether a unique

solution exists or not.



Objective 3:

Develop a heuristic search strategy to solve the UE transportation network design

problem with two classes of users. To analyze the proposed solution methodology, the

following tasks were undertaken:

e Sensitivity analysis on different networks was performed that assessed the
effectiveness of the search strategy.

e Sensitivity analysis on different parameters and coefficients of the search was
performed to identify their “best” values in optimizing the search strategy.

o An analysis of the main features of the SA-TABU used in solving the
transportation network design problem.

In summary, the complexity and the large size of the empirical network used to
discourage the application of the network design problem in transportation planning
practice, coupled with rather slow computing facilities and lacking of empirical
application oriented methodologies. Additionally, the TCNDP problem has
distinguished itself as one of the most important issue in highway planning, as well as
highway safety. This study presents a heuristic search strategy based on the
combination of simulated annealing and tabu search, providing a promising
methodology for addressing an otherwise computationally intractable problem.
Furthermore, this study provides an additional tool to highway network design and

planning.



1.4 Overview of this Dissertation

This dissertation includes an introduction, a literature review, methodology
development and the numerical experiments. The literature review covers the
formulations and algorithms involved in transportation network design problem, the
single user class and two classes of users traffic assignment formulation for the User
Equilibrium (UE) and System Optimum (SO) rules, the Frank-Wolfe algorithm
(Reference from Sheffi (1985)), as well as the diagonalization algorithm. As part of
the solution methodology review, the simulated annealing and tabu search algorithm
are presented in detail.

The primary literature review on the transportation network design problem
formulation and methodology is presented in Chapter 2. Chapter 3 constructs the
formulation and reviews the current methodology status for the TCNDP problem
specified in this study.

In Chapter 4, a comprehensive study for the two classes of user traffic
assignments and the diagonalization algorithm is presented, followed by TCNDP
problem. The study includes an analysis of the mathematical formulation, numerical
example analysis and sensitivity analysis study.

In Chapter 5, the SA-TABU search strategy developed is presented. A
complete analysis of the search strategy and its rationales can also be found in this
chapter, as well as description of the computer program.

Numerical experiments on the search strategy under different sets of the

parameters and coefficients on five networks are presented in Chapter 6. The
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experiments evaluate the quality of the proposed search strategy and the heuristic
values.

Chapter 7 presents insights derived from the numerical experiments conducted
on a sample networks. It presents the characteristics of the TCNDP problem and the
basic conclusion and guidelines derived from empirical application.

Chapter 8 summarizes the general conclusions from the study and provides

recommendations for future studies.



CHAPTER 2

LITERATURE REVIEW

The equilibrium transportation network design problem falls into the category of
integer non-linear programming problems, and various of the methodologies involved
in solving the integer programming problems could be employed to solve this
problem. However, the classical integer programming methodologies in solving large
scale and complicated problems, have limited capabilities. Recently, heuristic search
strategies such as simulated annealing, tabu search, neural network and others. are
used more often to solve computationally hard integer programming problems. This
chapter provides a review of transportation network design models and solution
algorithms or heuristic search strategies, with emphasis given to the equilibrium
transportation network design problem formulation, the simulated annealing and tabu

search methodologies.

2.1 Transportation Network Design
The Transportation network design covers a broad range of issues arising in
transportation planning and other related fields. Various formulations and solution
algorithms are presented in the literature. One of the most comprehensive reviews on
transportation network design can be found in Magnanti and Wong (1984).
The basic network components are arcs, nodes and centroids. In a network,

there usually exist a vector of commodities to be transported from some centroids

11
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(origin) to some centroids (destination). Thus, the general network design problem can
be addressed as follows: Construct a new network with a number of links (arcs),
satisfying some objective function subject to the specific constraints of the problem.
Magnanti, and Wong(1984) summarized the transportation network design problems
in terms of demand structures, objective functions, types of capacity and side
constraints. The general model presented in this study leads to some more specific
models such as the minimal spanning tree, shortest path, steiner tree problem,
(nonlinear cost) multi-commodity flow problems, minimal directed spanning tree,
traveling salesman problem, vehicle routing, facility location, fixed charge network
design problem, network design traffic equilibrium, and budget problems.

Solution methodologies discussed in Magnanti, Wong(1984) includes Benders
decomposition, branch and bound, Lagrangean relaxation, linear programming and
heuristics method. Despite the differences in each approach, most of the algorithms
can be categorized as: i) identifying good constraints (cuts) such as the Bender cuts; 1i)
approximating the current problem by one where a solution methodology is known to
be more efficient or iii) searching for a non-optimum but sufficiently good solution
using heuristics rule.

The UE transportation network design is one of selecting a set of network links
to optimize the objective(s) (UE total travel time) by changing the selected links'
capacities, while the network flow distribution follows the UE traffic assignment rule.
The UE traffic assignment rule best describes the users' behavior, where at equilibrium

no traveler can improve its travel cost by unilaterally changing routes (Wardrop 1952).
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The selection of the solution methodology for a specific network design
problem usually depends upon the network configuration and problem formulations.
Although there exist various network design formulations, these formulations differ in
the following aspects: 1) the nature of the origin-destination matrix (i.e., single class or
multiple classes of users trips); ii) link cost function (i.e., capacity constraint); iii) form
of the objective function (i.e., single or multiple objectives, linear or nonlinear); iv) the
constraints (i.e., linear or nonlinear); v) the traffic assignment rules (i.e., user
equilibrium(UE), system optimum(SQO), all or nothing); vi) the design variables data
structure (i.e., discrete or continuous).

Following, some representative network design algorithms and applications, as
well as some key issues concerning the solution methodology and problem

formulation in the literature, are presented:

2.1.1 Bilevel Programming
The solution to an equilibrium transportation network design problem involves two
procedures: the first predicts the flow distribution on the links of the network with a
given demand, and the second optimizes the objective function by defining the design
variables. Therefore, the problem is a two level programming problem, which falls
under the category of bilevel programming.

In this study, the decision variables determine the links to be expanded or not,
thereby defining a new network configuration. The objective is to minimize the total

network UE travel time, which is a function of the decision variables and the link flow
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pattern. The link flow pattern can be obtained by solving another nonlinear
optimization problem - minimizing the user’s individual travel time, based on the
current network configuration, which is defined by the decision variables ( e.g. to
build or not to build an extra lane). The solution of these two vectors of unknown
variables is required to satisfy two objective functions simultaneously.
According to Bard (1983), the general formulation form of bilevel
programming problems is as follows:
MIN F(x,y) (2.1.1)
where x 1s the optimum solution for:
MIN f(x,y) (2.1.2)
with the constraint:
G(x,y)>b (2.1.3)
The objective function MIN F(x,y) is referred to as the upper level problem,
and MIN f(x,y) for fixed y as the lower level problem. In this study, the variables y in
the upper level are the variables referring to the network configuration components,
(adding or not adding a new lane for either exclusively for cars, trucks or both), and
the lower level variables x are the link traffic flows.
It is well documented that the bilevel programming problem is an NP-hard
(Anandalingam, et. al , 1992 and Ben-Ayed, et. al., 1980). Bard(1983) proposed an
problem approximate approach to solve the above bilevel problem. In his procedure, a

substitute objective function is defined as a convex combination of the upper and

lower objective functions:
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P(x,y; )= ALF (e, ) |+ (1= LS (x, )] (2.1.4)
where A is a fixed parameter.

To solve the UE transportation network design problem, after setting A =1, the
iteration index k=1 and choosing the tolerance £>0, Bard’s bilevel programming
algorithm becomes:

STEP 1. Minimize (2.1.4) subject to (2.1.3) and denote the solution by

(x*,¥").

STEP 2. Check whether the link flows x* are user optimum flows. If so, stop;
the solution (x*,y*) is an optimal solution to the network design
model.

STEP 3. Using sensitivity analysis on the objective function coefficient A, find
A >0, the smallest value of A for which (x*,y*) remains
optimum in the program. Change 4 to A, — ¢ and go to STEP 1.

Bard’s procedure terminates in a finite number of steps. The solution obtained
in the first step has the parameter value 1 =1, and, in fact, this is the network design
model with the SO flow, since the UE flow is weighted to be zero. As 1 decreases, the
weight of SO flow increases and eventually the solution approaches to include UE
flow only.

LeBlanc and Boyce (1985) indicated that if formula (2.1.2) can be solved by
the Frank-Wolfe algorithm, the constraint (2.1.3) for the combined model (2.1.4) is
redundant, for that the Frank-Wolfe algorithm employs an all-or-nothing assignment

which satisfies constraint (2.1.3). Consequently, formula (2.1.4) can be solved very
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efficiently using the Frank-Wolfe algorithm. Nevertheless, the formulation and the
solution methodology was developed for the continuous network design problem.
However, the bilevel programming algorithm by LeBlanc et. al. (1985) is only
capable of solving small size problems with simplified variables and constraints. As
the network size becomes significant, and the problem becomes more complicated,

this methodology is computationally prohibitive.

2.1.2 Branch and Bound Algorithm

Branch and bound is one of the most classical methodologies in solving integer
programming problems. By defining the proper bounds, the algorithm reduces the
search space of the feasible solution set. The procedure continues iteratively and
explores the reduced feasible region only. The procedure terminates when an
exhaustive search is conducted and the optimal solution is identified.

LeBlanc (1975) presented a branch and bound algorithm solution methodology
for the discrete equilibrium transportation network design problem. To avoid Braess’
“paradox”, LeBlanc used both UE and SO rules to define lower and upper bounds. The
primary concept of his approach is that given the same network configuration, the UE
traffic assignment has a total travel time greater than or equal to the SO traffic
assignment total travel time, and furthermore, the network with additional new links or
links with expanded capacity leads to smaller SO total travel time. This solution
methodology becomes rapidly intractable as the number of variables increases. It is

therefore only applicable for very small networks.
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Chen et. al. (1991) proposed a branch and bound with a stochastic incremental
traffic assignment approach for the single class network design problem. The branch
and bound method was used without taking into consideration Braess’ “paradox’ and
the logit based incremental traffic assignment is used to reduce the number of
iterations in the assignment process. The results imply, that if the network congestion
increases, the algorithm may not work properly due to the weakness of the incremental
method.

The success of the branch and bound approach is restricted to small size
networks. In large network problems, where the solution search space grows
exponentially with the scale of the network, the approach becomes computationally
prohibitive. In the worst case, given a network design problem with n binary variables,
it would require the solution of 2" number of solutions of the traffic assignment
routine.

Another approach involves simplifying either the problem formulation or the
network representation. The network aggregation method condenses a given network
into one that is small enough to be managed efficiently and effectively while still
Preserving some desired characteristics or satisfying certain objectives. There are two
main approaches: network element extraction and network element abstraction -
deletion and aggregation of insignificant network elements. Haghani et. al.(1984) used
both methods on a 60 link network and the computational time is greatly improved. A
Similar application in the literature can be found in Chan (1976). Poorzahedy et. al.

(1982) used an approximate problem to substitute the original problem, where the
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branch and bound methodology was employed. Though the approximation method
appears quite reasonable in some applications, the optimal solution to the original
problem is not guaranteed. Network aggregation suffers from the potential occurrence
of Braess “Paradox”. It is not known a priori which links can be grouped together or
deleted without causing an increase in the network travel time. Furthermore, the better
solutions may be undiscovered which can be found in the original network

configuration.

2.1.3 Heuristics Search Strategies and Network Design

In recent years, the applications of heuristic search strategies to transportation network
design problems attracted more attention. Unlike the classical branch and bound
method, the heuristic search strategy methods aim to find sufficiently “good” solutions
instead of the optimum solution and are compromising practical approaches for large
scale network design problems.

A heuristic search strategy methodology, is one that solves the problem using
trial and error, and is highly dependent on past experience or information about the
structure of the problem. Starting from one feasible solution, a heuristic search
strategy leads to another feasible solution using a certain guideline. The guideline is
designed in such a way that sufficiently “good” solutions, not necessary an optimum
solution, would appear during the search over a partial solution set. The solution set

structure plays important role in the success of the heuristics search application.
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Pearman (1979), after investigating the structure of the solution set in the
network optimization problems with various optimization functions, came with the
following findings: “Firstly, none of the spatial combination problems examined
indicates a distribution skewed in such way that would imply the existence of a small
number of very good candidates markedly superior to the main body of solution.
Secondly, the road network optimization problem appears to be the most favorably
disposed of all the problems analyzed from the point of view of possessing large
numbers of good sub-optimal solutions. That is, it has the most positively skewed
distribution of objective function values,” that implies “a reasonable good solution
could be found in a relatively short time.” There is no doubt that this finding
encourages the application of a heuristic search strategy in the transportation network
design problem in terms of the solution set structure.

The most distinguished heuristic search strategies reported in the literature
include: tabu search, simulated annealing, artificial neural network and genetic
algorithm.

The artificial neural network optimization method designs the “generator” or
“neuron”, which generates the new solution state, in such a way that new solution state
has a lower objective function value. The “generator” is kept on being adjusted from
the feedback of the previous solution state. Xiong and Schneider (1992) applied an
artificial neural network blended with a genetic algorithm to solve the single user
transportation network design problem and found that the neural network algorithm

does improve the solution quality and computational efficiency in some particular
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problems if sufficient information is available to train the ‘“neurons”. Wei and
Schonfeld (1994) employed similar neural network structure to solve multi-period
network design models and the test on a very small network with three link variables,
and the accuracy and efficiency of the neural network methodology was acclaimed.
However, due to the immaturity of the neural network algorithm, the application is
very restrictive and it also needs other methods to provide the solutions to train the
“neurons”.

Genetic algorithms borrow the concept of evolution. The algorithm starts from
a set of solution states. In each iteration, the relative good solution states are kept to
generate their “children” solution states, while the bad solution states are disposed. No
applications of genetic algorithms have been applied to the transportation network
design problem.

The tabu search strategy (See Glover 1986, 1989, 1990, 1993) experienced
tremendous development in recent years, especially in areas such as scheduling and
sequencing problem. Tabu search algorithm was first introduced to the discrete single
class user equilibrium transportation network design problem by Mouskos (1991). The
study showed that the optimal solutions for five small networks were found in less
than 500 iterations, and good solutions were reported for 3 medium size networks.

The simulated annealing search strategy is motivated by an analogy of the
optimization problem to the statistical mechanics of annealing of solids. Simulated
annealing has been widely used in solving large scale combinatorial problems. In a 76

arcs traditional transportation network design problem with continuous decision
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variables, Friesz et. al (1990) obtained a satisfactory result by employing a simulated
annealing algorithm approach. Kang {1994) also used z simulated annealing algorithm
in solving a one-way street network design problem. In a S node by 5 node square grid
network, Kang used the difference of the volume/capacity and the traffic volume as the
heuristics and the near optimal solution result is found. Simulated annealing theory is

presented in detail later in this chapter .

2.2 Traffic Assignment Models and Formulations
Traffic assignment is one of the core procedures in transportation network analysis. It
models network user’s travel behavior and predicts the link travel flow pattern with
given demands. The most widely used traffic assignment models are user equilibrium
(UE) and system optimal (SO) traffic assignment. This section presents single class

and two classes of users traffic assignment models and their solution methodologics.

2.2.1 Wardrop (1952) Principles

The classical network traffic assignment model was born as early as 1920 in the work
of Pigou (Reference from Nagureney (1993)), and was further developed by Knight
(Reference from Nagureney (1993}). Wardrop (1952) proposed two principles that
best described network route choice that have been widely recognized and used since

then.
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Wardrop stated the traveler’s route choice in two principles: First Principle:
The travel times of all routes actually used are equal, and less than those which would
be experienced by a single vehicle on any route; Second Principle: The average travel
time is minimum.

The first principle is known as the user equilibrium (UE) rule, which can be
further explained as follows: no user can improve his/her travel time by unilaterally
switching routes, and consequently any unused route bas a higher cost than the used
one (between a given O-D pair).

The second principle is referred to system optimal (SO}, under which users
select their routes according to what is optimum from a society point of view. Under
the SO the total travel cost in the system is minimized. This principle does not
necessarily generate an equilibrium flow, where the users are able to improve their
individual travel time by using other routes. Thereby, in most cases, the SO solution
produces a non-stable system which is not realistic, unless users are “forced™ to use the
designated paths.

Beckman (1956) had formulated the above Wardrop principles into
mathematical optimization models. In general, these problems fall under the category

of a finite-dimensionat variational inequality mathematical formulations.

2.2.2 Variational Inequality Theory
Variational inequality theory is frequently utilized for the network equilibrium

problems, especially in optimization problems, complementary problems and fixed



point problems. In the optimization problems, both constraint and unconstrained cases
can be formulated as variational inequality problems.
The finite dimensional variational inequality problem is to determine a vector
x" €K c R”, such that
F(x)Y -(x=x")20, Vxek, (2.2.1)
where F is a given continuous function from K to R” and K is a given closed
convex set.
One of the variational inequality theory theorems is as follows:
Let x* be a solution to the optimization problem:
Minimize f(x) (2.2.2)
subjectto: x e K
where f is continuously differentiable and K is closed and convex. Then x° is a
solution of the variational inequality problem:
VI (x-x")20, VxeKk. (2.2.3)

and vice versa. The proof of the theorem can be found in Nagurney (1993).

2.2.3 Single Class User Equilibrium Assignment Model

In the single class problem, the Wardrop (1952) first principle can be written as

=4, ifx)>0
t,= : 22+
’ {zﬂw, ifx) =0 (22

where ¢, is the user travel cost on the path p, x; denoting the flow on the path p and

4, is the equilibrium travel disutility associated with the Origin Destination pair .
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Formula (2.2.4) implies that the travel time cost on the path where the flow is
zero is higher than an equilibrium disutility value which is the travel time cost for the
path where the flow exists. It concludes that the flow pattern generated by Wardrop’s
first principle is an equilibrium flow, since there is no incentive for the user to alter its
traveling path.

Variational inequality governing the equilibrium condition has the following
theorem: A vector f €K, is an equilibrium pattern if and only if it satisfies the

variational inequality problem

t(f)(f-f)=0, Yfek. (2.2.5)
where ¢(f7) is the link cost function and 1 is the traffic flow on the link, while K is
the feasible set for the problem.

The single class UE traffic assignment then can be written as (Beckman 1956):

MIN z(X)= ¥ j) £, (w)dw (2.2.6)
S R=q" vr,s (2.2.6b)
k
£’ z0 vk,1,s (2.2.6¢)
X,=> >3 8,  Va (2.2.6d)
r s k

where a denotes link a,
. denotes the flow on path & for traveler from origin » to destination s,

q"” denotes the total flow from origin 7 to destination s,

X is the link flow vector.
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Constraints (2.2.6b, ¢, d) are the flow conservation and non negativity. The
solution to the mathematical program Formula 2.2.6 is a user equilibrium flow.

The SO traffic assignment model can be directly formulated as mathematical
optimization problem like problem 2.2.6. The objective function is to minimize the
total network travel time, and it has the same constraints as the UE formulation. It is
worth to note that the SO is quite different traffic assignment model from the UE, in

spite of the similarity of their mathematical optimization formulas.

2.2.4 Two Classes User Equilibrium Assignment Mathematical Formulation

The condition (2.2.4) in the scope of the two classes of users is revised as

=4, x>0
!z{ wo X, > (2.2.7)

4 S s
N P ifx, =0

w2

where t;, is the class 7 user travel cost on the path p, x;,' denoting the flow on the

path p for Class i , and Z is the equilibrium travel disutility for Class i associated
with the origin destination pair w.

Theorem (2.2.5) would also hold for the two classes of users problems
(Nagurney 1993). However, one of the factors determining whether the variational
inequality problem can be formulated to the optimization mathematical formula is the
link travel cost function #(X). If this function satisfies the symmetric condition (to be
explained later), then solving such a variational inequality problem is equivalent to

solving the optimization problem:
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fa
Minimize , , z J.t[’, (x)dx (2.2.8)

ai 0
where k is the feasible set for flow f', a presenting link and i 1is class type.

The link’s travel cost function symmetric condition, or symmetrical interaction
between different classes of users, means that the marginal contribution of the Class J
flow on the Class i travel cost on the Link a is same as the marginal contribution of
the Class i flow on the Class j travel cost on the Link @. In mathematical terms, it

can be expressed as follows (See Sheffi 1985):

5 tui(x) _ a t‘!f (x)
o X, g X,

Vai=aj (2.2.9)

where 7,(X) denotes class i travel cost function on the Link a, which is the function

of Link a the flow vector X, and also x,,, x,, denote the flows of class / and class j

on Link g respectively. Asymmetrical interaction between different classes of users
would occur, when the equal sign in Formula 2.2.9 changes to an unequal sign.

The Jacobian matrix (of a vector of scalar functions) is formed by arranging the
derivatives of all these functions, with respect to all the arguments, in matrix form.
The Jacobian matrix of ¢(X), which is denoted by Vi(X), includes the partial

derivatives of all the link travel times to all link flows, is
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O 1,(x) Fit,(x) A t,(x) }
J x, Ax,  dxy,
dt,(x) JIt,(x) t,(x)
J X Ix, ~ Ix
V=] . . . . (2.2.10)
2 t,(x) I i,(x) a1t (x)
d x,, Jx,  dx

It can be shown that (Shefti, 1985) if the Jacobian matrix of the link travel cost
function is symmetric, an equivalent mathematical program can be found, the solution
of which would satisfy the UE conditions.

However, in a number of cases, the interaction is asymmetric such as the one
between trucks and passenger cars. The impact to the passenger car travel time due to
the change of the truck flow is different from the impact to the truck travel time
resulting from the change of the car flow. This problem is formulated as a variational
inequality and can not be formulated as an equivalent mathematical programming
formulation.

Several direct algorithms have been found to be successful in finding the user
equilibrium solution for the two classes of users UE traffic assignment. The
diagonalization algorithm is one of the most commonly known procedures that is used
to solve the traffic assignment with asymmetric interactions. The diagonalization

algorithm is presented in Chapter 4.
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2.3 Heuristic Search Strategies
Simulated annealing and tabu search are two of the primary search strategies which
have been utilized in solving computationally hard integer programming problems.
They are also the principal components of the SA-TABU search strategy developed in
this study in solving the TCNDP problem. This section presents a detailed review of

simulated annealing and tabu search strategies.

2.3.1 Simulated Annealing

In the early 1980's, Kirkpatrick, Gelatt & Vecchi (1982, 1983) and independently
Cerny (1985) introduced the concept of the physical annealing process in
combinatorial optimization problem. The reason originates from the analogy between
the solid annealing process and the problem of solving large scale combinatorial
optimization problem.

In condensed matter physics, annealing is known as a thermal process to obtain
low energy states of a solid. The process contains two basic steps. At first a solid
material is heated to the temperature that it would melt in a heat booth. Then the
temperature is gradually decreased until the material particles arrange themselves in
the ground state of the solid. In the liquid phase, all particles of the solid arrange
themselves randomly. In the ground state the particles are arranged in a highly
structured lattice and the system energy is the smallest.

Back to 1953, Metropolis, Rosenbluth, Teller (1953) introduced a simple

algorithm to simulate the evolution of a solid in a heat bath in the annealing process. A
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sequence of states of a solid are generated in the following way. Given a current state i
of the solid with energy E,, then a subsequent state j is generated by applying a
perturbation mechanism which transforms the current state i into a next state j by a
small distortion. The energy of the next state is E;. If the energy difference, E-E, is
less than or equal to 0, the state j is accepted as the current state. If the energy
difference is greater than 0, the state j is accepted with a probability of

E -E,
b

where T denotes the temperature of the heat bath and Kj is a physical constant called
Boltzman constant. This simulation methodology is known as the Metropolis
algorithm.

The simulated annealing algorithm is the one that applies the Metropolis
algorithm to a combinatorial optimization problem. The analogy between a physical
many-particles system and a combinatorial optimization problem results from the
following equivalence. The solution states in a combinatorial optimization problem are
equivalent to the states of a physical system, and the objective function value of a
solution is equivalent to the energy of a state. The temperature controlling the whole
annealing process is equivalent to a parameter that is called a control parameter in the

simulated annealing algorithm.
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The basic simulated annealing algorithm steps are as follows:

STEP 0 Initialize i, ,c,,L,: i,,, is the initial solution state; ¢, a control
parameter and L, denotes maximum number of transitions allowed
under one specific control parameter. Let i =i, .

STEP 1 SetL =90

STEP 2 Create next solution state j from current solution state .

f(J),f(i)is objective function value for the States j and ;. If

AORNAY))

¢, (orey)

exp( )>rand(0,]) ,then i < j,and L = L +1.

STEP 3 If L< L, (L) go to STEP2, else update ¢, (¢,) and L,(L,).
STEP 4 If stopping criteria is satisfied, stop; else go to STEP1.

The main elements of the simulated annealing algorithm are described below:

S@O-f)

1) The acceptance criteria :
) cceptance criteria : exp( e (or ¢)

) >rand(0,1)

This acceptance criteria determine whether to accept the new solution state j as the
new current solution state. In most similar algorithms, such as the hill climbing
method, the move from the current solution to a new solution state is made only if
the new solution state has a better objective function value than the current
solution state. The simulated annealing algorithm uses a probability to ascertain a
move, so that it allows a certain degree of deterioration by occasionally accepting
the new solution state that is inferior to the current solution state in terms of the
objective function value. In doing so, the algorithm can effectively overcome the

limitations of local optimality.
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The control parameter C (Also called “temperature™. )

Besides the current solution state and the new solution state objective function, the
control parameter is the only factor in the acceptance criteria. The greater the
control parameter is, the easier the acceptance criteria is met. Thus the control
parameter C steers the whole simulated annealing process and determines the
characteristics of the move. At the beginning of the iteration process, the control
parameter C is usually set to a large number so that most of the new solution states
would be accepted. As the control parameter C value decreases, only a few good
new solution states would be accepted resulting in a relatively small deterioration.
Finally, as the value of C approaches 0, no deterioration will be accepted at all and
only the finding of the better solution state would lead to the transition of the
current solution state to a new solution state. This means that the simulated
annealing algorithm, in contrast to local search algorithms, can escape from local
optimum while still exhibiting the favorable features of a local search algorithm.
The control parameter updating function

In Step 3, the control parameter C is changed by the updating function. The
updating function always scales down the control parameter C values. The control
parameter C decreasing rate is one of the most important factors in deciding the
nature of the simulated annealing process. If the decreasing rate is too high, the
process would be terminated quickly due to the stricter acceptance criteria . Thus,
the so called “annealing” effect can not be achieved, instead the “quench” effect

would emerge, as the desirable solution can not be obtained. If the decreasing rate
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is too low, the simulated annealing would require a very long process to terminate
to a desirable solution state so that it becomes very inefficient or even prohibitive
for large scale problems.

The Markov chain length and its updating function

The Markov chain length decides the cycle of the constant control parameter value.
It starts at a small value and then the updating function increases its value. The
simulated annealing algorithm can be analyzed by the Markov chain theory. A
“trial” corresponds to a transition in Markov chain theory, and the finite set of
solutions is equivalent to the set of outcomes. It can be shown that in the simulated
annealing algorithm, the outcome of a trial depends only on the outcome of
previous trial. It is proved by Korst (1988) that the simulated annealing guarantees
asymptotically convergence to the set of globally optimal solutions under the
condition that a stationary distribution is obtained at each value of C, and that the
probability of finding an optimal solution increases monotonically with decreasing
C. The Markov chain length and its updating function determine whether the
stationary distribution can be achieved or not. Due to the nature of a practical
application - a finite-time application and seeking desirable solutions instead of the
global optimum solution, it usually requires a substantially long Markov chain
length at every control parameter C. However, if the Markov chain length is too

long, it would lead to a very inefficient algorithm.



The main features of the simulated annealing process can be outlined as

follows (See Korst, 1988):

1) The probability of find the optimal solution S, is equal to 1 after a large enough

number of trials k. That is: P{X(kyeS,,} =1 (2.3.2)

2) The probability of finding an optimal solution increases monotonically with
decreasing C.

3) The asymptotic behavior of the simulated annealing algorithm can be approximated
in polynomial time at the cost of guaranteeing of reaching optimal solutions.

4) A finite-time implementation of the simulated annealing algorithm can be realized
by generating homogeneous Markov chains of finite length for a finite sequence of
descending values of the control parameter.

In summary, although the finite-time simulated annealing algorithm can not
guarantee to reach the optimum solution, some features are very favorable in finding
sufficiently “good ” solutions, such as the asymptotic behavior of the iteration
procedure and that the probability of finding an optimal solution increases
monotonically with decreasing of the scheduling control parameter. To design a proper
simulated annealing algorithm, not only the solution state generating mechanism
should be well designed, but also, more importantly, the cooling schedule. The long
homogenous Markov chain length and small decreasing rate of the “temperature™-
control parameter are essential for the “good” solution, but they greatly increase the

computing difficulty.
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The simulated annealing algorithm has been widely applied in various
combinatorial optimization problems, such as scheduling and sequence problems.
Matsuo et. al.(1987) used simulated annealing on the job shop scheduling problem
with the makespan as objective. Laarhoven et. al.(1992) used simulated annealing to
find the minimum makespan in a job shop scheduling problem. The algorithm
successfully avoid the local minimum, though it is at the cost of a large running time.
Suresh et. al.(1993) applied simulated annealing on the multiobjective facility layout

problem and the solutions obtained compare favorably with the best known resuits.

2.3.2 Tabu Search Strategy
Tabu search was developed by Glover (1986, 1989, 1990, 1993) which is briefly
presented below.

Tabu search, as a heuristic search strategy approach for computationally hard
optimization problems, has a broad range of applications from graph theory and
matroid settings, to general pure and mixed integer programming problems. It is an
adaptive procedure with the ability to make use of many other methods, such as linear
programming algorithms and specialized heuristics that it directs to overcome the
limitations of local optimality.

The tabu search strategy as presented in Glover (1990) is described below:

To describe the workings of tabu search, we present a combinatorial

optimization problem in the following form.
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Minimize c¢(x) xeX in R, (2.3.3)
c(x) is the objective function, x € X is the constraint. We define a move s to consist of
a mapping defined on a subset X(s) of X:
s:X(s)—> X (2.3.4)
Associated with x € X is the set S(x) which consists of those moves s e S that can be
applied to x; i.e., S(x) = { s € S: x € X(s) } ( and we may thus also write X(s) = {x €
X:seSx)}).

Tabu search in a simple form discloses two of its key elements: constraining
the search by classifying certain of its moves as forbidden, and freeing the search by a
short term memory function that provides " strategic forgetting."

The operation of the procedure in simplified form is described as follows. A
subset T of S is created whose elements are called tabu move. These elements of T are
determined by utilizing historical information from the search process, extending up to
t iteration in the past, where t can be fixed or variable depending on the application or
stage of search. Membership in T is by means of an itemized list or by reference to a
set of tabu conditions. Thus the simplified form for tabu search is:

STEP 1. Select an initial x € X and let x*:=x. Set the iteration counter k=0 and
begin with T empty.

STEP 2. If S(x) - T is empty, go to STEP 4; otherwise, set k:= k+1 and select sk
€S(x) - T such that Sk(x) = OPTIMUM(s(x):s€S(x) - T).

STEP 3. Let x:= sk(x). If c¢(x) < ¢(x*), where x* denotes the best solution

currently found, let x* := x.
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STEP 4. If a chosen number of iterations has elapsed either in total or since x*
was last improved, or if S(x) - T = & upon reaching this step directly
from Step 2, stop; otherwise, update T (as subsequently identified) and
return to Step 2.

The principal elements of the Tabu Search are the following:
Tabu lists T
The tabu list encloses the most recent moves. Its function is to prohibit certain
moves for a period of time (number of iterations) to enter or exit the current
solution state, to prevent cycling and avoid local optimum.
Heuristic Evaluation Function OPTIMUM(s(x):se S(x) - T)
This function is used to generate the new solution state s(x) from the current
solution state x, which 1s assumed to be a best "move". If the new solution state
improves the objective function value, it would be accepted as the new current
solution state.
Aspiration Level
The use of an aspiration level function A(s,y), which depends on the move s and/or
vector y, is one of the tabu search’s important features. If the objective value
c(s(y)) of a move s(y) is less than a prespecified aspiration level A(s.y), then the
tabu status of the move may be overridden. The move is now defined as a solution-
specific move, depending on both s and y. Each solution-specific move is

characterized by a set of attributes. The aspiration level might be defined either for
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a collection of these or for a specific objective. Once a move passes the criterion
then its tabu status is overridden.

4) Strategic oscillation
The strategic oscillation is also an important element tabu search, referring to the
search stage where the moves are allowed to enter the infeasible region. The search
oscillates back and forth between the feasible and infeasible solution space. Thus it
provides the opportunities to select paths which otherwise might not be allowed.
Strategic oscillation might also be useful for sensitivity analysis by providing a
range of solutions around the constraint.

5) Intermediate and long term memory
The intermediate term memory function records features that are common to a set
of best trial solutions during a particular period of the search. The search then
continues, using these common features as heuristics to identify the new solutions.
The long term memory function diversifies the search from the current search
stage by using a heuristic which is usually generated from the search. It generally
works in a manner opposite to the intermediate memory by penalizing good moves
rather than rewarding them. This step might achieve an escape from a local
optimal solution. Both functions are used for a short number of iterations and then
the search continues with the original heuristics or evaluation criteria.

The results from various tabu search applications have been very encouraging.
These applications include a job schedule problem, traveling salesman, mixed integer

programming, as well as the transportation equilibrium network design problem and a
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variety of other discrete optimization problems. Knox and Glover (1988) demonstrated
the power of a prototype tabu search method on a benchmark set of seven "small but
hard" symmetric traveling salesman problems ranging from 25 to 110 cities. Laguna,
Barns, and Glover (1991, 1992) developed powerful tabu search methods for two
related single machine problem with linear delay penalties and sequence dependent set
up costs.

Tabu search strategy has also ever been implemented successfully by Mouskos
(1991) in solving a single user class transportation equilibrium network design
problem, where the optimal solutions for 5 small networks were found in less than 500

iterations, and good solutions were reported for 3 medium networks.



CHAPTER 3
FORMULATION OF TWO CLASSES OF USERS EQUILIBRIUM

TRANSPORTATION NETWORK DESIGN PROBLEM (TCNDP)
ADDRESSED IN THIS STUDY

The TCNDP in this study is addressed as: Given a transportation network with a set of
nodes N and a set of links A, a fixed O-D matrix representing passenger cars and a
fixed O-D matrix for heavy trucks, link travel cost functions reflecting the interaction
between passenger car flow and truck flow on the same roadway, and a set of links
that can be expanded by one additional lane on the original network with the following
options:
Option 1: Expand the link by one lane and allow all traffic on new lane,
Option 2: Expand the link by one lane, but allow only passenger car traffic on
new lane,
Option 3: Expand the link by one lane, but only truck traffic is allowed on new
lane,
then, the objective is to minimize the UE total travel time of the network, subject to
the available budget.

The most important issues arising in solving TCNDP are: 1) two different
types of network users, passenger cars and trucks, sharing the same roadway, which
possess different impacts to the roadway congestion and the interaction between
themselves, and 2) the network design variable needs to include one of the three traffic

operation associated with each new lane.
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The TCNDP problem framework has been developed by Mahmassani et.
al.(1985). Mahmassani et. al. (1985) used five options of traffic operations associated
with each link and its potential additional new lane. The other two options considered
are the ones that restrict the use of an existing link by the trucks in Option 1 and
Option 3. The reduction to three options was made to reduce the complexity of the
problem.

In order to model two different travel performance along the same roadway by
passenger cars and trucks and the interactions between them, as well as the three
different types of the traffic operations, a “conceptual™ network presentation is used.

In the “conceptual” network presentation, each physical highway link is
divided into two sub-links, one for the passenger cars and the other for the trucks. The
interaction between the cars and trucks is represented by the interaction between these
two sub-links. In addition, 2 dummy node with a dummy link and the candidate links
for addition are also added on each sub-link, in order to address the three link
expansion options (See Figure 3.1.1). When both the dummy links of the passenger
cars and the trucks sub-links are “turned on”, Option 1, the shared lane would be
selected. When neither dummy links is “turned on”, no build option would otherwise
be selected (no expansion). Options 2 and 3 are represented by “turning on” one of the
dummy links respectively. This network representation is similar to the Mahmassani,
et. al. (1985) network representation.

Consider a highway network with N nodes, and assume that nodes 1,2, ..., N

are passenger car nodes and N+1 , N+2, ..., 2N are truck nodes. Let passenger car sub-
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links (in single direction only) to be numbered 1, 2, ..., m; dummy links (defined as

mechanisms to keep the existing lanes distinct from the new lanes ) to be numbered

dummy node

dummy node

dummy Link dummy Link
——— 3 _—

m+1~2m C=2m+1-3m C=5m+1-6m

: A=1~m _ A=3m+1~4m
l DS D

Passenger Cars Network Trucks Network

A - original highway link. Link i for cars, and links 3m~+i for trucks.
B - dummy links. Links m+i for cars, and links 4m+i for trucks.
C - proposed lane additions. Links 2m+i cars, and links Sm+i for trucks.

i=1,...,m. where m= total number of existing links in single direction only

Figure 3.1.1 Example of Single Highway Link Presentation

m+1,..., 2m; and label proposed lane additions to the network 2m+1,....3m. Thus, if i is
the highway link under consideration, then m+i is the dummy link associated with
Link i, and 2m-i is the lane addition associated with link i. Consequently, the truck
sub-links, dummy links and proposed addition links are number from 3m+1 to 4m,

4m+1 to Sm, and Sm+1 to 6m, respectively.
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The TCNDP problem mathematical formulation is customized for this study

as.

om

MIN 1 (x,)x,

a=1
subject to :

" 4m

Zcznﬁ-aymwt + Zc2nl+ttyru+2 < B

a=1 a=3m+\

x”*"' < Myu+m vae(1~m13m+l~4m)

Voew =(0,1)  Vae(l~m, 3m+1~4m)
X, 1s a user equilibrium flow.
where t,(x,) is the travel time on Link a .

X, 18 the flow on link a.

¢, is the fixed cost of expanding extra lane for Link a

B is the available budget

(3.1.1)

(3.1.2)

(3.1.3)
(3.1.4)

(3.1.5)

y, 1s zero if Link a is not added to the network and one if

included.

m 1s total number of existing links in single direction.

M is a very large constant.

Formula 3.1.1 is the network total travel time with respect to the user

equilibrium flows; Formula 3.1.2 is the budget constrain; Formula 3.1.3 is prohibiting

flow on links not constructed; Formula 3.1.4 is the decision variable definition and

Formula 3.1.5 restricts the flow to be a user equilibrium flow.
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Mahmassani et. al. (1984) presented a solution methodology based on the
branch and bound algorithm for the TCNDP problem. However, for a binary variable
0-1 integer programming problem, the computation complexity is equal to 2", where n
is equal to the total number of integer variables, or number of links. Consequently, the
TCNDP computational complexity would grow to 4" when the three types of traffic
operation options are introduced. With presence of the high computation complexity
of TCNDP problem, the branch and bound methodology is not practical even to solve
a moderate small size network. Therefore, a heuristic search strategy was developed in
this studyto solve problem 3.1. The developed heuristics based search strategy solution
methodology for TCNDP problem in this study, which aims to find the sufficient

“good” solution for middle to large size networks, is presented in Chapter 5.



CHAPTER 4

CHARACTERISTICS OF THE TRAFFIC ASSIGNMENT PROCEDURE
USED IN THE TCNDP

This chapter presents a review of traffic assignment with asymmetric link interactions
and the characteristics of the two classes of users equilibrium traffic assignment with
passenger cars and trucks.

The primary concerns of the traffic assignment procedure are the following; 1)
The form of the link travel cost function which captures the interaction between trucks
and passenger cars, 2) the existence of a unique solution to the traffic assignment

procedure and 3) the convergence characteristics of the solution algorithm.

4.1 Review of Traffic Assignment Algorithm
The most representative algorithms used in the single class of user traffic assignment
include Frank-Wolfe algorithm and gradient projection method. The diagonalization
algorithm is one of the methodologies used to solve the two classes of users with
asymmetric interactions UE traffic assignment problem. In this section, the Frank-

Wolfe algorithm and the diagonalization algorithm are reviewed .

4.1.1 Frank-Wolfe Algorithm (Convex Combination Method)
Since the travel cost function 7, is usually nonlinear, the UE mathematical model
(2.3.6) is a nonlinear optimization problem with the linear constraints. If the travel cost

function ¢, is convex and differentiable in the feasible set, the general approach to
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such problem is to use the gradient descent method. The gradient decent method
converges to the equilibrium flow. In each iteration, it takes the move along the
deepest decent direction of the current state with the best step size that optimizes the
current state objective function value.

The Frank-Wolfe algorithm is one of the gradient decent methods which is
applicable to traffic assignment models (2.2.6). At each iteration, the Frank-Wolfe
algorithm first finds a search direction by solving a linearized approximation, then
solves the optimum move size along that direction. The efficiency of the algorithm
derives from the fact that the direction finding step is equivalent to performing an all-
or-nothing traffic assignment, that all flow between given origin and destination is
assigned to the shortest path between them.

The basic steps of the Frank-Wolfe algorithm used in the UE or SO models are
as below (See Sheffi 1985):

STEP 0: Initialization. Perform all-or-nothing assignment based on the free
flow t,° =¢2 =1,(0), Va. ; This yields the set of link flows {x°}. Set
counter n=1.

STEP 1: Update. Set 1) =t (x,), Va.

STEP 2: Direction finding. Perform all-or-nothing assignment based on {z,}.
This yields a set of (auxiliary) link flows {y. }.

STEP 3: Line search. Find optimal move size ¢, that solve
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Ka+a(yg-xi)

MIN Y j t,(wydw  subjectto 0 <oy <.
u 0

STEP4: Set X! = X! + a,(y) ~ X!), Va.
STEP 5: Convergence test. If a convergence criterion is met, STOP (the

current solution is the set of equilibrium link flows); otherwise, set

n=n+1 and GO TO STEP 1.

4.1.2 Diagonalization Algorithm for Two Classes of Users Traffic Assignment
As described in the preceding sections, the two classes of users traffic assignment
needs to capture the interaction between different classes of users. The most widely
used algorithm for multiple classes of users traffic assignment procedure is the
diagonalization algorithm. The diagonalization algorithm is based on solving a series
of standard UE programs, which can be solved by the Frank-Wolfe algorithm. Each
iteration of this procedure requires the solution of one such program. The
diagonalization algorithm is presented below:
STEP 0: Initialization. Find a feasible link flow vector X". Setn=0.

STEP 1 : Diagonalization. Solve the following problem:
a+l3°"”

MINZ'®) = Y [6, (] oo X WX ) (4.120)
a g

subject to:

> Ai=q" vr,s (4.1.2b)
k
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fi7=0 vk, r,s (4.1.2¢)
X, =2 Y3 05 Va (4.1.2d)
ros k

where a denotes Link a.

x, denotes the link flow on Link a.
S denotes path k for traveler from origin r to destination s.

g""denotes the total flow from origin r to destination s.

This yields a link flow vector X"*'.

STEP 2 : Convergence test. If X" ~ X", stop. If not set n= n+1, and go to
step 1.

In Sheffi (1985), it is shown that in the diagonalization algorithm, X" = X"*' if
and only if X" is a vector of flows that satisfies the UE conditions, and the uniqueness
of the solution requires that the Jacobian matrix (2.2.10) is positive definite. The prove
of the uniqueness referred to Smith (1979) and Dafermos (1980) where a variational
inequality formulation was adopted. It implies that if the algorithm converges, its
solution is an equivalent flow pattern.

By noting that only the last iteration's flow pattern needs to be determined
accurately, that the problem at each iteration is subject to the same set of constraints
and that the solution of problem is similar to the solution of a single user class, Sheffi
suggested a "streamlined" version of the diagonalization algorithm, in an attempt to

reduce the computational cost. It has to be noted that the convex combinations
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algorithm requires many iterations to research convergence. Thus the solution of
Problem 4.1.2 requires a number of internal iterations to reach convergence per outer
iteration of the diagonalization algorithm. The streamlined version applies only one
iteration to Problem 4.1.2, thus reducing it to a similar form as the convex-
combination algorithm for a single user class (Sheffi, 1984).

The next section presents the travel cost functions used in the traffic

assignment procedures of the TCNDP.

4.2 Travel Cost Functions
4.2.1 Link Travel Cost Function
This section presents brief literature review on the link travel cost functions. Both
single class and two classes of users link travel cost functions, as well as the most

recent travel cost functions with turn movement will be presented.

4.2.1.1 BPR Single Class Travel Cost Function: The most used link delay function
in highway network projects, developed by the US Bureau of Public Roads (BPR) has

the following form:

t, =01+ a(Zo)) 4.2.1)
c

a

where ty is the travel time on Link a.
t’, is the free flow on Link a.

o, B are parameters calibrated on the basis of speed limit and the link capacity.
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¢, 1s the “practical capacity” of Link a.

Xy is the actual flow on Link a.

Florian et. al. (1976) provided estimates for parameters a and fB and the

corresponding free flow travel time.

4.2.1.2 Two Classes of Users Link Travel Cost Functions: A modified BPR type
travel cost function was used in Mouskos (1985) and Mahmassani et. al. (1987) to
represent the interaction of passenger cars and trucks sharing the same link.

Although the function was not calibrated with any real data, it is consistent
with the concept of passenger car equivalents for heavy vehicles as applied by the
1985 Highway Capacity Manual (HCM) and later the 1994 HCM. The modified
version of the two classes of users travel cost function has the following form

(Mahmassani, et. al., 1987)

o= 1,14 (e Ky (422)
by = 12, (1+ (Rt 8 L (42.3)

s

a

Where t,,, t,r are the travel times of the passenger cars and trucks on Link a,
respectively.
t.n tr are the free flow time of the passenger cars and trucks on Link a
respectively.
a4, P and o, By are roadway congestion parameters for the passenger cars

and trucks respectively.
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Ca’ is the capacity of Link a.
X X,r are the actual flow of the passenger cars and trucks on Link a
receptively.

e is truck equivalent factor to passenger car.

4.2.2 Link Travel Cost Functions (LTCF) Used in this Study

The two classes of users link travel cost functions used in this study are a modification
of the BPR functions (See Section 2.3). The main reason for using this modified BPR
curves is: first, to capture the interaction between trucks and cars, which are not
present in the original curves; and second, to ensure that a unique solution can be
found by solving the traffic assignment procedure.

Mahmassani and Mouskos (1987) defined the interaction between the
passenger cars and trucks by converting the truck flow volume to passenger cars and
derived the truck and passenger car link cost BPR functions as shown in Formula 4.2.2
and 4.2.3. However, in most of highways, the left most lanes are always passenger cars
only lanes. The impact of the trucks to passenger cars consists of the indirect impact
(to leftmost lane cars) and the direct impact (cars sharing same lanes). Taking into
consideration into the fact that in most of highways, a high percentage of passenger
cars utilize the truck free lanes to avoid the interaction with trucks, a modified link
travel cost function other than the one used in Mahmassani and Mouskos(1987) which
overestimates such an impact by using the direct impact over all the lanes. No study

has been conducted to quantify this impact, so a moderate formula is used by scaling



Table 4.2.1 Volume/Delay Functions (Florian et.al. 1976)

Type of | Speed Limit Free Flow Speed(miles/hour)
Roadway | (Mile/Hour) /Minutes Per Mile
1 0 0 1.1
2 0-30 0.73 3.66 15.0/4.00
3 0-30 0.61 3.5 17.0/3.53
4 0-30 0.88 4.46 20.0/3.00
5 0-30 0.69 5.16 23.0/2.61
6 0-30 1.15 4.42 25.0/2.40
7 31-40 0.62 3.65 30.0/2.00
8 31-40 0.67 4.94 32.4/1.85
9 31-40 0.62 5.14 32.4/1.85
10 31-40 1.03 5.52 35.3/1.70
11 31-40 0.66 5.09 41.4/1.45
12 31-40 0.54 5.79 41.4/1.45
13 31-40 1.01 6.59 41.4/1.45
14 50 0.88 4.93 55.0/1.09
15 50 0.77 5.34 55.0/1.09
16 50 1.15 6.87 55.0/1.09
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down the total impact of the passenger cars and trucks as the half of the direct impact.
The same concept is applied to the truck travel cost function. Therefore, the modified
two classes of users link travel cost function (LTCF) used in this study is formulated
as:

X +05x¢g-X,

t, =10 (+a,( - Y1) (4.2.4)
05xX  +¢& -X ..
L = L (L @ty ( o) (4.2.5)

The notation is the same as Formula 4.2.2 and 4.2.3. The functions are depicted in

Figure 4.2.1 with the assumption that ¢ = ¢, is equal to 4; 30% of total number of
vehicles are trucks, and free flow travel time for passenger cars ., is 1.0 minute and

1.2 minute for trucks ¢, on the link. The type of the road is consistent with the one
defined in B.P.R. travel cost function (Table 4.2.1).

As mentioned in the previous chapter, the network consists of two identical sub
networks, one of which is the passenger car network and the other is the truck
network. The corresponding links in two sub networks share the same roadway. Thus
Network G(N, A) consists of the passenger car network P(N, A), and the truck
network T(N, A), Links ai (i=1, A) are the links in P(N, A) while links bi(i=1, A) is
the links in T(N, A). Only the pairs of links ai and bi (i=1, n) share the same roadway.
Assuming the individual link LTCF travel cost function is t; , where j is the links in
P(N, A) and T(N, A)), then the network travel cost function matrix is represented as:

TF = (L1l yyreeesbaysbytseeestysseenyn) (4.2.6)

ai>***>*%an?®
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The passenger car link travel cost function is ¢, = f(£2,@ ;> B,sX,>XsCu»€) and

truck link travel cost function is 1, = f ({4, @, By X, X,0 -y E) » Where t.°, o, Bl
X Cy and t,;’ , Gty P Xy Co; are the free flow travel time, parameter o, B in BPR cost
function, link flow and link capacity for passenger car link ai and truck link bi
respectively; and € is the truck equivalent factor to the passenger car. Since only the

corresponding passenger car link and truck link share the same road, we have:

ot .
ot = if j=ai or bi
—L =9 Ix - 4.2.7)
J
Ix 0 otherwise
and
ot
Oty _ ax’” if j=ai or bi 428)
J s
Ix, 0 otherwise

where 1 =1,..., n, ; ai=i; bi=n+i, and j=1, ..., 2n.
The corresponding Jacobian matrix, representing the pattern of link

interactions, for the link travel cost functions is written as:
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Ol 0 0.. 2 o o 0
ox, O o0 0. ox, O O
0 .0. =% .0. 0 .0. L
5 xai 0 0” xui 0
S P
0 .0.. .. 0. —* 0 .0. .0. —X
a xlln & xwr
J= ot ) ) ) ot . . . (4.2.9)
ox, O ol 0 oy, O O
0 .0. —* .0. 0 .0. —* 0
J x, d x,
S p
0 .0.. .. 0.. =% 0 .0. .. 0.. —=
L a xlm 0’.’ xlm
where
0 Bai =]
2 tui _ aaiﬂuitui (xai + O‘SS(xhi)J
dx, ¢ ¢
Oty _ 050, Bt u (xai +0.58(x), ))ﬁm_]
dx, c; ¢
0 B~
at,  05a, Bty [O‘qui + &(x,, ))
dx, c; c;
o1, ean Bl (05x, +e(x,))"
4 — ! ! ! al ! (4‘2.10)
o x, ¢ ¢
: . .. dt, 1y, :
The Jacobian matrix is asymmetric, since . # FIa As mentioned before,
bi ai

in this case there is no known mathematical program the solution of which is the

equilibrium flow pattern, and direct approximate solution algorithms rather than a



56

mathematical programming formulation, such as diagonalization algorithm, are used
to solve the problem. However, the diagonalization algorithm requires the link-travel-
time Jacoblan be positive definite. Otherwise, the problem may not have unique
equilibrium solution. (See Sheffi 1985).

In the presence of the asymmetric matrices, the positive definite cannot be
proven by using the leading minor determinant or the eigen values. The definition for
a matrix to be positive definite is presented below:

Definition: An »n x n matrix A is positive definite, if and only if:

XA(X)" >0, for any X=(x,, ..., X, ...X,,), X; = R and one of x, must be non zero.

The Jacobian matrix for the LTCF travel cost function is quite unique. Each
row represents the impact of the volume change in one specific link to all the links.
Only the link itself (passenger link) and the corresponding truck link which shares the
same roadway have non-zero impact and all the others have the impact value equal to
0.

Theorem 1 : Given an 27 x 2n matrix:

a4y 4y, Aunety o Doy o Dan
A=\ a, ... a; .. a, ity o+ Qigmey - Qign
Gomt - Qe Qame Gamosn 0 aneen 0 Fanyen

where for each row i, >0, and a,,;, > 0 if i< n and ay; > 0 if i=n, while the

remaining elements are equal to zero, if
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40,0 yiom > Gigim + Aamy) ifi <n
4aiia(i—n)(i—n) > (a;(i_,,) +a(i_,,);)2 ifi 2 n
then the matrix A is positive definite.
Proof:
Assume any given 2n dimension vector X=(x, ..., X;, ...X,,), X; € R and one of X; must
be non zero.

XACX) = (%, 000X, 100Xy, ) X

a ay . 4y, Dy o Dy o Dy X,
L e 4a, Dinety o ity - Gy | X X;
LYam - Gami o Qamn Qonmey o Qommey o Ganen | X5,

Since 2,;>0, and a,,.;, > 0 if i<n , and a,;, > 0 if i>n, then:
XA(X) =
(ayx, + Ay X

miloe e QX Qi Xy yysees O Xy F Q00 Xoy oo X QG0 X,

AR a(2n)(2n)x2n + a(n)(2n)xn )

X

x2n

2 2 2
= (al lxl + a(n+])1xn+1x1 )+"'+(aiixi + a(n+i)ixn+ixi )+“'+(am1xn + a(Zn)(n)x?.n xn )+"'+

2 2
(aj,'xj +a(j—n)jxi-—nxj)+"'+(a(2n)(2n)x2n +a(n)(2n)xnx2n)

where i< n and j>n.



58

2
= [allxl + (@ + Aipeny)X

n+l

X1 F Aiatyneny Xn ]+~-‘|‘

[a,x Py (a

h‘l

2
(n+i)i +ai(u+i )xm—/ i +a()l+l) u+i)xn+i ]+"‘+

2
[ann n +(a(7n)n +a 1(2n) )x x2n +a(2n)(2n)x2n ]

2
I( ¢ x Ay al(ml) 2 (4a11a(n+l)(n+]) .'(a(m-l)l +ai(n+l))
- l

xu+l) + 4 ) n+l]+ o+
24/a, ap
4da.a, o —(a, . +a, )
n+/ I(IH-I) 2 - (n+iy(n+i) (n+1)i i(n+i) 2
[(Ja,;x; + ——F—=—x,,;) +( Yxo, H

Q'Cl“ 4ah

2
f 7n)n n(2n) 2 4a!ma(2n)(2n) - (a(zn)n + an(Zn)) 2
( mr n ‘x2n) +( 4 )x2"1
2«, f a,., 2
da.a >(a

2 e
. i) (i) i(i+m) +a(r+n)t) lfl <n .
. if we have ) o , then the above formula is
4aiia(i—n)( > (af(iw) +a(i—n)i) ifi 2n

i=m)
greater than zero for any X. Therefore, based on the definition of a positive definite
matrix, the Matrix A is positive definite. Theorem 1 is proved.

The two classes of users BPR travel cost function used in Mahmassani and
Mouskos (1987) (Formula 4.2.2, 4.2.3) fails to satisfy Theorem 1 condition and its
Jacobian matrix is not positive definite, as shown below

Copying the same notation in Formula 4.2.6, 4.2.7, 4.2.8 and 4.2.10, we have

the first derivative of the Formula 4.2.2 and 4.2.3 as:

0 Bl
Ity Bt [xui +&(xy, ))

o x, c; c

I !

B~
Z tai _ mﬂu: ai (xm' + g(xbi ))

0 xy; c; c;

7 I

0 ,Bm"‘
Oty Ofly (xui + E(be)]

o x, c; c

I i
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Oty _ sop it ( : a(xmjﬂ”’"' (@2.11)

o x,; c, c

1 I

Since we can have :

51‘0["‘61 ﬁtui_a atbi_a é)[bi__a
Moo = Hiti+ny = Mmoot = Bienyien)
ﬁ xai éj xhi é’ xt/i 5 xbi
, then it yields:
a x, +ee, )"
— ail 7 ai m ai bi

4aiia(i+n)(+n) - (ai(i+n) + a(i+n)l ) 4 ( c j

l i

ﬁh[" 2 2 2.0 2 2/3:1}_2
Ea,,,ﬂ,” bi (‘x + E(x[n j - & aui ,8",- tui (’xui +g(xhi )} _
2

2 -2
aln ﬂbl bi [x +S(xbl ] ~

ﬂm_l 0 ﬁln"]
m ai ar [x + g(xbl J % 8abiﬂhithi (xai + 6(xbi )J

C; C,

7 1

Bu-) 0 Pr-1
— Eam ai al xui + g(xbi) abiﬂbitbi xai + g(xhi) 2
=-[ - ]
i

°<0
c; ¢ ¢ c

Therefore, the matrix is not positive definite, which implies that a unique
solution to the traffic .assignment is not guaranteed. In the following, the LTCF
function is examined. Substituting the first derivatives of the LTCF travel cost

function (Formula 4.2.10) to the Theorem 1 condition,

2 .
4430 snyisny — @iiany + i) > and we have:

2 _
4aua(l+n)(l+n) (ai(i+n) + a(i-m)i) -
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0 0 Bui-1 Bi-1
35 auiﬁnitai % 8abiﬂbitbi % ('xai + O‘nghi) % (O'SXUi + 8(:[”-] _
C; (o C.

I ! i

c

1

025¢a,, Boy (1,)° [xai + O-S&Chijwm—z 3 025a;, B, (1)’ (O.SJC,H' + Exhi)%_z
2

2
C ¢ ¢

c.

I

Bai—)
[xa,. + O.Sax,,,.)
28,2 T
— l aZilBii (t!())r)2 [O‘SXui + &hij [ {14 . gaui uirz[ll." % Ci
- 2 0 =1
4 ¢ G a,, Bty [0.5xw- + a‘x,,i)ﬁm

i i
C,

i
2

[xm+0.5£x,”.] -
VAN c
(gamﬂul m] % ! _ 1}

0 R
%y il [O.Sxm. + &x,,,-j ’
c,

I

(4.2.12)

If Term 4.2.12 is wanted to be greater than 0, it requires that the following inequality

formula holds:
(M}ﬂ |
B 1 ¢
7_m< ga(llﬂal Oal X ! 7l <7+‘\/Z§ (4213)
Ay Bty [0.5)6[,, +‘£xbi) "
c.

!

The inequality condition (4.2.13) can be easily satisfied in almost all scenarios of the
specific problem. For the travel cost functions BPR parameters used in this study, the
inequality condition (4.2.13) is held, thus the diagonalization algorithm for the two
classes of users traffic assignment using LTCF in this study would converge to a

unique equilibrium flow. In the following section, a set of numerical experiments is
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presented to study the convergence characteristics of the diagonalization algorithm

based on the link travel cost functions used in this study.

4.3 Numerical Experiment of Diagonalization Algorithm
In the following example, a two-link-two-node network is used to test the validity and
effectiveness of the diagonalization algorithm, including the streamlined version of the

diagonalization algorithm, as applied to the two classes of users traffic assignment.

Link a1

o 0

Link a2

Figure 4.3.1 Example Passenger Car Network

Link b1

S

Link b2

Figure 4.3.2 Example Truck Network

The link performance functions are assumed as:

X . +2x
1, =2(1+ 1.03(=eL—LtL)>
o =2 ( 7600 )"
Xy 2%y 55
L =2(1+1.03(—==—7")"")

2400
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05x , +4x
=31+ 062(——4l—__hly5H
=3 ( 1600 )
t, =31+ 0.62(05)5“2 +4x,, )5,14)

2400
The total O-D flow is 3000 for passenger cars and 300 for trucks, which is:

q,=x, +x, =3000 (passenger cars)

Gy =X, +,, =300 (trucks).

Diagonalization Algorithm

To apply the algorithm, an initial feasible solution is needed. Assume that the initial
solution is:

x,,=0, x,,=3000, x,,=0, x,,=300.

The algorithm’s iteration is described as follows:

First Iteration:

Step 1: Diagonalization. Solve the sub problem:

minimize:

2(X,, X 430 Xpy 5 Xpy ) = j (2+424x107"%(@)*?)dw + j (2+452x 107" (@ +2 x 300)**)dw +
0 0

R}

j(3 +631x1077 (40)*"* Ydw + f(z +786x107"°(0.5% 3000 + 4w)*"* Ydw
0 0

Subject to: xal+xa2=3000
xb1+xb2=300

xal, xa2, xbl, xb2 >=0.
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The Frank Wolfe algorithm is used to solve the problem, and the solution of step 1 is:
X,,=1440.001, x,,=1559.999, x,,=270.0027, x,,=29.9973

Step 2 : Convergence Test.

A convergence criteria of 1% is used, so the first iteration does not meet the criteria.

Second Iteration:

Step 1: Diagonalization. Solve the sub-problem

Tal

Z(X Xy s Xy s Xy ) = j (Q+424 x 107" (w + 2 x 270.0027)>" )dw +

0

j(z +452x 107" (@ +2 x 29.9973)° 7 )dw +
minimize: XO

[(3+631x 1077 (40 + 05x 1440.001)** )deo +
0

f (3+786x107%(05%1559.999 +4w)**)dw

0

Subject to: xal-+xa2=3000
xb1+xb2=300
xal, xa2, xbl, xb2 >=0.
The solution is: xal=899.9986, xa2=2100.0014,xb1=89.99863, xb2=210.0014.

Step 2 Convergence Test.

1 21 —
max{x” lx“}=x"z x,, _ 2100014 29.9973:6'00688

X, 29.9973

The convergence criteria is not met.
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A summary of 11 algorithmic iterations is shown in Table 4.3.1. This table
displays the iteration number, the solution of the sub-problem, and two convergence
measures, one of which is the convergence to the final solution.

Table 4.3.1 shows that the algorithm converges to the correct equilibrium

solution. The convergence measure with respect to the previous solution shows a

monotonous

Table 4.3.1 Iteration of the Diagonalization Procedure for the Example

Iteration x! Xl X!, X! max{ X - x;-'} max{ X - x‘}
. x

0 0 3000 0 300 - 1

1 1440 1600 270 30 0 0.2

2 900 2100 90 210 6 0.25

3 1260 1740 158 142 0.7556 0.0

4 1125 1875 113 187 0.3169 0.0625

5 1215 1785 130 170 0.1504 0.0125

6 1181 1819 118 182 0.0923 0.0158

7 1204 1796 122 178 0.0339 0.0033

8 1196 1804 120 180 0.0164 0.0033

9 1201 1799 121 179 0.0083 0.0008

10 1199 1801 120 180 0.0083 0.0008

11 1200 1800 120 180 0.0008 0.00

and asymptotic convergence rate, while the actual converge measure with respect to
the final solution) rate is not monotonous, but it finally converges to zero.

In this example, solving the sub-problem uses only two to three iterations
before the sub-problem converges. Therefore, a modified version of the

diagonalization algorithm, the streamlined algorithm which just uses one iteration for
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every sub-problem, is suggested to reduce the number of iterations. Following, the

streamlined algorithm is presented to solve the example problem.

Streamlined Algorithm

The initial solution is: x{, =0, x?, =3000,, x;, =0, and xj, =300.

First Iteration:

Stepl: 1) =2, 13, =21315, 1), =3, 1}, = 6408

Step 2 : Since ¢°, <15, and t}, <t5,, we have y), =3000, yj, =0, y;, =300, and
Y2 =0.

Step3:

30000w 300030000z

min  [2+424x10™%(@)*)do+  [(2+452x10™ (@+2x300)*")do +
0

O0<aur,ah<1
0

3000h 300-300ah

[3+631x1077(40)*)do+  [(2+786x107°(05x 3000 +40)**)dw
0

0

The solution is «, = 048 ,and «, =09.

Step 4: x|, = 1440.001, x,, =1559.999,, x,;, =270.003, and x,, =29.997.
Step 5: Go to Step 1.

A summary of 10 algorithm iterations is shown in Table 4.3.2. In comparison
to the solution obtained by the original diagonalization algorithm (Table 4.3.1), it may
be observed in this specific example, fhe solutions of the two algorithms in each
iteration is very close and both of them approach to the final equilibrium flow. For the

example shown in Sheffi (1985), though the two algorithms’ each iteration solution is



Table 4.3.2 Iterations of the Streamlined Algorithm Procedure for the Example

Iteration x! xl x" Xt max{x"" - fcl;' 1} I t, 1 Iy

0 0 3000 0 300 - ’ ) 71315 3 6.408
1 1440001  1559.999  270.003 29997 o 8.679 2.235 6.408 3.012
2 899.999  2100.001  89.999  210.001 6 2235 4.697 3.056 3.545
3 1259998 1740.002 1575 142.5 0.75 3.895 2.804 3.550 3.134
4 1124.001 1875999  112.5 187.5 0.3158 2.803 3.446 3.177 3.305
5 1214999 1785.001  129.499 170501  0.1511 3.310 3.055 3.282 3.225
6 1180.999  1819.001  118.125  181.875  0.0878 3.055 3.220 3.240 3.251
7 1203751 1796249 122375  177.625  0.0360 3.190 3.127 3.260 3.234
g 119525 180475  119.531 180469  0.0232 3.127 3.168 3242 3.250
9 1200.938 1799.062 120.594 179.406 0.0089 3.161 3.145 3.249 3.245
10 1198.813  1801.187  119.883  180.117  0.0059 3.145 3.156 3.045 3.248
Iteration  yr y i v a, a, max{ x5 - x;}

0 3000 0 300 0 048 0.9 T

1 0 3000 0 300 0375 0.6667 1.25

2 3000 0 300 0 0.1714 0.3214 0.25

3 0 3000 0 300 0.1080 0.2880 0.3125

4 3000 0 300 0 0.0485 0.0907 0.0637

5 0 3000 0 300 0.0280 0.0878 0.0792

6 3000 0 300 0 0.0125 0.0234 0.0158

7 0 3000 0 300 0.0071 0.0232 0.0198

8 3000 0 300 0 0.0032 0.0059 0.0040

9 0 3000 0 300 0.0018 0.0059 0.0050

10 3000 0 300 0 0.0008 0.0015 0.001

99



Table 4.3.3 Iterations of the Streamlined Algorithm for the Example with Different Initial Solution (1)

Iteration  x7, x5, X x5, max{ X } t, 3, i 13,

'xa
0 3000 0 300 0 - 183.098 2 30.387 3
1 839.999 2160.001 0.0046 299.995 o 2.059 6.456 3.002 4.429
2 1439.991 1560.009 165.003 134.997 35869 5.597 2.461 3.870 3.086
3 1109.995 1890.005 90.002 209.998 0.5556 2.627 3.668 3.105 3.406
4 1259.997 1740.003 131.250 168.750 0.4583 3.566 2.929 3.348 3.193
5 1177.499 1822.501 112,501 187.499 0.1429 2.995 3.263 3.202 3.281
6 1214.998 1785.002 122.813 177.187 0.0912 3.246 3.093 3.269 3.232
7 1194.374 1805.626 118.126 181.8743  0.0381 3.111 3.179 3.235 3.255
8 1203.75 1796.25 120.703 179.297 0.0218 3.175 3.136 3.252 3.243
9 1198.594 1801.406 119.532 180.468 0.0097 3.141 3.158 3.243 3.249
10 1200.936 1799.064 120.176 179.824 0.0054 3.157 3.148 3.248 3.246
Iteration v yo v a, a, - { X - X, }

xa

0 0 3000 0 300 0.72 0.999 1.5
1 3000 0 300 0 0.2778 0.5500 0.9999
2 0 3000 0 300 0.2292 0.4545 0.3750
3 3000 0 300 (4] 0.0794 0.1964 0.2500
4 0 3000 0 300 0.0655 0.1429 0.0938
5 3000 0 300 0 0.0206 0.0549 0.0625
6 0 3000 0 300 0.0170 0.0382 0.0234
7 3000 0 300 0 0.0052 0.0142 0.0156
8 0 3000 0 300 0.0043 0.0097 0.0059
9 3000 0 300 0 0.0013 0.0036 0.0039
10 0 3000 0 300 0.0011 0.0024 0.0015

L9



Table 4.3.4 Iterations of the Streamlined Algorithm for the Example with Different Initial Solution (2)

lteration 7 x, x5, m{x:; x;"} f, 2, r;',, 2,

xu
0 1500 1500 150 150 - 5.947 2421 3.777 3
1 1139.999 1860.001 82.500 217.500 0.45 2.669 3.609 3.097 3.424
2 1275 1725 127.500 172.500 0.5455 3.609 2911 3.337 3.198
3 1185 1815 110.627 189.374 0.1323 3.010 3.254 3.198 3.284
4 1218.748 1781.252 121.875 178.125 0.1017 3.254 3.087 3.267 3.234
5 1196.25 1803.75 117.657 182.343 0.0350 3.115 3.177 3.234 3.256
6 1204.688 1795.312 120.469 179.531 0.0239 3.177 3.135 3.252 3.243
7 1199.062 1800.938 119414 180.586 0.0088 3.142 3.158 3.243 3.249
8 1201.173 1798.827 120.117 179.883 0.0059 3.158 3.147 3.248 3.246
9 1199.765 1800.235 119.854 180.146 0.0022 3.149 3.153 3.246 3.247
10 1200.292 1799.708 120.029 179.971 0.0015 3.153 3.151 3.247 3.246
Iteration 37 y v y a, a, max{ X }

xa

0 0 3000 0 300 0.2400 0.4500 0.25
1 3000 0 300 0 0.0726 0.2069 0.3125
2 0 3000 0 300 0.0706 0.1323 0.0625
3 3000 0 300 0 0.0186 0.0594 0.0781
4 0 3000 0 300 0.0185 0.0346 0.0156
5 3000 0 300 0.0047 0.0154 0.0195
6 0 3000 0 300 0.0047 0.0088 0.0039
7 3000 0 300 0.0012 0.0039 0.0049
8 0 3000 0 300 0.0012 0.0022 0.0010
9 3000 0 300 0 0.0003 0.0010 0.0012
10 0 3000 0 300 0.0003 0.0005 0.0002

89
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not as close, the streamlined algorithm almost performs as well as the diagonalization
algorithm. Table 4.3.3 and Table 4.3.4 are the summary of the streamlined
diagonalization algorithm on the above example using different initial solution states
is presented. Contrary to the initial stating solution used above, one starting solution
has all the traffic load in Link la and Link 1b. The other starting solution has the
traffic load equally distributed over two passenger car links and trucks.

The results from Table 4.3.3-Table 4.3.4 show that despite utilizing different
solution states, the streamlined algorithm leads the solutions to the equilibrium flow
with a very similar convergence rate. Furthermore, as it was proved earlier that the
link performance function (Formula 4.2.4 and 4.2.5 ) Jacobian matrix is positive
definite, which implies that the UE solution found is also a unique solution. It may be
concluded that the link performance function (Formula 4.2.4 and 4.2.5) used in this
study would allow the diagonalization algorithm to converge to the problem unique

equilibrium solution.

4.4 Numerical Experiment of Diagonalization Algorithm on Five
Test Networks

In this section, the performance of the diagonalization algorithm for two classes of

users traffic assignment is tested on five networks.

4.4.1 Five Test Networks
Five different size networks, ranging from 16 links to 110 links for single class

network (Figure 4.4.1-4.4.5), are used as the test networks of this study.
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Centroid O:Node —— - : Centroid < : Link
Connector

Figure 4.4.4 Network 4
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Centroid O - Node — — - :Centroid <—> : Link
Connector

Figure 4.4.5 Network 5



75

The network used have similar settings as the common transportation networks. As
shown in Figures 4.4.1-44.5, the centroids are the network users origins and
destinations and the nodes are the intersections of the physical roadway. The centroid
is connected to the network by the centroid connectors, which have infinite capacities
and no travel time costs. Most of the links represent single direction traffic
movements. The database for the attributes of each link include the links length (also
shown in the graphs), link capacity, type of links (determine the free flow travel speed
and the coefficients used in the travel time cost function) and the capacity for the
additional lane. The two classes of users networks contains two layers of the networks,
one of which is for the passenger cars and the other is for the trucks.

Network 1 is illustrated in Figure 4.4.1. It has 6 nodes, 18 links and 5 centroids
for single class network and 12 nodes, 36 links with 10 centroids for the two classes
network.

Network 2 contains 10 nodes and 38 links , as well as 4 centroids for single
class network and double number of nodes, links and centroids for two classes
network. Network 2 is more than two times the size of the Network 1.

Network 3 is more complicated than Network 1 and 2, which has 21 nodes, 64
links and 5 centroids and double number of two classes of users. It is constructed in
the way to simulate the typical urban transportation journey to work trip structure that

is from radial spreading suburban residential areas to a central business district.
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Network 4 is doubles the size of Network 3 and has a similar structure. It has
33 nodes, 126 links and 11 centroids for the single class network. Likewise, the two
classes network has double numbers of nodes. links and centroids.

Network 5 is formed by 50 nodes, 166 links and 6 centroids for single class
network and 100 nodes, 332 links and 12 centroids for two classes network. Network 5

has a freeway network structure, a primary freeway and parallel service roads.

4.4.2 Test of Convergence and Convergence Rate with Number of Internal
Iteration

One of the important issues arising from Section 4.3 is that since the degree of the
convergence of the sub problem does not have a significant impact on the
diagonalization algorithm’s final convergence to the solution, what is the best
convergence degree such that the algorithm can most efficiently converge to its final
solution. In the computer programmed diagonalization algorithm, the sub problem
convergence degree is interpreted as the number of internal iterations.

In this numerical experiment, we apply the computer programmed
diagonalization algorithm on the five test networks (Figures 4.4.1-4.4.5) with different
number of internal iterations. The criteria for terminating the program procedure is
when the final convergence reaches 0.001, that is the ratio of total link flow change
during the last two iterations against the current link flow. The result is shown in

Figure 4.4.6-4.4.25.
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From this result, the following observations are made:
The diagonalization algorithm does converge in all five networks with different
internal iteration number, though none of them demonstrate any monotone
convergence property. This observation is consistent with the findings in Section
4.3, where the manual calculation approach is applied.
The algorithm fast approaches to certain point during the first few iterations, and
then it slowly and gradually reaches the final convergence criteria. In Network 1
experiments, the algorithm quickly converge from 0.2 to the neighborhood of 0.01
within first 15 iterations, and then use over 70 iterations to reach 0.001 (See
Figures 4.4.6-4.4.9). Networks 2, 3, 4 and 5 have very similar convergence pattern
(See Figures 4.4.10-4.4.25). Thus, different convergence measurements established
by the specific problems would be a dominant factor in determining the speed of
the diagonalization algorithm.
Network configuration does not seem to affect the general properties of the
diagonalization algorithm application. The five networks have very different
network sizes and general network structures, but all the graphs of the
experiments have very similar pattern as the computing iteration process
approaches to the termination. This confirms the results of Mahmassani and
Mouskos (1986), even though the Jacobian matrix in their application is not
positive definite.
There does not exists a best internal iteration number. In Network 1, the algorithm

converged to 0.001 at around 70 iterations when the internal iteration numbers are
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1, 2 and 3, while 4 internal iteration needs over 100 overall iterations to reach
convergence 0.001. Internal iteration equal to 2 though is the best one for Network
2. In Network 3, the algorithm with internal iteration equal to 1 or 2 is twice
efticient than internal iteration equal to 3 or 4. Conversely, in Network 4 and
Network 5, the greater the internal iteration number is, the faster the algorithm
proceeds. These observations implicitly suggest that the best internal iteration
number i1s more or less determined by the problem itself. With complicated
network structure, it requires more internal iteration for the sub-problem solution,
and the small number iteration would cause the solution approach the optimal
solution with high degree of fluctuation, requiring more iterations to converge.
Observation 4 findings conflict with Sheffi ’s proposal that the streamline
algorithm which only uses one internal iteration, is a more efficient algorithm by
reducing the iteration number, which is also reported in Mahmassani and Mouskos
(1986). In this study, the computerized diagonalization algorithm with internal
iteration between 2 and 4 is used, which corresponds to the findings of the numerical

experiments.

4.4.3 Test of Network Flow Equilibrium and Distribution Pattern

In this series of numerical experiments, the goal is to find whether the diagonalization
algorithm converges to the user equilibrium flow and study the flow distribution. Both
passenger car trips and truck trips are examined on the five test networks, and the

results are summarized in Table 4.4.1 - Table 4.4.7.



Table 4.4.1 Network 1: Passenger Car Path for Car Only Trips

15
14

0.0323
0.0567

555
555

16
14

0.0333
0.0568

Table 4.1.3 Network 1: Passenger Car Path for Combined Trips

15
14

PATH 1

0.0436
0.0681

589
588

11
16
14

. PATH2

0.0333
0.0679

401
401

Table 4.4.2 Network 1: Truck Path for Truck Only Trips

15
14

0.0323
0.0867

145
145

16
14

0.0333
0.0567

105
105

Table 4.4.4 Network 1: Truck Path for Combined Trips

" NODES CULMTIME - F
‘ T (Mintes): o

PATH 1

"
15
14

0.0495
0.074

159
169

16
14

0.0333
0.0751

91
91
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Table 4.4.5 Network 3: Passenger Car Path for Car Only Trips

PATH 1

1,000

Table 4.4.6 Network 3: Truck Path for Truck Only Trips

21
25
28
31

PATH1 PATH 3
FLOW| NODES' ~ CULM.’
14

0.0975 595 17 0.0596 405 17 0.059
0.1462 505 16 0.1269 405 16 0.1269
0.4372 505 18 0.1865 405 18 0.1865
0.4722 505 22 0.2272 405 22 0.2272
26 0.2637 405 26 0.2637

29 0.2819 Bo| 27 0.3803

30 0.3819 60| 30 0.3824

31 0.4728 405 31 0.4733

405
405

405
405

405

<8



Table 4.4.7 Network 3: Passenger Car Path for Combined Trips

13
14
21
25
28
31

737
737
737
737
737
737

11
15
18
22
26
27
30
31

263
263
263
263
263
130
130
263

11
15
18
22
26
29
30
31

0.04
0.08
0.12
0.1601
0.1965
0.2147
0.3157
0.4163

263
263
263
263
263
134
134
263

98



Table 4.4.8 Network 3:

Truck Path for Combined Trips

21
25
28
31

0.1031
0.1547
0.4857
0.4968

529
529
529
528

17
16
18
22
26
29
30
31

0.0613
0.1288
0.1901

0.233
0.2697
0.2883
0.3928
0.4952

434
434
434
471
471
241
241
471

17
16
18
22
26
27
30
31

0.0613 434
0.1288 434
0.1901 434

0.233 471
0.2697 471
0.3734 230
0.3919 230
0.4943 471

13
12
11
15
18
22
26
27
30
31

0.037 37
0.074 37
0.111 37
0.151 37
0.191 37
0.2339 471
0.2706 471
0.3743 230
0.3928 230
0.4952 471

13
12
11
15
18
22
26
29
30
31

0.037
0.074
0.111
0.151
0.191
0.2339
0.2706
0.2892
0.3937
0.4961

37
37
37
37
37
471
471
241
241
471

Table 4.4.9 Network 4: Car Path for Car Only Trips

31
30
35
34
33

0.0273
0.0455
0.0691
0.0873
0.1256

1,000
1,000
1,000
1,000
1,000

Table 4.4.10 Network 4: Car Path for Combined Trips

31
30
35
34
33

0.0273
0.0455
0.0692
0.0874
0.1257

1,000
1,000
1,000
1,000
1,000
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Table 4.4.11 Network 4: Truck Path for Truck Trips

32 0.0191 250
31 0.0458 250
30 0.064 250
35 0.0876 250
34 0.1058 250
39 0.144 250
48 0.1775 250

Table 4.4.12 Network 4: Truck Path for Combined Trip

PATH 1
32 0.0191 250
31 0.0458 250
30 0.064 250
35 0.0877 250
34 0.1059 250
39 0.1441 250
48 0.1776 250
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Table 4.4.13 Network 5: Car Path for Car Only Trips

19 0.0505
20 0.0931
21 0.1357
54 0.1539
53 0.1721
52 0.1903
51 0.2085
50 0.2267
49 0.2449

476
399
399
399
923
1,000
1,000
1,000
1,000

19
25
26
27
53
52

51

50
49

0.0505
0.0839
0.1173
0.1507
0.1682
0.1864
0.2048
0.2228

0.241

476
77

77

77

77
1,000
1,000
1,000
1,000

14
15
55

53
52
51
50
49

0.0574
0.1148
0.1351
0.1533
0.1715
0.1897
0.2079
0.2261
0.2443

524
524
524
524
923
1,000
1,000
1,000
1,000

Table 4.4.14 Network 5: Truck Path for Truck Only Trips

19 0.0808
20 0.1055
21 0.1502
54 0.1683
53 0.1865
52 0.2047
51 0.2229
50 0.2411
49 0.2593

123
101
101
101
228
250
250
250
250

19
25
26
27
53
52
51
50
49

0.0608
0.0941
0.1274
0.1607
0.1862
0.2044
0.2226
0.2408

0.259

123
22
22
22
22

250

250

250

250

14
15
55

53
52
51
50
49

0.0645

0.128
0.1486
0.1668

0.185
0.2032
0.2214
0.2396
0.2578

127
127
127
127
228
250
250
250
250
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Table 4.4.15 Network 5: Passenger Car Path for Combined Trips

49

0.1054
0.1458
0.1793
0.2255
0.2442
0.2624
0.2806
0.2088

0.317

1,
1,
1,
1

473
243

284
284
000
000
000
000

0.1054
0.1459
0.1993
0.219
0.2372
0.2554
0.2736
0.2918
0.31

473
243
344
344
716
1,000
1,000
1,000
1,000

0.1054
0.1443
0.1828

0.229
0.2477
0.2659
0.2841
0.3023
0.3205

473
230
230
284
284
1.000
1,000
1,000
1,000

14
15
55
54
53
52
51
50
49

0.1316
0.1948
0.2181
0.2343
0.2525
0.2707
0.2889
0.3071
0.3253

527
372
372
372
716
1,000
1,000
1,000
1,000

14
20
26
27
53
52
51
50
49

0.1316
0.1532
0.1866
0.2328
0.2515
0.2697
0.2879
0.3061
0.3243

527
155
54
284
284
1,000
1,000
1,000
1,000

14
20
21
54
83
52
51
50
49

0.13186
0.1532
0.20866
0.2263
0.2445
0.2627
0.2809
0.2991
0.3173

527
155
344
344
716
1,000
1,000
1,000
1,000

Table 4.4.16 Network 5: Truck Path for Combined Trips

19
20
21

53
52
51
50
49

0.1857
0.2274
0.2849
0.3039
0.3221
0.3403
0.3585
0.3767
0.3949

122

77

77
170
246
250
250
250

18
20
26
27
53
52
51

49

0.1857
0.2274
0.2608
0.3123
0.3309
0.3491
0.3673
0.3855
0.4037

122

23
77
77
246
250
250
250

19
25
31
32
33
52
51
50
49

0.1857
0.2247

0.258
0.2913
0.3246
0.3421
0.3603
0.3785
0.3967

122

19
25
26
27
53
52
51
50
49

0.1857
0.2247
0.2627
0.3142
0.3328

0.351

0.3692
0.3874
0.4056

122
58

77
77
246
250
250
250

14
15
55

53
52
51
50
49

0.191
0.2718
0.2927
0.3109
0.3201
0.3473
0.3655
0.3837
04019

14
20
21

53
52
51
50
49

0.191
0.2251
0.2826
0.3016
0.3198

0.338
0.3562
0.3744
0.3926

128

38

170]
246
250,
250
250

14
20
26
27
53
52
51
50
49

0.191
0.2251
0.25685

0.31
0.3286
0.3468

0.365
0.3832
0.4014

128,
35
23

246
250
250
250

06
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Table 4.4.1 shows a pair of passenger car paths when applying 1000 car trips
from Centroid 1 to Centroid 4. The two paths have identical travel time of 0.0567 with
555 car flow allocated on Path 1. The 250 truck trips from Centroid 1 to Centroid 4
utilize the same two paths as the passenger cars as shown in Table 4.4.2. When the
passenger car trips and truck trips are combined in the same network, both paths have
almost the same travel time (due to the computer program’s convergence measure ) for
the car trips, and for the truck trips (See Tables 4.4.3 - 4.4.4). However, the paths flow
allocations are slightly changed, which demonstrates the interaction between the cars
and the trucks when they simultaneously use the network.

Table 4.4.5-4.4.8 shows the results from the application of the same four
scenarios on network 3. Network 3 is a much more complicated network compared
with Network 1. The car trips are from Centroid 1 to Centroid 3, and all the cars use
the path along the outer edge of the network. The truck trips are from Centroid 2 to
Centroid 3. Three paths with almost identical travel time are used by truck trips, where
one of them use a section of the car trip path and attract 595 trips out of total 100 trips,
and the other two paths have almost same links. When the passenger car and truck
trips are merged, the trucks cause congestion on part of the passenger car path, and
therefore 263 out of 1000 car trips divert to the other two paths with similar travel time
as the original one. The congestion by additional car trips cause longer travel time for
the trucks on their original three paths, so that the two new paths become atiractive
and the diverted 37 trucks on the new paths balance the travel time over 5 paths, which

is around the neighborhood of 0.495 minutes (See Table 4.4.8).
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In network 4 , the car trips origin is Centroid 2 and the destination is Centroid
8 respectively. Similarly, the origin for the trucks is Centroid 3 and the destination is
Centroid 7. Both passenger cars and trucks have one dominate path in their own trips
assignment (Table 4.4.9 and Table 4.4.10). Since the car path and truck path use
different links , when the trips are combined, a very small impact is observed, a slight
increase in the travel time of the shared links takes place on both car trips and trucks.
No new paths are generated in this case.

Network 5 represents a highway network in an suburban area, where a major
freeway is accompanied with a pair of parallel service roads. Three paths with
identical travel times are used by both passenger cars and trucks under the individual
traffic assignments are conducted separately (Table 4.4.13 and Table 4.4.14). When
their trips are combined together, under the same traffic assignment, three more
identical new paths for the passenger car trips, and one more new path is created by
truck trips. (See Table 4.4.15 and Table 4.4.16).

In general, the interaction between passenger cars and trucks, caused by
sharing the right of the way simultaneously in the network, primarily increases the
congestion, diverts both car and truck traffic to other new paths, though the magnitude
of the impact to passenger cars and trucks is different.

From the results of these experiments, it can be confirmed that the
diagonalization algorithm does converge to an equilibrium flow pattern. It is also
confirmed the travel times in all paths are identical for each user class separately,

which confirms that this is a UE traffic pattern ( Tables 4.4.1 - Table 4.4.16.). These
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results are very important for the TCTNDP, since they provide confidence that the

solution of the traffic assighment at each iteration is a UE traffic pattern.



CHAPTER 5

DEVELOPMENT OF THE COMBINED SIMULATED ANNEALING AND
TABU SEARCH STRATEGY (SA-TABU)

This chapter presents combined simulated annealing and tabu search strategy (SA-
TABU) to solve the two classes of users equilibrium transportation network design
problem (TCNDP). The search strategy developed identifies the best combination of
links to be expanded and their three traffic operation options for capacity improvement
within a feasible budget constraint such that the system wide total UE travel time is
minimized. The problem was formulated as an integer, nonlinear programming

problem, where the nonlinear two classes of users link travel time function (Formulas

4.2.4,4.2.5) was used.

5.1 General Background of the Combined Simulated Annealing and Tabu
Search Algorithm in this Study

The most important feature of the simulated annealing algorithm is that the acceptance
of the new solution state is probabilistic. The new solution state that improves the
objective function, is unconditionally accepted, and on the other hand, the probability
of accepting the non-improved solution state increases with the quality of the new
solution states-the better objective function values, the higher quality of the new
solution state is, and decreases with the progress of the search. In general, the
simulated annealing algorithm tends to accept all the moves - from the current solution

state to a new solution state, in the early stage of the search, and as the search goes on,

94
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it starts to focus on some good solution space and finally becomes a local optimum
search strategy approach.

As mentioned in Section 2.6.1, the original version of the simulated annealing
algorithm requires that the generation of the new solution state should be randomized
and the decreasing rate of the move acceptance probability should be very small in
order to reach “annealing” status. Such procedure is not suitable for large scale
network design problems, since the computing time of the solution state objective
function value is extremely high, and the number of possible solution states is
prohibitively high.

By introducing heuristic information, the generation of the new solution state
would be more informed, and the simulated annealing process would only search in a
high quality solution state region. Therefore, it has the potential to dramatically
improve the efficiency of the algorithm, though the risk of not finding the global
optimum may also be increased. However, with the proper design of the heuristic
evaluation function (HEF), an efficient simulated annealing algorithm could be
designed to find satisfactory near optimal solutions.

The historical information may be considered as one of the HEF variables. The
information about the impact of each link or each of the three options from the past
experience, which is gained throughout the search process, provides valuable
information. Given the significant computational expense of the two classes of users
user equilibrium traffic assignment (TCUEA) procedure, it becomes a necessity to

seek sufficiently good solutions within a reasonable number of iterations of the



96

TCNDP. Including the historical information as part of the HEF variables may greatly
increase the algorithm’s efficiency. A “noise” or a random error can be added to the
HEF to provide variability of the candidate solution states, as well as to fulfill the
randomization property of the original simulated annealing algorithm.

Tabu search is considered a rather more aggressive heuristic search
methodology. The moves produced by the tabu search algorithm relies more on the
HEF, regardless of the quality of the new solution state. One of its most important
features is the use of the tabu list, which reduces the risk of cycling. Early numerical
experiments show that cycling and reoccurrence of the solution states greatly affect the
effectiveness of the simulated annealing with the use of an HEF. The more informed
the HEF is, the higher the risk of cycling. Therefore, the combination of the
convergent characteristics of simulated annealing and the reduction of the risk of
cycling through tabu search provided the rationale for developing a combined
simulated annealing / tabu search strategy (SA-TABU) to solve the TCNDP.

The following sections present the basic elements of SA-TABU approach

developed for this study.

5.2 Heuristics Based Combined Simulated Annealing and Tabu Search
(SA-TABU) Strategy

The basic elements of the SA-TABU search strategy are: type of moves, HEF and the

search strategy itself. These elements are presented in the following subsections:
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5.2.1 Type of Moves

A move is defined as the basic mechanism which achieves a change from the current
solution state to a new solution state. A solution state in the TCNDP refers to the
network’s configuration.

The network design problem decision variables are 0-1 integer numbers. A pair
of two sets can be used to present a solution state. One set includes all the variables
with values equal to one (expanded links), which is defined as the Solution-1 set. The
other set contains the variables with zero value (non-expanded links), and it is defined
as the Solution-0 set.

The new solution state can be generated by exchanging the elements in two
sets(e.g. some variables change from 0 to 1 and some from 1 to 0). At the same time
the budget constraint (Formula 3.1.2) must be satisfied to ensure the feasibility of the
new solution state. The add/drop move, knapsack move, and random perturbation are
the most frequently methods used to produce a new solution state. The knapsack type
move generates the new solution state by solving a linear integer programming
problem. The random perturbation method randomly swaps a number of elements
between the two sets to generate a new solution state, and is widely used in bipartite
graph problems and travel salesman problems. The add/drop type of move, presented
in Figure 5.2.1, exchanges source element(s) belonging to Solution 1 set which have
the least HEF value(s) with source element(s) belonging to Solution 0 set which have
the highest HEF value(s). Similarly, as before, the new solution state must satisfy the

budget constraint.
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The knapsack move and add/drop move were applied by Mouskos (1990) to
solve the single class network design problem (SCNDP) utilizing tabu search.
Balakrishnan, et. al.(1989) employed the add/drop type move for the solution to the
large scale uncapacitated network design application with dual ascent procedure, and
Janson et. al.(1983) also used the add/drop type move in a network design application
for highway improvements on a real highway network.

Although the knapsack move can immediately identify a new solution state
taking into consideration the HEF values for all the variables of the problem set, it has
a higher computational cost by requiring the solution of a linear integer programming
problem. Its effectiveness is not yet clear. However, it can be stated that it can provide
a good starting solution, and it can redirect the search for a local optima, thereby
diversifying the search (Mouskos, 1991). The add/drop type move generates the new
solution state from the current solution state by a small perturbation and heavily relies
on the HEF ’s information. It also performs like a neighborhood search. Furthermore,
it has low computational cost and feasible new solution states could be found easily.
Another attractive characteristic of the add/drop type move is that it can provide
valuable historical information of the contribution of each move to the current solution
state from the previous one. Based on these characteristics, the add/drop type move is

used in this study.
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5.2.2 Heuristic Evaluation Function (HEF)

The available budget in the network design problem is usually small and the degree for
changing the network configuration is rather limited, so the redistribution of the
network flow usually does not significantly change most of the links HEF are
primarily based on the link flow. If some critical link flow patterns happen to result in
low HEF values, they may not be considered for capacity expansion during the whole
search procedure process. In addition, other information which emerge during the
search such as the solution state objective function values may not be fully utilized.

At present, most of the heuristics functions used are non solution specific. For
example, in Mouskos (1990), the new solution state projecting the new configuration
of the network results in the redistribution of the network flow and the change of each
link heuristics values such as V/C ratio, speed and trave] time values, and then these
new heuristics functions values are used to generate the new solution state. Thus, in
this approach, the generation of the new solution state only depends upon the current
solution state link flow pattern . A solution-specific HEF is developed in this study.

A simplified version of the composite HEF used in this study is as follows:

H =V /C +F xrand(0,})+ BH, | (MAX (BH,, V1)) (5.2.1)
H,: HEF value for Link i,

V.1, Link i ’s V/C ratio,

F,: Random variable expanding factor,

BH,: Link i’s historical contributions to the objective function, this component is

termed as LCOF.
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The main characteristics of the composite HEF developed in this study ere:
The inclusion of the V/C ratio which captures the link’s current traffic flow status; The
second component introduces a random variable to the HEF which acts as an error
term. In essence, the HEF with the inclusion of this random “error” term becomes a
stochastic HEF from a deterministic one. The use of the current value of the solution
state and the historical solution state information in the third term (LCOF) provides an
additional element in the search that rewards variables which performed well in the
past and penalizes those that did not.

The maintenance of the LCOF is shown in Figure 5.2.2. The LCOF values are
only updated for the links whose decision variable values are changed (either enter or
exit the Solution-1 set). For example, if the new solution state has better objective
function value than the current solution state, the links which were changed from
solution 1 set to the solution 0 set (we refer to the links that have such change as
dropped links ) are believed to be inferior to the links which were changed to the
solution 1 set from solution 0 set (we refer to the links that have this change as added
links) and thus the dropped links are penalized in their heuristics values while the
added links heuristics function values are credited due to their better contribution to
the objective function. On the other hand, if the new solution state is worse than the
current solution state, the added links will be penalized and the dropped links will be

credited (See Section 5.3).
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The inclusion of the above mentioned elements into the HEF prompted the use
of the term solution-specific HEF. The solution-specific HEF originates from the
concept of the neural networks. In the neural network process, the “neuron” is
“rrained” or adapted by the feedback of the objective function value derived from the
previous “neuron”. As the search process continues, the [inks which contribute most to
the network’s objective function value form a cluster of links in the Solution-1 set of
the final solution.

Mare details about the solution specific HEF used in this study can be found in

Section 5.4.

3.2.3 Search Strategy

The proposed algorithm for this study borrows the main struciure of the simulated
annealing algorithm, using tabu type of moves and tabu lists to reduce cycling and to
local optimum, in an attempt to develop an efficient, robust search strategy for the
solution of the TCNDP.

Preliminary experiments of the above search strategy indicated that cycling
was encountered very frequently. This resulted from the fact that after a number of
iterations, some links HEF values have significant lead over others due to their
positive impact on the improvement of the objective function value, which forces them
back in the solution if they are dropped. To avoid cycling, tabu lists are utilized to
inactivate certain moves for a few iterations and let the search spread over a wider

solution space.



104

In the algorithm, developed the tabu list contains the reverse of the moves most
recently made. For example, if the Link A is just dropped from the Solution-1 set to
the Solution-0 set (e.g. y,=1 => y,=0), the reverse move is the one that the Link A is
added to Solution-1 set from Solution-0 set (e.g. y,=0 => y,=1). The implementation of
the tabu list is implemented through the use of the link’s heuristic values. After Link A
is dropped from Solution 1 set and resides in Solution-0 set (y,=0), Link A is assigned
with the lowest HEF value in the Solution-0 set, and thus Link A has the smallest
probability to be added up to Solution 1 set in next few moves. When the tabu period
(number of iterations) for the Link A is expired, it is reassigned back to its original
HEF value prior to entering the tabu list.

The next section presents the basic steps of the SA-TABU search strategy

developed in this study.

5.3 General Procedure of the Heuristic Based Simulated Annealing and Tabu
Search Strategy (SA-TABU).

In the previous section, the basic components of the SA-TABU search strategy were
introduced. Following, the basic steps of the SA-TABU search strategy to solve the

TCNDP are presented (See also Figure 5.4.1).

STEP 1 The program starts from an initial solution state y, with the following
initial values of the parameters : i) initial scheduling control parameter

C, (usually referred as “temperature™); ii) initial maximum Markov
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chain length L, and maximum number of iterations lter,,,,. Compute
Yo objective function value f; (total UE network travel time)
STEP 2: Determine the starting control parameter G-
STEP 2.0 Let C,=C,.
STEP 2.1 Use the random generator to generate the trial solution state y, from

the current solution state y, and compute its objective function value f,

(current total UE network travel time)

STEP 2.2 If exp((f, - f,)/C,) > Random (0,1), then accumulate the
number of transition trials by 1, otherwise accumulate the
number of the non-transition trials.

STEP 2.3 After 20 iterations of procedure STEP 2.1 to STEP 2.2, if the
number of transition trials is greater than 16 (Acceptance rate
is greater than 0.8), then go to STEP 3, otherwise let
C, =2xC, , and reset the number of transition trials and
non-transition trials to 0, before going back to STEP 2.1.

STEP 3 Use the trial solution state generator to generate the new trial solution
state y, from the current solution state_y, (This is further explained
later in the section.)

STEP 4 Compute the network total travel time f, for the new trial solution state

Y
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STEP 5 If exp({f, — f,)/ C,) > Random (0,1), then go to STEP 6 , otherwise
increase the number of non-transition indicator Nochg by 1 and go to
STEP 9.

STEP 6 Make the move and set Nochg=0. The current solution state is
overwritten by the new trial solution state. y, < y,, f, < f,.

STEP 7 Accumulate the Markov chain length L by 1, and if L < L, then go to
STEP 9

STEP 8 Decrease the control parameter C, and increase the Maximum Markov
chain length L, and let L=0.

STEP 9 Update the link’s HEF values.

STEP 10 Increase the number of iteration indicator Iter by 1. If Iter is equal to
Iter,,,, or Nochg reaches the maximum number of no change parameter
, Stop, otherwise Go to Step 3.

The generation of the trial (STEP 3) solution state is illustrated in Figure 5.3.2.

The following steps present how to use the add/drop move to generate a feasible trial

solution state utilizing the link heuristics HEF values:

STEP 3.1 Generate Solution 1 set and Solution 0 for the current solution state
and update the link HEF values.
STEP 3.2 Sort the Solution 1 set and Solution 0 set links based on the current

HEF values in decreasing order.
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STEP 3.3 Extract the link with the least HEF value in the Solution 1 set and
retrieve its budget value bl. Extract the link with the highest HEF
value in the Solution 0 set and retrieve its budget value b0.

STEP 3.4 If b1-50>0, let b1 =51-50, and set the value of the link
extracted from Solution 1 set to 0 and from Solution O set link to 1,
otherwise go to STEP 3.7.

STEP 3.5 Extract the link with next highest HEF value in the Solution O set
and retrieve its budget value b0.

STEP 3.6 If 51-560> 0, let b1 = b1- 50, set the link value to 1 and go to
STEP 3.5, otherwise Stop.

STEP 3.7 Extract the link with next highest HEF value in the Solution 0 set
and retrieve its budget value b0.

STEP 3.8 If b1-560> 0, let b1 = b1— 50, and set the link value to 1. Go to
STEP 3.7, otherwise go to STEP 3.9.

STEP 3.9 Extract the link having the next least HEF value from Solution 1 set,
and retrieve the budget value b2, and let 51 = b1+ 52.

STEP 3.10 Extract the link with the highest HEF values in the Solution O set
and retrieve its budget value b0.

STEP 3.11 If bH1-H0>0, let b1 =5b1-bH0, and set the value of the link
extracted from Solution 1 set to 0 and Solution 0 set link to 0,

otherwise go to Step 3.10.



110

STEP 3.12 Extract the link with the next highest HEF value in the Solution 0
set and retrieve its budget value b0.
STEP 3.13 If b1-b0> 0, let bl = b1-50, let the link value to 1 and go to
Step 3.12, otherwise Stop.
The procedure and formula for updating the link LCOF values is outlined in
Figure 5.3.3. Assuming that :
i} C, is the initial processing control parameter (called “temperature”) and C, is the
current control parameter;
i) f, fi, fis the objective function value of the current solution state, solution state
with best objective function value, and the present trial solution state respectively;
iii) The variables set E, A is a set of variables in the Solution 1 set of the current
solution state and in Solution-0 set in the trial solution state, and B is vice versa;
iv) heuristic;, vi/c; is the ith link LCOF value and V/C ratio, and fheur; is the ith link
HEF value to be used for generating a trial solution set;
v) F1 is the random number expanding factor.
Thus links HEF updating procedures is as:
Jheur, =V, | C, + F, x rand(0,1) + heuristic, | (MAX (heuristic, /i) (5.3.1)
if f <f,, we have:

C,-C

chest = £ +1 (5.3.2)

0

other wise

chest =1 (5.3.3)



£ <f exp((f, - £,)/ T.) > Random(0,1) Otherwise

Drop Penalize Factor: 0 <dpp <1 Drop Credit Factor: dpc > 1
Chest =(Cp = Cc)/ Cy +1 Same as Left Except: Cbhest = 1.0
/ LCOF = Chest = 1.0 LCOF =
(LCOF)*Cbesrt * dpp (LCOF)*Cbest *dpc
ET—> No Change No Change No Change
Add Credit Factor: ade > 1 Add Penalize Factor: 0 < adp <1
Chest = (Cy~Ce) /1 Cy +1 Same as Left Except: Chest = 1.0
Lok = Chest = 1.0 LCOF =
(LCOF)* Cbest * adc (LCOF)* Cbest * adp
Lo ]
Note:
I: Current Solution State II:New Solution State
E: Variable Set A: Set of Variables Dropped From Solution-1 Set to Solution-0 Set and B is vice versa.
fi: New Solution State Objective Function Value fo: Current Solution State Objective Function Value
Co: Initial Temperature Ce:Current Temperature

Figure 5.3.3 Diagram of Link Updating LCOF Values in SA-TABU Approach

ITI
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If exp((f, — f,)/ C,) > Random (0,1), then:

(1) heuristic, = dpp x cbest x heuristic, , Vaed, 0<dpp<l (53.4)

(i) heuristic, = adc x cbest x heuristic, , Vb eB, adc>1 (5.3.5)
otherwise, we have:

(1) heuristic, = dpc x cbest x heuristic, , Vaed, dpc>1 (5.3.6)

(ii) heuristic, = adp x cbest x heuristic, , vbeB, O<adp<l (53.7)

As described in the previous section and also in Figure 5.3.2, in order to
prevent cycling, the link HEF values are updated based on the tabu condition to
prevent the reversal of the most recently made moves. The elements which are
dropped from Solution-1 set to Solution-0 set are temporarily assigned with the
minimum HEF value in the Solution-0 set. These elements have very small
probabilities to be selected back to the Solution-1 set again when a new trial solution
state is generated. However, after several iterations (the length of the tabu list) they are
reassigned to their origin HEF values and they become candidates for inclusion to the
new solution. Similarly, the elements that change from Solution-0 set to the Solution-1
set are assigned very high temporary HEF values (for the length of the tabu list). The
use of these two tabu lists in the Solution-1 set and Solution-0 set respectively, force
the search strategy to select new elements to either enter or drop to/from the Solution-

1 set.
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5.4 Implementation of the SA-TABU Search Strategy
In this study, several different versions of the SA-TABU search strategy methods were
developed. The next section describes the computer program implementation of the
SA-TABU search strategy developed. The program is written in Fortran 77 language
computer code and is compiled by FORTRAN SPAR Compiler in Sun workstation

UNIX operating system environment.

5.4.1 Main Program (Figure 5.4.1-5.4.2)

This program consists of two main steps. The first step determines the initial control
parameter value t0, or “temperature”. The second step is the main process of the SA-
TABU search strategy. These two steps are very similar, and they both use the basic
procedures of the simulated annealing approach, where the primary difference is in the
generation of the trial solution state. The random swapping trial solution state
generation strategy is used for the first step, while the trial solution state generation
method utilizing the comprehensive heuristic based add/drop type move, with the
activation of the tabu list takes place in the second step.

The main program starts with initialization of several parameters such as the
“penalty” and “credit” parameters for the link HEF values, Markov chain length,
control parameter decreasing rate and maximum number of iterations. These
parameters differentiate the various versions of the search strategies developed. The
network data such as the origin destination (O-D) trip table, network configuration and

link attribute data are read within the INITUE subroutine. The UE subroutine solves
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the user equilibrium (UE) traffic assignment to obtain the initial traffic flow for the
initial network. Then the Init grade procedure is called to get the initial link HEF
values (score), which is the function of the initial link congestion factor. The initial
solution state (y0) is generated by subroutine Initial y. The subroutine Compute Y,
which is a modified version of the combination of the UE subroutine and other
subroutines is called to compute the initial solution state total travel time(f0).

The “temperature” - control parameter is initialized (See Figure 5.4.1) in a way
such that the starting “temperature” would be close to the desired initial “temperature”
in most of the scenarios. The subroutine perbationl is activated to generate the trial
solution state (newy), and the Compute_y subroutine computes the objective function
values (f1), and the simulated annealing acceptance criteria are used to determine
whether or not to accept the trial solution state. The preceding procedure is repeated
for 20 times. If the trial solution state acceptance ratio is less than 80%, the
“temperature” value is doubled. This procedure continues until the acceptance ratio
exceeds 80 %, and then the current “temperature” is accepted as the initial
“temperature” for use in the second step of the search.

Having a value for the initial “temperature”, the SA-TABU procedure is
activated. The current solution state and value (yn, f0) are stored as the best solution
state and value (fbest, ybest), respectively. The tabu list is initialized as an empty set.
The subroutine fgrade_perbationl is called to generate the trial solution state (newy)

by the combined method and the compute_y subroutine computes its objective
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Figure 5.4.1 Main SA-TABU Program Flow Chart (1/2)
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function value (f1). The best solution (fbest, ybest) is updated if the solution (newy,fl)
is the best solution state. The acceptance criteria is used to judge if the (newy, f1) is
accepted as the next current solution state. Then, the updating of the HEF values
(Figure 5.4.3 - 5.4.4) is conducted.

The value impact factor (tini) is used to consider the percentage improvement
of the trial solution state against the current solution state. The higher the
improvement,((fo-f1)/f0) is, the greater the impact factor is. The “temperature” impact
factor (a) is used to count the difficulty of accepting the trial solution state. As the
“temperature” decreases, the quality of the accepted trial solution state increases, and
the “temperature” impact factor awards the higher quality solution state a better
“credit” by multiplying the related link HEF values by a. Thus, factor “a” is increased
based on the decrease of the current “temperature” “t0” by a factor of (1-+(tini-t0)/t0).

The array score stores the link HEF values for non tabu links and the
temporary HEF values for the tabu links. The array hiscore has two functions. The first
function is to record the link’s tabu status, and the other is to store the origin HEF
values for the links in the tabu list. If a link’s hiscore value is positive, it implies that

the link is currently in the tabu list. The hiscore value for a link in tabu list is the link’s

origin HEF value and the variable score for this link is assigned a number, a temporary

HEF value, which causes this link to have a very low probability to be considered for
swapping. The array last add records the most recent added link into the solution and
the corresponding added link’s value is changed from 0 to 1, which implies that the

link is added to the Solution-1 set from the Solution-0 set. The array last_drop records
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the link that being dropped most recently from the Solution-1 set to the Solution-0 set.
If, for a link residing in the tabu list, the difference of the current iteration and its
last add or the difference of the current iteration and last_drop reaches the tabu list

length, the links residing in the tabu list exit by setting score(i) to its basic HEF value

hiscore(i) and hiscore(i) is set to -1.

The following scenarios are applied to links equal to 1 in the current solution
state and equal to 0 in the trial solution state, or dropped out from the Solution 1 set to

the Solution O set, and the trial solution state has been accepted (change status=true):

1) if the trial solution state is better than the current solution state, the link’s LCOF
value is penalized more by the “temperature” impact factor; ii) if the trial solution state
is the overall best solution state so far, the link’s LCOF value is penalized more by the
best solution factor. However, in an extreme case, the tabu links may still participate
in the swapping, since the final HEF value (Formula 5.3.1) is stochastic.

Therefore, if the link is in the tabu list and drops from Solution-1 set to
Solution-0 set, the link would immediately exit the tabu list and the LCOF value
would be factored by the above scenarios. The non-tabu link would enter the tabu list
by setting hiscore(i) to the origin HEF value score(i) and the score(i) to the minimum
value of all of the Solution-0 set’s links, which is a temporary HEF value, and then set
the last_drop to the current iteration number.

However, if the trial solution state is not accepted (change status=false), the

link’s basic HEF values are increased by the drop_credit factor.
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For the links which are added to the Solution 1 set from the Solution 0 set, the
link’s LCOF value is updated in the opposite way to the procedure described for the
dropped links in the preceding paragraph. If the move is accepted, the added links
LCOF values are increased by the add_credit and value impact (a) factors. If the trial
solution state has better value than the current solution state, the added link LCOF
value is increased more by the “temperature” impact factor ttini. If the trial solution
state is the best solution state, the LCOF value is factored more by the best solution
factor (cbest). The added links would enter the tabu list by letting hiscore equal to
score, score equal to the maximum HEF value of all the links of the Solution 1 set and
last_add is set to the current iteration number.

After updating the link HEF values, the main program continues its process. If
the trial solution state is accepted, the trial solution state would replace the current

solution state ((f0, yn)=(f1, newy)), and the counter of the number of the straight trials

that no trial solution state is accepted (no_change) is set to 0, while the counter of the
number of the trial solution states accepted under the same “temperature”
(yes_change) is incremented by 1, otherwise, the current solution state keeps
unchanged and no_change counter is incremented by 1.

If the number of the transition (yes_change) reaches the current Markov chain
length, the “temperature” will be decreased at a constant rate of 0.8 and
simultaneously the Markov chain length (Im_length) is multiplied by 1.2 and the

yes_change is set to 0 . The maximum Markov chain length is set to 21.
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The termination of the program is determined by two factors. Either the
number of the iteration reaches a preset maximum number of iterations or no

acceptable trial solution states have been created for the last 25 trials ( no_change =

25).

5.4.2 Subroutines

The main subroutines for this program involve procedures to generate the trial solution
state. In the first step of the main program, the tperbationl subroutine is used to
generate the trial solution state, that uses the random swapping strategy. In the second
step of the main program, the fgrade perbation subroutine is used to create trial
solution states. Next, the subroutines tperbationl and tgrade perbationl, as well as

their supporting subroutines tadd_drops, tadd _more and tdrop more are described.

Subroutine tperbation! (Figure 5.4.5-5.4.6)
Subroutine fperbationl randomly swaps the links between the Solution-1 set and the
Solution-0 set.

The subroutine’s input data include the current solution state Solution-1 set,
the Solution-0 set, the budget, the current solution state total budget cost, the link cost

and the number of the passenger car links (n).



123

tperbationl
Input:

current solution state y

solution 1 set and its number of elements: old1, old1_no
solution 0 set and its number of elements: 0ld0, old0_no
current solution cost budget: cbudget

budget: budget

number of passenger car links: n

link cost : mcost

Randomly pick up one link from each of
Solution 1 and 0 set.

@ iout=random1(old1_no)
iin=random(old0_no)

l

Let tbudget=cbudget

the picked solution 1 set link N
is a truck link?
old1(iout) > n?

The corresponding truck link
equal to 1
y(old1(iout)+n) = 1?

Y
N
The corresponding car link Y Current cost is unchanged.
equalto 1 ? ———>{ thudget=tbudget
y(old1(iout)-n)=17?
“ v
1
N - The link cost is substrated
from current budget cost:
> tbudget=tbudget-mcost(old1(iout))

Figure 5.4.5 Subroutine tperbationl Flow Chart (1/2)
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The picked Solution 0 set link N . .
is a truck link? The <l:0rrelspond1ng truck link
old0(iin) > n? equa’ to
) y(old0(iin)+n) = 1?
Y
N
The corresponding car link A Current cost is unchanged.
equalto 1? ——> tbudget=tbudget
y(oldO(iin)-n) =1 7?
I !

The link cost is added
to current budget cost:

tbudget=tbudget+mcost(old0(iin))

The link cost is added
to current budget cost:
tbudget=tbudget+mcost(old1(iin))

()

A\

Count number of iteration:
iter=iter+1

Exceed maximum iteration?
iter=maxiter ?

\.

The new budget feasible ?W

tbudget < budget?

N Yl

Random(0,1) > 0.5

y

[

Swap the two links:
y(old!(iout))=0
y(old0(iin))=1

Call tadd_more to add
more links to Solution 1 set

——————»[ Random(0,1) > 0.8 ]

<
<

Call tdrop_more to drop more
links from Solution 1 set.

Y

N !

<&
<«

Figure 5.4.6 Subroutine tperbation] Flow Chart (2/2)
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The subroutine’s basic procedure is to randomly pick the links for swapping
and then test if the new solution state violates the budget constraint. A random number
is generated between O and 1 to the number of elements of the Solution-1 set (iout),
and a random number for the Solution O set (iin) is also generated. Each of them
represents the ith element in their sets. In general, the new budget cost, that is equal to
the current budget cost minus the cost of ioutth link in Solution-1 set plus the cost of
the iinth element in the Solution-0 set, is tested against the budget constraint (budget).

Whether the cost of the selected link to be dropped from the Solution 1 set to
the Solution O set is subtracted from the current budget cost, depends, upon the status
of the selected link’s corresponding car or truck link. The program adds or subtracts
the appropriate link cost based on the selected options. The new solution state will be
accepted if the current budget cost is feasible, otherwise the same process is repeated
by randomly picking another pair of the Solution 1 set and Solution 0 set to be
swapped. After a maximum number of iterations is reached and a new feasible
solution state is not found, the program will be terminated.

Subroutine tadd_more is called if a 0-1 random number is greater than 0.5. The
tadd_more subroutine would add as many links as possible from the Solution-0 set to
the Solution-1 set within the budget constraint. Since fadd_meore subroutine is not
necessarily needed at all times, only an average of 50% percent of time it is called.
Similarly, at an average of 10% of the time the subroutine tdrop_more is called to
drop more links from the Solution 1 set to Solution O set. The reason of adopting

tdrop_more is that when the Solution 0 set links have a high budget cost, a feasible
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swapping could not be easily reached and the tdrop _more subroutine helps to consider

a large number of links.

Subroutine tadd_more (Figure 5.4.7)

The function of subroutine tadd_more was presented in subroutine fperbationl. The

input variables are the same as of fperbationl.

One link is randomly picked up in Solution 0 set (iin=random(old0 no)). The

selected link is tested to find if it is a truck link or a passenger car link (is 0ld0(iin)>n
true 7, or is it a truck link ?), and its corresponding link’s status is also checked (is

y(old0(iin))n=1, true ? or is y(old(iin)-n)=1 true? ). If the corresponding link is in the

Solution-1 set, the current budget cost remains the same and the selected link is added
to the Solution-1 set, otherwise the current budget will be increased by the selected

link cost and the feasibility of the new current budget is checked (is tbudet < budget,

true? ). If the budget is not feasible, a new randomly picked link from Solution-0 set
will be created and the preceding action will be repeated. This process will continue
for a number of iterations until a feasible solution is found.

The addition of the selected link to the Solution 1 set requires the following
steps: i) the selected link’s value is set to 1; ii) the Solution 1 set number of elements
is increased by one and the Solution-0 set is decreased by 1; iii) the budget cost is
equal to the old budget cost plus the selected link cost; iv) the selected link’s id is
entered to the end of Solution-1 set’s array and the elements in Solution-0 set are

moved forward one position.
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tadd_more

v
Input:
current solution state and budget cost : y, cbudget
Current Solution 1 set and number of elements: old1, old1_no
Current Solution 0 set and number of elements: o0ld0, old0_no
number of car links: n
budget and link cost : budget, mcost

v
tbudget=cbudget

Y

\ 4

Randomly pick up a link from Solution 0 set: is atruck link ?
iin=ran_dom1(old0_no) old0(iin) > n ?

§ I~
\
The corresponding truck link (The corresponding car link
N

isequalto 1? N isequalto 1 ?
y(oldO(iin)+n) =1 ? L y(oldO(iin)-n) = 1 ?

lY LY

The budget cost unchanged: Tbhzbu‘ig;t ZOSt unchanged:
tbudget=tbudget tbudget=tbudget

A

Addition of the new link cost to the budget cost:
tbudget=tbudget +mcost(old0(iin))

—«——%ﬁew budget is feasible ? L

tbudget < budget ? %
Y
N
Iter>67? ‘ l
S

Add the link to Solution 1 set:
vY iter = iter+1 old0_no=0ld0_no-1

" Count number of iteration: old1_no=old1_no+1
old1(old1_no)=0ld0(iin)
@L 01d0(i)=o0ld0(i+1) (i from iin to 0ld0_no)

Figure 5.4.7 Subroutine tadd more Flow Chart
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Subroutine tdrop_more (Figure 5.4.8)

This subroutine is very similar to subroutine tdrop_more . 1t randomly picks up one
link from Solution 1 set. The current budget is tested in a similar way as subroutine
tdrop_more. If the budget is changed, the task is completed, otherwise the process
repeats until the budget changed or the number of iterations reaches 6. Other

information can be referred to subroutine tdrop_more.

Subroutine tgrade perbationl (Figure 5.4.9)

This subroutine is used to generate the trial solution state. The primary required input
variables include the current solution state (cy), link LCOF values (score), and the
link’s tabu status (hiscore).

The maximum and minimum LCOF values should be found first. The LCOF
values (score) of all links except the links in the tabu list are scanned. The obtained
maximum and minimum LCOF value are used in the next iteration.

The link’s HEF values are those that are actually used. The LCOF values (score)
present a summary information of the link’s performance in the past trials of solving
network design problem. The HEF (act score) gathers the link congestion index
information, and the LCOF values with random error to provide a more instructive
stochastic information. The HEF value may vary with different designs of the search
strategy. After getting the HEF values, the subroutine tadd_dropsl is called to conduct

the add/drop move based on the HEF values ( act_score).
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Input:

current solution state and budget cost : y, cbudget
Current Solution 1 set and number of elements: old1, old1_no
Current Solution 0 set and number of elements: 0ld0, 0old0_no
number of car links: n

budget and link cost : budget, mcost

Y

Y

tbudget=cbudget

A 4

Randomly pick up a link from Solution O set:
iout=ran_dom1(old1_no)

is a truck link ?
oldi(iout)>n?

N | ly
v
The corresponding truck link Fhe corresponding car link
isequalto 1 ? N N isequalto 1 ?
y(old1(iout)y+n) =17 Ly(oldl(iout)-n) =17
lY by
The budget cost unchanged: 'll")hedbudgebt ZOSt unchanged:
tbudget=tbudget tbudget=tbudget
N
y
[‘Iter >69 l Substract the new link cost from the budget cost:
. ) tbudget=tbudget - mcost(old1(iout))

¥

A

Count number of iteration:
iter = iter+1

A

!

Add the link to Solution 0 set:
oldl_no=old1_no-1

old0_no=o0ld0_no+1
0ld0(old0_no)=old1(iout)
old1(i)y=old1(i+1) (i from iout to old1_no)

Figure 5.4.8 Subroutine tdrop_more Flow Chart



tgrade_perbationl

Input:

current solution state: cy

link heuristics values: score(i)

link tabu status: hisc(i)

heuristics weight: act_amplifer
link current congestion info: hur(i)

Y ( Link in tabu set? | «
L hise(i) <0 ?

N

A

Find maximum heuristics values : maxin
Find minimum heurisitcs values : minout

»,
’

\ 4
Go through all links ?

Y

Compute “face” heurisitcs function values:
act_score(i)=function(act_amplifer, score(i), rand(0), hur(i))

Call tadd_drops!
to conduct add drop move based on act_score

Figure 5.4.9 Subroutine tgrade_perbationl Flow Chart
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Subroutine tadd _dropsl (Figure 5.4.10 , 5.4.11, 5.4.12)
This subroutine performs the add/drop move based on the link’s HEF values.

The important input data required is the current solution state (y), the current
total cost (cbudget), number of car links (n), link cost (mcost), budget (budget), and
link HEF values (heur).

The sorting subroutine, hpsort, is called to sort the Solution-1 set and Solution-

0 set to orxin and orxout in decreasing order of the link HEF values (heur). The pointer

for Solution-1 set is set to the first link of sorted Solution-1 set (Ismall=1) and for
Solution-0 set, it is set to the last link of sorted Solution-0 set (itryl=k, k is the number
of the elements in Solution-0 set).

Similar to subroutine fperbationl, the status of the current Solution-0 set
corresponding link is checked to determine whether the current budget cost remains
the same or be updated by adding the selected link cost, if this link is added to
Solution-1 set. If the current budget cost is not feasible, the Solution-0 set pointer
keeps on moving to the next available link and the same action is conducted until all
the available links in Solution 0 set are checked. Budget feasibility is continuously
checked and more links become members of Solution-0 set until feasibility is reached.

The initial value for kadd and klast is set to zero. Variable kadd is incremented
by 1 if the new feasible solution involves changing the exclusive lane to both car and
truck operation lane. Variable klast is set to be equal to kadd after it is decided whether

or not the new feasible solution should be accepted. The criteria for acceptance is
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tadd_dropsl

Input:

current solution state and budget cost : y, cbudget
number of car links: n

budget and link cost : budget, most

Link heuriscts ; heur

Call hpsort to sort in heuristics values decreasing order of Solution 1
and 0 set to orxin(i ) and orxout(i) with number of elements k and k1

set @

Solution 1 set pointer: Ismall =0
Solution 0 set pointer : itryl =kl
no change flag : nochg = true
tbudget = cbudget

Its corresponding truck link The current solution 0 set Its corresponding car link
isequalto1? N | link is truck link ? Y | isequalto1?
y(orxout(itryl)+n) =1 ? [ orxout(itryl) > n ? y(orxout(itryl)-n) =1 ?
Yl N N Y
iuigﬂ co; t émchanged: Budget cost unchanged:
toudget=tbudget tbudget=tbudget

v
Addiition of the link cost

to budget: cost
tbudget=tbudget+mcost(orxout(itryl))

\4

New budget cost is feasible? —‘Y—>@
tbudget< budget ?

Figure 5.4.10 Subroutine tadd drops! Flow Chart (1/3)




133

o
:

- . . o
move pointer to next 1 set element ?0111'[[0[\ I set is exhausted ?
. o, iismall = k+1 ?
ismall=ismall+1

Y

A\

Solution 0 set is not exhausted ?
Drop current pointing 1 set N itryl >0 ?

link to Solution O set:
y(orxin(ismall))=0 @ v
tbudget=cbudget v

move Solution 0 set pointer to next one:
Reset back Solution | set | €—— itry! = itryl-1
y(orxin(i)) =1
tbudget=cbudget —>
ismall=0
Its corresponding truck link The current Solution 1 set Its corresponding car link
isequalto 17 N | link is truck link ? isequalto 1 ?
y(orxin(ismall)+n) =1 ? l orxin(ismall ) > n? y(orxini(ismall)-n) = 1 ?
Yl N Y
Euigettff;t clllnchanged: Budget cost unchanged:
udget=tbudget tbudget=tbudget

Y

Subtraction of the link cost
from budget: cost
tbudget=tbudget-mcost(orxin(ismal))

Y

Update budget cost
cbudget=tbudget >

Figure 5.4.11 Subroutine tadd _dropsl Flow Chart (2/3)
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. Initialize nochange
———————» Set second pointer for 0 set > link added indicator
J=iyl kadd=0
y
Its corresponding truck link The current Solution 0 set Its corresponding car link
is equal to 1?2 N | link is truck link ? Y | isequalto1?
y(orxout(j+n) =12 orxout(j)>n ? . y(orxout(j)-n)=17?
% N N %
v

Y

Budget cost unchanged:
and count nochange link added:
tbudget=tbudget, kadd=kadd-+1

Budget cost unchanged:
and count no change link added:
tbudget=tbudget, kadd=kadd+1

{

Addiition of the link cost
to budget cost:
tbudget=tbudget+mcost(orxout(j))

A

With addition of feasible link , budget feasible ? N
tbudget < budget and j> 0 ? >

v

Link configuration ) Accept the link to Solution 1 set
change instead of only Y »| Nochg=false

operation ? y(orxout(j)) =1

klast=kadd or kadd=1 ? ) N cbudget=cbudget+cost(orxout(j))

Y

Move 0 set second pointer to next link | € klast=kadd
=+

_—
Y Link is feasible: 1 N » ?fcﬁah;%_i :,;) far? ]
o | R

Figure 5.4.12 Subroutine tadd_drops! Flow Chart (3/3)
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whether klast equal to kadd or kadd=1 is true. The first feasible solution will be

automatically accepted no matter what kind of change is made. If the new feasible

solution involves a change of the current budget cost, both kadd and klast are set to 0,

and if a new feasible solution involves an non budget cost change (eg. changing from
exclusive lanes to both passenger car and truck operation lane), kadd will be set to 1.
After testing of the first feasible solution, the variable klast is set to the value of kadd.
If the next feasible solution involves a change to the current budget changed, both
variables kadd and klast remain the same and the condition kadd=Kklast is true, then the
new feasible solution will be accepted as a new trial solution state. If the next feasible

solution only involves a change of traffic operations in the link, the variable kadd

would be increased by 1 and neither the conditions kadd=klast nor kadd=1 would be

satisfied. This new feasible solution will be rejected as a new trial solution state.



CHAPTER 6

NUMERICAL EXPERIMENTS OF THE SA-TABU SEARCH STRATEGY

This chapter presents numerical experiments of the application of the SA-TABU
search strategy. Five networks (Figures 4.4.1-4.4.5), ranging from 36 links to 363 links
with various levels of budget constraint were tested. The primary objective of these
numerical experiments is to examine the efficiency and effectiveness of the proposed

of the proposed search strategy, and secondary is the test of the sensitivity of the key

parameters of the SA-TABU.

6.1 Overview of the Numerical Experiment
The SA-TABU is a heuristic search strategy, which does not guaranteed to find an
optimal solution. Thus, the difference of the search strategy’s obtained “best” solution
from the optimal solution could be used as a measurement of the solution quality of
this heuristic. However, as mentioned in the previous chapters, the computational
complexity of the TCNDP is non-polynomial, and with the current computing
facilities, even for very small network problems, the computing time for obtaining the
optimal solution required by the most efficient branch and bound algorithm can be out
of practical feasible range. In this numerical experiment, it has been out of reach to
compute the optimal solution for the five test networks with the available computing
facilities. Therefore, it is not appropriate to use a very small network as the test

network, just for obtaining the optimal solution while undermining the main purpose
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of this study - designing an efficient procedure for large network applications.
Consequently, compromising criteria were employed in this study. The network total
travel time when links are expanded by an extra lane for both passenger car and truck
operations was set as a pseudo “upper” bound of the solution, and the difference
between each specific problem’s (different budget level) best solution and the “upper”
bound value was used as the criterion to determine the quality of the SA-TABU.

Conventionally, a bench mark problem is needed to be used for comparison
with the new proposed algorithm. However, in the current literature, except for the
branch and bound algorithm (Mahmassani, et. al. 1984), no other algorithms have ever
been developed which address the TCNDP, and no other bench mark problems have
ever been set. The experiment ideally needs to cover as many networks with different
configurations and characteristics as possible in the event of no bench mark problems
1s available. However, practically, the test problems need to be designed based on a
reasonable number of experiments and good coverage of various types of
transportation networks. Thus five different transportation networks (Figures 4.4.1-
4.4.5) were used as test networks, which were associated with 10%, 20%, and 30% of
available budget, respectively. These five test networks represent a variety of
characteristics of real transportation networks (The five test networks were presented
in Chapter 4).

Since no other algorithms have been developed to solve the TCNDP problem,
the conventional simulated annealing algorithm is used as the only reference algorithm

for comparison.
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Some important features of the SA-TABU had been documented in early
experiments on the single class of user network design problem application (Zeng et.
al. 1996). Due to the complexity and lack of the optimal solution for the two classes of
users network design problem in the test problems, these features could not be
explored for the TCNDP, though they have been conducted for the solution of the
single class user equilibrium network design problem. However, the principal
characteristics of the procedure developed for the single class network design problem
(SCNDP) were considered to be good candidates for the solution of the TCNDP as
well. In this chapter, some important results that were obtained for the SCNDP are
also presented since their basic rationale was followed for this study as well.

The five test networks trip tables are presented in Section 6.2. The relevant
experimental results from the application of the SA-TABU on the SCNDP are
summarized in Section 6.3. The numerical experiments on the comparison of the
standard version the SA-TABU with the conventional simulated annealing algorithm
in regard to the search strategy’s efficiency are presented in Section 6.4. Sensitivity
analysis conducted on different versions of the search strategies derived from the
standard version is presented in Section 6.5, where the experiments are conducted by

changing some key parameter values.
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6.2 Test Networks
The five test networks (Figures 4.4.1 -4.4.5) and trip tables with 10%, 20% and 30%
budget level in Tables 6.2.1-6.2.10 are used as the test problem in this study. A

detailed description of the test networks’ characteristics was presented in Chapter 4.

Table 6.2.1 Network 1 Passenger Car Trip Table

Centroids 1 2 3 4
1 - 500 2000 2000 1000
2 500 - 500 1000 1500
3 2000 500 1000 1500
4 2000 1000 1000 - 500
5 1000 1500 1500 500 -
Table 6.2.2 Network 1 Truck Trip Table
Centroids 1 2 3 4
1 - 50 200 200 100
2 50 -- 50 100 150
3 200 50 100 150
4 200 100 100 - 50
5 100 150 150 50 -
Table 6.2.3 Network 2 Passenger Car Trip Table
Centroid 1 2 3 4
1 - 1000 2000 1500
2 1000 -- 500 1500
3 2000 500 - 2000
4 1500 1500 2000 -




Table 6.2.4 Network 2 Truck Trip Table
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Centroid 1 2 3 4
1 - 70 250 100
2 90 -- 20 350
3 90 150 -- 100
4 250 350 20 --
Table 6.2.5 Network 3 Passenger Car Trip Table
Centroids 1 2 3 4
1 -- 1500 2000 3000 1000
2 500 -- 500 2000 300
3 2000 3500 4000 3500
4 800 1000 1000 -- 500
5 1000 1500 1500 2500 -
Table 6.2.6 Network 3 Truck Trip Table
Centroids 1 2 3 4
1 - 90 130 300 50
2 20 - 120 200 20
3 100 200 700 150
4 80 80 100 -- 10
5 80 130 100 550 --
Table 6.2.7 Network 4 Passenger Car Trip Table
Centroids 1 2 3 4
1 - 1500 2000 3000 1000
2 500 -- 500 2000 300
3 2000 3500 - 4000 3500
4 800 1000 1000 -- 500
5 1000 1500 1500 2500 --




Table 6.2.8 Network 4 Truck Trip Table
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Centroids 1 2 3 4
1 - 150 200 300 100
2 50 - 50 200 30
3 200 350 - 400 350
4 80 100 100 - 50
5 100 150 150 250 --
Table 6.2.9 Network 5 Passenger Car Trip Table
Centroid 1 2 3 4 5 6
1 - 900 300 100 300 200
2 900 - 800 600 3500 700
3 300 800 -- 200 400 100
4 100 600 200 -- 1100 200
5 300 3500 400 1100 - 1000
6 200 700 100 200 1000 -
Table 6.2.10 Network 5 Truck Trip Table
Centroid 1 2 3 4 5 6
1 - 130 90 100 30 100
2 10 - 10 400 350 100
3 10 20 -- 300 40 100
4 20 20 50 - 110 100
5 10 90 20 900 - 100
6 10 30 10 300 100 --

6.3 Numerical Results of the SA-TABU Search Strategy in Solving the SCNDP

The five test networks presented in Section 6.2 were subjected to the application of the

SA-TABU search strategies in solving the SCNDP, taken into consideration of the

passenger car trip tables only. A summary of the results for the five networks are

presented in Tables 6.3.1-6.3.5. In each of Network 1 with 10% to 30% budget and
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Network 2 with 10% budget problems, where the optimal solutions are known, the
SA-TABU search strategy found the optimal solutions. The optimal solutions for these
networks were obtained through complete enumeration of the feasible solutions. The
SA-TABU outperformed the conventional simulated annealing algorithm with better
solutions and in less number of iterations.

In Figure 6.3.1, the entire solution space that consists of all feasible solutions
for the Network 1 with a 30% budget problem and the solution space explored by the
SA-TABU search strategy are presented. The graph shows that the SA-TABU search
strategy focuses in searching the neighborhood of the best solutions, and wastes less
time in the neighborhood of poor solutions. It partially explains the reason that the SA-
TABU is more efficient and effective in solving the SCNDP.

The graph shown in Figure 6.3.2 provides an indication of the performance of
the HEF developed in this study. Under the SA-TABU search strategy, the greater a
link’s HEF value is, the higher the probability that the link is selected to be expanded,
or enter the Solution-1 set. The link’s HEF values continue to be updated at every
iteration. It can be observed in Figure 6.3.2 that, with the progress of the iterations, the
gap between the average HEF values of the optimum solution links in the Solution-1
set and links in the Solution-0 set is steadily built up, and consequently the links in the
optimal solution’s Solution-1 set would have more and more chances to be selected.
Eventually, the gap is so significant that only the optimal solution’s Solution 1 set

links are selected in the Solution 1 set by the search procedure and finally the search
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strategy converges after a certain number of iterations. This implies that the HEF
developed is capable of distinguishing the good candidate links, and enables the search
strategy to converge to a local optimal solution, which in this example is the global
optimal.

Figures 6.3.3-6.3.5 demonstrate the performance of the SA-TABU, the
conventional simulated annealing and the tabu search strategies (Mouskos, 1991) for
Network 3 with a 30% budget level problem. The performance is measured by the
objective function value or network total travel time during each iteration. The tabu
search strategy (Figure 6.3.5) quickly approaches a good solution state - small network
total travel time, in the early iterations, while however the solution does not seem to
improve significantly as iterations progress. The conventional simulated annealing
approach (Figure 6.3.4) does improve the solution as the iteration progresses, but most
of the iterations are conducted in a poor solution state neighborhood. The SA-TABU
(Figure 6.3.3) inherits the advantages of both simulated annealing and tabu search
strategies, progresses in a superior solution state neighborhood and gradually

approaches towards a much better solution state in an effective and robust manner.



Table 6.3.1 Summary of Numerical Experiment on Network 1 SCNDP with SA-TABU and Conventional Simulated Annealing

NETWORK INFORMATION
Number of Links: 18

Network 1
Number of Nodes: 6

Number of O-D Pairs: 20

Initial Network UE Travel Time (Upper Bound): 8593 Vehicle-Hours Maximum 5960

All Links Expanded Network SO Travel Time (Lower Bound): 2633 Vehicle-Hours Improvement:

Optimum Solution: 10% Budget 6281 Vehicle-Hours 38.79% Improvement

20% Budget 5000 Vehicle-Hours 60.29% Improvement
30% Budget 4121 Vehicle-Hours 75.03% Improvement
PERFORMANCE OF THE ALGORITHMS
10% Budget 20% Budget 30% Budget
SA-TABU SA SA-TABU SA SA-TABU SA

Best Solution 6,281 6,281 5,000 5,000 4,121 4,421

% Improvement 38.8% 38.8% 60.3% 60.3% 75.0% 70.0%
Number of Iteration 584 1,000 403 573 1,000 1,000
Termination Type Converge Converge Converge Converge Max. Iteration Max. Iteration
Starting Solution 7,807 6,281 6,751 5,368 5,025 6,740
Final Solution 6,281 6,281 5,009 5,009 4,121 4,448
Current Solution State

Mean 6,399 6,322 5,192 5,424 4,255 4,413

Standard Deviation 258 138 171 350 198 356
Current Trail Solution State

Mean 6,753 6,559 5,341 5,669 4,430 4,710

Standard Deviation 446 282 243 383 264 375

1441



Table6.3.2 Summary of Numerical Experiment on Network 2 SCNDP with SA-TABU and Conventional Simulated Annealing.

NETWORK INFORMATION Network 2
Number of Links: 38 Number of Nodes: 10 Number of O-D Pairs: 12
Initial Network UE Travel Time (Upper Bound): 1731 Vehicle-Hours Maximum 413
All Links Expanded Network SO Travel Time (Lower Bound): 1318 Vehicle-Hours Improvement:
Optimum Solution: 10% Budget 1570 Vehicle-Hours 38.98% Improvement
20% Budget  Unknown
30% Budget  Unknown
PERFORMANCE OF THE ALGORITHMS
10% Budget 20% Budget 30% Budget
SA-TABU SA SA-TABU SA SA-TABU SA
Best Solution 1,570 1,579 1,472 1,466 1,410 1,416
% Improvement 39.1% 36.9% 62.8% 64.1% 77.8% 76.3%
Number of Iteration 1,000 330 1,000 878 1,000 858
Termination Type Converge Converge Max. Iteration Converge Max. Iteration Converge
Starting Solution 1,613 1,613 1,541 1,636 1,505 1,597
Final Solution 1,578 1,579 1,486 1,485 1,410 1,430
Current Solution State
Mean 1,584 1,613 1,495 1,522 1,430 1,478
Standard Deviation 12 25 15 36 20 40
Current Trail Solution State
Mean 1,603 1,629 1,509 1,542 1,441 1,492
Standard Deviation 16 25 17 33 19 36
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Table6.3.3 Summary of Numerical Experiment on Network 3 SCNDP with SA-TABU and Conventional Simulated Annealing.

NETWORK INFORMATION Network 3
Number of Links: 64 Number of Nodes: 21 Number of O-D Pairs: 20
Initial Network UE Travel Time (Upper Bound): 40,383 Vehicle-Hours Maximum 20,633
All Links Expanded Network SO Travel Time: 19,750 Vehicle-Hours Improvement:
Optimum Solution: 10% Budget  Unknown
20% Budget  Unknown
30% Budget  Unknown
PERFORMANCE OF THE ALGORITHMS
10% Budget 20% Budget 30% Budget
SA-TABU SA SA-TABU SA SA-TABU SA
Best Solution 26,357 26,618 23,486 23,537 22,012 22,807
% Improvement 68.0% 66.7% 81.9% 81.7% 89.0% 85.2%
Number of Iteration 1,000 557 1,000 946 1,000 630
Termination Type Max.Iteration Converge Max. Iteration Converge Max. Iteration Converge
Starting Solution 33,901 34,539 32,002 32,357 29,034 36,560
Final Solution 26,357 26,618 24,010 23,543 22,774 22,807
Current Solution State
Mean 27,467 31,797 24,239 25,118 22,973 28,064
Standard Deviation 2,149 2,366 635 2,556 418 4,509
Current Trail Solution State
Mean 28,175 33,387 24,561 26,156 23,202 28,660
Standard Deviation 2,604 3,048 1,016 2,695 764 4,351
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Table 6.3.4 Summary of Numerical Experiment on Network 4 SCNDP with SA-TABU and Conventional Simulated Annealing.

NETWORK INFORMATION Network 4

Number of Links: 126

Number of Nodes: 33

Number of O-D Pairs: 110

Initial Network UE Travel Time (Upper Bound): 10,794 Vehicle-Hours Maximum 4,374
All Links Expanded Network SO Travel Time: 6,420 Vehicle-Hours Improvement:
Optimum Solution: 10% Budget  Unknown
20% Budget = Unknown
30% Budget  Unknown
PERFORMANCE OF THE ALGORITHMS
10% Budget 20% Budget 30% Budget
SA-TABU SA SA-TABU SA SA-TABU SA
Best Solution 7,408 7,444 6,820 7,181 6,677 6,988
% Improvement 77.4% 76.6% 90.8% 82.6% 94.1% 87.0%
Number of Iteration 548 802 1,000 874 572 1,000
Termination Type Converge Converge Converge Converge Converge Max. Iteration
Starting Solution 8,716 9,308 8,641 8,906 8,781 8,923
Final Solution 7,624 7,640 6,843 7,181 6,720 6,988
Current Solution State
Mean 7,640 7,873 6,946 7,611 6,769 7,207
Standard Deviation 97 376 162 462 128 276
Current Trail Solution State
Mean 7,733 8,024 6,990 7,685 6,794 7,272
Standard Deviation 179 384 160 465 108 278
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Table 6.3.5 Summary of Numerical Experiment on Network 5 SCNDP with SA-TABU and Conventional Simulated Annealing

NETWORK INFORMATION Network 5
Number of Links: 166 Number of Nodes: 50 Number of O-D Pairs: 30
Initial Network UE Travel Time (Upper Bound): 8,221 Vehicle-Hours Maximum 4,544
All Links Expanded Network SO Travel Time: 3,678 Vehicle-Hours Improvement:
Optimum Solution: 10% Budget  Unknown
20% Budget  Unknown
30% Budget  Unknown
PERFORMANCE OF THE ALGORITHMS
10% Budget 20% Budget 30% Budget
SA-TABU SA SA-TABU SA SA-TABU SA
Best Solution 5,006 5,375 4,240 4,631 3,996 4,227
% Improvement 70.8% 62.7% 87.6% 79.0% 93.0% 87.9%
Number of Tteration 156 540 1,000 556 1,000 1,000
Termination Type Converge Converge Max. Iteration Converge Max. Iteration Max. Iteration
Starting Solution 7,432 7,400 6,571 - 6,283 6,300 6,416
Final Solution 5,006 5,375 4,287 4,648 4,060 4,241
Current Solution State
Mean 5,701 6,301 4,354 5,243 4,097 4,703
Standard Deviation 526 619 213 579 209 463
Current Trail Solution State
Mean 5,785 6,424 4,428 5,327 4,143 4,761
Standard Deviation 460 585 241 562 220 462
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6.4 Numerical Experiments of the SA-TABU Search Strategy in Solving the
TCNDP Problem

The primary difference between the SA-TABU strategy and the conventional
simulated annealing algorithm is the methodology of generating the new trial solution
state. In the conventional simulated annealing algorithm, the new trial solution state is
generated by the random perturbation. However in the SA-TABU, a heuristics based
add/drop type move, which incorporates a comprehensive HEF and tabu search
characteristics, is used.

A number of different versions of the SA-TABU search strategies have been
developed for the study. A standard version of the strategy is defined as a reference
algorithm for comparison purposes in the sensitivity analysis study. The standard
version has the following parameter settings: i) The control parameter (“temperature’)
decreasing rate is 85 %, while the Markov chain length is 21 and its increasing rate is
20%; ii) The tabu list length is equal to 50% of the total number of the network links;
iii) The HEF random number factor is 0.5.

The conventional simulated annealing algorithm uses the same “temperature”
and Markov chain length parameters which were used in order to have an unbiased
comparison with the standard version of SA-TABU search strategy.

Tables 6.4.1-5 provide the statistical summary of the numerical experiments on
the five test networks with 10%, 20% and 30% budget. From the summary tables, the

following observations are made:



Table 6.4.1 Summary of the Numerical Results of the Application of the SA-TABU and SA; Network1;TCNDP

Best Solution
Number of Iteration
Termination Type

Starting Solution
Iteration Best Sol. First Found
Current Solution State

Mean

Standard Deviation
Current Trial Solution State

Mean
Standard Deviation

7541  64.5% 6605 73.3%

1233 788

Converge Converge
8753 8972

980 656

7934 6992
203 114

8117 7117

224 129

NETWORK 1 ——--mmmememeem 36 Links, 12 Nodes
GENERAL INFORMATION
Total Passenger Cars Trucks
Demand Trip Tables:
Trips 25,300 23,000 2,300
Number of O-D Pairs 40 20 20
Total Network Travel Time:(Vehicle Hours)
Initial Network: 14,455 13,499 956
Network with all links expanded
for both pasenger cars and trucks: 3,739 3,495 244
Maximum Improvement: 10,716 10,004 712
PERFORMANCE OF THE ALGORITHMS
10% Budget 20% Budget 30% Budget
SA SA-TABU SA SA-TABU SA SA-TABU
Y% Imp. % Imp. % Imp. % Imp. Y Imp. % Imp.

7296  66.8%

1560
Converge

9678

1001

7651
192

7901
235

6488 743%
1002
Converge

7499

544

6603
168

6765
189

6232 76.7%

1823
Converge

8812

1756

6433
177

6821
221

6232 76.7%
310
Converge

6933

103

6243
89

6269
101

SSI



Table 6.4.2 Summary of the Numerical Results of the Application of the SA-TABU and SA; Network2; TCNDP

NETWORK 2 e 76 Links, 20 Nodes
GENERAL INFORMATION
Total Passenger Cars Trucks
Demand Trip Tables:
Trips 18,840 17.000 1,840
Number of O-D Pairs 24 12 12
Total Network Travel Time:(Vehicle Hours)
Initial Network: 2,460 2,317 143
Network with all links expanded
for both pasenger cars and trucks: 1,562 1,424 138
Maximum Improvement: 898 893 5
PERFORMANCE OF THE ALGORITHMS
10% Budget 20% Budget 30% Budget
SA SA-TABU SA SA-TABU SA SA-TABU
% Imp. % Imp. % Imp. % Imp. % Imp. % Imp.

Best Solution 2232 25.4% 2171 322% 1876 65.0% 1720 32.4% 1765  77.4% 1693 85.4%
Number of Iteration 2000 812 2000 1208 2000 1630
Termination Type Max. lteration Converge Max. Iteration Converge Max. Iteration Converge
Starting Solution 2354 2249 2309 2275 1939 1992
Tteration Best Sol. First Found 1333 467 1578 1167 1602 1426
Current Solution State

Mean 2248 2242 2051 1920 1868 1766

Standard Deviation 35 41 164 155 144 102
Current Trial Solution State

Mean 2255 2249 2173 2025 1897 1805

Standard Deviation 63 48 207 186 193 184

9ST



Table 6.4.3 Summary of the Numerical Results of the Application of the SA-TABU and SA; Network3; TCNDP

NETWORK 3 ~--ecmemmnee 128 Links, 42 Nodes
GENERAL INFORMATION
Total Passenger Cars Trucks
Demand Trip Tables:
Trips 36.810 33,600 3,210
Number of O-D Pairs 40 20 20
Total Network Travel Time:(Vehicle Hours)
Initial Network: 72.496 67,144 5352
Network with all links expanded
for both pasenger cars and trucks: 36,618 34,143 2,475
Maximum Improvement: 35,878 33,001 2.877
PERFORMANCE OF THE ALGORITHMS
10% Budget 20% Budget 30% Budget
SA SA-TABU SA SA-TABU SA SA-TABU
% Imp. % Imp. % Imp. % Imp. % Imp. % Imp.
Best Solution 40,213 90.0% 38,584 94.5% 37,000 98.9% 37,024 98.9% 37,001 98.9% 36,920 99.2%
Number of Iteration 2,000 1,536 2,000 1,028 2,000 1,756
Termination Type Max. Iteration Converge Max. Iteration Converge Max. Iteration Converge
Starting Solution 71,558 61,895 69,447 58,683 69,069 52,377
Iteration Best Sol. First Found 1,899 1,164 1,772 846 1,926 1,225
Current Solution State
Mean 48,768 42,624 45,786 39,399 41,991 40,441
Standard Deviation 8,619 1,183 4,546 1,024 5,440 2,669
Current Trial Solution State
Mean 52,171 44,878 46,372 41,460 42,104 41,509
Standard Deviation 10,483 1,662 6,360 1,287 6,449 2,568
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Table 6.4.4 Summary of the Numerical Results of the Application of the SA-TABU and SA; Network4; TCNDP

NETWORK 4 ----==nscuen-- 252 Links, 66 Nodes

GENERAL INFORMATION
Total Passenger Cars Trucks
Demand Trip Tables:
Trips 40,110 33,600 6,510
Number of O-D Pairs 40 20 20
Total Network Travel Time:(Vehicle Hours)
Initial Network: 17.807 16,572 1,235
Network with ail links expanded
for both pasenger cars and trucks: 9,202 8,559 643
Maximum Improvement: 8,605 8,013 592
PERFORMANCE OF THE ALGORITHMS
10% Budget 20% Budget 30% Budget
SA SA-TABU SA SA-TABU SA SA-TABU
% Imp. % Imp. % Imp. % Imp. % Imp. % Imp.
Best Solution 10,391 86.2% 10,520 84.7% 10,099 89.6% 9.756 93.6% 9,698 94.2% 9,343 98.4%
Number of Iteration 2,000 983 2,000 2,000 2,000 1,752
Termination Type Max. Iteration Converge Max. Iteration Max. Iteration Max. Iteration Converge
Starting Solution 17,550 16,476 17,062 15,337 16,029 14,057
Tteration Best Sol. First Found 1,265 554 1,993 1,564 901 1,154
Current Solution State
Mean 11,455 11,320 11,028 10,278 10,175 10,171
Standard Deviation 1,524 873 790 316 1,056 618
Current Trial Solution State
Mean 12,548 11,471 12,071 11,296 11,919 10,969
Standard Deviation 1,941 859 1,099 693 1,969 774
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Table 6.4.5 Summary of the Numerical Results of the Application of the SA-TABU and SA; Network5; TCNDP

NETWORK 5 ------------—- 332 Links, 100 Nodes
GENERAL INFORMATION
Total Passenger Cars Trucks
Demand Trip Tables:
Trips 24,460 20,800 3,660
Number of O-D Pairs 60 30 30
Total Network Travel Time:(Vehicle Hours)
Initial Network: 246,141 220,927 25214
Network with all links expanded
for both pasenger cars and trucks: 16,604 10,695 5.909
Maximum Improvement: 229,537 210,232 19,305
PERFORMANCE OF THE ALGORITHMS
10% Budget 20% Budget 30% Budget
SA SA-TABU SA SA-TABU SA SA-TABU
% Imp. % Imp. % Imp. % Imp. % Imp. % Imp.
Best Solution 24,483 96.6% 23,512 97.0% 22,019 97.6% 20,005 98.5% 19,973 98.5% 18,269 99.3%
Number of Iteration 2,000 2.000 2,000 2,000 2,000 2,000

Termination Type

Starting Solution

Iteration Best Sol. First Found
Current Solution State

Mean
Standard Deviation

Current Trial Solution State
Mean
Standard Deviation

Max. Iteration

243,015

1,820

51,605
46,739

53,805
48,692

Max. lteration

83,215

738

35,683
9.836

39,762
18,878

Max. Iteration

239.826

1,537

46,860
30,793

49,499
33,437

Max. Iteration

60,761

1,656

32,530
6,913

39,623
15,333

Max. Iteration

237,056

1,997

43362
59,481

48,757
68,434

Max. Iteration

55.744

1,764

20,829
7,706

28,936
9,126
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1) The SA-TABU produced the better “best solution” in almost scenario, except for
the Network 1 - 30% budget level and the Network 4 - 10% budget level problems.
The advantage of the SA-TABU search strategies can be observed rather clearly for
the problems with larger feasible solution spaces, they do manifest their edge over the
conventional algorithms in almost every problem.

2) The conventional simulated annealing algorithm(SA) takes much more iterations
than the SA-TABU to reach comparable solutions. Except for Network 1, it does not
converge in all the problems ( The term “converge” is redefined to mean that the
search strategy stops because none of the trial solution states has been accepted in the
last limited number of iterations). Except for large networks such as Network 5, the
SA-TABU converged in most of the problems conducted within 2000 iterations.
Under these criteria, the SA-TABU is fast and more effective. In small network
problems such as Network 1, the SA converges in more iterations while it does not
generate any better “best solution” than the SA_ TABU search strategy. This may be
explained by the fact that the “temperature” drops too fast and the algorithm falls into
a local optimum. Though, it can not be guaranteed that the solution obtained by the
SA-TABU search strategy is the optimum solution, it is very encouraging to observe
that it can produce better “best solution” while the SA converges to a local optimum.
3) In the SA, the starting solution state is randomly generated, while the SA-TABU
search strategy utilizes the heuristic’s information to generate the starting solution
state. The results provide a strong indication that the SA-TABU search strategy starts

at a much more superior solution state. However, it is noted that in Network 1 with a
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10% budget level and in Network 2 with a 30% budget level problems, the SA starts
with a better starting solution state. As the network size and budget level increase,
though the gap of the starting solution state quality between the SA-TABU and SA is
widened. In the Network 5 - 30% problem, the difference is very large, which
underscores one of the advantage of the SA-TABU over the SA. It is expected that for
large scale problems, this advantage would be much more transparent.

4) The “best solution” appears in an earlier iteration for the SA-TABU search,
compared with SA. As the SA-TABU searches a solution space which is formed based
on heuristic information, the probability in finding the “best solution” is much larger
than the SA which uses a more slow and conservative iterative process with no
information. The comparison of the two procedures is not significant in small size
Networks (e.g. 1 Network 1 and Network 2). However, as the network size increases,
the SA finds its “best solution” close to the maximum iteration. That is an indication
that the SA is too slow in reaching better solution for large scale networks.

5) The SA-TABU search strategy always has a smaller mean of the current solution
state, and especially for the relatively large network - Network 5 problem, the
difference of the current solution state mean between the two search strategies is
significant. The mean of trial solution state value, showing the same property as the
current solution state in the results, is the gathering of the generated searching space.
The standard deviation of the current solution state values reflects the fluctuation of
the current solution state. Similarly, the standard deviation of the trial solution state

addresses the degree of the search in exploring the solution space. The tables
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demonstrate that the SA explores a much wider searching solution space. Therefore,
for small network applications, the SA may produce better solutions to the SA-TABU
in some cases. However for large network applications, the SA-TABU strategies
would be much more efficient and effective. Though most of the problem experiments
support the above statement, the results from both Network 1 and Network 2 present a
contradiction. This contradiction can be explained by the complexity of the algorithm
and the nature of the network design problem, especially when a dynamic random
variable is involved in the search process.

Figures 6.4.1 and 6.4.2 show the current solution state values at each iteration
for the SA and the SA-TABU search strategies in Network 3-30% problem
respectively. The trial solution state values per iteration for each of the two search
strategies are depicted in Figures 6.4.3 and Figure 6.4.4 respectively. The observations
from these figures are found to be consistent with the above discussion.

It may be concluded that the SA-TABU search strategies are much more

efficient and effective than SA, especially for larger networks.
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6.5 Sensitivity Analysis of the Key Components of the SA-TABU Search
Strategy

The primary goal of this section’s numerical experiments is to conduct sensitivity
analysis of some key components of the SA-TABU search strategy, namely, Markov
chain length, control parameter, tabu list length and the HEF.

The SA-TABU strategy is composed of three major sub-processes - simulated
annealing, tabu search and the HEF. For the simulated annealing search strategy, the
control parameter or “temperature” decreasing rate, and the Markov chain length are
the two most important components that determine the efficiency and effectiveness of
the search. A small temperature decreasing rate and a longer Markov chain length
would yield a more smooth “annealing” that would generate the desired near-optimal
solution, but it requires longer processing time. Thus, it is necessary to study the
impact of these two parameters on the search procedure.

The search strategy uses a tabu search procedure to prevent the occurrence of
cycling and to avoid local optimal. The tabu search procedure is implemented by not
allowing the most recently updated element(s) to have its value changed for a period
of time (number of iterations) that is termed as tabu list length. The tabu list length is
the primary factor which features the tabu search characteristics of the algorithm.

In an heuristics search strategy, the most important factor is the heuristics
evaluation function (HEF). In SA-TABU, a linear combination of the current link
volume to capacity ratio (V/C ratio), the historical link performance and a random
variable is used as the HEF. The current link volume capacity ratio, is one of the best

parameter in characterizing the performance a link of the network. The link’s LCOF
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variable provides the link’s historical contribution to the objective function. The
random variable transforms the HEF from a deterministic to a stochastic function. The
form of this HEF and particularly the coefficients (weights) for each of the three
components of the function have an impact on the performance of the algorithm.
Therefore, the sensitivity analysis focused on the above three components. The
analysis was conducted on the five test networks, which were subjected to three

different budget levels 10% , 20% and 30%.

6.5.1 Sensitivity Study on Markov Chain Length and Control Parameter

In the standard version of the SA-TABU search strategy, the control parameter
decreasing rate is 15% and the Markov Chain length increasing rate is 20%. Therefore,
5% and 25% control parameter decreasing rates were used for comparison, while the
Markov chain length increasing rate were set at 30% and 10%, respectively.

The Version 1- SA-TABU search strategy uses a 30% Markov chain length
increasing rate and a 5% “temperature” dropping rate as a modification to the standard
version, while Version 2 applied a 10% Markov chain length increasing rate and a
25% “temperature” dropping rate. In comparison to the standard SA-TABU version, a
slower approach trend is expected to have a major impact on the Version 1 SA-TABU
search strategy. Extending the Markov chain length under the same “temperature”
allows the algorithm to accept more trial solution states and decreasing the
“temperature” dropping rate also makes trial solution state acceptance criteria less

restrictive. Consequently, the algorithm would explore a wider solution space and the
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search then resembles a more global search rather than a narrow local search.
However, the slow progress creates a significant disadvantage on the efficiency of the
algorithm, especially when the network size increases and the maximum iteration
criterion is imposed. In contrast, the Version 2 - SA-TABU search strategy is much
more restrictive on the acceptance of the trial solution state and approaches fast to a
good solution, however, with an increasing risk of loosing good solutions.

The numerical results are summarized in Table 6.5.1. Figures 6.5.1-2 and
Figure 6.4.4 present the trial solution state values during each iteration for each of the
three versions of the SA-TABU as applied on the Network 3 30% budget level
problem.

1) In the “best solution” category, Version 1 performs best for the small networks such
as Network 1 and Network 2, where the feasible solution space is relatively small and
the slow approach helps the search to explore as many feasible solutions as possible.
As the network size increases, in most of cases, Version 2 produces the best “best
solution”, and Version 1 is usually unable to reach convergence which implies it needs
much more iterations in order to obtain a better “best solution”.

2) Version 2 requires the least number of iterations to converge since the approach
focuses more on a smaller solution space of higher quality. Its ability to concentrate
more on solution states of higher quality, makes the procedure more attractive for

solving large scale networks, converging to better solution states at a few iterations.



Table 6.5.1 Summary of the Markov Chain Length and Control Parameter Sensitivity Analysis

NETWORK BUDGET

MEAN OF STANDARD DEVIATION OF
BEST SOLUTION ITERATIONS TRIAL SOLUTION STATE TRIAL SOLUTION STATE
(Vehidle Hours) (Vehicle Hours) (Vehicle Hours)
COMBINED ALGORITM COMBINED ALGORITM COMBINED ALGORITM COMBINED ALGORITM

VERSION1 VERSIONO VERSION3

VERSION1 VERSIONO VERSION3

VERSION1 VERSIONO VERSION3

VERSION1 VERSIONO VERSION3

1 10% 6,599 6,605 6,875 1,218 788 541 7,122 7,117 7,047 133 129 94
20% 6,488 6,488 6,488 2,000 1,002 866 6,803 6,765 6,759 192 189 165
30% 6,232 6,232 6,232 1,535 310 288 6,311 6,269 6,251 121 101 53
2 10% 2,083 2,171 2,171 2,000 812 754 2,263 2,249 2,240 57 48 33
20% 1,720 1,720 1,728 1,834 1,208 1,023 2,097 2,025 1,992 190 186 84
30% 1,693 1,693 1,702 2,000 1,630 1,197 1,900 1,805 1,767 199 184 39
3 10% 38434 38584 38699 2,000 1,536 1567 46,121 44878 44993 1,872 1,662 1,684
20% 37,963 37,024 37,072 2,000 1,028 1,025] 43616 41,460 41,747 1,473 1,287 1,269
30% 37,012 36920 36928 2,000 1,756 1665 42,742 41509 39,334 2,775 2,568 1,770
4 10% 9997 10,520 10,212 2,000 983 1,134 11,908 11,471 11,423 883 859 707
20% 9,824 9,756 9,887 2,000 2,000 1,819 11,732 11,296 11,004 700 693 524
30% 9,471 9,343 9,566 2,000 1,752 2,000f 11,430 10969 10,535 792 774 579
5 10% 23914 23512 24,700 2,000 2,000 1,784] 44297 39762  38,298] 19922 18,878 16,135
20% 21,512 20,005 21,180 2,000 2,000 2,000 41,006 39,623 37,000 16,718 15,333 14,792,
30% 18269 18,269 18,269 2,000 2,000 2,000} 33,123 28936 24394 11,025 9,126 8,642
Note:
Version 1; Same as Standard Version, except 5% - control parameter decreasing rate, 30%- Markov Length increasing rate.
Version 0: Standard Algorithm . See Section 6.4.1 for more details.
Version 3: Same as Standard Version, except 25% - control parameter decreasing rate, 10%- Markov Length increasing rate.
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Table 6.5.2 Summary of Tabu List Length Sensitivity Analysis

NETWORK BUDGET

BEST SOLUTION
(Vehicie Hours)

ITERATIONS

MEAN OF
TRIAL SOLUTION STATE
(Vehicle Hours)

STANDARD DEVIATION OF
TRIAL SOLUTICN STATE
(Vehicle Hours)

COMBINED ALGORITM
VERSION3 VERSIONO VERSION4

COMBINED ALGORITM
VERSION3 VERSIONO VERSION4

COMBINED ALGORITM
VERSION3 VERSIONO VERSION4

COMBINED ALGORITM
VERSION3 VERSIONO VERSION4

1 10% 6,605 6,605 6,814 939 788 684 7,215 7,117 7,008 102 129 131
20% 6,488 6,488 6,488 1,148 1,002 1,139 6,774 6,765 6,843 174 189 148
30% 6,232 6,232 6,279 556 310 407 6,333 6,269 6,508 93 101 125
2 10% 2,171 2,171 2,203 1,906 812 628 2,410 2,249 2,245 154 48 167
20% 1,720 1,720 1,720 2,000 1,208 2,000 2,044 2,025 2,103 112 186 196
30% 1,704 1,693 1,693 2,000 1,630 1,809 1,930 1,805 1,894 130 184 198
3 10% 39,781 38,584 38,584 1,688 1,536 1,076 45,031 44 878 43,004 1,637 1,662 2,131
20% 37,048 37,024 37,024 1,290 1,028 1,544 40,539 41,460 41,824 1,624 1,287 1,857
30% 37,003 36,920 36,920 1,980 1,756 2,000 39,874 41,509 39,999 1,972 2,568 2,815
4 10% 10,428 10,520 9,997 864 983 1,353 11,109 11,471 11,882 477 859 653
20% 9,847 9,756 9,743 1,749 2,000 1,904 10,903 11,296 11,518 732 693 719
30% 9,343 9,343 9,350 2,000 1,752 2,000 10,485 10,969 11,304 706 774 725
5 10% 23,690 23,512 23,523 2,000 2,000 2,000 39,808 39,762 39,415 14,246 18,878 149,765
20% 21,188 20,005 20,003 2,000 2,000 2,000 39,621 39,623 38,994 15,713 15,333 15,763
30% 19,715 18,269 18,269 2,000 2,000 2,000 26,737 28,936 27,469 7,049 9,126 10,027
Note:

Algorithm Version 3: Same as Standard Version, except 1/3 of Total Number of Links as Tabu Length.
Algorithm Version 0:  Standard Algorithm . See Section 6.4.1 for more details..
Algorithm Version 4: Same as Standard Version, except 2/3 of Total Number of Links as Tabu Length.
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Table 6.5.3 Summary of Heuristics Function Sensitivity Analysis

NETWORK BUDGET

BEST SOLUTION
(Vehicle Hours)

ITERATIONS

MEAN OF
TRIAL SOLUTION STATE
(Vehicie Hours)

STANDARD DEVIATION OF
TRIAL SOLUTION STATE
(Vehicle Hours)

COMBINED ALGORITM
VERSION5 VERSIONO VERSIONG

COMBINED ALGORITM
VERSIONS VERSIONO VERSIONG

COMBINED ALGORITM
VERSION5 VERSIONO VERSIONG

COMBINED ALGCRITM
VERSION5 VERSIONGC VERSION6

1 10% 6,605 6,605 6,599 998 788 502 7,392 7117 7,004 204 128 112
20% 6,488 6,488 6,488 1,037 1,002 814 7,238 6,765 6,753 217 189 94
30% 6,232 6,232 6,232 1,128 310 303 6,430 6,269 6,260 193 101 21
2 10% 2,232 2,171 2,083 2,000 812 677 2,251 2,249 2,241 92 48 47
20% 1,720 1,720 1,785 1,818 1,208 1,028 2,084 2,025 1,923 188 186 178
30% 1,704 1,693 1,693 2,000 1,630 930 1,856 1,805 1,793 101 184 165
3 10% 39,041 38,584 38,572 2,000 1,536 1,405 48,723 44,878 42,230 1,873 1,662 1,458
20% 37,018 37,024 37,024 2,000 1,028 808 43,554 41,460 41,249 1,924 1,287 1,279
30% 36,979 36,920 36,820 1,855 1,756 1,223 41,839 41,509 39,541 2,960 2,568 1,364
4 10% 10,391 10,520 10,579 2,000 983 767 11,672 11,471 11,302 1,001 859 753
20% 9,788 9,756 9,740 2,000 2,000 2,000 11,587 11,296 11,290 832 693 565,
30% 9,462 9,343 9,343 2,000 1,752 2,000 11,401 10,969 10,904 887 774 712
5 10% 23,585 23,512 23,504 2,000 2,000 2,000 45,666 39,762 37,988 20,903 18,878 14,708
20% 21,924 20,005 19,993 2,000 2,000 2,000 42,180 39,623 36,329 18,761 15,333 13,956
30% 19,643 18,269 18,269 2,000 2,000 2,000 35,753 28,936 25,263 14,250 9,126 8,086
Note:
Version 5: Same as Standard Version, except 0.5 for the weight of V/C ratio is the heurisitcs function.
Version 0: Standard Algorithm . See Section 6.4.1 for more details.
Version 6: Same as Standard Version, except 1.5 for the weight of V/C ratio is the heurisitcs function.
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3) The combination of the trial solution state’s mean and its standard deviation best
describe the solution space the search strategy explores. It can be observed that
Version 1 explores larger search space than Version 2 and the standard version. In the
small size networks, Version 1 is able to cover most of the feasible solution space,
while for larger networks, the feasible solution space coverage shrinks dramatically
and the “good” solution space neighborhood is not explored enough. On the other
hand, the Version 2 SA-TABU exhibits opposite characteristics to the Version 1.

It may be concluded that Version 1 is good for small network size problem and
Version 2 is more suitable for large network size problems. Thus, the Markov chain
length can be used in conjunction with the “temperature” dropping rate, as the control
parameters in designing different versions of the algorithm according to the specific
size of network problem. In this regard, the SA-TABU search strategy is a very
flexible methodology which can control the solution quality and computational speed

to fit different variety of problems.

6.5.2 Sensitivity Analysis on Tabu List Length

In the simple tabu search, the tabu list length has a major effect on the algorithm. In
Glover(1990) a tabu list length 7 is suggested. However, the proper tabu list length
also depends upon the problem size. The standard version algorithm adopts half of the
total number of links as the tabu list length. The sensitivity analysis utilizes 33% and

67% of the total number of the links as the tabu list lengths for comparison.



180

The tabu list length of the Version 3 -SA-TABU is 33% of the total number of
the links, and in Version 4 -SA-TABU, the tabu list length is 67% of the total number
of the links. When the tabu list length is shorter, the algorithm would allow more
appearances of the same solution states that are “good” solution states. However, the
generated trial solution state set to be explored is smaller. In this aspect, the SA-TABU
with shorter tabu list length has similar characteristics with the shorter Markov Chain
length or higher “temperature” rate such as Version 1-SA-TABU. However, the
search procedures based on tabu list length variations are not equivalent to the
algorithms on Markov chain length or “temperature” dropping rate variations, since
they are more related to the size of the explored trial solution set, while the later ones
refer to the acceptance of the trial solution states. A summary table of the experimental
results is presented in Table 6.5.2 and in Figures 6.5.3-4, and Figure 6.4.4 of the
Network 3 30% budget level problem. The results are summarized below:

1) In Network 1 and Network 2 problems, where the problem size is relative small, the
Version 3 produces the best “best solution” and the Version 4 the worst “best
solution”. This may be caused by the longer tabu list length used by the Version 3 -
SA-TABU, as the “good” set of solution states is not explored enough. This is also
evidenced by the required number of iterations. The Version 4 -SA-TABU search
requires the fewest number of iterations, especially for Network 1, due to the fact that
a larger number of “good” solution states are held on the tabu list and the acceptance
of the trial solution state becomes harder, resulting in the early termination of the

process. This also causes the mean of the trial solution state for the Version 4-SA-
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TABU to be relative higher. Furthermore, the strict acceptance of the trial solution
state leads to a higher standard deviation of the trial solution state means.

2) For relative large problem sizes such as Network 3, 4 and S, the Version 4 -SA-
TABU uses less iterations to obtain a better “best solution”. Network 3, 4 and 5
problems also have less congested network flow, and the sets of “good solution” are
larger. The longer the tabu list length is, it helps the search to explore more of the
“good solution” set by diversifying the search. Based on the trial solution state mean
and standard deviation of the trial solution state, the Version 4 search strategy
demonstrated its ability of stretching out the search space under the “good” solution
state neighborhood. The reason for Version 2’s lackluster performance in the large
scale problems is that the short tabu list length, results in the frequent occurrence of
cycling, visiting the same solution states, while losing valuable processing time to
explore the new feasible solution space.

In conclusion, the tabu list length is one of the vital elements that greatly
affects the quality of the search procedure. It should be designed according to the
characteristics of the specific problems. The tabu list length should be longer if the set
of “good solutions™ is relatively large. The size of the “good solution” set depends
upon the size of the network and the number of similar links having very similar HEF

values in the network.
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6.5.3 Sensitivity Analysis on Heuristic Evaluation Functions (HEF)

There are three variables in the HEF, the V/C ratio, the basic heuristic variable and
random number. The weight for V/C ratio variable is 1, LCOF’s value was set to 0.5
and for the random “error” was set to 1. Early experiments showed that the
performance of the procedure does not have a clear relation with the variation of the
weight of the basic heuristics value variable. In these experiments, the weight factor
ratio for the V/C ratio versus the random variable is explored.

The weight of the V/C ratio variable for the Version 5 - SA-TAWBU
procedure is 0.5 and 1.5 for the Version 6 procedure. In essence, the Version 6
procedure relies more on the heuristic information to direct the search. The use of the
heuristic information guides the search towards a “good solution” state neighborhood
that makes the procedure more efficient and effective. However, the excessive use of
the heuristic information may force the search to avoid some very “good” solution
states or the global optimum.

The previous experiments provided some insights into the elements that play
an important role to the performance of the search strategy, such as the Markov chain
length, and the tabu list length, should be designed to reflect the specific problem
characteristics. The variation on the Markov chain length and the “temperature”
dropping rate dictate the move size, and the tabu list forces the selection of non-
prohibited moves, while the V/C ratio utilizes the network flow characteristics.

Table 6.5.3 presents a summary of the experimental results for Versions 5, 6

and the standard version procedures, while Figures 6.5.5-6 depict the trial solution
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state values versus the number of iterations for the Version 5 and 6 procedures,
respectively. The following observations are made:

1) Version 6 procedure requires the least number of iterations, the smallest mean and
standard deviation of the trial solution states in Network 1 and Network 2,
respectively. The “best solution” does not follow any trend by the problem size. The
use of the V/C ratio does not provide any advantage to the search procedure, based on
the “best solution” observed. Using a higher weight of the V/C ratio information,
Version 6 focuses more on some “elite” links resulting in less iterations and a smaller
trial solution states space.

2) Networks 3, 4 and 5 are larger than Networks land 2. Version 6 has an advantage
over the other two versions of the searches, for the larger networks, by reaching the
best “best solution” in less iterations and exploring a smaller trial solution state space.
However, it is not necessary true that the larger the problem size is, the more the
procedure relies on the V/C ratio information. It can only be concluded that the search
procedure utilizing higher V/C ratio information , forces the search towards “good
solution” trial solution state sets, which might be a local optimum, thereby increasing
the risk of missing the global optimum.

Identifying the proper weights for the HEF for a specific problem is much
more difficult than the Markov chain length , “temperature” dropping rate and the tabu
list length which can be derived from the size of the problem. However, the higher
V/C ratio weight tends to be more suitable for large networks if finding the global

optimum is not strictly required and the computing time is constrained.
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The series of experiments conducted provided a general understanding of the
SA-TABU search strategy in solving the TCNDP. The procedures presented are highly
stochastic due to the two times that random variables are involved ( One appears in the
acceptance criteria and the other is involved in the HEF), which do not provide any
specific conclusions. However, some general conclusions are derived which facilitated
the decisions on the use of certain weights on the variables of the HEF.

It can be concluded that SA-TABU search strategy is not only an efficient and
feasible methodology in solving large scale TCNDP, but it also a very flexible and
robust algorithm. It can be designed to fit a specific problem by modifying the HEF,
the iteration processing manner and trial solution state size to reflect different problem

structures, characteristics, size and complexity.



CHAPTER 7

TWO CLASSES OF USERS NETWORK DESIGN PROBLEM STUDY

This chapter presents the results of numerical experiments on network flow
characteristics and their implications in network design. A study of the characteristics

of the TCNDP is also presented.

7.1 Study of the Characteristics of the TCNDP
The network design variables considered in this study involve the addition of an extra
lane to the existing network links which can assume one of three traffic operation
options: 1) extra lane is allowed for both passenger car and truck; ii) extra lane is
exclusively for the trucks; iii) extra lane is exclusively for the passenger cars. In this
section, a simplified example is utilized to better illustrate how the two classes of users
respond to the addition of an extra lane, subject to the specific traffic operational

options specified above.

Link a

@: Link b D®

Figure 7.1.1 Example Network

Figure 7.1.1 shows a simple one link network. It is assumed that the passenger

2 . .
car link cost function is: ¢, =2(1+ 1.03(363{;—0636—”—)5'52), and the truck link Link b cost
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05x, +4x, ) s14

function as: ¢, =3(1+0.62(
1600

). The passenger car demand is 1200 and

the truck demand is 200.

Under the scenario with an exclusive passenger car lane and truck lane, for the
roadway is utilized by the same class of user, it is assumed that the travel speed in the
new lane would increase by 10%. The streamlined diagonalization algorithm, is used
to assign the traffic flow of the two classes of users over the original network and the
expanded network under the three different options. The results are shown in Table
7.1.1.

From Table 7.1.1, the following observations are made:

i) The addition of a new lane improves the total travel time. The three different types
of lane addition produced better total UE travel times compared to the original
network. The class’s link travel time in every scenario has decreased by the reduction
of its own congestion or its counterpart’s traffic congestion.

ii) The link travel time for each class is identical between the existing lane and the new
lane. This confirms that this is an equilibrium solution.

iii) The exclusive lane for either class not only significantly improves its own user’s
travel time, but also it decreases its counterpart’s travel time by a certain percentage.
The counterpart’s percentage decrease is less than the corresponding decrease
observed under the shared lane option expansion. The option for expansion of the
capacities for both classes (shared lane) equally improves the passenger car and truck’s

travel time.
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Table 7.1.1 Computational Results of the Example in Figure 7.1.1

ORIGINAL NEW LANE EXCLUSIVE EXCLUSIVE
NETWORK FOR BOTH NEW CAR LANE NEW TRUCK LANE
(% Reduction)  [(% Reduction) (% Reduction)
TOTAL TRAVEL TIME(veh-min) 5659 3287 (42%) 3246 (43%) 3810 (33%)
Existing Car Lane
Travel Time(minutes) 3.94 2.22 (44%) 2.16 (45%) 2.67 (32%)
Flow(cars) 1200 800 606 1200
Existing Truck Lane
Travel Time(minutes) 4.06 3.12(23%) 3.27(19%) 3.06 (25%)
Flow(trucks) 200 133 200 52
New Car Lane
Travel Time(minutes) 222 2.16
Flow(cars) 400 594
New Truck Lane
Travel Time(minutes) 3.12 3.06
Flow(trucks) 67 148

iv) The exclusive car lane option produces the optimal total travel time in comparison
to the two options. The passenger car traffic demand accounts for 87.5% of the total
flow. The addition of the passenger car lane produces the largest improvement for the
majority of users, the passenger cars, so the total travel time saved is maximized.
v) These results may also have policy implications. For example, if it is desired to
benefit either the trucks or passenger cars, then an exclusive new truck or car lane
should be sought. If the objective is to minimize the total travel time then a new
exclusive car lane should be constructed. If it is desired to reduce the travel time for
both classes in an equitable manner, then a shared lane would be appropriate.

It is noted however, that the above results are applicable to the specific
example and the specific travel cost functions utilized. It cannot be concluded that they

can be generalized to networks.
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Using the same example, several experiments were conducted with different
levels of congestion and truck to passenger car volume ratio (See Figures 7.1.2-7.1.6).
In these figures, the horizontal axis shows the trucks to passenger cars volume ratio,
varying from 5% to 200%, and the vertical axis is the total travel time, while the four
different category lines represent the original network and three network expansion
options, respectively. Figures 7.1.2-7.1.6, show the results under the 0.1, 0.5, 0.875,
1.0, 1.5 congestion levels (V/C ratio).

It is observed that the aforementioned conclusions obtained from the example
were preserved in all test scenarios. The following observations are made:

i) Figure 7.1.2, with 0.1 V/C ratio, shows that the exclusive car lane performs best for
truck/car flow ratios of less than 50%.

ii) In Figure 7.1.3, when the V/C ratio is 0.5, new lane for both, exclusive new car
lane, and exclusive new truck lane produce the same improvement up to a
truck/passenger car flow ratio of 50%. Then the shared lane and the truck lane perform
best.

iii) Figure 7.1.4 demonstrates that shared lane and exclusive passenger car lane
performs best up to a truck/car flow ratio of 25%, when the shared lane starts
performing better. After about a 40% truck/car flow ratio, the exclusive car lane
becomes the worst of the three options.

iv) A V/C ratio of 1, it produces similar results to those with a V/C ratio of 0,875,

which is shown in Figure 7.1.5 and Figure 7.1.4.
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v) Under the condition of V/C ratio equal to 1.5 of Figure 7.1.6, the shared lane

produces the best results for almost all the truck/car flow ratios.

7.2 The Experimental Results of the Network Design Solutions
In this section, the network results such as network flow and network design solution
are summarized.

Table 7.2.1 presents the network design solution and the network link flow
volumes for Network 1 with 10%, 20% and 30% budget level with the best solutions
of 6605, 6488 and 6232 vehicle-hours, respectively, of the network total UE travel
time. The best total UE travel time for Network 2 (Table 7.2.2) were 2171, 1720 and
1693 vehicle-hours for the 10%, 20% and 30% budget levels, respectively. Similarly,
Tables 7.2.3-7.2.5 demonstrate the best network solutions and the link flow volumes
for Network 3, Network 4 and Network 5 with 10%, 20% and 30% budget levels,
respectively.

Some key interesting observations can be derived from the results in Tables
7.2.1-7.2.5 as follows:

1) Almost every expanded link of the best solution is a shared lane (passenger cars
and trucks) operations.

2) The links selected to be expanded at a lower budget level are not necessary
selected at higher budget level. This is consistent to the findings for the SCNDP
(Mouskos, 1991). This is expected as the flows redistributed themselves based on

the new network configuration which is the essence of Braess’s paradox.
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3) Most of the links with high V/C ratios are included for link expansion, but some of
the links of with smaller V/C ratios were also selected for expansion. This
observation further demonstrates that the V/C ratio provides a wvaluable
information that can be used as one of the criteria for link selection. One of the
most important features of the network design problem is that every single link in a
network 1s not an isolated individual link but it is a member for a number of paths,
and the selection of the link to be expanded relies more on the path characteristics.
Thus a low V/C ratio for a link which is a part of a vital congested path can
improve the network performance more than an otherwise isolated link (which is a

member of only a few paths) with a high V/C ratio.



CHAPTER 8

CONCLUSION AND FUTURE RESEARCH

8.1 Summary

The motivation for this study stems from the recognition that the traffic stream may be
divided into two distinct classes of users with different operational characteristics,
passenger cars and trucks. Various states have designated specific truck routes,
climbing lanes are widely used throughout the country, and trucks are prohibited from
entering the left lane of almost all major highways. In addition, several states are
considering the implementation of special truck lanes, to improve the safety and
operational efficiency of roadways with high truck volumes.

The specific problem addressed in this dissertation is addressed only the
operational aspect of truck lane needs which is outlined below:

Given the passenger and truck origin-destination (O-D) matrices, the available
budget and a highway network, identify the best combination of the network links for
capacity expansion and operational improvements, in minimizing the total network UE
travel time. The following link improvements were considered:

1. Do not expand link,
2. Both passenger cars and trucks allowed on new lane,
3. Only passenger cars allowed on new lane,

4. Only trucks allowed on new lane.

205
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The above problem is classified as a mixed integer non-linear problem. Its

complexity falls under the category of Non-polynomially hard problems. In the worst

case it requires 4" (n is the total number of candidate links) iterations to enumerate all
possible solution states of the problem. Even for very small networks the
computational time required to solve the problem is prohibitive (e.g. assuming a
network with 10 candidate links, the total number of iterations would be 1,048,576).
Therefore, branch and bound based procedures cannot be used to efficiently solve even
moderately small size problems.

The major contribution of this dissertation is the development of a
methodology in providing “good” solutions to the above problem. The methodology
developed utilizes a combination of simulated annealing and tabu search strategies.
These strategies have been widely used in solving large scale combinatorial problems.
While it is recognized that these procedures may not reach a global optimum, for large
scale problems near-optimal solutions may be sufficient.

The combined simulated annealing and tabu search strategy (SA-TABU)
developed requires at every iteration to solve a multi-class (passenger cars and trucks)
traffic assignment procedure with asymmetric link interactions, to identify the flows
on the links of the network. The diagonalization algorithm was used to solve the traffic
assignment at every iteration of the SA-TABU search strategy developed. In all
iterations, the traffic assignment procedure converged, which implies that equilibrium

was reached at each iteration. The solution to the traffic assignment problem is also the
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major burden to the computational time required by the search strategy, especially for
large networks.

The specific travel cost functions used in the traffic assignment, were derived
primarily from engineering judgment using a modification of the BPR type curves and
the concept of passenger car equivalents as applied by the 1994 HCM. In particular the
travel cost functions were set in such a way in order to reflect the higher contribution
that the cars place on passenger cars’ travel time and the lesser contribution of the
passenger cars on the trucks’ travel time. The Jacobian of these travel cost functions is
proven to be positive definite which guarantees that the UE solution found is also
unique.

The SA-TABU search strategy developed combines the advantage of the
conventional simulated annealing procedure to guide the search in a systematic way,
the tabu search strategy’s advantage in reducing the risk of cycling and in avoiding
local optima, and the characteristics of the two classes of users network design
problem. A major contribution in this study is the development of a comprehensive
heuristic evaluation function (HEF) which is used to evaluate each available move at
every iteration which is composed of three elements: the link’s volume to capacity
ratio which captures the current flow characteristics of the link, the historical
contribution of the link to the objective function that is updated continuously
throughout the search (LCOF), and a random variable which provides a stochastic

nature to the HEF developed.



Table 8.2.1 Summary of Selected Results

Network Improvement and Budget

SA ,SA-TABU Comparison-""Best Solution"
& ""Best Solution" Ist Appearance()

Budget Level SA SA-TABU SA SA-TABU SA SA-TABU
10% 20% 30% 10% 20% 30%
Network Network
I 73.3% 74 3% 76.7% 1 7541(980)  6605(656)  7296(1001)  6488(544)  6232(1756) 6232(103)
2 32.2% 82.4% 85.4% 2 2232(1333) 2171(467)  1876(1578) 1720(1167)  1765(1602) 1693(1426)
3 94.5% 98.9% 99.2% 3 40213(1899) 38584(1164) 37000(1772) 37024(846) 37001(1926)  36920(1225)
4 84.7% 93.6% 98.4% 4 10391(1265)  10520(554) 10099(1993)  9756(1564)  9698(901)  9343(1154)
5 97.0% 98.5% 99.3% 5 24483(1820)  23512(738) 22019(1537) 20005(1656) 19973(1997) 18269(1764)
Passenger Cars and Trucks Break Point of Exclusive Car Lane and Exclusive Truck Lane
Total Travel Time Reduction
Passenger Cars Trucks Overall V/C ratio
Network 0.10 0.5 0.875 1 1.5
{ 74.1% 74.5%
2 38.5% 3.5% Truck Flow / 70% 33% 35% 35% 37%
3 49.1% 53.8% Paasenger Car Flow
4 48.4% 47.9%
5 95.2% 76.6%

80C
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8.2 Conclusions

The following findings and conclusions are abstracted from the summary and results

of the analysis of the numerical experiments presented in Chapter 7 and Chapter 8.

8.2.1 TCNDP Characteristics

1) Link Selection for Expansion

The probability that the links selected for capacity expansion, have higher volume
to capacity ratio than the links not selected for capacity expansion, is very high.
Links selected for capacity expansion with relatively low volume have also been
observed to be included in the optimal solution. These links are either members of
a critical path or they are included due to the budget constraint which may not
allow links with higher volume to capacity ratio but having a higher cost to enter
the solution.

The higher the budget level the larger its contribution is to the network total travel
time. However, usually most the contribution to the total travel time of the network
is achieved with low budget levels. This can be clearly observed from “Network
improvement and Budget” in Table 8.2.1.

The links selected for expansion with lower budget levels are not necessarily
included at the solutions with higher budget levels. This result exemplifies the user
behavior in selecting their routes based on the current network configuration.
Table 8.2.1 indicates that under the situation where all the existing links were

allowed to be expanded by one shared lane, for both passenger cars and trucks for
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the five test networks, the passenger cars experience more travel time reduction
than the trucks in most of the cases.

2) Lane Traffic Operation Selections
In most of the tests conducted the selected link expansion option was the shared
lane with both passenger cars and trucks.
In limited cases, the exclusive lane is either a truck or a passenger car lane, which
occurs when one class dominates the other class. In Table 8.2.1 under the heading
“Break Point of Exclusive Car Lane and Exclusive Truck Lane”, the break point of
selecting exclusive truck lane or passenger car lane various congestion level
(overall V/C ratio) is presented. With moderate to heavy congestion levels, the
exclusive passenger car lane would be the better selection than the exclusive truck
lane when the ratio of truck flow to car flow is lower than around 33% in the
experiment. However, the lane expansion for both passenger cars and trucks is
selected most of the times rather than the lane expansion for exclusive use.
If the network is not congested, there is no significant difference between the three
different options. When the network becomes more congested, the differences
between the different options are much more distinct.

3) Traffic Flow
The expanded links usually attract more traffic than the level of traffic they
experienced prior to the expansion. This result applies primarily to the expanded

links with high volume to capacity ratios.
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The expanded link’s volume to capacity ratio usually decreases. However, in some
occasions it may increase by attracting more traffic.
The mitigation of the congestion usually leads to the reduction of the total travel
times. However, in some occasions while the total travel time is reduced for some
links their corresponding v/c ratio increases.

4) Heuristic Evaluation Function (HEF)
The traffic flow parameters provide important information (e.g. V/C ratio) that
may be used for the selection of link candidates for expansion.
The combined passenger car and truck volume to capacity ratio provides a very
valuable parameter for the selection of the links to be expanded, especially when
the passenger car and truck volumes are relatively close to each other.
The individual passenger cars or trucks volume to capacity ratios are not as
valuable, especially when the links are not congested.
The link’s contribution in reducing the total travel time is also an important
component of the beuristic evaluation function, and it becomes quite crucial when
the information based on the links attributes are difficult to be identified.

The random error terms expands the search space and reduces the risk of cycling.

8.2.2 Characteristics of the SA-TABU Search Strategy and the Traffic

Assignment

The primary conclusions regarding the performance of the SA-TABU search strategy

are summarized below:
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The SA-TABU search strategy is an efficient and robust algorithm in providing
“good” solutions to the TCNDP.

In comparison to the conventional SA algorithm, the SA-TABU directs its search
faster towards a set of “good’ solutions, that makes it applicable for the solution of
large scale problems (network sizes). In contrast, SA becomes inefficient for large
scale problems due to the explanation of a much larger set of solutions. Table 8.2.1
under the heading “ SA, SA-TABU Comparison-‘Best Solution’ and First

?

Appearance of ‘Best Solution’ >’ shows the performance difference is accelerated
by the increase in network size, when measured by the “best solution” generated.
Table 8.2.1 “ SA, SA-TABU Comparison-‘Best Solution’ and First Appearance of

LR N

‘Best Solution’ *’ also presents the iteration when the “best solution” first appears
(the number is in bracket). The SA-TABU found a better “best solution” much
earlier than SA.

The most important components of the algorithm, such as the Markov chain
length, “cooling schedule”, tabu length and heuristics function, can be customized
for different problems and objectives.

The Markov chain length and “cooling schedule” determine the search process’s
mechanic features. The longer the Markov chain length is and the smaller the
control parameter or “temperature” dropping rate is, the better the final solution is,
while the longer time is required, and vice versa.

Network 1 and Network 2 are relatively small size network, which are favored by

the longer Markov chain length and the slower “temperature” dropping rate such
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as the Version 1 SA-TABU search strategy, and Networks 3,4, and 5 would prefer
Version 2 SA-TABU which features a shorter Markov chain length and a faster
“temperature” dropping rate. The shorter the tabu list length SA-TABU in Version
3 performs well for the small networks, Network 1 and Network 2. The version
with a heavy weight on the V/C ratio information in the HEF such as the Version 6
SA-TABU, exhibit an advantage in the numerical experiments for the larger test
networks, Networks 3.4, and 5.

e If the link attributes such as the V/C ratio are found to be informative then the
weight of this attribute in the HEF can be greater, otherwise the weight of the
random variable or the link historical contribution should be set higher.

e The tabu list length is determined by the number of feasible solutions which is
determined by the network size and the budget level.

e The use of the modified link travel cost function for the two classes of users
guarantees that the traffic assignment converges to a unique equilibrium solution

since its Jacobian is positive definite.

8.3 Future Research
In this study, the primary objective was the reduction of the total travel time of the
network. However, other important objectives may also be considered in determining
truck routes and truck lane needs such as, safety, roadway pavement life time,
environmental impacts. In addition, the passenger cars and trucks travel times may be

considered as two separate objectives in the formulation. The consideration of these



214

objectives in the TCNDP would be very useful and more realistic to the engineering
practices. The problem can be set as a multi-objective one, minimizing the total travel
time of the network, maximizing safety, minimizing the truck travel time etc..

In this study, the modified passenger car and truck link cost functions were
used in order to ensure that the diagonalization algorithm converges to an equilibrium
flow in the two classes of users traffic assignment. Future research is needed in
developing actual travel cost functions based on a comprehensive traffic flow and
travel time data at various transportation facilities.

The SA-TABU search strategy performed very well for the solution to the
TCNDP. Other techniques may be considered which can further improve the
performance of the search procedure. In particular, other advancements in
combinatorial optimization such as the utilization of elements from neural networks,
genetic algorithms may be considered.

Develop a set of benchmark problems for the TCNDP that may be used to
continuously compare several algorithms or search strategies. In most of the heuristic
search strategies the global optimum solution is not guaranteed, however, the
benchmark problems will aid in the comparison on the quality of the solutions
obtained.

The heuristic evaluation function plays an important role in determining the
efficiency and effectiveness of the search strategy. Though the HEF developed in this
study is quite robust, it doesn’t take full advantage of the network design

characteristics. Efforts should be undertaken to focus more on the passenger car and
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truck respective congestion index and more important, the path link structure. The
traffic assignment is primarily based on path flows rather than link flows. Therefore,
by identifying the paths that pass through critical links more insights can be found in
identifying the critical links of the network to be expanded. In addition, other elements
may be considered to become parts of the HEF, as well as to consider other forms not
necessarily linear. A sensitivity analysis for various types of HEF would be beneficial
in identifying the best form of the HEF.

The search strategy currently utilized the add/drop type of move, by dropping
one element and adding as many as to satisfy the budget constraint. An alternate
procedure may be sought where two or more elements are dropped and an appropriate
number of links are then added to satisfy the budget constraint.

Another area of research is to try and optimize the computational efficiency of
the search strategy through parallel computing. Several aspects of the search strategy
can be optimized such as the traffic assignment procedure, and the heuristic search

itself.
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